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Abstract Common clustering algorithms require multiple scans of all the data to
achieve convergence, and this is prohibitive when large databases, with millions of
data, must be processed. Some algorithms to extend the popular K-means method
to the analysis of big data are present in literature since 1998 [1], but they assume
that the random vectors which are processed and grouped have uncorrelated com-
ponents. Unfortunately this is not the case in many practical situations. We here
propose an extension of the algorithm of Bradley, Fayyad and Reina to the process-
ing of massive multivariate data, having correlated components.
Abstract I comuni algoritmi di clustering richiedono di esaminare più volte tutti i
dati per raggiungere la convergenza, e ciò risulta proibitivo quando devono essere
analizzati database enormi, con milioni di dati. In letteratura sono presenti fin dal
1998 [1] alcuni algoritmi che estendono il popolare metodo K-medie all’analisi di
big data, ma essi assumono che i vettori aleatori che vengono analizzati e raggrup-
pati abbiano componenti non correlate. Purtroppo tale condizione non è soddisfat-
ta in molti casi pratici. Qui proponiamo un’estensione dell’algoritmo di Bradley,
Fayyad e Reina all’analisi di grandi moli di dati multivariati, con componenti cor-
relate fra loro.
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1 Introduction

Clustering is the division of a collection of data into groups, or clusters, such that
points in the same cluster have a small distance from one another, while points in
different clusters are at a large distance from one another. When the data are not very
high dimensional, but are too many to fit in memory, because they are part of a huge
dataset, or because they arrive in streams and must be processed immediately or
they are lost, specific algorithms are needed to analyze progressively the data, store
in memory only a small number of summary statistics, and then discard the already
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processed data and free the memory. Situations like this, in which clustering plays
a fundamental role, recur in many applications, like customer segmentation in e-
commerce web sites, image analysis of video frames for objects recognition, recog-
nition of human movements from data provided by sensors placed on the body or on
a smartphone, etc. The key element in smart algorithms to treat such type of big data
is to find methods by which the summary statistics that are retained in memory can
be updated when each new observation, or group of observations, is processed. A
first and widely recognized method to cluster big data is the Bradley-Fayyad-Reina
(BFR) algorithm [1, 7], which is an extension of the classical K-means algorithm.
The BFR algorithm responds to the following data mining desiderata: 1) Require
one scan of the database and thus ability to operate on forward-only cursor; 2) On-
line anytime behavior: a ”best” answer is always available, with status information
on progress, expected remaining time, etc. provided; 3) Suspendable, stoppable, re-
sumable; incremental progress can be saved in memory to resume a stopped job; 4)
Ability to incrementally incorporate additional data with existing models efficiently;
5) Work within confines of a limited RAM buffer; 6)Utilize a variety of possible
scan modes: sequential, index, and sampling scan, if available. The BRF Algorithm
for clustering is based on the definition of three different sets of data: a) the retained
set (RS): the set of data points which are not recognized to belong to any cluster,
and need to be retained in the buffer; b) the discard set (DS): the set of data points
which can be discarded after updating the sufficient statistics; c) the compression
set (CS): the set of data points which form smaller clusters among themselves, far
from the principal ones and can be represented with other sufficient statistics. Each
data point is assigned to one of these sets on the basis of its distance from the center
of each cluster. The main weakness of the BFR Algorithm resides in the assumption
that the covariance matrix of each cluster is diagonal, which means that the compo-
nents of the analyzed multivariate data should be uncorrelated. In this way at each
step of the algorithm only the means and variances of each component of the clus-
ter centers must be retained. In the following we will describe an extension of the
BFR algorithm to the case of clusters having ”full” covariance matrix. Since with
our method also the covariance terms of the clusters centers must be retained, there
is an increase in the computational costs, but such increase can be easily controlled
and is affordable if the processed data are not extremely high dimensional.

2 An extension of the BFR clustering algorithm

We will use the same three sets of data a)-c) introduced in the BFR algorithm, but
using different summary statistics to define the discard set and the compression set.
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2.1 Data Compression

Like in the BFR algorithm, primary data compression determines items to be dis-
carded (discard set DS), and updates the compression set CS with the sufficient sum-
mary statistics of the identified clusters. Secondary data-compression takes place
over data points not compressed in primary phase. Data compression refers to rep-
resenting groups of points by their sufficient statistics and purging these points from
RAM. In the following we will always represent vectors as column vectors. Assume
that data points x1, . . . ,xn ∈Rp must be compressed in the same cluster. We will re-
tain only the sample mean x̄n = ∑n

i=1 xi, and the unbiased sample covariance matrix
Sn =

1
n−1 ∑n

i=1(x− x̄)(x− x̄)⊤. These two sufficient statistics can be easily computed
by keeping in memory the following quantities:

n, sumprodkl(n) =
n

∑
i=1

xikxil , sumprodcrosskl(n) =
n

∑
i=1

n

∑
j=1

xikx jl ,

sumsqk(n) =
n

∑
j=1

x2
jk, sumk(n) =

n

∑
j=1

x jk, k, l = 1, . . . , p, k < l.

These sufficient statistics can be easily updated when a new data point xn+1 must
be added to the cluster, without processing again the already compressed points. In
fact, for k, l = 1, . . . ,n, k < l, we have

sumprodkl(n+1) =
n+1

∑
i=1

xikxil = sumprodkl(n)+ x(n+1)kx(n+1)l

sumprodcrosskl(n+1) =
n+1

∑
i=1

n+1

∑
j=1

xikx jl = sumprodcrosskl(n)+ x(n+1)ksuml(n)

+x(n+1)lsumk(n)+ x(n+1)kx(n+1)l

sumsqk(n+1) =
n+1

∑
j=1

x2
jk = sumsqk(n)+ x2

(n+1)k

sumk(n+1) =
n+1

∑
j=1

x jk = sumk(n)+ x(n+1)k

Thus at each step of the algorithm we have to retain in memory only p2 + p+ 1
sufficient statistics for each cluster, where p is the dimension of the data points. In
addition, note that we should simply sum the corresponding statistics if we want to
merge two clusters.

2.2 The covariance matrices of the clusters

Note that when a new cluster is formed, it contains too few data points to obtain
a positive definite estimate of the covariance matrix, using the sample covariance
matrix, at least until n ≤ p. This is a problem since we need to invert this matrix to
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compute the Mahalanobis distance, that we will use to assign the observations to the
clusters. Recent research methods in estimating covariance matrices include band-
ing, tapering, penalization and shrinkage. We have focused on the Steinian shrink-
age method since, as underlined in [8], it leads to covariance matrix estimators that
are non-singular, well-conditioned, expressed in closed form and computationally
cheap regardless of p. We use the diagonal matrix DS of the sample covariance
matrix S as “target matrix” of the shrinkage method, noting that DS was the BRF
estimate of the covariance of each cluster used in [1]. In other words, in presence
of few data, our method coincides with that of [1], and we allow a progressive in-
fluence of correlation as the number of data increases. Summing up, we use a linear
shrinkage estimator for the covariance matrix, like that proposed in [3, 4, 6, 8] of
the form Ŝ = (1− λ )S+ λDS, where S is the sample covariance matrix, DS is its
diagonal matrix, and λ is a parameter in [0,1], whose optimal value depends on the
number n of data in the cluster. The parameter λ is initially settled to 1, and then its
value is decreasing to 0 when n → ∞. The theoretical optimal value λ ∗ of λ is found
by minimizing the risk function relative to the quadratic loss E[∥Ŝ−Σ∥2

F ] (see, e.g.,
[8, 6]) and it is a ratio depending on the unknown Σ . When data are gaussian, the
procedure proposed in [3] may be directly implemented to obtain unbiased estima-
tors of numerator and denominator in the formula of λ ∗. In non-gaussian setting,
a bias due to the fourth moment is present in the numerator and it is corrected [6]
with the use of further statistics, as the Q-statistics introduced in [4] (see also [2]).
Unfortunately, it is not possible to compute the Q statistics on the basis of updat-
able sufficient statistics, as in our framework. To correct the bias, a new iterative
procedure based on three updatable statistics for each cluster has been successfully
developed.

2.3 Model update

Like in the BFR algorithm, the second step of our algorithm consists of performing
K-means iterations over sufficient statistics of compressed, discarded and retained
points. In order to assign a point to a cluster we use the Mahalanobis distance from
its center (sample mean), i.e. we assign a new data point x to cluster h with center
x̄h and estimated covariance matrix Ŝh, if h is the index which minimizes ∆(x, x̄h) =
(x− x̄h)

T (Ŝh)
−1(x− x̄h), and if ∆(x, x̄h) is smaller than a fixed threshold δ . We also

compare x with each point xo in the retained set (RS), by computing ∆(x,xo) =
(x−xo)

T (ŜP)
−1(x−xo), where ŜP matrix is the pooled covariance matrix based on

all Ŝh:

ŜP =
(nh1 −1)Ŝh1 +(nh2 −1)Ŝh2 + · · ·(nhM −1)ŜhM

nh1 +nh2 + · · ·+nhM −M
, (1)

and where nh is the number of points in cluster h. With ŜP, we emphasize the
weighted importance of directions that are more significant for the clusters when we
compute the distance between two “isolated” points. We then approximate locally
the distribution of the clusters with a p−variate Gaussian and we build a confidence
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regions around the centers of the clusters (see [5]). We then move x̄h in the farthest
position from x in its confidence region, while we move the centers of the other
clusters in the closest positions with respect to x and we check if the cluster center
closer to x is still x̄h. If yes, we assign x to cluster h, we update the corresponding
sufficient statistics and we put x in the discard set; if the point is closer to a point xo
of the retained set than to any cluster, we form a new new secondary cluster (CS)
with the two points and we put x and xo in the discard set; otherwise, we put x in
the retained set (RS).

2.4 Secondary data compression

The purpose of secondary data compression is to identify “tight” sub-clusters of
points among the data that we can not discard in the primary phase. In [1], this is
made in two phases. In the first one, a K-means algorithm tries to locate subclusters
that are merged if they meet a “dense” condition. The candidate merging clusters
are chosen sequentially based on a hierarchical agglomerative clustering build on
the subclusters. In all this procedure, the euclidean metric was adopted. Finally, the
number of clusters is initialized to K, and it can increase or decrease during the
procedure. We adopt the same general idea, but we modify the procedure. First, we
change the metric, by taking the pooled covariance ŜP given in (1). As for isolated
points, we think that this metric is more precise than the euclidean one for this stage.
Then, a hierarchical clustering is performed using the Ward’s method: the distance
between two clusters h1 and h2 with nh1 ,nh2 points and centroids x̄h1 and x̄h2 , is
given by

∆(A,B) =
nh1nh2

nh1 +nh2

(x̄h1 − x̄h2)
⊤ŜP(x̄h1 − x̄h2).

Note that we sequentially merge two clusters only if a suitable dense condition is
fulfilled. For example, the total variance (i.e., the trace of the sample covariance
matrix) of the union of the two is required to be smaller than a suitable proportion
of the sum of the total variances of the single groups.

3 Results on simulated data

Synthetic data were created for the cases of 5 and 20 clusters. Data were sampled
from 5 or 20 independent p-variate Gaussians, with elements of their mean vectors
(the true means) uniformly distributed on [−5,5]. The covariance matrices were
generated by computing products of the type Σ = UHUT , where H is a diagonal
matrix with elements on the diagonal uniformly ditributed on [0.7,1.5], and U is the
orthonormal matrix obtained by the singular value decomposition of a symmetric
matrix MMT , where the elements of the p× p matrix M are uniformly distributed
on [−2,2]. In either cases of 5 or 20 clusters, we generated 10.000 vectors for each
cluster, having dimensions p= 10,20,50. This procedure guarantees that these clus-
ters are fairly well-separated Gaussians, an ideal situation for K-Means. We applied
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our procedure to these synthetic data, and we computed the secondary data compres-
sion after each bucket of 50 or 100 data points. The results are reported in Table 1.
We note that the number of clusters is sometimes overestimated, in particular when
the dimension p of the data points is small, which corresponds to the case where
the clusters are less separated. In such cases, if the point clouds in different clusters
are gathered in particularly ”elongated” and rather close ellipsoids, then the correct
detection of the clusters may be more difficult. We also note that in case of overesti-
mation of the number of clusters, many of them are composed by 2 or 3 data points,
which can then be revisited as small groups of outliers. The method seems to be
almost unsensitive to the buckets size. We conclude that the method here proposed
provides rather good results on synthetic data, even if some improvement could be
considered for the secondary data compression. The method is also under testing on
real data. An accurate comparison with the BFR algorithm will also be performed.

n. of dimension p n. of data n. of n. of small n. of retained
true clusters of data points in each bucket estimated clusters clusters points (outliers)
5 10 50 7 1 0
5 20 50 5 0 1
5 50 50 5 0 0
5 10 100 8 1 0
5 20 100 5 0 1
5 50 100 5 0 0
20 10 50 29 6 8
20 10 100 29 6 8

Table 1 Results of the application of the proposed algorithm to synthetic data. By small clusters
we mean clusters containing less than 4 data points
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