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Abstract 

To investigate the prevalence of protozoan contamination by Giardia duodenalis, Cryptosporidium

spp.,  Toxoplasma gondii and  Cyclospora cayetanensis, in ‘ready to eat’ (RTE) salads on sale in

Italy, 648 packages from industrial and local brands were purchased. Nine individual packages from

each brand were collected per month, pooled and subjected to microscopy and molecular analyses.

864 slides were microscopically examined and Cryptosporidium spp. and also Blastocystis hominis

and Dientamoeba  fragilis were  detected.  By  molecular  tools G.  duodenalis  assemblage  A,

Cryptosporidium parvum  and Cryptosporidium ubiquitum,  T. gondii Type I and  C. cayetanensis

were identified. B. hominis and D. fragilis were also molecularly confirmed. The overall prevalence

of  each  protozoan  species  was  0.6%  for  G.  duodenalis,  0.8%  for  T.  gondii,  0.9%  for

Cryptosporidium spp., and 1.3% for C. cayetanensis, whereas the prevalence of B. hominis and D.

fragilis were 0.5% and 0.2%, respectively.  By microscopy and/or molecular  tools,  4.2% of the

samples  were  contaminated  by  at  least  one  protozoan  species,  and  0.6%  of  them  showed

contamination of two protozoan species with a range number of oocysts from 62 to 554 per g of

vegetable for T. gondii, and 46 to 1.580 for C. cayetanensis. This is the Europe’s first large-scale

study  on  the  presence  of  protozoans  in  packaged  salads.  RTE  sanitation  processes  does  not

guarantee a product free from protozoans of fecal origin. 

Key words: Prevalence; protozoans; ready-to-eat salads; Italy
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1. Introduction

In recent  years,  the authorities  responsible  for food safety have become increasingly concerned

about foodborne diseases which not only significantly affect people's health and well-being, but

they also have economic consequences for individuals, communities, businesses and countries. In

industrialized countries, among other drivers (i.e., environment, climate, land use, trade), the risk of

food-borne  diseases  transmission  is  also  enhanced  by  the  ongoing  changes  in  dietary  habits

(Broglia and Kapel, 2011),  involving an increase in consumer demand for ready-to-eat foods, in

particular for fresh vegetables/fruits due to their health benefits. 

After harvesting, ready to-eat vegetables undergo minimum conservation treatments to maintain

their organoleptic and sensory characteristics, and are sold already cleaned, cut, washed and packed

in a protected atmosphere (Martín-Belloso and Soliva-Fortuny 2011).  

Italy is Europe’s second largest market for fresh-cut products after France. In the period 2010-2015,

the Italian fresh cut salad market grew by + 9.9%; RTE salads account for about 75% of these sales,

and are at present mostly mixed salads (Confcooperative, 2016; IsmeaMercati, 2016).

In Italy, approximately 500 companies and 120 processing plants are involved in the production of

RTE vegetables. These companies are mostly in Northern Italy, while the farms that provide the raw

material are mostly in Southern Italy (Casati and Baldi, 2011). 
Vegetables may become contaminated in various ways along the food production chain, i.e. during

primary production (contaminated water in irrigation, manure application to croplands, access to

crops  by  livestock/wildlife), harvesting  in  the  field,  during  transport  and  market  processing

(Chaidez et al., 2005; Francis et al., 1999; Johnston, 2005) or directly by infected food handlers

(Beuchat and Ryu, 1997). 

Since  these  products  are  eaten  raw, they  are  covered  by the  EU and Italian  health  laws  (L.M

13.05.2011, No.77;  EC Reg. 852 of 2004; EC Reg. 20703/2005 and 1441/2007;  EC Reg. 209,

2013),  defining  the  presence  and  microbiological  limits  for  Escherichia  coli,  including  some

verocytotoxigenic  E. coli,  Listeria monocytogenes, and  Salmonella spp. However, in addition to

bacteria,  several  protozoan  parasites  from human/animal  excreta can  also  contaminate  soil  and

vegetables.  Giardia  duodenalis,  Cryptosporidium  spp.,  Toxoplasma  gondii and  Cyclospora

cayetanensis are the most important emerging parasitic protozoans (Dubey, 2008; Fletcher et al.,

2012). G. duodenalis and Cryptosporidium spp. are well-known causative agents of gastrointestinal

disease in humans (particularly children) and animals worldwide (Bouzid et al., 2013; Feng and

Xiao, 2011; Putignani and Menichella, 2010). Infection occurs via the fecal-oral route through

ingestion of  G. duodenalis  cysts and  Cryptosporidium oocysts. Eight major genetic groups of  G.

duodenalis (assemblages) have been identified (A–H) to date, and assemblage A and, with a lesser

extent,  assemblage  B are  considered  to  be  of  zoonotic  interest  (Feng and Xiao,  2011).  As  to
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Cryptosporidium,  of  the  31  Cryptosporidium species  recognized  as  valid,  over  20  species  and

genotypes have been identified in humans; however, the majority of human cryptosporidiosis is

caused  either  by  the  zoonotic  Cryptosporidium  parvum  or  by  the  more  anthroponotic

Cryptosporidium hominis (Ryan et al., 2016). Other species are associated with human infections,

including  Cryptosporidium meleagridis,  Cryptosporidium ubiquitum,  Cryptosporidium cuniculus

(Ryan et al., 2014).  

T. gondii  is an intracellular coccidian protozoan, and domestic and wild felids are the only hosts

responsible for oocyst dissemination in the environment.  Cats become infected after consuming

intermediate host tissues harboring cysts, or after ingestion of sporulated oocysts. Humans become

infected by ingesting raw or undercooked meat containing bradyzoites, or by ingesting oocysts via

consumption of contaminated raw vegetables and drinking water, or by direct contact with cat feces

(Jones et al., 2001). Toxoplasmosis is usually asymptomatic in immune-competent individuals, but

may cause severe infections in immune-compromised patients, and during pregnancy for fetuses

and newborns (Barratt et al., 2010; reviewed by Jones et al., 2001).  T. gondii  has three clonal

lineages  widespread  in  North  America  and  Europe  (Howe  and  Sibley,  1995;  Sibley  and

Boothroyd, 1992): Types I (highly pathogenic), II and III (less pathogenic but more likely to cause

infection in immune-compromised patients) (Howe and Sibley, 1995; Khan et al., 2005). Other

genotypes and atypical strains are rare in Europe (Robert-Gangneux and Dardè, 2012).  

C. cayetanensis is an obligate intracellular monoxenous coccidian parasite that infects the mucosal

epithelium  of  the  intestine  or  bile  duct  (Lainson,  2005),  and  the  most  commonly  reported

symptoms are diarrhea,  nausea and abdominal  pain.  Humans are probably the only host for  C.

cayetanensis oocysts (Chacin-Bonilla, 2010), but since its zoonotic role is suspected, it remains to

be determined (Chu et al., 2004). 

Giardia, Cryptosporidium, Toxoplasma and Cyclospora oo/cysts are very robust and unlikely to be

inactivated by routine chemical disinfectants or sanitizing water treatments, which explains their

diffusion in the environment (Fletcher et al., 2012; Giangaspero et al., 2009; Jones and Dubey,

2010, 2012;) and food (Dixon et al., 2013). Outbreaks of infections caused by protozoan parasites

detected in contaminated fresh produce have been recorded worldwide (Dixon et al. 2013; Feng

and Xiao, 2011; Kozak et al.,  2013; Ortega and Sanchez, 2010; Putignani and Menichella,

2010), including Europe (Aberg et al., 2015; Doller et al., 2002; McKerr et al., 2015). However,

despite  the rules issued by  FAO/WHO (2003),  supporting the need for tracking, monitoring and

surveillance of food products, studies on parasite contamination of RTE and pre-packaged/bulked

vegetables products are limited to only a few reports from Canada (Dixon et al., 2013; Lalonde

and Gajadhar, 2016). 
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The aim of this work was to bridge a gap in knowledge about the safety of RTE salads and potential

consumer health risks in Europe, by using both microscopy and molecular tools to investigate the

occurrence and prevalence of G. duodenalis, Cryptosporidium spp., T. gondii and C. cayetanensis in

packaged RTE mixed salad, sold under industrial  and local brands and available in Italian food

stores. 

2. Materials and methods 

2.1 Sampling design 

The sampling design was tailored to provide the highest confidence of contamination detection and

quantification, even with the low expected prevalence reported for protozoa in edible salads. The

detection of parasite at a low prevalence requires large sample sizes, in order to keep the study

within manageable limits,  the sampling design was based on testing pools  of salad samples  in

common and homogenous groups (Cowling et al., 1999). The number of pools to test, for a given

pool  size,  under  a  specified  expected  prevalence,  desired  confidence  and  precision  has  been

estimated according to Worlund and Taylor (1983). 

We set  a  prevalence  value  of  0.6%  as  the  detection  threshold  for  protozoa  (i.e.,  the  lowest

prevalence we were able to detect with our sampling regime). The confidence level and precision

were set at 95% and 0.6%, respectively. 

Since we chose a pool size of 9 salad packages, 72 pools were required to estimate prevalence.  

In order to provide a representative sample, the pools (each composed of 9 packages) came from six

different selected RTE producers: three major industrial companies (indicated as A, B, and C) with

national distribution and three minor companies with local distribution (indicated as E, F, and G).

Each month, from March 2015 to February 2016, for each company, nine individual mixed salad

(all containing curly and escarole lettuce, red radish, rocket salad and carrots) packages (not less

than 100g each)  were bought and subsequently analyzed together as a single pool. Following this

sampling protocol, a total number of 648 salad packages were analyzed and their distribution is

summarized in  Table 1. All  salad packages were placed in a cooler bag and transferred to the

laboratory, where they were kept refrigerated and then processed before their expiry date. 

2.2 Sample processing 

Salad samples were processed as described by  Dixon et al.  (2013) and by  Giangaspero et al.

(2015a), but the methods were slightly modified. For each of the nine packaged RTE mixed salads

from the same brand, 100g of vegetable material was weighed and placed in 9 different stomacher

bags (BagPage, Interscience, Sant Nom, France). After this, 200 ml of buffered detergent solution
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(phosphate-buffered saline 10X [PBS], 0.1% Tween-80, 0.1% sodium dodecyl sulphate [SDS] and

0.05% antifoam B emulsion), was added to each bag. Bags were placed on an orbital shaker for 15

min at 120 rpm. Then, lavage liquids were collected into four 50ml tubes and centrifuged at 2,000 x

g for 15 min at 4°C. The supernatant was discarded. The pellets were suspended in 3 ml of buffered

detergent solution, and pooled into one tube. Each tube was then rinsed and the rinse liquid was

added to the pooled tube. The pooled tube was centrifuged at 3,000 x g for 15 min at 4°C, and the

supernatant was again discarded.

The pellet was resuspended into 2ml of buffered detergent solution and divided into two different

tubes,  respectively  for  microscopy  and  molecular  investigations.  Each  tube  was  centrifuged  at

10.000  x  g  for  10min  at  4°C,  and  the  supernatants  were  discarded.  Finally,  the  pellets  were

resuspended with 500µl of PBS 1X for microscopy, and 300µl for molecular investigation.

The aliquot for microscopy investigation was tested within 3 days after processing, whereas the

aliquot for molecular investigation was stored at -20 °C pending molecular analyses.  

2.3 Microscopy investigation 

From each  pooled  sample,  20  µl  of  concentrated  solution  was  transferred  on  slides  for  direct

observation after adding a Lugol’s Iodine solution and for modified Ziehl-Neelsen staining (TB

Stain Kit ZN, Becton, Dickinson and Company, New Jersey, USA). Giemsa staining was also used

for confirmation when needed. Six slides were prepared for each pooled sample and examined by

optical  microscopy  at  20,  40  and  100X using  a  NIKON Eclipse  E600  (Nikon,  Tokyo,  Japan)

microscope.  Moreover,  G.  duodenalis cysts  and  Cryptosporidium oocysts  were  detected  and

analysed using a commercial kit (Merifluor C/G, Meridian Diagnostics, Cincinnati, Ohio, USA) and

examined  by  fluorescence  microscope  (NIKON  Eclipse  E600  microscope).  Filter  system  for

fluorescein isothiocyanate (FITC): excitation wavelength 490-500nm, barrier filter 510-530 nm and

magnification power at  40X and 100X. Microscopy procedures and parasite identification were

guaranteed by two experienced operators, according to the internal control Bambino Gesù Hospital

ISO analytical procedures (9100-2015).

2.4 Molecular investigation 

2.4.1 DNA extraction 

Genomic DNA was extracted from individual samples using the QiAmp Plant Mini Kit (Qiagen,

Inc., Mississauga, Ontario, Canada). Briefly, 300 μl of the final suspension was divided into three

aliquots  of  100μl,  and  the  aliquots  were  subjected  to  15  one-minute  cycles  (liquid

nitrogen/65°C).Then, 400μl of Buffer AP, 4μl RNaseA stock solution (100 mg/ml) and 130μl of

6

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

6



Buffer P3 were added to each sample and subjected to the QIAshredder spin column, following the

manufacturer’s instructions. The genomic DNA was quantified by NanoDrop 2000 and stored at

−20 °C. 

2.4.2 PCR protocols 

A nested and semi-nested PCR protocol was used to detect G. duodenalis and Cryptosporidium spp,

respectively. The PCR mixture contained 10.5 μl of Ready Red Taq Mix (Sigma-Aldrich, USA),

10µM of each primer and 3.25 µl of distillated water. Two μl of genomic DNA was added to the

reaction for the first PCR, and 1:20 diluted PCR product (Giardia) and 1:40 (Cryptosporidium) for

the second PCR. Positive and negative controls were included in each PCR run. For G. duodenalis,

the TPI gene was amplified using primers AL3543 (forward: 5′-AAATTATGCCTGCTCGTCG-3′)

and AL3546 (reverse: 5′-CAAACCTTTTCCGCAAACC-3′) for the first PCR and primers AL3544

(forward:  5′-CCCTTCATCGGTGGTAACTT-3′)  and  AL3545  (reverse:  5′-

GTGGCCACCACTCCCGTGCC-3′) (Sulaiman et al., 2003) for the second PCR. For the primary

amplification, the cycling protocol was 94 °C for 5 min (initial denaturation), followed by 35 cycles

of 94 °C for 45 s (denaturation), 50 °C for 45 s (annealing) and 72 °C for 1 min (extension), with a

final extension of 72 °C for 10 min. For the second amplification, the cycling protocol was 94 °C

for 5 min, followed by 35 cycles of 94 °C for 45 s, 55 °C for 30 s, and 72 °C for 1 min, with a final

extension at 72 °C for 10 min. 

For Cryptosporidium spp., the COWP gene was amplified using primers CRY15D (forward: 5′-GTA

GAT AAT GGA AGR GAY TGT G-3′) and CRY9D (reverse: 5′-GGA CKG AAA TRC AGG CAT

TAT CYT G-3′) for the first PCR, and primers CRYINT2D (forward: 5′-TTT GTT GAA GAR GGA

AAT AGA TGT G-3′) and CRY9D (reverse: 5′-GGA CKG AAA TRC AGG CAT TAT CYT G-3′)

(Traversa et al., 2008) for the second PCR. For both amplifications, the cycling protocol was 94 °C

for 7 min (initial denaturation), followed by 40 cycles of 95 °C for 50 s (denaturation), 50 °C for 40

s (annealing) and 72 °C for 50 s (extension), with a final extension of 72 °C for 10 min.  

End  point  PCR  protocol  was  used  for  Blastocystis  and Dientamoeba,  with  a  PCR  mixture

containing 10.5 μl of Ready Red Taq Mix (Sigma-Aldrich, USA), 10µM of each specific primer,

3.25 µl of distillated water and 2 μl of genomic DNA. Positive and negative controls were included

in each PCR run. For Blastocystis, the SSrRNA gene was amplified using primers RD5 (forward: 5’-

ATCTGGTTGATCCTGCCAGT-3’) and  BhRD  (reverse: 5’-GAGCTTTTTAACTGCAACAACG-

3’) (Scicluna et al., 2006) and for Dientamoeba the SSrRNA gene was amplified using primers Df-

124F (forward:  5'  -CAACGGATGTCTTGGCTCTTTA-3’)  and  Df-221R  (reverse:  5'

-TGCATTCAAAGATCGAACTTATCAC-3') (Verweij et al., 2007).  The cycling protocol was 94
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°C for 5 min (initial denaturation), followed by 35 cycles of 94 °C for 45 s (denaturation), 50 °C for

45 s (annealing) and 72 °C for 1 min (extension), with a final extension of 72 °C for 10 min.  

All the PCR products were run on agarose gel and visualized with Gel Red Nucleic Acid staining

(Biotium, USA). 

A quantitative PCR (qPCR)  and  melting  curve  analysis  were  performed  for  T. gondii and  C.

cayetanensis in a CFX-96 Real Time Instrument (BioRad, Italy).  A sequence of T. gondii B1 gene

and of C. cayetanensis ITS-2 gene were selected to design the plasmid control. The pEX-A2 vector

(Eurofins, MWG/Operon, Ebersberg, Germany) was used to insert a fragment of approximately 129

bp and 116 bp,  respectively. The concentration  of  the pEX-A2 plasmid was measured using  a

fluorometer, and the corresponding copy number was calculated using the following equation: pEX-

A2  T. gondii/C. cayetanensis (copy numbers) = 6.02 X 1023 (copy/mol) X pEX-A2  T. gondii/C.

cayetanensis amount (0.31/0.21 X 10-5 g/ml)/pEX-A2 T. gondii/C. cayetanensis length (129/116 bp

+ 2450) X 660 (g/mol/bp) (Whelan et al., 2003).

Ten-fold serial dilutions of the pEX-A2 T. gondii/C. cayetanensis plasmid (from 1.03 X 107 to 1.03

X 10-3 copies/μl)  were used to determine the quantity of the unknown samples based on linear

regression calculations of the standard curve. qPCR was carried out in a final volume of 20 μl,

using SsoFast™ EvaGreen® Supermix (cat.  no. 172–5201; Bio-Rad, Italy) and 0.5 μM of each

specific  primer for T. gondii B1 locus (ToxB41f: 5'-TCGAAGCTGAGATGCTCAAAGTC-3' and

ToxB169r:  5'-AATCCACGTCTGGGAAGAACTC-3')  (Burg  et  al.,  1989)  and  for C.

cayetanensis ITS-2 gene  (CCITS2-F:  5′-GCAGTCACAGGAGGCATATATCC-3′  and  CCITS2-R:

5′-ATGAGAGACCTCACAGCCAAAC-3) (Lalonde and Gajadhar, 2008). Genomic DNA (50 to

100 ng) (or 0.5 pg; reference, positive-control) or water (negative control) in 5 μl was added to the

reaction. Cycling conditions were as follows: initial denaturation at 98°C for 2 min, followed by 35

cycles at 98°C for 5 s, then 62°C (T. gondii) and 59°C (C. cayetanensis) for 15 s. Fluorescence data

were  collected  at  the  end  of  each  cycle  as  a  single  acquisition.  Melting  curve  analysis  was

performed at the end of each PCR run (70°C to 95°C at 0.5°C/5 s). Each sample was analyzed in

duplicate,  and the amplification cycle threshold (Ct) and melting temperature (Tm) values were

calculated. The diagnostic Tm peak was 80°C for T. gondii and 83.5°C for C. cayetanensis.

Absolute quantification was performed for the positive samples; the DNA quantity (copies/μl) was

calculated by relating the  Ct  mean value of each sample to a standard curve obtained from the

respective  positive  control.  Moreover,  oocyst  numbers  were  calculated  for  T.  gondii  and  C.

cayetanensis according to Lass et al. (2012) and Varma et al. (2003), respectively.

2.4.3 Sequencing
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Samples testing positive to one or more protozoans were purified with Exonuclease I (EXO I) and

Thermosensitive  Alkaline  Phosphatase (FAST  AP)  enzymes  (Fisher  Scientific,  Netherlands),

according to the manufacturer’s protocol. Purified PCR products were sequenced in both directions

with  the  BigDye  Terminator  v.  3.1  Cycle  Sequencing  Kit  (Applied  Biosystems,  Foster  City,

California,  USA),  using  the  same  primers  as  the  respective  PCR  reactions,  according  to  the

manufacturer’s instructions. An ABI PRISM 3130 Genetic Analyzer (Applied Biosystems, Foster

City, California, USA) was used to obtain sequences; electropherograms were inspected by eye and

consensus  sequences  were  obtained.  Subsequently,  sequences  were  aligned  using  the  ClustalW

program (BioEdit software v.7.2.5) and each sequence was compared to the nucleotide sequences

available  in  publicly  accessible  databases  using  BLASTn  software

(https://www.ncbi.nlm.nih.gov/blast/).

2.5 Statistical Analyses 

Based on the number of positive pools, the prevalence of salads contaminated with each protozoan

species was estimated according to  Schaarschmidt (2007), and the 95% confidence levels were

estimated using the exact method of Clopper-Pearson. This approach provides robust estimation of

confidence levels, without need to retest individual samples from positive pools, so that analyses

were kept within manageable limits. Since the salad samples were analyzed via multiple testing, i.e.

both microscopic and molecular  approaches,  we estimated a  combined prevalence as testing in

parallel; that is a sample was considered positive if it reacted positively to either or both of the

diagnostic tests. Moreover, for each protozoan species the difference in prevalence between brands

and  sampling  seasons  was  tested  via a  group  regression  model  (Vansteelandt  et  al.,  2000),

considering the contamination status of the pool (positive/negative) as response variable and pool

identity as a grouping factor. Statistical analysis was performed using the ‘binGroup’ package for

evaluation of binomial group testing, developed under the software R 3.3.2 (R Development Core

Team, 2016) and considering p<0.05 as the threshold for statistical significance. 

3. Results 

A total of 864 slides were microscopically examined and by one or more microscopy techniques,

among the investigated pathogens,  Cryptosporidium spp. was detected. However, B. hominis, and

D. fragilis were also microscopically detected. Molecular tools identified G. duodenalis assemblage

A, Cryptosporidium parvum and Cryptosporidium ubiquitum, T. gondii Type I and C. cayetanensis.

The microscopically positive samples to B. hominis and D. fragilis – which were outside of the aim

of the prevalence study - were molecularly confirmed. ok
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The results are summarized in Table 2. 

Use of both microscopy and molecular tools showed that 4.2% (95% C.I. 2.6-6.2%) of the samples

were contaminated by at least one protozoan species, and 0.6% (95% C.I. 0.2-1.6%) of samples

presented contamination  by two protozoa species.  The most prevalent  protozoa species  was  C.

cayetanensis (1.3%, 95% C.I. 0.6-2.5%), followed by Cryptosporidium spp. (0.9%, 95% C.I. 0.4-

2.1),  T. gondii (0.8%, 95% C.I. 0.3-1.8%) and  G. duodenalis (0.6%, 95% C.I. 0.2-1.6%), but  B.

hominis (0.5%, 95% C.I. 0.1-1.4%) and D. fragilis (0.2%, 95% C.I. 0.0-0.9%) were also detected

(Table 2).

Prevalence between salad producers varied between the minimum value of zero for all  and the

highest values of 3.1% (95% C.I. 0.6-9.0%) for T. gondii (Figure 1). Seasonal variation showed the

highest prevalence (2.0%, 95% C.I. 0.4-5.8%) in summer for T. gondii, in autumn for G. duodenalis

and in spring and autumn for C. cayetanensis (Figure 2).

Prevalence variabilities between the two kinds of brands considered in this study (industrial with

national  distribution  and  local  with  regional  distribution)  and  seasons  were  not  statistically

significant for each investigated protozoan (p>0.05). 

The number of T. gondii and C. cayetanensis oocysts in qPCR test-positive samples were estimated

to range from 62 to 554 and 46 to 1.580 per g of vegetable product, respectively (Table 3).

Sequencing confirmed a 98% homology for G. duodenalis Assemblage A, for C. cayetanensis and

for B. hominis. A 99% homology was found for C. ubiquitum, for T. gondii and for D. fragilis; and a

100% homology was found for C. parvum.

The sequences were deposited in GenBank under accession number  KY554829 - KY554832 (G.

duodenalis), KY554819 -  KY554823 (C.  parvum -  C.  ubiquitum),  KY554824 -  KY554828 (T.

gondii),  KY554833 -  KY554840 (C.  cayetanensis),  KY554841  -  KY554843 (B.  hominis)  and

KY554844 (D. fragilis).

4. Discussion 

The present survey is the first European study on detection and prevalence of protozoan parasites in

ready-to-eat  salads.  It  found  that  RTE  salads  sold  in  Italy  are  contaminated  by  one  or  more

protozoan pathogens. Microscopy and/or molecular tools detected G. duodenalis Assemblage A, C.

parvum and C. ubiquitum, T. gondii Type I, C. cayetanensis with a prevalence ranging from 0.6% to

1.3%, with a high oocyst burden calculated only for T. gondii and C. cayetanensis (up to 554 and

1.580 per g of vegetable product, respectively) (Table 2). Although outside the aims of the project,

B. hominis and D. fragilis were also detected (0.5 and 0.2%, respectively).
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The present study found that contamination by  G. duodenalis (0.6%) and  Cryptosporidium spp.

(0.9%)  is  lower  than  the  percentage  recorded  for  packaged  or  pre-packaged/bulk  leafy  greens

purchased at retail outlets in Canada by Dixon et al. (2013) and Lalonde and Gajadhar (2016),

and this is also the case for C. parvum, and for G. duodenalis Assemblage A (Dixon et al., 2013).

As to Cyclospora, the prevalence of 1.3% found here appears close to that recorded by Dixon et al.

(2013) in Canada, where  T. gondii was also detected but with a lower prevalence (Lalonde and

Gajadhar, 2016) than in the present study (0.8%). 

In Europe, G. duodenalis and/or Cryptosporidium oo/cysts have been documented in fresh produce

in Norway (Robertson and Gjerde, 2001; Robertson et al., 2002), Turkey (Erdogrul and Sener,

2005), Spain (Amoros et al., 2010) and Poland (Rzezutka et al., 2010), and also in Italy since 1968

(Mastandrea  and Micarelli,  1968)  and later (Di  Benedetto  et  al.,  2007). T. gondii has  been

recorded  on  leafy  vegetables  in  Poland  (Lass  et  al.,  2012),  and  C.  cayetanensis on  fennels,

cucumbers and tomatoes harvested in Italy (Giangaspero et al., 2015a), but this is the first record

of B. hominis on fresh produce in Europe, and the world’s first record of D. fragilis. 

Confirmed outbreaks of foodborne illness  linked to fresh produce contaminated with protozoan

parasites (directly or through contaminated water) have also been documented in Europe. The most

recent outbreaks of C. parvum occurred across England and Scotland (McKerr et al., 2015), and in

Finland (Aberg et al., 2015), whereas cyclosporiasis outbreaks were registered in Germany (Doller

et al., 2002), and in Sweden (Insulander et al., 2010). 

The presence of protozoan oo/cysts in the ready-to-eat samples we investigated is indicative of

contamination by feces of human and/or animal origin. In Italy, G. duodenalis Assemblage A and/or

C. parvum are widespread among humans (Masucci et al., 2011; Putignani and Menichella, 2010)

and animals (both domestic and wild animals) (De Liberato et al., 2015; Giangaspero et al., 2007;

Paoletti et al., 2011; Papini et al., 2012), and also in wastewater and shellfish (Giangaspero et al.,

2009, 2014).  Cyclospora oocysts (Masucci et al., 2011)  or  Cyclospora DNA have been recorded

not only in humans (Giangaspero et al., 2015a), but also in non-human primates (Marangi et al.,

2015), as well as in environmental samples, including vegetables, in the water used to irrigate them

(Giangaspero et al., 2015a), and even in tap water (Giangaspero et al., 2015b). As to T. gondii, it

has been shown that cats shed oocysts widely in Italy (Mancianti et al., 2010, 2015) and that the

oocysts then reach the sea and contaminate shellfish (Putignani et al., 2011). The presence of two

additional  species  of  protozoans  i.e.  B.  hominis and  D.  fragilis -  responsible  for  several

gastrointestinal  symptoms in  humans,  and both recognized  as  responsible  or  co-responsible  for

Irritable  Bowel  Syndrome  (Garcia,  2016;  Yakoob  et  al.,  2010)  - cannot  be  considered  as

completely  unexpected,  since  these  pathogens  are  frequently  detected  in  humans  worldwide
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(Garcia, 2016; Wawrzyniak et al., 2013). This includes Italy (Lacasella et al., 2013; Manganelli

et  al.,  2012), where both  D. fragilis (Cacciò et al.,  2012; Crotti  et  al.,  2007)  and  B.  hominis

(Zanzani et al., 2016) have also been detected in animals, thus hypotizing their zoonotic role. 
The results of the present research demonstrate that these protozoan parasites circulate widely in

Italy. Contamination of RTE salads is just the tip of the iceberg, indicating that the food chain can

be a very sensitive hub. Particular attention should be given to Cyclospora and Toxoplasma. While

the U.S. Public Health Service classifies C. cayetanensis as a foodborne pathogenic microorganism

associated with the consumption of fresh fruits and vegetables,  due to the number of outbreaks

registered overseas, its pathogenic role is underestimated in Europe, including Italy. As said above,

although autochthonous cases have been recorded in Italy (Maggi et al.,  1995; Masucci et al.,

2008,  2011;  Scaglia  et  al.,  1994),  Cyclospora is  not  routinely  investigated  in  gastrointestinal

disorders and Cyclospora DNA detection in infected people was found to be higher than previously

believed  (Giangaspero  et  al.,  2015a).  The  prevalence  (1.3%)  and  oocyst  burden  for  C.

cayetanensis (up to 1.580 per gram of vegetable product) detected in this study of RTE salads, may

explain its great potential for transmission to consumers. The report of an outbreak in Germany

involving 34 people, associated with contaminated butterhead lettuce (imported from France) and

mixed lettuce and other vegetables (imported from Southern Italy, including the area in which the

present study was carried out) (Doller et al.,  2002), further highlights the risk. Consumption of

fruits and raw vegetables involves a risk of cyclosporiasis in Europe, and it should be stressed that

the same is true for toxoplasmosis. In fact, the prevalence of  T. gondii found in the RTE salads

(0.8%) suggests that the dynamics of toxoplasmosis for humans may be different from previous

assumptions.  T. gondii has recently been listed as the second most harmful foodborne pathogen

(Scallan et al., 2015), and is responsible for the highest disease burden of all foodborne pathogens

(Wells et al., 2015). Previously, the source of infection for Toxoplasma in humans has always been

attributed to consumption of pork and goat meat. The results obtained in this study, however, greatly

support the hypothesis that a vegetarian diet constitutes a higher risk of human infection (Hall et

al., 1999; Kapperud et al., 1996). Therefore, the type of fresh produce contamination registered in

this  study  (up  to  554  oocysts  per  gram  of  vegetable  product)  can  contribute  greatly  to  the

transmission of this  protist.  The identification of Type I confirms that this lineage is present in

Europe, including Italy, where it has been detected in cats (Mancianti et al., 2015) and pigs (Bacci

et al., 2015).

Another interesting find in this study is the identification of  C. ubiquitum in RTE salads. Severe

cryptosporidiosis due to this species has been registered in the UK (Elwin et al., 2012), and in

Spain,  where  it  was  also  detected in  an  immunocompetent  child (Cieloszyk  et  al.,  2012). C.

ubiquitum is considered an emerging zoonotic species (Li et al., 2014; Zahedi et al., 2016), of
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which, sheep and wild rodents are suspected to be the key source of transmission to humans (Li et

al., 2014). The detection of this species of Cryptosporidium requires further studies on its diffusion

in Europe and the related risks.

Although the seasonal risk was not the main purpose of this study, the lack of statistical seasonal

differences between the protozoan species is related to oo/cysts ability to survive for long periods of

time, and also to production areas. Vegetables are grown in Southern Italy (mainly in Apulia and

Campania Regions), where low rainfall and high temperatures make intensive irrigation necessary

throughout the year. This, and other common agricultural practices (e.g. use of manure and  “on-

plain-air” crops)  may explain continuous contamination.  Thus, the recorded prevalence suggests

that  there  is  a  risk  of  contamination  throughout  the  year.  In  addition,  the  lack  of  statistical

differences between the two kinds of branded company considered in this study (industrial vs. local

brands)  indicates  that  management,  technology  and protocols  adopted  in  the  processing  plants

overlap, despite the economic and target differences between the brands. Isolation and detection of

protozoans in fresh produce is very challenging (Dixon et al., 2013; Giangaspero et al., 2015a;

Lass et al., 2012), particularly when this involves the detection of multiple species of protozoan

oo/cysts, as in this study. A combination of both microscopy and molecular assays (we used what

our experience indicated as the most efficient) allowed us to provide an overview of the presence of

protozoan pathogens. A limitation of this study is the lack of the data on the viability, in order to

assess the public health risk. However, due to the size of sampling, the lack of univocal techniques

for evaluating the viability of all investigated protozoans, the procedures not yet fully validated for

all  pathogens,  the  study of  the  viability  was  extremely  complex  and challenging  (Ortega and

Sanchez  2010;  Slifko  et  al.,  2000).  Considering  that the  lengthy  resistance  of  Toxoplasma,

Cryptosporidium and  Giardia on vegetables  (even  beyond the  recommended  shelf-life  of  RTE

salads) has recently been demonstrated (Hohweyer et al., 2016), and that the coexistence of both

viable and non-viable organisms has been ascertained (Dixon et al., 2013), any finding should be

considered an indicator of risk.

In this study, we did not know i) the source of contamination. Any of the stages between the factory

and  consumer,  i.e.,  primary  production  (i.e.  via  contaminated  soil,  manure,  irrigation  water),

harvest, food preparation, packaging, washing water, equipment, or food handlers could have been

the  key point  of  risk.  Nor  did  we know  ii)  which  specific  vegetables  were  contaminated.  We

investigated mixed salads in this study, therefore, the greater the number of vegetables the higher

becomes the risk of contamination due to the multiple handling processes along the food chain. In

addition, we did not know iii) if any of the batches of produce tested were associated with reported
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outbreaks. However, the lack of information regarding outbreaks or single cases is mainly due to the

long incubation period. 

5. Conclusions

In conclusion, the results of our survey demonstrate that the prevalence of protozoan species in RTE

salads is a cause for concern about human health in Europe, in particular in Italy. Since pathogens

circulate widely in humans, animals, vegetables and water in Italy, it is necessary to monitor the use

of  correctly  treated  irrigation  and processing  water  and to  ensure  the  efficiency  of  wastewater

treatment plants. In addition, monitoring must involve animal access to crops, the use of manure as

fertilizer, and all the processes along the RTE food chain, such as the respect of personal hygiene

education rules by food handlers, and the use of pathogen-free water for washing produce.

Although the role of the RTE salads in increasing consumer exposure to these pathogens and the

impact of these protozoans on human health can only be suspected, these results further enhance the

need to integrate the microbiological criteria required by EU Law No. 1441/2007 by adding these

protists to the list of contaminants. Monitoring the absence (or detection limits) only of bacteria,

(i.e.  E.  coli,  L.  monocytogenes and  Salmonella spp.)  on  vegetables  can  no  longer  indicate  the

absence  of  fecal  contamination  nor  guarantee  food  safety;  protozoan  parasites  –  whose  high

resistance to temperatures and disinfectants and low infectious doses have been amply demonstrated

(Dawson  et  al.,  2005)  -  constitute  a  major  risk  for  both  immunocompetent  and  immune-

compromised consumers. Policy decisions should promote development of increasingly advanced

procedures  and  technological  treatments  for  the  inactivation  and  removal  of  oo/cysts  from

contaminated  fresh  produce  (possibly  using  a  multi-barrier  approach) in  order  to  improve  the

quality and safety of these foods. The sampling methods designed in this research - which allowed

us to maximize detection even with very low expected prevalence values - and the results obtained

can provide the direction for monitoring fresh produce in other areas, and for surveillance studies on

produce.  In  addition,  they  can  provide  the  basis  for  food safety  guidelines,  based  also  on  the

HACCP system,  in order  to  reduce the risk of RTE contamination  and to  minimize  foodborne

disease transmission. 
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FIGURE LEGENDS

Figure  1 –  Protozoan  prevalence  (±  95%  confidence  intervals) in  ready-to-eat  mixed  salads

according to the six producer companies (National and Local brands).

Figure 2 – Seasonal protozoan prevalence (± 95% confidence intervals) in ready-to-eat mixed 

salads. 
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