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Abstract

We suggest and demonstrate a tomographic method to characterise homodyne detectors at the
quantum level. The positive operator measure associated with the detector is expanded in a quadrature
basis and probed with a set of coherent states. The coefficients of the expansion are then retrieved
using a least squares algorithm. Our model is general enough to describe different implementations of
the homodyne setup, and it has proven capable of effectively describing the detector response to
different tomographic sets. We validate the reconstructed operator measure on nonclassical states and
exploit results to estimate the overall quantum efficiency of the detector.

1. Introduction

Balanced homodyne detection is a crucial detection technique for continuous variable quantum technology and
lies at the core of many experiments in fundamental quantum optics [1-3]. From its first proposal for the
measurement of quadrature squeezing, to its current extensive use in the fields of quantum tomography,
quantum communication and quantum metrology [4—18], this detection scheme has carved its place into
experimental quantum optics. Besides quantum optical systems, homodyne detection extends its reach to the
whole field of continuous variable quantum technologies, spanning from atomic systems [ 19, 20] to quantum
optomechanics [21].

Advances in technology promoted the spread of many different configurations of this versatile apparatus,
tailored to disparate experimental needs. Such a wide range of applications calls for reliable ways to fully
characterise homodyne detectors at a quantum level. In fact, each specific setup so far relies on classical
calibrations in order to gain the most general description of the apparatus and of the relationship between the
input state and the measurement output. Recently, a characterisation of homodyne detection, however used
only as a phase-insensitive photon counter, was demonstrated [22]. The detector characterisation made use of
data pattern tomography, an alternative method to QDT [23]. Measurement data were directly interpreted using
adirect fitting in terms of measurement outcomes to probe input states. Data pattern tomography has the
advantage of easily describing many-outcome detectors. This comes at the cost of providing no information on
the measurement process, a knowledge fundamental to push forward the control and the performance of the
homodyne detector.

More generally, a reliable and robust model for the description of the fully phase-sensitive homodyne
detection in the form of a quantum detector tomography (QDT) is, in fact, still lacking. Several CV quantum
information protocols would largely benefit from a precise quantum description of the detector. In particular, in
conditional-state preparation [24—28] a precise characterisation of homodyne detection would correspond to
enhanced control on the quantum properties of the output signal.

The pioneering proposals for QDT [29-32] were followed by the experimental characterisation of an
avalanche photodiode, in both single and time-multiplexed configurations, for the detection of up to eight
photons [33]. Subsequent works developed the idea, including the effect of decoherence onto the operator
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description [34], or different detection devices, such as superconducting nanowires [35] and TES based systems
[36, 37]. However, these are detectors devoted to photon counting, whose description is entirely embedded in
the diagonal sector of the Fock space. Only recently, a specific phase-sensitive hybrid scheme, in the form of a
weak homodyne detector based on photon counting, was the object of an experimentally realised QDT [38]. In
this paper, we move several crucial steps forward, and present a theoretical and experimental realisation of QDT
for homodyne detector, i.e. the most commonly used form of a fully phase-sensitive detector, whose detection
operators are naturally described in phase space.

The quantum description of any detector is given by a positive operator-valued measure (POVM), i.e. a set of
positive operators 11 = {II,,}, giving aresolution of identity 3", II,, = I. The determination of these operators
is, in turn, the main goal of detector tomography. Given an input state p, the Born rule states that
p? = Tr[p II,]is the probability of obtaining the nth outcome when the generalised observable described by
{II,,} is being measured. The inversion of this formula allows the reconstruction of the operators II,, from the
experimentally sampled probability distribution p”, over a suitable set of known states p. These must forma
tomographically complete set, spanning the Hilbert subspace where the POVM elements are defined on [39].

The simplest choice for a continuous variable system is a set of coherent states. They provide an over-
complete basis for the Fock space, and it has already been proved that even one-dimensional discrete collections
of coherent states form a complete basis, and may be used to reconstruct classical and non-classical states
[40, 41]. In fact, the experimental distributions of the outcomes for a set of coherent states already provide a full
representation of the detector operators, in the form of a sample of their Q-functions

Qu(@) = —{al II, o) = = P§,
T v
where {P},} represents the probability distribution for a coherent state. However, this representation is not
suitable to provide a complete and reliable characterisation of the detector. In fact, any subsequent use of this
reconstruction scheme to predict the outcome of the measurement for a different signal would involve the
(numerical) evaluation of the trace rule in the phase-space as

Tr[pT1,] = fc da P[pl(a)Qu(a),

where the Glauber—Sudarshan P-function P [p](«) is singular for any nonclassical state, and thus not ideal for
sampling. The P-function could still be efficiently approximated, and it has been used successfully in
characterisations of several optical processes [42—46].

In order to overcome this problem we suggest an expansion in the quadrature basis of the operator measure
associated with the detector, using as probe a set of coherent states. We then obtain the coefficients of the
expansion using a least squares algorithm on a sufficiently large sample of data. We also validate the
experimentally obtained POVM by reconstructing nonclassical known states. Finally, we exploit results to
estimate the overall quantum efficiency of the detector.

The paper is structured as follows. In section 2 we review the description of an ideal quantum homodyne
detection and introduce the algorithm employed for the reconstruction of the POVM set of its realistic
representation. In section 3 we describe our experimental apparatus, whereas in section 4 we present results of
the reconstruction, as well as their validation on nonclassical states. Section 5 closes the paper with some
concluding remarks.

2. Homodyne detection

Anideal homodyne detector is a fully phase sensitive apparatus that provides a complete characterisation of a
given state of a single-mode radiation field [47]. This state, the signal, is sent to a balanced beam splitter, where it
interferes with an intense coherent field, the local oscillator (LO), usually coming from the same laser source.
The phase of the signal has then a precise value ¢ with respect to the local oscillator, and can be adjusted by
means of a piezo-actuated mirror. The two outputs of the beam splitter are then focused on two photodiodes,
and the resulting photocurrents subtracted and analysed. It can be shown that, in the approximation of high
amplitude | 3| of the local oscillator, the measurement associated to this detector corresponds to

ab +a'b atel® 4 g e ¢

X = — = X4, 1)
2181 1811 2 ¢ (

where a and b are the mode operators for the signal and the LO, respectively. The operator b was replaced by

| 3| €l in equation (1) by considering its action onto the LO, that can be treated as a coherent state | 3). The
operation connected to the working scheme of this detector is therefore the measurement of the quadrature
operator x4 on the signal mode. Such alink states the equivalence between the discrete spectrum of the operator
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X and the continuous one of the quadrature, due to the high intensity of the LO, that can be consequently treated
classically. This equivalence can be extended to the characteristic functions

Trap[e™p @ |8) (B]] — Trylep] )
|B1>1

assuring the equivalence of all moments [48].

The key feature of homodyne detection is its ability to discern between different phase values of an input
signal, setting itself apart from the photon counting detectors that have been characterised in the past. A
straightforward choice for a basis in which representing the POVM elements of a phase insensitive device is the
number basis, in the form IT; = 3>,/ 70 |n) (n], where |n) (n]is the projector onto the n-photon Fock state.
Such a description is no longer suitable for our apparatus, that hinges on a phase-sensitive operation scheme.
Off-diagonal elements in the number-basis expansion could enclose phase-sensitive properties, as was done in
[38], but reconstruction of the detector operators would become increasingly difficult due to the high dimension
of the Hilbert space the POVM would be defined in.

2.1. The reconstruction algorithm

A suitable basis to expand the POVM {II(x)} of a phase-sensitive detector for continuous variable systems is the
set {|y) (|} of projectors on eigenstates of the quadrature operator x,. Upon considering possible noise
mechanisms, we may write

M (xy) = f f de dy G 1,) (1. ®)

In most cases the process of phase diffusion, described here by G,fj)) ,is very limited, as we demonstrate for our
setup in section 4.2. Under these assumptions, a convenient expansion to describe the effective POVM of the
detector is diagonal in the quadrature basis, i.e. setting ¢ = 0 and Gé‘ﬁ) = 6(y),

I(x) = f dy g Iy) (yl- &

We can use this equation as a starting point to model the physical realisation of a homodyne detector. At first, it is
possible to move from a continuous set of POVM to a discrete one, reflecting the experimental sampling during
the measurement process. In parallel, the expansion on the quadrature basis { | y) (y| } can be discretised as well,
reducing the number of POVM elements. Equation (4) may be rewritten as

=16 = 3 g/ 1) O ®
k

where the indeces jand k are both confined to an arbitrary portion of phase space [Xmin> X¥max J- The function gISX)
is now the matrix g. A crucial feature of a homodyne detector is its response to amplitude. While the matrix g
could incorporate this feature, it is preferable to decouple the two and add this response to the QDT as an
additional parameter. We modelled this response with an amplitude dependent, positive parameter ~y («),
whose action is to rescale the field amplitude measured by the detector. The Q-function representation of the
detector is now given by

P (x)) = (yer] IL(x)) |yer) = ng]\/g exp {—2(y, — 7 laD?}. (6)
k

The QDT will associate to every detector a matrix g and a function vy («), providing a complete and detailed
description of the detector.

Equation (6) may be inverted to find the matrix g and the function v (), starting from a quorum set of
known states. To this purpose, selecting a set of coherent states with amplitudes { o}, we use a least-squares
method to compare the detector outcomes with equation (6):

g = arg min {ZZ[%S (x)) — Py, (xj)]z}, ?)

{ghrd>0 U j s

where P, (xj)is the experimentally observed distribution for the coherent state with amplitude |« |. The
positivity of the { gkj } is the sufficient condition for a POVM.

A pictorial representation of the algorithm is presented in figure 1(a). The algorithm retrieves g and {~,} by
comparing the experimentally sampled distributions to the corresponding Q-function representation. The least
squares algorithm of equation (7) performs this minimisation simultaneously for all the quadrature values
Xj € [Xmin» ¥max ] and all the coherent states in the set. If we look back at equation (4), it is quite natural to link
the characteristics of the matrix g to the features of the detector reconstruction. Each matrix row gkj associates an
outcome x; to a set of projectors on quadrature eigenstates, with weights given by the coefficients in equation (5).
For an ideal detector, the matrix is diagonal ng = &, 1.e. the only nonzero coefficient associates a quadrature

3
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Figure 1. Quantum tomography of a homodyne detector. A pictorial representation of the least-squares algorithm is reported: the
experimentally sampled probability distributions p, (x) (solid blue) are compared to the Q-function representation 7, (x) (dashed
yellow). The dashing mirrors the discretisation of equation (4).

value x; to the corresponding projector |x;) (x;|. Experimental imperfections and fluctuations, corresponding to
the shaded blue area in figure 1(a), ‘switch on’ new coefficients in the expansion of equation (6), spreading them
around the central diagonal value. At the same time, each calibrated amplitude | ;| is associated to a rescaled
value |Gs| = 7, ||, providing a unified model for the amplitude response of the detector.

A detector tomography devised in this way is general enough for application to different configurations of
the homodyne detection. In principle, every set {,} is valid only for one quadrature phase ¢. In a broader
context, the coefficients 5, could be described by complex numbers, modifying the phase as well as the
amplitude of every coherent state. However, we will show in the next section how, due to the robustness of the
setup, in most cases our assumption of real ~, can be verified.

3. Experimental apparatus

The detector characterised in this paper is an optical homodyne apparatus, operating in the time domain at high
sampling frequency [49, 50]. A schematic diagram of the experimental setup is shown in figure 2. The apparatus
is based on a mode-locked Ti:sapphire laser (Spectra-Physics Tsunami) providing, after suitable splitting, both
the LO beam for balanced homodyne detection and the probe coherent states for detector tomography. The laser
emits 2 ps pulses at a central wavelength of 785 nm, with a repetition rate of 82 MHz.

Amplitudes of the probe coherent states were selected by means of a reflective-coating glass attenuator.
Precise calibration of each state is done by means of a Type I BBO crystal cut for degenerate spontaneous down-
conversion (SPDC), pumped by the frequency doubled portion of the main laser beam. The injection of the
probe coherent states into the signal path of the SPDC triggers the stimulated emission of downconverted
photon pairs, in the same mode as the injection (thus generating single-photon-added coherent states SPACSs
[51]), and in the idler mode. This emission rate is proportional to 1 + |a|?, where v is the amplitude of the
incoming coherent state. In order to generate pure quantum states, idler photons are strongly spectrally and
spatially filtered before being detected with a single photon counting module. In this configuration, when the
idler detector clicks, the signal state is prepared in a well-defined spatial /temporal mode defined by the SPDC
pump beam [52]. Such a procedure provides a precise standard-free calibration of the input amplitude [53] by
means of the ratio between the count rate of stimulated and spontaneous events, pursuing the idea of a
calibration-free characterisation. The phase difference ¢ between the LO and the probe states identifies the
quadrature x, measured by the homodyne detector. This is adjusted by means of a piezoelectric mirror in the LO
path and it is actively stabilised to the desired value by a computer-assisted feedback loop.

4
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Figure 2. Schematic diagram of the experimental setup. L.O.: local oscillator. A: attenuator. LBO: frequency doubling crystal. BBO:
down-conversion crystal. E: etalon filters. SPCM: single-photon counting module. PZT: piezoelectric mirror.

Pa(D:q)
0.8 Foom

0.4\ QN

0.0
-2

Figure 3. The theoretical phase space representation of the full set of coherent states used for tomography.

For each coherent probe state, the homodyne signal is acquired and integrated over a time interval
corresponding to the duration of alaser pulse. The corresponding quadrature value is then calculated by
normalising it to the vacuum noise, obtained when the homodyne signal beam is blocked. In order to avoid
unwanted drifts of the homodyne signal, the measurements are taken in an ultra-stable configuration of the
setup, and each coherent state acquisition is immediately followed by the vacuum acquisition needed for
calibration, these two subsequent acquisitions are performed in a time sufficiently small in order to avoid
undesirable dc-signal drifts. For every state, about 10° quadrature values are obtained, from which a probability
distribution can be constructed. The detailed description of time-domain homodyne detection procedure, the
calibration and the voltage-to-quadrature conversion are fully described in [49, 50].

4. Detector tomography

In our detector tomography we have focused attention to the range x € [—2, 2]. To characterise this quadrature
space we have selected a set of coherent states, with amplitudes o, € [0, 3]. We selected 12 equally spaced
amplitudes, the maximum achievable considering our calibration precision. For each amplitude we acquired 9 phase
values between 0 and 7. The tomographic set thus composed provides a uniform coverage of the selected portion of
phase space, and provides a quorum for tomographies of a truncated Fock space of dimension D = 9[54, 55]. The
full set is represented in figure 3. Each state was measured following the procedure just described; it is important to
notice that only the probability distribution p, (x) with x € [—2, 2] takes part in the reconstruction algorithm.

5
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Figure 4. Efficiency of reconstruction as a function of increasing amplitude spacing in the tomographic set. The function A (6«) is
here normalised to the matrix dimension N. A sharp transition can be seen as the spacing between the states of the set approaches the
maximum of the function y - f (y) where f(y) is the overlap function defined in equation (9).

Before going to detector tomography we now focus on the properties of the tomographic set, and in
particular on the characteristics required to perform a reliable and robust reconstruction. We start by analysing
the resolution properties and then pass to check the robustness against phase and amplitude noise.

4.1. Properties of the tomographic set: resolution

In order to analyse the resolution properties of the tomographic set, we have performed simulated experiments
with sets having an increasing number of equidistant coherent states, with amplitudes in a given range

« € [—3, 3]and spacing da. As even a one-dimensional collection of states provides a quorum [40, 41], we
concentrated on states with the same phase ¢ = 0. For each set, the matrix representation of the detector was
retrieved solving equation (7), thus building a function gkj (6cv). Since the identity matrix I is the ideal-case
solution of the reconstruction algorithm, we consider the following function of the amplitude spacing dcv

A(a) = T [I - g/ (6a)] (8)

as a figure of merit to assess tomographic sets, e.g. to find the minimal §« corresponding to a reliable
reconstruction. For a perfect reconstruction, the two matrices are both the identity and A reduces to the
dimension of the matrix g. In the opposite case, more and more elements on the diagonal will be voided, and the
trace will decrease. In figure 4 we show the results: a steep transition, corresponding to a deterioration of the
reconstruction, appears for S =~ 0.7.

A similar conclusion may be obtained theoretically upon considering the overlap of two Gaussian
distributions p, (x, xo) with the same standard deviation o and different mean values, i.e.

+00
o) =7 [ dx p. (x, x0) p, (%, X0 + ). )

In particular, the function y - f () may be used to assess the tomographic set of coherent states, as it captures,
roughly speaking, the trade-off between an increasing spacing and a decreasing overlap. Upon substituting
o= i, asitis for coherent states, we have that y - f (y) hasamaximumat y = 272 =~ 0.707,in good
agreement with the value obtained by simulated experiments via equation (8). The reliability of this estimation
has been then confirmed experimentally (see below).

A similar study was carried out to study the effect of bin size dx in the discretisation of equation (5). As it was
found that the change in bin size only affects the resolution of the reconstruction, we selected a value of 6x = 0.1,

the standard of our setup for state reconstruction.

4.2. Properties of the tomographic set: robustness

By considering the full tomographic set of coherent states, we then investigated the role of phase noise on our
reconstructing algorithm. It is necessary to separate the effect of rescaling, due to the coefficients +,, from the
quadrature response of the detector, represented by the matrix g. To this aim, the full set of amplitudes { s} was
taken not from the calibrated value, but directly as the mean value of the probability distributions measured with

6



I0OP Publishing NewJ. Phys. 19 (2017) 053015 S Grandi et al

(a)2 F

Oq

0.53
k0
Y 0.52
0.51

0.50

Figure 5. Analysis of the effect of noise in the homodyne detection. Panel (a) presents the reconstructed matrix g obtained from the
full tomographic set by imposing || = |&;|. A minimum deviation from the expected diagonal shape is visible. The standard
deviations o, of the coherent states of the set are reported in panel (b) as a function of phase ¢, for three of twelve sets of amplitudes:
a = 0.25 (dashed), @ = 1.5 (solid), « = 3.0 (dotted—dashed).

the homodyne detector, and the coefficient matrix g was retrieved imposing | &| = |c|. Every coefficient ~, is
then effectively set to 1, and every uncertainty due to the rescaling is excluded from the detector tomography.

The result of the reconstruction, reported in figure 5(a), show the expected diagonal shape. The standard
deviations of the homodyne distributions are reported in figure 5(b). We see some fluctuations, consistent with
the expected value of the variance. The locking system of the homodyne detection could introduce an
uncertainty in the selected phase ¢ of the quadrature. However, no correlation with the phase of the coherent
states may be observed, thus suggesting that phase noise play a minor, if any, role. In order to verify this
statement in a quantitative way, and recalling the model presented in equation (3), we described a possible phase
noise in the measurement scheme by writing the homodyne distribution of a coherent state p, (x) as the
following convolution

(6092

1 +o0 P
pgf x)=— | do e 2(—lalcosd)y o207 (10)
Tof Y —o0

where o is the standard deviation of the alleged phase noise, and ¢, is the phase of the measured quadrature.
Upon applying the reconstruction algorithm of equation (7) to a set of simulated data from equation (10) (with
amplitudes and phases equal to the experimental set) we were able to assess the effect of phase noise. The
reconstructed matrices g are reported in figure 6(a), for increasing values of of. As it is apparent from the plot,
already for oy = 0.1, the reconstruction is strongly affected. By comparing these results with figure 5(a), it is
possible to exclude any phase noise above oy = 0.1 (i.e. any noise variance above o7 = 102).

The possible effects of amplitude noise have been analysed in an analogue way, by describing the noise by
means of Gaussian convolution with standard deviation a,, leading to

2 B 2(x—a cos )2
%(x) = |———eX doi+1 (11)
P 7 (40% + 1) P

This is just a new Gaussian with increased total standard deviation given by \/o2 + 1/4. A new set of coherent
states was generated from equation (1 1), with phases and amplitudes taken from the experimental tomographic
set. Three matrices g were calculated, for increasing values of 0,. The results are reported in figure 6(b). As it is
apparent from the plot the ‘width’ of the diagonal increases with the added noise, but the matrices retain their
shape, in contrast with the results of figure 6(a).

Upon comparing these results with figure 5(a), and considering the measured standard deviation for the
coherent states of figure 5(b), we may bound the amplitude noise at o, < 0.1.

In order to further analyse the possible effects of noise, we noticed that the amplitude convolution of
equation (11) maintains the Gaussianity of the coherent state. Moreover, the limit that we have imposed is
sufficiently low that we can discard this source of noise in the detector tomography. On the other hand, the
convolution of equation (10) distorts the probability distribution p,, (x), especially for phases around /2 and

7
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Figure 6. Simulated detector tomographies, assessing the role of phase and amplitude noise on the detector tomography. Panel (a)
reports matrices g obtained from coherent states with added phase noise, with of = 0.05, 0.1, 0.25. Panel (b) reports matrices
obtained with coherent states with added amplitude noise, with o, = 0.05, 0.1, 0.25. In both cases we imposed |c;| = |é].

high amplitudes | o |. We can then lower the limit on o by looking at the individual probability distributions
P, (%) of the coherent states. In fact, due to the convolution of equation (10), the distribution of quadrature
values is not Gaussian anymore, and this effect can be quantified. We have therefore employed another least-
squares algorithm to find the residuals x? for every P, (x) with respect to a Gaussian of equal centre o and
variance 1/4, the expected result for our choice of normalisation of coherent states. We have then calculated x?
for the set of simulated Py (x),and compared the two results for increasing values of of. As it is clear from
figure 7(a), the residuals show a radically different behaviour for the experimental and for the simulated states.
As for the case of figure 5(a), for the experimental data there is no correlation with the phase of the measured
quadrature. From the maximum values of y? of the two panels of figure 7(a) we were able to exclude any phase
noise above g = 0.075.

The results reported in figure 7(a) provided a quantitative analysis of the effect of phase noise. Asa
qualitative comparison comparison, we implemented equation (10). After the LO was locked to the required
phase, during the measurement process the actual locking signal was substituted with a Gaussian distribution.
The variance was calibrated by measuring the voltage required for a 27 phase change. We set the standard
deviation of the added phase noise to 0.25, and we then acquired 12 coherent states, with amplitudes
a;s € [0, 3]and equal phase ¢ = 0. The reconstructed matrix is reported in figure 7(b) and shows a similar
behaviour to our simulations of figure 6(a). This result was obtained with a heavy modification of the locking
procedure in the homodyne detection, again showing the high sensitivity of the system to phase noise.

At this point, we may avoid any further inquiries on the role of phase noise in the detector tomography, as we
found it to be too small to be detected in the experimentally sampled distributions and, more importantly, to
affect the tomographic results. As both plots of figure 5(b) and top panel of figure 7(a) shows no correlation with
¢, in striking contrast with the bottom panel of figure 7(a), no extra dependency on phase was assessed. As a
consequence, we can assume that the coefficients ~, are real numbers and that they are constant for all the
quadratures x,.

4.3. Properties of the tomographic set: optimally reduced set

We have now confirmed the effectiveness of our method and the reliability of our set. Looking back at

section 4.1, we selected another one-dimensional collection of coherent state, with the minimum spacing. From
the full set of coherent states we picked those with a null or 7 phase difference between the signal and the LO.
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Figure 7. Panel (a) shows the residuals obtained from fitting the experimental set P, (x) (top) and a simulated set p:f (x) (bottom) to
Gaussian distributions. Three of the twelve amplitude sets are reported: o = 0.25 (dashed), @ = 1.5 (solid), & = 3.0 (dotted—
dashed). A new maximum of o = 0.075 for Gaussian phase noise can be set. Panel (b) shows the matrix g obtained with a set of
coherent states with an experimentally added phase-noise of ¢ = 0.25. The results are in good agreement with figure 6(a).
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Figure 8. Quantum tomography of a homodyne detector. Panel (a) shows the matrix gkj obtained with a reduced set. The array of
coefficients , is reported in blue in figure 8(b), with the uncertainty represented by the shaded blue area. In a similar fashion, the
mean value 4, and its uncertainty are indicated in solid and shaded yellow. In panels (c) and (d) we report the experimentally
reconstructed Wigner functions for the Fock state |1) and for a single photon-added coherent state. The side plots in both panels show
the Wigner marginal distributions p(x) (yellow), which are both very close to their representations in the detector description P(x)
(the uncertainty due to the spread of 4, is given by the blue-shadowed areas).
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This set of 25 coherent states was then inserted into the algorithm of equation (7) together with the set of
calibrated amplitudes { o}, and the results are shown in figure 8(a). By comparing this matrix with that of
figure 5(a) one notices the spread of the coefficients around the diagonal, due to the additional parameters +,.
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These are reported in blue in the plot of figure 8(b). The uncertainty on the {~,} was obtained by considering the
behaviour of equation (7) as a function of 7. The second-order derivative of equation (7) was calculated for every
7,» and its inverse used as the error, that is represented by the blue-shaded area in figure 8(b). The error on ~, is
increasing for decreasing values of o, since for the limiting case of & = 0 our model is not defined. A final value
of 5, = 0.90(3) could be obtained with a weighted average.

4.4. POVM validation

The aim of QDT is to fully characterise a given detector by retrieving the set of operators that completely
describes its measurement process. In order to validate our technique for QDT, we have employed the
reconstructed POVM to reproduce measurements performed on known states. With the apparatus of figure 2
we have generated and characterised by standard quantum homodyne tomography a single-photon Fock state
and a SPACS with amplitude 0.5. For both states we have acquired about 10° quadrature data for 10 phase values
in the interval [0, 7r]. An iterative maximum likelihood reconstruction procedure [56—58] is used to retrieve the
density matrixes, and the corresponding Wigner functions are shown in figures 8(c) and (d). These experimental
Wigner functions are then compared to those obtained for the same states using the reconstructed detector
POVM. The photon addition scheme of our setup, fundamental for the generation of these two states, had been
previously characterised [46, 59], and the operator a had been found to apply to a given input state with
preparation efficiency ¢ ~ 0.91. The measured quadrature distributions for the Fock state and the SPACS,
reported in figures 8(c) and (d), are in excellent agreement with the expected Q-function representation P(x)
based on the tomography of our homodyne detector. For both the Fock state and the SPACS we have recovered
the marginal distributions p(x) from the Wigner functions. Considering the fidelity F defined as

F = 6xzj P (x))P(x;), wefound F > 0.99 for both states. The robustness and reliability of our method has
thus been confirmed and we have proved that the specific experimental realisation of the detector, which
depends on several parameters (like the detector quantum efficiency, the degree of mode matching, the
alignment, etc), can be efficiently captured by the tomographic procedure. We also proved that the results of
subsequent measurements can be effectively reproduced.

The reduced, one-dimensional tomographic set of coherent states that we have used so far has proved tobe a
good test for our detectors. In order to improve the accuracy of the reconstruction we may extend the set to cover
abigger portion of phase space, while to minimise the experimental effort we may want to reduce the number of
states in the set. Proceeding as above, and following our predictions from equation (8), we found that a minimal
set of nine coherent states may be selected from the experimental data, all at phase ¢ = 0. The amplitude
spacing is three times larger than in the previous situation, but the reduced set is still able to provide a quorum
for the tomography. Results are presented in figures 9(a) and (b). On the other hand, even with the full set of 109
coherent states we have been able to efficiently reconstruct the detector, despite the increased phase space
coverage and the increased fluctuations, due to oversampling.

The matrix gkj and the coefficients ~, for this case are shown in figures 9(c) and (d). On the basis of the
previous analysis, and considering the large uncertainty on +, in the area close to the origin, we have assigned a
fixed value , = 1to probe states with amplitudes smaller than 0.5, and we have neglected them in the weighted
average. We found that the values of  for the smallest and the largest tomographic set are given by 3, = 0.91(3)
and 7, = 0.84(9) respectively. In fact, all the values of 7,, ¥, and 7, are comparable within the uncertainty. On
the other hand, they convey different information regarding the detector. The matrices reported in figures 8(a)
and 9(a) present an additional spread of the coefficients around the diagonal. This can be considered as an
additional rescaling parameter, modelling the experimental fluctuations, that is therefore directly included in
the tomography. Values for  are then larger, with reduced uncertainty. The matrix of figure 9(c) has instead a
smaller spread, and therefore the extra rescaling is conveyed in 9,, lowering its value and making it more
accurate, even though less precise. In this case, ¥, is better suited to be compared to the value of the detection
quantum efficiency 7 that can be obtained by classical calibration. The overall detection efficiency of our
apparatusis n = 1, 1, 1, 1,, = 0.69(4) where the quantum efficiency of the photodiodes is directly measured
tobe 77, = 0.980(5) and the electronic signal to noise ratio (S = 10.5 dB) corresponds to an efficiency of
n, =S — 1/§ = 0.91(1) [60]. The optical losses are 1, = 0.95(1), and the non-perfect mode matching between
LO and the heralded SPDC signal mode corresponds to 77,, = 0.82(1) which it is obtained following [52].
Indeed, we find that 3, ~ /77, despite the fact that our model does not involve any prior knowledge of the
detector structure or implementation, i.e. our scheme may be employed for absolute calibration of the detector.
Overall, we see that different sets may be exploited to highlight specific properties of the detector, adding value to
our technique.
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Figure 9. Changing the number of coherent states in the tomographic set. Panels (a) and (b) show results of the tomography for the
limiting case of an amplitude spacing of 0.7, as predicted by the theoretical modelling. The limiting case of oversampling was also
tested, yielding another positive result. Results of QDT using the full tomographic set of 109 states are reported in panels (c) and (d).

5. Conclusions

We have suggested and demonstrated a QDT technique for a homodyne detector. In ideal conditions each
detector operator is associated to a single quadrature projector: our technique suitably describes how
experimental noise and specific physical realisations of the detector affect this description and allows us to
quantify experimentally the spreading of the detector operators onto adjacent quadrature states. The model is
general enough to describe currently used homodyne setups, and it has proven capable of effectively describing
the detector response to different tomographic sets. The reconstructed POVM have been then validated on
different nonclassical states, thus confirming the robustness and the reliability of the method.

Our results provide a general method to estimate the overall detection efficiency in this class of detectors and
may represent a valuable resource to optimise homodyne detection in different situations. Our model may be
generalised to specifically treat single parameters of homodyne detectors, as mode mismatch, saturation or
correlations between amplitude and phase noise. Besides, a better understanding of the fundamental
functioning of this detector paves the way to an evolution of the same, as well as a broader and more precise use
in quantum optics and quantum technology with continuous variables.
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