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Abstract. A growing trend in today’s society is outsourcing large
databases to the cloud. This permits to move the management bur-
den from the data owner to external providers, which can make vast
and scalable infrastructures available at competitive prices. Since large
databases can include sensitive information, effective protection of data
confidentiality is a key issue to fully enable data owners to enjoy the
benefits of cloud-based solutions. Data encryption and data fragmenta-
tion have been proposed as two natural solutions for protecting data
confidentiality. However, their adoption does not permit to completely
delegate query evaluation at the provider. In this chapter, we illustrate
some encryption-based and fragmentation-based solutions for protecting
data confidentiality, discussing also how they support query execution.

1 Introduction

Starting from the pioneering Database-as-a-Service (DaaS) paradigm [20], recent
years have seen an ever-growing trend towards the outsourcing of large data
collections to external providers. By delegating data storage and management
to external third parties, data owners can enjoy the immediate benefits of a
reduced overhead at their side. The rapid advancements in cloud computing have
accelerated this trend: the availability of a rich cloud market allows data owners
to store and maintain huge data collections in the cloud at competitive (and
typically pay-as-you-go) prices. The benefits of data outsourcing are multiple
and not confined to economic factors, ranging from high service availability,
to improved scalability and elasticity. However, no lunch comes for free, and
one of the major issues arising when resorting to the cloud for data storage
and management is the inevitable loss of control by the owner over her own
data, and consequent risks to data protection in this context. Cloud providers
are typically considered honest-but-curious, that is, trustworthy for correctly
managing data but not trusted for accessing their content. Besides the intuitive
need for protecting data confidentiality against external unauthorized subjects,
it is then essential to protect it also against the provider itself.
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Encryption represents a natural means for providing data confidentiality:
by wrapping data with a layer of encryption, data are made unintelligible to
unauthorized parties (which do not know the encryption key). If data are en-
crypted by their owner before being outsourced to the cloud, encryption also
effectively provides data confidentiality against the storage provider itself [26].
Encrypting an entire data collection however can represent an overdo in many
scenarios, where what is sensitive is the association among data items, rather
than the data themselves. For instance, while knowing that a hospitalized pa-
tient is named Alice, and that a patient at the same hospital has flu might not
be sensitive, the fact that Alice suffers from flu can be sensitive. The sensitive
association between patients’ names and diseases can be protected by simply
storing names and diseases in two unlinkable data chunks, reducing the need for
encryption. Following this intuition, the research community has proposed to
combine encryption with data fragmentation [15]. In a nutshell, fragmentation-
based techniques protect sensitive associations among data by splitting them
into different unlinkable fragments (e.g., [1,5,7]).

Both encryption and fragmentation, while proved effective for confidentiality
protection, cam impair query execution or make it more complex. Indeed, the
cloud provider neither knows the encryption keys used to protect sensitive data
nor can join fragments. Hence, it cannot evaluate user queries formulated on
the original (plaintext and non-fragmented) relation. A naive solution would
require the provider to return the entire encrypted or fragmented relation to the
requesting user who (being authorized to issue queries) can decrypt or recombine
it, to evaluate the query locally. This solution is however not viable, as it would
nullify the benefits of resorting to the cloud. We will see how the use of indexes
(metadata) associated with the encrypted relation or specific strategies allow the
(partial) query evaluation directly at the provider, without requiring to decrypt
data or join fragments (e.g., [1,5,7,20,13]).

In this chapter, we illustrate encryption-based and fragmentation-based tech-
niques for protecting the confidentiality of large data collections outsourced at
cloud providers, discussing also their support for query execution. Clearly, data
confidentiality is only one aspect of the more general problem of ensuring proper
protection to data. Many other problems have been investigated (e.g., [16,22,23])
but they are outside the scope of this chapter. The remainder of this chapter is
organized as follow. Section 2 describes encryption-based solutions, while Sec-
tion 3 presents fragmentation-based techniques, describing both the protection
model and query evaluation approaches. Section 4 finally concludes the chapter.

2 Encryption-based Approaches

A natural solution for protecting data confidentiality consists in wrapping data
with an encryption layer. Not knowing the encryption key, unauthorized subjects
cannot decrypt the data and access their plaintext content. In this section, we
discuss the use of encryption to protect the confidentiality of outsourced data,
and illustrate different techniques that can be used to (partially) delegate query
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FinancialData

SSN Name Race Job Salary Ins

123-45-6789 Alice white teacher 40K 160
234-56-7890 Bob while farmer 25K 100
345-67-8901 Carol asian nurse 20K 100
456-78-9012 David black lawyer 50K 200
567-89-0123 Eric black secretary 20K 100
678-90-1234 Fred asian lawyer 40K 180

c1={SSN}
c2={Name, Salary}
c3={Name, Ins}
c4={Salary, Ins}
c5={Race, Job, Ins}

(a) (b)

Fig. 1: An example of a relation (a) and of confidentiality constraints over it (b)

evaluation on encrypted data to the cloud provider. We first focus on the index-
based approach (Section 2.1), and then illustrate solutions that support the
execution of queries directly over encrypted data (Section 2.2). For simplicity,
we focus on outsourced data organized as a relation r defined over a relational
schema R(a1, . . . , an), with the note that the discussed protection techniques
can also be applied to different (semi-)structured data models. We further note
that the encryption schemas supporting keyword-based searches over generic
encrypted data are outside the scope of this chapter and therefore we do not
discuss them.

2.1 Encryption and Indexes

Data can be encrypted with symmetric as well as asymmetric encryption al-
gorithms but, since symmetric encryption is typically cheaper, many proposals
adopt symmetric encryption [26]. The outsourced relation can be encrypted at
different granularity levels: cell level, attribute level, tuple level, or relation level.
The chosen granularity level impacts on the query evaluation process, with con-
sequences on its performance. For instance, relation-level encryption would re-
quire to return to the requesting user the entire encrypted relation. In general,
finer granularity levels enable users to be more precise in downloading the en-
crypted content of interest but, on the other hand, cause a high overhead due
to encryption/decryption operations. Viceversa, coarser granularity levels imply
a lower overhead for encryption/decryption operations, but require to down-
load larger encrypted chunks than necessary for query evaluation. Tuple-level
encryption represents a good tradeoff between the overhead caused by encryp-
tion/decryption operations and query execution efficiency [26].

With tuple-level encryption, a relation r defined over relation schema
R(a1, . . . , an) is outsourced at the cloud provider as an encrypted relation re de-
fined over schema Re(tid, enc), with tid the primary key added to the encrypted
relation and enc the encrypted tuple. Each tuple t in r is represented as an en-
crypted tuple te in re, where te[tid] is a random identifier and te[enc]=Ek(t )
is the encrypted tuple content, with E a symmetric encryption function with
key k . To illustrate, consider relation FinancialData in Figure 1(a), report-
ing financial information about a set of individuals. Figure 2(a) illustrates an
example of an encrypted version of it.
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FinancialDatae

tid enc

1 4tBf
2 lkG7
3 wF4t
4 m;Oi
5 n:8u
6 xF-g

FinancialDatae
ι

tid enc Ir Ij Is Ii

1 4tBf α δ ζ ξ
2 lkG7 α δ η ν
3 wF4t β ϵ θ ν
4 m;Oi γ ϵ κ ξ
5 n:8u γ δ λ ν
6 xF-g β ϵ µ ξ

(a) (b)

Fig. 2: An example of encrypted (a) and encrypted and indexed (b) versions of
relation FinancialData in Figure 1(a)

Query evaluation. To enable query evaluation over encrypted data at the cloud
provider, without the need of decryption, index-based solutions complement the
encrypted relation with indexes. Indexes are metadata that preserve some of the
properties of the attributes on which they have been defined, and therefore can
be used for query evaluation. Indexes are represented as additional attributes
in the encrypted (and indexed) relation reι , which is then defined over schema
Re

ι (tid, enc, I i1 , . . . , I ij ), with I il , l = 1, . . . , j the index defined over attribute
ail in R . Note that not all attributes must be associated with an index – on
the contrary, only those that are expected to be involved in conditions in query
evaluation need to be indexed. Figure 2(b) illustrates an example of an encrypted
and indexed version of relation FinancialData in Figure 1, with indexes over
attributes Race, Job, Salary, and Ins. For simplicity, indexes are represented
in the figure with Greek letters.

Different indexing techniques have been proposed, depending on the mapping
between plaintext and index values and on the supported conditions [17,18].
Equality conditions of the form a = v, with v a value in the domain of a , are
supported by many indexing techniques, such as encryption-based [13], bucket-
based [20], and hash-based [13] indexes. Encryption-based indexes associate index
value Ek(t [a ]) with plaintext value t [a ], where E is a symmetric encryption
scheme and k is the encryption key. Bucket-based indexes partition the domain of
an attribute a in disjoint subsets of contiguous values each of which is associated
with a label . A plaintext value t [a ] is represented in the index with the label l of
the partition to which t [a ] belongs. Hash-based indexes instead adopt a secure
hash function h that generates collisions, and the index value associated with
plaintext value t[a ] is computed as h(t[a ]). For instance, consider the encrypted
and indexed relation in Figure 2: index I r is an encryption-based index over
attribute Race of relation FinancialData in Figure 1(a); index I i is a partition-
based index over attribute Ins, where the domain has been partitioned in two
intervals: [100, 150] with label ν, and [151,200] with label ξ; and index I j is
a hash-based index over attribute Job, where the hash function is defined as
follows: h(teacher)=h(farmer)=h(secretary)=δ and h(nurse)=h(lawyer)=ϵ.

Range conditions of the form a in [vi, vj ], with a an attribute and [vi, vj ] a
range in the domain of a are supported by bucket-based indexes, if the labels
associated with them are defined so to preserve the order among attribute val-
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qu: select Name

from Decrypt(Rp.enc,k)
where Job=‘teacher’

qp: select tid, enc
from FinancialDatae

where Ir=α and Ij=δ

Fig. 3: Execution of query “select Name from FinancialData where

Race=‘white’ and Job=‘teacher’ ” over the encrypted and indexed relation of
Figure 2(b) as subqueries at the provider side (qp) and at the user side (qu)

ues (leaking however the order of attribute values to the provider). An indexing
technique specifically designed to support range queries is based on a B+-tree
index defined over the plaintext attribute to be indexed [13]. The B+-tree index
is represented at the provider through an additional encrypted relation. Alterna-
tive solutions to support range conditions rely on Order Preserving Encryption
Schemas (OPES [2,28])

Aggregate operators [19,21] such as sum and avg are supported by indexes
defined using homomorphic encryption [4,11,12,19,25], which allows the evalua-
tion of arithmetic operators directly on encrypted data. The downside of these
indexes is represented by the high computational overhead caused by homomor-
phic encryption schemes.

Given an encrypted and indexed relation reι over schema Re(tid, enc), a
query q formulated by the user on the original relation schema R(a1, . . . , an) is
translated into two queries qp and qu, operating at the provider and at the user
sides, respectively. The original conditions in q are translated into equivalent
conditions on the indexes in Re to define the query qp operating at the provider.
Query qu operates on the result of qp to evaluate conditions that cannot be
delegated to the provider (e.g., conditions over attributes that are not associated
with indexes), and to filter the spurious tuples. For instance, with reference to the
encrypted and indexed relation in Figure 2(b), Figure 3 illustrates an example
of query execution over the encrypted and indexed relation in Figure 2(b).

2.2 Encrypted Data Processing

An alternative to indexes to partially delegate query execution to the provider
consists in adopting encryption techniques that support the execution of op-
erations or the evaluation of conditions directly over encrypted data. For in-
stance, deterministic encryption supports the evaluation of equality conditions,
Order Preserving Encryption (OPE) supports the evaluation of range conditions
(e.g., [2,28]), and fully homomorphic encryption supports the evaluation of any
function (e.g., [19]). Taking these encryption techniques as basic building blocks,
some encrypted database systems have been developed (e.g., CryptDB [24],
Monomi [27], and Cipherbase [3]), which support query processing over en-
crypted data. Among these systems, we describe CryptDB since it specifically
focuses on query processing. Monomi focuses more on the physical design of
the encrypted database with respect to a given workload and Cipherbase, being
based on a trusted hardware on the untrusted cloud provider (which can per-
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Fig. 4: An example of encryption layers adopted by CryptDB [24]

form arbitrary computation) focuses on how and where (client, server, trusted
hardware) execute a computation.

CryptDB chooses a different encryption schema (depending on the conditions
to be supported) for each attribute, and applies encryption at the cell level. To
support different operations/conditions on the same attribute, multiple encryp-
tion layers are wrapped around a cell, forming an onion-like structure [24]. Note
that the encryption layers are the same for all the cells in the same column,
but they may vary from an attribute to another (depending on the kinds of
queries to be supported). The outermost level features the strongest encryption
(i.e., randomized encryption, a probabilistic scheme where two equal values are
mapped onto different ciphertexts with non-negligible probability [24]), while
the innermost level represents plaintext data. Proceeding from the outermost to
the innermost layers, the adopted encryption scheme provides weaker security
guarantees but supports more computations over encrypted data. For instance,
attribute Salary in relation FinancialData in Figure 1 can be encrypted with
randomized encryption (to maximize protection in storage), deterministic en-
cryption (to support equality conditions), and OPE (to support aggregates and
range conditions), as illustrated in Figure 4.

Encryption is dynamically regulated depending on the operations to be eval-
uated, by removing encryption layers. For instance, consider a query q : select
avg(Salary) from FinancialData, and assume that the encryption layers are
as in Figure 4. To enable the cloud provider to compute the average salary, the
randomized and deterministic encryption layers are removed. Note that once a
layer of encryption is removed from an attribute, it cannot be restored as data
have been exposed to the provider, which cannot be considered oblivious.

Query evaluation. Query execution with CryptDB assumes a trusted proxy
mediating the communications between the users and the cloud provider. The
proxy stores a secret master key k , the database schema, and keeps track of the
current encryption layers protecting each attribute in the relation. Given a query
q issued by a user, the proxy rewrites it into an equivalent query q̂ operating over
the encrypted relation choosing, for each attribute on which the query operates,
the most appropriate encryption layer in its onion structure. If one (or more)
encryption layer(s) should be removed from one (or more) attribute(s), the proxy
issues an update query removing it (them). The proxy forwards q̂ to the cloud
provider, which executes it. The provider then returns the encrypted result of q̂
to the proxy, which finally decrypts it and sends the plaintext result to the user.
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3 Fragmentation-based Approaches

Besides complicating query execution, encryption could also be an overdo since,
in many scenarios, what is sensitive is the association among data (e.g., the
identity of a patient and her salary), rather than the data items singly taken. In
these cases, confidentiality of associations can be more conveniently protected
by storing different portions of data in different, non-linkable fragments. In the
context of fragmentation, sensitive attributes and sensitive associations among
attributes can be formulated as confidentiality constraints, that is, sets of at-
tributes whose joint visibility should be protected [1]. Singleton sets (singleton
constraints) correspond to sensitive attributes; non-singleton sets (association
constraints) correspond to sensitive associations. Figure 1(b) illustrates a set C
of confidentiality constraints over relation FinancialData in Figure 1(a). In
particular, c1 is a singleton constraint stating that the SSN of the individuals
is sensitive per se; c2, . . . , c5 are association constraints stating that: the salary
and insurance of an individual are sensitive (c2 and c3), the associations between
a certain salary and the insurance (c4), and among the race, job, and insurance
of an individual (c5) are sensitive. In this section, we illustrate three solutions
that rely on fragmentation for protecting data confidentiality. We focus on solu-
tions that assume attributes to be independent, while noting that fragmentation
can also consider dependencies and correlations among attributes, which could
introduce inferences channels [14].

3.1 Two can keep a secret

The first approach protecting data confidentiality through fragmentation guar-
antees data protection splitting the original relation into two fragments that do
not include sensitive attributes or associations. The two fragments are guaran-
teed to be unlinkable as they are stored at two non-communicating providers [1].

Confidentiality constraints are satisfied by properly combining fragmentation
and encoding [1]. Encoding an attribute a consists in splitting it into two at-
tributes a i and a j, both necessary to reconstruct the values of a (i.e., a = a i⋄a j ,
with ⋄ a non-invertible composition operator). Encryption represents a possible
encoding technique, placing the ciphertext in a i and the encryption key in a j ,
with ⋄ the encryption algorithm. For simplicity, we will assume encryption as
the adopted encoding technique.

A relation r over a schema R fragmented according to the proposal in [1]
produces a fragmentation F = {F 1,F 2,E}, with F 1,F 2,E ⊆ R . F 1 and F 2 are
the sets of attributes represented in plaintext in the two fragments, while E is
the set of encrypted attributes. Singleton confidentiality constraints are satisfied
by encrypting the sensitive attributes (i.e., by placing them into E ). Association
constraints are typically satisfied by splitting the attributes they include between
F 1 and F 2. Being the number of fragments fixed to two, it might happen that an
attribute cannot be stored at any of the two fragments without violating some
constraints. In such a situation, the attribute is encrypted. To illustrate, con-
sider constraints c2, c3, and c4 in Figure 1(b): it is not possible to split attributes
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F
e
1

tid Name Race Job SSN1 Ins1

1 Alice white teacher E(123-45-6789,kSSN1) E(150,kIns1)
2 Bob while farmer E(234-56-7890,kSSN2) E(100,kIns2)
3 Carol asian nurse E(345-67-8901,kSSN3) E(100,kIns3)
4 David black lawyer E(456-78-9012,kSSN4) E(200,kIns4)
5 Eric black secretary E(567-89-0123,kSSN5) E(100,kIns5)
6 Fred asian lawyer E(678-90-1234,kSSN6) E(180,kIns6)

F
e
2

tid Salary SSN2 Ins2

1 40K kSSN1 kIns1
2 25K kSSN2 kIns2
3 20K kSSN3 kIns3
4 50K kSSN4 kIns4
5 20K kSSN5 kIns5
6 40K kSSN6 kIns6

Fig. 5: Two can keep a secret: An example of a correct fragmentation of relation
FinancialData in Figure 1(a)

Name, Salary, and Ins between two fragments without violating a constraint.
A fragmentation F = {F 1,F 2,E} is correct iff the following two conditions
hold: i) ∀c ∈ C : c ̸⊆ F 1, c ̸⊆ F 2 (confidentiality); and ii) F 1 ∪ F 2 ∪ E = R
(completeness). Condition i) ensures that neither F 1 nor F 2 store all the at-
tributes in a confidentiality constraint in plaintext, while condition ii) ensures
that all attributes of the original relation are included in the fragmentation (i.e.,
no information is lost due to fragmentation). A correct fragmentation guaran-
tees that sensitive values and associations are not accessible to non-authorized
users (since they do not know the encryption key, and the two providers do not
communicate), and that the original relation r can be reconstructed by autho-
rized users from F . Considering the relation and the confidentiality constraints
in Figure 1, an example of a correct fragmentation is F = {F 1,F 2,E}, with
F 1 = {Name, Race, Job},F 2 = {Salary},E = {SSN, Ins}.

At the physical level, fragments F 1 and F 2 are represented by two physical
fragments F e

1 and F e
2, where each physical fragment F e

i stores the attributes
in F i in plaintext, a tuple identifier tid, and the encrypted attribute values
(or the corresponding keys). The tuple identifier is needed for authorized users
to recombine the content of the fragments, to reconstruct the original relation.
Each tuple t in r is represented by a tuple te1 in F e

1 and a tuple te2 in F e
2 sharing

the tuple identifier tid. Tuples te1 and te2 include in plaintext the values of the
attributes in F 1 and F 2, respectively. Also, tuple te1 includes the encrypted values
of the attributes in E , while te2 includes the corresponding encryption keys (or
viceversa). Figure 5 illustrates the physical fragments F e

1 and F e
2 representing a

correct fragmentation of relation FinancialData in Figure 1.
Given a relation schema R and a set C of confidentiality constraints over

it, there might exist different correct fragmentations satisfying C. For instance,
a fragmentation where fragments F 1 and F 2 are empty, and E = R is clearly
correct, but is typically undesirable since queries can be evaluated at the user
side only. The authors of [1] then propose a metric to evaluate the quality of a
fragmentation (where an optimal fragmentation minimizes the cost of evaluating
a sample query workload on the user-side), and a heuristic algorithm to solve
the (NP-hard) problem of computing such an optimal fragmentation.

Query evaluation. Since fragmentation should be transparent to final users,
queries are formulated over the original relation r , and then are translated into
a set of equivalent queries operating on the fragmentation F . The intuition be-
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Parallel strategy

q1: select tid, Name, Ins1

from F e
1

where Job=‘lawyer’

q2: select tid, Ins2

from F e
2

where Salary=40K

qu: select Name

from R1 join R2 on R1.tid=R2.tid
where Decrypt(Ins1 , Ins2)=180

Sequential strategy

q1: select tid, Name, Ins1

from F e
1

where Job=‘lawyer’

q2: select tid, Ins2

from F e
2

where tid in {4,6} and Salary=40K

qu: select Name

from R1 join R2 on R1.tid=R2.tid
where Decrypt(Ins1 , Ins2)=180

Fig. 6: Execution of query “select Name from FinancialData where

Job=‘lawyer’ and Salary=40K and Ins=180” over the fragments of Figure 5
as subqueries at the providers side (q1 and q2) and at the user side (qu) with
parallel and sequential strategies

hind such query translation process is that all conditions operating on attributes
stored plaintext at F e

1 (F e
2, resp.) can be easily evaluated by the provider stor-

ing F e
1 (F e

2, resp.). All conditions over attributes in E or over pairs of attributes
split between F 1 and F 2 cannot be evaluated by the providers; these conditions
are evaluated at the user-side. Given a query q , it is then translated into three
queries: q1, which can be evaluated by the provider storing F e

1; q2, which can
be evaluated by the provider storing F e

2; and qu, which must be evaluated by
the user on the results of q1 and q2. Naturally, the translation must guarantee
equivalence (i.e., the evaluation of q1, q2, and qu must produce the same re-
sult as q ), and it should push as much computation as possible to the providers
to limit the burden at the user side. The query evaluation can follow two dif-
ferent strategies: the parallel strategy, where each provider evaluates its query
and returns the result to the user, who joins them and evaluates query qu to
finally obtain the query result; and the sequential strategy where one of the two
providers goes first and returns the result of its query to the user, who then
passes the tuple identifiers in the query result to the second provider, and the
user finally combines the two results of q1 and q2 and evaluates qu. Both the
parallel and the sequential strategies permit to correctly evaluate a query q on a
fragmentation F = {F 1,F 2,E}. The parallel strategy, while reducing response
time (the providers execute their queries at the same time), is likely to cause a
higher communication costs. The sequential strategy may instead cause a delay
in obtaining the final query result since the results from a provider are needed
before a query is sent to the other provider.

Figure 6 illustrates an example of query execution over the fragments in
Figure 5. Here, condition tid in {4, 6} in q2 of the sequential strategy is needed
to consider in the execution of q2 only the tuples returned by q1.
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3.2 Multiple fragments

Two can keep a secret approach guarantees the unlinkability of fragments, needed
to ensure satisfaction of constraints, by assuming the two providers to neither
communicate nor collude. However, this assumption is difficult to enforce in
practice, and thus reduces the applicability of this model in real world scenar-
ios. The multiple fragments approach overcomes this assumption by defining an
arbitrary number of uninkable fragments [5].

Unlinkability among fragments is guaranteed by requiring that no plaintext
attribute is included in more than one fragment. If each fragment singly taken
satisfies the constraints, then all fragments of a fragmentation can be stored at
the same provider without risks for confidentiality.

Confidentiality constraints are satisfied (like in the proposal in [1]) by prop-
erly combining fragmentation and encryption. More precisely, singleton con-
straints are satisfied by encrypting the attribute they involve. Association con-
straints can instead be satisfied by either encrypting at least one of the at-
tributes they include (satisfaction through encryption), or storing these at-
tributes in different fragments (satisfaction through fragmentation). A frag-
mentation F = {F 1, . . . ,Fm} is correct iff the following two conditions hold:
i) ∀c ∈ C, ∀F ∈ F : c ̸⊆ F (confidentiality); ii) ∀F i,F j ∈ F , i ̸= j:
F i ∩ F j = ∅ (unlinkability). Condition i) ensures that no fragment in F can
contain all the attributes included in a confidentiality constraint. Condition ii)
ensures instead that all fragments in the fragmentation are disjoint. For instance,
F={{Name,Job}, {Salary}, {Race,Ins}} is a correct fragmentation of relation
FinancialData in Figure 1(a) with respect to the constraints in Figure 1(b).

The multiple fragments approach has two immediate advantages over the
solution in [1]. First, the entire fragmentation can be stored at a single cloud
provider (as fragments F 1, . . . ,Fn of F are disjoint), thus removing the need
for having multiple non-communicating providers. Second, being the fragmenta-
tion not limited to two fragments, it is always possible to satisfy an association
constraint through fragmentation, hence limiting encryption to the satisfaction
of singleton constraints only. Such an approach increases the visibility over the
data, improving the performance in accessing data (e.g., for query evaluation):
the plaintext inclusion of an attribute a in a fragment F allows for the evalua-
tion of conditions over a directly at the cloud provider storing F . The multiple
fragments approach aims therefore at computing fragmentations that maximize
plaintext visibility, that is, where each attribute not included in a singleton con-
straint is plaintext represented in at least one fragment. Note that, combining
this requirement with the unlinkability condition, each attribute not involved in
a singleton constraint is plaintext included in exactly one fragment. For instance,
F={{Name,Job}, {Salary}, {Race,Ins}} is a correct fragmentation of relation
FinancialData in Figure 1 that maximizes visibility.

At the physical level, each fragment F i is represented by a physical fragment
F e

i storing: the attributes in F i in plaintext; the attributes in R \F i in encrypted
form; and a primary key salt containing random values. Each tuple t in r is
represented by a tuple tei in each physical fragment F e

i , where tei [a ]=t [a ] for all

10



F
e
1

salt enc Name Job

s11 xTb: Alice teacher
s12 o;!G Bob farmer
s13 Ap’L Carol nurse
s14 .u7t David lawyer
s15 y”e3 Eric secretary
s16 (l1! Fred lawyer

F
e
2

salt enc Salary

s21 hg5= 40K
s22 mB71 25K
s23 :k?2 20K
s24 Ql4, 50K
s25 -kGd 20K
s26 p[Mz 40K

F
e
3

salt enc Race Ins

s31 bP5 white 160
s32 *Cx white 100
s33 1Bny asian 100
s34 Oj)6 black 200
s35 vT7/ black 100
s36 l1fY asian 180

Fig. 7: Multiple fragments: An example of a correct fragmentation of relation
FinancialData in Figure 1(a)

qu: select Name

from Decrypt(Rp.enc⊕salt,k)
where Salary=40K

qp: select salt, enc, Name
from F e

1

where Job=‘teacher’

Fig. 8: Execution of query “select Name from FinancialData where

Salary=40K and Job=‘teacher’ ” over fragment F e
1 of Figure 7 as subqueries

at the provider’s side (qp) and at the user’s side (qu)

a ∈ F i; tei [salt] is a random nonce; and tei [encr] = Ek(t[aj , . . . , ak]⊕ te[salt]),
with {aj , . . . , ak} = R \F i. Since each physical fragment stores, either plaintext
or encrypted, all the attributes in R , every query can be evaluated on a single
fragment. Figure 7 illustrates the physical fragments of a correct fragmentation
of the relation in Figure 1(a) with respect to the constraints in Figure 1(b).

Given a relation schema R and a set C of confidentiality constraints over it,
there might exist different correct fragmentations (i.e., satisfying C) that max-
imize visibility. For instance, a fragmentation where all attributes not involved
in singleton constraints are stored at a different fragment would be correct but
likely undesirable, complicating the execution of queries involving more than
one attribute. Different metrics have therefore been proposed to evaluate the
quality of a fragmentation F , aimed at minimizing the number of fragments in
F (e.g., [5,10,14]), or the cost needed to execute a query workload (e.g. [6,8]).

Query evaluation. Since all physical fragments of a fragmentation include, ei-
ther plaintext or encrypted, all the attributes of R , a query q can be executed
over any fragment. However, from a user’s point of view, it is clearly more conve-
nient to use the fragment that permits to delegate to the cloud provider most of
the query evaluation (i.e., the fragment storing in plaintext most of the attributes
in which the conditions of q operate). The original query is then translated into
an equivalent pair of queries qp and qu, operating at the provider and at the user
sides, respectively. Query qp, which can include conditions over the attributes
plaintext represented in the fragment, is sent to the provider, which returns the
result to the user. The user decrypts the encrypted attributes in the result of qp
(if any), and evaluates qu, evaluating conditions over the attributes not plaintext
included in the fragment. With reference to the relation in Figure 1(a) and the
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F
e
o

tid SSN Name Ins

1 123-45-6789 Alice 160
2 234-56-7890 Bob 100
3 345-67-8901 Carol 100
4 456-7 8-9012 David 200
5 567-89-0123 Eric 100
6 678-90-1234 Fred 180

F
e
p

tid Race Job Salary

1 white teacher 40K
2 while farmer 25K
3 asian nurse 20K
4 black lawyer 50K
5 black secretary 20K
6 asian lawyer 40K

Fig. 9: Keep a few: An example of a correct fragmentation of relation Finan-

cialData in Figure 1(a)

fragmentation in Figure 7, Figure 8 illustrates an example of query execution,
assuming to choose fragment F e

1.

3.3 Keep a few

While both the two can keep a secret and the multiple fragments approaches
build upon a combination of fragmentation and encryption, the keep a few
approach [7,9] completely departs from encryption. Such an approach can be
adopted when the data owner (or a trusted third party) is available for storing
a limited portion of the data. Confidentiality constraints are then satisfied by
combining fragmentation with owner-side storage. More precisely, singleton con-
straints are satisfied by storing at the owner side the attribute they involve.
Similarly, association constraints are satisfied by storing at least one of the
attributes they include at the owner side. A fragmentation F of a relation r
defined over relation schema R is then a pair F = ⟨Fo, Fp⟩ of fragments, with
F o,F p ⊆ R , and where F o is stored at the data owner and F p is outsourced at a
cloud provider. A fragmentation F = ⟨Fo, Fp⟩ is correct iff the following two con-
ditions hold: i) ∀c ∈ C, c ̸⊆ F p (confidentiality); ii) F o ∪ F p = R (losslessness).
Condition i) ensures that F p does not contain all the attributes involved in a
confidentiality constraint. Note that the confidentiality condition is not needed
to hold on F o, since this fragment is stored at the owner and hence is not ac-
cessible to non-authorized users. Condition ii) ensures that the fragmentation
includes all the attributes in R , guaranteeing that no information is lost due
to fragmentation. Note that, since including the same attribute in both F o and
F p would be redundant, the two fragments are typically required to be disjoint
(i.e., F p ∩ F o = ∅). For instance, F = ⟨Fo, Fp⟩ with F o={SSN,Name,Ins} and
F p={Race,Job,Salary} is an example of a correct and non-redundant fragmen-
tation of relation FinancialData in Figure 1(a), with respect to the confiden-
tiality constraints in Figure 1(b).

At the physical level, fragments F p and F o are translated into two physical
fragments F e

p and F e
o, including all attributes (plaintext, as no encryption is

adopted with this approach) in F p and F o, respectively. Both physical fragments
are also enriched with a common tuple identifier tid that authorized users can
use to correctly reconstruct the original relation. Figure 9 illustrates the physical
fragments of a correct fragmentation of relation FinancialData in Figure 1(a).
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Provider-Owner strategy

qp: select tid, Name
from F e

p

where Salary=20K

qo: select Name

from F e
p join Rp on F e

p.tid=Rp.tid
where Ins=100

Owner-Provider strategy

qo: select tid

from F e
o

where Ins=100

qp: select tid, Name
from F e

p

where (tid in {2,3,5}) and Salary=20K

qpo: select Name

from F e
o join Rp on F e

o.tid=Rp.tid

Fig. 10: Execution of query “select Name from FinancialData where

Salary=20K and Ins=180” over the fragments of Figure 9 as subqueries at
the provider side (qp) and at the owner side (qo and qpo), with provider-owner
and owner-provider strategies

Given a relation schema R and a set C of confidentiality constraints over
it, there can exist different correct and non-redundant fragmentations. For in-
stance, a fragmentation F = ⟨Fo, Fp⟩ where F p = ∅ and F o = R is correct
and non-redundant, but likely to be undesirable since no attribute is outsourced
to the cloud. Several metrics have been proposed to evaluate the quality of a
fragmentation, aimed at minimizing the burden for the data owner, which can
be measured in terms of the number/size of the attributes stored owner-side at
F o, or of the computational overhead left at the data owner based on a query
workload [7,9].

Query evaluation. A query q formulated over the original relation schema R
is transformed into two equivalent queries qp and qo, operating at the provider
and at the owner sides, respectively: qp includes conditions operating only on
attributes in F p; qo includes conditions operating on attributes in F o (or com-
paring attributes in the two fragments). The evaluation of q can follow two
strategies, depending on the order in which qp and qo are evaluated. In the
provider-owner strategy, the provider evaluates qp and returns the result to the
owner, who joins it with its fragment and evaluates qo to obtain the result of q .
In the owner-provider strategy, the owner evaluates conditions in q that involve
only attributes in F o, and sends then the identifier of the tuples satisfying such
conditions to the provider. The provider evaluates qp on these tuples, and re-
turns the result to the owner. The data owner joins her fragment with the result
computed by the provider and evaluates the conditions that involve attributes
in both fragments, obtaining the result of q . Figure 10 illustrates an example of
query execution according to these two strategies.

While both the provider-owner strategy and the owner-provider strategy cor-
rectly compute the result of a query q , the latter can leak sensitive information.
In fact, if the provider knows the original query q , it can learn which are the
tuples in F p that satisfy the conditions evaluated by the data owner (the individ-
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uals with Ins equal to 100 in our example), even if the provider is not authorized
to see the content of the attributes in F o.

4 Conclusions

We have illustrated encryption-based and fragmentation-based solutions for pro-
tecting confidentiality in large databases when they are outsourced to the cloud.
Since both encryption and fragmentation complicate or even prevent query exe-
cution at the provider, we have also illustrated some of the existing approaches
that enable (partial) query execution directly at the provider, without the need
for decrypting encrypted data, or of joining fragments.
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