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ABSTRACT

We investigate the impact of different observational effects affecting a precise and accurate
measurement of the growth rate of fluctuations from the anisotropy of clustering in galaxy
redshift surveys. We focus here on redshift measurement errors, on the reconstruction of the
underlying real-space clustering and, most importantly, on the apparent degeneracy existing
with the geometrical distortions induced by the cosmology-dependent conversion of redshifts
into distances. We use a suite of mock catalogues extracted from large N-body simulations,
focusing on the analysis of intermediate, mildly non-linear scales (r < 50 2~! Mpc) and apply
the standard ‘dispersion model’ to fit the anisotropy of the observed correlation function & (7,
r) . We first verify that redshift errors up to §z ~ 0.2 per cent (i.e. o, ~ 0.002 at z = 1) have
a negligible impact on the precision with which the specific growth rate 8 can be measured.
Larger redshift errors introduce a positive systematic error, which can be alleviated by adopting
a Gaussian distribution function of pairwise velocities. This is, in any case, smaller than the
systematic error of up to 10 per cent due to the limitations of the dispersion model, which is
studied in a separate paper. We then show that 50 per cent of the statistical error budget on
B depends on the deprojection procedure through which the real-space correlation function,
needed for the modelling process, is obtained. Finally, we demonstrate that the degeneracy
with geometric distortions can in fact be circumvented. This is obtained through a modified
version of the Alcock—Paczynski test in redshift space, which successfully recovers the correct
cosmology by searching for the solution that optimizes the description of dynamical redshift
distortions. For a flat cosmology, we obtain largely independent, robust constraints on 8 and
on the mass density parameter, Q). In a volume of 2.4 (h~! Gpc)?, the correct ; is obtained
with ~12 per cent error and negligible bias, once the real-space correlation function is properly

reconstructed.
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1 INTRODUCTION

The large-scale structure of the Universe is one of the main ob-
servational probes to discriminate among competing cosmological
models and estimate their fundamental parameters, some related
to space—time geometry and some to the density fluctuations. The

*E-mail: federico.marulli3 @unibo.it

growth rate of density fluctuations, f(z), belongs to the second cat-
egory. Since the pioneering works of Kaiser (1987) and Hamilton
(1998), it was clear that one of the most promising ways to deter-
mine f(z) is to exploit the apparent anisotropy in the clustering of
galaxies induced by peculiar velocities, an effect commonly known
as redshift-space distortions (RSD).

f(2) being directly sensitive to the mean density of matter, for
some time RSD have been used to estimate the mass density pa-
rameter 2 (e.g. Peacock et al. 2001; Hawkins et al. 2003; da
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Angela, Outram & Shanks 2005a; da Angela et al. 2005b; Ross
et al. 2007; Ivashchenko, Zhdanov & Tugay 2010). Later on, with
the advent of other, more precise methods to estimate 2y, like the
barionic acoustic oscillations (BAO), RSD began to be considered
as a sort of ‘noise’ to be marginalized over (Seo & Eisenstein 2003,
2007). New interest on RSD arose when it was realized that, if not
marginalized over, they could tighten constraints over cosmolog-
ical parameters (Amendola, Quercellini & Giallongo 2005), and
in particular when it was shown (Guzzo et al. 2008; Zhang et al.
2008) that they could represent a formidable tool to discriminate
between a dark energy (DE) scenario and a modified gravity theory
for the origin of cosmic acceleration. A number of forecast papers
followed rapidly (e.g. Linder 2008; Wang 2008; Song & Percival
2009), as well as applications to existing and new data sets (Cabré
& Gaztafiaga 2009a,b; Blake et al. 2011). As such, RSD are now
regarded as one of the most promising techniques to extract precise
estimates of f(z) from future redshift surveys. Besides their use as
a probe to constrain alternative gravity theories, RSD can also be
exploited in many different contexts. For instance, it has been re-
cently demonstrated that RSD robustly constrain the mass of relic
cosmological neutrinos (Marulli et al. 2011) and could be used to
detect interactions in the dark sector (Marulli, Baldi & Moscardini
2012). Moreover, they can be of some help in astrophysical con-
texts, e.g., to investigate the dynamical properties of the warm-hot
intergalactic medium (Ursino et al. 2011).

To effectively discriminate among competing cosmological mod-
els, however, one needs to measure the growth rate with per cent
accuracy. This goal has prompted several works aimed at better
identifying and characterizing the sources or uncertainty. One as-
pect of the problem is how to optimally infer the growth rate of
fluctuations from the measured RSD quantities. The anisotropic
pattern of galaxy redshifts in 3D space allows one to estimate the
distortion parameter 8(z) = f(z)/b(z). Then, to obtain f(z), one needs
in principle an independent estimate of the galaxy bias parameter
b(z) which is ill-constrained by theory and difficult to measure from
the data. For this reason, it has been suggested (see e.g. Percival
& White 2009; Song & Percival 2009; White, Song & Percival
2009) to express the constraints in terms of the observed product
ﬂ(z)afal(z), which in the linear bias hypothesis equals the theo-
retical combination f(z)o(z). In these expressions crgga] and og are
the rms values in spheres of 8 A~! Mpc of, respectively, the galaxy
counts and the mass. In this way, the values of ﬁ(z)afal(z) obtained
from the data at different redshifts can be self-consistently com-
pared to the curves f(z)os(z) predicted by the theory (once they
are nevertheless normalized to a reference o3 as provided, e.g., by
cosmic microwave background measurements).

Another aspect of the problem is the impact of the observa-
tional errors, related to redshift measurements and to the nature of
the objects used to trace the mass inhomogeneities. This is com-
monly addressed using the Fisher information matrix (Fisher 1935;
Tegmark, Taylor & Heavens 1997), which has become the standard
method to forecast statistical errors in the cosmological parameters
expected from planned redshift surveys (see e.g. Sapone & Amen-
dola 2007; Linder 2008; Wang 2008; Percival & White 2009; White
et al. 2009; Acquaviva & Gawiser 2010; Wang et al. 2010; Carbone
et al. 2011a; Carbone, Mangilli & Verde 2011b; Fedeli et al. 2011;
Carbone et al. 2012; Di Porto, Amendola & Branchini 2012a,b;
Majerotto et al. 2012). One limitation in the use of the Fisher matrix
is that it relies on assumptions (e.g. the Gaussian nature of errors)
that in some applications might not be fully justified. In addition,
the Fisher matrix formalism cannot say anything about systematic
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errors that may dominate the error budget in future experiments
aiming at per cent accuracy. Finally, the use of the Fisher matrix is
justified on large scales, where linear theory applies, but may fail
on smaller scales because of the improper treatment of deviations
from linearity in dynamics and bias. In all these cases one needs to
use numerical simulations.

Early attempts to test the accuracy of the linear model of RSD
(Kaiser 1987) through numerical simulations and develop improved
corrections (Scoccimarro 2004; Tinker, Weinberg & Zheng 2006)
have been recently extended, following the renewed interest on this
topic (Jennings, Baugh & Pascoli 2011a,b; Okumura & Jing 2011;
Taruya, Saito & Nishimichi 2011; Kwan, Lewis & Linder 2012;
Samushia, Percival & Raccanelli 2012). The work presented here
is part of this ongoing effort to understand the limitations of RSD
estimators and bring this technique at the level required by precision
cosmology.

Finally, a potentially relevant source of systematic error in the
measurement of RSD is related to intrinsic uncertainty on the back-
ground cosmology, which is needed when converting redshifts into
distances. This introduces further geometric distortions (GD) in the
observed clustering pattern, which in principle can be used to esti-
mate the background cosmological parameters through the so-called
Alcock—Paczynski (AP) test (Alcock & Paczynski 1979). Several
methods and attempts to implement the AP test using different data
sets have been proposed (Alcock & Paczynski 1979; Phillipps 1994;
Ryden 1995; Ryden & Melott 1996; Marinoni & Buzzi 2010), in-
cluding those that look for anisotropies in 3D clustering (Ballinger,
Peacock & Heavens 1996; Matsubara & Suto 1996; Popowski et al.
1998; Hui, Stebbins & Burles 1999; Matsubara 2000; McDonald
2003; Nusser 2005; Barkana 2006; Kim & Croft 2007; Padman-
abhan & White 2008). In practice, GD have a smaller amplitude
than and are degenerate with RSD (Simpson & Peacock 2010),
such that only with very high quality data one can hope to disen-
tangle the two effects. Early applications of the AP test thus failed
to get significant results (Hoyle et al. 2002; Outram et al. 2004; da
Angela et al. 2005a,b; Ross et al. 2007), but the situation is rapidly
improving (Blake et al. 2011; Chuang & Wang 2012). It is fairly
clear that GD will play a fundamental role in the estimate of cos-
mological parameters from future surveys (Seo & Eisenstein 2003;
Simpson & Peacock 2010; Samushia et al. 2011; Taruya et al. 2011;
Hawken et al. 2012; Kazin, Sanchez & Blanton 2012), but also that,
if not properly accounted for, they represent one further source of
systematic error in the measurement of f(z) from RSD.

In this paper, we explore how the precision and accuracy of f de-
pend on the limitations of (i) using observed quantities (angles and
redshift) to infer cosmological distances in redshift space and (ii)
using them to construct and model two-point statistics. We therefore
first assess the impact on the recovered f of redshift measurement
errors and of the intrinsic uncertainty on the real-space two-point
correlation function due to the deprojection procedure. We then
look in detail into the effect of GD and introduce a simple tech-
nique to isolate RSD. We show that, under the hypothesis of a flat
background, this allows us to simultaneously measure 8 and Qy;. Fi-
nally, we relax the flat background assumption and investigate how
GD can be used to constrain the cosmological parameters that enter
the Hubble function. These tests focus on intermediate scales (r <
50 h~! Mpc), where non-linear effects cannot be neglected. These
are the scales where RSD have the highest signal-to-noise ratio,
also in last-generation surveys like WiggleZ (Blake et al. 2011),
VIMOS Public Extragalactic Redshift Survey (VIPERS; Guzzo
et al., in preparation) and SDSS-III BOSS (Eisenstein et al. 2011).
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In a parallel, complementary work (Bianchi et al. 2012), we use
the same numerical methods adopted here to study the dependence
of the uncertainty on the measured growth rate on typical survey
parameters, as the volume, density and bias of the adopted tracers.

The paper is organized as follows. In Section 2 we start describing
the exploited set of N-body simulations and how to construct mock
halo catalogues. Then we give a general overview on RSD and GD.
In Section 3 we investigate the impact of redshift errors, deprojec-
tion effects and geometric uncertainties on the estimate of the RSD
parameters. The method to disentangle GD and RSD is analysed in
Section 4. Finally, in Section 5, we draw our conclusions.

2 THEORETICAL TOOLS

In this section, we review the theoretical tools we use to derive the
random and systematic errors in the estimate of f(z) from RSD.
Since we are not concerned with the galaxy bias, we will focus on
the distortion parameter S.

2.1 N-body simulations and mock halo catalogues

Since we are interested in RSD on intermediate scales, our analysis
will rely on mock catalogues extracted from N-body simulations
that fully account for non-linear dynamics. The need for a suffi-
ciently large number of independent mock catalogues, each with
a volume matching that of the typical ongoing redshift surveys,
imposes on considering very large computational boxes.

The ‘Baryon Acoustic Simulation at the ICC* (BASICC) meets
these requirements (Angulo et al. 2008). This simulation follows
the dynamical evolution of 1448 dark matter (DM) particles with
mass My = 5.49 x 10" h~! M in a box of 1340 h~' Mpc, using
a memory-efficient version of the GabGET-2 code (Springel 2005).
The cosmological model adopted is a A cold dark matter (ACDM)
universe with Qy = 0.25, Q5 =0.75, h = Hy/100km s~ Mpc™! =
0.73 and o3 = 0.9. A detailed description of this simulation can
be found in Angulo et al. (2008). DM haloes have been identified
by linking more than 20 particles with a standard friends-of-friends
algorithm, so that the minimum halo mass is Mpyin = 20 X M
1.1 x 10?7~ Me.

Since we are not interested in realistic models of galaxies, we
simply identify mock galaxies in the simulation with the DM haloes
with M > M ;,. Their effective bias is

Jo, n(M, 2)b(M, ) dM

ffj n(M,z)dM

beii(z) =

; ey

where n(M, z) is the halo mass function and b(M, z) is their linear
bias. Our goal is to assess the errors on 8, so we need a reference
value to compare with. This is obtained by dividing the expected
value f(z) = Q%% (z) by the effective bias obtained from equa-
tion (1). As we have seen in the companion paper (Bianchi et al.
2012), the effective bias of our mock DM haloes is in good agree-
ment with the model of Tinker et al. (2010), which we will consider
as our reference bias model. For comparison, we will also con-
sider the bias function predicted by Sheth, Mo & Tormen (2001).
The ~10 per cent discrepancy between these two models gives an
idea of current theoretical uncertainties.

Because of the limited mass resolution of the simulation, we
are forced to ignore substructures within haloes. As a result, the
largest haloes should represent the cluster of galaxies collapsed into
single objects rather than individual galaxies. This limitation has the
effect of underestimating the contribution of small-scale pairwise
velocity dispersion to RSD. We can think of this undesired effect

as an attempt of mimicking observational constraints, like the fact
that fibre collision imposes a limit to the number of spectra that
can be taken in crowded areas, or catalogue-making procedures
like that of collapsing clusters or groups of galaxies into a single
object. Further analyses of mock surveys from the Millennium run
demonstrate that the conclusions of our study do not depend on the
missing substructure in the BASICC DM halo catalogues (Bianchi
etal. 2012).

Moreover, since we want to mimic redshift surveys designed to
explore the Universe at the epoch in which the accelerated expansion
has started, we will mainly focus on the simulation output at z = 1.
Outputs at z = 0.5 and 2 have only been considered to check the
robustness of our results. To construct the mock halo catalogues, we
consider a local (z = 0) observer and place the centre of the z = 1
snapshot at the corresponding comoving distance D¢(z = 1), where

z dZé
o H@)'
and the Hubble expansion rate is

Dc(z) =c¢

@

H(z) = Ho |21 +2)° + Q1 +2)°

0.5
1 + w(z) (3)
+QDEexp<3/0 414—2 ):| )

Q=1 — Qv — Qpg, w(z) is the DE equation of state, and the
contribution of radiation is assumed negligible.

In doing so, we neglect structure evolution within the box. Un-
less otherwise specified, our error analysis will be performed using
27 independent mock catalogues obtained by dividing the com-
putational box in 33 subcubes, each about twice the size of the
VIPERS survey. The mean comoving source density in our mocks
is 0.003 (h Mpc—1)3.

To specify the distribution of DM haloes in redshift space, we take
the comoving coordinates of each object and compute its angular
position and observed redshift
o,

v
Zobs = Z¢ T+ J(l +z0) + B (4)
C C

where z. is the cosmological redshift due to the Hubble recession
velocity at the comoving distance of the halo, v is the line-of-sight
component of its centre of mass velocity, ¢ is the speed of light
and o, is the random error in the measured redshift (expressed in
kms™h).

2.2 Modelling redshift distortions

RSD are induced by galaxy peculiar velocities. On large scales,
where peculiar motions are coherent, RSD will be different than on
small scales, where the velocity field is dominated by incoherent
motions within virialized structures. An effective way to charac-
terize these distortions is by means of two-point statistics, like the
power spectrum or the two-point correlation function. In this work,
we focus on the latter. We will refer to the redshift-space spatial
coordinates using the vector s, whereas we will use r to indicate the
real-space ones.

The estimate of the spatial two-point correlation function &(r) is
based on counting galaxy pairs separated by a relative distance r.
To characterize RSD it is convenient to decompose the distances
into two components perpendicular and parallel to the line of sight,
r = (r., ry).Inthe absence of peculiar velocities, the iso-correlation
contours of &(r, ry)are circles in the (r,, r}) plane. RSD mod-
ify these contours in a characteristic fashion: for large values of
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r, coherent motions squash the contours along the perpendicu-
lar direction, whereas for small r, incoherent motions elongate
the contours along the parallel direction, generating the so-called
“fingers-of-God’ effect (Jackson 1972).

In the linear regime, the velocity field can be determined directly
from the density field and the RSD amplitude is proportional to S.
In this limit and in the distant observer approximation, the two-point
correlation function in redshift space can be written in the compact
form

E(s L, 89)in = Eo(s)Po(p) + &2(s) Pape) + Ea(s) Pa(pe) &)
where u = cosf = sy/s is the cosine of the angle between the

separation vector and the line of sight, s = ,/s3 + sﬁ and P, are

the Legendre polynomials (Kaiser 1987; Lilje & Efstathiou 1989;
McGill 1990; Hamilton 1992; Fisher, Scharf & Lahav 1994). The
multipoles of £(s, s) can be written as follows:

NN
50—(14-?4-?)5(0, ©)
4B 4B _
£ = (7/3 + %) [E() — E)] )
8p? 5. 7= .
54—¥{§(V)+55(7),—55(7)], ®)

where £(r) is the real-space undistorted correlation function,
whereas the barred functions are

iy 3 " ’ N2
§(r) = 73/ dr'&(rr'=, ©))
0

= 5 r
Er) = 75/ dr'e(ryr' . (10)
0

Equation (5) is a good description of the RSD only at very large
scales, where non-linear effects can be neglected.

A full empirical model, that can account for both linear and non-
linear dynamics, is the so-called ‘dispersion model’ (Peacock &
Dodds 1996; Peebles 1980; Davis & Peebles 1983) in which the
redshift-space correlation function is expressed as a convolution
of the linearly distorted function with the distribution function of
pairwise velocities f(v):

o0 1
E(s.5) = / dvf ()& (n,su —”(H—Z;)) , (11)
—00 lin

where the pairwise velocity v is expressed in physical coordinates.
In this paper, we test two different forms for f(v), namely

Ferp®) = 0121 5w (—f}'j') , (12)
and

1 v?
Srauss(V) = m exXp (—7122) (13)

(Davis & Peebles 1983; Fisher et al. 1994; Zurek et al. 1994). The
quantity o, is independent of pair separations and is generally
interpreted as the dispersion in the pairwise random peculiar ve-
locities. Here we rather regard it as a free parameter that quantifies
the cumulative effect of small-scale random motions and statisti-
cal errors on the measured redshifts 8z, and focus on the distortion
parameter .

This simple model for RSD depends on a few quantities: two
free parameters, § and o ,, a reference background cosmology to
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convert angle and redshifts into distances and the frue two-point
correlation function of haloes (galaxies) in real space, &(r), that can
be either derived from theory or estimated from the galaxy redshift
catalogue itself. A theoretical expression for the galaxy correlation
function can be obtained, for example, from the observed galaxy
luminosity function in the framework of the halo occupation distri-
bution by adopting a theoretical prescription for the halo two-point
correlation function (see e.g. Yang, Mo & van den Bosch 2003). Al-
ternatively, it is possible to estimate &(r) from the measured &(s |,
s), with a two-step deprojection procedure. First, the observed
redshift-space correlation function is projected along s;:

max

B(r,) = E(u):Z/l” ds/£Gs., 5]) - (14)
0

Then, the real-space correlation function can be estimated from
the Abel integral (Davis & Peebles 1983; Saunders, Rowan-
Robinson & Lawrence 1992):

oy L [ g dECDL

nl e

In this paper, we adopt this second approach and assess the impact of
deprojection by comparing the results with the ideal case in which
we use &(r) measured directly from the mock catalogues.

To evaluate the correlation function in the simulation we use the
Landy & Szalay (1993) estimator:
£(r) = HH(r)—2HR(r)+ RR(r) ’ (16)

RR(r)

where HH(r), HR(r) and RR(r) are the fraction of halo—halo, halo—
random and random-random pairs, respectively, with spatial sep-
aration r, in the range [r — 8r/2, r + 6r/2] and §r is the bin size.
Since we are interested in estimating 8 at intermediate scales, we
evaluate the correlation function in bins of size §r = 1 out to
50 A~! Mpc, both in the parallel and perpendicular directions. We
have checked that pushing our analysis out to r ~ 100 4~! Mpc
does not change significantly the results. Finally, since to perform
the deprojection procedure one needs to specify the behaviour of
&(r) at small scales, we have linearly extrapolated &(ry, r)in the
range ™ < 1 h~' Mpc. We have verified that the results do not
depend on the extrapolation scheme adopted.

)

2.3 Modelling geometric distortions

To convert observed redshifts and angular separations into relative
distances one has to assume a background cosmological model that
does not, in general, coincide with the true one. This mismatch
induces asymmetries or anisotropies that, if spotted, can be used
to constrain the background cosmological model itself. This cos-
mological test, commonly known as the AP test, can be performed
using the observed two-point correlation function.

In the absence of peculiar velocities, isotropy in galaxy clustering
guarantees that iso-correlation contours are circles in the (ri, ry)
plane if pair separations are estimated assuming the correct geom-
etry. In this sense, £(r, ) can be considered a standard circle in
much the same way as BAO and supernovae are considered standard
rulers and standard candles, respectively. The choice of an incorrect
cosmology will distort these circles in a way that we can accurately
predict. Indeed, the relation between comoving separations in two
different geometries reads

_ Dai(2) Hy(z)

ryg = ———ris; = —rp, 17)
11 Dra(0) 12 1 e
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where the subscripts 1 and 2 refer to the two cosmological models
and D, is the angular diameter distance

c .
m Sin (’\/ —QkDC(Z)) . (18)

These relations can be adopted to perform the AP test using the
two-point correlation function as follows. In the quest for 8, the
choice of a background cosmology is made twice: first to estimate
&(s1, sy) from observed redshifts and angular positions and then
to model £(s., s) . We shall call assumed and test cosmology the
two cosmological models assumed to measure and model &(s,
s), respectively. The test is performed by computing &a(s7, s
for a given assumed cosmology and comparing it with the model
&S, sh) estimated for a fest cosmology and rescaled to the assumed
one (equation 17):

DA,I Ha )

&5, Su) =& (m&, ESH

Da(z) =

19)

The correct values of 8, Dy and H are found when &(s! , sﬁ) =
&a(s7, ), within the errors. Unfortunately, the small amplitude of
GD with respect to RSD and inaccuracies in modelling the latter
make results obtained through this procedure not very robust. More-
over, this method depends explicitly on the bias model assumed to
derive the DM correlation function from the observed galaxy po-
sitions. In this work, we have developed an alternative procedure,
described in Section 4, that exploits both RSD and GD directly, and
does not require modelling the shape of the DM correlation function
and bias.

3 MEASURING B FROM RSD

3.1 The impact of redshift errors and deprojection

Random errors in the measured spectroscopic redshifts contaminate
the clustering signal at all scales in a way similar to that of random
peculiar motions at small scales. So far they have not been consid-
ered in the error budget, as local surveys typically had fairly precise
redshift measurement errors (<100kms~!). A careful assessment
of their impact is now in order, especially in view of future sur-
veys using different observing techniques. For example, Euclid will
be measuring redshifts from single emission lines in slitless spec-
troscopic observations, with a requirement on the errors of o, <
0.001(1 + z), which corresponds to 600kms~' at z = 1 (Laureijs
etal. 2011).

To assess the impact of redshift errors on the estimates
of B, we have perturbed the redshifts of the mock galaxies
(equation 4) by adding a Gaussian noise of amplitude o, =
{0, 200, 500, 1000, 1250, 1500} km s~!. These values cover a range
extending out to errors that get close to (yet not as large as) those
from photometric estimates (which in the best cases have o, ~
9000 (1 + z) kms™"). In what follows, we express these errors
as per cent uncertainties §z (per cent) = {0,0.07,0.2,0.3,0.4,0.5}
(equation 4).

To focus on the impact of redshift errors we do not consider GD,
i.e. we assume the correct background cosmology. Moreover, we
restrict our analysis to the case of Gaussian redshift errors. This is a
quite accurate assumption for modelling the redshift errors of typical
spectroscopic galaxy surveys (see e.g. Lilly et al. 2009). Further-
more, even in photometric galaxy surveys, it has been demonstrated
that the adoption of a Gaussian distribution to simulate the impact
of redshift errors represents a reasonable approximation (see e.g.
Cunha et al. 2009; Saglia et al. 2012). We do not consider the impact

of the so-called catastrophic errors, the ones caused by the misiden-
tification of one or more spectral features, for the following reasons.
In the assumption that the catastrophic outliers represent a perfect
isotropic population (i.e. if such errors have a flat distribution),
their effect is to reduce the amplitude of the correlation function
at all scales. So they do not induce additional distortions in galaxy
clustering and do not bias the estimate of 8. On the other hand,
clustering distortions might be generated by systematic misidentifi-
cation of spectral features. Their impact on 8 can only be estimated
with mock galaxy catalogues, taking into account all observational
effects that may vary case by case.

3.1.1 Real- and redshift-space correlation functions

In Fig. 1 we show the redshift-space two-point correlation func-
tions, £(s), measured in the 27 mocks (blue curves in the upper part
of the six panels) and compare them to the real-space ones, &(r)
(black curves). Redshift errors suppress the clustering amplitude on
progressively large scales, as expected. A first quantitative assess-
ment of this effect can be obtained from the ratio &(s)/&(r) which,
in the linear limit, is simply related to 8:

£(s)

é(r)_1+3+5' (20)
We plot this ratio in the middle part of each panel in Fig. 1 (blue
curves). When 8z = 0, this ratio is constant for r > 3 h~! Mpc. On
these scales, the value of § obtained from equation (20) is consistent
with theoretical expectations of Sheth et al. (2001) and Tinker et al.
(2010), represented by the red dotted and black solid horizontal
lines, respectively. The horizontal grey band is plotted for reference
and represents a theoretical uncertainty of 10 per cent. Increasing
redshift errors to §z ~ 0.2 per cent has the effect of suppressing
the clustering amplitude on ever larger scales and reduces the range
useful to measure B but does not bias its estimate. For 8z 2 0.3 per
cent the ratio £(s)/&(r) is biased high in the ever shrinking range of
scales in which this ratio is constant, hence inducing a systematic
error on f obtained from equation (20).

As a further step towards a realistic estimate of 8, we also assess
the impact of the deprojection procedure described in Section 3.
The ragged green curves in the upper panels of Fig. 1 show the real-
space two-point correlation function obtained from the deprojection
procedure, £p. The corresponding ratio &(s)/Ep(r) is shown in the
bottom panels. Interestingly, the deprojected correlation function
is in good agreement with the true &£(r) even for large values of
8z, indicating that the deprojection procedure does not introduce
significant systematic errors. However, it increases random errors
represented by the scatter among the £(s)/p(7) curves.

3.1.2 B from the full fit of (s, 5))

A better estimate of S can be obtained by comparing the measured
&(s 1, sy) with the model described in Section 3. The iso-correlation
contours of £(s, s) calculated in the 27 mocks are shown in Fig. 2
for different values of 8z, indicated in the panels. Contours refer to
the iso-correlation levels &(s, s;) ={0.1,0.2,0.5, 1.5}. The effect
of increasing redshift errors can be clearly appreciated. The case of
no errors (6z = 0) is characterized by the expected squashing of the
contours at large separations induced by coherent motions whereas
on small scales the fingers-of-God elongation is hardly visible. As
already pointed out, this is due to the lack of substructures in the
DM haloes, such that the velocity field within virialized structures is
poorly sampled. When redshift errors are turned on, fingers-of-God

© 2012 The Authors, MNRAS 426, 2566-2580
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Figure 1. The impact of redshift errors on the measured real- and redshift-space (angle-averaged) correlation functions. The upper sections of each panel show
the real-space frue correlation functions &(r) (black curves), the redshift-space correlation functions &(s) (blue curves) and the real-space correlation functions
obtained from deprojection, &p(r) (green curves). Each line shows the correlation measured in one of the 27 independent subboxes (see Section 2). The central
and middle sections of each panel show the ratios &(s)/&(r) and & (s)/& p(r), respectively. Linear theory predictions of Tinker et al. (2010) and Sheth et al. (2001)
are indicated by black solid and red dotted lines, respectively. The grey horizontal bands represent 10 per cent theoretical uncertainties. The panels refer to

different redshift errors, as indicated by the labels.

distortions appear and dominate the distortion pattern out to a scale
that increases with §z.

Comparing the correlation function ‘observed’ from the mocks
in Fig. 2 with the model presented in Section 2.2 constrains the free
parameters 8 and o ,. This is done by minimizing the standard x>
function s

M
=3 =) Sg.y”) : @1
ij ij

where Yij = %'(SL,', S”_j) and y}\j/I = SM(SL[, S“‘j;ﬁ, 012) are the
measured and model correlation functions, respectively, and §; =
8&(s1 i, 8),) is the statistical Poisson noise estimated following Mo,
Jing & Boerner (1992). In each of the 27 mock catalogues, we
fitted over the range 3 < r, r; < 35 h~! Mpc, with linear bins of
1 »~! Mpc both in the parallel and perpendicular directions. As we
have explicitly verified, the results presented in this paper do not
depend on the particular form of equation (21) and on the definition
of clustering uncertainties & (s, s)) (for a more detailed discussion
see Bianchi et al. 2012).

The results are summarized in Fig. 3. Let us focus on the upper-
left part of the figure. The points in the top panel represent the

© 2012 The Authors, MNRAS 426, 2566-2580
Monthly Notices of the Royal Astronomical Society © 2012 RAS

best-fitting values of 8 and o |, obtained from each mock catalogue.
The different symbols and colours indicate different redshift errors
8z, as specified in the labels. The best-fitting B values should be
compared with theoretical expectations using the Tinker et al. (2010)
model (black solid vertical line), which, as discussed previously, is
a very good description of the intrinsic linear bias of our simulated
haloes. The Sheth et al. (2001) model (red dotted vertical line) is
shown for comparison. The vertical grey band shows the 10 per cent
uncertainty interval. These results have been obtained by comparing
data with a model in which we have used an exponential form for
f(v) and the true £(r) of the DM haloes in the N-body simulation.
Systematic and statistical errors and their dependence on 4§z are
quantified in the bottom panel. In the upper part, we show the mean
value of the best-fitting 8 obtained by averaging over the 27 mock
catalogues and its scatter, o (8), represented by the error bars. In the
bottom panel, we show the random component of the relative error
o (B)/B (per cent).

As shown in Bianchi et al. (2012), such systematic error de-
pends on the minimum mass (i.e. the bias) of the haloes consid-
ered and tends to decrease up to masses of 10'* M. In Fig. 3
we see, however, that redshift errors larger than §z ~ 0.3 per cent
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Figure 2. Iso-correlation contours of £(sy, s)) measured in the 27 mock catalogues. Contours are drawn in correspondence of the correlation levels &(s_,
S| ={0.1,0.2,0.5, 1.5}. Different panels refer to different amplitudes of the redshift errors, as indicated in the labels.

produce an opposite effect, which cancels and then overcomes the
intrinsic negative systematic bias on B. Interestingly, the rms error
remains instead substantially constant, when the real-space corre-
lation function is well known (upper panel, ~5 per cent for the
volumes considered here).

The upper-right part of the same figure shows the results obtained
when we model the velocity distribution function f(v) with a Gaus-
sian function instead of an exponential one. The main effect is a
very significant reduction of the systematic errors. This is due to
the fact that redshift errors, modelled as Gaussian variables, can be
regarded as a random velocity field with a distribution function that
obeys a Gaussian statistics. What we learn here is that when redshift
errors dominate over the pairwise velocity dispersions, then f(v) is
best modelled by a Gaussian function with dispersion comparable to
8z. This is demonstrated by the fact that, in the plot, the best-fitting
values of ¢ 1, are comparable to the amplitude of the input redshift
errors when 4z is large.

The plots in the bottom part of Fig. 3 are analogous to those
shown in the upper-half except for the fact that, in this case, we
are considering the more realistic scenario in which &(r) is not
known a priori but obtained from deprojection. Uncertainties in the
deprojection procedure increase random errors by a factor of 2-3,
depending on the amplitude of 8z.

3.2 The impact of geometric distortions

Before looking in more detail into how GD arising from the choice
of a wrong cosmological background can actually be exploited to
our benefit, we would first like to understand how they impact
the measurements of the growth rate from RSD. We first investi-

gate how GD affect the estimate of the correlation function and
galaxy bias. We then focus on the measurement of 8. Specifically,
we assume a flat cosmology (so that 2, = 1 — Q) and investi-
gate the effect of choosing an incorrect value of Qy in the range
[0.2, 0.3], in steps of A2y = 0.01. All the other cosmological
parameters are kept fixed to their true values. For this set of exper-
iments we set redshift errors §z = 0. Since the amplitude of GD
is smaller than that of RSD, to appreciate their impact we need to
minimize sampling errors, i.e. trace velocities and density fluctua-
tions with as many haloes as possible. Thus, in the following we
shall use the whole simulation box with all its haloes, instead of the
27 subsamples.

3.2.1 Impact on the measured correlation function

Fig. 4 shows the effect of GD on the measured two-point halo corre-
lation function in real (middle set of black curves) and redshift space
(upper set of blue curves). The lower set of grey curves represents
the correlation function of the DM obtained by Fourier transforming
the matter power spectrum computed with cams (Lewis & Bridle
2002), which exploits the HALOFIT routine (Smith et al. 2003). In
each set, the central, green curve refers to the correct choice of
background cosmology, €2y = 0.25. The other curves refer to Qy
values ranging from 0.2 (top) to 0.3 (bottom). The choice of the
incorrect cosmology also distorts the shape of the computational
box. To account for this spurious effect, the random objects used
to compute £(r) have been generated within the same, distorted
volume.

GD enhance/dilute the correlation signal on all scales and thus
modify the amplitude but not the shape of the correlation function.

© 2012 The Authors, MNRAS 426, 25662580
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Figure 3. Large upper panels: best-fitting parameters 8 and o 12, as a function of the redshift error §z. Small bottom panels: systematic and statistical errors,
as a function of 8z. Specifically, the upper-half windows show the best-fitting values of §, averaged over the 27 mocks, and their scatter, o (8), represented
by the error bars. The lower-half windows show the random component of the relative error, o (8)/B (per cent). The black solid and red dotted lines represent
theoretical expectations from Tinker et al. (2010) and Sheth et al. (2001), respectively. The grey bands represent a theoretical uncertainty of 10 per cent. The
assumption on the adopted shape of f(v) and that on &(r) are labelled in the top-left part of the large upper panels. Top-left part of the figure: f(v) exponential
form and true &(r). Top-right: f(v) Gaussian form and true &(r). Bottom-left part of the figure: f(v) exponential form and deprojected &(r). Bottom-right: f(v)

Gaussian form and deprojected &(r).

The effect, quantified by the width of each set of curves, is very
small. It can be better appreciated in the bottom panel in which we
plot the mean fractional residual of &, (§&) (per cent) = ((§(Q2m) —
E(Qm = 0.25)/(2y = 0.25)), where the average is over the interval
1 <r<50h~! Mpc. Since to first-order GD do not modify the shape
of £(r), the value of (§&) quantifies the amplitude of the spurious
boost in the correlation signal induced by GD. In correspondence
to the values 2y = 0.2 and 0.3, already almost excluded by current
observational constraints, the boost is ~8 per cent.

© 2012 The Authors, MNRAS 426, 2566-2580
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Fig. 5 shows the effect of GD on &(r_, ry) (left-hand panel) and
&(s 1, s)) (right-hand panel). Contours are drawn at the correlation
values {0.025,0.05,0.1,0.2,0.5}. The different curves at a given
correlation level refer to different values of Q2. The green contours
refer to the true geometry.

Fig. 6 demonstrates that GD have little impact on the deprojection
procedure. The green dots show the zrue correlation function in real
space. The black curve shows the deprojected correlation function
obtained assuming the correct value of Q2y. The other red curves
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Figure 5. Iso-correlation contours for &(ry, ) (Ieft-hand panel) and (s ,
s) (right-hand panel). Contours are drawn at the iso-correlation levels
{0.025,0.05,0.1,0.2,0.5} indicated by the labels. Different contours drawn
at the same correlation level refer to the different values of )y considered.
The green contours refer to the correct cosmological model, 2y = 0.25.

refer to the other choices of ). The effect is the same as in Fig. 4: an
incorrect value for €2); boosts up or down the correlation amplitude
on all scales by a factor <10 per cent (bottom panel), similar to
when &(r) is measured directly.
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Figure 6. Upper panel: frue correlation function in real space (green dots),
deprojected correlation function with €y = 0.25 (black curve) and depro-
jected correlation function with other values of Q) (red curves). Bottom
panel: mean fractional error (§€) as a function of Q.

3.2.2 Impact on the measured galaxy bias

Aninteresting aspect of GD is that the two-point correlation function
estimated assuming an incorrect value Qu is different from the
correct two-point correlation function measured in a universe with
Q. This fact has some practical consequences, for example, in
the measurement of galaxy bias. Estimates of galaxy bias can be
obtained from the ratio of the galaxy and mass two-point correlation
functions. For example, the bias of the haloes can be estimated as
Brato(r) = Enato(r, u)/Epm(r, Qu))*?, where Epao(r, Qu) is the
real-space halo correlation function measured assuming some value
of QM and Epy(r, 2)) is the mass correlation function in the same
cosmology. We have computed by,,(r) for the haloes in our mock
catalogues. Results are shown in the upper panel of Fig. 7, in which
we show by, (r) obtained for different values of €2y in the range
0.2 < Qu < 0.3 (blue curves, from bottom to top). The red dots
refer to the correct cosmology and error bars represent 1o statistical
uncertainties computed as in Mo et al. (1992). Horizontal lines
show the model predictions of Tinker et al. (2010) and Sheth et al.
(2001).

These results show that GD affect both the amplitude of the
estimated bias and its scale dependence. To estimate the effect,
we fit each curve in the plot with a power-law function b(r) =
A + y - r. The spurious scale dependence is quantified by the
slope y that we plot in the bottom panel as a function of Q.
Ideally, it would seem possible to estimate 2\; by requiring that
b(r) remains flat on those scales where it should be constant.
However, the smallness of the effect and the theoretical uncer-
tainties on galaxy bias prevent this technique to be applied to real
data.

© 2012 The Authors, MNRAS 426, 25662580
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3.2.3 Impact on the measured value of B

To assess the GD impact on 8, we have repeated the same analyses
as presented in Section 3, i.e. we have estimated § from the ratio
£(s)/&(r) and by fitting the full £(s1, s;) . The blue curves in Fig. 8
show the ratio between the real- and redshift-space correlation func-
tions for 10 different values of 2y in the range 0.2 < Qy < 0.3
(from bottom to top). The green dots refer to the true cosmology
case. Error bars show the statistical errors computed according to
the Mo et al. (1992) prescription. Reference values according to
Tinker et al. (2010) and Sheth et al. (2001) are shown by the black
solid and the red dotted lines, respectively, with a 10 per cent the-
oretical uncertainty indicated by the grey band. The scatter among
the blue curves is significantly smaller than theoretical uncertain-
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Figure 8. Plot of the ratio between the redshift- and real-space correlation
functions computed from the simulation box after converting redshifts into
distances using 10 different cosmologies, corresponding to 10 values of Q2
in the range [0.2, 0.3] (blue curves). The green dots mark the correct value
for Qum = 0.25, whereas the horizontal lines show theoretical predictions
from Tinker et al. (2010) (black solid) and Sheth et al. (2001) (red dotted).
The grey band represents a 10 per cent uncertainty around the Tinker et al.
value.
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where X can be either 8 or o 12. The curves show the result obtained assuming
the true &(r) (solid, blue) or the deprojected one (dashed, red).

ties, thus indicating that estimates of 8 from RSD in the range 3 <
r(h~! Mpc) < 50 are robust to the choice of Qy,.

The alternative way to estimate 8 from &(s, s;) confirms this
result. Fig. 9 quantifies the amplitude of the effect. In the upper panel
we show the per cent difference between g computed for a given Qyr,
indicated on the x-axis, and the one obtained assuming the correct
model 2y = 0.25. The solid blue curve refers to the case in which
we model £ (s, s ) using the true & (), whereas the red dashed curve
shows the case in which & () has been obtained by deprojecting £ (s ,
;). In both cases, the impact of GD is rather small, especially if
compared to that of redshift errors. The corresponding error induced
on B is less than 1 per cent over the whole range of €2); analysed,
when the true £(r) is used in the model. Using the deprojected &(7),
the maximum error on B rises to ~4 per cent. Finally, the lower
panel shows the impact of GD on the other parameter of the fit, the
pairwise dispersion o j,. The error on this parameter turns out to
be larger than the one on B, rising to ~20 per cent for the extreme
values of Qy;.

4 DISENTANGLING DYNAMIC AND
GEOMETRIC DISTORTIONS

In this section, we investigate the possibility of performing the AP
test using £(s, s) . The goal is to constrain both 8 and the cosmo-
logical parameters that enter equation (3) exploiting anisotropies in
galaxy clustering induced by RSD and GD.

4.1 The method

As we have anticipatedin Section 2.3, a common approach is to use
equation (19) to model the two-point correlation function in a se-
ries of fest cosmological models and compare it with the measured
one (Ballinger et al. 1996). Here we adopt an alternative proce-
dure, which is a generalization of the iterative method introduced
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in Guzzo et al. (2008) and that is found to be robust. The method
consists in repeating the measurement of the correlation function
in different test cosmologies, and then modelling only its RSD.
Our working hypothesis is that, by construction, the agreement be-
tween model and data will be maximum when the test cosmology
coincides with the true cosmology of the Universe, i.e. without GD.

The steps of the procedure can be summarized as follows.

(i) Choose a cosmological model to convert angular positions
and redshifts into comoving coordinates.

(ii) Measure (s, s)) .

(iii) Estimate the real-space correlation function, &(r), required
to model dynamic distortions (e.g. through the deprojection tech-
nique).

(iv) Model only dynamic distortions (e.g. through equation 11),
and derive the best-fitting values of 8 and o |, that minimize the x>
function given by equation (21).

(v) Save this specific minimum value of the x2, that we shall
call F({DA, H},)

(vi) Go back to point (i) using a different test cosmology and
estimate a new value for F.

Once the whole set of {D,, H}; has been explored, the ‘best of the
best’ set of parameter values (8, 012, Da, H) will then be identi-
fied by the minimum value of F({D4, H};). The main differences
between this procedure and the usual one are that (i) the observed
and model correlation functions assume the same zest cosmological
model and (ii) once D, and H are fixed, one only needs to model
RSD. In the case of a flat ACDM background, the success of this
strategy is guaranteed by the small covariance between 2y and S
(see e.g. Ross et al. 2007). As a consequence, one can obtain an
unbiased estimate of €2y, even for an incorrect choice of 8 and o ;.

One advantage of our procedure is that it does not require the
modelling of the galaxy bias. Since the galaxy correlation function
can be obtained directly from the data through the deprojection
technique, it is not necessary to model the shape of the DM corre-
lation function [at point (iii)]. The only assumption of the method
is the intrinsic isotropy of the clustering.

One disadvantage is the computational cost, since one has to
estimate (s, s) for each cosmological model to test. However,
the use of optimized linked-list-, Tree- and FFT-based algorithms
allows &£(s, s)) to be computed sufficiently fast, as to efficiently
explore the parameter space without resorting to supercomputing
facilities. Alternatively, instead of directly measuring the correlation
function at different test cosmologies, it is actually sufficient to
measure £(s, s;)in a fiducial cosmology and rescale the result to
a test cosmology, using equation (19). A second disadvantage is
related to the estimate of the errors. The best-fitting parameters are
found by minimizing a function F that does not obey a x? statistics.
The reason is that the data themselves, which in this case coincide
with the measured £(s ., 5) , depend on D, and H. Therefore, since
the values of F evaluated at different D, and H do not refer to the
same data set, the function F does not follow a x? statistics. As a
consequence, errors on D and H have to be evaluated in a different
way, as we shall see below.

4.2 Joint constraints on 2y and 8

We start our analysis considering the case of a flat ACDM model in
which Qy, the mass density parameter, fully characterizes the ex-
pansion history and geometry of the Universe. Fig. 10 illustrates the
result of applying this procedure to the full catalogue of DM haloes.
The different panels show the iso-correlation contours of the two-
point correlation function measured in real (black curves in the top
panels) and redshift space (blue curves in the bottom panels). Con-
tours are drawn at the correlation levels {0.04,0.06,0.1,0.2,0.5}.
Different panels refer to the different values of €2\ used to compute
distances and estimate the correlation function, as indicated by the
labels. The green dotted curves are drawn for reference and show the
predictions for the true cosmological model 2y = 0.25. As such,
in the central panel they coincide with the black and blue curves.
The red curves show the corresponding model for the two-point
correlation function obtained using the best-fitting values of g and
o1, estimated at each value of Qy;.
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Figure 10. Contour plots of the DM halo correlation function, £(r_, r)) (blue curves), in real (top panels) and redshift space (bottom panels), measured for
Qm ={0.1,0.2,0.25, 0.3, 0.4 }. The iso-correlation contours correspond to & (rJ , D) ={0.04,0.06,0.1,0.2,0.5}. The red lines in both sets of panels correspond
to the model £(s_, s))) . In the top panels, they simply give the dynamically undistorted real space &(r) computed for the given cosmology and replicated over
7t/2; in the bottom ones, they also include the RSD dispersion model (equation 11) for the best-fitting values of 8 and o1, derived for that specific Qy. The
green dotted curves show the geometrically undistorted &(r_ , r|) measured at the true cosmology (£2m = 0.25), for comparison.
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In real space (top panels) the model for &(r, ry)is simply a
replica over all angles of the real-space correlation function &(r)
(i.e. no RSD are present, corresponding to setting 8 = o, = 0 in
the dispersion model). This is shown here to evidence the interplay
of the two effects. It could be seen as an idealized case in which
we are able to perfectly correct for RSD, or can hypothetically
reconstruct the real-space galaxy distribution. The iso-correlation
contours are thus circles in the (r., r}) plane, when the correct
cosmology is used. The effect of GD when varying the cosmology
is then quantified by the mismatch between the green and the black
contours. As evident, the best-fitting value for €2); can be found by
minimizing the difference between the red and the black curves,
which is in practice the AP test. The best agreement is found for
Qum = 0.25, as expected, showing that this procedure is unbiased.

Similar considerations can still be applied to the redshift-space
case (bottom panels). For a given Qy, the amplitude of the mismatch
is similar to that found in real space. This fact validates the hypoth-
esis that GD and RSD are substantially independent. The difference
between red and blue curves is still minimized for the correct refer-
ence value, Qy = 0.25, showing that the result is unbiased also in
redshift space.

Let us then quantify the ability of the proposed technique to
jointly estimate 2y and B. As we described, the best-fitting val-
ues for (B, 012, Q) are found at the minimum of the pseudo- x>
function, F. Note that, in this procedure, both the model and the mea-
sured &£(s, s;) depend on Qy. The same happens with the errors,
since the number of pairs in each bin is modified by the presence
of GD. However, we have verified that this effect is small and can
be ignored. More specifically, the shape of the function F and the
position of its minimum are very insensitive to §&(2y). In Fig. 11
we plot AF = F(Q2m) — Finin, Where Fyy;, is the minimum value of
F found during the exploration of the cosmological parameter grid

02 q T — T T
= real space — 8,0, fixed -
L z space — 3,0, fixed
L z space — f3,0,, free
0.15 - =
£ r ]
£ L 4
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| L 4
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Figure 11. The ‘pseudo-likelihood’ function AF as a function of 2,
obtained with the method described in Section 4.2. (i) In real space, fixing
B = o012 = 0 (black line). (ii) In redshift space, but fixing g and o7 to
their best-fitting values as derived with the correct cosmology (red line).
(iii) Same, but leaving B and o1, also as free parameters, either assuming
perfect knowledge of the true real space &(r) (blue line) or (iv) recovering it
through deprojection (green line).
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(2y; in our case). As in Section 3, we fit over the range 3 < r,
7| < 35 h~! Mpc, with linear bins of 1 2~! Mpc both in the parallel
and perpendicular directions.

To evidence how the technique operates in detail, and understand
its possible limitations, we proceed in increasing steps, as we did
in Fig. 10. We therefore first test the validity of the best-fitting
procedure in real space, an ideal case that would correspond to a
perfect subtraction (or absence) of RSD. In this case, the value of
F quantifies the mismatch between the black and the red contours
shown in the top panels of Fig. 10. The corresponding function
AF is represented by the black curve in Fig. 11. The minimum of
the curve is found for Qy = 0.25, again showing that the fitting
procedure gives unbiased results.

The red curve refers to redshift space. It shows the values of AF
obtained as a function of 2y;, after fixing 8 and o, to the best-
fitting values computed at €2 = 0.25. In practice, this is again an
idealized case in which the correct distortion pattern is known a pri-
ori and used as a reference against the one observed when assuming
different cosmologies. The RSD model is, in other words, inaccu-
rate for all choices of )\ but for 2y = 0.25. Also in this case,
the minimum of AF is found for Q) = 0.25, thus indicating that
the switch-on of RSD does not bias our estimate. Interestingly, in
this case the minimum is sharper than in the real-space case (black
curve); this can be explained as due to the stronger constraints posed
by the RSD pattern in the observed £(r, r), which reduces sym-
metry with respect to the simple real-space case. In other words, this
is telling us that, if we were able to know redshift distortions per-
fectly, e.g., from an independent measurement, then the constraints
on the background cosmological parameters from an AP test would
be more precise than those expected from the standard real-space
geometric test. This is shown in this simplified case by the fact that
the red curve yields a smaller uncertainty on 2y than the black one.

In the general case, however, we do not know a priori the amount
of redshift distortions and we would rather like to also estimate j
(and 0 1), together with 2);. The resulting constraint is shown by the
blue and green curves. For the blue curve, we have assumed perfect
knowledge of the real-space correlation function £(r) (i.e. we have
measured it directly from real-space positions in the simulation).
We have already seen how crucial this is, as an ingredient in the
RSD model. Also in this case, the minimum is found at the expected
value 2y = 0.25, although the fit is less constraining because of the
increased degrees of freedom in the model. The green curve, instead,
depicts what happens with the same freedom in the model but in the
most realistic case when one reconstructs & (r) by deprojecting (s,
s)) . Although the estimate of €2y is still almost unbiased (i.e. the
systematic errors are smaller than the random ones), the minimum is
now much shallower, thus indicating lower constraining power, i.e.
a larger statistical uncertainty in the recovered value. These errors
reflect the uncertainties in the deprojection procedure, which are
responsible for the scatter among the green curves in Fig. 1.

As previously discussed, the function AF does not obey a x°
statistics and therefore we cannot use the curves in Fig. 11 to de-
fine confidence interval and estimate errors on €2y;. Ideally, one
should repeat the analysis using many halo catalogues extracted
from the simulation. However, in our analysis we have already con-
sidered the whole computational box and would need to run more,
independent N-body simulations, which are not available. We are
therefore forced to evaluate errors using techniques that are typi-
cal of error estimates from observational samples. Specifically, we
use the ‘block-wise bootstrap’ technique: we divide the box into
27 independent subboxes and build several boostrap samples, each
containing 27 subsamples selected at random, with replacement,
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from the original data set. The 1o errors are then evaluated from
the scatter on the relevant quantities among the bootstrap samples
(Norberg et al. 2009).

We apply this technique to quantify the uncertainties on our esti-
mated values of 2y, 8 and o, when using the procedure described
in this section as applied in a realistic situation, i.e. redshift space
with free parameters (i.e. the cases of the blue and green curves in
Fig. 10). We obtain a value 2 = 0.24 &£ 0.03, corresponding to a
1o uncertainty of 12 per cent, when the true &(r) is used in the RSD
model (i.e. the black curve). When using the deprojected £(r), the
error on 2y grows up to ~40 per cent. Still, no systematic bias is
apparent.

Finally, all these results have been obtained assuming no errors
on measured redshifts. We checked directly that the impact of these
errors on our conclusions is indeed negligible, as long as 8z < 0.2
per cent. However, when 8z > 0.3 per cent, the resulting systematic
errors on B do propagate to 2y and can bias its estimate.

4.3 Constraints on curvature and on the DE equation of state

In this section, we investigate how GD can help in detecting possible
deviations from a flat ACDM scenario. Let us assume a more general
DE model with equation of state:

PDE

PDE _wo—{—wa] +z
(Chevallier & Polarski 2001; Linder 2003). In this case, the relevant
cosmological parameters are 2y, 24, wo and w, (see equations 3—
18 and 19).

As described in the previous sections, our AP test exploits only
clustering distortions and does not consider the information encoded
in the shape of the correlation function. The advantage is that our
method does not depend on the galaxy bias model. The drawback is
that with no constraints on the shape of £(r), the above parameters
are degenerate. This can be seen in Fig. 12, which shows the 68 and
95 per cent pseudo-likelihood probability contours in the Qy—24,
Qpm—wp and wy—w, planes. In each plot, the other two parameters
that are not shown are fixed to the true values. The red squares mark
the cosmological parameters of the simulation. These constraints
have been obtained in redshift space, using the true £(r) and fixing
B and o, to their best-fitting values as derived with the correct
cosmology, so that the red curve in Fig. 11 corresponds to the
pseudo-likelihood contours along the dotted black line in Fig. 12,
which illustrates the case of a flat universe (2, = 1 — Qy). The
flatness constraint is almost perpendicular to the degeneracy in the

(22)

1F

QMm—2, plane, and is the reason that allowed us to constrain 2y
in the previous section.

5 DISCUSSION AND CONCLUSIONS

In this work, we have investigated some relevant limitations exist-
ing when using the anisotropy of galaxy clustering to measure the
growth rate of density fluctuations, while accounting at the same
time for the extra distortions induced by the cosmology-dependent
mapping of redshifts into distances. More specifically, we have
assessed the impact of different types of uncertainties, both obser-
vational and theoretical, on the estimated values of 8, the anisotropy
parameter closely related to the growth rate. We have then tested
how well, in the presence of RSD, the correct underlying cosmology
can be inferred.

The main results of these analyses can be summarized as follows.

(i) The impact of Gaussian redshift errors on the estimate of RSD
can be assimilated to a generalized small-scale Gaussian velocity
dispersion, which can be quantified in terms of a single parameter
analogous to the usual pairwise velocity dispersion o ;.

(ii) In catalogues with volume, density and bias similar to the
ones analysed in this work, we can estimate 8 from RSD with
an accuracy of 5-10 per cent, regardless of the redshift errors. A
general scaling formula for the statistical error on § as a function of
the survey parameters is calibrated and presented in the companion
paper by Bianchi et al. (2012).

(iii) With typical spectroscopic redshift errors (o, <
600 kms™'), the anisotropy parameter 8 measured using galaxy-
sized haloes is systematically underestimated by ~10 per cent. This
is discussed in more detail in Bianchi et al. (2012), where it is also
shown that this systematic error depends on the bias of the haloes
considered.

(iv) Larger redshift errors (o, = 1000 kms~!) introduce an op-
posite systematic bias in the estimate of 8, if not modelled properly.
This can be partly alleviated using a Gaussian model for the veloc-
ity distribution function f(v), rather than the exponential one. Note,
however, that this may be influenced by the fact that a Gaussian
distribution has been assumed for redshift errors (which is, in any
case, a realistic choice for spectroscopic observations).

(v) A key ingredient in modelling RSD in a sample is good
knowledge of the underlying real-space correlation function &(r).
Random errors on 8 are increased by a factor ~2 when &(r) is

0.9

0.8

C}<O'7

0.6

0.5

0 0.2 0.4 0.6 ) 0.1

L ) L L

|
2 03 04 03 05 07 09 -1
Qum Wo

Figure 12. The 68 and 95 per cent pseudo-likelihood probability contours in the Qp—S2, (left-hand panel), 2y —wo (central panel) and wo—wjy (right-hand
panel) planes. In each case, the other two parameters not shown are fixed to their true values. These constraints have been obtained in redshift space, using the
true £(r) and fixing B and o 12 to their best-fitting values as derived with the correct cosmology. The red squares mark the correct cosmological parameters of
the simulation. The dotted black line in the left-hand panel shows the flat background case: Q24 = 1 — Q.
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obtained through the deprojection of the observed £(s, s)), with
respect to when using the correct &(r).

(vi) GD arising from an incorrect choice of the background cos-
mology affect both the measured correlation function and its model,
and thus can impact the estimate of . However, we have seen that
this is very small, meaning that the value of 8 can be recovered with
similar accuracy even assuming a wrong cosmological model.

(vii) GD have an impact on the estimated galaxy bias. The effect
is to introduce a spurious scale dependence in the biasing function
on those scales in which it is supposed to be constant. However, the
effect is very small and of the same order of theoretical uncertainties
in current bias models.

(viii) We have implemented and tested an alternative procedure
to perform the AP test from the observed £(s;, s;), measuring
simultaneously 8 and the parameters that enter equation (3). This is
based on the (verified) assumptions that the effect of RSD dominates
GD and that the best match between RSD observations and the RSD
model is realized for the correct cosmology. We have shown that
this procedure is robust and the results are unbiased in the case
of a flat ACDM model. We give a first approximated estimate of
the uncertainty that can be expected for 2\ through a block-wise
bootstrap resampling. In a volume V = 2.4 x 10° (h~! Mpc)?, we
find that the expected errors on €2y are of the order of ~12 per cent,
rising up to ~40 per cent if the deprojected & () is used instead of the
true one. The results are very insensitive to the accuracy of the model
used to describe RSD and to the magnitude of redshift measurement
errors (up to §z ~ 0.2 per cent). Finally, we have investigated how
GD can be exploited to constrain both the curvature of the Universe
and the DE equation of state.

In this paper, we focused on the analysis of a simulation snapshot
centred at z = 1. Clearly, we could have analysed a corresponding
box at z = 0, but preferred to focus on a redshift range which is
becoming more and more important with ongoing deep surveys like
VIPERS [which has an effective redshift around 0.8 and stretches
out to z = 1.4 with its brightest galaxies (Guzzo et al., in prepa-
ration)], and with future larger surveys. Also, we concentrated our
analysis on intermediate scales, r < 50 ! Mpc, where most of the
RSD signal lies. These scales will remain important for these stud-
ies also in future surveys in which larger, even more linear scales
will be surely better sampled, but nevertheless not sufficient alone
for reaching the per cent precisions we are aiming for.

Finally, we also limited our modelling to the simple dispersion
model. We are aware, as we show in our companion paper (Bianchi
etal. 2012), that this is not a fully appropriate description of cluster-
ing and RSD on such mildly non-linear scales, when the precision
on statistical errors becomes high. This is very probable at the origin
of the observed ~10 per cent systematic error on the recovered 8
and significant work is being performed to improve it (see e.g. de la
Torre & Guzzo 2012, and references therein). Still in its simplicity
the dispersion model performs surprisingly well when compared to
much more complicated expressions (e.g. Blake et al. 2011) and de-
livers statistical errors comparable to or smaller than those of more
sophisticated non-linear corrections (de la Torre & Guzzo 2012).
The fact that the impact of non-linear effects on estimated errors is
quite limited is also suggested by the close similarity of the errors
on S estimated as in this paper to those predicted by a Fisher matrix
analysis (Bianchi et al. 2012).
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