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Abstract

This paper proposes a clustering procedure for samples of multivariate functions
in (L2(I))J , with J ≥ 1. This method is based on a k-means algorithm in which
the distance between the curves is measured with a metrics that generalizes the Ma-
halanobis distance in Hilbert spaces, considering the correlation and the variability
along all the components of the functional data. The proposed procedure has been
studied in simulation and compared with the k-means based on other distances
typically adopted for clustering multivariate functional data. In these simulations,
it is shown that the k-means algorithm with the generalized Mahalanobis distance
provides the best clustering performances, both in terms of mean and standard
deviation of the number of misclassified curves. Finally, the proposed method has
been applied to two real cases studies, concerning ECG signals and growth curves,
where the results obtained in simulation are confirmed and strengthened.
Keywords: Multivariate Functional Data, Distances in L2, k-means algorithm.

1 Introduction

The aim of cluster analysis is to individuate homogenous groups of ob-
servations that are realizations of some random process. Clustering is often
used as a preliminary step for data exploration, the goal being to identify
particular patterns in data that have some convenient interpretation for the
user. In particular, k-means algorithm is a clustering procedure based on
heuristic and geometric procedures.

Over the past few decades, in many scientific fields as economics, medicine,
engineering, . . . there has been an increasing interest towards the study of
datasets whose number n of statistical units is much smaller than the num-
ber p of features recorded for a single statistical unit. Large p - small n
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problems is the term generally used to refer to such situations. A particu-
lar case is represented by the situation in which any observed data can be
seen as a random function generated by a continuous time stochastic process
X = {X(t), t ∈ I}, lying in a suitable infinite dimensional Hilbert space,
typically L2(I), with I compact interval of R.

Functional Data Analysis (FDA) represents the natural framework to
develop statistical models and tools which are useful for the study of this
kind of data (see, e.g. [12], [13], [4], [7]). As highlighted in this literature,
a central role in this context is represented by the Functional Principal
Component Analysis (FPCA), which is based on the Karhunen-Loève (KL)
expansion, that decomposes a random function X(t) in a sum of the mean
m(t) and a series of orthonormal functions ϕk(t), each one multiplied by
zero-mean uncorrelated random variables

√
λkZk, where {λk; k ≥ 1} are

the eigenvalues of the covariance operator V of X while {ϕk; k ≥ 1} are its
eigenfunctions.

Despite of the great interest in the FPCA, many inferential procedures
adopted in the multivariate PCA have not been extended yet to the func-
tional case. For instance, in the multivariate finite dimensional setting the
inference on the mean is typically based on the Mahalanobis distance, since
it takes into account the correlation among the variables and it weights the
components according to their variability. However, when data belongs to
an infinite dimensional space, as (L2(I))J , the Mahalanobis distance is not
well defined and the inference is usually realized by considering only the first
K ∈ N principal components. Although this approach is widely employed
in literature, it is based on a semi-distance that, differently from the Maha-
lanobis case, does not weight more the components with lower variability.

Clustering functional data can also be a difficult task because of the di-
mensionality of space the data belong to. The lack of a definition for the
probability density of a functional random variable and the difficulty to de-
fine distances or make estimates on noisy data are some examples of such
difficulties. Different approaches have been proposed along years to address
these issues; the most popular one consists again in reducing the infinite
dimensional problem to a finite one, approximating the data with elements
from some finite dimensional space. Then the usual clustering algorithms
for finite dimensional data can be performed. When the goal of the analysis
consists in describing the shape of X(t), the first K principal components
{ϕk(t), k = 1, . . . , K} usually contain all the information needed to repre-
sent the data. Nevertheless, when the goal consists in making inference or
classifying curves in different groups, considering a fixed number of compo-
nents may lead to losing some important information on the distribution of
X(t) and hence to providing meaningless results.

For these reasons, in this paper we perform a clustering procedure based
on a distance that takes into account all the components in (L2(I))J , with
J ≥ 1. This distance was proposed and used in an inferential setting in [5,6],



2 k-means algorithm with the generalized Mahalanobis distance 3

where it is considered as a generalization of the Mahalanobis distance since
it weights the different components according to the correlation and the
variability of the functional sample. The type of clustering procedure we
propose to be used with this distance consists in the functional k-means
algorithm, which is very popular in the literature of classification in func-
tional data analysis (see, e.g. the k-means alignment algorithm in [15], the
core shape modeling approach in [3], the non-parametric time-synchronized
iterative mean updating technique in [9] or the simultaneously aligning and
cluster K-centres model in [10]). We show, both in simulation and in two ap-
plications to real case studies, that the k-means algorithm with the general-
ized Mahalanobis distance provides better clustering performances than the
k-means based on other distances, that are typically used to deal with mul-
tivariate functional data. Moreover, these good results have been obtained
either when the difference between the curves involves their macro-structure
or when the difference concerns their micro-structure. We also discuss how
to set the parameter used in the generalized Mahalanobis distance in order
to get high clustering performances.

The paper is structured as follows. The clustering procedure is presented
in Section 2, with a short introduction on the generalized Mahalanobis dis-
tance. In Section 3 we present some results in a simulation setting, both in
the univariate and multivariate functional framework, in Subsection 3.1 and
Subsection 3.2, respectively. In Section 4 and Section 5 we present some
results obtained applying the proposed method to two different real case
studies, and finally some concluding remarks are discussed in Section 6. All
the analysis have been carried out using the software R [11] and the codes
are available upon request.

2 k-means algorithm with the generalized Mahalanobis distance

The aim of this paper is to develop a proper classification procedure in
the multivariate functional framework based on the generalized Mahalanobis
distance defined and used in [5,6]. We first recall the definition and the main
properties of such distance.

Let us consider two realizations a and b of a multivariate stochastic pro-
cess X = (X1, .., XJ )⊤, with J ≥ 1, Xi ∈ L2(I) for any i ∈ {1, .., J} and I
compact interval of R. The mean m = E[X] is defined as a vector of func-
tions in L2(I) such that ml = E[Xl] for any l ∈ {1, .., J}, and the covariance
kernel v(s, t) = Cov [X(s), X(t)] is defined as a J × J matrix of functions
such that vl1l2(s, t) := Cov [Xl1(s), Xl2(t)] for any l1, l2 ∈ {1, . . . , J}. The
scalar product between two elements a and b of (L2(I))J is defined as fol-
lows:

〈a, b〉 =
J∑

l=1

∫

T
al(t)bl(t)dt.
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The eigenvalues {λk; k ≥ 1} and the eigenfunctions {ϕk = (ϕ
(1)
k , . . . , ϕ

(J)
k )⊤;

k ≥ 1} of v are the elements solving 〈vl1·(t, ·), ϕk〉 = λkϕ
(l1)
k (t) for any

l1 ∈ {1, .., J} and t ∈ I, where vl1· = (vl11, . . . , vl1J). Then we can define
the generalized Mahalanobis distance as follows:

dp(a, b) :=

√√√√
∞∑

k=1

d2
M,k(a, b)hk(p), (2.1)

where dM,k(a, b) indicates the term representing the contribution of the
Mahalanobis distance along the kth component, i.e.

dM,k(a, b) =

√
(〈a − b, ϕk〉)2

λk

=

√√√√√ 1

λk

(
J∑

l=1

∫

T
(al(t) − bl(t))ϕ

(l)
k (t)dt

)2

,

and hk(p) is a sequence of regularizing functions of a suitable real parameter
p > 0. Without loss of generality, throughout all the paper we consider
hk(p) = λk/(λk + 1/p), although other choices are possible. For further
details on the properties of the dp distance and the choice of the function
hk(p), see [5, 6].

We consider a sample of n = n1 + . . . + nk realizations X1(t), ..., Xn(t)
of k independent stochastic processes in (L2(I))J . Let X̄n(t) = n−1(X1(t) +
. . . + Xn(t)) be the empirical mean and then the estimated covariance func-
tion is defined as follows:

v̂(s, t) :=
1

n − 1

n∑

i=1

(
Xi(s) − X̄n(s)

)(
Xi(t) − X̄n(t)

)⊤
, (2.2)

from which we can compute the sequences of its eigenfunctions {ϕ̂k =

(ϕ̂
(1)
k , . . . ,

ϕ̂
(J)
k )⊤, k ≥ 1} and the associated eigenvalues {λ̂k; k ≥ 1}. Since in this

case the covariance function is computed using n curves, we have λ̂k = 0
for all k ≥ n, and hence the functions {ϕ̂k; k ≥ n} can be arbitrary chosen
such that {ϕ̂k; k ≥ 1} is an orthonormal basis of (L2(I))J .

The empirical version of the dp distance based on the covariance estima-
tor v̂ can be written as follows:

d̂2
p(Xi(t), Xj(t)) =

min{n−1,T }∑

k=1

d̂2
M,k(Xi(t), Xj(t))ĥk(p)

+
T∑

k=min{n−1,T }+1

p
(
〈Xi(t) − Xj(t), ϕ̂k〉

)2
,

(2.3)
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where T represents the length of the independent variable grid, while d̂2
M,k(·, ·)

and ĥ(p) represent the estimates of d2
M,k(·, ·) and h(p) presented in (2.1), us-

ing {λ̂k; k ≥ 1} and {ϕ̂k; k ≥ 1}, respectively. Comparing (2.1) with (2.3),
we can note that, since λ̂k > 0 only for k ≤ n − 1 and (ĥ(p)/λ̂k) → p for
λ̂k → 0, the second term in (2.3) makes the expression of d̂p consistent with
the definition of dp in (2.1).

We propose a k-means algorithm for an unsupervised classification prob-
lem. In [17] it is possible to find a proper definition of the functional k-means
procedure and an introduction to its consistency properties. The functional
k-means clustering algorithm is an iterative procedure, alternating a step
of cluster assignment, where all the curves are assigned to a cluster, and a
step of centroid calculation, where a relevant functional representative (the
centroid) for each cluster is identified. More precisely, the algorithm is ini-
tialized by fixing the number k of clusters and by randomly selecting a set

of k initial centroids {χ
(0)
1 (t), . . . , χ

(0)
k (t)} among the curves of the dataset.

Given this initial choice, the algorithm iteratively repeats the two basic steps
mentioned above. Formally, at the mth iteration of the algorithm, m ≥ 1,
the two following steps are performed:

Step 1 (cluster assignment step): each curve is assigned to the cluster with
the nearest centroid at the (m−1)th iteration, according to the distance

d̂p. Formally, the mth cluster assignment C
(m)
i of the ith statistical unit,

for i = 1, . . . , n, can be written as follows:

C
(m)
i := argmin

l=1,...,k

d̂p(Xi(t), χ
(m−1)
l (t));

Step 2 (centroid calculation step): the computation of the centroids at the
mth iteration is performed by solving the optimization problems: for
any l = 1, . . . , k,

χ
(m)
l (t) := argmin

χ∈(L2(I))J

∑

i:C
(m)
i

=l

d̂p(Xi(t), χ(t))2,

where C
(m)
i is the cluster assignment of the ith statistical unit at the

mth iteration.

The algorithm stops when the same cluster assignments are obtained at two

subsequent iterations, i.e. the set of cluster assignments {C
(m̄)
1 , . . . , C

(m̄)
n }

and the set of centroids {χ
(m̄)
1 (t), . . . , χ

(m̄)
k (t)} are considered final solutions

of the algorithm if m̄ is the minimum integer such that C
(m̄+1)
i ≡ C

(m̄)
i for

all i = 1, . . . , n.
Naturally, the k-means procedure does not depend only on the distance

adopted in the algorithm, but also on the number of clusters k. Since k
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is typically unknown a priori, we compute the optimal number of clusters
k∗ via silhouette values and a plot of the final classification, see [16]. In
particular, the silhouette plot of a classification consists of a bar plot of the
silhouette values si, obtained for each statistical unit i = 1, . . . , n as

si :=
bi − ai

max{ai, bi}
,

where ai is the average distance between the ith statistical unit and all other
ones assigned to the same cluster, whereas

bi := min
l=1,...,k;l 6=Ci

∑
j:Cj=l d̂p(Xi(t), Xj(t))

#{j : Cj = l}

is the minimum average distance of the ith statistical unit from another
cluster. Clearly si always lies between -1 and 1, the former value indicating
a misclassified statistical unit while the latter a well classified one.

3 Simulation Studies

In this section we show some empirical results obtained in simulation to
evaluate the performances of the clustering procedure presented in Section
2.

3.1 Simulations in the univariate functional framework

Let us consider two samples of i.i.d. curves X1(t), . . . , Xn1(t) and Y1(t), . . . , Yn2(t),
generated by independent stochastic processes in L2(I), with I is a compact
interval of R. We generate the sample curves as follows:

Xi(t) = m1(t) +
K̃∑

k=1

Zki,1
√

ρkθk(t), for i = 1, . . . , n1,

Yi(t) = m2(t) +
K̃∑

k=1

Zki,2
√

ρkθk(t), for i = 1, . . . , n2,

where we set:

(1) the independent variable grid at T = 150 equispaced points in I =
[0, 1];

(2) K̃ = 100 components;

(3) the same sample sizes n1 = n2 = 50;

(4) the mean of the first sample m1(t) = t(1 − t), while we set different
values for the mean of the second sample;
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(5) {Zki,1; k = 1, . . . , K̃} and {Zki,2; k = 1, . . . , K̃} are two collections of
independent standard normal variables;

(6) {ρk; k ≥ 1} is a sequence of positive real numbers defined as follows:

ρk =





1
k+1 if k ∈ {1, 2, 3},

1
(k+1)2 if k ≥ 4;

(7) {θk; k ≥ 1} is an orthonormal basis of L2(I) defined as follows:

θk =





1[0,1](t) if k = 1,√
2sin(kπt)1[0,1](t) if k ≥ 2, k even,√
2cos((k − 1)πt)1[0,1](t) if k ≥ 3, k odd.

We generate the curves in two different cases:

(i) m2(t) = m1(t) +
∑3

k=1
√

ρkθk(t);

(ii) m2(t) = m1(t) +
∑K̃

k=4
√

ρkθk(t).

We compute the estimated eigenvalues {λ̂k; k ≥ 1} and the associated eigen-
functions {ϕ̂k; k ≥ 1} from the estimated covariance function v̂ as in (2.2),
in order to construct the d̂p distance defined in (2.3). We compare the per-

formances of the k-means based on the d̂p distance with two competitors:
the truncated Mahalanobis semi-distance dK

M (summing up K = 3 compo-
nents, which describe most of the variability) and the L2-distance dL2 , as
considered in [7]:

dK
M (a, b) =

√√√√
K∑

k=1

d̂2
M,k(a, b)

=

√√√√√
K∑

k=1

1

λ̂k

(
J∑

l=1

∫

T
(al(t) − bl(t))ϕ̂

(l)
k (t)dt

)2

,

dL2(a, b) = ‖a − b‖ =

√√√√
J∑

l=1

∫

I
(al(t) − bl(t))2dt.

(3.1)

Figure 1 (a) shows the two samples X and Y in case (i), where the two
means m1(t) and m2(t) differ only along the first three components. Table
1 shows the results over M = 50 iterations of the k-means algorithm using
all the distances mentioned above while Figure 1 (b) shows the proportion
of misclassified curves with the d̂p distance as function of log10(p). Since in
case (i) there is a great difference in the macro-structure of the data, the L2-
distance dL2 seems to work well, assigning approximately 76% of the data
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(a) (b)

Fig. 1: Case (i): m2(t) = m1(t) +
∑

3

k=1

√
ρkθk(t).

(a) Functional samples X (light grey solid lines) and Y (dark grey dashed
lines) along with their sample mean (blue solid line and red dashed line,
respectively).
(b) Proportion of misclassified sample with the functional k-means using the

d̂p distance.

Cluster X Y

1
38.46

(4.6739)

11.54

2
12.12 37.88

(4.7666)

Correct classification: .7634

(a) dL2

Cluster X Y

1
39.04

(3.8701)

10.96

2
12.26 37.74

(4.4895)

Correct classification: .7678

(b) dK
M

Cluster X Y

1
37.12

(3.6345)

12.88

2
10.16 39.84

(3.7163)

Correct classification: .7696

(c) d̂p, log10(p) = −2

Cluster X Y

1
37.42

(4.7125)

12.58

2
13.52 36.48

(5.1040)

Correct classification: .7410

(d) d̂p, log10(p) = 8

Tab. 1: Confusion matrices related to the functional k-means for the samples X
and Y in case (i).

to the right group. For what concerns the other two distances, both the
truncated Mahalanobis semi-distance dK

M and the generalized Mahalanobis
distance d̂p with low values of the parameter p provide quite good results
as well. Nevertheless, by looking at Figure 2 and Table 1, it is possible to
note that the d̂p distance with low values of p gives the best results, both in
terms of mean and standard deviation of the number of correctly classified
curves. When the value of p increases, more elements in {ĥk(p)/λ̂k; k ≥ 1},
that represents the weights in (2.3), become close to 1/λ̂k. As a consequence,
the d̂p distance gives relevance to a greater number of components, and so
it becomes more similar to the Mahalanobis distance than the L2-distance.
Hence, since in case (i) the curves differ only along three components, the
performances of the clustering procedures get worse. Indeed, from Figure 1
(b) we can note that the number of misclassified curves increases when p is
large, making the choice of setting a small value of p more appropriate.

The second simulation in the univariate functional framework is given by
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Fig. 2: Boxplot of the number of misclassified curves for case (i) over 50 iterations of
the clustering algorithm using the L2 distance, the truncated Mahalanobis
distance dK

M and the d̂p distance with log10(p) = −2 and log10(p) = 8,
respectively.

case (ii), where the two means m1(t) and m2(t) differ along all the compo-
nents except the first three. Figure 3 (a) shows the two samples X and Y in
case (ii) and Figure 3 (b) shows the proportion of misclassified curves with
the d̂p distance as function of log10(p). In Table 2 we can read the results
obtained for the k-means algorithm over M = 50 iterations with the respec-
tive boxplots in Figure 4. In this case, the L2-distance and the truncated
Mahalanobis semi-distance dK

M do not work well, since they do not detect
the differences between the means; the same occurs for what concerns the
d̂p distance with low values of p, because ĥk(p) ≃ 0 for k ≥ 4 and hence the
distance is unable to detect any difference between the curves. As the value
of the parameter p increases, more terms in {ĥk(p), k ≥ 1} become close to
one. As a consequence, the distance takes into account more components
and the algorithm works better, assigning more than 80% of the curves to
the right group. In this case, the procedure is able to detect the small differ-
ences in the micro-structure of the curves due to the components with low
variability.

To conclude, the choice of p should be data-driven. Indeed, if the curves
in the sample have a different macro-structure, it is better to set a low
value of the parameter p, which makes the d̂p distance similar to the L2-
distance. On the contrary, when the curves seem very similar among each
other but they differ in the micro-structure, the L2-distance does not work
well anymore and the choice of a high value of p is more appropriate.
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Fig. 3: Case (ii): m2(t) = m1(t) +
∑K̃

k=4

√
ρkθk(t).

(a) Functional samples X (light grey solid lines) and Y (dark grey dashed
lines) along with their sample mean (blue solid line and red dashed line,
respectively).
(b) Proportion of misclassified sample with the functional k-means using the

d̂p distance.

Cluster X Y

1
26.64

(4.4802)

23.36

2
22.26 27.74

(3.8376)

Correct classification: .5438

(a) dL2

Cluster X Y

1
25.64

(4.4020)

24.36

2
21.60 28.40

(4.4263)

Correct classification: .5404

(b) dK
M

Cluster X Y

1
28.18

(4.1634)

21.82

2
24.30 25.70

(4.4043)

Correct classification: .5388

(c) d̂p, log10(p) = −2

Cluster X Y

1
41.80

(3.7796)

8.20

2
9.30 40.70

(3.4062)

Correct classification: .8250

(d) d̂p, log10(p) = 8

Tab. 2: Confusion matrices related to the functional k-means for the samples X
and Y in case (ii).
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Fig. 4: Boxplot of the number of misclassified curves for case (ii) over 50 iterations of
the clustering algorithm using the L2 distance, the truncated Mahalanobis
distance dK

M and the d̂p distance with log10(p) = −2 and log10(p) = 8,
respectively.

3.2 Simulations in the multivariate functional framework

We now extend the results presented in the previous section to the mul-
tivariate functional framework. Let us consider two samples of i.i.d. curves,
X1(t), . . . , Xn1(t) and Y1(t), . . . , Yn2(t), generated by independent stochas-
tic processes in (L2(I))J with J = 2, where I is a compact interval of R. We
generate the sample curves as follows:

Xi(t) = m1(t) +
K̃∑

k=1

Zki,1
√

ρkθk(t), for i = 1, . . . , n1,

Yi(t) = m2(t) +
K̃∑

k=1

Zki,2
√

ρkθk(t), for i = 1, . . . , n2,

where the quantities in the above expressions are the same as those in Section
3.1, except for the following:

(4new) the mean of the first sample

m1(t) =

(
t(1 − t)

4t2(1 − t)

)
,

while we will set different values for the mean of the second sample;
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Fig. 5: Case (iii): m2(t) = m1(t) + 1
∑

3

k=1

√
ρkθk(t).

(a) First component of the functional samples X (light grey solid lines) and
Y (dark grey dashed lines) along with their sample mean (blue solid line
and red dashed line, respectively).
(b) Second component of the functional samples X (light grey solid lines)
and Y (dark grey dashed lines) along with their sample mean (green solid
line and orange dashed line, respectively).
(c) Proportion of misclassified sample with the functional k-means using the

d̂p distance.

Cluster X Y

1
44.26

(3.4155)

5.74

2
6.52 43.48

(3.8611)

Correct classification: .8774

(a) dL2

Cluster X Y

1
43.50

(3.8611)

6.50

2
5.96 44.04

(3.1685)

Correct classification: .8754

(b) dK
M

Cluster X Y

1
43.56

(3.3755)

6.46

2
5.50 44.50

(3.0921)

Correct classification: .8806

(c) d̂p, log10(p) = −2

Cluster X Y

1
41.80

(4.0254)

8.20

2
8.26 41.74

(3.8269)

Correct classification: .8354

(d) d̂p, log10(p) = 8

Tab. 3: Confusion matrices related to the functional k-means for the samples X and
Y in case (iii).

(5new) {Zki,1, k = 1, . . . , K̃} and {Zki,2, k = 1, . . . , K̃} are two collections of
bivariate normal random variables with mean µ = 0 and covariance
matrix

Σ =

(
1 0.5

0.5 1

)
.

We generate the curves in two different cases:

(iii) m2(t) = m1(t) + 1
∑3

k=1
√

ρkθk(t);

(iv) m2(t) = m1(t) + 1
∑K̃

k=4
√

ρkθk(t).

We compute the estimated eigenvalues {λ̂k; k ≥ 1} and the associated eigen-

functions {ϕ̂k(t) = (ϕ̂
(1)
k , ϕ̂

(2)
k ); k ≥ 1} in order to construct the d̂p distance
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Fig. 6: Boxplot of the number of misclassified curves for case (iii) over 50 iterations
of the clustering algorithm using the L2 distance, the truncated Mahalanobis
distance dK

M and the d̂p distance with log10(p) = −2 and log10(p) = 8,
respectively.

Cluster X Y

1
27.90

(3.7972)

22.10

2
22.86 27.14

(4.4401)

Correct classification: .5504

(a) dL2

Cluster X Y

1
27.24

(4.3685)

22.76

2
22.14 27.86

(4.1058)

Correct classification: .5510

(b) dK
M

Cluster X Y

1
27.46

(4.6957)

22.54

2
22.78 27.22

(4.5638)

Correct classification: .5468

(c) d̂p, log10(p) = −2

Cluster X Y

1
46.24

(2.1339)

3.76

2
4.12 45.88

(2.2373)

Correct classification: .9212

(d) d̂p, log10(p) = 8

Tab. 4: Confusion matrices related to the functional k-means for the samples X and
Y in case (iv).

as defined in (2.3). The truncated Mahalanobis distance dK
M and the L2-

distance dL2 defined in (3.1) are again considered as competitors for the d̂p

distance.
Figures 5 (a-b) show the samples X and Y in case (iii), where the means

of the two samples differ only along the first three components, while Figure
5 (c) shows the proportion of misclassified curves using the d̂p distance
as function of log10(p). In Figure 6 and Table 3 we can see the results
obtained with the three distances over M = 50 iterations. The results
obtained in this multivariate functional framework confirm and strengthen
those obtained in the univariate framework. Indeed in case (iii), where the
difference between the means involves only the components associated with
most of the variability, the L2-distance works quite well, assigning more
than 85% of the curves to the right group. For the other two distances,
both the dK

M distance and the d̂p distance with low values of p have similar
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Fig. 7: Case (iv): m2(t) = m1(t) + 1
∑K̃

k=4

√
ρkθk(t).

(a) First component of the functional samples X (light grey solid lines) and
Y (dark grey dashed lines) along with their sample mean (blue solid line
and red dashed line, respectively).
(b) Second component of the functional samples X (light grey solid lines)
and Y (dark grey dashed lines) along with their sample mean (green solid
line and orange dashed line, respectively).
(c) Proportion of misclassified sample with the functional k-means using the

d̂p distance.
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Fig. 8: Boxplot of the number of misclassified curves for case (iv) over 50 iterations
of the clustering algorithm using the L2 distance, the truncated Mahalanobis
distance dK

M and the d̂p distance with log10(p) = −2 and log10(p) = 8,
respectively.
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performance, even though the latter works better both in terms of mean and
standard deviation of the number of correctly classified curves. Setting a
high value of p is not a good choice, since so doing the d̂p distance considers
relevant many components while the curves differs only along three of them.

Finally we consider case (iv), where the two means differ along all the
components except the first three. Figures 7 (a-b) show the new samples
X and Y and Figure 7 (c) shows the proportion of misclassified curves
with the d̂p distance as function of log10(p). For reasons analogous to those
explained in the univariate functional framework, when the value of p is low
the k-means does not work well and the results are as bad as for the dL2

and dK
M distances. However, when the value of p increases, the procedure

with the d̂p distance provides very good results (see Figure 7 (c)), since it
takes into account more components of the functional data. Moreover, as
it is shown in Figure 8 and Table 4, when we set a high value of p, the
performances improve considerably also in terms of standard deviation of
the number of the correctly classified curves.

Therefore, we have shown that all the results obtained in the univariate
functional framework also hold in the multivariate functional framework.

4 Case study I: Growth dataset

In this section we apply the clustering procedure proposed in this paper
to the Berkeley Growth Study dataset, available in the fda package [14],
which contains the heights (in cm) of 93 children, measured quarterly from
1 to 2 years, annually from 2 to 8 years and biannually from 8 to 18 years.
In the dataset, each function is a univariate curve (J = 1) defined on a grid
of length T = 31. Out of the 93 children, 39 are boys while 54 are girls, so
the aim of the analysis is to point out some differences among them.

The d̂p distance is computed with the eigenvalues {λ̂k; 1 ≤ k ≤ T } and
the associated eigenfunctions {ϕ̂k; 1 ≤ k ≤ T } derived from the estimated
covariance function. The growth curves are shown in Figure 9 (a), where
they appear very similar and quite indistinguishable from each other; this
would suggest from a preliminary analysis that we should study their micro-
structure. In Figure 9 (b) we show the performance of the k-means algorithm
with the L2-distance (green solid line), the truncated Mahalanobis semi-
distance dK

M with K = 3 (blue solid line) and the d̂p distance (black line),
along with some numerical results in Table 5. The situation is quite similar
to case (ii) of Section 3, where the k-means algorithm gives better results
only with the d̂p distance and for high values of p. Indeed, in this case, the k-

means with the d̂p distance setting a low value of p is able to correctly classify
less than 65% of the curves, only a bit more than dL2 and dK

M , while if we
set a high value of p, the proportion of correctly classified curves is between
87% and 89%. In Figure 10 we show at the silhouette plots computed with
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Fig. 9: Growth dataset.
(a) Functional samples for the boys (solid blue lines) and for the girls (dotted
pink lines).
(b) Proportion of misclassified samples with the functional k-means using
the L2 distance (blue dashed line), the truncated version of the Mahalanobis

distance (green line) and the d̂p distance (black line).

Cluster Girls Boys

1 37 17
2 16 23

Correct classification: .6452

(a) dL2

Cluster Girls Boys

1 38 18
2 16 21

Correct classification: .6344

(b) dK
M

Cluster Girls Boys

1 37 17
2 16 23

Correct classification: .6452

(c) d̂p, log10(p) = −2

Cluster Girls Boys

1 47 5
2 7 34

Correct classification: .8710

(d) d̂p, log10(p) = 8

Tab. 5: Confusion matrices related to the functional k-means for the growth curves.

the d̂p distance with p = 108 and k ∈ {2, 3, 4, 5} number of cluster, which
confirms that the best grouping structure is obtained by setting k∗ = 2.

As we could expect by looking at the growth curves in Figure 9 (a),
in this case it is better to set a low value of the parameter p, since the
curves seem very similar and the difference involves the micro-structure of
the functional data.

5 Case study II: ECG dataset

In this section we apply the functional k-means algorithm to a real case
study on electrocardiographics signals (ECGs). The dataset provided by
Mortara-Rangoni S.r.l. contains ECG signals, which represent a recording
of the electrical activity of the heart over a period of time. Each signal
consists of 8 curves, such that we have a multivariate functional dataset
with J = 8.

Among the signals in the dataset, some are healthy while others are af-
fected by Bundle Branch Blocks. Depending on the anatomical location of
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Fig. 10: Silhouette plots of the clustering result obtained via the multivariate func-
tional k-means procedure for the Growth dataset, setting (a) k=2, (b) k=3,

(c) k=4 and (d) k=5 with distance d̂p and log10(p) = 8: the data are or-
dered according to an increasing value of silhouette within each cluster and
the colour indicates the cluster assignment.

the defect which leads to a bundle branch block, the blocks are further clas-
sified into right bundle branch block (RBBB) and left bundle branch block
(LBBB). The aim of the analysis is to establish if there is statistical evidence
of shape modifications induced on the ECG curves by the pathologies. The
investigation will be conducted only from a statistical perspective, without
considering any clinical criteria.

The ECG signals consist of noisy and discrete observations of the func-
tions describing the ECG traces of the patients. Moreover, each patient has
his own ’biological’ time, i.e. the same event of the heart dynamics may
occur at different times for different patients; that is why the morphologi-
cal change due to this difference in timings is misleading from a statistical
perspective. To address these two problems, which are quite popular in func-
tional data analysis, the data have been previously smoothed and registered;
see [8] for further details.

We consider n = 700 subjects, where among them 400 are healthy, 150
are affected by LBBBs and 150 are affected by RBBBs. From the sample co-
variance function we estimate the eigenvalues {λ̂k; k ≥ 1} and the associated

eigenfunctions {ϕ̂k = (ϕ̂
(1)
k , . . . , ϕ̂

(8)
k )⊤, k ≥ 1}, which are used to compute

the generalized Mahalanobis distance d̂p as defined in (2.3). To perform
comparisons and to test the robustness of the k-means algorithm based on
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Fig. 11: Silhouette plots of the clustering result obtained via the multivariate func-
tional k-means procedure for the ECG dataset, setting (a) k=2, (b) k=3,

(c) k=4 and (d) k=5 with distance d̂p and log10(p) = −4: the data are
ordered according to an increasing value of silhouette within each cluster
and the colour indicates the cluster assignment.

the d̂p distance, we have considered as competitors the same distances used
in Section 3, i.e. dK

M and dL2 .
Figure 11 shows the final silhouette plots obtained by clustering the

multivariate samples of ECG traces according to the functional k-means
procedure with the d̂p distance, with p = 10−2 and k = {2, 3, 4, 5}. As we
can see from the figure, the grouping structure obtained by setting k = 3
seems the best, both in terms of silhouette profile and wrong assignments.
A similar result is obtained by measuring the distance between curves with
the dK

M or the dL2 distances; we thus set k∗ = 3. Moreover, the k-means
seems to detect the best grouping structure when we use the d̂p distance
with small values of the parameter p.

Because of the high computational cost due to the construction of the d̂p

distance, that takes into account a large number of components, the code has
been parallelized using the R-packages doParallel and foreach (for further
details about both packages, see [1] and [2]). This has greatly reduced the
computational time of the algorithm. The results obtained by the k-means
multivariate clustering procedure with all the three distances are shown in
the confusion matrices of Table 6. We a posteriori identify the cluster with
the greater number of physiological ECG traces as the one containing the
healthy subjects. Subsequently, to distinguish the clusters corresponding to
the pathological traces, we first select the cluster containing the maximum
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Cluster Healthy LBBB RBBB

1 355 18 29
2 40 96 1
3 5 36 120

Correct classification: .8228

(a) L2 distance

Cluster Healthy LBBB RBBB

1 362 24 36
2 2 92 1
3 36 34 113

Correct classification: .8142

(b) dK
M distance

Cluster Healthy LBBB RBBB

1 396 28 24
2 3 96 0
3 1 3 126

Correct classification: .8830

(c) d̂p, log10(p) = −4

Cluster Healthy LBBB RBBB

1 321 44 40
2 64 95 14
3 15 11 96

Correct classification: .7314

(d) d̂p, log10(p) = 4

Tab. 6: Confusion matrices related to the functional k-means for the ECG traces.

number of pathological traces of the same kind and at last the remaining
cluster.

Looking at the four confusion matrices, we can note that the obtained re-
sults are quite good and they differ a little depending on the tested distance.
As obtained in case (iii) of Section 3, from Figure 12 we can see that, the
higher is the value of the parameter p in the d̂p distance, the higher is also
the number of misclassified curves by the k-means. In particular, in this case
we go from more than 88% of well-classified subjects to about 73%. Then,
we can state that, in this case, the generalized Mahalanobis distance with
small values of p is the best choice; this performance are even better than
those with the L2 distance and the truncated Mahalanobis semi-distance
dK

M . As discussed in Section 3, this scenario can be explained by the fact
that the differences among the ECG signals concern the macro-structure of
the curves, i.e. differences in the amplitude and inversion of some parts of
the curves, which are better identified by the d̂p distance with low values of
p.

Figure 13 shows the ECG curves of the subjects considered in this study,
in the first two of the 8 leads and with a different color for each cluster (green
for the healthy subjects, orange for the LBBBs, red for the RBBBs). Looking
at the black centroids in Figure 13, it is possible to note the main differences
between the healthy subjects and those affected by Bundle Branch Blocks.

6 Discussion and future developments

In this work we have considered the problem of clustering multivariate
curves, proposing a functional k-means algorithm based on a suitable gener-
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Fig. 12: Proportion of misclassified samples with the functional k-means for the
ECG dataset using the d̂p distance (black line), with the L2-distance (blue
dashed line) and with the dK

M semi-distance (green solid line).
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Fig. 13: Curves assigned to each cluster in the first two ECG leads (green for the
healthy subjects, orange for the LBBBs, red for the RBBBs).
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alization of the Mahalanobis distance for Hilbert spaces. It has been shown,
both in simulations and in two real case studies, that the performances of
this method are definitely higher than those obtained with other distances
typically used in functional data analysis.

Morever, we have discussed that, when the curves in the sample differ
mainly in their macro-structure, as for example the ECG signals where there
are differences in the amplitude and the inversion of some parts of the curves,
the k-means algorithm with the d̂p distance works very well with low values
of the parameter p, even better than the L2-distance and the truncated Ma-
halanobis semi-distance. If instead the curves look indistinguishable, as for
example the growth curves where each function grows in a slightly different
way than the other ones and this difference involves the micro-structure of
the curve, the k-means algorithm based on the d̂p distance with high values
of p provides the best results, performing remarkably better than the other
considered distances.

As future development, it will be interesting to investigate the perfor-
mances of this distance with other clustering algorithms different from the
k-means; moreover, since this distance can be extended to more complex
spaces, such as the Sobolev space H1, we could improve the clustering pro-
cedure by incorporating the information on the derivative of the functional
data.
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