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Irreversibility transition of 
colloidal polycrystals under cyclic 
deformation
Pritam Kumar Jana1, Mikko J. Alava1 & Stefano Zapperi1,2,3,4

Cyclically loaded disordered particle systems, such as granular packings and amorphous media, display 
a non-equilibrium phase transition towards irreversibility. Here, we investigate numerically the cyclic 
deformation of a colloidal polycrystal with impurities and reveal a transition to irreversible behavior 
driven by the displacement of dislocations. At the phase transition we observe enhanced particle 
diffusion, system size effects and broadly distributed strain bursts. In addition to provide an analogy 
between the deformation of amorphous and polycrystalline materials, our results allow to reinterpret 
Zener pinning of grain boundaries as a way to prevent the onset of irreversible crystal ordering.

Periodically driven disordered granular media and colloidal suspensions display an intriguing transition from 
reversible to irreversible deformation as the amplitude of the loading overcomes a threshold value1–8. A very 
similar behavior is also observed in simulations of amorphous solids under cyclic shear9–11, suggesting that it 
might be a general feature of slowly relaxing disordered systems. These results are interesting not only because 
they help to clarify how irreversible behavior arise from reversible microscopic dynamics1 but also because they 
shed light on the nature of yielding in amorphous media12. In the light of these results, we can interpret the onset 
of plasticity as a phase transition from a reversible elastic dynamics to an irreversible plastic deformation. The 
relation between yielding in crystals, where irreversibility is associated to the motion of defects, and glasses is still 
a subject of current investigation.

Colloidal suspensions are becoming a widely used tool to study experimentally the properties of matter since 
the change of scale from the atomistic to the colloidal ones allows to directly observe phenomena that would 
otherwise not be within experimental reach. Depending on the experimental conditions colloidal particles can 
be assembled into desired states, from perfectly ordered crystals13 to disordered amorphous glasses14. In between 
these two extremes lie colloidal polycrystals, where ordered crystalline regions are separated by extended grain 
boundaries formed by dislocation arrays15–18. The application of a cyclic shear to colloidal polycrystals allows to 
follow at the same time the dynamics of individual particles (“atoms”) and the large-scale response of the poly-
crystalline texture15–18.

Here, we investigate the response of colloidal polycrystals to cyclic loading by molecular dynamics simula-
tions and explore the coupling between dislocations, grain boundaries and the dynamics of individual colloidal 
particles. The system we consider is similar to the experimental setup studied in ref. 18, where a colloidal crystal 
is doped with larger colloidal particles whose concentration is used to control the grain size. Our simulations 
show that for large enough strain amplitudes grain boundaries eventually disappear and the system orders, while 
at small amplitude the system settles after an initial transient to a state very close to the original metastable 
configuration and reversibility is maintained. Thus, there is an effective phase transition controlled by the strain 
amplitude between asymptotic steady-states. The dynamics of this transition is found to be of a transient char-
acter, and leads to the presence of crackling noise in the system response. We also show that higher impurity 
concentration leads to a larger yield strain. The depinning of grain boundaries or cross-over to irreversibility 
is a non-equilibrium version of the Zener pinning in grain boundary coarsening in metals in the presence of 
impurities19,20.
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Figure 1. Grain orientations and boundaries before and after the applied strain. Top and bottom panels 
correspond to the configurations with local orientation θ and nearest neighbours Ncoord, respectively. An initial 
configuration is depicted in the first column. The other configurations are (after N =  600 cycles) for γ0 =  0.031, 
γ0 =  0.056, and for γ0 =  0.069, respectively.

Figure 2. Discliantion density. (a) Shows the time evaluation of disclination density ρDis and (b) displays 
ρDis as a function of γ0 for different values impurity density ρl. Dotted lines exhibit the steady state values of 
disclination density. (c) ρDis as a function of strain amplitude for different values of system sizes keeping ρl fixed 
at 0.5%.
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Results and Discussion
In 2D triangular colloidal crystals, five coordinated particle, known as positively charged disclinations (+ 1), 
and seven coordinated particles, corresponding to negatively charged disclinations (− 1), exist as defects. The 
likelihood of an individual disclination occurring is low. However, the combination of five and seven coordinated 
particles with a small additional energy creates edge dislocations. A regular array of dislocations then creates a 
grain boundary separating differently oriented crystals, as shown in Fig. 1. The top panel in Fig. 1 corresponds to 
the local crystal orientation, θ, and the bottom panel represents the nearest neighbour characteristics, Ncoord, of 
each particle. A careful study shows that arrays of dislocations are mainly arranged along the grain boundaries 
with high misorientations, which is consistent with Frank condition, n ∝  sin dθ, where n is the line density along 
the grain boundary with the corresponding misorientaion dθ21,22.

Once the polycrystalline samples are prepared, they undergo cyclic deformation with different values of 
strain amplitude γ0. For low values of γ0, the grain boundary network recovers its initial configuration after 
each cycle (see Fig. 1 second column and Video S1 in Supplementary information), whereas for higher values 
of γ0 all dislocations annihilate from the initial polycrystalline samples (see Fig. 1 last column and Video S3 in 
Supplementary information). For intermediate values of γ0, however, a memory of the initial grain boundary 
structure can still be observed after cycling (see Fig. 1 third column and Video S2 in Supplementary informa-
tion). To quantify the response to cyclic shear, we measure the time evaluation of the disclination density ρDis, 
defined as the number density of particles having either 5 (+ 1 disclination) or 7 (− 1 disclination) neighbours, 
for different values of γ0 as shown in Fig. 2(a). For low values of γ0, ρDis remains unchanged which is consistent 
with the previous discussions. However, when γ0 >  0.044, ρdis rapidly decreases and reaches a steady state value. 
When the impurity concentration increases, a large value of strain amplitude is required to reach the asymptotic 
disclination density, which is shown in Fig. 2(b). It could be understood as follows: from Fig. 2(b), disclination 
density increases by 66.7% when impurity density is increased by 200% that explains the increase of impurity 

Figure 3. Dynamical heterogeneity. (a) Mean square displacement, 〈 Δ r2(N)〉 , as a function of number of 
cycles, N, for different values of strain amplitude γ0. (b) Diffusivity, ∆d r N

dN
( )2

, are plotted as a function of γ0 for 
three different system sizes. Dotted lines correspond to γ c

0  values. (c) Probability distribution of the particle 
displacements (D) measured at the end of 600 cycles. (d) Shows a collapse of the plots shown in (c), into a single 
master curve. The inset shows the scaling of the 〈 D〉  with γ0.
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density along the grain boundaries. Segregation of impurities in the grain boundaries leads to lowering of total 
free energy23,24 and therefore the increase of yield stress is observed. The asymptotic disclination density ρDis cor-
responds to the disclinations created by the presence of larger particles and can be estimated as cρl, where c ≈  2.5 
and ρl is the density of the larger particles. We notice that the final disclination density after 600 cycles depends on 
the sample size and the transition becomes sharper when L is larger. See Fig. 2(c).

In order to understand the behavior of the dynamics at the particle level and the role of reversibility and irre-
versibility, we calculate the mean square displacements (MSDs), Δ r2, with respect to the initial configurations 
averaged over 100 samples. Figure 3(a) shows that for small values of γ0, Δ r2 saturates after initial transient, 
whereas for higher values of γ0, the particle displacements become diffusive. That is, for large enough values of γ0, 
MSD increases in a linear way, implying irreversible single particle behavior. When the system comes to the 
related steady state, one can extract the diffusivity, ∆d r N

dN
( )2

, which is plotted in Fig. 3(b) for different system 
sizes. When γ0 ⩽  0.044, the system remains in a quiescent state, however for larger values of γ0, diffusivity 
increases sharply. In short, both the quantities indicate that the colloidal polycrystals respond differently depend-
ing on the amplitude of γ0.

In order to measure the dynamical heterogeneity in the system, we compute the probability distribution func-
tion (PDF) of the particle displacement magnitude (D) after N =  600 cycles with respect to the initial configura-
tions for different values of γ0 (see Fig. 3(c)). Histograms for different values of γ0 are collapsed by rescaling D 
with average displacement 〈 D〉 . The first part of the collapsed data in Fig. 3(d) scales as α~P D D D D( / ) ( / )  
and α =  0.96, i. e. the exponent is very close to unity. The tail part exhibits an exponential decay when γ0 >  0.0625 
and for smaller values decays very rapidly. It is interesting to note that both for small and big γ0-amplitudes the 
histograms are in any case quite similar and that Fig. 3(c) connects the reversibility-irreversibility change to the 
largest typical values of D found: when these start to be of the order of unity, reversibility is lost. This is seen also 
by looking at the Inset of Fig. 3(d). The single-particle behavior averaged and measured by 〈 D〉  shows no direct 
signs of collective behavior, but as the displacement magnitude grows - and reversibility is destroyed - collective 
effects and restructuring starts.

In order to understand the plastic deformation at the particle level, we compute the local shear strain, ηi
mises, 

for each atom at the end of each cycle25. To this end, we consider the initial configurations as references and find 

Figure 4. Plastic deformation. (a) Average shear strain 〈 ηmises〉  is shown as a function of N for different values 
of strain amplitude γ0. (b) Probability distribution of fmises for different values of strain amplitude γ0. (c) Shear 
stress σxy is shown as a function of applied strain γ. (d) Area of the hysteresis loop Ahyst obtained from (c) is 
plotted against strain amplitude. Inset shows the log-lin plot for the clarity.
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the local transformation matrix Ji that best maps → ∀ ∈{ } { } j Pd d , ,ji ji i
0 0  where d’s are vector separations (row 

vectors) between atom j and i (superscript 0 means the reference configuration). Here, j is one of atom i’s nearest 
neighbours, and Pi

0 is the total number of nearest neighbours of atom i, at the reference configurations. Ji is deter-
mined by minimising ∑ | − | →∈ d J d Jj N ji i ji i

0 2
i
0 . For each Ji, the local Lagrangian strain matrix is computed as 

η = −J J I( )i i i
T1

2
. Then local shear invariant is calculated for each atom i as follows

η η
η η

= +
−( )

2
,

(1)i
mises

xy
xx yy2

2

and average is taken over all atoms present in the system.
First, we have plotted 〈 ηmises〉  versus N as shown in Fig. 4(a) which has qualitatively similar behavior as 2(a). 

The strain shows large, transient fluctuations close to the transition, as plotted in Fig. 5(a) where we plot the strain 
rate (d〈 ηmises〉 )/(dN), denoted as fmises, as a function of number of cycles for different values of γ0. Note how the 
strain signal evolves with N for the two larger amplitudes. This crackling noise is the signature of the 
non-equilibrium transition of grain boundary depinning which can be clearly seen in Videos S2 and S3 in 
Supplementary Information. We then compute the strain rate distribution and find that it exhibits a scaling as 

α−~P f f( )mises mises with α =  1.17 for γ0 =  0.063 (see Fig. 4(b)). However, with decreasing the strain amplitude 
towards γ0 =  0.031, the exponent α increases. This is because for lower values of γ0, large events are less likely as 
shown in fmises(N) vs N plot. To quantify the energy dissipation during the plastic events, hysteresis loop area is 
computed from the shear stress against applied strain as shown in Fig. 4(c) and plotted as a function of strain 

Figure 5. Avalanache signal and sizes. Left panel: avalanche signal for three values of γ0. Right panel: 
avalanche size (S) distribution for different values of γ0.

Figure 6. Avalanche size for different system sizes. Avalanche size distribution for different system sizes for 
strain amplitude γ0 =  0.063 in case of system sizes L =  50 and L =  100 and for γ0 =  0.05 when the system size is 
L =  150.
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amplitude (see Fig. 4(d)) where transition is attributed by observed energy dissipation. In a similar study Laurson 
et al.26 has characterized two phases corresponding to the jammed and the moving state by computing hysteresis 
loop area when the crystalline solids with dislocations are stressed cyclically. It has been explained in the light of 
collective dislocation dynamics.

To quantify the statistics of crackling noise in colloidal crystal, we compute the distribution of avalanche sizes 
which is defined as the sequence of values of fmises(N) exceeding some threshold value fmises

th  to subtract an uncor-
related back ground. If an avalanche starts at N =  0 and ends at N =  n, the size of an avalanche of duration n is 
defined as

∫= − .S n f N f dn( ) [ ( ) ] (2)
n

mises mises
th

0

Distributions of avalanche sizes are reported in Fig. 5(b). As expected in general for crackling noise, the distri-
bution crucially depends on the strain amplitude. For higher values of γ0, the avalanche distribution decays as a 
power law, P(S) ~ S−τ, where τ =  1.57 and the exponent τ increases as we move towards the lower values of strain 
amplitudes. The clearest power law is observed at the critical point γ0 =  0.063 where the cutoff increases with the 
system size L as shown in Fig. 6. These distributions result from an integration of the bursty dynamics (Fig. 5) 
which is of transient character. Eventually after an amplitude-dependent number of cycles the noise develops a 

Figure 7. Dislocation movement. Top panel: dislocation indicated by yellow circle slides through the crystal 
until it meets another defect. Middle panel: A signature of sliding motion is seen in ηmises calculations. Below 
panel: Displacement map corresponding to the sliding motion. Arrow indicates direction and magnitude of the 
displacement. For more clearance, a color legend of the magnitude has also been presented.
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stationary character. In passing notes, we also observe sliding of dislocations and rotation of grains which induce 
the plastic deformations in polycrystalline materials as described in ref. 27. See Fig. 7.

Summary
In conclusion, we have simulated a colloidal polycrystal under cyclic shear and observed a transition from revers-
ible deformation in which the grain structure is preserved after each cycle and an irreversible phase leading to 
crystal ordering and the disappearance of grain boundaries and dislocations. The transition displays all the typical 
signs of other non-equilibrium phase transitions such as finite size effects and power law distributed crackling 
noise. Our results indicate that colloidal polycrystals under oscillatory shear behave similarly as disordered par-
ticle assemblies and colloidal glasses, but the relevant degrees of freedom are here the topological defects instead 
of the particles themselves. The behavior we uncover has direct application to Zener pinning where inclusions 
are used to stop grain growth in a polycrystal19. The critical strain amplitude for irreversibility should correspond 
to the depinning stress for grain boundary growth20. Our results should be directly testable in colloidal particle 
experiments15–18.

Methods
We consider a two-dimensional system with two types of particles, large (l) and small (s) interacting via a 
pair-wise Lennard-Jones potential

ε
σ σ

=












 −













−αβ αβ

αβ αβ
αβV r

r r
C( ) 4 ,

(3)

12 6

where r is the distance between a particle of type α and one of type β(α, β =  l, s). The functions Vαβ(r) =  0, when 
> αβr rc  a cutoff distance, which is defined by 3.0σαβ and the constant Cαβ ensures the continuity of Vαβ at = αβr rc . 

The parameters of the potential are chosen as follows: σ ≡  σs =  1.0, σl =  1.4σ and σls =  1.2σ are the particle diam-
eters and ε ≡ εll =  1.0, εss =  0.5ε, εls =  1.5ε. rc =  3.0σ are the energy parameters. In what follows, the lengths are 
normalized by σ. The typical numbers of the particles used in the system are Nl =  50 and Ns =  10000, with m =  1 
for both with 100 samples for ensemble averaging over the initial conditions. The typical length of the 2D simula-
tion box is L =  100. The unit of time is set τ σ ε= m/ . The equations of motion are solved numerically using the 
time-reversible measure-preserving Verlet and rRESPA integration scheme with a time step Δ t = 0.005τ. To con-
trol the temperature the system is connected with Nose-Hoover thermostat and Lees-Edward boundary condi-
tions are used to apply shear.

A polycrystalline structure, as shown in the top left of Fig. 1 (color shows the orientation of the crystals), is 
prepared as follows: the system is heated at T =  2.0ε/kB for the duration of 255 τ. Temperature is decreased to 
0.01 ε/kB by a span of 150τ and the system is equilibrated for a time 5 ×  103 τ. Then, the system undergoes cyclic 
deformation along the x-direction with the following way: the system is sheared for 50 τ after which a similar 
reverse step is applied. The cycle is started and finished by a relaxation period of duration of 5 τ. A full cycle thus 
lasts 110 τ and the data presented below considers up to N =  600 cycles. To study the system size dependence, we 
consider systems of size L =  50 and L =  150 in addition to L =  100. To obtain a same strain amplitude for different 
sample sizes, the duration of shear phases are changed from 50 τ to 35.36 τ and 61.24 τ for L =  50 and L =  150, 
respectively. However, the relaxation time remains same for all the system sizes. Therefore, for L =  50 and L =  150, 
a full cycle consists of 80.72 τ and 132.48 τ, respectively. Molecular dynamics simulations using the above men-
tioned prescriptions are performed with LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator: 
a free, open source Molecular Dynamics Simulators)28.
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