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SUMMARY
Both the promises and pitfalls of the cell reprogramming research platform rest on human genetic variation,making themeasurement of

its impact one of themost urgent issues in the field. Harnessing large transcriptomics datasets of induced pluripotent stem cells (iPSC), we

investigate the implications of this variability for iPSC-based disease modeling. In particular, we show that the widespread use of more

than one clone per individual in combination with current analytical practices is detrimental to the robustness of the findings. We then

proceed to identifymethods to address this challenge and leveragemultiple clones per individual. Finally, we evaluate the specificity and

sensitivity of different sample sizes and experimental designs, presenting computational tools for power analysis. These findings and

tools reframe the nature of replicates used in disease modeling and provide important resources for the design, analysis, and interpreta-

tion of iPSC-based studies.
INTRODUCTION

Induced pluripotent stem cells (iPSCs), and more broadly

the technologies emerging around cell reprogramming,

have developed rapidly and are already transforming

biomedical research. The defining, paradigm-shifting

innovation of the iPSC-based research platform is the

possibility of repeating development, which should be

understood not merely as the in vitro reproduction of

developmental processes, but as the feat of making it

repeatable, i.e., transforming hitherto unique organismal

processes—the development of a given individual—into

something experimentally and statistically tractable.

As such, cell reprogramming has made human genetic

variability amenable to experimentation. Indeed, as was

emphasized early on (Colman, 2008), a key asset of iPSCs

is that, contrary to embryonic stem cells (ESCs), they

are associated with medical histories and thus pave the

way to what we previously described as the functional

annotation of human genomes (Adamo et al., 2015), in

terms of genotype-phenotype correlation and disease

impact.

Yet at the same time the extent of human variability, of

whichwe are only beginning to take the fullmeasure, poses

an important practical problem for the field of iPSC-based

modeling. Given background genetic differences between

individuals, the key question is which experimental de-

signs and degrees of replication are necessary for robust

and sensitive results, and what are the best measures

to guide their selection. Here, we address such questions

by harnessing the large datasets recently made available

by the Human Induced Pluripotent Stem Cell Initia-

tive (HipSci; Streeter et al., 2016; Kilpinen et al., 2016)
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and the National Heart, Lung, Blood Institute (NHLBI)

NextGen consortium (Carcamo-Orive et al., 2016). We

derive empirically groundedmethodological recommenda-

tions for the design and analysis of iPSC-based studies.

Given the accessibility of expression profiling and the

critical importance of gene expression for the regulation

of cellular identity and function, transcriptomic dysregula-

tions have emerged for their rapid and informative insight

into the molecular underpinning of diseases, representing

for many a first high-content in vitro phenotype. This is

especially true for many diseases such as neurodevelop-

mental disorders, for which the iPSC technology is of prime

relevance due to the inaccessibility of the relevant tissues,

and whose main disease-associated genes are strongly en-

riched for transcription factors and chromatin regulators

(De Rubeis et al., 2014). Transcription is therefore of key

importance in itself, as well as representing a powerful

stand-in for other, more directly functional assays.
RESULTS

Differences between Individuals Dominate the iPSC

Transcriptional Variance

In addition to the condition under study, transcriptomes

from iPSC lines can vary because of several factors that

can coarsely be boxed into genetic, epigenetic, and tech-

nical. Although skin biopsies harbor somatic mutations

(Young et al., 2012) and a minority of epigenetic marks

can be retained upon reprogramming (Kim et al., 2010),

the majority of differences between individuals are most

likely due to genetic variation. Conversely, while different

iPSC clones from the same individual tend to have minor
thor(s).
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Figure 1. Spurious Differential Expres-
sion between Groups of Random
Individuals
Scheme of the types of permutations (A),
below which are shown the corresponding
distributions of the number of spurious
DEGs in the HipSci (B and C; 500 permuta-
tions each) and NHLBI/GSE79636 (D and E;
50 permutations each) datasets. For reasons
of visibility, the y axis of (D) is on a log
scale. Red bars indicate the mean of each
distribution. See also Figures S1–S4.
genetic differences chiefly due to mosaicism in the initial

sample (Young et al., 2012; Ji et al., 2012) and ensuing se-

lection (Kilpinen et al., 2016), most of the variability is

likely related to differences in the epigenetic state of the

cells (Salomonis et al., 2016). Finally, differences between

RNA-sequencing (RNA-seq) libraries of the same clone are

most likely to capture essentially technical sources of

variation. As previously reported (Kilpinen et al., 2016; Car-

camo-Orive et al., 2016), ANOVA reveals that transcrip-

tomic variance is dominated by genetic differences, or at

any rate differences between donors’ specimens, which

holds not only for the whole transcriptome but also for

the majority of genes taken individually (Figure S1). The

proportion of variance explained by differences between

individuals increased with expression levels (Figures S1B

and S1D), suggesting that genes not showing high suscep-

tibility to genetic differences due to their low expression in

iPSC are likely to do so in other tissues.

Spurious Differential Expression Is Exacerbated by

Including Multiple iPSC Clones per Individual

Given the very large number of genes showing individual-

dependent differential expression, the comparison of unre-
lated individuals—as in the traditional and currently most

prevalent design of iPSC-based modeling studies—will

inevitably lead to the identification of differentially ex-

pressed genes (DEGs) that are only spuriously associated

to the comparison of interest. This risk is further com-

pounded by the fact that, very often, in-house controls or

standard ESC lines are compared with samples received

from collaborating centers, introducing a further con-

founding factor for the conditions under study.

To assess the risk of such spurious results depending on

different experimental designs, we performed a series of per-

mutation analyses on both iPSC datasets. We performed

more than15,000differential expressionanalyses (DEAs)be-

tween random sex-balanced groups of varying sizes and de-

signs (illustrated in Figure 1A). In particular, we tested three

types of experimental design: (1) comparisons between un-

related individuals using a single clone per individual, (2)

comparison between unrelated individuals using two clones

per individual, and (3) comparison between a group of indi-

viduals and different clones from the same individuals.

Random comparisons showed a surprisingly high fre-

quency of ‘‘spurious’’ differentially expressed genes (Fig-

ures 1B and 1D). In contrast, basic measurements on
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cell morphology, which are available for a small subset of

the HipSci samples (28 clones from 14 individuals), did

not show such a dominant dependence on genetic differ-

ences (Figure S2B), although this can reflect the technical

or intrinsic variability of the measurements (Figure S2A).

The fact that the comparisons between isogenic clones

(Figures 1C and 1E) show very little spurious DEGs even

at small sample sizes indicates that the much higher

spurious results in the other two comparisons are related

to genetic differences. In addition, it warrants the use of

controls established by genetic correction of the patient-

derived cells when this is cost-effectively commensurate

to the specific objective.

Most notably, using more than one iPSC clone per

individual results in amajor increase in spurious DEGs (Fig-

ures 1B and 1D). Furthermore, and in contrast to

comparisons involving single clones which show a clear

downward trend upon increasing sample size, such a trend

appears absent from the comparisons with two clones per

individual. As expected given themuch higher genetic het-

erogeneity of the NHLBI dataset (Figure S3), the distribu-

tion of ‘‘spurious’’ DEGs was considerably higher (Fig-

ure 1D). Nevertheless, we could observe the same pattern

as in the HipSci dataset, albeit stronger, when using one

versus two clones per individual. Importantly, whenmanu-

ally adding ‘‘true’’ differential expression (see below), using

two clones per individual resulted in a dramatic increase of

the false discovery rate (FDR) (Figure S4). Together, these re-

sults call into question the widespread habit (also en-

trenched thus far in the guidelines of this journal) of

including more than one iPSC clone per patient.

This finding, however, should not come as a surprise, for

the statistical methods commonly used in gene expression

analysis assume that replicates are independent. For

instance, the edgeR manual recommends summing the

read counts of technical replicates before DEA instead of

treating them as bona fide replicates. The reason is simple:

treating technical replicates as independent artificially re-

duces the variability of the group’s mean. The same applies

to treating iPSC clones from the same individual as inde-

pendent when they are clearly not (at least in terms of

the overriding contribution of genetic makeup to the vari-

ance under study). While multiple clones per individual

improve the internal robustness of the results, their inclu-

sion hampers their generalizability to other individuals,

unless appropriate methods are employed (see below).

Genes Recurrently Found Differentially Expressed

across Random Individuals Are Related to

Fundamental Developmental Processes

Importantly, the spurious DEGs are not limited to modest

fold changes, andnearly half (48%) of themchange by a fac-

tor of more than 2 (Figure 2A), indicating that a simple fold-
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change threshold cannot adequately address the problem.

Some genes are found differentially expressed in the permu-

tation DEAsmuchmore often than others—in fact 98 genes

are differentially expressed inmore than20%of the compar-

isons (Figure 2B)—which prompted us to investigate the

nature of these recurrentDEGs in theHipSci dataset. Surpris-

ingly, the top 100 DEGs show very strong enrichment for

genes associated with both early developmental processes

(nearly 9-fold enrichment for gastrulation-related genes)

and aging (6-fold) (Figure 2C). In addition, and as previously

reported (Adamo et al., 2015), genes related to the extracel-

lularmatrix (ECM)organizationwere also strongly enriched.

The same enrichment for ECM-related genes appears in the

larger set of all recurrent DEGs (Figure 2D), as well early

developmental processes. Since the background used for

the enrichment analysis excludes genes that are not ex-

pressed in iPSC, we can exclude that these enrichments

are merely due to the pluripotent state, and instead must

conclude that they reveal instead an unexpected degree of

genetic variability in the expression of these genes, possibly

linked to an evolutionarily selected increased robustness of

the system to their variation. This result is in line with the

enrichment, among iPSC-specific expression quantitative

trait loci, for targets of pluripotency factors (Kilpinen et al.,

2016).

Despite the significance of these enrichments, it would

be still theoretically possible that these genes are largely

irrelevant to the fully formed organism. To assess this pos-

sibility, we tested whether the recurrent DEGs as well as the

top 100 recurrent ones were enriched for genes found to be

homozygously knocked out in healthy individuals (Sulem

et al., 2015), but could find no significant relationship

(Figure S5A). Nor was there any significant relationship

between the frequency of a gene being differentially ex-

pressed across permutations and the prevalence of CNVs

affecting that gene in the general population based on

Exome Aggregation Consortium (ExAC; Kosmicki et al.,

2017) data (Figures S5B and S5C).

Thus, the fact that somegenesare recurrently founddiffer-

entially expressed between random individuals does not

necessarilymean that they aremedically irrelevant. Indeed,

pathogenicmechanismsmightwell be related to similar but

subclinical phenotypic variations inhealthy individuals. An

interesting example is the recent finding that variation in

theGTF2I gene, a transcription factor hemizygously deleted

inWilliams-Beuren syndrome and associated with its socio-

cognitive phenotype, is associated with anxiety in the gen-

eral population (Jabbi et al., 2015). Therefore, we estimated

the likelihoodof recurrentgenesbeingdisease-significantby

looking at their overlap with known disease genes from the

database of OnlineMendelian Inheritance inMan (OMIM).

While OMIM genes were more likely to be differentially

expressed between random individuals (p � 3 3 10�16 by



Figure 2. Description of the Genes Recurrently Found Differentially Expressed across iPSC from Groups of Random Individuals
(A) Distribution of fold changes across spurious DEGs of all HipSci permutations.
(B) Distribution of the proportion at which each gene appears differentially expressed. Dashed lines delineate the quartiles while the blue
line indicates the threshold for ‘‘recurrent genes.’’ The green line represents the distribution of particularly recurrent genes found by
expectation maximization-based mixture modeling.
(C) Most specific enriched gene ontology terms among the top 100 most recurrent genes. FDR, false discovery rate.
(D) Top most specific enriched gene ontology terms among the recurrent genes (>6% chance being found differentially expressed).
In (C) and (D) FDR is shown in red and fold enrichment in blue. See also Figure S5.
Mann-Whitney test), the enrichment was very small (Fig-

ure S5A). Together, these results suggest that genes recur-

rently found differentially expressed across individuals are

neither depleted nor considerably enriched for genes more

likely to be medically relevant.

Sensitivity across Experimental Designs and Sample

Sizes

We next assayed to what extent different experimental de-

signsandsample sizes coulddetect inputdifferential expres-

sion. To this endwe repeated thepermutationanalysis, each

time introducing a total of 100 DEGs at five different fold
changes, and distributed across different expression levels

(see Experimental Procedures). Notably, the two datasets

showed large differences in overall sensitivity (Figures 3

and S6), possibly owing in part to differences in coverage

and different degrees of technical standardization.

When comparing single clones from unrelated individ-

uals, the sensitivity seemed to largely plateau after six indi-

viduals per group (Figure 3A). Using two clones per individ-

ual resulted in an increase in sensitivity, albeit at the cost of

a massive loss in specificity, as shown above (Figures 1 and

S4). Isogenic controls also showed a marked improvement

in sensitivity in one of the datasets (Figure 3C).
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Figure 3. Sensitivity of Different Experimental Designs across Fold Change and Expression of the DEGs in the HipSci Dataset
(A–C) Using a single clone per individual (A), using two clones per individual (B), and comparing isogenic clones (C). Each square rep-
resents the average across 300 permutations.
(D) Sensitivity when comparing a small cohort with a large set of unrelated controls.
(E) Distribution of false positives when comparing a small cohort with a large set of unrelated controls.
See also Figure S6.
In all cases, the sensitivity was quite good for high fold

changes, but rapidly decreased with fold change and read

count. Fold changes of 1.5, which are especially relevant

in the context of gene duplications, were particularly

difficult to detect, and most of them are unlikely to be
1788 Stem Cell Reports j Vol. 8 j 1784–1796 j June 6, 2017
detected unless the genes are very stable or highly ex-

pressed. This is particularly relevant given the importance

of copy-number alterations for a variety of diseases

(McCarroll and Altshuler, 2007; Cook and Scherer, 2008;

Luo et al., 2012).



(legend on next page)
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Finally, since it is relatively common for laboratories

specialized in cell reprogramming to have assembled banks

of control iPSC lines against which disease-specific lines

can be compared, we also evaluated the sensitivity of de-

signs comparing only three patient-specific lines with a

larger set of controls (n = 10). While such design provided

fair sensitivity (Figure 3D), it could not achieve the same

degree of spurious DEG minimization as more balanced

groups (Figure 3E).

A good experimental design should optimize both sensi-

tivity and specificity. While the ideal tradeoff between the

two ultimately depends on the context, specificity (type I

error) is most often considered at least as important, if

not more so, than sensitivity (type II error). Therefore,

while using multiple clones per individual increased sensi-

tivity (albeit not necessarily more so than using more indi-

viduals), it did so at a much larger cost in specificity. This

favors increasing the number of individuals instead of the

number of clones per individual. Whenever this is not

possible, or when the data have already been generated,

analysis methods ought to be used that take into account

the samples’ interdependence.

Comparison of Methods for Dealing with Multiple

Clones

Although multiple iPSC clones per individual cannot be

considered full replicates, they nevertheless provide useful

informationon someaspects of the variability.We therefore

tested whether more appropriate statistical methods, in

particular approaches based on mixed models and

treating the individual as a random-effect variable, could

harness the availability of additional clones while keeping

good control of false positives. Since such modeling

methods are not typically implemented in RNA-seq anal-

ysis packages, we tested alternative methods of applying

or approximating them in this context (see Experi-

mental Procedures), and compared their ability to distin-

guish ‘‘true’’ inputted DEGs from ‘‘spurious’’ ones (Fig-

ures 4A and 4B). The first implementation relies on the

duplicateCorrelation function of the limma R package (Law

et al., 2014), which approximates mixedmodels, in combi-
Figure 4. Comparison of Analysis Methods
(A and B) Sensitivity and specificity of analysis methods when deali
Shown are the averages of 30 permutations for each method. The glmm
this FDR threshold.
(C) Sensitivity when using the dupCor approach and an FDR < 0.01 th
(D–G) Comparison of edgeR’s classic (exact test) and paired analysis (G
paired analysis leads to a major increase in ‘‘spurious’’ DEGs (D) for a ve
in the FDR (F) but little impact on the ROC curve (G).
(H) Adjusting the FDR of differentially expressed genes on the basi
improvement in the FDR (based on 300 permutations of compariso
individual, HipSci dataset).
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nation with a voom-based analysis (Ritchie et al., 2015).

This was compared with a standard voom-based analysis

of one or two clones per individual, as well as to a voom-

based analysis previously summing the clones of each indi-

vidual (sumReps), as recommended for technical replicates.

Finally, we also tried alternative implementations of mixed

models, in particular: (1) a glmm-based application of

mixed models using the quasi-Poisson distribution (the

negative binomial not being implemented in the glmmML

package) on normalized counts; (2) a lme4-based applica-

tion of mixed models on voom-transformed normalized

counts; and (3) a lme4-based application of mixed models

on DESeq2’s variance-stabilizing transformation (Love

et al., 2014). As expected, using one clone per patient re-

sulted in the smallest spurious/FDR at a nominal FDR <

0.05, which was instead very high when using two clones

per patient without special treatment. This effect could be

mitigated to different extents, and with different impacts

on sensitivity, by the different approaches. In particular,

limma’s duplicateCorrelation appeared to offer the best per-

formance at nominal FDR < 0.05 (Figure 4B) and the best

receiver-operating characteristic (ROC) curve at high speci-

ficity (Figure 4A), followed by the sum of replicates. While

none of these approaches yielded a specificity equivalent

to the use of single clones per individual at nominal

FDR < 0.05, the last two came very close, enabling a consid-

erable gain in sensitivity and having a superior net area un-

der the ROC curve, indicating that they are advisable, espe-

cially with a slightly more stringent threshold. Indeed,

using limma’s duplicateCorrelation approach with an FDR

threshold of 0.01 retained much of the increase in sensi-

tivity of using two cloneswith a specificity superior to using

a single clone (Figures 4Band4C).We therefore recommend

this approach, i.e., limma’s duplicateCorrelation with a

slightly more stringent significance threshold, for analyses

of datasets involving more than one clone per individual.

Paired Analysis in the Context of Isogenic Controls

Results in Increased False Discoveries

Popular differential expression methods, such as edgeR

(Robinson et al., 2010), DESeq2 (Anders and Huber, 2010;
ng with multiple clones per patient (three individuals per group).
-based method is not shown in (B) because it led to no positive at

reshold.
LM-based) for paired experimental designs. At a q < 0.05 threshold,
ry modest increase in sensitivity (E), resulting in a massive increase

s of their frequency in the permutations results in a considerable
ns between two groups of four individuals, using two clones per



Figure 5. Survey of the 2016 iPSC Dis-
ease-Modeling Studies
(A) Total number of individuals (all condi-
tions pooled) from which the studied iPSC
lines were derived.
(B) Total number of iPSC clones studied (all
conditions pooled). The dashed lines in (A)
and (B) indicate the median and the solid
lines indicate the mean.
(C) Distribution of the probability of genes
to be found differentially expressed in
random permutations, comparing all genes
(left) with the DEGs of two sample iPSC-
based studies from our survey (right). The
red line indicates the mean and the blue
line indicates the median. The p values
were calculated from a Mann-Whitney test
comparing the distributions.
Love et al., 2014), and limma/voom (Law et al., 2014;

Ritchie et al., 2015), implement generalized linear models

to provide the possibility to analyze more complex experi-

mental designs than a binary comparison between two

groups. In the context of studies involving isogenic or

half-matched controls (i.e., unaffected sibling or parent),

this permits comparison of each patient-derived line with

its matched control and the gauging of consistent relative

changes (i.e., �background + condition). Such a paired

analysis naturally increases sensitivity, but at the cost of

increasing the degrees of freedom of the tested model.

We therefore compared the sensitivity and occurrence of

spurious DEGs in paired versus classical analysis (Figures

4D–4G). Of note, while paired analysis did indeed result

in an increase in sensitivity (Figure 4E), it also massively

increased the detection of spurious DEGs (Figure 4D), lead-

ing to an important net increase in the FDR (Figure 4F).

This, however, had no noticeable impact on the ROC curve

(Figure 4G), indicating that the paired analysis can be used

provided that an accordinglymore stringent FDR threshold

is adopted.

Knowledge of Variable Genes Can Improve the False

Discovery Rate

Since genes are variously likely to be found differentially

expressed across random groups of individuals, we assessed

whether the knowledge of this probability for each gene

could help adjust the FDR of differential expression anal-

ysis. Using a very simple approach based on the frequency

of the gene and fold change among spurious differential

expression across permutations (see Experimental Proced-

ures), we adjusted the nominal FDR of the differential

expression analysis on the basis of the results of our permu-

tation analysis, which resulted in a considerable improve-
ment of the effective FDR (Figure 4H). This approach thus

offers a proof of concept of the utility of such large datasets

in the interpretation of iPSC-based studies, paving the way

to more complex approaches, for instance involving hy-

pothesis weighting or Bayesian updating, which can prob-

ably make even greater use of this information on variable

genes. This being said, such corrections should be inter-

preted with care given that, as emphasized earlier, it could

well be that genes whose expression is highly variable in

the general population are nevertheless associated with

the conditions under study or related subclinical traits.

A Considerable Proportion of Published iPSC-Based

Disease-Modeling Studies Has Insufficient Precision

To assess the impact of our observations for the iPSC

modeling field, we sampled the most recent iPSC disease-

modeling literature, selecting 77 studies published in

2016 (see Experimental Procedures and Table S1). The

vast majority (79%) of the studies relied on unrelated con-

trols, with 10% using a combination of unrelated and

half-matched controls and 10% using isogenic controls.

The distribution of the total number of individuals (all con-

ditions pooled) fromwhich the iPSC lines were derived and

the total number of iPSC clones used are plotted in Figures

5A and 5B. Importantly, 41% of the studies usedmore than

one clone per individual (the proportion increases to 51%

in studies involving at least six individuals in total) without

adopting appropriate statisticalmethods, which as we have

shown can artificially inflate significance and lead to many

false positives.

As an example, we took two studies focusing on the tran-

scriptome as relevant endophenotype and that reported

lists of DEGs (several studies involving transcriptomics

did not report such a list, and some did not even make
Stem Cell Reports j Vol. 8 j 1784–1796 j June 6, 2017 1791



the data available). The first (PubMed ID 27846841)

involved a rather large number of individuals per group

(eight versus seven), while the second (PubMed ID

27662211) included a fairly small number of individuals

(three per group). Despite the difference in cell type, the

genes reported as differentially expressed by these studies

had a significantly higher probability of being differentially

expressed in our random permutations (Figure 5C), partic-

ularly for the study involving a small sample size, which

questions the specificity of at least a subset of these genes

for the disease under study.

This being said, it must be emphasized that many of the

studies reviewed were not exclusively based on (and in

some cases not even involving) transcriptional pheno-

types. In light of some of the results described here (Fig-

ure S2) as well as evolutionary considerations, it is possible

that lower-content assays measuring, for instance, cellular

phenotypes could show a lower rate of spurious results

due to genetic differences. Moreover, the combination of

independent lines of evidence can often strengthen results

obtained from weak (from an intrinsic statistical point

of view) studies. Nevertheless, the present results indi-

cate that a considerable proportion of iPSC-based disease-

modeling studies, especially when based on next-genera-

tion sequencing experiments, may present a high rate of

false positives and (unless one focuses on very highly ex-

pressed genes and/or fairly large fold changes, i.e., >2) be

underpowered.
An R Package to Estimate the Power of iPSC Study

Designs

Lastly, we provide the R package iPSCpoweR, available on gi-

thub, to reproduce all of the analyses performed in the pre-

sent study (including multi-threaded DEA permutations,

plots, etc.) and conduct further power analysis. We hope

that this resource can help scientists in the field to make

more informed decisions regarding the design of future

iPSC-based studies.
DISCUSSION

The predominance of inter-individual differences in

explaining transcriptional variability has already been

reported (Rouhani et al., 2014; Burrows et al., 2016;

Carcamo-Orive et al., 2016). These datasets are likely to un-

derestimate human genetic variability due to the popula-

tions sampled (Figure S3); in particular, all individuals

from which the HipSci lines used were derived are

described by the consortium as ‘‘white,’’ and most of

them are labeled as being of English origin. The predomi-

nance of inter-individual differences is in line with the

surprising degree of genetic variation in human gene
1792 Stem Cell Reports j Vol. 8 j 1784–1796 j June 6, 2017
expression regulation (Kasowski et al., 2013; Melé et al.,

2015; Barrera et al., 2016). Indeed, Barrera et al. (2016)

showed that the median human genome harbors 60 het-

erozygous and 20 homozygous missense SNPs that change

the amino acid sequence of transcription factor (TF) DNA

binding domains, resulting in changes in affinity and/or

specificity in at least 75% of the cases. Together with varia-

tions in TF target sites and other changes affecting DNA

conformation, these can lead to wide differences in gene

expression.

While the present results were obtained from the tran-

scriptome of pluripotent cells, the impact is unlikely to

be smaller in differentiated cell types. Indeed, Banovich

et al. (2016) recently reported that regulatory variation

between individuals is lower in iPSCs than in two differen-

tiated cell types. Furthermore, given the difficulty in ob-

taining samples from patients harboring rare mutations,

it is not uncommon for probands’ and control lines to

have different origins, and hence potentially confounding

background genomic differences. It is therefore likely that

the ‘‘spurious’’ differences observed here in the permuta-

tion DEAs are relatively conservative estimates. On the

other hand, while the present study aimed at measuring

the impact of spurious differential expression, it is possible

that spurious differences passing multiple testing correc-

tion in this context, namely with little real differences be-

tween groups, might not necessarily pass it if the two

groups show overriding transcriptional differences related

to the condition of interest. This is due to the fact that

popular correction methods (e.g., Benjamini-Hochberg)

are rank based; hence the larger the transcriptional effect

of the studied condition, the smaller the number of

spurious DEGs will be. Finally, for specific cellular or func-

tional assays with a proven more direct relationship to the

ultimate traits under fitness selection, it is plausible that

compared with transcription they are more robust and

less influenced by genetic variation.

Akeyobservationof thepresent study is that, contrary toa

widespread practice, using multiple clones per individual

canbeverydetrimental to the robustness of the studyunless

appropriate statistical methods are adopted. This represents

a critical warning for the iPSC modeling field, since most

leading studies, including our own work (Adamo et al.,

2015), in a large number of publications have embraced

the thus far current standard of including multiple clones

per individual without accounting for their interdepen-

dence in the statistical analysis. One way of doing so,

harnessing the additional power of multiple clones while

keeping a good control of false positives, was through the

combination of the voom and duplicateCorrelation functions

implemented in the limmapackage (Lawet al., 2014;Ritchie

et al., 2015) used with a slightlymore stringent significance

threshold (here FDR < 0.01). This approach dramatically



Figure 6. Summary of the Precision and Sensitivity of the Main
Experimental and Computational Designs
The numbers in the data points represent the number of individuals
per group. Triangles indicate isogenic lines, squares indicate
unrelated individuals with one clone per individual, and circles
indicate unrelated individuals with two clones per individual, with
standard (green) or mixed-models (pink) analysis (through limma’s
duplicateCorrelation). With a standard analysis, using two clones
per individual has a catastrophic impact on the FDR. Using mixed
models, however, dramatically improves the FDR, making the
design equivalent (albeit with a much larger total number of clones
profiled) to an isogenic experimental design.
reduces the rate of false or spurious discovery, making the

design equivalent to an isogenic experimental design, albeit

with a much larger total number of clones profiled.

On the basis of our results (summarized in Figure 6), we

propose the following recommendations. Isogenic controls

corrected for the mutation, which we modeled here using

different clones from the same individual, represent an

ideal albeit cost- and time-intensive experimental design.

Using two clones per individual with the aforemen-

tioned mixed-models approach offered a comparable per-

formance. In both these cases, using at least three individ-

uals per group (ideally four or more) offered a decent

control of false positives, with additional individuals offer-

ing increases in sensitivity. When single clones from

unrelated individuals are used, a strict minimum of four

individuals per group should be used. In general (and to

the extent that such comparisons were made possible by

the current datasets), more than six to seven individuals

per group offered only marginal improvements. Finally,

the use of multiple clones per individual without adequate

statistical treatment of their interdependence is strongly
discouraged. Just like technical replicates, different clones

from the same individuals capture only a portion of the

biological variability, and treating them as statistically in-

dependent artificially reduces the variability of the group’s

mean.

Part of the problem therefore lies in deep ambiguities

regarding themeaning of technical andbiological replicates.

Indeed, whether a replicate is biological or technical has

become an increasingly vague notion that thrives in the di-

versityofpossible answers, andpartly for good reasons: there

are not two but diverse possible degrees of replication, each

capturing different layers of variability. Moreover, as biolog-

ical processes have gradually been mastered in the labora-

tory, they have increasingly ceased to be in themselves ob-

jects of investigation and have joined the scientist’s toolkit,

so that in many contexts biological processes have become

purely technical operations. In the language of the historian

of scienceHans-JörgRheinberger, theywent from ‘‘epistemic

things’’ to ‘‘technical objects’’ (Rheinberger, 1997). It might

therefore be useful to replace the distinction between tech-

nical and biological replicates for one inspired by these

categories. In this view, technical replicates are replicates

capturing the variability of (all or some of) the processes

through which we study a phenomenon, whereas epistemic

replicates capture, in addition to this technical variability,

the variability in the phenomenon itself under study. The

concepts are therefore relative to the questions being asked.

Insofar as the aimof a study is to uncover disease-relevant ef-

fects of, say, a pathogenic mutation or copy-number alter-

ation, epistemic replicates should capture the variability of

the patients harboring the disease, and hence iPSC clones

represent technical replicates. If, instead, the aim is to learn

about theeffects agivengenetic lesionagainst a specificback-

ground genome, or about the impact of reprogramming-

induced changes on the expressivity of that lesion, iPSC

clones represent epistemic replicates.

More clarity in choosing and reporting the type and

degree of replication would greatly help to improve the

robustness of findings in iPSC-based studies.
EXPERIMENTAL PROCEDURES

Samples Used
The description of the HipSci samples used can be obtained using

the getSamplesInfo function of the package. A summary of the

samples is shown in Figure S3, and the SRA-run IDs are listed in

Table S2. All the samples not cultivated on feeders, not associated

to a disease, and available on open access at the time of this study

were used (a total of 62 lines from 47 individuals, including 15 in-

dividuals with two clones).

From the NHLBI NextGen consortium dataset, we included only

lines that have been reprogrammed from the same type of cells

(Erythroblasts) using the same rna method (Life-Tech GITC) and
Stem Cell Reports j Vol. 8 j 1784–1796 j June 6, 2017 1793



cultured in the sameMatrigel preparation (a total of 107 lines from

37 individuals were used). These are listed in Table S2, and are

available (both counts and annotation) in the R package

(data(‘‘GSE79636’’)).

RNA-Seq Quantification
For the HipSci data, RNA-seq quantification was performed using

Salmon v6.1 (Patro et al., 2016), using FMD indexes and the

Refseq transcript annotation. The expression matrix is available

through the getTxExpr and getGeneExpr functions of the package.

For all analyses, the TMM normalization was used (Robinson

and Oshlack, 2010). For the NHLBI NextGen data, we used the

quantification made available by the authors on the GEO (GEO:

GSE79636).

ANOVA
The analysis of transcriptional variance (Figure S1) was performed

on log-transformed transcripts per million (TPM) values aggre-

gated at the gene level. Both linear models (Figures S1A and

S1B) and mixed random-effect models implemented by the lme4

R package (Figures S1C–S1E) were used. The analysis can be repro-

duced using the transcriptionalVarianceExplained function of the

package.

For the ANOVA in cell morphology, we used only the

data collected on the middle concentration of fibronectin.

The data can be accessed from the cellpheno data object of

the package, and the ANOVA can be reproduced using the

cellphenoVarianceExplained function.

Differential Expression Analysis
With the exception of the mixed-models approaches (Figures 4A,

4B, and 6), all differential expression analysis was performed

with edgeR v.3.12.1, which has among the most robust perfor-

mances (Germain et al., 2016). For testing, only genes for which

at least two samples had more than ten reads were considered.

For the paired analysis, generalized linear models and the likeli-

hood-ratio test was used; otherwise the exact test was used. See

the edgeRwrapper function for the exact code.

In the comparison of approaches to dealing with multiple

clones per individual (Figures 4A and 4B, pink data points

in Figure 6), we used limma v.3.28.5. The dupCor method, as

implemented in the voomWrapper function of the iPSCpoweR

package, uses a two-step voom transformation (before calling

duplicateCorrelation, and after, including the output of the

function). The SumReps method simply sums, for each indi-

vidual, the read counts of all clones, and is implemented in

the voomWrapperSumReps function. The lmer- and glmm-based

methods are respectively implemented in the voomLmerWrapper,

vstLmerWrapper, and glmmWrapper functions, and use the individ-

ual as a random-effect variable (i.e., �1 + [1jindividual] + group).

The lmer-based methods rely on the drop1 approach with a chi-

squared test for statistical significance.

Input/‘‘True’’ Differential Expression
To assess sensitivity, we introduced differences between the groups

by enabling the addDE option of the package’s permutation func-

tions, with default settings. The differences are introduced multi-
1794 Stem Cell Reports j Vol. 8 j 1784–1796 j June 6, 2017
plying a gene’s read count, in each sample of one of the groups,

by a predefined fold change. For each fold change (1.25, 1.5, 2,

3, 5, and their inverse), ten geneswere randomly selected spanning

the range of expression levels of the tested transcriptome, for a

total of 100 introduced DEGs in each analysis. Importantly, this

is making the assumption that, all other things being equal,

‘‘real’’ differentially expressed genes have an intra-group variability

comparable with other genes.

Permutation Analysis
Permutation DEA analyses were performed using the

DEA.permutateIndividuals and DEA.permutateClones functions of

the package, using the default setting except for the addition of

the expression filter (at least two samples having more than ten

reads). Permutations thatwere not balanced for sexwere discarded.

For the NHLBI dataset, we instead ensured that the comparisons

were balanced for technical batches. For comparisons involving

12 or fewer total individuals, only the individuals with more

than one available iPSC clone were used in order to maximize

the comparability with other experimental designs. For compari-

sons involving more than 12 individuals in total it was, however,

necessary to use the whole cohort of samples to have a sufficient

number of valid comparisons.

The permutation analysis of cellular morphology (Figure S2) can

be reproduced with the cellpheno.permutateIndividuals function.

Data-Informed Correction of the Q Values
For Figure 4H, the nominal FDR values reported by edgeRwere cor-

rected using the multiProbSpurious function of the package. The

function reports, for each tested gene, the frequency of the gene’s

absolute fold change or higher in the distribution of fold changes

of the spurious DEG, as well as the frequency at which the given

gene was found differentially expressed, in the union of all permu-

tations of the HipSci dataset. For genes whose fold change was

plausible in the distribution of spurious fold changes (p > 0.05),

we then replaced edgeR’s FDR by the frequency of the given gene

in the permutations, if greater.

Gene Ontology Enrichment Analysis
Gene Ontology enrichment analyses were performed using the

goseq R package (Young et al., 2010) against the background of

tested genes (passing the filter of >10 reads in >2 samples), correct-

ing for eventual RNA-seq transcript length bias, and excluding

genes without annotation. Categories with at least ten genes and

maximum 1,000 genes were considered. To increase the informa-

tiveness of the terms, we removed terms with significantly en-

riched children terms.

Selection of iPSC-Based Disease-Modeling Studies
For the brief review of experimental designs used in recent iPSC

disease-modeling studies, a PubMed search for ‘‘Induced pluripo-

tent stem cells’’ OR ‘‘iPSC’’ was performed and publications pub-

lished in 2016 were considered. Only studies performing human

iPSC-based modeling of specific diseases were considered (reviews,

studies involving therapeutic application of iPSC derivatives; using

direct conversion or reporting the development/improvement of

technologies were discarded), and reports of the mere generation



of single lines were discarded. For a large number of studies, the

number of individuals/lines had to be inferred from the figures

(lines were considered if at least some of the assays were performed

on them beyond the validation of their pluripotency). Of the 81

publications meeting these criteria (see Table S1), three were

excluded as not indicating the number of lines involved and four

more were considered ambiguous in this respect, so that 74 studies

were finally used to compile the number of clones/individuals (see

Table S1).
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Figure S1: Differences between 
individuals dominate transcriptional 
variability for most of the genes. A-B: 
Analysis of variance in the HipSci dataset 
based on linear regression. C-D: Analysis 
of variance in the HipSci dataset based on 
mixed modeling (individual considered as 
random effect). B and D shows the density 
maps of of the proportion of each gene's 
variability explained by differences in 
individuals, according to the gene's 
expression level (in log Transcripts Per 
Million). E: Analysis of variance in the 
GSE79636 dataset based on mixed 
modeling.
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Figure S1 (related to Figure 1)



  

Figure S2: variability of iPSC cellular morphology. A: Proportion of the variability in 
each cellular feature (rows) explained by each variable (column) based on linear 
regression. In all cases, the largest component of variability is attributable to technical 
variation. B: Distribution of p-values when testing for differences in each cellular 
feature across random groups of 3 individuals (2 clones per individual). A t-test on log-
transformed values was used.
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Figure S2 (related to Figure 1)



  

Figure S3: Overview of the samples used. A: Overview of the samples used in the HipSci dataset. 
B: Overview of the samples used from the NHLBI dataset.

A: samples from the HipSci cohort

B: samples from the NHLBI NextGen consortium (GSE79636)

Figure S3 (related to Figure 1)



  

Figure S4: Effect of using multiple clones per individual on the proportion of spurious/false DEGs among all 
DEGs at nominal FDR<0.05. A: In the HipSci dataset. B: In the NHLBI (GSE79636) dataset.

Figure S4 (related to Figure 1)
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Figure S5: Spurious differentially-expressed genes from the permutation analyses are 
neither depleted nor considerably enriched for medically-relevant or genetically variable 
genes. A: Distribution of the frequency at which genes of different subsets were found 
differentially-expressed across random individuals. 'OMIM' and 'notOMIM' stand for the sets of 
genes that respectively are or are not in the Online Mendelian Inheritance in Man (OMIM) 
database, while 'KO' and 'notKO' stand for the sets of genes that respectively are or are not among 
the genes found homozygously knocked-out in healthy individuals (Sulem et al. 2015). B: Density 
map showing, for each gene, the frequency of its differential expression across permutation DEAs 
(x axis) and the frequency with which it is affected by CNVs in ExAc. C: Density map showing, for 
each gene, the frequency of its differential expression across permutation DEAs (x axis) and the 
CNV score in ExAc.
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Figure S5 (related to Figure 2)
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Figure S6: Sensitivity of different experimental designs across foldchange and 
expression of the DEGs in the GSE79636 dataset.  A: using a single clone per individual. B: 
using two clones per individual. C: comparing isogenic clones. Each square represents the 
average across 50 permutations.
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Figure S6 (related to Figure 3)
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