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The type III discrete Weibull distribution can be used in reliability analysis for modeling failure data such as the number of shocks,
cycles, or runs a component or a structure can overcome before failing. This paper describes three methods for estimating its
parameters: two customary techniques and a technique particularly suitable for discrete distributions, which, in contrast to the
two other techniques, provides analytical estimates, whose derivation is detailed here. The techniques’ peculiarities and practical
limits are outlined. A Monte Carlo simulation study has been performed to assess the statistical performance of these methods for
different parameter combinations and sample sizes and then give some indication for their mindful use. Two applications of real
data are provided with the aim of showing how the type III discrete Weibull distribution can fit real data, even better than other
popular discrete models, and how the inferential procedures work. A software implementation of the model is also provided.

1. Introduction

Most reliability studies assume that time is continuous, and
continuous probability distributions such as exponential,
gamma, Weibull, normal, and lognormal are commonly
used to model the lifetime of a component or a structure.
These distributions and the methods for estimating their
parameters are well known. In many practical situations,
however, lifetime is not measured with calendar time: for
example, when a machine works in cycles or on demands
and the number of cycles or demands before failure is
observed; or when the regular operation of a system is
monitored once per period, and the number of time periods
successfully completed is observed. Moreover, reliability data
are often grouped into classes or truncated according to some
censoring criterion. In all these cases, lifetime is modeled as
a discrete random variable (r.v.). Indeed, not much work has
been done in discrete reliability. Generally, most reliability
concepts for continuous lifetimes have been adapted to the
discrete case; in particular, discrete analogues of continuous
distributions have been introduced [1]. In this context,
geometric and negative binomial distributions are the corre-
sponding discrete alternatives for the exponential and gamma

distributions, respectively. Yet, discrete lifetime distributions
can be defined without any reference to a continuous
counterpart. Bracquemond and Gaudoin [2] provided an
exhaustive survey on discrete lifetime distributions.

The (two-parameter) continuous Weibull distribution is
one of the most widely used stochastic distributions for
modeling the life of a component; it is very flexible since, for
different chosen shape parameters, itmodels either increasing
or decreasing failure rates [3]. As a discrete alternative to
the continuous Weibull distribution, three main forms have
been proposed. The first one was introduced in Nakagawa
and Osaki [4] and is referred to as type I discrete Weibull;
it mimics the cumulative distribution function of the con-
tinuous Weibull distribution. The second one (type II) was
proposed and studied in Stein and Dattero [5]; it mimics
the hazard rate of its continuous counterpart. The third,
which is referred to as type III and this paper considers, was
introduced in Padgett and Spurrier [6]: their approach does
not start from the continuous Weibull distribution but tries
to generalize the notions of hazard rate and mean residual
life to the discrete case [7]. From a different perspective and
with a different objective, Roy and Dasgupta [8] proposed a
discretization method for continuous random variables for
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computing reliability in complex stress-strengthmodels, with
a specific application to theWeibull r.v.; however, the support
of the discrete r.v. thus provided is not the set of nonnegative
integers.

Type III discrete Weibull (henceforth simply discrete
Weibull) r.v. is not similar in functional form to any of the
functions describing a continuous Weibull distribution. It is
defined by the following cumulative distribution:

𝐹 (𝑥; 𝑐, 𝛽) = 𝑃 (𝑋 ≤ 𝑥; 𝑐, 𝛽) = 1 − 𝑒
−𝑐∑

𝑥+1

𝑗=1
𝑗

𝛽

𝑥 = 0, 1, . . .

(1)

with 𝑐 > 0 and 𝛽 ≥ −1 (and not 𝛽 ∈ R, as stated in Padgett
and Spurrier [6]) or equivalently by the following probability
mass function:

𝑃 (𝑋 = 0; 𝑐, 𝛽) = 𝑝 (0; 𝑐, 𝛽) = 1 − 𝑒
−𝑐

𝑃 (𝑋 = 𝑥; 𝑐, 𝛽) = 𝑝 (𝑥; 𝑐, 𝛽) = 𝑒
−𝑐∑

𝑥

𝑗=1
𝑗

𝛽

[1 − 𝑒
−𝑐(𝑥+1)

𝛽

]

𝑥 = 1, 2, . . .

(2)

which can be more compactly rewritten as follows:

𝑃 (𝑋 = 𝑥; 𝑐, 𝛽) = 𝑝 (𝑥; 𝑐, 𝛽) = 𝑒
−𝑐∑

𝑥

𝑗=1
𝑗

𝛽

[1 − 𝑒
−𝑐(𝑥+1)

𝛽

]

𝑥 = 0, 1, 2, . . . ,

(3)

letting∑
𝑥

𝑗=1

𝑗
𝛽

= 0 if 𝑥 = 0. The corresponding survival func-
tion is

𝑆 (𝑥) = 𝑃 (𝑋 ≥ 𝑥; 𝑐, 𝛽) = 𝑒
−𝑐∑

𝑥

𝑗=1
𝑗

𝛽

𝑥 = 0, 1, . . . , (4)

and the hazard rate (or failure rate) function is

ℎ (𝑥) =
𝑝 (𝑥)

𝑆 (𝑥)
= 1 − 𝑒

−𝑐(𝑥+1)

𝛽

𝑥 = 0, 1, . . . . (5)

The complexity of the expression of the probability mass
function (3) has somehow hindered the use and diffusion of
this discrete model. A plot of the probability mass function of
the discrete Weibull for three combinations of its parameters
is given in Figure 1. Note that for 𝛽 = 0, the discrete Weibull
reduces to a geometric r.v. with parameter 1 − exp(−𝑐),
characterized then by a constant failure rate; for 𝛽 > 0, the
distribution has an increasing failure rate, whereas for 𝛽 < 0,
it has a decreasing failure rate. The first and second moments
cannot in general be expressed in a closed form but can only
be expressed as an infinite series

E (𝑋) =

+∞

∑

𝑥=0

𝑥𝑃 (𝑋 = 𝑥; 𝑐, 𝛽) =

+∞

∑

𝑥=1

𝑒
−𝑐∑

𝑥

𝑗=1
𝑗

𝛽

, (6)
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+∞
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Figure 1: Probability mass function of type III discrete Weibull
distribution for three combinations of parameters.

The first moment (6) is finite for 𝛽 > −1 or for 𝛽 = −1 and
𝑐 > 1; the secondmoment (7) is finite for𝛽 > −1 or for𝛽 = −1

and 𝑐 > 2 (see the appendix).
This study first describes and discusses procedures for

estimating parameters 𝑐 and 𝛽 of the discrete Weibull r.v.,
one of which is an original adaptation of a technique used
for some discrete distributions, emphasizing their practical
limits (Section 2). An extensive Monte Carlo study, imple-
mented through an adhoc package developed under the
R environment, assesses and compares the performance of
these estimators, in terms of bias and variability, for different
combinations of the parameters and sample sizes (Section 3).
The estimation procedures are applied to two datasets taken
from the literature (Section 4), and, finally, the summarizing
remarks conclude the paper (Section 5).

2. Parameters Point Estimation

Focusing on the point estimation of the parameters of the
discrete Weibull r.v., based on an observed simple random
sample x = (𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

) of size 𝑛, three techniques are
now described: the method of proportion, which is strictly
related to the specific features of the distribution function of
the discrete Weibull r.v.; the maximum likelihood method;
and the method of moments. Below, we assume that both
parameters are unknown. Special attention will be devoted to
detecting samples leading to implausible estimates or to no
estimate at all with either technique.

Method of Proportion.Thismethod was originally introduced
in Khan et al. [9] for type I discreteWeibull and was extended
by Jazi et al. [10] to discrete inverse Weibull. It relies upon
the estimation of a probability (or two or more probabilities,
according to the number of parameters involved) using the
corresponding sample proportion(s). For the present model,
we have 𝑃(𝑋 = 0) = 1 − exp(−𝑐), which can be estimated
through the proportion of 0’s in the sample, 𝑦/𝑛, where
𝑦 = ∑

𝑛

𝑖=1

𝐼
𝑥

𝑖
=0

denotes the number of 0’s in the sample,
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𝐼
𝐴

the indicator function, which equals 1 if 𝐴 is true and 0

if 𝐴 is false. Thus, an estimate of 𝑐 is

𝑐
𝑃

= − log(1 −
𝑦

𝑛
) . (8)

Similarly, the probability 𝑃(𝑋 = 1) = exp(−𝑐)[1 − exp(−𝑐2
𝛽

)]

can be estimated by the proportion of 1’s in the sample, 𝑧/𝑛,
with 𝑧 = ∑

𝑛

𝑖=1

𝐼
𝑥

𝑖
=1

. Consequently, also substituting for 𝑐 its
estimate (8) (see the appendix), 𝛽 is estimated by

𝛽
𝑃

=
log {log (1 − 𝑦/𝑛 − 𝑧/𝑛) / log (1 − 𝑦/𝑛) − 1}

log 2
. (9)

Though the method of proportion easily provides an analyti-
cal expression for both estimates, an apparentweakness is that
this method does not exploit all the information contained in
the sample, since the estimates involve only the rates of 0’s
and 1’s. Moreover, it fails to provide feasible estimates for 𝛽

if there are no 0’s in the sample. In this case, 𝑐
𝑃

= 0, which
is a boundary value for 𝑐, and 𝛽

𝑃

in (9) cannot be computed.
This is particularly common for small samples, and for small
values of 𝑐. If in the sample there are no 1’s (𝑧 = 0), then
by formula (9), the estimate 𝛽

𝑃

is not available again. The
method fails in computing an estimate for𝛽 even if the sample
contains only 0’s and 1’s (𝑦 + 𝑧 = 𝑛).

The method of proportion can also lead to “implausible”
estimates of 𝛽, that is, estimates that do not belong to its
parameter space: 𝛽

𝑃

< −1. This happens when

log (1 − 𝑦/𝑛 − 𝑧/𝑛)

log (1 − 𝑦/𝑛)
− 1 <

1

2
, (10)

which is equivalent to say

1 −
𝑦

𝑛
−

𝑧

𝑛
> (1 −

𝑦

𝑛
)

3/2

, (11)

or in terms of 𝑧

𝑧

𝑛
< (1 −

𝑦

𝑛
) − (1 −

𝑦

𝑛
)

3/2

. (12)

The probability of an “implausible” estimate could be theo-
retically derived from the last inequality, remembering that 𝑦
and 𝑧 are the first two marginal distributions of a trinomial
r.v. with parameters (𝑛, 𝑝

0

= 𝑃(𝑋 = 0), 𝑝
1

= 𝑃(𝑋 = 1),
𝑝
2

= 1 − 𝑝
0

− 𝑝
1

). Figure 2 shows the combinations of 𝑦/𝑛

and 𝑧/𝑛 leading to such implausible estimates as a subset of
the triangular region (0 ≤ 𝑦/𝑛 ≤ 1; 0 ≤ 𝑧/𝑛 ≤ 1 − 𝑦/𝑛).
For example, in the sample x = (0, 0, 0, 1, 2, 2, 3, 5, 6, 8), with
𝑦/𝑛 = 0.3 and 𝑧/𝑛 = 0.1, the method of proportion provides,
through (8) and (9), the estimates 𝑐

𝑃

= 0.357 and 𝛽
𝑃

=

−1.210.

Maximum Likelihood Method. Having defined the log-
likelihood function as 𝑙(𝑐, 𝛽; x) = log∏

𝑛

𝑖=1

𝑃(𝑋 = 𝑥
𝑖

; 𝑐, 𝛽), we
obtain

𝑙 (𝑐, 𝛽; x) = −𝑐

𝑛

∑

𝑖=1

𝑥

𝑖

∑

𝑗=1

𝑗
𝛽

+

𝑛

∑

𝑖=1

log [1 − 𝑒
−𝑐(𝑥

𝑖
+1)

𝛽

] . (13)
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Figure 2: “Plausible” and “implausible” regions for the estimate of
𝛽 through the method of proportion.

The maximum likelihood estimates of 𝑐 and 𝛽 (𝑐ML, 𝛽ML)
are defined as the values that maximize the log-likelihood
function

(𝑐ML, 𝛽ML) = argmax 𝑙 (𝑐, 𝛽; x) . (14)

The two first derivatives of 𝑙(𝑐, 𝛽; x) are quite easily computed,

𝜕𝑙 (𝑐, 𝛽; x)
𝜕𝑐

=

𝑛

∑

𝑖=1

[

[

(𝑥
𝑖

+ 1)
𝛽

𝑒
−𝑐(𝑥

𝑖
+1)

𝛽

1 − 𝑒−𝑐(𝑥𝑖+1)
𝛽

−

𝑥

𝑖

∑
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𝑗
𝛽]

]

=

𝑛

∑

𝑖=1

𝑒
−𝑐(𝑥

𝑖
+1)

𝛽

∑
𝑥

𝑖
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𝑗
𝛽

− ∑
𝑥

𝑖

𝑗=1

𝑗
𝛽

1 − 𝑒−𝑐(𝑥𝑖+1)
𝛽

,

𝜕𝑙 (𝑐, 𝛽; x)
𝜕𝛽

= 𝑐

𝑛

∑

𝑖=1

𝑒
−𝑐(𝑥

𝑖
+1)

𝛽

∑
𝑥

𝑖
+1

𝑗=1

𝑗
𝛽 log 𝑗 − ∑

𝑥

𝑖

𝑗=1

𝑗
𝛽 log 𝑗

1 − 𝑒−𝑐(𝑥𝑖+1)
𝛽

,

(15)

but, as already noted in Padgett and Spurrier [6], the solution
to the maximization of 𝑙(𝑐, 𝛽; x) (with the constraints that 𝑐

and 𝛽 belong to in their natural parameter spaces) cannot
be derived in a closed form, by equating the expressions
in (15) to zero, but can be obtained only numerically, for
example, using one of the functions nlm, optim, and Rsolnp
in the R programming environment, which allows the user
to solve nonlinear constrained or unconstrained minimiza-
tion/maximization problems. Even this method cannot be
successfully applied to every possible sample; in particular,
the method fails in providing a solution if 𝑦 + 𝑧 = 𝑛 (i.e.,
if the sample contains only 0’s and 1’s). In this case, in fact,
it can be easily proved that the first-order 𝛽 derivative of
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the log-likelihood is never null; the log-likelihood does not
have an absolute maximum in the parameter space. Let us
consider, for example, the following sample: x = (0, 1). The
corresponding likelihood function is given by

𝐿 (x; 𝑐, 𝛽) = (1 − 𝑒
−𝑐

) 𝑒
−𝑐

(1 − 𝑒
−𝑐2

𝛽

) (16)

and the log-likelihood

𝑙 (𝑐; 𝛽) = −𝑐 + log (1 − 𝑒
−𝑐

) + log (1 − 𝑒
−𝑐2

𝛽

) . (17)

The first-order derivatives are

𝜕𝑙 (𝑐, 𝛽; 𝑥
𝑖

)

𝜕𝑐
= −1 +

𝑒
−𝑐

1 − 𝑒−𝑐
+

2
𝛽

𝑒
−𝑐2

𝛽

1 − 𝑒−𝑐2
𝛽
, (18a)

𝜕𝑙 (𝑐, 𝛽; 𝑥
𝑖

)

𝜕𝛽
=

𝑒
−𝑐2

𝛽

𝑐2
𝛽 log 2

1 − 𝑒−𝑐2
𝛽

. (18b)

The derivative (18b) is never null but tends to zero for 𝛽 →

+∞; when 𝛽 → +∞ the third addend in the derivative
(18a) goes to zero, and solving the equation −1+ exp(−𝑐)/[1−

exp(−𝑐)] = 0 one can obtain 𝑐
∗

ML = log 2. Note that this is the
same estimate the method of proportion supplies.

Method of Moments. Through this method, the parameter
estimates are obtained solving, in terms of 𝑐 and 𝛽, the
equations E(𝑋) = 𝜇

1

= 𝑚
1

and E(𝑋
2

) = 𝜇
2

= 𝑚
2

,
where 𝑚

1

and 𝑚
2

are the first and second sample moments:
𝑚
1

= ∑
𝑛

𝑖=1

𝑥
𝑖

/𝑛, 𝑚
2

= ∑
𝑛

𝑖=1

𝑥
2

𝑖

/𝑛. Since they cannot be
solved analytically, as suggested in Khan et al. [9], one can
numerically minimize, with respect to 𝑐 and 𝛽, the following
quadratic loss function:

L (𝑐, 𝛽) = (𝑚
1

− 𝜇
1

)
2

+ (𝑚
2

− 𝜇
2

)
2

. (19)

The task can be carried out, for example, again using the
functions nlm, optim, or solnp in the R environment [11].
The solution is the couple (𝑐

𝑀

, 𝛽
𝑀

), which should correspond
to the value L(𝑐

𝑀

, 𝛽
𝑀

) = 0. Note that the minimization
should be subject to the natural constraints 𝑐 > 0 and 𝛽 >

−1. Without these constraints, the minimization algorithm
may get stuck in implausible intermediate-step solutions.
Indeed, the optim function under the R environment seems
to provide excellent results in terms of convergence to the
optimal solution, even without setting the constraints on 𝑐

and 𝛽. As to the launch values for 𝑐 and 𝛽, required by any
minimization function, one can set 𝛽 = 𝛽

0

= 0 and 𝑐 =

𝑐
0

= log[(1 + 𝑥)/𝑥]. This pair of values is always computable
and feasible (unless the sample contains all 0’s) and ensures
at the first iteration that 𝑚

1

= E(𝑋): in fact, recalling (6),
E(𝑋; 𝑐

0

, 𝛽
0

) = ∑
+∞

𝑖=1

exp(−𝑐
0

∑
𝑖

𝑗=1

1) = ∑
+∞

𝑖=1

exp(−𝑖𝑐
0

) =

exp(−𝑐
0

)/[1 − exp(−𝑐
0

)] = 𝑥.
When the sample contains only 0’s and 1’s, the method

of moments is not applicable. To see this, first consider the
probabilitymass function of the discreteWeibull r.v., and note
that by letting 𝛽 tend to +∞ in (3), it degenerates into a r.v.
that takes only two values: 0 with probability 1 − exp(−𝑐) and

1 with probability exp(−𝑐). It is then clear that if the sample
is made up of a fraction 𝑟 of 0’s and a fraction (1 − 𝑟) of 1’s,
the equality of both first and second moments computed on
the sample and on the original r.v. holds for 1 − exp(−𝑐) =

𝑟; that is, 𝑐 = − log(1 − 𝑟) and 𝛽 → +∞. In this case, the
loss function L(𝑐, 𝛽) does not admit an absolute minimum,
it only admits an inferior limit.

For some samples, the numerical minimization proce-
dure can require a huge computation time, much larger than
that required by themaximum likelihoodmethod.This is due
to the iterated calculation of the first and second moments,
which is itself numerical and particularly time consuming for
the negative values of 𝛽 (in this case, in fact, the convergence
of the series in (6) and (7) is slower).

Given the complexity of the estimators derived through
the methods listed in this section (and only the method of
proportion provides an analytical expression for them), not
as much can be analytically derived about their statistical
properties for finite sample size, that is, bias and variability.
When the method of proportion can be applied, it provides a
consistent estimator for 𝑐;𝛽

𝑃

is consistent as well, but nothing
can be said about their unbiasedness (see the analogous
discussion in Khan et al. [9] for type I discrete Weibull). For
large samples, the general properties of the estimators derived
from the maximum likelihood method and the method of
moments can be recalled. In the next section, an extensive
simulation study is presented, which was performed to
investigate the performance of the estimation methods and
outline some practical advice for their use.

3. Simulation Study

The estimators presented in the previous section were inves-
tigated through an extensive Monte Carlo study; they were
compared in terms of bias (𝐵), defined as 𝐵(𝜃

𝐸

) = E(𝜃
𝐸

) − 𝜃,
and root mean square error (RMSE), defined as RMSE(𝜃

𝐸

) =

√E[(𝜃
𝐸

− 𝜃)
2

], where 𝜃 denotes one of the two parameters (𝑐
or 𝛽) and 𝜃

𝐸

denotes one of the three corresponding estima-
tors, according to the method indicated by the subscript 𝐸

(method of proportion, 𝑃; maximum likelihoodmethod, ML
and method of moments, 𝑀).

3.1. Simulation Design. In this study, several parameter com-
binations and sample sizes (𝑛 = 20, 50, 100) were considered.
The values (𝑐, 𝛽) were chosen in order to explore a large
spectrum of the discrete Weibull distribution, in particular
to comprise increasing, constant, and decreasing failure rates.
At the same time, the parameters were set in order to keep
the discrete nature of the distribution reasonable: values
entailing a nonnegligible probability for a large number of
integer values were deliberately excluded (in this case, a
continuous r.v. should be preferred to model failure data);
parameter values ensuring a nonnegligible probability for
just the first integers were avoided as well (one assumes
the component that is monitored is likely to last for more
than 1 or 2 cycles). Table 1 shows the combinations of values
of 𝑐 and 𝛽 examined in the simulation study along with
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Table 1: Parameter combinations and corresponding expected
value, standard deviation, and 0.99-quantile for the simulation
study.

𝑐 𝛽 E(𝑋) SD(𝑋) 𝐹
−1

(0.99)

0.1 1 3.01 2.06 9
0.1 0.75 3.64 2.67 11
0.1 0.5 4.61 3.69 16
0.1 0.25 6.26 5.61 25
0.2 0.75 2.18 1.78 7
0.2 0.5 2.62 2.30 10
0.2 0.25 3.30 3.19 14
0.2 0 4.52 4.99 23
0.4 0.5 1.38 1.42 6
0.4 0.25 1.63 1.80 8
0.4 0 2.03 2.48 11
0.4 −0.25 2.76 3.95 18
0.6 0.25 1.03 1.28 5
0.6 0 1.22 1.64 7
0.6 −0.25 1.53 2.35 11
0.6 −0.5 2.19 4.21 20
0.8 0 0.82 1.22 5
0.8 −0.25 0.98 1.62 7
0.8 −0.5 1.29 2.56 12
0.9 −0.5 1.04 2.10 10

the corresponding expected value, standard deviation, and
99% quantile. A note about the computation of the expected
value and standard deviation is due: they are calculated
numerically—see formulas (6) and (7)—considering the first
𝑛max integers, with 𝑛max = 2𝐹

−1

(1 − 𝜖) and 𝜖 as small as
possible (here, 𝜖 = 0.0001, which actually proved to be a
satisfactory practical choice for the considered scenarios).

3.2. Software Implementation. The simulation study was
based on 5,000 Monte Carlo replications and carried out
under the R environment [11]. In particular, the necessary
code was developed to implement the probability mass
function, the cumulative distribution function and its inverse,
and the random generation for the discrete Weibull model;
to compute the first and second moments; and to to realize
the algorithms corresponding to each estimation method.
This code, structured as an R package, DiscreteWeibull,
is freely available in the CRAN repository [12].

3.3. Simulation Results. Table 2 shows the bias and rootmean
square error for both estimators derived from each of the
three methods, under each combination of the two param-
eters and for each sample size. The results took into account
the applicability limits of the three methods, computing the
Monte Carlo averages over the feasible samples only. For the
smallest sample size (𝑛 = 20) and, more rarely, for 𝑛 = 50, the
method of proportion met a certain percentage of infeasible
samples under several scenarios, the highest (about 24%)
with 𝑛 = 20, 𝑐 = 0.1, and 𝛽 = 0.25. The maximum likelihood
method and the method of moments encountered only a few

infeasible samples under some scenarios, whose rate was in
any case always smaller than 1%.

Note that strictly speaking, to compare the behavior of
the estimators under different scenarios, one should use
their relative bias and relative root mean square error as
performance indexes, that is, the bias and the root mean
square error divided by the MC expected value of the esti-
mator. This way of proceeding would provide a more correct
“double” reading of the results, assessing the performance of
a single estimator moving through different scenarios and
comparing the performance of the three estimators under
a fixed scenario. Our choice of using “absolute” instead
of “relative” indexes was partially dictated by the necessity
of including negative and null values for 𝛽, which would
represent difficulty when computing the relative indexes
(the denominator could take very small values, dramatically
amplifying the corresponding absolute value of the index and
making the reading arduous).

Trying to synthesize the results, let us start with the largest
sample size (𝑛 = 100) and the estimators of parameter 𝑐. It
is quite evident that all three estimators show a modest bias,
regardless of the values of 𝑐 and 𝛽. The maximum likelihood
method looks the best in this sense, while the method of
moments shows the largest bias in absolute value for high
values of 𝑐 and negative values of 𝛽, and it is often negatively
biased. As to the root mean square error, the method of
moments and the maximum likelihood method present very
similar values under each scenario; themethod of proportion
shows a larger value, especially for small values of 𝑐. The
magnitude of RMSE seems to be much more affected by the
value of 𝑐 rather than by 𝛽 for all the estimators.

As to the estimators of 𝛽, on average, the method of
proportion provides the least biased estimator, unless 𝑐 is
too small, while the maximum likelihood method and, to
a larger extent, the method of moments are significantly
biased. While 𝑀 and ML estimators always overestimate
the true value of the parameter, the 𝑃 estimator seems to
underestimate it for lower values. In absolute value, the bias
of the ML estimator increases as 𝑐 increases for a fixed 𝛽;
it increases as 𝛽 increases for a fixed 𝑐. The bias of the 𝑀

estimator increases as 𝑐 increases for a fixed 𝛽; it increases
as 𝛽 decreases for a fixed 𝑐. In terms of variability, the
𝑀 and ML estimators perform in a similar way for each
parameter combination, while the 𝑃 estimator is much more
variable and presents very different values moving through
the scenarios: its RMSE is from 2 to 6 times larger than the
corresponding value of its competitors. The worst scenarios
for the estimator, in this sense, are those connected with
𝑐 = 0.1, and this is quite reasonable. In fact, in this case, the
probability 𝑃(𝑋 = 0) equals 0.095, which corresponds to the
expected fraction of zeros in the sample, and this small value
leads to a modest performance of the 𝑃 method, which uses
only proportions of 0’s and 1’s of the samples and discards the
other information.

Decreasing the sample size to 50 and 20, the bias in
absolute value and the root mean square error of the esti-
mators for each scenario obviously increase. However, the
behaviors and trends exposed for 𝑛 = 100 hold still. The bias
of the estimators of 𝛽 derived by the method of moments
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Table 2: Simulation results: bias (B) and root mean square error (RMSE) for the estimators of 𝑐 and 𝛽.

𝑐
P ML M

𝛽
P ML M

B RMSE B RMSE B RMSE B RMSE B RMSE B RMSE
𝑛 = 100

0.1 0.001 0.032 0.000 0.024 0.001 0.025 1 0.033 0.636 0.028 0.181 0.020 0.183
0.1 0.001 0.032 0.000 0.024 0.001 0.025 0.75 0.025 0.658 0.025 0.162 0.017 0.165
0.1 0.001 0.032 0.000 0.023 0.001 0.024 0.50 0.014 0.683 0.022 0.143 0.017 0.145
0.1 0.001 0.032 0.000 0.022 0.000 0.023 0.25 −0.001 0.718 0.019 0.124 0.019 0.127
0.2 0.001 0.048 0.000 0.040 0.000 0.040 0.75 0.009 0.475 0.029 0.179 0.029 0.177
0.2 0.001 0.048 0.000 0.039 −0.001 0.039 0.5 0.003 0.494 0.025 0.158 0.027 0.158
0.2 0.001 0.048 0.000 0.038 −0.002 0.038 0.25 −0.003 0.512 0.022 0.140 0.029 0.143
0.2 0.001 0.048 0.000 0.037 −0.003 0.038 0 −0.008 0.537 0.019 0.120 0.031 0.128
0.4 0.003 0.072 0.000 0.065 −0.001 0.065 0.5 0.000 0.377 0.030 0.187 0.033 0.186
0.4 0.003 0.072 0.000 0.064 −0.002 0.064 0.25 −0.004 0.395 0.027 0.167 0.035 0.168
0.4 0.003 0.072 0.000 0.063 −0.005 0.063 0 −0.010 0.412 0.025 0.147 0.038 0.152
0.4 0.003 0.072 −0.001 0.062 −0.010 0.064 −0.25 −0.017 0.430 0.023 0.127 0.047 0.139
0.6 0.004 0.093 0.000 0.087 −0.002 0.086 0.25 0.004 0.359 0.036 0.195 0.043 0.195
0.6 0.004 0.093 0.000 0.086 −0.005 0.086 0 −0.001 0.371 0.032 0.175 0.046 0.178
0.6 0.004 0.093 −0.001 0.085 −0.011 0.085 −0.25 −0.007 0.386 0.030 0.154 0.055 0.163
0.6 0.004 0.093 −0.001 0.083 −0.029 0.088 −0.5 −0.013 0.406 0.028 0.131 0.077 0.152
0.8 0.006 0.111 0.001 0.106 −0.005 0.105 0 −0.001 0.363 0.040 0.204 0.056 0.204
0.8 0.006 0.111 0.001 0.105 −0.011 0.105 −0.25 −0.005 0.379 0.038 0.182 0.064 0.188
0.8 0.006 0.111 0.000 0.104 −0.027 0.106 −0.5 −0.009 0.397 0.035 0.159 0.085 0.175
0.9 0.008 0.123 0.001 0.116 −0.027 0.116 −0.5 −0.012 0.398 0.040 0.176 0.091 0.188

𝑛 = 50

0.1 0.001 0.046 0.000 0.034 0.001 0.034 1 0.061 0.943 0.059 0.269 0.046 0.261
0.1 0.001 0.046 −0.001 0.033 0.001 0.033 0.75 0.040 0.978 0.053 0.240 0.045 0.236
0.1 0.001 0.046 −0.001 0.032 0.000 0.032 0.50 0.021 1.012 0.047 0.211 0.042 0.208
0.1 0.001 0.046 −0.001 0.031 −0.001 0.031 0.25 0.005 1.047 0.040 0.182 0.043 0.181
0.2 0.002 0.067 −0.001 0.055 −0.002 0.055 0.75 0.013 0.703 0.059 0.262 0.060 0.258
0.2 0.002 0.067 −0.001 0.054 −0.002 0.054 0.5 0.003 0.732 0.052 0.232 0.057 0.231
0.2 0.002 0.067 −0.002 0.053 −0.004 0.053 0.25 −0.014 0.761 0.047 0.205 0.059 0.209
0.2 0.002 0.067 −0.002 0.052 −0.007 0.052 0 −0.026 0.801 0.041 0.176 0.063 0.186
0.4 0.005 0.100 −0.002 0.091 −0.004 0.090 0.5 0.005 0.537 0.065 0.278 0.071 0.274
0.4 0.005 0.100 −0.002 0.089 0.072 0.088 0.25 −0.004 0.562 0.058 0.247 0.072 0.247
0.4 0.005 0.100 −0.002 0.088 −0.011 0.086 0 −0.014 0.588 0.053 0.218 0.078 0.223
0.4 0.005 0.100 −0.003 0.086 −0.020 0.086 −0.25 −0.027 0.626 0.048 0.189 0.091 0.203
0.6 0.007 0.131 −0.002 0.123 −0.006 0.120 0.25 0.005 0.518 0.074 0.291 0.089 0.287
0.6 0.007 0.131 −0.002 0.122 −0.011 0.119 0 −0.005 0.542 0.068 0.262 0.094 0.263
0.6 0.007 0.131 −0.003 0.120 −0.022 0.117 −0.25 −0.016 0.564 0.063 0.231 0.107 0.240
0.6 0.007 0.131 −0.004 0.117 −0.047 0.119 −0.5 −0.025 0.594 0.058 0.199 0.136 0.225
0.8 0.012 0.158 0.000 0.151 −0.010 0.147 0 −0.009 0.534 0.085 0.309 0.114 0.306
0.8 0.012 0.158 −0.001 0.149 −0.021 0.145 −0.25 −0.018 0.556 0.079 0.278 0.127 0.282
0.8 0.012 0.158 −0.002 0.147 −0.045 0.145 −0.5 −0.029 0.586 0.075 0.245 0.154 0.264
0.9 0.014 0.175 −0.002 0.165 −0.045 0.160 −0.5 −0.029 0.590 0.086 0.273 0.167 0.288

𝑛 = 20

0.1 0.004 0.075 0.000 0.055 0.002 0.054 1 −0.156 1.154 0.145 0.472 0.122 0.443
0.1 0.004 0.075 0.000 0.054 0.001 0.052 0.75 −0.125 1.139 0.129 0.421 0.111 0.388
0.1 0.004 0.075 0.000 0.053 0.000 0.050 0.50 −0.082 1.128 0.113 0.368 0.105 0.336
0.1 0.004 0.075 0.000 0.051 −0.003 0.047 0.25 −0.013 1.103 0.098 0.317 0.105 0.292
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Table 2: Continued.

𝑐
P ML M

𝛽
P ML M

B RMSE B RMSE B RMSE B RMSE B RMSE B RMSE
0.2 0.008 0.110 −0.001 0.090 −0.002 0.087 0.75 0.011 1.126 0.141 0.455 0.143 0.441
0.2 0.008 0.110 −0.001 0.088 −0.004 0.084 0.5 0.006 1.153 0.124 0.402 0.136 0.389
0.2 0.008 0.110 −0.001 0.086 −0.008 0.081 0.25 0.005 1.165 0.110 0.354 0.135 0.346
0.2 0.008 0.110 −0.002 0.084 −0.014 0.077 0 0.027 1.163 0.097 0.304 0.141 0.306
0.4 0.013 0.163 −0.002 0.147 −0.006 0.142 0.5 0.004 0.912 0.156 0.476 0.170 0.462
0.4 0.013 0.163 −0.002 0.145 −0.012 0.138 0.25 −0.018 0.948 0.140 0.426 0.169 0.416
0.4 0.013 0.163 −0.003 0.142 −0.021 0.133 0 −0.040 0.979 0.129 0.378 0.177 0.375
0.4 0.013 0.163 −0.004 0.139 −0.035 0.128 −0.25 −0.038 0.992 0.115 0.328 0.192 0.340
0.6 0.023 0.216 0.001 0.199 −0.010 0.189 0.25 −0.017 0.883 0.171 0.499 0.202 0.482
0.6 0.023 0.214 −0.001 0.196 −0.020 0.184 0 −0.043 0.922 0.163 0.458 0.214 0.447
0.6 0.023 0.216 −0.002 0.193 −0.037 0.179 −0.25 −0.056 0.949 0.149 0.405 0.228 0.407
0.6 0.023 0.216 −0.004 0.190 −0.072 0.179 −0.5 −0.063 0.972 0.138 0.354 0.263 0.383
0.8 0.031 0.265 0.002 0.247 −0.019 0.233 0 −0.025 0.885 0.199 0.534 0.252 0.517
0.8 0.031 0.265 0.001 0.244 −0.036 0.227 −0.25 −0.035 0.905 0.191 0.494 0.274 0.487
0.8 0.031 0.265 −0.002 0.241 −0.069 0.225 −0.5 −0.052 0.935 0.182 0.443 0.306 0.459
0.9 0.038 0.292 0.000 0.267 −0.068 0.250 −0.5 −0.029 0.914 0.205 0.492 0.331 0.502
P: method of proportion,M: method of moments, and ML: maximum likelihood method.

and the maximum likelihood method becomes substantial
especially for large values of 𝑐 and negative values of 𝛽; in
these cases, the method of proportion is less biased, but its
RMSE is still much larger than those of its competitors. For
high values of 𝑐 (viz., equal to or larger than 0.8) and 𝑛 = 20,
the bias in absolute value of the estimators of 𝑐 for themethod
of proportion and the method of moments tends to become
muchmore substantial than that for themethod ofmaximum
likelihood.

Looking at the overall values of RMSE for the estimators
of 𝑐 and 𝛽 obtained through the three methods, it is also
evident that much more uncertainty is associated with the
point estimation of the second parameter.

Figure 3 shows theMCdistributions of the estimators of 𝑐
and 𝛽 for 𝑛 = 50 and three combinations of parameters. From
the analysis, it emerges that the positive bias of 𝛽ML and 𝛽

𝑀

is
due to the presence of a certain number of samples providing
estimates much larger than the true value of 𝛽, while the MC
medians of both estimators are very close to it.These boxplots
also emphasize the presence of implausible values for the
estimates of𝛽 yielded by themethod of proportion (𝛽

𝑃

< −1).
Trying to synthesize all the results presented here—

which are not, however, exhaustive—the method of propor-
tion, despite its straightforward analytical derivation of the
estimators, performs worse overall (especially in terms of
variability) than the method of moments and the maximum
likelihood method, and it is competitive only for some spe-
cific scenarios, namely, for medium/high values of 𝑐, where it
can better exploit the information contained in the sample.

4. Applications to Real Data

The methods that have been illustrated and empirically
investigated in the previous sections are applied to two

Table 3: Empirical frequency distributions for the first example
dataset.

cat. 0 1 2 3 4 5 6 7 8 9 10 11
𝑓
𝑖

20 10 11 10 2 3 3 0 0 1 1 1

Table 4: Estimates of the parameters of the discrete Weibull for the
first example dataset.

Point estimators
𝑐
𝑃

𝛽
𝑃

𝑐ML 𝛽ML 𝑐
𝑀

𝛽
𝑀

0.389 −0.518 0.361 0.068 0.356 0.083

datasets. The first one, called J1 [13], contains the number
of failures of software observed over 62 weeks, and its
frequency distribution is reported in Table 3. Assuming that
the statistical distribution underlying the data is a type III
discrete Weibull, it is possible to compute the estimates
yielded by the three estimators described in Section 3, which
are reported in Table 4. Note that the method of moments
and the maximum likelihood method provide very similar
estimates for 𝑐 and 𝛽; the method of proportion supplies
an estimate of 𝛽 that is quite different from the other two
methods (moreover, it is negative), while the estimate of 𝑐,
𝑐
𝑃

is quite close to 𝑐
𝑀

and 𝑐ML. If we want to test the goodness
of fit of the discreteWeibullmodel for the data, we can use the
chi-square statistic𝑇 = ∑

𝑘

𝑖=1

(𝑓
𝑖

−𝑛𝑝
𝑖

)
2

/(𝑛𝑝
𝑖

), where𝑓
𝑖

denotes
the category frequencies and 𝑝

𝑖

denotes the probability of
an observation falling into the 𝑖th category under the study
model, such that ∑

𝑘

𝑖=1

𝑝
𝑖

= 1 and ∑
𝑘

𝑖=1

𝑓
𝑖

= 𝑛. If the model
holds, 𝑇 is asymptotically distributed as a chi-square with 𝑘−

1−𝑝 degrees of freedom,where𝑝 is the number of parameters
to be estimated (in this case, 𝑝 = 2). Before computing the
empirical value of 𝑇, under each model we have to group
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Figure 3: Boxplot of Monte Carlo distributions of 𝑐 and 𝛽 for three parameter combinations (𝑛 = 50 and 5,000 MC runs). The dashed
horizontal lines indicate the true value of the parameters 𝑐 and 𝛽.

the categories in such a way that all the expected frequencies
𝑛𝑝
𝑖

are not smaller than 5. Table 5 reports these groupings.
The goodness-of-fit chi-square test accepts the type III
Weibull model with the ML and 𝑀 parameter estimates
(statistic’s value of 3.8843 and 𝑃 value of 0.2742 for ML,
3.8514 and 0.2780 for𝑀), while it refuses the model with the
𝑃 parameter estimates (statistic’s value of 10.2323 and𝑃-value
of 0.0060) at a 5% nominal level of significance. Again, there
is a notable difference between the results for the method
of proportion and the maximum likelihood method and the
method of moments.

The second example considers the data regarding acci-
dents to 647womenworking onH. E. Shells during fiveweeks
[14], whose frequency distribution is reported in Table 6.
Even if these are not strictly failure data, in the meaning
explained in Section 1, nevertheless they are count data,
and the discrete Weibull r.v. can be used to model them.
The parameter estimates yielded by the three methods are
reported in Table 7. The estimates of 𝑐 are again very close to
each other; all the estimates of 𝛽 are negative and quite small
in absolute value. Note that all the pairs (𝑐, 𝛽) fall outside
the scenarios explored in the simulation study; nevertheless,
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Table 5: Empirical and theoretical frequency distributions for the
first example dataset.

cat. 0 1 2 3-4 ≥5
Empirical 20 10 11 12 9
P 20.0 10.0 6.3 7.7 17.9
cat. 0 1 2 3 4-5 ≥6
Empirical 20 10 11 10 5 6
ML 18.8 13.6 9.5 6.6 7.5 6.0
M 18.6 13.6 9.6 6.6 7.6 5.9

Table 6: Empirical frequency distribution for the second example
dataset.

cat. 0 1 2 3 4 5
𝑓
𝑖

447 132 42 21 3 2

Table 7: Estimates of the parameters of the discrete Weibull for the
second example dataset.

Point estimators
𝑐
𝑃

𝛽
𝑃

𝑐
𝑀

𝛽
𝑀

𝑐ML 𝛽ML

1.174 −0.122 1.153 −0.0169 1.162 −0.0474

the empirical distribution of the data (many 0’s and 1’s) is
favorable to the method of proportion, and the large sample
size (𝑛 = 647) should ensure that all three methods are
reliable. Testing the goodness-of-fit of the type III discrete
Weibull model with the ML parameters, which requires
grouping the last two categories (then 𝑘 = 5), the value
of the chi-square statistic with 𝑘 − 1 − 𝑝 = 2 degrees of
freedom is 3.9595, and the corresponding 𝑃-value is 0.1381.
Note that this model fits the data better than the natural
negative binomial model considered by Greenwood and Yule
[14] and the generalized Poisson model proposed by Consul
and Jain [15].

5. Conclusion

This paper examined three estimators for the parameters
of the type III discrete Weibull random variable, which
represents an alternative distribution to the geometric and
negative binomial for modeling discrete reliability data, and
can ensure increasing and decreasing failure rates. One of
the methods presented (method of proportion) has recently
been introduced in discrete models, and here it is newly
phrased; it provides a closed form for the estimates of both
parameters. The other two methods (maximum likelihood
method and method of moments) are standard approaches
for estimating parameters, but due to the complex expression
of the probability mass function, they provide the estimates
as a numerical solution to a minimization/maximization
problem. It follows that not as much can be said about the
statistical properties of the estimators for a finite sample size;
then, an extensive Monte Carlo simulation study was carried
out to assess their behavior. Far from giving a definitive solu-
tion to the problem, the study highlighted that the method of
proportion, when applicable, can provide reliable estimates

even for small sample sizes only under specific parameter
configurations, whereas under other configurations it may
provide poor results, especially in terms of the accuracy of the
estimator of the second parameter. The other two standard
methods can be usefully adopted under most scenarios;
caution is necessary since some parameter combinationsmay
lead to nonnegligible bias of the corresponding estimators.
The paper stressed the potential practical applicability limits
of each method, also in terms of computational burden, and
illustrated their use through two examples with real data.

Appendix

A. Existence of First- and
Second-Order Moments

Let us denote with 𝑎
𝑛

, 𝑛 ≥ 1, the general element of the
series in (6), 𝑎

𝑛

= exp[−𝑐∑
𝑛

𝑗=1

𝑗
𝛽

]. E(𝑋) exists finite if
and only if the series is convergent. If 𝛽 ≥ 0, the series is
convergent according to the ratio criterion, since the limit
𝑙
1

= lim
𝑛→∞

𝑎
𝑛+1

/𝑎
𝑛

= lim
𝑛→∞

exp[−𝑐(𝑛 + 1)
𝛽

] is 0 if 𝛽 > 0

and is exp(−𝑐) < 1 if 𝛽 = 0.
If −1 < 𝛽 < 0, note that ∑𝑛

𝑗=1

𝑗
𝛽

> ∫
𝑛

1

𝑗
𝛽

𝑑𝑗 = 𝑛
𝛽+1

/(𝛽 +

1) − 1/(𝛽 + 1), and then

𝑒
−𝑐∑

𝑛

𝑗=1
𝑗

𝛽

< 𝑒
−𝑐[𝑛

1+𝛽

/(1+𝛽)−1/(1+𝛽)]

= 𝑒
𝑐/(1+𝛽)

𝑒
−𝑐𝑛

1+𝛽

/(1+𝛽)

.

(A.1)

The series with the minoring term is convergent (e.g., using
the comparison criterion with the harmonic converging
series) and thus the original series in (6), too.

If 𝛽 = −1, note that∑𝑛
𝑗=1

1/𝑗 > ∫
𝑛

1

1/𝑗 𝑑𝑗 = log 𝑛 and then

𝑒
−𝑐∑

𝑛

𝑗=1
1/𝑗

< 𝑒
−𝑐 log 𝑛

= 𝑛
−𝑐

. (A.2)

The series with the minoring term is convergent for 𝑐 > 1

and thus the original series in (6) is too. Moreover, since
∫
𝑛

1

1/𝑗 𝑑𝑗 = log 𝑛 > ∑
𝑛

𝑗=2

1/𝑗 for 𝑛 ≥ 2

𝑒
−𝑐∑

𝑛

𝑗=1
1/𝑗

= 𝑒
−𝑐(1+∑

𝑛

𝑗=2
1/𝑗)

= 𝑒
−𝑐

𝑒
−𝑐∑

𝑛

𝑗=2
1/𝑗

> 𝑒
−𝑐

𝑒
−𝑐 log 𝑛

= 𝑒
−𝑐

𝑛
−𝑐

.

(A.3)

The series with the minoring term is divergent for 𝑐 ≤ 1 and
thus the original series in (6) is too.

If 𝛽 < −1, then lim
𝑛→∞

𝑎
𝑛

is greater than zero, and the
series is divergent.

Let us now denote with 𝑏
𝑛

, 𝑛 ≥ 1, the general element
of the series in (7), 𝑏

𝑛

= 2𝑛 exp[−𝑐∑
𝑛

𝑗=1

𝑗
𝛽

]; then E(𝑋
2

) =

∑
∞

𝑛=1

𝑏
𝑛

− E(𝑋). If 𝛽 ≥ 0, the series is convergent according
to the ratio criterion, since the limit 𝑙

2

= lim
𝑛→∞

𝑏
𝑛+1

/𝑏
𝑛

=

lim
𝑛→∞

(𝑛+1)/𝑛⋅exp[−𝑐(𝑛+1)
𝛽

] is 0 if𝛽 > 0 and is exp(−𝑐) <

1 if 𝛽 = 0; thus E(𝑋
2

) is finite.
If −1 < 𝛽 < 0,

2𝑛𝑒
−𝑐∑

𝑛

𝑗=1
𝑗

𝛽

< 2𝑛𝑒
−𝑐[𝑛

1+𝛽

/(1+𝛽)−1/(1+𝛽)]

= 2𝑒
𝑐/(1+𝛽)

𝑛𝑒
−𝑐𝑛

1+𝛽

/(1+𝛽)

.

(A.4)
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The series with the minoring term is convergent (e.g., using
the comparison criterion with the harmonic converging
series) and thus the original series in (7) is too.Then E(𝑋

2

) is
finite.

If 𝛽 = −1,

2𝑛𝑒
−𝑐∑

𝑛

𝑗=1
1/𝑗

< 2𝑛𝑒
−𝑐 log 𝑛

= 2𝑛
−𝑐+1

. (A.5)

The series with the minoring term is convergent for 𝑐 > 2

and thus the original series in (7) is too. Then E(𝑋
2

) is finite.
Moreover, for 𝑛 ≥ 2,

2𝑛𝑒
−𝑐∑

𝑛

𝑗=1
1/𝑗

= 2𝑛𝑒
−𝑐(1+∑

𝑛

𝑗=2
1/𝑗)

= 2𝑒
−𝑐

𝑛𝑒
−𝑐∑

𝑛

𝑗=2
1/𝑗

> 2𝑒
−𝑐

𝑛𝑒
−𝑐 log 𝑛

= 2𝑒
−𝑐

𝑛
−𝑐+1

.

(A.6)

The series with the minoring term is divergent for 𝑐 ≤ 2, and
thus the original series in (7) is too. E(𝑋

2

) is not finite.
For 𝛽 < −1, E(𝑋

2

) is not finite, since E(𝑋) is not finite
and E(𝑋

2

) ≥ E(𝑋).

B. Derivation of 𝛽
𝑃

Equating the probability 𝑃(𝑋 = 1) = exp(−𝑐)[1 − exp(−𝑐2
𝛽

)]

to the sample proportion 𝑧/𝑛, we get

exp (−𝑐2
𝛽

) = 1 −
𝑧

𝑛
exp (𝑐) , (B.1)

and after taking the natural logarithm of both sides of the
equation twice, the second time after changing signs, we
obtain

𝛽 =
log {− log [1 − (𝑧/𝑛) exp (𝑐)] /𝑐}

log 2
. (B.2)

Substituting 𝑐 with its estimate (8) in (B.2) we get

𝛽 =
log {log [1 − (𝑧/𝑛) / (1 − 𝑦/𝑛)] / log (1 − 𝑦/𝑛)}

log 2
,

(B.3)

and further simplifying it

𝛽 =
log [log (1 − 𝑦/𝑛 − 𝑧/𝑛) / log (1 − 𝑦/𝑛) − 1]

log 2
, (B.4)

which represents the estimate 𝛽
𝑃

.
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