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A new semiclassical “divide-and-conquer” method is presented with the aim of demonstrating that
quantum dynamics simulations of high dimensional molecular systems are doable. The method is first
tested by calculating the quantum vibrational power spectra of water, methane, and benzene—three
molecules of increasing dimensionality for which benchmark quantum results are available—and then
applied to C60, a system characterized by 174 vibrational degrees of freedom. Results show that the
approach can accurately account for quantum anharmonicities, purely quantum features like overtones, and
the removal of degeneracy when the molecular symmetry is broken.
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Quantum computational approaches to the spectroscopy
of small or medium-sized molecules are very popular.
Among them, we recall variational methods like vibrational
configuration interaction [1–4] and multiconfiguration
time-dependent Hartree [5–7], or perturbative ones such
as the second-order vibrational perturbation theory [8–10].
Spectroscopy of high dimensional systems is more difficult
to perform since exact quantum simulations are unaffordable
and even experimental spectra are often too crowded for an
undisputed assignment. A new computationally affordable
strategy is needed, while spectra would certainly be much
easier to read if they were decomposed into several
partial ones.
For this purpose, a novel theoretical approach is presented

here. It is based on a semiclassical (SC) “divide-and-
conquer” strategy that leads to reliable calculations of higher
dimensional systems than those ordinarily affordable with
quantummethods. Full spectra are regained as a collection of
partial ones, quantum effects are included, and a sound
spectroscopic interpretation is obtained. This new method
fills in the gap between a purely classical spectroscopic study,
which is not satisfactory because it neglects key quantum
features, and quantum approaches, which often require the
setup of a grid of points with a computational cost that
exponentially scales with the dimensionality of the system.
In a semiclassical approach [11–43], spectra are calculated

in a time-dependent way from classically evolved trajecto-
ries, and, if convenient, precomputation of the potential
[44–52] can be avoided in favor of a direct dynamics [42,53–
57], thus allowing one to explore the global potential energy
surface also when dealing with high dimensional systems.
Recently, we have advanced Miller’s pivotal semiclassical
initial value representation (SCIVR) [58–63] theory by
developing the multiple-coherent (MC) SCIVR approach
[53,64]. The method exploits pioneering work by De Leon
and Heller, which demonstrated that even single-trajectory
semiclassical simulations are able to precisely reproduce

quantumeigenvalues and eigenfunctions [65].MCSCIVR is
based on a tailored coherent state semiclassical representa-
tion and yields highly accurate results in spectroscopy
calculations, often within 1% of the exact result, given a
few classical trajectories as input. Applications have faith-
fully reproduced a variety of quantum effects, including
quantum resonances, intramolecular and dipole splitting, and
the quantum resonant umbrella inversion in ammonia
[66–71]. However, the approach runs out of steam when
the dimensionality increases and it is limited to about
20–25 degrees of freedom.
To understand the reasons for such a limitation, we

observe that anN-dimensional semiclassical wave packet is
built as the direct product of monodimensional coherent
states jχðtÞi ¼ jχ1ðtÞi…jχNðtÞi, and power spectra are
obtained by Fourier transforming the recurring time-
dependent overlap hχð0ÞjχðtÞi. Consequently, for a precise
spectral density, it is essential that the time-evolved semi-
classical wave packet significantly overlaps with its initial
guess. More specifically, the multidimensional classical
trajectory must visit phase space configurations ðpt;qtÞ that
are close enough to the starting one ðp0;q0Þ. The curse of
dimensionality occurs because all of the monodimensional
coherent state overlaps [hχið0ÞjχiðtÞi] should be sizable
almost simultaneously, but, for oscillators with noncom-
mensurable frequencies (even if uncoupled), the concomi-
tant overlapping event is more and more unlikely as the
dimensionality increases. The difference between a semi-
classical and a classical simulation based on a dipole-dipole
correlation function is evident here. In fact, the dipole is
always a three-dimensional vector, so it is easier to have a
substantial time-dependent overlap.
Figure 1 illustrates how we think to overcome the curse

of dimensionality in semiclassical calculations. In a few
words, a full-dimensional classical trajectory (the black
line) has better odds of getting close to its initial configu-
ration if projected onto a subspace (the red line). Based on
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this observation, we propose that, while classical trajecto-
ries are treated in full dimensionality, the semiclassical
calculation employs subspace bounded information to yield
projected spectra. From a statistical point of view, the
procedure corresponds to the calculation of a marginal
distribution in each subspace after marginalizing out
the other degrees of freedom [72]. As a final step, the
composition of the several projected spectra provides the
full-dimensional one.
We apply this idea to spectral density calculations, IðEÞ:

IðEÞ≡ 1

2πℏ

Z þ∞

−∞
hχje−iĤt=ℏjχieiEt=ℏdt: ð1Þ

An exact representation of the quantum propagator e−iĤt=ℏ

is given by Feynman’s path integral formulation, which can
be approximated by considering only the classical paths
connecting points q0 and q0 in time t (roots) and including
fluctuations up to the second order around the classical
action (Scl) of each path [73,74],

hq0je−iĤt=ℏjq0i ≈
X
roots

�j − ∂2Sclt∂q0∂q0 j
ð2πiℏÞN

�1=2
eiS

cl
t ðq0;q0Þ=ℏ

eiυπ=2
: ð2Þ

Equation (2) represents the semiclassical approximation to
the Feynman path integral [75]. The term e−iυπ=2, where υ is
the integerMaslov index, ensures the continuity of the square
root of the preexponential factor. However, the drawback of
Eq. (2) is the presence of points at which the determinant in
the preexponential factor becomes singular. Miller’s SCIVR
[76,77] overcomes this issue by replacing the sum over
classical trajectories with an integration over initial
momenta, a very powerful approach—especially when
combined with Heller’s coherent state (jp;qi) representa-
tion. Coherent states have a Gaussian coordinate-space
representationwhosewidth is given by the (usually diagonal)
Γ width matrix

hxjp;qi ¼
�
detðΓÞ
πN

�
1=4

e−ðx−qÞTðΓ=2Þðx−qÞþipT ðx−qÞ=ℏ: ð3Þ

By using Miller’s SCIVR and by either reformulating the
Feynman paths [78,79] or representing the spectral density
IðEÞ [59] in terms of the coherent states of Eq. (3), one gets to
the working formula

IðEÞ ¼ 1

2πℏ

Z þ∞

−∞
dteiEt=ℏ

1

ð2πℏÞN

×
Z Z

dq0dp0Ctðp0;q0ÞeiStðp0;q0Þ=ℏ

× hχjpt;qtihp0;q0jχi; ð4Þ
where

Ctðp0;q0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

���� ∂qt

∂q0

þ ∂pt

∂p0

− iℏΓ
∂qt

∂p0

þ i
Γℏ

∂pt

∂q0

����
s

: ð5Þ

In order to accelerate the Monte Carlo integration of
Eq. (4), it is possible to insert a time averaging filter
ð1=TÞ R T

0 dt without loss of accuracy by virtue of
Liouville’s theorem. Kaledin and Miller [80,81] worked
out the following time averaged (TA) version of Eq. (4):

IðEÞ ¼
�

1

2πℏ

�
N
ZZ

dp0dq0

1

2πℏT

×

����
Z

T

0

dtei½Stðp0;q0ÞþEtþϕt�=ℏhχjptqti
����
2

; ð6Þ

where the additional approximation ϕt ¼ phase½Ctðp0;q0Þ�
has been introduced. Equation (6) is now much easier to
converge due to its positive-definite integrand, and it has
been tested on several molecules [55,67–69,71,80], yielding
very accurate results upon evolution of about 1000 trajecto-
ries per degree of freedom. The interested reader can find
detailed derivations of the above formulas in Ref. [82]
(Chap. 10) or in Ref. [83].
To further reduce the computational overhead to just a

handful of trajectories, we have recently developed an
implementation of Eq. (6) based on two observations. First,
accurate eigenvalues can be extracted from a single
trajectory whose energy is not necessarily equal to the
exact (but unknown) eigenvalue [65]. Second, for each
spectroscopic peak, the most contributing trajectories are
those that evolve in the proximity of the vibrational peak
energy shell [55]. Based on these considerations, we
employ a reference state jχi ¼ PNstates

i¼1 jpi
eq;qi

eqi, written
as a combination of coherent states placed at the classical
phase space points ðpi

eq;qi
eqÞ. qi

eq indicates the equilibrium
configuration and pi

eq the corresponding multidimensional
momentum. We set Vðqi

eqÞ ¼ 0, and pi
eq is chosen to be

made of harmonically estimated momenta, i.e.,
ðpi

j;eqÞ2=2m ¼ ℏωjðnij þ 1=2Þ for the generic jth vibra-
tional mode. The set of ωj ’s is obtained by diagonalizing
the Hessian matrix at the equilibrium configuration. In this
way, we can approximate Eq. (6) to

IðEÞ ¼ 1

ð2πℏÞN
Re
πℏT

Xnstates
i¼1

����
Z

T

0

dt

�Xnstates
i¼1

pi
eq;qi

eqjpt;qt

�

× ei½Stðpi
eq;q

i
eqÞþEtþϕt�=ℏ

����
2

; ð7Þ

FIG. 1. Pictorial representation of the projection procedure.
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where nstates classical trajectories are evolved from the
initial conditions ðpi

eq;qi
eqÞ. This approach is called multi-

ple-coherent TA SCIVR (MC SCIVR) (also indicated as
MC TA SCIVR). MC SCIVR has been shown to be
accurate for systems of complexity up to the glycine
molecule (i.e., 24 degrees of freedom) [84].
Themain theoretical novelty presented in this Letter is that

we reformulate Eq. (6) on the basis of projected-trajectory
information. First, the N-dimensional phase space is
conveniently partitioned, i.e., ðp;qÞ≡ ðp1;q1;…; ~piþ1; ~qiþ1;
…; ~piþM; ~qiþM;…;pN;qNÞ, where we have highlighted a
generic M-dimensional subspace (M < NÞ with tilde vari-
ables ð ~p; ~qÞ (see Fig. 1). For this purpose, an analysis is
performed concerning the off-diagonal values of the Hessian
matrix averaged over a full-dimensional classical trajectory
with harmonic zero-point energy. Off-diagonal terms that are
bigger than a threshold value (ε) correspond to coupled
modes and are included in the same subspace. The threshold
choice is driven by the trade-off between calculation accu-
racy and feasibility. On one hand, the smaller the threshold
value, the smaller the number of neglected interactions and
the more accurate the calculation. On the other, the dimen-
sionality of any projected space should not exceed
20–25 degrees of freedom to permitMC-SCIVRcalculations
in that subspace. Then,we consider that each vector ormatrix
appearing in Eq. (6) can be exactly projected into each
subspace by means of a singular-value decomposition
procedure A ¼ UΣV [85], and can consequently restrict
the phase space integration to

R R
d ~p0d ~q0. The M-

dimensional coherent state becomes

h ~xj ~pt ~qti ¼
�
detð ~ΓÞ
πM

�1=4

e−ð ~x− ~qtÞTð ~Γ=2Þ ð ~x− ~qtÞþi ~pT
t ð ~x− ~qtÞ=ℏ;

ð8Þ
where ~Γ ¼ UUTΓUTU is the projected Gaussian width
matrix obtained from the singular-value decompositionmatrix
U [86]. Similarly, ~Ct is obtained by projecting its monodromy
matrix components. The remaining term of Eq. (6) to be
projected is St. While the projection of the kinetic part of
the Lagrangian can be obtained exactly, the potential is
generally not separable. In an ideal case, VSð ~qMÞ would be
the potential such that, given the initial conditions ð ~p0; ~q0Þ, the
M-dimensional trajectory coincides with the projected one. In
such an M-dimensional dynamics, the positions in the other
degrees of freedom (qNvib−M) are downgraded to parameters.
In practice, we fix these parameters at equilibrium positions
but introduce an external field λðtÞ to account for the non-
separability of the potential such that

VSð ~qMÞ ¼ Vð ~qM;q
eq
Nvib−MÞ þ λðtÞ: ð9Þ

λðtÞ is not known a priori and we adopt the following
expression, which makes Eq. (9) exact (within a constant)
in the separable potential limit

λðtÞ¼Vð ~qM;qNvib−MÞ− ½Vð ~qM;q
eq
Nvib−MÞþVð ~qeq

M;qNvib−MÞ�:
ð10Þ

Moving to applications, we have first tested the accuracy
and effectiveness of our new divide-and-conquer semi-
classical initial value representation (DC-SCIVR) approach
on three different molecular systems, for which exact
vibrational eigenenergies are available in the literature.
Water is a low dimensional but strongly coupled system.

Its global three-dimensional vibrational space can be divided
into a monodimensional one for the bending mode, plus a
bidimensional one for the two stretches. We evolved 3500
classical trajectories on a preexisting potential energy surface
[87], each one for a total of 30 000 atomic time units. The
zero-point energy estimated from the projected spectra is
4606 cm−1, to be compared to the 4631 cm−1 value of a full
dimensional semiclassical calculation, and the exact quan-
tum value of 4636 cm−1. DC SCIVR reproduces fundamen-
tals concerning the bending and the asymmetric stretch with
excellent accuracy (within 10 cm−1 of the exact quantum
results), while the symmetric stretch and the first bending
overtone aremore off the mark (40 cm−1). Overall, themean
absolute error (MAE) is 23 cm−1. Detailed comparisons can
be found in the SupplementalMaterial [83]. Results forwater
are a remarkable milestone because of the strong internal
vibrational coupling of this molecule. In fact, in higher
dimensional systems, intermode couplings are generally
weaker and DC SCIVR (being exact for separable systems)
is expected to perform better once strongly coupled modes
are confined in the same subspace.
Another known issue for SCmethods comes from chaotic

trajectories which can spoil the SC simulation and are,
therefore, usually discarded. In an application of DC
SCIVR to methane, the nine-dimensional vibrational space
has been partitioned into a six-dimensional and a three-
dimensional one, and it turns out that methane dynamics is
highly chaotic with strong quantum effects, given the light
mass of the hydrogen atoms. In fact, 95% of the 180 000

TABLE I. Vibrational frequencies of CH4. QM labels the exact
quantum eigenvalues, SCIVR refers to a full dimensional semi-
classical calculation, DC SCIVR labels frequencies obtained with
the divide-and-conquer approach here presented, and HO indicates
harmonic estimates. MAE stands for Mean Absolute Error. All
values are in cm−1.

State QM½88� SCIVR DC SCIVR HO

11 1313 1300 1300 1345
21 1535 1529 1532 1570
12 2624 2594 2606 2690
1121 2836 2825 2834 2915
31 2949 2948 2964 3036
22 3067 3048 3050 3140
41 3053 3048 3044 3157
MAE 12 11 68
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trajectories run (each one evolved for 30 000 atomic time
units) has been discarded on the basis of the monodromy
determinant conservation criterion [40,81]. Table I provides
a comparison between our DC-SCIVR estimates and exact
values by Carter et al. on the same analytical surface [88].
This test permits us to show that DC SCIVR works fairly
well, with fundamentals and overtones reliably detected and
a tiny MAE (11 cm−1).
Recently, by employing a preexisting potential energy

surface [89], Halverson and Poirier calculated a set of
quantum vibrational frequencies of benzene with their exact
quantum dynamics (EQD) method [90], which we use to
benchmark our DC-SCIVR results for this high dimensional
molecular system. For this purpose, the vibrational space of
benzene has been divided into a larger eight-dimensional
subspace plus eight bidimensional and sixmonodimensional
ones. We have evolved 1000 trajectories per degree of
freedom for a total of 30 000 atomic time units each.
Furthermore, an accurate second-order iterative approxima-
tion to the preexponential factor exp½iϕt=ℏ�, as described
in Ref. [71], has been employed to avoid a discarding of
chaotic trajectories. Results are reported in Table II and
permit us to assess DC-SCIVR accuracy in this challenging
application. Even in the case of benzene, DC SCIVR is
characterized by a small MAE value (19 cm−1). This is the
result of a largemajority of highly accurate frequencies and a
single mode with lower precision.
Finally, after having benchmarked the accuracy of our

method against exact quantum results for three molecules of
different dimensionality and complexity, we demonstrate
the applicability of DC SCIVR to an extremely high
dimensional problem by computing the power spectrum
of a fullerenelike system. C60 has 174 vibrational degrees
of freedom, a number which makes a fully quantum
mechanical calculation as well as a standard semiclassical
simulation clearly unfeasible and calls for an efficient
alternative method. We employed a preexisting force field
derived from density functional theory calculations on
graphene sheets. This force field takes into account
stretching, bending, and torsional contributions but neglects

bond-coupling terms and van der Waals interactions [91]. It
is therefore not tailored on a real fullerene molecule, but the
main intent of this final application is to show that our
method can overcome the “curse of dimensionality” even in
very challenging instances. DC SCIVR starts off with the
definition of the subspaces in which the projected spectra
must be computed. Figure 2 shows how the choice of the
threshold influences the maximum subspace dimensionality
for this system. As previously anticipated, a trade-off leads to
considering only instances within the dashed blue lines. On
the basis of Fig. 2, we have chosen a threshold value of 10−6,
which corresponds to a maximum subspace dimensionality
equal to 25. This choice has permitted us to divide the 174-
dimensional vibrational space into 90 monodimensional, 1
bidimensional, 3 three-dimensional, 2 six-dimensional, 1

TABLE II. Comparison between DC SCIVR and the available
quantum results (EQD) for benzene fundamental frequencies.
Degenerate frequencies are not replicated. Values are in cm−1.

State DC SCIVR EQD½90� State DC SCIVR EQD½90�

11 388 399.4554 101 1024 1040.98
21 610 611.4227 111 1157 1147.751
31 732 666.9294 121 1157 1180.374
41 706 710.7318 131 1295 1315.612
51 908 868.9106 141 1357 1352.563
61 990 964.0127 151 1460 1496.231
71 996 985.8294 161 1606 1614.455
81 996 997.6235
91 1018 1015.64 MAE 19 0 1 × 10–6 2 × 10–6 3 × 10–6 4 × 10–6 5 × 10–6 6 × 10–6
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FIG. 2. Maximum subspace dimensionality vs threshold ε for
the C60 calculation. The red curve fits the overall behavior, while
the dashed blue lines define the range of desired maximum
subspace dimensionality.
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FIG. 3. DC-SCIVR (black line) and classical (red line) spectra
for one of the subspaces employed in the C60 calculation.
Harmonic frequencies are reported in dashed blue lines. Labels
are set according to Table III.
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eight-dimensional, two 14-dimensional, and one 25-
dimensional subspaces. To calculate the projected spectra,
we ran 175 classical trajectories, each one evolved for 50 000
atomic time units. We employed a reference state jχi selected
in agreement with the previously described MC-SCIVR
recipe and, as in the case of benzene, a second-order iterative
approximation to the preexponential factor [71]. Figure 3
reports, as an example, theDC-SCIVR spectrumof one of the
subspaces.We have also simulated and plotted a transient full
dimensional classical spectrum on the basis of the same
trajectories employed for the semiclassical calculations. To
better compare the two different simulations, we have shifted
the DC-SCIVR spectrum in such a way that the zero-point
energy is set to zero. From the comparison, we note that the
DC-SCIVR and classical estimates are close to each other.
However, DC SCIVR is able to increase the level of knowl-
edge by also detecting quantum overtones. Results up to an
energy of about 1600 cm−1 relative to the zero-point energy
can be found in Table III.
A concern that may arise about the approach regards its

efficiency when dealing with lower-symmetry molecules.
Thus, to demonstrate that reduced symmetry is not a
hindrance to our calculations, we have investigated an ad hoc
constructed fullerene isotope model for which symmetry has
been broken. Substitution of three appropriate carbon nuclei
with nuclei having the same mass as gold ones removed the
degeneracies of thevibrational levels. Thismodelwas built to
preserve the original nuclear and electronic charges so that
the force fieldwould not need to bemodified.The result of the
isotopic substitution is that previously degenerate frequen-
cies are split already at the harmonic level. Even if such
splittings are mostly within semiclassical accuracy (i.e.,
25–30 cm−1), DC-SCIVR results are resolved enough
to detect a multiple-peak feature in the isotopic model
opposite to the original case characterized by a lonely
(degenerate) peak. A relevant example of this is reported
in the Supplemental Material [83].
In summary, we have presented a new approach to the

calculation of theoretical vibrational spectra of high

dimensional molecular systems. The method has been
tested for the small and highly intermode coupled water
molecule, the highly chaotic methane molecule, and the
high dimensional benzene molecule yielding, in all cases,
accurate estimates if compared to the available exact
quantum results. Then, it has been demonstrated that
application to a sizable system made of 174 degrees of
freedom yields an accurate quantum estimate of funda-
mental and overtone frequencies, thus opening up the
possibility of quantum investigating the spectroscopy of
highly dimensional systems.
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