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Purpose: To compare contrast material enhancement of glioblastoma 
multiforme (GBM) with intraoperative contrast-enhanced ul-
trasonography (US) versus that with preoperative gadolini-
um-enhanced T1-weighted magnetic resonance (MR) imaging 
by using real-time fusion imaging.

Materials and 
Methods:

Ten patients with GBM were retrospectively identified by us-
ing routinely collected, anonymized data. Navigated contrast-
enhanced US was performed after intravenous administration 
of contrast material before tumor resection. All patients under-
went tumor excision with navigated intraoperative US guidance 
with use of fusion imaging between real-time intraoperative US 
and preoperative MR imaging. With use of fusion imaging, glio-
blastoma contrast enhancement at contrast-enhanced US (re-
garding location, morphologic features, margins, dimensions, 
and pattern) was compared with that at gadolinium-enhanced 
T1-weighted MR imaging.

Results: Fusion imaging for virtual navigation enabled matching of real-
time contrast-enhanced US scans to corresponding coplanar 
preoperative gadolinium-enhanced T1-weighted MR images in 
all cases, with a positional discrepancy of less than 2 mm. 
Contrast enhancement of gadolinium-enhanced T1-weighted 
MR imaging and contrast-enhanced US was superimposable 
in all cases with regard to location, margins, dimensions, and 
morphologic features. The qualitative analysis of contrast 
enhancement pattern demonstrated a similar distribution in 
contrast-enhanced US and gadolinium-enhanced T1-weighted 
MR imaging in nine patients: Seven lesions showed peripheral 
inhomogeneous ring enhancement, and two lesions showed 
a prevalent nodular pattern. In one patient, the contrast en-
hancement pattern differed between the two modalities: Con-
trast-enhanced US showed enhancement of the entire bulk of 
the tumor, whereas gadolinium-enhanced T1-weighted MR im-
aging demonstrated peripheral contrast enhancement.

Conclusion: Glioblastoma contrast enhancement with contrast-enhanced 
US is superimposable on that provided with preoperative gad-
olinium-enhanced T1-weighted MR imaging regarding location, 
margins, morphologic features, and dimensions, with a similar 
enhancement pattern in most cases. Thus, contrast-enhanced 
US is of potential use in the surgical management of GBM.
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morphologic features, margins, dimen-
sions, and pattern) obtained with intra-
operative contrast-enhanced US versus 
that obtained with preoperative gadolin-
ium-enhanced T1-weighted MR imaging.

Materials and Methods

Our institutional review board ap-
proved this retrospective study, and the 
requirement to obtain informed con-
sent was waived.

We retrospectively evaluated intra-
operative data obtained from 98 pa-
tients with histologically proved GBM 
who underwent surgery in the first 
neurosurgical division of our institution 
from March 2015 to December 2015. Of 
these patients, we included only the 10 
patients in whom intraoperative fusion 
imaging between contrast-enhanced US 
and preoperative gadolinium-enhanced 
T1-weighted MR imaging had been per-
formed. Fusion imaging was performed 
by two neurosurgeons with more than 
7 years of experience in intraoperative 
US (F.D., F.P.). There were seven men 
and three women, with a mean age of 
58 years (range, 49–72 years).

All lesions were supratentorial uni-
lateral; six were left-sided and four 
were right-sided (Table).

Preoperative MR Imaging
Preoperative MR imaging for neuronavi-
gation was performed 1–3 days before 

account brain shift and modifications 
and allow updating of the neuronaviga-
tion system (10,11). The major limita-
tions of these imaging techniques are 
the limited availability, high costs, and 
prolongation of total operative time.

A more practical and cost-efficient 
tool for planning and guiding surgeries is 
intraoperative US (7,12–15). It enables 
acquisition of real-time information dur-
ing and after tumor resection but suffers 
from several artifacts and lack of training 
by most neurosurgeons. However, when 
coupled with navigation systems, orienta-
tion is improved and the brain shift can 
be compensated for, with improved ori-
entation and image interpretation (7,12–
16). Some investigators have shown that 
US applied to neuronavigation systems 
improves patient survival in the resec-
tion of GBM (13,17). With fusion imag-
ing for virtual navigation, preoperative 
MR images and real-time intraoperative 
US scans can be displayed in a coplanar 
fashion, leading to the direct comparison 
of the two imaging modalities in terms 
of dimension, with a continuous updated 
scaling (7,15,18–20).

However, intraoperative US has lim-
itations, particularly in the assessment 
of the tumor border (21–24). Contrast-
enhanced US can be used to highlight 
neoplastic lesions and tumor vasculari-
zation, permitting the investigation of 
dynamic vascular phases and the analysis 
of tissue perfusion (15,19). Contrast 
material–enhanced US is an established 
study method for extracranial solid le-
sions that only recently has been applied 
to brain tumors (15,19,20,25–28). Our 
group has shown that contrast-enhanced 
US in GBM allows highlighting of the le-
sions compared with B-mode imaging, 
can help characterize cerebral glioma, 
and depicts tumor remnants during re-
moval of GBM (15,19,20).

The aim of the current study was to 
use real-time fusion imaging to compare 
GBM contrast enhancement (location, 
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Advance in Knowledge

nn In a series of 10 patients, fusion 
imaging of glioblastoma contrast 
enhancement with gadolinium-
enhanced T1-weighted MR im-
aging and contrast-enhanced US 
during surgery allows for super-
imposed images with respect to 
location, margins, dimensions, 
and morphologic features.

Implication for Patient Care

nn The information obtained with 
contrast-enhanced US is of 
potential utility in the surgical 
management of GBM.

G lioblastoma multiforme (GBM) is 
the most aggressive and frequent 
subtype of astrocytoma, represent-

ing 15.6% of all primary nervous system 
tumors (1). The treatment protocol is 
based on surgical resection followed by 
radiation therapy and chemotherapy 
(2). Surgery, in particular the extent of 
resection, has a direct influence on the 
prognosis of patients with GBM. Thus, 
the actual goal of surgery is to resect the 
entire enhancing tumor seen at preoper-
ative gadolinium-enhanced T1-weighted 
magnetic resonance (MR) imaging (3–
5). In this effort, intraoperative imaging 
is pivotal and the alternatives various: 
neuronavigation, fluorescence-enhanced 
imaging, and proper intraoperative im-
aging (MR imaging, computed tomogra-
phy [CT], and ultrasonography [US]).

Intraoperative neuronavigation is 
based on preoperative gadolinium-en-
hanced T1-weighted MR imaging and 
is accurate in planning the craniotomy 
and during the initial stages of surgery. 
On the other hand, after bone removal, 
as surgery progresses, brain shift and 
brain deformation take place, making 
the information from neuronavigation 
unreliable (6–8).

Fluorescence-guided surgery repre-
sents a different approach. It is based 
on direct fluorescent dyes (fluorescein) 
or dyes that must be metabolized by 
tumor cells (5-aminolevulinic acid) (9). 
In both cases, the principal drawback 
is the need to expose the surface of 
the tumor in order to evaluate the lo-
cation of the dye; thus, this technique 
is limited in assessments of the deep 
margins of the tumor.

Another solution is the use of intra-
operative MR imaging, CT, or US (10–
14). The first two modalities take into 
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started to study the contrast material 
kinetics in the lesion from the arrival 
in major vessels to the washout; usually 
the cine clip was registered for at least 
100 seconds (range, 100–300 seconds), 
enabling study of the lesion on both the 
main axis and the entire volume, along 
with whole vascular phases.

Comparison between Preoperative 
Gadolinium-enhanced T1-weighted MR 
Imaging and Intraoperative Contrast-
enhanced US
The offline comparative analysis was 
based on the fusion imaging feature of 
the virtual navigation software, which 
allows display of coplanar tomographic 
images of intraoperative contrast-en-
hanced US and preoperative gadolini-
um-enhanced T1-weighted MR imaging; 
with use of the overlap function, it was 
possible to directly compare the two 
modalities.

The offline comparison between fea-
tures at gadolinium-enhanced T1-weight-
ed MR imaging and contrast-enhanced 
US was retrospectively performed after 
surgery by the neurosurgeon (F.P.), who 
performed the examination, and a neu-
roradiologist (V.V.), both of whom had 
more than 5 years of experience in US 
and contrast-enhanced US interpreta-
tion, in consensus.

For all the lesions, we qualitatively 
compared the contrast enhancement 
seen with US versus that seen with 

cm), together with the corresponding 
coplanar MR images, with the possibil-
ity to merge the modalities by means 
of superimposition (Fig E1 [online]). A 
3–11-MHz linear probe (LA 332; Esaote, 
Napoli, Italy) at low-power mechanical 
index insonation was used for contrast-
enhanced US (15,19,20).

For the contrast material, we used 
SonoVue (Bracco, Milan, Italy), which 
consists of sulfur hexafluoride stabilized 
microbubbles. Contrast-enhanced US 
is based on a specific algorithm (CnTI 
algorithm; Esaote) that analyzes the 
total echo signal, representing only the 
harmonic signal from contrast material 
resonance (15,19,20).

Intraoperative Contrast-enhanced US 
After bone flap removal but before 
opening of the dura, the probe was 
draped in a surgical sterile transparent 
plastic sheath with some coupling gel 
and positioned over the dura. Contrast-
enhanced US was preceded by standard 
B-mode scanning in two orthogonal 
planes to identify principal landmarks, 
the lesion, and neighboring structures 
and to set the US focus just below the 
lesion (15,18–20). Next, the insonation 
mechanical index was set to low power 
and a single 2.4-mL bolus of contrast 
material (5 mg/mL) was injected, fol-
lowed by a 10-mL flush of saline solu-
tion for each scan. Synchronously with 
injection, a timer and cine clip were 

surgery with a 1.5-T MR unit (Achieva; 
Philips, Amsterdam, the Netherlands). 
Patients underwent imaging in the supine 
position. The standard axial postcontrast 
volumetric T1-weighted sequence (fast 
field echo; repetition time msec/echo 
time msec, 7.3/3.3; matrix, 256 3 256; 
isotropic voxel; flip angle, 8°; section 
thickness, 1 mm) extended from the 
foramen magnum to vertex, including 
the nose anteriorly, and was performed 
after intravenous injection of contrast 
material (0.2 mL/kg; Magnevist; Bayer, 
Leverkusen, Germany).

US Examination
We used a MyLab Twice US machine 
(Esaote, Florence, Italy) equipped with 
software for fusion imaging (Med-
Com, Darmstadt, Germany) based on 
an electromagnetic tracking system 
(7,15,19,20). The system permits regis-
tration of the position of the US probe in 
the preoperative MR imaging data set, 
allowing the fusion of contrast-enhanced 
US and/or B-mode images to preoper-
ative gadolinium-enhanced T1-weighted 
MR images. The probe is registered to 
the navigation system before each sur-
gical procedure by using an electromag-
netic tracking system by means of sur-
face matching registration with external 
landmarks (7) that have previously been 
located in a preoperative MR imaging 
data set. The device shows the real-time 
US images (section thickness, 0.245 

Overview of Patient Population

Patient No./Age  
(y)/Sex

Location at Contrast- 
enhanced US and  
MR Imaging

Margins at Contrast- 
enhanced US and  
MR Imaging

Size at MR  
Imaging (mm)

Tumor Size at  
Contrast-enhanced  
US (mm)

Enhancement  
Pattern at MR  
Imaging

Enhancement  
Pattern at Contrast-
enhanced US

1/74/F Left occipitotemporal Defined 40 3 29 40 3 30 Nodular Nodular
2/55/M Right frontoparietal Defined 42 3 32 40 3 30 Ring Ring 
3/59/M Right frontal Defined 25 3 28 25 3 28 Ring Ring
4/42/F Left frontal Blurred 20 3 30 20 3 30 Nodular Nodular
5/49/F Left frontal Defined 63 3 54 63 3 54 Ring/nodular Ring/nodular
6/57/M Right fronto-insular Defined 24 3 14 24 3 14 Ring Ring
7/62/M Right temporal Blurred 61 3 36 61 3 36 Ring Ring
8/57/M Left frontal Defined 33 3 29 33 3 29 Ring Ring
9/70/F Left parietal Blurred 43 3 31 43 3 31 Ring Ring
10/65/M Left temporal posterior Blurred 35 3 23 35 3 23 Ring/nodular Peripheral/nodular

 



4	 radiology.rsna.org  n  Radiology: Volume 000: Number 0—   2017

TECHNICAL DEVELOPMENTS: Contrast-enhanced MR Imaging versus Contrast-enhanced US for Glioblastoma	 Prada et al

areas (Figs 3, E3 [online]). All lesions 
showed poorly defined margins.

Compared with the normal brain 
tissue, all GBM lesions strongly en-
hanced (Figs 1–3 and E1–E3 [online]), 
enabling clear differentiation between 
the surrounding brain parenchyma and 
the tumor. The mean maximum lesion 
diameter was 40 mm (range, 24–63 
mm) (Table). Contrast enhancement ki-
netics were the same in all GBM lesions 
(10 of 10 lesions [100%]), demonstrat-
ing a rapid arterial wash-in and a rapid 
venous washout (Fig 3). In the arterial 
phase (2–3 seconds), chaotic transit of 
microbubbles within the lesion was ob-
served, and peak enhancement was seen 
at 5 seconds. Transit time at contrast-
enhanced US was very fast, with the ve-
nous phase at 15 seconds in all cases 
(Fig 3).

The major arterial supply was 
clearly visible, as was the venous drain-
age system, toward the periventricular 
zone (Figs E1, E2 [online]). All lesions 

of tumor shapes and many concavities 
along the tumor outlines, regular and 
well-circumscribed edges, and central 
hypointensity encompassed by a hyper-
intense rim (29) (Figs 1–3 and E1–E3 
[online]). The mean maximum lesion 
diameter was 40 mm (range, 24–63 
mm) (Table).

Eight of the 10 lesions (80%) had 
peripheral irregular ring enhancement 
along the apparent borders of the mass. 
The margins of the ring looked wavy, 
and its inner aspect was shaggy and 
irregular. The remaining two lesions 
(20%) had prevalent nodular enhance-
ment with a central necrotic compo-
nent (Table).

US Analysis
B-mode US depicted the lesion in all 
cases (100%). Compared with normal 
brain tissue, all GBM lesions appeared 
hyperechoic and heterogeneous be-
cause of multiple well-defined nodular 
components and cystic and/or necrotic 

gadolinium-enhanced T1-weighted MR 
imaging (Figs 1, 2, E1–E3 [online]) by 
using the overlap function of fusion im-
aging. We checked for correspondence 
of both modalities regarding location 
(position of the tumor with respect 
to that seen with the other modality), 
morphologic features (shape of the 
tumor), margins (blurred or defined), 
dimensions (size on largest diameters), 
pattern (ring or nodular appearance), 
and tumor necrotic area.

In addition, we measured the larg-
est diameters of the tumors in the axial 
plane at MR imaging and at contrast-
enhanced US, but only for descriptive 
purposes.

Results

MR Imaging Evaluation
Features on postcontrast T1-weight-

ed-weighted images were distinctive for 
GBM in all patients: high irregularity 

Figure 1

Figure 1:  Navigation contrast-enhanced orthogonal US scans of left frontal GBM in 49-year-old woman. Top row, sagittal contrast-enhanced 
US scan (left) and corresponding coplanar preoperative MR image (right). Bottom row, coronal contrast-enhanced US scan (left) and corre-
sponding coplanar preoperative MR image (right).
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areas appeared larger with contrast-
enhanced US.

Qualitative analysis of contrast 
enhancement pattern demonstrated 
a similar distribution in contrast-en-
hanced US and gadolinium-enhanced 
T1-weighted MR imaging in nine pa-
tients: Seven lesions showed peripheral 
inhomogeneous ring enhancement, and 
two lesions showed a prevalent nodu-
lar pattern. In one patient, the contrast 
enhancement pattern differed between 
the two modalities: Contrast-enhanced 
US showed enhancement of the entire 
bulk of the tumor, whereas gadolini-
um-enhanced T1-weighted MR imag-
ing demonstrated peripheral contrast 
enhancement (Fig 2). In this case, the 
surgeon found hypervascularized GBM 
with massive bleeding that was unex-
pected on the basis of preoperative 
gadolinium-enhanced T1-weighted MR 
imaging.

discrepancy of less than 2 mm. The 
navigation system allowed a dynamic 
evaluation of the lesions with the US 
probe along different planes, with 
maintenance of the correspondence 
between images from both modalities 
in all cases. The location, morphologic 
features, margins, and dimensions of 
the lesions were superimposable in 
all cases, as shown at qualitative vi-
sual comparison by using the overlap 
function. The comparison of contrast-
enhanced US with MR images showed 
the same lesion size for eight of the 10 
lesions (80%), whereas for two of the 
10 cases (20%), the size discrepancy 
was 1 and 2 mm, respectively (pa-
tients 1 and 2, Table). In particular, 
the margins of the lesions, evaluated 
on both major axes with both modal-
ities, were similar with gadolinium-
enhanced MR imaging and contrast-
enhanced US, whereas tumor necrotic 

had an irregular and inhomogeneous 
enhancement pattern, two lesions 
demonstrated a nodular high-contrast 
dense pattern, and seven lesions dem-
onstrated a ringlike enhancement sur-
rounding a hypoperfused necrotic or 
nonperfused cystic area (Figs 1, 3, 
E1–E3 [online]). One lesion showed 
mixed internal nodular and peripheral 
enhancement (Fig 2). Many intratumor-
al vessels were observed. All lesions 
showed a rapid refilling (around 3–4 
seconds) after rapid sonication at high 
mechanical index sonication.

Comparison between Preoperative 
Gadolinium-enhanced T1-weighted MR 
Imaging and Intraoperative Contrast-
enhanced US
In all cases, the fusion imaging 
system showed images from the two 
imaging modalities simultaneously, 
with correct scaling and a positional 

Figure 2

Figure 2:  Screenshot of navigation contrast-enhanced US scan of left temporal GBM in 65-year-old man. Top row, contrast-enhanced US 
scan (left) and corresponding coplanar preoperative MR image (right). Oval indicates area with different enhancement on contrast-enhanced US 
scan and preoperative MR image. Bottom row, four reconstructions of preoperative MR images. Contrast-enhanced US scan demonstrates more 
intense contrast enhancement compared with gadolinium-enhanced T1-weighted MR image. Moreover, enhancement pattern differs. Gadolin-
ium-enhanced T1-weighted MR imaging depicts large necrotic area surrounded by a ring-shaped solid tumor, whereas contrast-enhanced US 
demonstrates the part of the tumor that is extremely viable (oval). Intraoperative findings showed that this was solid tumor.
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from the posterior choroidal artery. The 
different dynamic of the contrast agents 
at gadolinium-enhanced T1-weighted 
MR imaging and contrast-enhanced US 
may explain this phenomenon. Gado-
pentetate dimeglumine, after the ini-
tial vascular phase, accumulates within 
the lesion because of disruption of the 
blood-brain barrier. This is why GBM 
shows a prevalent peripheral enhance-
ment that corresponds to active cell 
proliferation and brain tissue damage. 
Unlike gadopentetate dimeglumine, sul-
fur hexafluoride microbubbles have an 
intravascular distribution. Thus, the ob-
tained image strictly reflects the vascu-
larity of the lesion and can highlight tu-
moral areas with neoangiogenesis to the 
surrounding edematous brain tissue. It 
also allows the surgeon to recognize the 
arterial supply of the tumor and to dis-
tinguish the venous drainage (15,20,30).

This might also help explain why the 
internal appearance of the tumor differs 

neuronavigation, which is based on 
preoperative static imaging, contrast-
enhanced US is dynamic, economic, 
and repeatable throughout surgery 
(15,19,20,30). Contrast-enhanced US 
can provide the surgeon with important 
information about onsite tumor loca-
tion, morphologic features, margins, 
and dimensions for the duration of the 
entire surgery (15,18–20).

In our patients, the pattern of con-
trast enhancement was similar with 
both modalities in all cases but one. In 
that case, the tumor was highly vascular-
ized, with profuse intraoperative bleed-
ing from both the peripheral and central 
areas of the tumor. This was unexpected 
on the basis of preoperative gadolinium-
enhanced T1-weighted MR imaging, in 
which contrast enhancement was prev-
alent peripherally, whereas contrast-en-
hanced US showed an intense degree of 
contrast enhancement of the entire bulk 
of the tumor, with a direct feeding vessel 

Discussion

Our results demonstrate that contrast-
enhanced US offers a morphologic 
representation of GBM similar to that 
provided with preoperative gadolinium-
enhanced T1-weighted MR imaging. 
The location, morphologic features, 
margins, and dimensions of the lesions 
were superimposable in all cases. The 
pattern of contrast enhancement was 
similar for both techniques in nine pa-
tients. One lesion showed more intense 
enhancement in the internal part of the 
lesion at contrast-enhanced US than at 
gadolinium-enhanced T1-weighted MR 
imaging.

Our data demonstrate that con-
trast-enhanced US can be used to de-
scribe the same volume target provided 
by preoperative gadolinium-enhanced 
T1-weighted MR imaging and there-
fore can be used as an intraoperative 
guidance tool. Furthermore, unlike 

Figure 3

Figure 3:  Contrast enhancement phases. Images of left frontal GBM in 49-year-old woman. Top row, preoperative T1-weighted gadolinium-enhanced MR images in 
axial and sagittal planes. Bottom row, contrast-enhanced US (CEUS) scans show enhancement phases. In arterial phase, main feeding arteries are visible. In peak and 
parenchymal phases, it is possible to distinguish more solid and cystic and/or necrotic areas. In venous phase, movement of microbubbles makes small draining veins 
recognizable. Gd = gadolinium, MI = mechanical index.
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imaging and can be used for intraop-
erative guidance in removal of these 
tumors. Future studies should investi-
gate the role of intraoperative US in the 
evaluation of residual tumor, usually a 
great challenge for neurosurgeons. The 
synergistic use of contrast-enhanced US 
with navigation systems and other im-
aging modalities, such as intraoperative 
MR imaging, fluorescence imaging, and 
optical imaging, might help maximize 
resection of GBM, thereby minimizing 
the risks for our patients.
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Other MR imaging sequences, such 
as dynamic susceptibility contrast-en-
hanced imaging, could be more infor-
mative with regard to tumor location  
or invasiveness. Indeed, dynamic sus-
ceptibility contrast-enhanced imaging 
depicts tissue perfusion in regions  
lacking damage to the blood-brain bar-
rier, encompassing the area shown at 
T1-weighted gadolinium-enhanced MR 
imaging (31). It might be used in the 
future for surgical guidance that also 
takes into account functional bound-
aries. Studies comparing contrast-en-
hanced US with perfusion MR imaging 
are warranted.

In conclusion, intraoperative con-
trast-enhanced US during GBM surgery 
enables surgeons to obtain information 
regarding location, morphologic fea-
tures, margins, and dimensions simi-
lar to that achieved with preoperative 
gadolinium-enhanced T1-weighted MR 

slightly with the two modalities. The 
internal appearance on gadolinium-en-
hanced T1-weighted MR images, because 
of contrast material extravasation within 
avascular and/or necrotic areas, shows a 
wider degree of contrast enhancement 
that comprises the shape of internal 
necrotic areas; because these areas are 
not perfused, they are not highlighted 
at contrast-enhanced US. However, this 
does not affect the identification of the 
borders and external morphologic fea-
tures of the tumor and thus of the sur-
gical target volume. The external portion 
of the tumor consists of biologically active 
areas that enhance at both modalities be-
cause it is richly vascularized by aberrant 
capillaries, which allow transit of micro-
bubbles and extravasation of gadolinium.

The information provided with con-
trast-enhanced US in our experience 
was useful for appropriate surgical 
management of GBM. It showed perfu-
sion patterns and tumor remnants, as 
our group reported elsewhere (15,18–
20), but also showed a target volume 
superimposable to that obtained with 
the standard of reference, gadolinium-
enhanced T1-weighted MR imaging, to 
identify the volume target.

The results of our study show that 
intraoperative contrast-enhanced US 
highlights in real time the amount of tu-
mor to resect in GBM surgery because 
it enables visualization of the same vol-
ume target identified at preoperative 
gadolinium-enhanced T1-weighted MR 
imaging, without the limitations of neu-
ronavigation. This is of paramount im-
portance considering the changes that 
occur before and during tumor removal 
due to brain shift and tissue deforma-
tion; these changes affect neuronaviga-
tion systems that are based on preop-
erative imaging that cannot be updated 
(gadolinium T1-weighted MR imaging), 
thereby making such systems unreliable 
throughout surgery.

Our study has several limitations 
that potentially weaken our results. In-
clusion bias was possible in this retro-
spective analysis because we included 
only patients in whom intraoperative 
fusion imaging between contrast-en-
hanced US and preoperative gadolini-
um-enhanced T1-weighted MR imaging 
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