

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI CHIMICA

AMINO ACID-DERIVING CHIRAL POLYMERS WITH POTENTIAL FOR BIOTECHNOLOGICAL APPLICATIONS

Federica Lazzari

Dottoranda al 1° anno Università degli Studi di Milano

FACTS

Polyamidoamines (PAAs) represent a wellknown family of soluble synthetic functional polymers obtained by stepwise Michael-type polyaddition of *prim*-monoamines or *sec*diamines with bisacrylamides.

By using α -amino acids with bisacrylamides at pH > 9 in aqueous solutions, we obtained polyamidoaminoacids (PAACs) that maintain the amphoteric properties and chirality of the amino acid precursors.

By reacting L-arginine and methylene-bisacrylamide for 6 months in presence of CaCl₂ catalyst, a moderately basic and highly non-cytotoxic PAAC named ARGO7 is obtained.

SYNTHESIS

Sample	Yield (%)	M _w	PDI				
D-ARGO7	88	7700	1.54				
L-ARGO7	92	6500	1.43				
D,L-ARGO7	90	6800	1.48				

- Reaction is run at 50°C for 6 days, reaching high molecular weight in short time;
- Reaction is extended to (D) and (D,L)-arginine;
- No catayst;
- No purification is needed;
- No traces of aggragates.

ACID-BASE PROPERTIES

ACID-BASE PROPERTIES

 β parameters for *pKa*₁ and *pKa*₂ are introduced in the generalized Henderson Hasselbach equation (Eq.1) to ascertain the presence of interactions between ionizable groups on adjacent monomeric units.

$$pKa = pH + \beta * Log \frac{1-\alpha}{\alpha}$$
(1)

ACID-BASE PROPERTIES

- No significant differences were detected among the pKa values of the three ARGO isomers.
- Both *pKa*₁ and *pKa*₂ exhibit deviation from ideal behavior, more pronounced in case of the carboxyl groups.

Sample	рКа ₁	pKa₂	pKa₃	β ₁	β ₂	рІ
L-Arginine	2.17	9.04	12.48			10.76
L-ARGO7	2.31	6.43	>12	0.60	1.14	9.7
D-ARGO7	2.24	6.41	>12	0.60	1.12	9.7
D,L-ARGO7	2.34	6.39	>12	0.57	1.25	9.7

*pKa*₁ (COOH) values resembled that of arginine, whereas *pKa*₂ (main chain *tert*-amine) decreased by two units due to the electron withdrawing effect of the acrylamide groups.

DE LEVIE APPROACH

 $\frac{Charge and mass balance}{V_T} = \frac{V_0 [C_0 (\alpha_0 - \alpha_2 - 2\alpha_3) + C_A - \Delta] + N}{\Delta + C_T}$

- HCl used to correct pH is taken into account in the initial balance;
- Differences are minimized by reducing the sum of square roots (SRR) between V_t data.

SPECIATION DIAGRAM

The speciation diagram for L-ARGO consists of four ionization states and indicates isoelectric point (I.P.) 9.8 and 0.25 positive net average charge per repeating unit at pH = 7.4.

CIRCULAR DICHROISM

Spectra at 25 °C in 0.1 M NaCl and in the 2.1÷12.1 pH range exhibited patterns and intensities consistent with ordered secondary structures.

At pH > 5 the L-ARGO7 spectra were characterized by a positive band at 228 nm, , whose value increased by increasing pH up to a maximum at pH \sim 8.1, and then remained approximately constant up to pH 12.1

CONCLUSIONS

Amphoteric polyamidoaminoacids were obtained with fairly high molecular weights by polyaddition in aqueous solution of (D)-, (L) and (D,L)-arginine with N,N'-methylenebisacrylamide.

The polymers' pKas were evaluated: pKa₁ (COOH) value resembled that of arginine, whereas pKa₂ (main chain *tert*-amine) decreased by two units affected by the conversion into a *tert*-amine group. Both constants exhibit deviations from ideal behaviour, more pronounced for the carboxyl group.

From circular dichroism analysis, D- and L-ARGO7 gave in the pH range 2-12, spectra consistent with pHdependent conformation transitions.