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Abstract

Objective. Finding the human genes co-causing complex diseases, also known
as “disease-genes”, is one of the emerging and challenging tasks in biomedicine.
This process, termed gene prioritization (GP), is characterized by a scarcity of
known disease-genes for most diseases, and by a vast amount of heterogeneous
data, usually encoded into networks describing different types of functional re-
lationships between genes. In addition, different diseases may share common
profiles (e.g. genetic or therapeutic profiles), and exploiting disease commonali-
ties may significantly enhance the performance of GP methods. This work aims
to provide a systematic comparison of several disease similarity measures, and to
embed disease similarities and heterogeneous data into a flexible framework for
gene prioritization which specifically handles the lack of known disease-genes.
Methods. We present a novel network-based method, Gene2DisCo, based on
generalized linear models (GLMs) to effectively prioritize genes by exploiting
data regarding disease-genes, gene interaction networks and disease similarities.
The scarcity of disease-genes is addressed by applying an efficient negative selec-
tion procedure, together with imbalance-aware GLMs. Gene2DisCo is a flexible
framework, in the sense it is not dependent upon specific types of data, and/or
upon specific disease ontologies.
Results. On a benchmark dataset composed of nine human networks and 708
medical subject headings (MeSH) diseases, Gene2DisCo largely outperformed
the best benchmark algorithm, kernelized score functions, in terms of both area
under the ROC curve (0.94 against 0.86) and precision at given recall levels
(for recall levels from 0.1 to 1 with steps 0.1). Furthermore, we enriched and
extended the benchmark data to the whole human genome and provided the
top-ranked unannotated candidate genes even for MeSH disease terms without
known annotations.
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1. Introduction

Complex diseases are attributed to multiple heterogeneous causes, and rarely
involve abnormalities on a single gene [1]. High-throughput techniques are use-
ful to identify genes likely to be relevant for specific human diseases and can
look at genomic regions containing massive amounts of candidate genes. Thus,
since the manual verification of individual candidate genes is expensive and
time-consuming, computational methods are needed to aid the discovery of
disease-genes by ranking candidate genes from the gene sets on the basis of
their likelihood of being involved in a certain disease [2]. This problem, called
disease-gene prioritization or simply gene prioritization (GP), is nowadays cen-
tral biomedicine, since knowing the genetic causes of a given disease can help
studying effective treatments for the disease itself, in addition to its prevention.
This task is challenging and characterized by several issues, including the vast
amount and the heterogeneity of the available information, requiring scalable ap-
proaches to integrate multiple data sources; the rarity of known disease-genes for
most diseases in the existing disease taxonomies (e.g. the OMIM database [3]);
the existence of shared profiles among diseases; the possible association of the
same gene with multiple genetic abnormal phenotypes. These difficulties have
led to the introduction of numerous categories of study to solve the GP problem.

Text mining approaches attempted in discovering common patterns between
genes/proteins and diseases by scanning the literature to find co-occurrences
statistically significant [4, 5, 6]. Other proposed tools to discover candidate genes
for human genetic diseases relied on genome wide association studies (GWAS),
asserting that multiple, common small-risk variants interact to cause common
diseases [7, 8, 9, 10]. Each study can look at hundreds or thousands of loci
at the same time; nevertheless, this approach tends to produce many false-
positive results (that is detected candidate genes which are not really involved
in the disease etiology), and the experimental validation of candidate genes, for
instance through resequencing, pathway or expression analysis, is still expensive
and time requiring [11].

Other works leveraged whole exome sequencing to capture all exonic and
flanking sequences and to include probes targeting microRNA and other se-
quences of interest [12]. These studies have reported a successful molecular
diagnosis in up to 25% of cases in large cohorts of unselected, consecutive pa-
tients [13]. Phenotype-driven analyses of exome data have also been investi-
gated with the aim of filtering out common variants and those deemed to be
non-pathogenic [14].

Within the Network medicine context, alternative approaches have widely
employed the so called guilt-by-association (GBA) principle, in which candidate
disease genes are ranked by exploiting the assumption that similar genes tend
to share similar diseases [15]. They base on gene networks, in which nodes are
genes and connections represent precomputed functional relationships among
genes, like protein-protein interactions [16], or transcriptional co-expression
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regulation [17]. Network-based methods differ from each other in the way they
exploit disease-genes and their direct connections, ranging from protein-protein
interaction network analysis and semi-supervised graph partitioning [17, 18], to
flow propagation [19], random walks [20], kernelized score functions [21], Gaus-
sian fields and Harmonic functions [22], multiple kernel learning [23], regression
trees on mutual information gene networks [24] and network weights adjustment
according to a given disease [25]. These methods tend to prefer better character-
ized genes and/or diseases, due to their need of already discovered disease-genes.
Thus, in particular where little prior knowledge about diseases is available, the
accurate prioritization of putative disease-genes remains a challenge. Actually,
thousands of known genetic diseases in the OMIM (Online Mendelian Inheri-
tance in Man) database have no established gene-disease associations [3].

To partially address this issue, fewer works used tissue-specific expression
patterns on the hypothesis that genes responsible for a tissue(s)-specific pheno-
type are expected to be more expressed in affected than unaffected tissues [26,
27, 28]. However, not considering and integrating potentially complementary
evidence coming from other heterogeneous data sources may be a limitation [29].
For instance, interacting pairs of candidate proteins and proteins encoded by
known phenotype susceptibility genes (a type of data which also targets rare
alleles) can be crucial in prioritizing genes, since two proteins involved in the
same biological (dys)function often interact [30].

For these reasons, several research groups have adopted integrated method-
ologies to exploit at the same time multiple heterogeneous sources, ranging from
functional profiles and expression quantitative trait loci to protein complexes
and genetics or physical interactions [26, 29, 31]. General approaches to inte-
grate different information sources rank candidate genes with reference to any
single source using various metrics, to combine the obtained ranks in an overall
rank [15]. For network-based information sources, an integrated network is con-
structed by combining the topology of each network into a consensus network
more informative and with larger coverage [32].

Finally, a promising category of GP methods has focused on the analysis of
common characteristics among different diseases [33, 34], discovering sets of in-
teracting proteins and molecular pathways often shared by multiple diseases [35].
The main benefit of such an approach is that ‘transferring’ information from
comparable diseases provides researcher with additional predictive information
to prioritize genes, and in particular for less studied abnormalities [36], thus
leading to new therapeutic treatments not previously considered. For instance,
shared molecular connections between diabetes and dementia are now fueling
research into the possible use of insulin to treat Alzheimer’s disease [37].

Most GP methods mentioned above tend to focus on some of the issues
characterizing the gene prioritization problem, thus limiting their generaliza-
tion abilities to specific data and/or settings. For instance, the class imbalance
problem characterizing GP is neglected by most existing approaches: the avail-
ability of a very low number of annotated genes (the positive instances) creates
a disproportion between positive and negative instances (non-causative genes)
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which leads to a decay of performance for imbalance-unaware classification al-
gorithms [38, 39]. Indeed, employing imbalance-aware algorithms obtained suc-
cessful results in similar contexts, like the gene function prediction [40, 41].
Moreover, the majority of proposed techniques tend to prioritize disease-genes
focusing on single diseases, limiting in this way the amount of prior information
adopted as input and the effectiveness of the provided predictions [42].

In this study, we present a novel network-based method, named Gene2DisCo
(Gene to Disease using Disease Commonalities), for prioritizing candidate
disease-genes by taking into account all the issues of the GP problem. A
unique feature of Gene2DisCo is indeed the synergy of data source integration,
imbalance-aware learning, and exploitation of disease similarities. In particu-
lar, our approach extends a couple of methods recently proposed to prioritize
genes [43, 44], by embedding an effective strategy to transfer learning from hun-
dreds of diseases sharing common features. We argue that exploiting shared
features among diseases is fundamental for achieving high accuracy in prioritiz-
ing disease-genes. To this end, we compared several state-of-the-art semantic
similarity measures among nodes in a hierarchy (like MeSH terms), including
measures depending on the hierarchy structure, measures depending on the dis-
ease information (known disease-genes), and their combination. In addition, by
leveraging diseases similarities we have been able in inferring putative associa-
tions for more than 800 MeSH diseases, including around 400 diseases with no
discovered genes, thus overcoming the main limitation of existing methods.

We validated our method on benchmark data including nine human gene
networks, containing 8449 genes and 708 MeSH disease terms, with statistically
significant improvements over benchmark methods. In order to supply reli-
able novel gene-disease associations, we then constructed an enriched data set
by integrating existing networks with the STRING network, version 10.0 [45],
and by downloading recent human gene association for MeSH diseases from the
Comparative Toxicogenomics Database (CTD) [46]. The obtained data con-
tain 19112 human genes and cover diseases at different levels of specificity and
spanning different general categories of MeSH diseases.

Overall, the main contributions of this study are summarized as follows:

(i) A novel and flexible framework Gene2DisCo to prioritize genes not depen-
dent on specific sources of data and/or of gene-disease annotations and
composed by the following modules (see Figure 1): a module to integrate
different and heterogeneous network-based data sources; 2) a module to
embed information about diseases similar to the disease under study; 3)
a module to infer imbalance-aware predictions on the basis of input data,
including data provided by modules 1 and 2.

(ii) A comparative analysis of different methods to compute pairwise semantic
similarities among diseases and a quantitative evaluation of their impact
on gene prioritization.

(iii) One of the widest data set for prioritizing genes, involving gene-MeSH
disease associations covering hundreds of diseases, and extended to the
whole human genome.
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Figure 1: Gene2DisCo functional modules: integration of different sources about genes;
retrieval of disease-disease commonalities and of diseases-genes for diseases sharing
commonalities with D; inference of the gene list so as to rank higher genes more likely
to be involved in the etiology of D.

(iv) The inferred predictions for around 800 MeSH diseases, including 348 dis-
eases without known causal genes.

This paper is organized as follows. In Section 2 we describe the bench-
mark data used to validate Gene2DisCo and the refined data set embedding the
STRING network. Section 3 discusses the GP problem, the data integration
procedure, the disease similarity measures adopted, and the generalized linear
model proposed to solve the GP problem. The experimental setting and valida-
tion, and the top-ranked unannotated genes for the considered MeSH diseases
are presented in Section 4. The conclusion remarks end the paper.

2. Materials

We present here the networked data sources adopted to prioritize genes. In
particular, we first describe the benchmark data set utilized to validate our
method, and then we propose an enriched data setting extended to the whole
human genome and including more recent gene-disease associations.
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2.1. Benchmark data

We follow the benchmark setting proposed in [47], which includes nine human
gene networks covering 8449 genes (or a subset of them), and the associations
of such genes with 708 selected MeSH disease terms, downloaded from the CTD
database. MeSH is a vocabulary thesaurus, being controlled by the National
Library of Medicine to index MEDLINE documents, which consists of a set
of description terms organized in a hierarchical structure (called MeSH trees),
where more general terms appear at nodes closer to the root and more specific
terms appear at nodes closer to leaves [48]. Each MeSH node is represented by
a tree number, which indicates the position of the node in MeSH tree. Further-
more, every MeSH heading may correspond to more than one node in different
MeSH trees (or subtrees). Finally, each tree in the MeSH hierarchy belongs to
a semantic category, among which the headings considered in this work fall into
categories C - Diseases and F - Psychiatry and Psychology.

The benchmark nets cover different types of information: functional inter-
actions, transcriptional co-expression/regulation and localization, gene expres-
sion profiles, genes-chemicals relationships, protein-protein physical and genetic
interactions (2 networks), Gene Ontology (GO) [49] semantic similarity (3 net-
works). The benchmark MeSH terms posses between 5 and 200 annotated genes,
thus avoiding to consider both diseases with too few available information and
diseases with a large and heterogeneous set of associated genes (since a gene
annotated with a term is also annotated with its ancestors). A brief description
of every gene network is supplied below.

Functional interaction network – finet. Composed of 8441 selected proteins, this
net contains protein-protein functional binary interaction inferred through
a Naive Bayes classifier, trained by using information coming from expert-
curated biological pathways and from other non curated sources, such as
gene co-expression and protein domain interaction [50].

Human net – hnnet. Starting from 21 large-scale genomics and proteomics data
sets from four species, in [51] a functional gene network is integrated by
including distinct lines of evidence, spanning human mRNA co-expression,
protein-protein interactions, protein complex, and comparative genomics
data sets, in combination with similar lines of evidence from orthologs in
yeast, fly, and worm.

Cancer module network – cmnet. A gene-gene network of 8849 genes, in which
two genes are connected if they share at least one of the 263 biological and
clinical conditions considered in [52], where authors collected expression
profiles in different tumors and the related behavior of gene modules.

Gene chemical network – gcnet. A network of 7649 genes based on gene-chemical
interactions available at the CTD database.

BioGRID database network – dbnet. A net based upon direct physical and ge-
netic interactions obtained from BioGRID (v. 3.2.96 January 2013) [53],
and including 8449 proteins.
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BioGRID projected network – bgnet. This net relies on the construction of a bi-
partite graph by using physical and genetic BioGRID interactions between
the benchmark 8449 genes and all the human genes available in BioGRID.
The net is pruned to the benchmark genes by inserting and edge between
two genes if they share at least on neighbour in the bipartite graph.

Semantic similarity–based networks: bpnet, mfnet and ccnet. For every branch
(biological process, molecular function and cellular component) of GO tax-
onomy, a net is constructed by considering the GO terms the 8449 genes
are annotated with, and by setting an edge between two genes if they share
at least one annotation in the corresponding GO branch. The edge weight
is the maximum Rensik semantic similarity [54] between all the terms for
which the two genes are both annotated.

2.2. Refining benchmark data

We then constructed a novel data set, including a larger set of human genes
and current and more reliable gene-disease associations. We retrieved the input
network from STRING database, version 10.0 [45], including all the available
genes and their pairwise interactions to maximize the coverage. This network
is highly informative, since STRING curators already merge several sources of
data, including protein homology relationships from different species. Moreover,
in order to enrich the information encoded into the obtained network, we also
integrated by unweighted sum the networks described in Section 2.1 (on the
union of genes, see Section 3.2), excluding the network gcnet which is biased
toward MeSH disease terms, as explained in [44]. The final network covers 19112
genes and has around 5.9 millions of distinct edges.

We downloaded the gene-disease associations from the CTD database (04.17),
obtaining is a set of 470 MeSH disease terms with 2-200 positive genes, of which
437 posses at least 5 known associations. We excluded diseases with more than
200 associations in order not to work with too generic terms in the MeSH on-
tology; on the other side, we included diseases with less than 5 associations
to work even with more specific (and/or less studied) diseases, exploiting the
ability of Gene2DisCo to transfer information from similar diseases. The en-
riched STRING net and the corresponding MeSH associations are available at
http://frasca.di.unimi.it/data/gene2disco/.

3. Methods

This section is devoted to illustrate the automated methodologies we adopted
to solve the gene prioritization problem. First, we introduce some preliminary
definitions, and provide the details of a state-of-the-art method, NWGP, re-
cently proposed for prioritizing genes; then, we describe our proposed method-
ology extending NWGP to embed disease pairwise similarities into the model.

8



3.1. The problem

The gene prioritization problem can be cast into the framework of learning
node labels in partial labeled graphs. In this context, a gene network can be
represented through an undirected weighted graph G = (V,W ), where V =
{1, 2, . . . , n} is the set of vertices corresponding to genes, and W is the n ×
n weight matrix, where each element Wij ∈ [0, 1] represents some notion of
functional similarity between vertices i and j. Vertices in V can be partitioned
into two subsets: L ⊂ V containing instances labeled according to a specific
class (MeSH disease term in our context), and its complement U = V \L which,
including unlabeled instances, represents the object of our inference. The set
of labeled vertices is further partitioned, according to the labeling vector l ⊂
{−1, 0, 1}|V |, in the sets L+ := {i ∈ L|li = 1} and L− := {i ∈ L|li = −1} of the
positive and negative vertices respectively. Here we assume unlabeled instances
posses label 0, denoting the notion of ‘no available information’. Furthermore,
the labeling l is subjected to a severe imbalance in favor of negative instances,
that is |L+| ≪ |L−|.

The gene prioritization problem, which falls in the realm of Label Prediction
in partially labeled Graphs (LPG), consists in learning a function φ : U → R

ranking unlabeled genes/vertices so as to assign higher positions to instances
candidate for the positive class. The function φ, suitably thresholded, can be
then used to assign positive or negative labels to unlabeled vertices.

3.2. Graph integration

The q = 9 graphsG(1) = (V (1),W (1)), . . . , G(q) = (V (q),W (q)) correspond-
ing to the nets described in Section 2 have been integrated in a unique composite
graph G = (V,W ) by taking the union of all genes, as done in the benchmark
setup. After having extended each graph to the union V of vertices by adding
zeros in the missing entries of the corresponding adjacency matrix, to integrate
them we adopted the unweighted sum integration, which performed better than
other unweighted schemes used in the benchmark setting. Informally, it consists
in averaging the adjacency matrices of all available graphs, that is

W ∗ =

q
∑

k=1

W (k)/q .

The Laplacian normalization is finally applied to the integrated network W ∗

obtaining the matrix W = D− 1
2W ∗D− 1

2 , where D is the diagonal matrix of
node weighted degrees.

3.3. Disease semantic similarities

As mentioned in Section 2.1, MeSH disease terms are structured as a hier-
archy and thereby not independent from each other, and accordingly a disease
may share more features with some diseases and less or none with the remaining
diseases. For this reason, here we investigate several ways to compute pairwise
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similarity measures among diseases. In the following we recall the main state-
of-the-art approaches for computing similarities among nodes in a hierarchy,
dividing them in two categories: path-based, using solely the hierarchy struc-
ture, and information-based, using the information at each disease (the genes
known to be involved in the disease) alone or along with the disease hierarchy
information.

Basic definitions. In general, a disease hierarchy may posses different struc-
tures (forest of trees like MeSH hierarchy, direct acyclic graph like the Human
Phenotype Ontology [55], etc.) and can be represented by a graph H = (C,E),
where C = {1, 2, . . . ,m} is the set of nodes/headings, E is the set of hierarchi-
cal relationships among nodes. The aim is determining a matrix Ψ ∈ R

m×m

of pairwise node similarities. Before describing several ways proposed in the
literature to compute Ψ, we introduce some definitions used throughout the
paper. By anc(k) ⊂ C we denote the set of ancestors of node k ∈ C, and by
levk we denote the level of k in the hierarchy, intended as the number of nodes
on the maximum length path from a root node. The level of a root node is
thereby 1. To facilitate the following discussion, we assume a unique root in
present in H . As in a graph we might have multiple roots, we assume in this
case a dummy node is added as parent of root nodes. Moreover, we use ν(k)

to denote the frequency of positive instances for node k and l(k) to denote the
labeling vector for node/disease k (see Section 3.1). Since parent-child connec-
tions describe specializations of the parent node, a positive instance for a node
k must be positive even for any r ∈ anc(k). Hence it holds that ν(k) ≤ ν(r) for
any r ∈ anc(k). Finally, we denote by MA(k, r) the common ancestor of nodes
k, r ∈ C whose frequency ν(MA(k, r)) is the lowest among all ancestors of both
k and r.

We describe now the main approaches proposed in the literature for com-
puting semantic similarities in a hierarchy, diving them in two main categories:
path-based similarity measures, exploiting solely the hierarchy structure, and
information-based similarity measures, leveraging the information content of
nodes.

Path-based similarity measures. A first category of methods compute sim-
ilarity between two nodes as a function of the length of the path linking the
nodes, and/or on their position in the hierarchy. In particular we distinguish
the following:

SP: Shortest Path [56]. This measure is based on the simple observation that
the closer two nodes k, r ∈ C, the more similar they result. This measure
is computed through the ratio of the shortest path sp(k, r) between k and
r, and the maximum path length between two nodes in C:

ψSP (k, r) = 1−
sp(k, r)

maxs,q∈C sp(s, q)
. (1)
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Thus, 0 ≤ ψSP (k, r) ≤ 1, and the most distant nodes have similarity 0.
Here sp(k, r) is the function associating nodes k and r with the length of
their shortest path (the path weight is the number of edges on the path).

WL: Weighted Links [57]. This measure extends the SP measure by assigning
weights to paths depending on the depth of nodes forming the path. The
weight of a node k ∈ C is the reciprocal of its level in the hierarchy. Thus:

ψWL(k, r) = 1−
wl(k, r)

maxs,q∈C wl(s, q)
. (2)

where wl(k, r) is the function associating nodes k and r with the weight
of their shortest path (s1, s2, . . . , snkr

), that is wl(k, r) =
∑nkr

i=1
1/levsi

.

WP: Wu and Palmer [58]. Considering the nearest common ancestor NA(k, r)
of two nodes k, r ∈ C, it computes:

ψWP (k, r) =
2 levNA(k,r)

levk+ levr
. (3)

The lowest similarity between two nodes is obtained when their common
ancestor is the root node, and they posses a high level.

LC : Leacock and Chodorow [59]. This measure differs from ψSP in sense that
it takes the logarithm of the resulting score plus a pseudocount:

ψLC(k, r) = 1−
log(sp(k, r) + 1)

log(maxs,q∈C sp(s, q) + 1)
. (4)

Li : Li et al. [60]. Intuitively and empirically derived, it combines the shortest
path and the level of the nearest common ancestor in a non-linear function,
as follows:

ψLi(k, r) = e
−αψSP(k,r)

e
β levNA(k,r)

−e
−β levNA(k,r)

e
β levNA(k,r)+e

−β levNA(k,r) , (5)

where α and β are real parameters weighting the contribution of the short-
est path length and level respectively. According to [60], we set α = 0.2
and β = 0.6.

Information-based similarity measures. Let − log(ν(k)) be the informa-
tion content of node k ∈ C. Several measures of similarity have been proposed
in the literature exploiting information contents of nodes, with or without con-
sidering the hierarchy structure. Here we describe those adopted in this work.

Lord : Lord et al. [61]. This measure is based on the frequency of the common
ancestor with the lowest frequency:

ψLord(k, r) = 1− ν(MA(k, r)) . (6)

Hence two nodes tend to be more similar when their minimum common
ancestor has a low frequence (thus more specific).
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Resnik : Resnik [54]. The similarity of two nodes is the information content
of their minimum common ancestor:

ψResnik(k, r) = − log ν(MA(k, r)) . (7)

Lin : Lin [62]. Given two nodes k, r ∈ C, their similarity is the ratio of
the information content of their closest common ancestor MA(k, r) (their
commonalities) and the sum of the information content of k and r (all
information needed to describe k and r):

ψLin(k, r) =
2 log ν(MA(k, r))

log ν(k) + log ν(r)
.

JC : Jiang and Conrath [63]. The similarity between nodes k, r ∈ C is based
on the following distance:

Dist(k, r) = − log ν(k)− log ν(r) + 2 log ν(MA(k, r))

The distance Dist is usually used to get the corresponding similarity as
follows:

ψJC(k, r) =
1

Dist(k, r) + 1
.

Jaccard: Jaccard [64]. Given nodes k, r ∈ C, their Jaccard similarity is:

ψJaccard(k, r) =



















∣

∣{i ∈ L|l
(k)
i = 1 ∧ l

(r)
i = 1}

∣

∣

∣

∣{i ∈ L|l
(k)
i = 1 ∨ l

(r)
i = 1}

∣

∣

if {i ∈ L|l
(k)
i = 1 ∨ l

(r)
i = 1} 6= ∅

0 otherwise.

This is the ratio between the number of genes that are positive for both
nodes and the number of genes that are positive for at least one node.
The higher the number of shared genes, the higher the similarity (up to
1). When two nodes do not share any gene, their similarity is zero. In a
disease hierarchy, diseases with many positive instances are usually closer
to the root (less specific). In this case, the denominator of ψJaccard tends
to reduce the similarity between the two diseases as opposed to the case in
which diseases have a small number of associated genes. Indeed, sharing
positives between two specific diseases (closer to leaves) is more informa-
tive than sharing positives between two more general diseases (closer to
the root).

3.4. Algorithmic scheme

Recently, an effective approach NWGP to gene prioritization exploiting gen-
eralized linear models (GLMs) for solving the LPG problem has been pro-
posed [44]. In this method, which extends a previous approach WGP [43],
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the response variable decrees the membership to either the positive or negative
class (causative and non causative genes). We retain GLMs suitable for LPG

mainly for three reasons: (i) the need to keep the computational burden low,
so as to efficiently deal with the large size of processed data; (ii) their ability to
cope with unbalanced labelings (like in our context) by assigning different mis-
classification costs to positive and negative instances when learning the model;
(iii) the easy interpretability of the results characterizing GLMs.

NWGP algorithm adopts a selection of appropriate features associated with
vertices/genes able to speed-up the process and to retain the information for
an accurate classification: it adopts 2 features, selected in order to suitably
represent the local imbalance information at each vertex. Nevertheless, while
this algorithm predicts gene-disease associations for a disease independently
from the other diseases, here we argue that the semantic relatedness among
diseases may strongly help the process of gene prioritization.

In the following we first shortly describe the NWGP approach, then we focus
on our novel approach to overcome some limitations of NWGP by embedding
in the model the disease-disease relatedness information.

3.4.1. NWGP:Negative Selection for Weighted Gene Prioritization

The first step of this algorithm associates with each vertex i ∈ L a point
∆i = (∆+

i ,∆
−
i ) in the plane, where:

∆+
i =

∑

j∈L+

wij , ∆−
i =

∑

j∈L
−

wij . (8)

This projection allows to avoid the curse of dimensionality problem, since the
projected space only has two dimensions, and to handle the class imbalance
problem by assigning different misclassification costs to positive and negative
points during the learning phase. Then a negative selection procedure is applied
to retain solely the reliable negative points during the learning (we recall that
in the MeSH taxonomy solely positive associations are stored). This procedure
performs a fuzzy clustering of positive points P+ = {∆i|i ∈ L+} [65], and
then it scores negative points P− = {∆i|i ∈ L−} according to their maximum
membership to the h found clusters:

σ(∆) = max
1≤k≤h

{

1

d(∆, ck)
2

α−1

}





h
∑

j=1

1

d(∆, cj)
2

α−1





−1

, (9)

where c1, . . . , ch are the cluster centroids, d denotes the distance function used by
the fuzzy C means (FCM) algorithm [66], and α is a free fuzzification parameter.
In the rest of this paper we adopt the L3 distance, which performed slightly
better than the other distances tested in [44].

The scores associated through σ to negative points are used to: 1) discard
negatives whose membership is higher than a given threshold τ (set as the
z-quantile of the empirical distribution of the memberships), obtaining novel
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sets of negative instances L̄− = {i ∈ L−|σ(∆i) > τ} and of negative points
P̄− = {∆i|i ∈ L̄−}; 2) assign weights to the training instances as follows:

ωi =

{

∆+
i /

∑

j∈L+
∆+
j if i ∈ L+

(1− σ(∆i))/
∑

j∈L̄
−

(1− σ(∆j)) if i ∈ L̄−
(10)

Authors learned several GLMs by using the computed weights (10) to sepa-
rate the selected positive and negative points P+∪ P̄−, with the complementary

log-log link function showing the best performances (see [44] for details). Fol-
lowing the suggestions in [44], in this work we set z = 0.5, that is half of negative
points is discarded.

3.4.2. Learning limitations of NWGP

Intuitively, through the projection shown in Eq. (8), the more a vertex i
is functionally similar to positive labeled vertices, the higher the value of ∆+

i ,
and analogously for the contribution given by negative labeled vertices to the
second coordinate. Remembering the one-to-one correspondence between genes
and vertices, with this projection the aim is to find a bipartition of vertices in
L which concentrates positive points mostly toward the rightmost lower region
of the first quadrant, and the negative points in the rest of the same area.
The meaningfulness of such partition relies in turn on the extent to which the
set of positive (resp. negative) genes satisfies the two clustering properties of
showing high functional similarity with the other genes in the same class and
low similarity with genes negatively (resp. positively) labeled as well.

Unfortunately, as evident from Figure 2(a-b), depicting two typical instances
of the LPG problem downline of the above projection (MeSH ID D003555,
C565836 respectively), there is no clear distinction between positive and neg-
ative points. Actually, the former are indeed located toward the right extreme
of the horizontal axis, contrarily to the negative instances which are distributed
in a wider region of the plane; however, both are so intimately mixed up that,
in principle, it would be very difficult to distinguish the two classes with a gen-
eralized linear model, unless non negligible effects of the two-way interaction
between ∆+ and ∆− are observed. Two this end, in Figure 2(c-d) we enriched
the same instances shown in Figure 2(a-b) by adding a third coordinate in terms
of the interaction term ∆+∆−. Nevertheless, we do not observe a significant
improvement of the ability in the discriminating positive and negative points in
the new space, since the shape became glancing convex but points still mixed
up. This means that the newly added coordinate would not significantly help
the classification ability of the model.

We further show this in the following discussion. With reference to labeled
vertex i, let us denote with xi1 and xi2 the coordinates ∆+

i and ∆−
i , and with

yi := y(xi1, xi2) its membership to the positive (i ∈ L+) or negative class
(i ∈ L−), for i ∈ V . We adopt in this example a linear regression algorithm
for the straightforward interpretability of its coefficients. Denoting with α =
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Figure 2: (a-b) Two typical projections in the ∆ coordinate space obtained by applying
Eq. (8) to two instances of LPG problem (namely two MeSH diseases in the benchmark
data set described in Section 2.1). Gray and black points correspond to negative and
positive labeled vertices respectively. (c-d) The same instances represented in a three-
dimensional space, where each node i has coordinates (∆+

i
,∆−

i
,∆+

i
∆−

i
).

(α0, α
+, α−, α±) the vector of regression coefficients, Figures 3(a-b) show how

the linear model:

y(x1, x2) = α0 + α+x1 + α−x2 + α±x1x2 (11)

is able to discriminate between positive and negative labeled nodes in the two
lead examples considered so far, distinguishing their labels through a different
color. To visually understand the discriminative power of the model, in Fig-
ures 3(c-d) we show the curves representing the best learned separators, where
points located above (resp. below) the separator will receive a positive (resp.
negative) label; it is evident the suboptimal nature of the separating profile,
with the majority of positive points wrongly classified. We recall that in this
context positives carries almost all the available information.

In conclusion, even adding a the further feature ∆+∆− (x1x2), projected
points still were located so as to make difficult the separation of positive and
negative classes. This is likely due to the fact that the third feature we added is
related to the other two features; in the next section we show how the seman-
tic contribution of ontologically related diseases can be used to define a novel
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Figure 3: Linear fit of the points shown in Figure 2 (c-d) in the three-dimensional space
having coordinates (x1, x2, y) (a-b), and in the plane (x1, x2) (c-d).

third feature for the model, able in increasing the discriminative power while
preserving the computational efficiency.

3.4.3. Generalized linear models embedding disease relatedness: Gene2DisCo

We introduce in this section Gene2DisCo (Gene to Disease using Disease
Commonalities), an algorithm extending NWGP to transfer information from
similar diseases when prioritizing genes according to the disease of interest.

As discussed in Section 3.3, we assume diseases are structured as a graph

H = (C,Ψ), where the Ψ = ψkr|
|C|
r,k=1 is the disease similarity matrix, and

ψkr := ψX(k, r) ≥ 0, with X denoting one of the disease similarity measures
described in the same section.

To appropriately define the third coordinate of our model, we first focus on
which characteristics such coordinate must possess. Intuitively, we expect that

the third coordinate x
(k)
i3 for gene i and disease k, embedding information from

diseases related to k, respects the following simple properties:

(i) x
(k)
i3 is larger when the gene i is already associated with another disease

similar to k, matching the idea that when a gene is known being involved
in a disease sharing different profiles (toxicological, genetic, phenotypic
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and so on) with another disease, that gene is more likely to have a role
even in the latter disease;

(ii) the larger the number of diseases similar to k the gene i is associated with,

the larger x
(k)
i3 ;

(iii) when the gene i has no associations with other diseases, x
(k)
i3 assumes the

lowest value;
(iv) an association of gene i with another disease sharing no commonalities

with k should be irrelevant for the x
(k)
i3 value.

Before providing our definition of x
(k)
i3 , let us introduce some simple defi-

nitions. By M i· and M ·r we denote respectively the i-th row and the r-th

column of a matrix M . Moreover, let L
(k)
+ be the set of positive vertices for

disease k ∈ C, and χ(+,k) its characteristic vector, i.e. χ
(+,k)
i = 1 if i ∈ L

(k)
+

and χ
(+,k)
i = 0 if i ∈ V \ L

(k)
+ . Finally, the matrix containing the characteristic

vectors of diseases C is denoted by L = (χ(+,1), . . . ,χ(+,m)).
The disease semantic relatedness coordinate for a gene i ∈ V when predicting

a disease k ∈ C is the following:

x
(k)
i3 = Li· ·Ψ·k (12)

where ‘ · ’ is the dot product in the Euclidean space R
m. Li· is thereby the

positive labeling of gene i for all considered diseases, and Ψ·k is the vector of
similarities between the disease k and the other diseases.

It is straightforward showing that the four prerequisites (i), (ii), (iii), (iv)
are satisfied by the definition (12) (the proof can be easily obtained by the
definitions of dot product and of the vectors Li· and Ψ·k). Importantly, in
order not to introduce bias in the procedure, when computing xi3 we exclude
descendants r of disease k in the MeSH hierarchy (that is k ∈ anc(r)), since
descendant terms are subsets of their ancestors (see Section 3.3). Furthermore,
it may happen, mainly when diseases have few positive genes, that two different
but related diseases have exactly the same positive genes (we also experimentally
found it in data described in Section 2). Although this would not be a bias but
an advantage of our method, in order to have an idea of the performance when
all diseases posses different labelings, in our validation experiments we also
discarded diseases having exactly the same positive genes of disease k. Hence,
the performance of Gene2DisCo shown in Sections 4.1 and 4.2 are suboptimal.
Instead, to provide predictions as much reliable as possible, we exploited all
diseases when inferring novel candidate disease-genes (see Section 4.3).

To investigate whether this novel feature is really able to improve the dis-
criminative power of our generalized linear models, in Figure 4 we graphically
visualize points with coordinates (x1, x2, x3) as done in Figure 3 (a-b) for the
two MeSH diseases taken as example, and then draw the best linear regres-
sion model separating positive and negative points. We omit by purpose the
superscript (k) to simplify the notation.

Interestingly, the added coordinate x3 (computed using the Jaccard similar-
ity) moves the majority of positive points above negative points: indeed, most
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Figure 4: Linear fit of the positive (black) and negative (grey) points shown in Fig-
ure 2 represented in the three-dimensional space having coordinates (x1, x2, x3) (a-b).
Vertical continuous (blue) and dotted (red) lines represent respectively positive and
negative residuals of positive points.

negative points still lie nearby the (x1, x2) plane. The learned model now cor-
rectly classifies almost all positive points (especially for the example (b)), and
positives located below the separator plane however lie not far from it. This
is better shown by the residuals of positive points (vertical lines): they are
positive in the majority of cases (which means a positive point correctly classi-
fied), and the negative residual (corresponding to misclassified positives) have
in average a smaller magnitude than the positive residuals. We remark that the
two MeSH disease terms shown in this example are representative of a general
behavior observed even for the other diseases. As assessed in the next section,
the effectiveness of this novel feature is also experimentally confirmed.

Overall, the pseudocode of Gene2DisCo algorithm is shown in Figure 5.
Lines 1-4 computes the node projection onto R

3, whose time complexity is
O(n2 + nm) = O(n2) (which becomes O(n) when W is sparse, like in our con-

text), whereas line 6 performs the fuzzy clustering, taking time O(I1h
2|L

(k)
+ |),

where I1 the number of iterations in one run of the clustering algorithm. With
complexity O(n) lines 9-12 calculate the instance weights for the misclassifi-
cation costs to be used in the GLM training, which is performed at line 13.
The cost of training GLM model training depends on the number of iterations
I2 to convergence of the iterative reweighted least square algorithm [67], each
one with complexity (considering the weighted least square solution) O(m3 +
nm2 + n2m + nm) = O(n2m), since n > m. In summary, the Gene2DisCo

complexity is O(n2+ I1h
2|L

(k)
+ |+ I2n

2m) = O(I2n2), since m = 3 and h limited
by the number of positives. The source code of Gene2DisCo can be found at
http://frasca.di.unimi.it/data/gene2disco/.
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Figure 5: Gene2DisCO algorithm.

Input:
- gene set V , with n = |V |
- disease set C, with m = |C|
- k ∈ C disease to be predicted
- bipartition (U , L) of V

- bipartition (L
(k)
+ , L

(k)
− ) of L

- n× n gene similarity matrix W

- m×m disease similarity matrix Ψ

- n×m characteristic matrix of positive sets L
- distance d in R

3

begin algorithm

01: for each i ∈ V do

02: xi1 ←
∑

j∈L
(k)
+
Wij ; xi2 ←

∑

j∈L
(k)
−

Wij ; xi3 ←
∑m

r=1 LirΨrk

03: ∆i := (xi1, xi2, xi3)
04: end for

05: P
(k)
+ := {∆i|i ∈ L

(k)
+ }; P

(k)
− := {∆i|i ∈ L

(k)
− }

06: σ ← FCM
(

P
(k)
+ , α, d

)

07: z ← 0.5; τ ← quantile(σ(P
(k)
− ), z)

08: L̄
(k)
− := {i ∈ L−|σ(∆i) > τ}; P̄

(k)
− = {∆i|i ∈ L̄−}

09: for each i in {L
(k)
+ ∪ L̄

(k)
− } do

10: if i in L
(k)
+ then ωi ← xi1/

∑

j∈L
(k)
+

xj1

11: else ωi ← (1− σ(∆i))/
∑

j∈L̄
(k)
−

(1− σ(∆j))

12: end for

13: φ(x1, x2, x3)← GLM(P
(k)
+ , P̄

(k)
− ,ω, link = Cloglog)

end algorithm

Output: the ranking function φ and the predicted scores φ(∆i), i ∈ U .

4. Results and discussion

Gene2DisCo has been experimentally validated by following the benchmark
setting proposed in [47], thus allowing its fair comparison with the benchmark
methodologies (described in the next section). Namely, such setting adopts the
k-fold cross-validation (CV) procedure (k = 5) to assess the generalization abil-
ities of the compared methods, and the Area Under the ROC Curve (AUC) and
the Precision at different Recall levels (PXR) to measure the corresponding per-
formance. Furthermore, as done by authors of NWGP on the same data, we also
computed for our method the Area Under the Precision-Recall Curve (AUPRC),
being AUPRC more informative than AUC on unbalanced settings [68].

The benchmark methods adopted in [47] are the following: GBA, family
of algorithms relying upon the guilt-by-association rule, which allows making
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predictions exploiting the interacting genes, under the assumption that inter-
acting genes are likely to share similar functions [69, 70]; RW, random walks
algorithm [71]; RWR, random walks with restart which takes into account that
after many steps the walker may forget the prior information coded in the initial
probability vector, and accordingly the algorithm allows the walker to restart
from its initial condition with a given probability θ (free parameter), or to move
another random walk step with probability 1 − θ; kernelized score functions,
extending the similarity to non neighboring nodes by adopting a suitable kernel
matrix [72]. The score for each gene i with regard to a given disease r is defined
according to a suitable distance d(i, Vr) between i and the subset Vr of positive
genes for r. By varying the definition of d(i, Vr) authors obtained different scor-
ing methods, among which the top performing was SAV : d(i, Vr) is defined as
the average distance between the images in the corresponding Hilbert space of i
and Vr . The kernel used is Kt obtained by a t-step (t = 1, 2, . . .) random walk,

where K = γI +D− 1
2WD− 1

2 , I is the n× n identity matrix, γ > 0, and D is
a diagonal matrix whose diagonal elements are the sums of the corresponding
rows in W .

As baseline comparison, in this paper we report just the performance of the
top benchmark method (SAV t = 5). Furthermore, we compare our method
also with the NWGP algorithm.

4.1. Evaluation on benchmark data

We dedicate this section to the comparison of our method with benchmark
methods described above, and to the evaluation of the impact the different
disease similarity measures described in Section 3.3 have on the Gene2DisCo
performance. To this end, we have constructed other six similarity measures
by integrating the considered measures through the unweighted sum (US) inte-
gration and the Max integration, defined as follows. Given s disease similarity
matrices Ψ(1), . . . ,Ψ(s), the unweighted sum integration is

Ψ =

s
∑

k=1

Ψ(k)/s ,

whereas the Max integration is obtained by setting each entry of the integrated
matrix as the maximum value of that entry in the single matrices:

ψij = max
k∈{1,...,s}

ψ
(k)
ij , ∀i, j ∈ {1, . . . , |C|}

We employed both schemes in three different integrations: (ALL) integration
of all considered measures; (InfoSim) integration of information-based measures
only; (PathSim) integration of solely path-based measures. Figure 6 shows the
corresponding results. To facilitate distinguishability among methods, bar colors
have been grouped according to the type of diseases semantic similarity: path-
based, information-based, US and Max similarity measures are respectively in
blue, turquoise, green and brown scale colors.
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Figure 6: AUC (a) and AUPRC (b) averaged across diseases for Gene2DisCo method
when adopting different disease semantic similarity measures. ‘US ’ and ‘Max ’ refer
to the integrated measures according to the unweighted sum and the Max integration,
respectively. ‘ALL’ denotes the integration of both path- and information-based mea-
sures. Vertical dotted lines correspond to NWGP results, whereas the vertical dashed
line represents the best benchmark results (SAV t = 5).

Firstly, results have an analogous trend for both AUC and AUPRC mea-
sures, with most measures showing similar performance. The only exception
is the Jaccard similarity, which largely achieves the best results (Wilcoxon
signed rank test, p-value < 0.001) in both performance metrics, especially in
terms of AUPRC, which is more relevant in this context (rare positives). Such
an advantage for the Jaccard similarity also confirms results obtained in [73].
Gene2DisCo outperforms NWGP in both AUC and AUPRC, with any disease
semantic similarity metric adopted, mainly in terms of AUPRC, showing the
noticeable benefit of transferring information from similar diseases. Indeed, the
improvement when using the Jaccard similarity is impressive: 0.1917 for NWGP

and 0.3899 for Gene2DisCo, more than the double. By reminding AUPRC mea-
sures the area under the Precision and Recall curve, this means in particular
that the ability of our method in classifying positives is considerably improved
with reference to NWGP : in the gene prioritization context, this corresponds
to a better ranking of disease-genes, which is exactly the final aim of gene pri-
oritization. Even SAV t = 5 is largely outperformed by Gene2DisCo in terms of
AUC (we remind that in the benchmark setting, AUPRC was not computed).
This behaviour is confirmed by the PXR results in Figure 7: all Gene2DisCo
variants lie above both SAV t = 5 and NWGP, with larger improvements for
smaller Recall values, which are more important in context with scarcity of pos-
itives. Even in this case, the Jaccard variant performs best among Gene2DisCo
variants, for all the Recall values considered.

Finally, Gene2DisCo takes around 7 seconds to perform a 5-fold CV proce-
dure for a single MeSH disease term on an Intel i7-860 CPU 2.80 GHz machine
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Figure 7: PXR values of the different variants of Gene2DisCo, NWGP and of the original top
benchmark method SAV t = 5.

with 16 GB of RAM, including the computation of Jaccard similarity on the
training data. Hence, passing from 2- to 3-dimensional space just slightly in-
creased the overall computational complexity of the GLM training, considering
that NWGP in the same setting, but without the computation of the Jaccard
similarity, takes around 5 seconds.

4.2. Results on refined benchmark data

Although our aim on the enriched data set is to infer novel candidate disease-
genes, since we have already validated our method in the Section 4.1, to facilitate
possible comparisons with other methodologies, in Table 1 we report the average
results obtained through a 5-fold cross validation in predicting the 470 selected
MeSH disease terms in the refined benchmark data described in Section 2.2. It is
interesting to observe that the quality of Gene2DisCo predictions, with reference
to results shown in Section 4.1, is maintained even in this setting with more
genes and higher complexity (stronger labeling imbalance). Moreover, to better
analyze the behaviour of Gene2DisCo, we distinguished average results across
the two categories of diseases with 5-200 and 2-4 disease-genes. Interestingly,
the performance in the former category of diseases, those having less available
information, is not affected by a large overall decay: an average AUPRC value
0.268 is remarkable for diseases with very rare positives.
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AUC AUPRC PXR

Precision

Rec = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2-200

0.943 0.344 0.562 0.495 0.427 0.387 0.357 0.313 0.281 0.255 0.215 0.176

2-4

0.725 0.268 0.321 0.321 0.321 0.308 0.308 0.266 0.265 0.265 0.265 0.265

5-200

0.959 0.350 0.580 0.508 0.435 0.393 0.361 0.316 0.283 0.255 0.211 0.169

Table 1: Gene2DisCo performance on the enriched data set averaged across diseases with
2-200, 2-4 and 5-200 known disease-genes. ‘Rec’ stands for recall.

Level

1 2 3 4 5 6 7 8 9 10

0 8 80 183 242 206 92 23 5 3

Table 2: Level distribution in the MeSH taxonomy for the selected diseases.

4.3. Providing novel putative gene-disease associations

This section is dedicated to provide predictions for novel candidate gene-
disease associations. Since our method can be also exploited to predict diseases
with one or zero known disease-genes, we included in our setting also such dis-
eases, in addition to those described in Section 2.2. We did not considered
these diseases in the previous section because they cannot be used in cross val-
idation procedures, since positives (disease-genes) are not enough. Specifically,
we selected: 1) diseases with at most 200 genes associated with; 2) diseases with-
out known gene associations but sharing non null disease commonalities with
at least one disease with positives (348). We adopted the Jaccard similarity
(which performed best) for the diseases with positives, and the sum integration
of path-based similarity measures (Jaccard is not applicable, see Section 3.3)
for diseases without positives.

We obtained a set of 842 MeSH disease terms, spanning all the different
levels in the hierarchy except for level 1 (root nodes, we remind that the level is
the number of nodes on the path corresponding to the maximum distance from a
root node). The empirical distribution across node levels is reported in Table 2.
Furthermore, the selected diseases cover different MeSH trees, whose roots are
shown in Table 3, with the corresponding description. The total number of
diseases in that table is larger than 842 because some MeSH headings fall in
more than one tree.

To infer the gene ranking for MeSH disease terms without annotated genes,
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Tree root Diseases Root description

C02 34 Virus Diseases

C03 40 Parasitic Diseases

C04 103 Neoplasms

C05 103 Musculoskeletal Diseases

C06 52 Digestive System Diseases

C07 26 Stomatognathic Diseases

C08 36 Respiratory Tract Diseases

C10 193 Nervous System Diseases

C11 48 Eye Diseases

C12 38 Male Urogenital Diseases

C13 54 Female Urogenital Diseases and Pregnancy Complications

C14 59 Cardiovascular Diseases

C15 69 Hemic and Lymphatic Diseases

C16 326 Congenital, Hereditary, and Neonatal Diseases and Abnormalities

C17 94 Skin and Connective Tissue Diseases

C18 142 Nutritional and Metabolic Diseases

C19 39 Endocrine System Diseases

C20 38 Immune System Diseases

C21 1 Disorders of Environmental Origin

C22 13 Animal Diseases

C23 86 Pathological Conditions, Signs and Symptoms

C24 1 Occupational Diseases

C25 6 Chemically-Induced Disorders

C26 27 Wounds and Injuries

F03 24 Mental Disorders

Table 3: Tree root categories of the selected MeSH disease terms.

we could not learn the GLM model because there are no positives; accordingly
we used the inter-disease score in formula (12) to determine an association
score for gene i and disease k. The obtained score matrix A = L · Ψ can
be downloaded at https://frasca.di.umimi.it/gene2disco/. In order to
facilitate interpreting such predictions, we selected for every disease the three
top-ranked genes. Since the inferred score may depend on the number of diseases
a gene is already associated with (see formula 12), we added a further processing
step for determining the desired list:

1. For every k ∈ {1, 2, . . . ,m}, sort each row Ai. in decreasing order

2. Determine the rank r
(k)
i of disease k in the obtained vector

3. Select the genes corresponding to the three highest ranks in the vector rk,
that is the genes for which disease k was ranked atop the other diseases
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For diseases with known associations, we adopted the GLM prediction as
discussed in Section 3.4.3 to determine the top three genes for every disease.
In order to provide the most reliable predictions, a more intensive procedure
has been adopted. Namely, we used all the positive genes available to train
the model, and randomly partitioned negative genes in ten subsets, using nine
of them together with positives for training a model to predict the remaining
subset. The procedure has been iterated ten times, one for every subset of
negatives. All inferred predictions and selected candidate disease-genes can be
found at https://frasca.di.umimi.it/gene2disco/.

As further validation, we ran multiple independent runs of the cross vali-
dation procedure and computed the inferred putative associations confirmed in
each run. To investigate the most specific descriptions and more reliable pre-
dictions, we considered the MeSH disease terms with the highest performance
in all the runs and with at most 10 positive genes. Moreover, in the obtained
associations we further filter out those involving genes with high node degree
in the network, being node degree a proxy for gene multifunctionality and thus
leading to more generic associations [74]. The suggested candidate disease-genes
are shown in Table 4.

Disease name MeSH ID Genes Candidate genes

Angioid Streaks D000793 2 ABCB1

Central Serous Chorioretinopathy D056833 10 IL1B

Psychoses, Alcoholic D011604 2 CYP3A4

Herpes Zoster Ophthalmicus D006563 10 ACMSD,AFMID

Herpes Zoster Oticus D006563 10 ACMSD,AFMID

Tennis Elbow D013716 8 LGALS13

Neuroaspergillosis D020953 7 GSTA5

Olfactory Nerve Injuries D061219 10 IL1F7

Diffuse alopecia, Felty Syndrome C531609, D005258 3 CYP2D6,CASR

Table 4: Genes and MeSH headings selected as candidate novel gene-disease associations. The
column ‘Genes’ contains the number of known disease-genes (CTD database, update 04.17).

Interestingly, the protein coding ABCB1 (ATP binding cassette subfamily B
member 1) and ABCC6 (ATP binding cassette subfamily C member 6) belong
to the same superfamily of ATP-binding cassette (ABC), and multiple studies
have already associated ABCC6 with Angioid Streaks [75, 76, 77]. The protein
coding gene ILB1 (interleukin 1 beta) is a member of the interleukin family, to
whom belong the interleukins IL12B IL5RA, IL3, IL5 having curated associa-
tions with Central Serous Chorioretinopathy at CTD database (04.17). Gene
CYP3A4, encoding a member of the cytochrome P450 superfamily of enzymes,
is already associated with Delirium [78], Depressive Disorder [79], and Bipo-
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lar Disorder [80], diseases sharing therapeutic chemical profiles with Psychoses,

Alcoholic (CTD disease comp, update 04.17). Moreover, gene IL1F7 is a mem-
ber of the same family of two genes, IL1A and IL1B, actually associated with
Olfactory Nerve Injuries [81]. Finally, gene CASR (calcium sensing receptor) is
involved in Hyperparathyroidism, Primary disease, which shares chemical inter-
action profiles (via Lithium Carbonate, CTD disease comp, update 04.17) with
Diffuse alopecia disease.

5. Conclusions

This work showed that disease relatedness is a fundamental feature of the
gene prioritization (GP) process, and that GP methods must exploit common-
alities among diseases to achieve more reliable predictions. We have developed
a network-based approach, named Gene2DisCo, for prioritizing genes associ-
ated with a given disease, whose main contributions are the following: (i) the
construction of a framework aware of several issues characterizing the gene pri-
oritization process, including the need of integrating different data sources, the
rarity of known diseases-genes, and the existence of common profiles among dif-
ferent diseases; (ii) the derivation of a method based on generalized linear model
(GLM) embedding disease pairwise similarities; (iii) the extensive comparison
of several state-of-the-art semantic measures to compute semantic similarity
among diseases. With this novel technique, our method performed much bet-
ter than a set of state-of-the-art methodologies for disease-gene prioritization
on a benchmark dataset and than an existing technique based on GLM using
exactly the same input information as Gene2DisCo, but neglecting information
from similar diseases. Unlike existing approaches, a main feature of Gene2DisCo
is the capability of inferring gene prioritization lists even for diseases without
known causative genes. This study also made available a novel benchmark
dataset for future comparison providing gene-gene connections extended to the
whole human genome, and recent genes-disease associations retrieved from the
Medical Subjects Headings (MeSH) ontology. Finally, exploiting the ability
of Gene2DisCo in enriching the information available for diseases with few or
none associations, we provided a set of three top-ranked candidate genes for 842
MeSH diseases with 0 up to 200 known gene associations.
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