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Abstract MicroRNAs (miRNAs) are a subset of endoge- 
nous, small, non-coding RNA molecules involved in the 
post-transcriptional regulation of eukaryotic gene expression. 
Dysregulation in miRNA-related pathways in the central ner- 
vous system (CNS) is associated with severe neuronal injury 
and cell death, which can lead to the development of neuro- 
degenerative disorders, such as amyotrophic lateral sclerosis 
(ALS). ALS is a fatal adult onset disease characterized by the 
selective loss of upper and lower motor neurons. While the 
pathogenesis of ALS is still largely unknown, familial ALS 
forms linked to TAR DNA-binding protein 43 (TDP-43) and 
fused in sarcoma (FUS) gene mutations, as well as sporadic 
forms, display changes in several steps of RNA metabolism, 
including miRNA processing. Here, we review the current 
knowledge about miRNA metabolism and biological func- 
tions and their crucial role in ALS pathogenesis with an in- 
depth analysis on different pathways. A more precise under- 
standing of miRNA involvement in ALS could be useful not 
only to elucidate their role in the disease etiopathogenesis but 
also to investigate their potential as disease biomarkers and 
novel therapeutic targets. 

 
 

Keywords Amyotrophiclateralsclerosis . ALS . microRNA . 
miRNA . Central nervous system . CNS 

 
Paola Rinchetti and Mafalda Rizzuti are co-first authors. 

 
* Stefania Corti 

stefania.corti@unimi.it 
 

1 Dino Ferrari Centre, Neuroscience Section, Department of 
Pathophysiology and Transplantation (DEPT), Neurology Unit, 
IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, 
University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy 

Introduction 
 

Amyotrophic lateral sclerosis (ALS) represents one of the 
most common late-onset neurodegenerative disorders [1]. 
The neuropathological features are characterized by the pro- 
gressive loss of somatic motor neurons in the spinal cord, 
which innervate all voluntary muscles in the body. This pro- 
cess clinically results in the progressive paralysis of the mus- 
cular functions. In addition, bulbar symptoms, such as dys- 
phagia and dysarthria, related to the degeneration of lower 
brain stem motor neurons may arise during the disease course. 
Death usually occurs within a few years from onset due to 
respiratory failure [1, 2]. To date, the only approved com- 
pound for ALS treatment is riluzole that can only modestly 
increase survival by a few months [1]. 

ALS classified as sporadic (sALS) represents the majority of 
the diagnoses while familial ALS (fALS) accounts for only 10% 
of the cases [3, 4]. However, 10% of initially diagnosed sALS 
subjects display gene mutations [5]. The most common ALS- 
causative genes include chromosome 9 open reading frame 72 
(C9orf72), Cu2+/Zn2+ superoxide dismutase (SOD1), TAR 
DNA-binding protein 43 (TARDBP), and fused in sarcoma/ 
translocated in liposarcoma (FUS/TLS) [4, 6, 7] (see Table 1 
for the whole list). Interestingly, many ALS-linked genes, par- 
ticularly TARDBP and FUS, are involved in RNA metabolism, 
including microRNA (miRNA) processing [44, 45]. 

MiRNAs are tissue-specific, small non-coding RNAs that 
are expressed in different viruses, animals, and plants [46–50]. 
They are widespread and highly conserved molecules 
representing approximately 1–2% of non-protein-coding 
genes [46, 47]. In particular, they are involved in the inhibition 
and degradation of messenger RNAs (mRNAs) thwarting 
their expression by pairing with them [46, 49]. Because of 
their involvement in the development, function, and survival 
of different types of mature neurons in organisms [51], 

 
 

  

mailto:stefania.corti@unimi.it


 
 

 

 

Table 1 Summary of the most common ALS causative genes 

ALS-causative genes References 
 

Gene Description Functions/pathological   mechanisms 

C9orf72 Chromosome 9 open 
reading frame 72 

The repeat expansion (up to thousands of copies) of a non-coding hexanucleotide 
(GGGGCC) in the first intron of the gene has been associated with a decrease in the 
mRNA expression of C9orf72 transcripts. Repeat transcripts can induce the produc- 
tion of peptides that are prone to accumulation in specific foci, which can interfere 
with transcription and translation. 

[8–11] 

SOD1 Superoxide dismutase 1 The gene encodes for an antioxidant protein that produces hydrogen peroxide from 
superoxide radicals. Decreases in enzymatic dismutase activity have been linked to 
oxidative stress and excitotoxicity in motor neurons. Actually, such degeneration 
might be associated with mutant SOD1 aggregation and the resulting aberrant 
association with mitochondria. SOD1 promotes protein misfolding and aggregation 
processes. 

TARDBP TAR DNA-binding protein TDP 43 and FUS are both members of the heterogeneous nuclear ribonucleoprotein 

[12–15] 
 
 
 
 
 

[16–20] 
FUS FUS  RNA-binding protein (hnRNP) family that is involved in multiple steps of RNA processing. They show 

notable structural and functional similarities, and the identification of TDP-43 as the 
main component of the ubiquitinated protein aggregates, as well as the discovery of 
mutations in the TARDBP gene, has supported the investigation of FUS through 
sequencing. TDP-43 and FUS mislocalizations have been observed in several disor- 
ders that lead to the development of specific proteinopathies. 

HNRNPA1; 
HNRNPA2- 
B1 

Heterogeneous nuclear 
ribonucleoprotein A1; 
A2/B1 

RNA-binding proteins hnRNP A1 and hnRNP A2, as well as TDP 43, FUS, and SMN1 
proteins, are recruited to stress granules under stress conditions. hnRNPA1 and 
hnRNPA2/B1 interact with TDP 43. Mutations in HNRNPA1 and HNRNPA2B1 
have been associated with ALS etiology. 

[21–23] 

UBQLN2 Ubiquilin 2 Ubiquilin 2 plays a key role in the regulation of the ubiquitin–proteasome system and 
autophagy. Some UBQLN2 variants have been associated with ALS as well as 
ALS–FTD cases while histopathological analysis from ALS patients shows 
widespread ubiquilin 2-positive inclusions in affected neurons. 

MATR3 Matrin 3 MATR3 is an RNA/DNA-binding protein that interacts with TDP 43. Mutations in the 
MATR3 gene have been identified as a rare genetic cause of ALS confirming the role 
of RNA metabolism in the disease etiology. 

SETX Senataxin The encoded protein contains a DNA/RNA helicase domain, and it seems to be involved 
in nucleic acid processing. Mutations in SETX have been associated with 
juvenile-onset ALS. Phenotypes often overlap with ataxia and motor neuron disease. 

[23, 24] 
 
 
 
[25, 26] 

 
 
[26, 27] 

CHCHD10 Coiled-coil-helix–coiled-coil- 
helix domain containing 10 

CHCHD10 is a coiled-coil helix–coiled-coil helix mitochondrial protein. It has been 
associated with neurological disorders and identified as a rare causative gene in 
FTD–ALS pathogenesis. Indeed, mitochondrial dysfunction plays a significant role in 
the evolution and progression of ALS disease. 

[28, 29] 

GRN Granulin Granulins are a group of peptides derived from a single precursor protein called 
progranulin. Mutations in GRN are associated with FTD with TDP 43 protein 
accumulation suggesting a link between GRN loss and TDP 43 pathology. 

ANG Angiogenin The ANG gene encodes for an angiogenic factor upregulated by hypoxia. The protein is 
involved in motor neuron development and maintenance. Mutations in the ANG gene 
seem to represent a risk factor for ALS occurrence. 

[30, 31] 
 
 
[32, 33] 

CHMP2B Charged multivesicular 
body protein 2B 

The protein is involved in autophagy and endolysosomal trafficking pathways. 
Pathogenic mutations in CHMP2B have been associated with FTD and ALS. 

[34, 35] 

PFN1 Profilin 1 Profilin 1 is an actin-binding protein involved in the regulation of actin polymerization. 
Mutations in PFN1 inhibit the axon outgrowth and alter stress granule dynamics 
contributing to ALS pathogenesis. 

VCP Valosin-containing protein VCP belongs to chaperone-like family proteins which are involved in different biolog- 
ical pathways including the ubiquitin–proteasome system. VCP mutations have been 
associated with FTD and ALS. 

TBK1 TANK-binding kinase 1 TBK1 gene has been identified as possibly linked to ALS and FTD. The protein interacts 
with proteins related to autophagy and innate immunity, such as p62 and OPTN. 

OPTN Optineurin OPTN is a ubiquitously expressed cytosolic protein involved in many cellular pathways 
and signaling. Genetic data show OPTN mutations are associated with ALS 
pathogenesis  and  neurodegenerative processes. 

[36, 37] 
 
 
[38, 39] 

 
 
[40, 41] 

 
[42, 43] 

 
 

Most common causative genes are here summarized including their potential role in ALS pathogenesis 



 

 

 

miRNAs may play an important role in the etiology and pro- 
gression of neurodegenerative disorders, such as ALS [52]. 
Indeed, miRNA dysfunction has been associated with a pro- 
gressive loss of specific neuronal populations, such as motor 
neurons in ALS [53–55]. Therefore, neurodegenerative dis- 
eases can also be considered as RNA disorders in which the 
dysregulation of miRNAs is striking because of their ability to 
regulate different pathways associated with the onset and pro- 
gression of disorders [56]. 

In the context of ALS, a global dysregulation of miRNAs 
has been described as a common feature underlying different 
forms of the disease [57]. It is also worthy to consider that the 
ability to detect changes in miRNA expression profiles could 
be a useful tool as a diagnostic biomarker to identify the onset 
and progression of the disease [2, 58]. Finally, the identifica- 
tion of misregulated miRNAs could potentially represent a 
tool for developing therapeutic approaches to treat ALS. 

 
 

The Biology of MiRNAs 
 

Classification of Non-coding RNAs 
 

The entire human genome is extremely rich in non-coding 
RNAs (ncRNAs), which might represent a way for cells be- 
longing to the same organ to develop specific identities and 
functions [59]. In the heterogeneous group of ncRNAs, differ- 
ent subsets of functional molecules should be recognized ac- 
cording to their lengths and functions, such as long non- 
coding RNAs (lncRNAs), which are typically greater than 
200 nucleotides, and small RNAs [60]. 

Several functions have been identified for lncRNAs, such as 
targeting proteins associated with specific transcription pat- 
terns, interfering with translation and DNA methylation, alter- 
ing the activity of protein-binding partners and chromatin, or 
acting as precursors for small RNAs [61]. Small RNAs are 
processed from longer precursors to carry out post- 
transcriptional gene silencing of target RNA transcripts. They 
can be clustered as heterochromatic small interfering RNAs 
[62], small temporal RNAs (stRNAs) [63], tiny non-coding 
RNAs [64, 65], and a group of very small RNAs that include 
short interfering RNAs (siRNAs) [66], PIWI-interacting RNAs 
(piRNAs) [67], and the well-known miRNAs [68]. MiRNAs 
were first described in 1993 [69] and are defined by their 
lengths, ranging from 20 to 30 nucleotides, and their interac- 
tions with Argonaute proteins (AGO and PIWI) [70]. 

 
MiRNA Biogenesis, Metabolism, and Biological Function 

 
MiRNAs are short and evolutionarily conserved RNA se- 
quences that are transcribed from specific genes or from the 
introns of protein-coding genes [71]. In humans, most of the 
canonical miRNAs are encoded by intronic regions. Often, the 

loci of different miRNAs belong to the same polycistronic 
transcription unit and are usually co-transcribed even if an 
additional single miRNA regulation can be performed post- 
transcriptionally [72]. Approximately 60% of all protein- 
coding genes seem to be regulated by miRNAs [73]. 

MiRNAs inhibit gene expression mainly through highly 
specific binding to complementary sequences in the three 
prime untranslated regions (3′-UTRs) of target mRNAs. The 
pairing with the target regions leads to downregulation of the 
corresponding mRNA through its destabilization or impedes 
processes at the protein level through translational inhibition 
[74]. While miRNA-binding sites are generally sited in the 3′- 
UTR domain of target mRNAs, the short nucleotide region 
located in the 5′ end of the miRNA called the BmiRNA seed^ 
(nucleotides 2–7) has been determined to be very important 
for defining the miRNA function and evolution and determin- 
ing the target recognition [21]. Indeed, miRNAs that display 
identical sequences at nucleotides 2–8 are usually considered 
to belong to the same family, even if some miRNA molecules 
display a common origin but a different miRNA seed [75]. 

The complexity of gene expression regulation by miRNAs 
has been depicted in a lot of studies, which show that a single 
miRNA can target many different genes. It can also occur that 
a set of miRNAs cooperate in an additive or synergistic way in 
order to exert control over a single gene expression [76]. In 
particular, while some individual miRNAs may account for 
the expression of several tissue-specific genes [77, 78] the 
specific expression of a single target gene seems to be regu- 
lated by a network of interactive miRNA molecules [79, 80]. 

Each miRNA locus produces two mature molecules that 
arise from the 5′ strand or from the 3′ terminal. Nevertheless, 
one arm called Bthe guide strand^  is the more biologically 
active and accounts for 96–99% of the total mature functional 
miRNA molecules [70]. The other strand, which is known as 
the Bpassenger^ or miRNA*, is generally thought to be de- 
graded during the biogenesis process. Actually, the passenger 
strand has also been identified as a potential biological regu- 
lator with the ability to modulate gene expression. In the con- 
text of different pathologies, miRNAs* were demonstrated to 
be able to actively target specific mRNAs and therefore do not 
behave as simple, passive bystanders [81–83]. 

The majority of miRNAs are transcribed by RNA polymer- 
ase II [71], whereas others are transcribed by RNA polymer- 
ase III [84]. RNA polymerase III can also transcribe viral 
miRNAs and some endogenous miRNA-like small RNAs de- 
rived from transfer RNAs (tRNAs) [85, 86]. 

In addition, the miRNA transcription process is regulated 
by different RNA polymerase II-associated transcription fac- 
tors and is subjected to epigenetic control [71, 87–90]. 

The primary transcripts (pri-miRNAs, in which miRNA 
molecules are embedded) are then processed through different 
maturation steps. In the nucleus, the pri-miRNA is specifically 
recognized by the microprocessor enzymatic complex composed 



 
 

 

 

of a double-stranded RNA-binding protein named DGCR8, 
which identifies the stem-loop structure, and the nuclear ribonu- 
clease III Drosha, which processes the pri-miRNA to generate 
the 70-nucleotide-long precursor form (pre-miRNA) [91]. 

Additional sequence motifs that reside in the pri-miRNA 
structure seem to be involved in the maturation process in order 
to improve the efficiency of processing primary transcripts [92, 
93]. Following the microprocessor processing, the resulting 
pre-miRNA is translocated to the cytoplasm by exportin-5 
through the nuclear pore complex in a Ran GTP-dependent 
process [94]. The pre-miRNA is then released into the cytosol, 
where it is cleaved by another RNase III-type endonuclease 
termed Dicer to produce a mature 20-bp miRNA duplex inter- 
mediate [95]. In this processing step, the endoribonuclease 
Dicer is associated with the transactivation response RNA- 
binding protein (TRBP) and the protein activator of the  
interferon-induced protein kinase (PACT) in a proteic complex 
[96]. The small RNA duplex is then loaded onto an AGO 
protein to shape the RNA-induced silencing complex (RISC) 
[97]. Notably, among the four AGO protein families in humans, 
only AGO2 can process perfectly matched target mRNAs [74]. 
The functional core of the RISC complex consists of AGO2, 
which has endonuclease activity responsible for mRNA silenc- 
ing, and of 182-kDa glycine–tryptophan proteins (GW182), 
which are essential for miRNA-mediated translational repres- 
sion and transcript decay. Moreover, additional proteins, such 
as fragile X mental retardation 1 (FMRP), Mov10 RISC com- 
plex RNA helicase (MOV10), and Hu antigen R (HuR), join 
the RISC enzymatic complex, and the inclusion of the GW182 
paralogue trinucleotide repeat-containing gene 6A protein 
(TNRC6) can trigger deadenylation, decapping, and decay of 
mRNAs [96, 98] (Fig. 1). 

Thus, the RISC assembly initially involves the RNA duplex 
association with AGO proteins to generate the pre-RISC enzy- 
matic complex. Subsequently, the removal of the passenger 
strand from the duplex determines the development of the mature 
RISC, which requires the contribution of only the guide strand 
[89]. Typically, the choice of the guide strand is established by 
the thermodynamic stability of the RNA duplex, even if the 
passenger strand displays a weaker silencing ability [99–101]. 

Finally, miRNA-loaded RISC guides the enzymatic com- 
plex toward the target mRNA based on the complementarity 
sequence for the 3′-UTR region. The miRNA-RISC examines 
the pool of cytoplasmic transcripts to find the potential com- 
plementary targets. The degree of miRNA target complement 
determines the fate of the target mRNA; a perfect match leads 
to transcript degradation through AGO2 enzymatic activity, 
whereas incomplete base-pairing triggers mRNA silencing 
by translational repression, mRNA degradation, or sequestra- 
tion in cytoplasmic structures (P-bodies) [98, 102]. 

The expression of miRNAs is subjected to close regulation 
from their biogenesis to their decay. Actually, the stability of 
miRNAs seems to be associated with endogenous factors, such 
as specific exoribonuclease (XRN1, XRN2), and is affected by 
the binding to their target mRNAs. Environmental factors may 
show an influence on the stability of these small RNA se- 
quences [96]. Moreover, miRNAs seem to have intrinsic ele- 
ments capable of modulating their stability in cells [103]. 

Modifications in the RNA sequence or structure influence 
miRNA processing and turnover. The intrinsic regulation of 
miRNAs can be affected by different biological occurrences, 
such as the existence of single nucleotide polymorphisms 
(SNPs) in miRNA genes, which have been associated with 
miRNA biogenesis or  altering the  target  specificity. 

 
Fig. 1 MiRNA biogenesis. The 
biogenesis process of miRNAs 
starts in the nucleus with the 
formation of pri-miRNA. This 
pri-miRNA is processed by 
Drosha and transported in the 
cytoplasm by Exportin-5. In the 
cytoplasm, Dicer binds pre- 
miRNA, forming the miRNA du- 
plex. At this point, the guide 
strand of the duplex is incorpo- 
rated into the RISC complex, 
whereas the other strand is typi- 
cally degraded 



 

 

 

Furthermore, in addition to regulation through miRNA stabil- 
ity, as described above, other methods of modifying RNA 
molecules that affect biogenesis include miRNA tailing, 
RNA editing, and RNA methylation [70]. 

MiRNAs regulate different cellular processes including 
growth, differentiation, and signaling. They are involved in the 
control of gene expression as post-transcriptional regulators in 
animals, plants, and viruses [104, 105]. After matching with the 
mRNA target sequence, miRNAs prompt either the induction of 
mRNA decay or the inhibition of the translational process. 

As regards mRNA decay mechanism, the miRNA–mRNA 
interaction causes target deadenylation; in eukaryotes, the re- 
moval of Poly-A tails starts with the Poly(A)-specific ribonu- 
clease complex, PARN2–PARN3, and proceeds to the CAF1– 
CCR4–NOT complex. After deadenylation, the decapping is 
carried out by Decapping 1 (DCP1) and Decapping 2 (DCP2) 
enzyme, followed by 5′–3′ exonucleolytic digestion by the 5′– 
3′ exoribonuclease 1 (XRN1) [106–108]. 

As mentioned above, miRNAs are also able of inhibiting 
the translation of mRNA targets at different steps of the pro- 
cess [109], even if this process occurs in only a small percent- 
age of cases (11–16%) [77]. The mRNA repression can be 
associated with the recruitment of competent ribosomes or 
the promotion of the ribosomal drop-off during the elongation 
step. Finally, the eukaryotic translation initiation factor 4F 
(eIF4F) cap recognition can be inhibited [77, 110–112]. 

To summarize, miRNA generation encompasses complex 
biological mechanisms, strictly regulated through different 
steps. MiRNA role is crucial in determining cell homeostasis 
and biological fate. 

 
 

The Role of MiRNAs in ALS Pathogenesis 
 

The importance of miRNAs in ALS was unraveled for the first 
time by the observation of differential miRNA profiles in ALS 

patients compared to healthy controls (Fig. 2). MiRNAs are 
highly stable in serum and other bodily fluids, but readily sub- 
jected to decay in the postmortem brain; thus, the feasibility of 
directly analyzing CNS tissues is limited. However, analyses on 
biological samples, including blood and cerebrospinal fluid 
(CSF), showed a different expression of miRNAs between 
healthy controls and ALS patients’ samples, indicating that these 
small RNAs could be involved in the pathogenesis of ALS [58, 
113–115]. Several miRNAs associated with nervous system 
maintenance and cell death pathways were deregulated on hu- 
man samples isolated from the spinal cord of ALS patients [116]. 

Overall, a global reduction of miRNA levels could be ob- 
served in both familial and sporadic ALS in comparison with 
healthy controls and other neurodegenerative patients [57, 
116, 117]. Characterizing miRNA biogenesis and investigat- 
ing  the  potential  mechanisms  underlying miRNA 

 

 
Fig. 2 Role of miRNAs in motor neuron physiology and degeneration. The principal functions exerted by miRNA in motor neuron homeostasis (on the 
left) and pathology (on the right) are here represented 



 
 

 

 

dysregulation could offer a promising tool both in understand- 
ing their involvement in ALS pathogenesis and in developing 
future  therapeutic approaches. 

We will further describe different roles played by miRNAs in 
ALS pathogenesis in the next few paragraphs, which have been 
subdivided accordingly (for a detailed overview, refer to Table 2). 

 
 

Table 2 Summary of miRNAs involved in ALS and their role in the disease progression 
 

 MiRNAs Up/downregulated  in ALS Involvement in ALS pathogenesis Reference 

Synapses and NMJ miR-206 Upregulated miRNA expresses specifically in skeletal muscle. Deficiency 
in ALS model causes acceleration of disease progression 

Regulates the expression of HDAC4, which is involved in 

[118] 
 

[119] 
neuromuscular gene expression 

Increased expression after denervation near synaptic sites [120] 
miR-23 Overexpression causes the reduction of PGC1α [121] 
miR-31 Induces cell proliferation [122] 
miR-29b Increases in skeletal muscle in ALS patients [121] 
miR-455 
miR-338-3p Detected in cerebrospinal fluid and in the spinal cord gray 

matter of sALS patients; involved in excitotoxicity 
miR-451 Downregulated Detected in cerebrospinal fluid and in the spinal cord gray matter 

[114] 

miR-1275 
miR-328 
miR-638 
miR-149 
miR-665 
miR-583 

of sALS patients; 

miR-218 Expressed only in motor neurons and involved in their differentiation  [123] 
[124] 

miR-124a Upregulated Low level in spinal cord of SOD1 mice; involved in GLUT expression [125] 
Neurofilaments miR-146a Upregulated Involved in the regulation of NFL mRNA expression in ALS [116] 

miR-524-5p Downregulated 
miR-582-3p 
miR-b1336 Low expression causes destabilization of neurofilament [126] 
miR-b2403 mRNAs at the neuromuscular junction level 
miR-1 Involved in myelination process in the spinal cord of the ALS animal model   [127] 
miR-330 
miR-29 
miR-133 
miR-9 

Neurogenesis miR-9 Downregulated Both in vitro and in vivo is involved in NSC proliferation, [128] 
miR-124a Upregulated distribution, and differentiation [58] 

[129] 
[130] 

miR-19a Up/downregulateda Involved in the cell cycling [129] 
miR-19b 
miR-29a Upregulated Involved in ER stress [131, 132] 
miR-29b Downregulated Dysregulation of NAV3 (regulator of axon guidance) [133] 
miR-125 Up/downregulateda Involved in astrocyte and oligodendrocyte regulation, [134] 
miR-134 
miR-219 

neuronal morphogenesis, and synaptic plasticity 

Neuroinflammation    miR-155 Upregulated Involved in the control of innate immuno system; treating SOD1 
mutant mice with anti-miR-155 reduces mortality 

[135] 
[113] 

let-7 The biogenesis of this miRNA is regulated by TDP-43 [117] 
miR-146a Regulator of Ly6Chi monocyte [113] 
miR-223 Increased in Ly6Chi cells in the spleen of SOD1 mice 
miR-27a 
miR-142-5p [117] 
miR-365 Negatively regulates interleukin-6 (IL-6) increasing the expression of TNFα   [136] 
miR125b Negatively regulates STAT3 increasing the expression of TNFα 
miR-24 Regulator of T-cells in vitro [135] 
miR-148b-5p    Downregulated Involved in regulation of genes associated with [117] 
miR-577 
miR133b 
miR-140-3p 

neurodegeneration on ALS 

 
 

a This miRNA is observed as being upregulated or downregulated, depending on the different areas of the brain that are analyzed 



 

 

 

MiRNAs, Cytoplasmatic Inclusions, and Stress Granules 
 

In ALS and frontotemporal dementia (FTD) disorders, 
ubiquitin-positive inclusions in neurons and glia typically re- 
strain the DNA-binding proteins TDP-43 or FUS [16]. In most 
fALS cases where TARDBP is not mutated, TDP-43 aggre- 
gates may be detected, whereas FUS inclusions are less com- 
mon [16, 17, 137]. 

Under pathological conditions, such as cellular stress, mu- 
tant TDP-43 and FUS can interact with different proteins as- 
sociated with RNA metabolism, leading to the development of 
protein aggregates and the formation of stress granules (SGs). 
It has been suggested that SGs could be precursor structures of 
the pathological protein inclusions observed in neurodegener- 
ative disorders [138, 139]. Notably, SG assembly starts with 
the phosphorylation of eukaryotic translation initiation factor 
2 alpha (eIF2α), the modulation of which is associated with 
neurotoxicity in ALS animal models [140, 141]. The SGs 
recruit many RBPs that are prone to aggregation such as 
TDP-43 and FUS, which are involved in RNA metabolism 
[18, 142]. TDP-43 promotes the process of interacting with 
the nuclear Drosha and the cytoplasmic Dicer complexes [44], 
and FUS enhances miRNA production through Drosha [143], 
thus providing functional links among the disease, dysregu- 
lated miRNA biogenesis, and SG-related RBPs. TDP-43 plays 
a key role also in the post-transcriptional maturation of a sub- 
set of miRNA molecules, both in the nucleus and in the cyto- 
plasm. Consequently, mislocalization of the TDP-43 protein 
in cytoplasmic aggregates seems to be associated with reduc- 
tion in Drosha and Dicer processing of TDP-43-regulated 
miRNAs [44]. 

The observed impairment in miRNA biogenesis has been 
related to the stress response induced by mutations in ALS- 
related genes, such as TDP-43, FUS, and SOD1. Overall, 
these findings suggest a potential link between defective 
miRNA biogenesis and ALS due to impaired Dicer process- 
ing. Therefore, the latter may be a promising target for the 
development of therapeutic approaches for a wide range of 
disorders resulting from dysregulated miRNA expression 
[144]. 

 
MiRNAs and Neuromuscular Junctions 

 
A group of miRNAs, usually referred as myomiRs, is 
expressed mostly in the muscular tissue [145] and includes 
miR-1, miR-133, miR-206, miR-208 a/b, miR-486, and 
miR-499 [146]. Although these miRNAs are expressed both 
in cardiac and skeletal muscle (except for miR-208, which is 
expressed only in cardiac muscle), miR-206 is expressed es- 
pecially in skeletal muscles, and in physiological conditions, it 
is involved in the maintenance of neuromuscular synapses and 
regeneration of neuromuscular junctions after injury, and it 
regulates myoblast differentiation [118,  147].  miR-206 

importance during myogenesis is supported by a study by 
Grifone and colleagues, who demonstrated that skeletal 
muscle-specific Dicer-1 knockout mice have a significant re- 
duction in muscle mass due to hypoplasia [148]. miR-206 
seems to negatively control the expression of histone 
deacetylase 4 (HDAC4), which is involved in the control of 
neuromuscular gene expression [149, 150]. In particular, miR- 
206 is not involved in the pathogenesis, but it plays a crucial 
role in the organism’s ability to restore normal NMJ formation 
after injury [120]. 

miR-23 acts as a negative regulator of the peroxisome 
proliferator-activated receptor-gamma coactivator alpha 
(PGC-1α) signaling [121]. It is already known that skeletal 
muscle mitochondrial dysfunction may be implicated in the 
severity and progression of ALS and since PGC-1α is in- 
volved in mitochondrial biogenesis and function, the inhibi- 
tion of this miRNA could be used to develop a therapeutic 
strategy to rescue PGC-1α activity in ALS subjects [121]. 

 
MiRNAs and Neuroinflammation 

 
In ALS pathology, neuroinflammation and the immune sys- 
tem play an important role in the disease progression through 
microglial activation, dysregulation of immune-related genes, 
and recruitment of monocytes to affected tissues. 

Interestingly, miR-155 seems to promote tissue inflamma- 
tion by enhancing the generation of Th17 cells and recruiting 
macrophages as a part of the immune response. In addition, 
miR-155 is also implicated in the increase of proinflammatory 
cytokine secretion by binding to suppressor of cytokine sig- 
naling 1 (SOCS1) mRNAs [151–153]. Koval and collabora- 
tors showed that the level of miR-155 in both ALS human and 
mouse CSF is increased twofold and fivefold, respectively. 
Moreover, the anti-miR-155 was able to promote a significant 
extension in survival time of affected animals [135]. Several 
dysregulated miRNAs, such as let-7, miR-148b-5p, miR-577, 
miR-133b, and miR-140-3p, seem to be involved in the regu- 
lation of genes implicated in inflammatory pathways in the 
ALS context. 

Another group thoroughly investigated the role of miR- 
125b in the modulation of NF-kb signaling in microglia 
[136, 154]. In a first study, the authors evaluated the miRNA 
expression profile of SOD1G93A mouse microglia after in- 
flammatory activation. They identified that both miR-365 and 
miR-125b seem to be involved in the proinflammatory signal. 
In microglia, miR-365 and miR-125b negatively regulate 
interleukin-6 (IL-6) and signal transducer and activator of 
transcription 3 (STAT3), respectively. Downregulation of IL- 
6 and STAT3 pathways causes activation of proinflammatory 
signals through an increase in tumor necrosis factor-alpha 
(TNFα) expression [136]. In a more recent study, the same 
group investigated the molecular role of miR-125b in the 
neuroinflammatory pathway, directly relating miR-125b to 



 
 

 

 

NF-kb signaling. The action exerted by this miRNA prolongs 
the activation of NF-kb in microglia with a toxic effect on 
surrounding motor neurons. These results highlight the funda- 
mental role played by miRNA in the complex interplay be- 
tween microglia and motor neurons, which appears as a strong 
contributor to motor neuron degeneration in ALS and other 
neurological  disorders [154]. 

 
MiRNAs and Endoplasmic Reticulum Stress 

 
As mentioned above, among the different mechanisms under- 
lying ALS pathogenesis, defects in protein folding or degra- 
dation of proteins leads to increase and accumulation of ag- 
gregated or misfolded proteins in the endoplasmic reticulum 
(ER) lumen, resulting in a change in ER homeostasis called 
BER stress,^ which culminates with apoptosis [155]. 

Nolan and colleagues analyzed the dysregulation of the 
miRNA pathway after the induction of ER stress. They iden- 
tified both in vitro and in vivo an increase in miR-29a [131, 
132, 155]. Interestingly, an increase in miR-29a expression 
could be observed in the lumbar spinal cords of ALS mice at 
post-natal day 70 compared to controls [131]. Moreover, the 
increase in miR-29 led to a decrease in induced myeloid leu- 
kemia cell differentiation protein (Mcl-1) [131] involved in 
the apoptosis pathway [156]. 

In a more recent study, they demonstrated that ER stress- 
induced transcription factor activating transcription factor-4 
(ATF4) enhanced the expression of miR-29a increasing 
through this mechanism the sensitivity of motor neurons to 
ER stress-induced apoptosis [132]. 

In conclusion, the authors hypothesized that during the 
progression of ALS, motor neurons undergo ER stress condi- 
tions leading to apoptosis [131]. 

 
 

MiRNAs as Disease Biomarkers and Novel 
Therapeutic  Targets 

 
So far, specific disease biological markers of ALS or effective 
therapies have not been identified. The diagnosis and follow- 
up still relies upon clinical criteria, and, despite the intense 
efforts, there are still no established biomarkers clinically ap- 
plicable [157]. In particular, the research of valuable ALS 
biomarkers has been the focus of several studies aiming to 
direct the therapeutic research and instruct the clinical trial 
enrollment (for a detailed review on the more recent studied 
biomarkers in the ALS field, refer to [157]). 

Recent evidence from several findings suggests that ALS 
patients show a dysregulation of gene expression profiles in- 
cluding miRNAs [2, 58, 98, 158–162]. 

Interestingly, the different miRNA expression patterns ob- 
served in ALS subjects could represent a disease signature and 
thus be useful both for improving the diagnosis of the disease 

by using them as potential biomarkers and for the develop- 
ment of new miRNA-based therapeutics. MiRNAs are 
expressed in a tissue-specific manner, and they can be released 
as circulating molecules in several bodily fluids, which sug- 
gests that there are differences between the profiles of affected 
subjects and healthy controls. Furthermore, they seem to be 
stable in body fluids, such as CSF, blood, and urine, because 
of their incorporation in exosomes, protein complexes similar 
to Argonaute proteins and lipoproteins, which confer resis- 
tance to RNase in the circulating environment [163–165]. 
These differences make them appealing as potential ALS pe- 
ripheral  biomarkers [166]. 

MiRNAs could be also used as therapeutic molecules; a 
tested approach to reduce the upregulated miRNAs includes 
the use of antagomirs and locked nucleic acids (LNAs). These 
molecules have the same conformation of RNA, and they are 
characterized by high stability and great affinity for the RNA 
targets. Therefore, they are able to prevent the binding of the 
miRNA to its target and at the same time they can reduce 
miRNA levels [167]. 

In contrast, a complementary approach aims to increase the 
expression of downregulated miRNAs through replacement 
with miRNA mimics. This type of miRNA has the same se- 
quence of the dysregulated miRNA, and its mRNA target is 
the same as the endogenously depleted miRNA. Thus, this 
methodology is set up on the hypothesis that decreasing the 
target protein levels could be useful for the development of a 
protective therapeutic strategy [168]. Unfortunately, miRNA 
mimics have a limited half-life; thus, a repetitive administra- 
tion would be necessary to maintain constant effects [169]. To 
overcome this problem, a viral vector could be used with the 
major challenge of delivering the selected miRNAs to the 
proper cells and crossing the blood–brain barrier (BBB). The 
discovery of adeno-associated virus AAV9 ability of crossing 
the BBB after systemic administration opened new expecta- 
tions for the development of gene therapy approaches for neu- 
rological disorders [170]. Interestingly, recent studies investi- 
gated the therapeutic potential of developing AAV-mediated 
RNAi gene therapy for ALS [171]. 

Stoica et al. evaluated the therapeutic efficacy of delivering 
an AAV9 construct encoding an artificial microRNA against 
the human SOD1 (amiRSOD1) in an ALS mouse model. They 
performed bilateral intracerebro ventricular (ICV) injections 
in ALS SOD1G93A pups at postnatal day 1 (P1) observing a 
50% increase in survival and a satisfactory preservation of the 
motor functions. ICV administration efficiently ensured gene 
delivery to both cortical and spinal cord motor neurons. 
Overall, AAV9 treatment was able to delay but not to prevent 
ALS progression, maybe due to the residual level of mutant 
hSOD1 expression [172]. Borel et al. tested the therapeutic 
efficacy of an artificial miRNA specific to SOD1 systemically 
delivered using the serotype rh.10 (rAAVrh10–miR–SOD1) in 
early symptomatic  adult  mice.  Treated  animals (P56–68) 



 

 

 

showed an increased lifespan by 21%, preserving muscle 
strength and both motor and respiratory functions [173]. 
However, AAV9 and AAVrh10 target mostly glial than motor 
neurons when delivered in adult mice, so current AAV vectors 
do not seem to be efficient enough to cross the BBB and to 
transduce the sufficient amount of motor neurons in order to 
achieve good results in terms of therapeutic efficacy. Despite 
this, promising results were obtained in lower motor neurons 
by Borel et al. in non-human primates delivering the same 
rAAVrh10–miR–SOD1 vector [173]. The potential use of ar- 
tificial miRNAs to induce RNAi against hSOD1 employing 
specific AAV serotypes [174] is now being extended to other 
ALS-associated genes such as C9ORF72 hexanucleotide ex- 
pansion [175]. 

Thus, even if more studies need to be performed, the 
results suggested that miRNA silencing/upregulation could 
be used to develop new potential therapeutic strat- egies  
for ALS. 

 
 
 

Conclusions  and Future Perspectives 
 

In the broad scenario of neurodegenerative disorders, ALS 
remains one of the most dramatically untreatable conditions. 
Because no effective treatment is available, investigating and 
defining previously unrecognized molecular mechanisms un- 
derlying the disease, such as miRNAs, could lead to the es- 
tablishment of new potentially therapeutic targets. The central 
role of miRNAs as key regulators of several important biolog- 
ical pathways supports their involvement in the insurgence 
and progression of neurodegenerative disorders. Many re- 
search studies are currently ongoing that highlight the dysreg- 
ulation of miRNA expression in ALS models and patients. 
Besides, broad dysregulation due to perturbation of proteins 
critical in miRNA biogenesis, defect in single specific 
miRNAs that govern pathways, and genes critical for motor 
neuronal function can play an essential pathogenetic role in 
ALS. 

Alterations in this pattern of expression could represent a 
potential diagnostic biomarker capable of supplying important 
information about the onset or the progression of the disease. 
Furthermore, new therapeutic strategies could be developed to 
restore the physiological levels of miRNA expression. In par- 
ticular, miRNA-based therapeutic treatment could be devel- 
oped to overexpress miRNAs that are downregulated and vice 
versa. 

Despite the fact that a large group of miRNAs have 
already been described  in  the  literature  as  dysregulated 
in ALS, several miRNAs need  yet  to  be  explored  in  
such a role,  as  reviewed  in  this  study.  Thus,  this  area 
of research requires further investigation toward a clin- 
ically  meaningful application. 
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