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Abstract 

Myriocin, is a potent inhibitor of serine-palmitoyl-transferase, the first and rate-determining 

enzyme in the sphingolipids biosynthetic pathway. This study developed, validated and 

applied a LC-MS/MS method to measure Myriocin in minute specimens of animal tissue. The 

chemical analog 14-OH-Myriocin is used as the internal standard. The two molecules are 

extracted from the tissue homogenate by solid-phase extraction, separated by gradient 

reverse-phase liquid chromatography and measured by negative ion electrospray mass 

spectrometry in the triple quadrupole. Detection is accomplished by Multiple Reaction 

Monitoring, employing the most representative transitions: 400@104 and 402@104 for 

Myriocin and 14-OH-Myriocin, respectively. The typical LoD and LLoQ of the optimized 

method are 0.9 pmoles/mL (approx. 0.016 pmoles injected) and 2.3 pmoles/mL, respectively, 

and the method is linear up to 250 pmoles/mL range (r
2
= 0.9996). The intra-and between-day 

repeatability affords a CV% ≤ 7.0. Applications included quantification of Myriocin in mouse 

lungs after 24 hrs from administration of ~4 nmoles by intra-trachea delivery. Measured 

levels ranged from 4.11 (median; 2.3-7.4 IQR, n=4) to 11.7 (median; 7.6-22.7 IQR, n=6) 

pmoles/lung depending on the different formulations used. Myriocin was also measured in 

retinas of mice treated by intravitreal injection and ranged from 0.045 (<LoD) to 0.35 

pmoles/retina.  

Supplementary Key-words: Ceramides; Drug monitoring; Drug screening; Inflammation; 

Mass spectrometry; Natural products; Solid Phase Extraction 
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1 INTRODUCTION 

Sphingolipid metabolites have structural and signalling roles, controlling cell growth, cell 

death, inflammation and stress responses, angiogenesis, autophagy. Sphingolipid metabolism 

is altered in several human diseases and its manipulation is an appealing therapeutic strategy 

(Hannun & Obeid, 2011). Myriocin [(2S,3R,4R,6E)-2-amino-3,4-dihydroxy-2-

(hydroxymethyl)-14-oxo-6-eicosenoic acid] (Myr, or thermozymocidin or ISP-1; Figure 1) is 

a secondary metabolite initially isolated from some thermophilic ascomycetes (Kluepfel et 

al., 1972; Sailer et al., 1989) and recently found as a mycotoxin contaminant of grains 

(Shimshoni et al., 2013). Myriocin is one of the few substances known to inhibit de novo 

synthesis of sphingosine by inactivating serine palmitoyl transferase (SPT) with a complex 

mechanism that occurs in two steps, each of which has recently been elucidated. In the first 

step it behaves as a classical intermediate mimic inhibitor of the substrate at the active site. 

Then, the co-complex degrades via an unexpected ‘retro-aldol-like’ cleavage mechanism to a 

long chain aldehyde which, in turn,  irreversibly reacts with the key catalytic residue Lys265, 

acting as a “suicide inhibitor” of SPT (Wadsworth et al., 2013).  

Myriocin has been extensively studied in different in vivo and in vitro experimental models as 

a tool to modulate sphyngolipids production. In particular, it seems to be is a promising 

candidate to treat diseases such as diabetes (Ussher et al., 2011; Kurek et al., 2017) retinitis 

pigmentosa (Piano et al., 2013; Strettoi et al., 2010), cystic fibrosis (Caretti et al., 2014; 

Caretti et al., 2016) and myocardial infarction (Reforgiato et al., 2016). Myriocin is active at 

few nanomoles dose (1-5 microg) as a powerful immunosuppressant, and may have clinical 

potential in organ transplantation and for the treatment of autoimmune diseases (Fujita et al., 

1994).  

Structurally, Myriocin features a carbonyl-modified polymethylene hydrophobic tail and a 

complex, multifunctional head group that carries two hydroxyl groups and the amino acid 

substructure of serine (Aragozzini et al., 1972). This complex of conflicting chemical 

properties (a zwitterionic, tri-hydroxylated hydrophilic “head” and a hydrophobic “tail”) 

imparts to the molecule a limited solubility in water and in common organic solvents, a factor 

that complicates chemical manipulations and administration of the drug (Caretti et al., 2014, 

Gasco & Gasco, 2007). 

The development of pharmaceutical agents needs the availability of quantitative analytical 

methods, adequate for sensitivity to the expected levels in the relevant biological systems and 
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for selectivity to the foreseen complexity of biological matrices. The few analytical methods 

so far published for Myriocin use HPLC-light scattering detection (Wang et al., 2009)  or 

HPLC-fluorescence detection with the need of a complex pre-column derivatization with 

fluorenyl-methyl-chloroformate (FMOC) (Yu et al., 2009). These approaches do not attain 

sufficiently high specificity and low detection limits in biological samples that are necessary 

for further progress in the regulated pharmacological and pharmaceutical development of this 

promising candidate drug.  

Myriocin was briefly cited in a recent article on the occurrence of mycotoxins in corn and 

wheat silage in Israel, detected with a liquid chromatography-tandem mass spectrometry (LC-

MS/MS) multi-mycotoxin method. The article only reports a value for the LoD of Myriocin 

(15 µg/Kg) and briefly comments on its potential significance as a contaminant of ruminant 

feed. The authors do not report analytically useful information that may facilitate 

measurement of Myriocin also in other matrices (Shimshoni et al., 2013). Furthermore, 

Myriocin was never mentioned in earlier articles that describe multi-residue analyses of 

several tens of fungal metabolites that possibly contaminate grains and wheat (Sulyok et al., 

2006; Sulyok et al., 2007a, 2007b). 

In view of the potentiality of this molecule in clinical research, we have developed and 

validated an assay for Myriocin quantification by LC-MS/MS. The method was at first 

applied to the titration of a novel solid-lipid nanoparticles-based Myriocin preparation (SLN-

Myriocin), and then to the quantification in different biological samples. 

 

2 EXPERIMENTAL 

2.1 Reagents and Chemicals 

Methanol, ethanol, acetonitrile and formic acid (all LC-MS reagent grade) were supplied 

from Merck (Darmstadt, Germany). Water was MilliQ-grade. Standard Myriocin was 

purchased from Fermentek LTD (Jerusalem, Israel), and used as received. 14-Hydroxy-

Myriocin (14-OH-Myr) was prepared in our laboratory by chemical reduction of the carbonyl 

group, purified, fully characterized by mass spectrometry and used as such. The relevant 

experimental details are reported in the Supplementary Materials (see online version). 

Myriocin loaded-solid lipid nanoparticles (SLN-Myriocin) used for mice treatment was 

supplied by Nanovector srl, Torino, Italy, at a nominal concentration 1 mM, and prepared for 
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administration as already described (Gasco & Gasco, 2007). Myriocin extraction and 

purification from biological matrix was performed on StrataTM-X 33 µm Polymeric 

Reversed Phase SPE 30 mg/1 mL extraction cartridges (Phenomenex, Anzola Emilia, Italy) 

connected to Visiprep Solid Phase Extraction Vacuum Manifolds (Supelco, Bellefonte, 

USA).  

2.1.1 Myriocin and 14-OH Myriocin characterization by mass spectrometry 

Structural confirmation of standard Myriocin and of 14-OH-Myriocin was accomplished in 

both mass spectrometry polarities, by recording the triple quadrupole fragment mass spectra 

of the protonated (MH
+
) and deprotonated ([M-H]

-
) species over a range of nominal collision 

energy from 0 to 50 ΔV. The relevant experimental details are reported in the Supplementary 

Materials (see online version). 

2.2 Myriocin standard solutions and calibrators 

Myriocin powder (4.5 mg) was weighted and dissolved in ethanol (50 mL) by warming up at 

40°C, to a final concentration of 225 µM. This stock solution was diluted to an intermediate 

25 µmoles/L concentration in acetonitrile:formic acid (50:50, v:v). These solutions were kept 

at -80 °C for 12 months and were found to be stable (data not shown). Each month, the 

intermediate solution was diluted to 2.5 µmoles/L in acetonitrile:formic acid (50:50, v:v) and, 

at occurrence, the final working solution 1 (WS1) was prepared by 1:10 dilution in 

acetonitrile:H2O (50:50, v:v). By 1:1 serial dilutions of WS1, all the working solutions were 

prepared as reported in Table 1. 

2.2.1 Calibration standards in mobile phase 

For the construction of the standard curve, a 100 µL aliquot of each working solution (WS) 

was transferred into the HPLC vials, 50 µL of 250 pmoles/mL solution of 14-OH-Myriocin 

(12.5 pmoles) (acetonitrile:H2O 1:1) was added as Internal Standard and 10 µL of the 

resulting solution were injected into the LC-MS/MS. The on-column final amounts are 

reported in Table 1. 

2.2.2 Calibration standards in biological matrices 

Series of calibrators were prepared for each analysed matrix (cultured cells, lung tissue, 

retina, SLNs), at the concentration judged relevant from pilot experiments. E. g., calibration 

samples of Myriocin in mouse lung homogenate were prepared by spiking 100 µL (approx. 

0.5 mg proteins) of a control lung homogenate (approx. 10 mg prot/2 mL PBS) with 100 µL 



 

 
 

This article is protected by copyright. All rights reserved. 

of each WS calibrator and 50 µL of the internal standard solution (12.5 pmoles). These 

samples underwent the same purification protocol of the samples as described below.  

2.3 Myriocin extraction and purification from biological matrix by SPE 

An aliquot of tissue homogenate (100 µL approx. 0.5 mg prot or less) was added with 50 µL 

of internal standard (12.5 pmoles), diluted to 0.5 mL with water and subjected to 5 sonication 

cycles (5 sec at amplitude 3/20 + 5 sec in ice) (Misonix XL2000 Microson Ultrasonic Cell 

Disruptor XL 2000). After dilution to 1 mL, it was loaded onto a pre-activated SPE columns. 

The disposable tubes were connected to the Visiprep Solid Phase Extraction Vacuum 

Manifolds and, after vacuum application with a water pump, pre-activated by washing with 1 

mL of methanol followed by 1 mL of water. The vacuum was disconnected from the Visiprep 

apparatus, the diluted samples were loaded, and the vacuum was applied again, not exceeding 

the flow rate of 1 mL/min. Two washings were performed with water:methanol 85:15 (by 

volume, 1 mL) and water:methanol 50:50 (by volume, 1 mL), then the columns were 

completely dried by flushing air for 4 min. The vacuum was disconnected and the 12-mL 

polypropylene tubes used to collect washings were discharged and replaced with 5mL glass 

disposable tubes to collect the sample fraction. Myriocin and internal standard were 

recovered under vacuum by applying 0.5 mL of methanol to the dried SPE cartridges. After 

evaporation under nitrogen, samples were stored at -20 °C or directly analysed. Before LC-

MS analysis, 150 µL of 50% water:acetonitrile were added, the extract transferred to the 

HPLC vial and 10 µL injected for analysis.  

2.4 Spike recovery and matrix effect 

The recovery of spiked Myriocin in the examined biological matrices (cultured cells, lung, 

retina) was determined by comparing the analytical results of this measurement to the un-

extracted standard curve used for the linearity study. Three replicates were prepared for each 

concentration level. The biological matrices that were examined in this preliminary phase of 

pharmacological study (cultured cells, lung, retina) are very “soft” tissues and it is deemed 

that complete incorporation of the Myriocin spike and equilibration of the internal standard 

occurs within the typical sample equilibration time of approx. 10-18 h. 
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2.5 Analytical conditions 

2.5.1 Instrumentation 

The analytical system consisted of a HPLC coupled to a tandem mass spectrometer. The 

liquid chromatograph system is a Dionex 3000 UltiMate instrument with autosampler, binary 

pump, and column oven (Thermo Fisher Scientific, USA). The tandem mass spectrometer is 

an AB Sciex 3200 QTRAP instrument with electrospray ionization (ESI) TurboIonSpray™ 

source (AB Sciex S.r.l., Milano, Italy). Instruments were managed with proprietary 

manufacturers’ software and according to manufacturers’ instructions. The analytical data 

were processed by Analyst software (version 1.4). 

2.5.2 Optimized analytical chromatographic conditions 

 Myriocin and 14-OH-Myriocin were separated on a reversed-phase column Inertsil ODS3, 

150 × 3.0 mm i.d., 3 μm particle size (GL Sciences, Tokio, Japan), with a linear gradient 

between eluent A (water 0.1% formic acid) and eluent B (acetonitrile). The column was 

equilibrated with 50:50 A:B, then eluent A was increased to 100% in 5 min and brought back 

to 50% in 1 min. After additionally 2 min at 50:50, the analysis was stopped. The mobile 

phase was delivered at 0.4 mL/min, the autosampler and the column oven were kept at 20 °C 

and 45 °C, respectively.  

2.5.3 Optimized analytical mass spectrometry conditions 

Detection was accomplished in the negative ion mode by multiple reaction monitoring 

(MRM) in the triple quadrupole tandem mass spectrometer. Only one analytically useful 

transition could be identified and was used: m/z 400 ([M-H]
-
) to m/z 104 for Myriocin, and 

m/z 402 ([M-H]
-
) to m/z 104 for the internal standard 14-OH-Myriocin, respectively (Figures 

S3B and S5B for the tandem mass spectra; Figure S6 for the breakdown curves). Dwell time 

was set as 350 msec, for both transitions. The final optimized conditions for quantitation by 

MS/MS detection in negative ion mode for Myriocin and IS are reported in Table 2. 

Quadrupole Q1 and Q3 were set on unit resolution.  

2.6 Validation 

2.6.1 Linearity 

The linearity of calibration curve was calculated by unweighted least squared linear 

regression analysis of the (area Myr/area IS ratio vs Myr concentration data set). The Pearson 

r
2
 coefficient and p-value were used as assessors of linearity.  
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2.6.2 Sensitivity and detection limits 

The Limit-of-Detection (LoD, defined as three times the value of the intercept) was 

calculated from the regression parameters (see above). The Lower-Limit-of-Quantification 

(LLoQ) was estimated as the concentration of the calibrator that yielded back-calculated 

concentration at ± 20% of the nominal value (accuracy) and a Coefficient-of-Variation lower 

than 20% (precision on three replicates). 

2.6.3 Measurement specificity 

The specificity of the method was verified by analysing extracts from six lung samples from 

control mice and checking for the absence of spurious signal at the LC peak region for 

Myriocin and IS. The responses of the interfering peak or background noise at the retention 

time and transition of the internal standard (14-OH-Myriocin) was deemed as acceptable if its 

intensity was less than 5% of that of the added internal standard (12.5 pmoles, 0.83 pmoles 

injected).  

The possible presence of interference at the retention time and detection channel of Myriocin 

was assessed by recalculating the calibration line with the standard addition method (see 

Supplementary). The possibility to appreciate small amount of Myriocin in specific matrix 

was judged acceptable if the value of the recalculated interference was lower than 50% of the 

LoD.  

2.6.4 Precision and Accuracy of determinations in specimens 

Samples for the determination of precision and accuracy were prepared by spiking control 

matrix batches with Myriocin at appropriate concentrations within the calibration range. All 

the samples were stored at -20°C. The intra-assay precision and accuracy were estimated on 

three replicates (acceptance criteria as above) analysed in the same day, the inter-assay 

precision was calculated on three replicates analysed within a 10-weeks period. 

2.6.5 Stability of extracts during analysis (in-Run Stability) 

The stability of Myriocin and IS in the injection solvent was determined for 5 hours in the 

auto-sampler kept at 10 °C and at 20 °C. The peak-areas of the analyte and IS obtained at the 

start of the analytical batch were used as the reference to determine the stability at subsequent 

points. 
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2.7 Myriocin-loaded SLNs titration 

Myriocin-SLN stock solution supplied 1 mmol/L as reported (Strettoi et al., 2010), was 

checked by LC-MS/MS for Myriocin content. Three aliquots (5 µL = 5000 pmoles) from six 

independent vials of the 1 mmol/L preparation were withdrawn under vigorous stirring and 

diluted 1:200 (v:v) with acetonitrile. After vortexing and centrifugation for 5 min at 12000 

rpm, 100 µL were diluted 1:20 with acetonitrile:H2O 1:1 to a nominal concentration of 250 

pmoles/mL. A 100 µL aliquot (25 pmoles) was transferred into the HPLC vial, added with 50 

µL internal standard (12.5 pmoles) and 10 µL injected into the HPLC.  

 

2.8 Mice treatment and lung preparation 

Animals were handled according to Italian laws, internal University regulations and, for the 

retina study (vide infra) following the Association for Research in Vision and Ophthalmology 

(ARVO) statement for the use of animals in research. 

To validate the method for Myriocin quantification in tissues, a pilot experiment was carried 

out following, with some modifications, the protocol used by Caretti et al. (Caretti et al., 

2014), who tested the anti-inflammatory action of Myriocin as a therapeutic potential in 

cystic fibrosis. Myriocin was prepared in 10% DMSO-sterile saline solution at 42.0 μM, 

alternatively SLN-Myriocin was prepared 62.5 µM by 1:16 dilution in sterile saline of the 1 

mM stock. 

Briefly, C57BLK6 mice (male and female 9 weeks age,  30 gr each), were housed in filtered 

cages and permitted unlimited access to food and water. . A deep stage of intra peritoneal 

anaesthesia was accomplished with Avertin (2,2,2,-tribromoethanol in 1% tert-amyl alcohol; 

both reagents from Sigma-Aldrich, Milan). A twentyfive/thirty g C57BLK6 mouse was 

treated i.p. with 500 µL of a solution of Avertin (10 mg/mL in saline) when the animal had to 

be raised from anaesthesia; for sacrifice the animal was treated with 800 µL of the same 

solution. One anaesthesia was reached, the animals were treated with 75 μl of Myriocin either 

dissolved in DMSO (1.26 μg, 3.15 nmoles) or uploaded in SLN (1.87 μg, 4.69 nmoles), by 

intra-trachea instilled by means of MicroSprayer® Aerosolizer –Model IA1C, attached to 

“FMJ-250 High Pressure Syringe” (Penn-Century Inc., US) (Caretti et al., 2014; Caretti et al., 

2016). Control animals were treated with the corresponding empty vehicle. Twenty-four h 

after treatment, animals were euthanized; lungs were perfused with PBS and homogenized in 
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2 ml of PBS containing protease inhibitors (Roche Italia, Italy) with Ultraturrax. After 

measuring homogenate total protein content, specific volumes corresponding to equal amount 

of proteins (0.5 mg), were directed to Myriocin and ceramides purification protocols before 

LC-MS/MS analysis. 

2.9 Mice treatment and retina preparation 

To run a pilot analytical experiment, wild-type mice handled according to Italian laws and 

following the Association for Research in Vision and Ophthalmology (ARVO) statement for 

the use of animals in research. Mice (n=3; 3-months-old; Jackson Laboratories strain 

C57Bl/6J,) were kept in a local facility with water and food ad libitum in a 12-h light/dark 

cycle with illumination level below 60 lux. The treatment protocols approved by the Italian 

Ministry of Veterinary Health (Protocol #14/D-2014, CNR Neuroscience Institute) involved 

intravitreal injection of 1 µl of a 1.88 mM solution of Myriocin in DMSO (0.94 nmoles), 

carried out under Avertine general anaesthesia, as described in (Strettoi et al., 2010). An 

identical volume of DMSO vehicle was injected into the opposite eye of the same animal to 

obtain control samples for analytical development. Mice were sacrificed after 4 hours from 

the single injection, the retinas were separated from the pigmented epithelium and the choroid 

and collected in ice-cold, oxygenated ACSF (Artificial cerebrospinal fluid), frozen at C°-80 

and subsequently delivered to the analytical laboratory. Specimens was thawed and manually 

homogenized in PBS containing protease inhibitors. This homogenate followed the same 

procedure described above for lung samples.  

2.10 Calculations and statistical elaboration 

Peak areas were obtained from the proprietary instrument’s application software MultiQuant, 

and transferred to Excel spreadsheets to be further elaborated. A custom Excel spreadsheet 

was used to calculate line parameters (intercept, slope and associated standard errors), back-

calculate analytical concentration and associated errors, essentially according to and fully 

validated against a calculated example of Miller&Miller’s textbook (1984). Initial statistical 

analysis of results was performed using the GraphPad Prism version 7.00 for Windows, 

GraphPad Software, La Jolla California USA, www.graphpad.com. Data are expressed as 

mean ± SEM or as median and interquartile range, according to sample numbers and end-user 

necessities. To assess the significance of the differences between treatments, the non-

parametric Mann-Whitney test was used. Statistical significance was assumed at p≤0.05. 
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3 RESULTS AND DISCUSSION 

3.1 Preparation and characterization of compounds 

Since only Myriocin is a commercially available chemical standard, we chose to set up the 

analytical method for its quantification using 14-OH-Myriocin, the simplest candidate 

internal standard that could be easily prepared and characterized by mass spectrometry in our 

laboratory (see Supplementary). As apparent from the integrated fragment mass spectra in 

Figure S3B and S5B of Supplementary Materials, both for Myriocin and for 14-OH-

Myriocin, the multi-functional polar head-group tightly holds the charge in both polarities 

and drives the fragmentation. The functional groups in the middle of the hydrocarbon chain 

essentially do not modify the spectrum and, in any case, do not yield useful fragments for 

analyte quantification. A thorough assignment of the fragmentation pattern for both 

compounds is reported in the Supplementary Materials.  

3.2 Mass Spectrometry operating conditions 

Based on the spectroscopic behaviour of Myriocin and 14-OH-Myriocin, detection was 

accomplished by multiple reaction monitoring (MRM) in the triple quadrupole tandem mass 

spectrometer in the negative ion mode. Only one analytically useful transition could be 

identified and was used: m/z 400 ([M-H]
-
) to m/z 104 for Myriocin, and m/z 402 ([M-H]

-
) to 

m/z 104 for the internal standard 14-OH-Myriocin, respectively (Figures S3B and S5B for the 

tandem mass spectra; Figure S6 for the breakdown curves). Dwell time was set as 350 msec, 

for both transitions. The final optimized conditions for quantitation by MS/MS detection in 

negative ion mode for Myriocin and IS are reported in Table 2. Quadrupole Q1 and Q3 were 

set at unit resolution.  

3.3 Chromatography operating conditions 

Among different ODS column tested, only the Inertsil ODS-3 column modified with 

octadecyl groups and endcapped provided strong hydrophobic interactions and retained both 

Myriocin and 14-OH-Myriocin with a baseline separation (Figure 2) and a good peak shape. 

Neither Myriocin, nor 14-OH-Myriocin displayed high solvent noise level under the final 

conditions reported, while replacing acetonitrile with methanol or adding buffers or modifiers 

like ammonium acetate or tetrahydrofurane severely worsened the chromatographic quality 

(data not shown). In our system, the gradient did not produce interfering humps and peaks 

and allowed a sample-to-sample analysis time of 9 min, including gradient reconditioning. 
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Attempts to decrease the reconditioning time worsened analysis reproducibility. We did not 

test a more performing column geometry (2 µm x 2 mm x 50 mm, for instance), but in view 

of Myriocin introduction in clinical protocols and pharmacokinetics studies, this transfer will 

be explored, whenever necessary.  

3.4 Calibration curves 

Figure 3 shows examples of calibration curves constructed from pure standards in the widest 

(0-250 pmoles/mL) calibration range useful for the analysis of samples supplied to the 

laboratory (left panel) and from lung homogenate in the calibration range of actual samples 

(right panel) are reported. The standard curve constructed on pure standard showed linearity 

up to 250 pmoles/mL, while above this level solubility issue could be the major factor for 

unmanaged variability of individual chromatographic runs. Typical regression coefficients 

were consistently better than 0.9998. No significant difference (p< 0.05) was found between 

slopes of extracted and non-extracted curves over the extended calibration range. To improve 

the quality of analytical results in the biological samples submitted to the laboratory, the 

curves constructed in the individual tested matrices were restricted to the concentration range 

of actual samples (0-30 pmoles/mL; right panel; see also Figure S8 in Supplementary). Under 

this condition, the LoD and LLoQ were 0.9 pmoles/mL and 2.3 pmoles/mL, respectively.  

3.5 Extraction Recovery and Matrix effect 

Each analyzed biological matrix showed the presence of interfering signal at retention time 

and detection transition of Myriocin also in blank specimens that were used to construct the 

calibration curve and to set-up the pre-analytical preparation steps. The recovery of Myriocin 

was quantitative at all concentrations in the 2.0-250 pmoles/mL range (106 ± 15 % for the 

extracts of cultured cells, similar results for the other biological tissues). In the lower range, 

recovery was deceivably higher due to the presence of an interfering signal that also reflected 

in the positive intercept of the calibration curve. Full documentation is reported in the 

Supplementary (Table S2). 

To enhance the possibility of quantify Myriocin also in specimens at very low concentration, 

the standard addition method was used. A comparison of the results obtained, for two specific 

and critical specimens (single and pooled murine retinae at value close to the LLoQ), with the 

standard curve and with the standard addition method yielded an agreement lower than 30% 

(2.4 vs. 3.7 pmoles/mL, respectively), thus suggesting that the standard curve yielded a higher 

intercept than the individual specimens did. Due to the lengthier procedure, standard addition 
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is reserved to the re-analysis of samples for which the assignment of an upper-limit value is 

critical to the pharmacologic research. 

3.6. Intra-day and Inter-day Precision and Accuracy 

Table 3 summarizes intra- and inter-day accuracy and precision of Myriocin measurement in 

lung homogenate, since this is the most abundant tissue available in the laboratory. To keep 

the temperature of the sample rack of the automatic injector close to room temperature (20° 

C) is of a fundamental importance to achieve repeatability of the analysis (See Supplementary 

Materials). 

3.7 Applications 

Among the several different pilot application of this method that are currently developed in 

the laboratory, selected examples on different matrices are reported, to demonstrate the 

general applicability of the core method and the flexibility in accepting matrix specific 

modification.  

3.7.1 SLN-Myriocin titration 

The present method was applied to the exact titration of the commercial SLN-Myriocin 

specifically prepared to study Myriocin biochemical activity in animal models. This 

preparation was supplied at a nominal concentration 1 mM (Gasco & Gasco, 2007), and 

previously characterized by TLC (Strettoi et al., 2010). Three aliquots from six independent 

vials were processed as described in Material and Methods, and injected in triplicate. The 

results are reported in Table 4 and show a Myriocin concentration in SLN preparation 

ranging from 0.6 to 1.13 with a mean of 0.78 mM. The poor homogeneity of the solid lipid 

preparation probably account for the observed variability. 

3.7.2 Myriocin quantification in mice lung tissue 

This first pilot study on mice was aimed to validate the use of the developed LC-MS/MS 

method for “in vitro” and “in vivo” studies on Myriocin concentration/activity relationship. 

The drug was successfully quantified in mice lungs after 24 h from intra-tracheal 

administration of two different formulations. In particular, the left panel of Figure 4 shows 

that residual Myriocin is higher after delivery in DMSO (11.7; 7.6-22.7 median; IQR, n=6 

pmoles/lung) than after delivery in SLN (4.11; 2.3-7.4 median; IQR, n=4 pmoles/lung). 

These residual concentrations corresponding to 0.89±0.12 pmoles/mg prot; mean ± SEM, and 

to 0.26±0.05 pmoles/mg prot; mean ± SEM, respectively, i.e. 0.23% and 0.10% of the initial 
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dose. A few samples from mice treated with SLN-Myriocin yielded Myriocin concentration 

between the LoD and the LLoQ of the method. More accurate measurement of Myriocin 

concentration in these specimens may be in principle achieved by analysing larger aliquots 

(200 µL of homogenate) whenever necessary. No appreciable signal was detected in the 

Myriocin m/z trace after treatment with either DMSO or empty SLN.  

To exemplify the use of the combined measurement of Myriocin as the pharmacological 

agent and of ceramides as the influenced biochemical indicator, right panel of Figure 4 shows 

the main ceramide species measured separately by mass spectrometry (Munoz-Olaya et al., 

2008) in the same lung homogenates. Both DMSO-Myriocin, and SLN-Myriocin produced a 

significant decrease in ceramide concentration vs the respective control animals. Moreover, 

when Myriocin was delivered enclosed in SLN, the decrease of ceramide concentration was 

higher than with DMSO formulation (decrease 29.6% and 54.8% vs controls, Myriocin-

DMSO and Myriocin-SLN, respectively). 

This pilot experiment leads to preliminary conclusions: (i) despite a roughly equivalent dose, 

SLN-Myriocin is likely more efficiently delivered in lung than DMSO-Myriocin; (ii) delivery 

with SLN may cause a higher absorption and thus a greater therapeutic effect. This 

phenomenon is demonstrated by the coincidence of the two measured effects, as lowering of 

ceramides concentration and as higher biotransformation of the Myriocin molecule, which is 

the molecular mechanism of its action.  

3.7.3 Myriocin quantification in mouse retina 

To test the ability of the developed method to deal with biological specimens available only 

in minute amount such as for the study of Retinitis Pigmentosa (see Materials and Methods), 

retinas of wild type mice (n=3) treated by intravitreal administration with DMSO-Myriocin 

were excised after 4 hrs from injection and assayed. The retinas yielded a total Myriocin 

amount of 0.045 (just below the LoD), 0.12 and 0.35 pmoles, respectively corresponding to 

0.33, 0.87 and 2.3 pmoles/mg prot. To test the accuracy of the measurement in an individual 

retina, the third sample of this series (corresponding to 0.15 mg prot and weighting less than 

1 mg), was repeatedly analysed (n=9) and yielded a mean Myriocin amount of 0.35 ± 0.02 

pmoles (CV 6.7%). It is interesting to note that the untreated contralateral retinas, 

individually assayed, did not yield Myriocin chromatographic signals.  
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4 CONCLUSIONS 

This article describes in detail for the first time a method for the measurement of Myriocin in 

biological specimens by liquid chromatography and mass spectrometry. LC-MS/MS is 

considered the technique of choice in organic trace bioanalysis, due to its high level of 

molecular specificity, high sensitivity and the possibility to deal with multiple pharmaceutical 

and biological specimens, such as Lipid Solid Nanoparticle formulations, cell cultures and 

tissue homogenates available only in minute amounts. 

The established method results in a rapid, accurate, precise, sensitive procedure, and the 

presented report shows examples of useful measurements performed also on minute samples, 

such as individual murine retinae. Specimens of this type derive from ongoing experimental 

and pre-clinical studies on diseases in which the production and degradation of ceramides is 

possibly involved. 

There is a potential for improvement of this method, which will be pursued, as the 

importance of Myriocin as a candidate drug for the treatment of otherwise untacked diseases 

will emerge. One such improvement is the use of a suitable stable-isotope labelled form of 

Myriocin as the internal standard for quantification. Spectroscopic studies, of which only 

preliminary results are reported in the Supplementary materials, highlight that the 

13,13’,15,15’ tetra-deuterated analogue is the most accessible stable isotope isoform, and a 

viable candidate isotope labelled internal standard. As a further advancement, the use of high-

resolution mass spectrometry will likely overcome the emerged problem of a low-level 

interference and further lower the detection limit. 

Last, the results from the pilot study show that, as expected, the intra-tracheal treatment with 

Myriocin decreases ceramides concentration in the lungs. It is to note that when Myriocin is 

administered in the lungs as SLN instead as the “soluble” form in DMSO, a lower amount 

(approximately one half) is actually recovered from the organ after 24 hrs. This may suggest 

that the nanocarriers allow a higher intracellular uptake, systemic distribution and/or a faster 

excretion. Up to now very little is known about Myriocin metabolic behavior “in vivo” due to 

the lack of suitable analytical method for its quantitation in biological matrices. To the best of 

our knowledge, this is the first report of a method that enable the detection of minimal 

efficacious dose of the compound even starting from minute samples.  To elucidate its 

metabolic fate, in addition to the LC-MS/MS method to quantify the Myriocin parent 
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molecule, could be interesting to develop other procedures to identify degradation products 

occurring during its metabolic pathway (e.g. 2-hydroxyl-C 18 aldehyde species).  

Several investigations will be feasible thanks to the availability of this analytical method such 

as the study of Myriocin bioavailability and catabolism, the dose/effect relationship and the 

performance of different formulations and administration routes. This knowledge will be 

useful in view of its prospective use for therapeutic purpose in human pathologies. 
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Table 1. Concentration of working solutions (WS) used for Myriocin linearity study 

 WS concentration  in vial  injected  

 Myriocin IS Myriocin IS Myriocin IS 

 pmoles/mL pmoles/mL pmoles 
a
 pmoles 

a
 pmoles 

a
 pmoles 

a
 

WS1 250.00 250.00 25.000 12.5 1.6660 0.83 

WS2 125.00 250.00 12.500 12.5 0.8330 0.83 

WS3 62.50 250.00 6.250 12.5 0.4160 0.83 

WS4 31.25 250.00 3.125 12.5 0.2080 0.83 

WS5 15.60 250.00 1.560 12.5 0.1040 0.83 

WS6 7.81 250.00 0.781 12.5 0.0520 0.83 

WS7 3.91 250.00 0.391 12.5 0.0260 0.83 

WS8 1.95 250.00 0.195 12.5 0.0130 0.83 

WS9 0.97 250.00 0.097 12.5 0.0065 0.83 

WS10 0.49 250.00 0.049 12.5 0.0032 0.83 

WS11 0 250.00 0 12.5 0 0.83 
a
 WS volume in the autosampler vial is 150 µL (100 of WS + 50 µL of IS solution); injected volume is 10 µL 

  



 

 
 

This article is protected by copyright. All rights reserved. 

Table 2. Mass Spectrometry conditions for analysis of Myriocin and 14-OH-Myriocin 

 COMMON PARAMETERS 

Curtain gas 30psi 

Nebulizing gas (Gas1) 55psi 

Heater gas (Gas2) 65psi 

Collision gas (CAD) setting medium 65.2*10
-5

 torr 

ESI potential −3500 eV 

Needle temperature 650°C 

 COMPOUND PARAMETERS 

Declustering potential (DP) -40V 

Collision energy (CE) -30V 

Collision exit potential (CXP) -3V 

Collision entrance potential (CEP) -20V 

Entrance potential (EP) -30V 
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Table 3. Intra-and Inter-day variability 

Myriocin concentration (pmoles/ml) 

 TIME LOW MEDIUM HIGH 

  15.6 62.5 250 

INTRA-DAY DAY1 0.115 0.410 1.655 

  0.125 0.426 1.613 

  0.113 0.409 1.630 

 Mean ± SD 0.118 ± 0.006 0.415 ± 0.009 1.633 ± 0.021 

 CV% 5.377 2.230 1.289 

INTER-DAY Week 1 0.104 0.401 1.619 

 Week 4 0.092 0.411 1.572 

 Week 10 0.092 0.386 1.734 

 Mean ± SD 0.096 ± 0.007 0.399 ± 0.012 1.641 ± 0.083 

 CV% 7.093 3.059 5.084 
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Table 4. SLN-Myriocin titration by Mass Spectrometry 

 Aliquots measured concentration (mM)  

 1 2 3 Mean 

Vial1 0.94 0.96 1.00 0.97 

Vial2 0.61 0.60 0.62 0.61 

Vial3 0.59 0.61 0.60 0.60 

Vial4 0.74 0.74 0.76 0.75 

Vial5 0.59 0.62 0.69 0.63 

Vial6 0.86 1.28 0.98 1.13 

   mean 0.780 

   SD 0.22 

Three aliquots from six vials were prepared as described in Materials and Methods and 

injected in triplicate into the Spectrometer. Vials concentration was calculated from the mean 

of the three aliquots. Quantification was carried out vs calibration curve in pure Myriocin 

standard. The expected Myriocin concentration was 1 mM. The found Myriocin 

concentration (0.78 mM) was calculated as the mean value from six vials. 
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Fig. 1 Molecular formula of Myriocin. Myriocin (MW 401.54) is characterized by 

conflicting chemical properties (a zwitterionic, multi-functional hydrophilic head and a 

hydrophobic tail) and displays a limited solubility in water and in common organic solvents 
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Fig. 2 Chromatogram of Myriocin (Myr), and 14-OH-Myriocin (internal standard, 12.5 

pmol) extracted from lung homogenate. A mouse was treated by intra-tracheal nebulization 

with DMSO-Myriocin (3,15 nmoles), and sacrified 24 h later. The peaks correspond to a 

concentration of 0.38 pmol of Myriocin and 12.5 pmoles of 14-OH-Myriocin found in 100 

µL of lung homogenate. On-column 25 and 830 fmoles were injected, respectively 
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Fig. 3 Examples of calibration curves. The ratio area Myriocin/area IS was plotted against 

the Myriocin pmoles added to sample. Pure chemical standard Myriocin 0-250 pmoles/mL 

(left panel); Fortified lung homogenate 0-31.2 pmoles/mL (right panel). The points are the 3 

actual replicates injected in single analytical run and were prepared as described in Materials 

and Methods 
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Fig. 4. Myriocin residual content and ceramides concentration after 24 h from 

intratracheal administration to mice. Left panel: Myriocin content in mice lung after 24 hrs 

from DMSO-Myriocin (n=6) or SLN-Myriocin (n=4) administration (dose 3.15 nmoles and 

4.69 nmoles, respectively). After administration of DMSO alone (n=4) or empty SLN (n=6), 

Myriocin was undetectable. Right panel: total ceramides concentration in the same lungs used 

for Myriocin quantification. The box extends from the 25th to 75th percentiles of the 

distribution, the line plotted in the middle is the median, the whiskers go from the smallest up 

to the largest value. * p<0.05 vs Control DMSO, ***p<0.001 vs Control SLN 

 


