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In hemiplegic gait the paretic lower limb provides less
muscle power and shows a briefer stance compared with
the unaffected limb. Yet, a longer stance and a higher power
can be obtained from the paretic lower limb if gait speed
is increased. This supports the existence of a ‘learned
non-use’ phenomenon, similar to that underlying some
asymmetric impairments of the motion of the eyes and of
the upper limbs. Crouch gait (CG) (bent-hip bent-knee,
about 30° minimum knee flexion) might be an effective form
of ‘forced-use’ treatment of the paretic lower limb. It is not
known whether it also stimulates a more symmetric muscle
power output. Gait analysis on a force treadmill was carried
out in 12 healthy adults and seven hemiplegic patients
(1–127 months after stroke, median: 1.6). Speed was
imposed at 0.3m/s. Step length and single and double
stance times, sagittal joint rotations, peak positive power,
and work in extension of the hip, knee, and ankle (plantar
flexion), and surface electromyography (sEMG) area from
extensor muscles during the generation of power were
measured on either side during both erect and crouch
walking. Significance was set at P less than 0.05;
corrections for multiplicity were applied. Patients, compared
with healthy controls, adopted in both gait modalities and on
both sides a shorter step length (61–84%) as well as a
shorter stance (76–90%) and swing (63–83%) time. As a
rule, they also provided a higher muscular work (median:
137%, range: 77–250%) paralleled by a greater sEMG area
(median: 174%, range: 75–185%). In erect gait, the
generation of peak extensor power across hip, knee, and
ankle joints was in general lower (83–90%) from the paretic

limb and higher (98–165%) from the unaffected limb
compared with control values. In CG, peak power generation
across the three lower limb joints was invariably higher in
hemiparetic patients: 107–177% from the paretic limb and
114–231% from the unaffected limb. When gait shifted from
erect to crouch, only for hemiplegic patients, at the hip, the
paretic/unaffected ratio increased significantly. For peak
power, work, sEMG area, and joint rotation, the paretic/
unaffected ratio increased from 55 to 85%, 56 to 72%,
68 to 91%, and 67 to 93%, respectively. CG appears to be an
effective form of forced-use exercise eliciting more power
and work from the paretic lower limb muscles sustained
by a greater neural drive. It also seems effective in forcing
a more symmetric power and work from the hip
extensor muscles, but neither from the knee nor the
ankle. International Journal of Rehabilitation Research
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Introduction
In hemiplegic gait the muscles of the paretic lower limb

provide less mechanical power compared with the

homologous muscles of the unaffected side (Olney et al.,
1994). Kinematic asymmetries follow, causing a visible

limping, allowing expert professionals to infer also the

dynamic deficit, mostly the reduced power of plantar

flexion at push-off (McGinley et al., 2003). This asym-

metry might represent an example of learned nonuse

(LNU). LNU is a behavioral interpretation of the

observation that the paretic upper limb after stroke can

recover some voluntary motion if the unaffected limb is

restrained, thus leading to the forced-use (FU) of the

disused limb. The origin of the model, rooted in the

neurophysiology of the latest 19th century, is summar-

ized in two recent reviews (Fritz et al., 2012; Kwakkel
et al., 2015).

Taub must be credited for first exploiting the potential

for rehabilitation of the LNU model when extended to

upper limb rehabilitation in poststroke hemiparesis

(Taub, 1980). He developed a therapeutic paradigm on

the basis of (a) intensive graded practice of the paretic

upper limb, (b) restraint applied to the unaffected limb

(typically a padded mitt to be worn for most waking
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hours), and (c) behavioral methods (‘transfer package’)

aiming at enhancing the patient’s adherence and the

generalizability of the outcome to daily living (e.g.

keeping a daily diary, doing written assignments,

receiving weekly telephone calls from the monitoring

therapist). He named this approach CIMT, after ‘con-

straint induced movement therapy’ (Taub et al., 2014).
CIMT and many subsequent modifications are now

applied worldwide, not only in hemiplegia after stroke

(Meinzer et al., 2007; Buesch et al., 2010; Bolognini et al.,
2011; Reid et al., 2015). All modified CIMT protocols

emphasize the restraint as a requisite, and in some

instances a sufficient ingredient, for FU. By contrast,

Taub states that restraint ‘is the least important compo-

nent of CI therapy and can be dispensed with entirely if

the training conditions are arranged appropriately’ (Taub,

1980). Stated otherwise, unlike most of what the litera-

ture assumes, FU does not necessarily imply restraint:

massive practice might be in itself an even more effective

form of FU.

Very few studies have explored the LNU model as

applied to the lower limb in man, although LNU was

advocated by Taub as a determinant of the lower limb

paresis in stroke (Taub et al., 2014). He proposed a spe-

cific CIMT protocol also applied to patients with multi-

ple sclerosis (Mark et al., 2013). The ‘constraint’

ingredient was omitted because ‘both lower limbs must

be simultaneously engaged for weight-bearing on mas-

sive practice tasks’ (Mark et al., 2013). Tesio proposed

three simple types of FU exercises (Tesio, 2001). These

consisted of abdominal curl, sit-up, and walking modified

so that the motion of the unaffected lower limb was

hindered by a disadvantageous limb positioning in the

case of abdominal curl and sit-up and by physical orthotic

restraint of the hip, knee, and ankle joints in the case of

walking. He named these exercises ‘occlusive’, thus

emphasizing the analogy with the old established eye-

patching treatment applied since centuries to the sound

eye in strabismus (Tesio, 1991). In the present work, an

even simpler form of FU exercise not requiring hin-

drances to the unaffected limb and specific for gait is

proposed, that is crouch gait (CG). It is hypothesized that

(i) in CG, the paretic lower limb of hemiplegic patients is

actually forced to increase its muscle work and power, in

agreement with the LNU model and (ii) in hemiplegic

patients, both spatiotemporal and dynamic parameters of

gait are more symmetrical between the subsequent steps

compared with erect gait.

Participants and methods
Participants

Healthy adults were enrolled as controls for gait analysis.

They were recruited mostly among the hospital staff, as

well as students and the residents attending the labora-

tory. Only patients with mild hemiparesis were selected.

They had been or were presently being treated in the

rehabilitation department running the experiments. Also,

they all had to be able to understand the text of the

informed consent (see the Ethics section) and the

researcher’s instructions. They had to be free from

comorbidities potentially affecting gait capacity, and in

particular, balance deficits, sequelae of major orthopedic

interventions, major rheumatic, and other neurologic

diseases. They had to be able to walk in full autonomy

for at least 50 m, with no balance deficits. Previous

experience showed that all participants spontaneously

adopt a lower speed while on the treadmill compared

with ground walking, the more the worse their impair-

ment. Only ‘high-functioning’ hemiplegic patients could

adopt speeds greater than or equal to 0.3 m/s on the

treadmill, with neither previous training nor high atten-

tion demands, and risks for stumbling and falling.

However, lower speeds were considered to be little

representative of walking in daily life.

Loading symmetry during standing

Loading symmetry on the two lower limbs was tested

before gait analysis (see below) through static stabilometry

(Balance Master platform; Neurocom Inc., Clackamas,

Oregon, USA). The participants were requested (a) to sit

up and then to stand still for 5 s on independent plates

under each foot; (b) to stand still on the force plates with

the knee extended or flexed at 30°, 60°, and 90°, in three

subsequent 20 s trials. The platform records mean vertical

forces. The mean result of three bouts is considered the

outcome for each testing condition.

Gait analysis

Instrumental setting
The methods to record surface electromyography

(sEMG) and joint kinematics and dynamics have been

described in detail elsewhere (Tesio and Rota, 2008).

Briefly, gait was analyzed on a split-belt, force treadmill

(so-called GAFT, gait analysis on force treadmill), placed

in a dedicated room 3.40 m long× 5.20 m wide× 3.70 m

high. Only the sagittal plane of motion is considered

here. In fact, external work and power in the frontal and

horizontal plane represent 1–4% of the same variables

measured in the sagittal plane (Cavagna, 1975; Tesio

et al., 1998a). The following gait parameters were recor-

ded synchronously.

(1) Ground reactions, joint kinematics, and dynamics
Two parallel independent treadmills, 0.3m wide×1.26m

long (model ADAL-3D-F-COP-Mz; Medical Develop-

ment, Tecmachine Hef, Andrezieux Boutheon, France),

are mounted each on four three-dimensional piezoelectric

force sensors KI9048B (Kistler Co., Wintherthur,

Switzerland). Speed can be regulated in 0.1 m/s steps

from 0 to 2.5 m/s. This arrangement realizes a virtually

infinite force-sensorized straight path. In this study,

the two half-treadmills ran at the same speed. Sample
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frequency for force and speed signals was set at

250Hz. Ground reactions are synchronized in space,

not only in time, with joint excursions, thus allowing to

compute joint moments (see below). Joint power is

computed as the product of moment and joint rotation

speed. Power in itself is a quantity which is positive by

definition. Yet, as it is customary in physiology, we

recalled the mechanism of production by defining

power as generated or positive when joint moment

and rotation shared the same direction (agonist

muscles were contracting while shortening, thus

providing ‘positive’ work) and as absorbed or negative

otherwise (see below).

(2) Definitions of lesion side and spatiotemporal gait para-
meters
Side of lower limbs and limb segments: Of course, the

lower limbs were defined as left or right in healthy

controls; in hemiplegic patients, these were defined

as paretic on the side of hemiplegia (contralateral to

the brain hemispheric damage) or unaffected (on the

same side of the hemispheric brain damage).

Step: The step was defined as the ensemble of

kinematic, dynamic, and electrophysiologic events

taking place from one foot strike to the next

contralateral foot strike (the sequence of two

consecutive steps being named a stride).

Step time: This was defined as the time between

subsequent foot–ground contacts (e.g. the paretic

step beginning with the ground contact of the

paretic foot).

Step length: This was defined as the sagittal distance

between the lateral malleolus of the posterior and of

the anterior foot, respectively, at the ground strike of

the forefoot.

Stance time: For each lower limb, this was identified from

vertical forces exceeding 30N (i.e. being above random

noise) (for details, see Tesio and Rota, 2008). Stance

time therefore spreads over two subsequent steps.

Single stance time: For each lower limb, the portion of

stance when only that limb is on ground.

Double stance time: This was identified from vertical forces

of both lower limbs exceeding 30N.

Side of the step and of the step phases: Step and stance

times were assigned a side depending on which lower

limb struck the ground first: for example, the paretic step

and stance time began with the ground strike of the foot

of the paretic leg. The step length is computed when

the contralateral foot strikes the ground, and hence it is

named after the posterior foot: for example, the paretic

step length is computed when the contralateral unaf-

fected foot, in the anterior position, strikes the ground.

In the clinical jargon, this length is also referred to as the

‘posterior step’ length. The double stance side was also

named after the posterior foot. By naming both the step

length and the double-stance time after the posterior

limb, the propulsive role of the rear lower limb in

providing the muscle power needed to keep the body

system in motion is consistently emphasized (Tesio et al.,
1998a, 1998b). In this work, the terms ‘push-off’ and

‘double stance’ phases will be used quite interchange-

ably. More precisely, however, ‘push-off’ identifies the

stride phase (about from 40–60% of the stride time)

where the center of mass of the body is accelerated

forward, mostly thanks to the power generated by the

extensor muscles of the posterior limb. ‘Double stance’

simply indicates that both feet are in contact with the

ground. The two ‘phases’ may not be temporally

coincident because the ‘push’ phase is slightly antici-

pated (both in onset and in offset), with respect to the

double-stance phase, but the difference is minimal at

low walking speed and of no relevance in this study.

(3) Body kinematics
Ankle, knee, and joint excursions are estimated from the

three-dimensional displacements of reflective markers

placed on body landmarks (Davis anthropometric model

and protocol (Davis et al., 1991)) and ‘captured’ at 250Hz

by 10 infrared stroboscopic cameras placed on the walls

around the treadmill (SMART-D optoelectronic system;

BTS Bioengineering Spa, Milan, Italy).

(4) sEMG and muscle power
The sEMGwas recorded bilaterally and wirelessly from

the bellies of Tibialis Anterior, Lateral Gastrocnemius,

Soleus, Semitendinosus, Gluteus Maximus, Vastus

Medialis, and Rectus Femoris muscles through self-

adhesive transmitting electrodes (FreeEMG; BTS

Bioengineering SPA). The electrodes were positioned

as per the SENIAM guidelines (Hermens et al., 1999).
Sample frequency was set at 1 kHz. The muscle groups

providing power at a given joint can be easily

recognized from (a) the joint being rotated and (b)

the presence of sEMG from muscles acting on that

joint. From the direction of joint rotation, the muscle

power was defined as generated (contracting muscles

acting on the joint are shortening and generating

power) or absorbed (contracting muscles are lengthen-

ing and absorbing power). The joint power ascribed to

any given muscle is approximate, given that several

muscles act on the same joint. The role of the same

muscle, however, can be compared across different

walking conditions. Here, special attention was paid to

the power generated by the plantar flexors, represented

by the Gastrocnemius Lateralis, during erect and CG.

In fact, these are known to be the main providers of the

push-off power in erect gait (Meinders et al., 1998;

Lipfert et al., 2014). After the experimental session, the

recorded sEMG signals were off-line rectified (time

integral 0.08 s) and filtered (band pass filter 10–450Hz,

time constant 0.08 s).

Crouch gait

CG is common and widely studied in patients with cer-

ebral palsy (CP). In this condition, CG is characterized by

excessive flexion of the hip and the knee, and dorsal

Crouch gait as an exercise in stroke Tesio et al. 3



flexion of the ankle during the stance phase of gait

(Steele et al., 2010); a ‘stiff’ knee (usually kept in slightly

flexed position) is present during both the stance and the

swing phase (van der Krogt et al., 2010). The time course

of power output from lower limb muscles is highly dif-

ferent from normal. In particular, the average power

generation from the ankle plantar flexors is decreased

compared with normal values (Hoffer and Perry, 1983)

and, in hemiplegic CP children, on the paretic versus the

unaffected side (Olney et al., 1990). The time course of

the sEMG at the lower limbs, an index of their neural

recruitment, is also altered. In particular, the sEMG of

hip and knee extensors and of the ankle plantar flexor

moments span over the entire stance phase (Frigo and

Crenna, 2009), whereas in erect gait, the sEMG ampli-

tude peaks around heel contact for the former two muscle

groups, and at push-off, for the latter muscle group,

respectively (Dempsey et al., 2012). The continuous

activity of hip and knee extensors is required to prevent

the collapse of the lower limb, given that passive liga-

mentous stability is only available in full extension. The

continuous activity of both the dorsal and the plantar

flexors fosters ankle stability. This sEMG pattern recalls

that observed during walking in the rear limbs of quad-

rupeds (Alexander and Jayes, 2009), in human infants

(‘toddlers’) up to the age of about 5–7 years (Ganley and

Powers, 2005; Ivanenko et al., 2007), and in the paretic

lower limb of hemiplegic patients (Frigo and Tesio, 1986;

Colborne et al., 1993). Healthy participants asked to walk

with knee flexed can reproduce the mechanics of CG

observed in CP quite accurately (Nordez et al., 2009).

Testing protocol

Participants (either healthy controls or patients) wore

short pants, shirt, and light gym shoes. Reflective skin

markers and sEMG probes were attached to body land-

marks as per the Davis and the SENIAM protocols,

respectively (see above). The overall weight of the on

body equipment was 180 g. From preliminary testing, it

was found that a safe and comfortable speed for all

hemiplegic patients on the treadmill was 0.3 m/s. Once

equipped, the participants had to stand quietly for about

15 s on the treadmill for weight and muscle length cali-

bration. Then, they were asked to stand for about 6 s with

the knee flexed at about 25° while looking straight ahead

at a visual target (a black dot on the front wall of the room

about 2.5 m far) placed at eyes’ height. The task was

repeated 2–3 times, with 5–6 s rest pauses, to enable the

participants to become accustomed to the crouched

posture. Then they had to walk. The treadmill reached

the preset speed of 0.3 m/s gradually in about 5 s. Patients

could adapt to walk on the treadmill for about 30 s. Then,

a 2 min sitting pause was allowed. Afterwards, patients

were again accustomed to the crouched posture (knee

flexed at about 25°) yet, during gait on the treadmill for

30 s. Every 10–15 s, they were asked to look at the visual

target; however, looking at the treadmill belt was

tolerated. After a further 2 min pause, the experimental

trial began. The participant was requested to walk

spontaneously for 30 s, after which the treadmill gradually

stopped in 5 s. After a 2 min pause, the trial was repeated

with flexed knees for 30 s. Some of the patients could not

maintain the requested knee flexion along the entire 30 s

trial. However, flexion ranging from about 20° to 30° was
tolerated. Only one series of six subsequent strides (12

steps in about 6–8 s) was analyzed. Given these

requirements, all participants could complete the

experimental trials. None of them lost balance or repor-

ted any discomfort during the test.

Data analysis

All signals were synchronized and off-line analyzed using

a dedicated software (SMART-Suite; BTS Bioengineering

SPA). Further computations and graphic representations were

carried out using MATLAB (version 8; MathWorks Inc.,

Natick, Massachusetts, USA), STATA (version 14.0; STATA

Corp., College Station, Texas, USA), and SigmaPlot (version

10.0; Systat Software Inc., San Jose, California, USA) software.

Stride time was normalized to 100 time points. Results

were averaged across six subsequent strides within each

participant, and then grand-averaged across healthy or hemi-

plegic participants.

Statistics

The sample size was estimated with the aim of

decreasing both within-participant and between-

participant variability to an acceptable level. There are

no rules of thumb in this field. Thus, the sample size was

based on two previous studies. (a) In one study, the lower

limb joints kinematics and dynamics were compared in

six ‘high-functioning’ hemiplegic patients and 10 healthy

controls during ground walking. A very similar variability

was recorded between the two groups (Jonkers et al.,
2009, see their (table 2a and b). (b) Another study

adopted the same experimental equipment and method

of the present study, and compared results from eight

patients walking on treadmill and 40 healthy controls

walking on firm ground (Tesio and Rota, 2008, see their

(figure 4). Again, a very similar variability was recorded,

despite the difference in the sample size. This is not

surprising as the treadmill imposes a known and constant

speed across subsequent strides and trials, very difficult

to achieve on firm ground. Beyond adopting a treadmill,

the present study only recruited patients able to walk

autonomously with no balance deficits, and thus a priori
similar in the level of their walking impairment. Finally,

the analysis was focused on within-participant correla-

tions (e.g. between joints, mechanical and sEMG para-

meters, walking modalities), so that within-patient

internal consistency, more than patients–controls differ-

ences, was the main support to conclusions. All con-

sidered, a sample of seven ‘high-functioning’ hemiplegic

patients and 12 controls were considered to be repre-

sentative of their respective populations in this specific
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study. The peak power and the work performed at each

joints were the variables of highest interest. Significance

was set at P less than 0.05. A repeated analysis of variance

(ANOVA) was performed on the loading on the lower

limbs in stance at various knee flexion angles (and

angle× side interaction). The Bonferroni correction was

applied (see Fig. 1 below). For each joint (hip, knee,

ankle), a repeated ANOVA model was tested, on each of

the spatiotemporal, kinematic, and dynamic variables

analyzed, across diagnostic classes (patients vs. controls),

gait modalities (erect vs. crouch), lower limb side, and the

class×modality× side interaction. For each joint, given

that a change in any of the parameters tested would

support an effect of the gait modality, the ‘false discovery

rate’ correction (Benjamini and Hochberg, 1995) was

adopted; this is more lenient than the more popular

Bonferroni correction. The variance explanation attribu-

table to the main or the interaction factors was computed

as η2-coefficients (Cohen, 1973) (see Tables 3–5 below).

Ethics

All participants signed an informed consent. The study

was approved by the Ethic committee of the Istituto

Auxologico Italiano, Milan, Italy.

Results
Participants

Demographic and clinical information on the participants

enrolled is shown in Table 1. It can be observed that

patients were older than controls (on average 58.0 vs.

26.7 years). However, both age groups fell into the ‘adult’

category considered in the walking literature. No relevant

age-related differences in gait mechanics were expected:

this holds by greater force if one considers the very low

speed analyzed.

Safety and tolerance

No participant complained of pain or discomfort. No

participant ever stumbled or fell.

Lower limb loading symmetry in standing

Figure 1 summarizes the vertical loading on either lower

limb during the quiet stance and for a static progressively

crouched posture: about 30°, 60°, and 90° (actually, most

participants could only reach about 80°), for 20 s, as an

average of seven hemiparetic patients. Only the limb side

variable was significant (at P< 0.004; R2= 0.57; repeated

ANOVA of load across side and angle, and interaction).

It appears that (a) hemiparetic patients load pre-

dominantly on the unaffected limb; (b) the asymmetry

persists at all degrees of crouch.

Gait analysis

Table 2 summarizes the spatiotemporal stride and step

parameters. Speed was imposed at 0.3 m/s. During

spontaneous gait, healthy participants had a step length

of 0.25 (0.05) m; hemiparetic patients had a mean (SD)

step length of 0.21 (0.05) m and 0.18 (0.05) m on the

paretic and the unaffected side, respectively (the step of

one side begins with the ground strike of the foot of that

side, see Methods section). The ratio [mean (SD)]

between the time duration of stance and of the whole

stride was 70.28 (2.92)% in controls, and 69.91 (5.61)%

Fig. 1

Percent ratio of body weight loading on the lower limbs during standing
(0°) and with knee flexed at 30°, 60°, and 90°. White and black columns
refer to the unaffected and paretic side of seven hemiparetic patients,
respectively (+SD). At all angles, the pairwise comparisons between
the lower limbs were significant at P<0.05, with Bonferroni correction
(see Methods section).

Table 1 Demographic characteristics of the study healthy adults
(n=12) and patients (n= 7)

Healthy adults
(n=12)

Hemiplegic patients
(n=7)

Age [mean (SD)] (years) 26.7 (3.5) 58.0 (5.9)
Male (n) 2 5
Weight [mean (SD)] (kg) 64.0 (7.1) 66.7 (6.5)
Height [mean (SD)] (cm) 168.3 (8.5) 168.7 (4.0)
Dominant/paretic side (right)
(n)

12 4

Onset [median (range)]
(months)

1.6 (0.6–127)

Type of lesion (n)
Stroke, ischemic 5
Stroke, aemorragic 1
Surgery; low-grade
glioma

1

Side of lesion (n)
Left 3
Right 4

Lesion sitea (n)
Total anterior circulation
infarct

1

Partial anterior circulation
infarct

3

Lacunar infarction 2
Posterior circulation
infarct

0

Left-temporal-mesial 1

aBamford J (1992).
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and 77.07 (2.09)% on the paretic and the unaffected side

in patients, respectively. During CG, the step length was

0.23 (0.07) m in controls and 0.19 (0.06) m and 0.14

(0.06) m on the paretic and the unaffected side in

patients, respectively. The ratio between the time dura-

tion of stance and of the whole stride was 71.99 (3.71)%

in controls, and 71.41 (5.52)% and 76.01 (2.84)% on the

paretic and the unaffected side in patients, respectively.

Patients, compared with healthy controls, adopted, in

both gait modalities and on both sides, a shorter step

length (61–84%) and a shorter stance (76–90%), and

swing (63–83%) time. In the hemiplegic group, crouch

walking seemed to entail a lower asymmetry between the

two lower limbs compared with erect gait. The % ratio

between the double stance times (paretic vs. unaffected

posterior foot) was 96.34 (21.19)% during erect gait and

100.62 (17.48)% during CG. Also, the % ratio between

the swing time of the paretic and the unaffected lower

limb was 132.96 (31.54)% during erect gait and 120.27

(26.89)% during CG. Table 2 provides the results of

ANOVA modeling. These confirm the significance of the

differences found across diagnostic categories (patients

vs. controls) and across gait modalities (erect vs. crouch),

but not the effect of crouch in decreasing the paretic/

affected asymmetry of step length and stance time.

Table 2 (bottom panel) shows the results of the ANOVA

modeling (see Methods section) of each parameter

(excluding the minimum–maximum joint angles), across

the diagnostic category (patient vs. control), the lower

limb or step side, the gait modality (erect vs. crouch), and

their interaction.

Figure 2a refers to hip motion during erect (left column)

and crouch (right column) gait in healthy controls. The

human silhouette on top sketches the double and single

stance phases of the analyzed lower limb (in black). Hip

power (generated or positive upward), the Gluteus

Maximus sEMG signal, and the sagittal excursions

(extension downward) are given, from top to bottom, as a

function of the standardized stride time, given on the

abscissa. The horizontal bar marks the single (dashed)

and the double (filled) stance times. The shaded areas

under the power and sEMG curves highlight the times

when power is generated, taken into account for com-

putations in Tables 3–5. It can be seen that CG mostly

entails a higher power output from the hip extensor

muscles in the single stance phase (heretofore: ss phase)

and during the late double stance (push-off, heretofore:

Table 2 Grand-mean of spatiotemporal parameters in 12 healthy and seven hemiparetic participants (paretic and unaffected side) walking
on a force treadmill at a speed of 0.3 m/s

Erect gait

Spatiotemporal gait
parameters Stride time (s)

Stride length
(m) Stance time (s) Swing time (s)

Double stance time
(s) Step length (m)

Healthy controls (n=12) 1.83 (0.28) 0.53 (0.10) 1.29 (0.23) 0.54 (0.06) 0.37 (0.10) 0.25 (0.05)
Hemiplegic (n=7)
Unaffected side 1.52 (0.33) 0.43 (0.09) 1.17 (0.28) 0.34 (0.07) 0.38 (0.15) 0.18 (0.05)
Paretic side – – 1.06 (0.26) 0.45 (0.13) 0.34 (0.06) 0.21 (0.05)

Ratio paretic/unaffected (%) – – 90.47 (8.71) 132.96 (31.54) 96.34 (21.19) 122.75 (22.93)

Crouch gait

Spatiotemporal gait
parameters Stride time (s)

Stride length
(m) Stance time (s) Swing time (s)

Double stance time
(s) Step length (m)

Healthy controls (n=12)
1.65 (0.41)

0.48 (0.12) 1.20 (0.34) 0.46 (0.09) 0.37 (0.14) 0.23 (0.07)

Hemiplegic (n=7)
Unaffected side

1.28 (0.21)
0.38 (0.10) 0.96 (0.16) 0.31 (0.07) 0.30 (0.09) 0.14 (0.06)

Paretic side – – 0.92 (0.18) 0.37 (0.10) 0.30 (0.06) 0.19 (0.06)
Ratio paretic/unaffected
(%)

– – 94.91 (7.18) 120.27 (26.89) 100.62 (17.48) 148.12 (66.93)

Stride time Stride length Stance time Swing time Double stance time Step length

R2 P R2 P R2 P R2 P R2 P R2 P
0.94 0.00 0.72 0.00 0.94 0.00 0.93 0.00 0.91 0.00 0.90 0.00

Repeated ANOVA modeling P η2 P η2 P η2 P η2 P η2 P η2

Diagnostic category 0.04a 0.23 0.02a 0.27 0.02a 0.15 0.00a 0.43 0.27 0.035 0.00a 0.22
Side NA NA NA NA 0.66 0.01 0.12 0.07 0.64 0.01 0.26 0.04
Gait modality 0.00a 0.56 0.01a 0.1186 0.00a 0.45 0.00a 0.56 0.01a 0.16 0.00a 0.28
Interaction 0.22 0.03 0.83 0.00 0.33 0.09 0.20 0.13 0.12 0.15 0.92 0.01

Interaction= category×modality× side.
ANOVA, analysis of variance; NA, not applicable.
P=0.05.
aSignificant after false discovery rate correction.
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po phase). The sEMG signals are not increased while

power is being generated during the po phase, so that the

power output can be ascribed to a more advantageous

muscle length because of the hip flexed posture (see

legend for further details).

Figure 2b replicates the information shown in Fig. 2a for

the sample of seven hemiparetic patients. The red and

black colors are assigned to the paretic and the unaffected

lower limb, respectively. It can be seen that, compared

with healthy controls, shifting from erect to CG entails a

higher increase in power output from the hip, prevailing

for the unaffected lower limb and consistent with the

increased level of the sEMG signal (see black curves in

the right column, power and sEMG tracings).

Figures 3 and 4 replicate the information shown in Fig. 2

with respect to the knee and the ankle joint, respectively.

The shaded areas highlighting the times of power generation

are no longer provided and yet, these times are the ones

considered for the computations presented in Table 4 (knee)

and Table 5 (ankle), respectively).

Table 3 provides the numerical counterpart of Fig. 2a and

b. For the hip motion, control and hemiparetic values,

both during erect and CG, can be compared along the

respective rows, across the columns showing eight

dynamic, sEMG, and kinematic parameters. It is note-

worthy that for joint excursion and rotation speed, dis-

tinct values are provided for the ss and the po phases.

Tables 4 and 5, replicate the information shown in

Table 3 for the knee and the ankle, respectively. The

pattern of knee flexion-extension just after foot strike

(so-called knee ‘yielding’, Fig. 4) is known to be highly

variable across individuals, depending on their more or

less ‘compliant’ walking style (Frigo and Tesio, 1986).

Here, a very low positive work is provided by the knee in

controls, or by the unaffected knee in patients, in erect

gait, only. For these reasons, this ‘early stance’ phase will

be neglected in inferential analyses on knee power and

work. The overall picture can be summarized as follows:

as a rule, patients provided a higher muscular work

(median: 137%, range: 77–250%) paralleled by a greater

sEMG area (median: 174%, range: 75–185%) compared

with controls. In erect gait, the generation of peak

extensor power across hip, knee, and ankle joints was in

general lower (83–90%) from the paretic limb, and higher

(98–165%) from the unaffected limb, compared with

control values. In CG, peak power generation across

the three lower limb joints was invariably higher in

Fig. 2

(a) The curves show the grand-mean of six subsequent strides performed by 12 healthy adults during erect (left panels) and crouch gait (right panels)
on a force treadmill, right step first, at a speed of 0.3 m/s. On the abscissa, the standardized stride time is given. The bottom horizontal bar shows the
stance time (average+SD between the two lower limbs). Dashed and filled segments represent the average time of the single and the double stance
phases, respectively. From top to bottom, the curves show the power (in W/kg), the surface electromyography (sEMG) from the extensor muscles
(gluteus maximus), and the sagittal joint excursion (hip extension downward, see ‘ext’ arrow). The shaded areas and the thickened lines mark the stride
phases when power is generated or positive (see ‘gen’ arrow and Table 3). (b) Replication of the information for an average of seven hemiplegic
patients. The red and black colors refer to the paretic and the unaffected lower limb, respectively.

Crouch gait as an exercise in stroke Tesio et al. 7



Table 3 Hip motion

Erect gait

Hip
Peak power

(W/kg) Work (J/kg) sEMG area (µVs)
Joint excursion
(ss) (deg.)

Joint excursion
(po) (deg.)

Joint rotation range
(minimum–maximum) (ss)

(deg.)

Joint rotation range
(minimum–maximum) (po)

(deg.)
Rotation speed
(ss) (deg./s)

Rotation speed
(po) (deg./s)

Healthy controls
(n=12)

0.17 (0.06) 2.28 (1.04) 278.63 (213.93) 7.87 (5.81) 24.93 (9.71) 14.54–22.411 −2.51 to 22.61 29.06 (9.59) 48.88 (9.08)

Hemiplegic (n=7)
Unaffected side 0.28 (0.05) 6.46 (1.75) 698.75 (336.32) 20.37 (12.81) 32.67 (5.19) 4.20–24.57 −4.22 to 27.73 35.29 (10.71) 59.29 (11.57)
Paretic side 0.15 (0.08) 3.56 (1.47) 484.23 (232.49) 11.15 (10.03) 22.00 (10.41) 5.63–16.78 −0.51 to 18.66 23.77 (8.39) 47.85 (21.22)

Ratio paretic/
unaffected (%)

55.30 (32.27) 55.87 (19.18) 68.22 (22.12) 61.59 (19.20) 67.15 (38.10) – – 85.03 (31.42) 78.24 (71.67)

Crouch gait

Hip
Peak power

(W/kg) Work (J/kg) sEMG area (µVs)
Joint excursion
(ss) (deg.)

Joint excursion
(po) (deg.)

Joint rotation range
(minimum–maximum) (ss)

(deg.)

Joint rotation range
(minimum–maximum) (po)

(deg.)
Rotation speed
(ss) (deg./s)

Rotation speed
(po) (deg./s)

Healthy controls
(n=12)

0.22 (0.09) 5.94 (3.78) 524.50 (424.49) 22.05 (9.60) 21.62 (10.01) 27.82–43.88 17.74–45.26 39.33 (16.49) 39.33 (16.49)

Hemiplegic (n=7)
Unaffected side 0.51 (0.26) 14.88 (4.22) 1494.87 (789.84) 18.50 (6.48) 17.53 (6.28) 25.46–43.96 27.09–44.61 31.12 (11.74) 58.10 (12.02)
Paretic side 0.39 (0.22) 10.88 (4.96) 968.82 (625.90) 13.00 (7.05) 15.59 (5.53) 28.13–41.13 24.27–39.86 27.82 (12.06) 38.22 (7.31)

Ratio paretic/
unaffected (%)

85.08 (70.06) 71.76 (23.60) 91.37 (36.26) 61.88 (30.56) 93.49 (35.48) – – 71.67 (19.13) 71.67 (19.13)

Peak power Work sEMG area Joint excursion (ss) Joint excursion (po) Rotation speed (ss) Rotation speed (po)

R2 P R2 P R2 P R2 P R2 P R2 P R2 P
0.83 0.00 0.89 0.00 0.89 0.00 0.90 0.00 0.74 0.04 0.72 0.05 0.86 0.00

Repeated ANOVA modeling P η2 P η2 P η2 P η2 P η2 P η2 P η2

Diagnostic category 0.00a 0.37 0.00a 0.50 0.00a 0.33 0.61 0.01 0.59 0.01 0.08 0.10 0.11 0.07
Side 0.05 0.11 0.05 0.11 0.08 0.10 0.62 0.01 0.51 0.01 0.83 0.00 0.78 0.00
Gait modality 0.00a 0.44 0.00a 0.74 0.00a 0.52 0.00a 0.49 0.00a 0.32 0.20 0.06 0.03a 0.16
Interaction 0.04 0.24 0.04 0.25 0.69 0.06 0.00a 0.64 0.17 0.16 0.00a 0.41 0.01a 0.36

Dynamic, sEMG from the Gluteus maximus, and kinematic parameters (second row from top) during erect gait (upper section of the table) and crouch gait (lower section).
Only grand-means across strides and participants are reported. From top to bottom, the data rows refer to healthy controls, the unaffected and the paretic lower limb of the hemiplegic patients, and the paretic/unaffected % ratio,
respectively. From left to right, each data column refers to the maximum power of the hip joint (peak power,W/kg; generated during extension), work (J/kg; or, the integral of power over time), the area under the sEMG curve (sEMG
area, µVs), the hip joint excursion over time (joint excursion ss and po phases, deg.), and the average hip rotation speed (rotation speed ss and o phases, deg./s). Power, work, and sEMG are computed during the intervals in which
extensor power is generated, as shown in Fig. 2a and b.
Interaction= category×modality× side.
ANOVA, analysis of variance; sEMG, surface electromyography.
P=0.05.
aSignificant after false discovery rate correction.
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Table 4 Knee motion

Erect gait

Knee
Peak power

(W/kg) Work (J/kg) sEMG area (µVs)
Joint excursion (ss)

(deg.)
Joint excursion
(po) (deg.)

Joint rotation range
(minimum–maximum) (ss)

(deg.)

Joint rotation range
(minimum–maximum) (po)

(deg.)
Rotation speed
(ss) (deg./s)

Rotation
speed (po)
(deg./s)

Healthy controls
(n=12)

0.20 (0.15) 2.84 (2.28) 225.94 (150.16) 4.70 (4.43) 19.36 (16.44) 5.41–10.12 −0.79–18.57 11.76 (7.83) 51.73
(30.99)

Hemiplegic (n=7)
Unaffected side 0.20 (0.14) 5.15 (2.11) 649.34 (296.90) 9.17 (6.32) 16.87 (13.74) 13.38–22.55 13.30–30.17 25.71 (19.38) 52.85

(18.43)
Paretic side 0.18 (0.08) 3.24 (2.46) 537.30 (490.96) 14.09 (11.52) – 7.16–20.74 – 29.26 (17.20) –

Ratio paretic/
unaffected (%)

76.47 (41.05) 61.51 (28.90) 71.24 (66.29) 116.00 (38.14) – – – 101.90 (42.71) –

Crouch gait

Knee
Peak power

(W/kg) Work (J/kg) sEMG area (µVs)
Joint excursion
(ss) (deg.)

Joint
excursion (po)

(deg.)

Joint rotation range
(minimum–maximum) (ss)

(deg.)

Joint rotation range
(minimum–maximum) (po)

(deg.)
Rotation speed (ss)

(deg./s)

Rotation
speed (po)
(deg./s)

Healthy controls
(n=12)

0.28 (0.16) 5.93 (3.78) 930.42 (606.02) 7.95 (5.93) – 36.35–44.30 – 13.29 (7.37) –

Hemiplegic (n=7)
Unaffected side 0.32 (0.25) 5.53 (5.01) 1042.61 (679.57) 5.33 (6.04) – 43.13–48.14 – 14.23 (18.68) –

Paretic side 0.30 (0.17) 4.58 (3.20) 701.87 (300.21) 5.29 (2.47) – 40.11–45.26 – 17.18 (8.75) –

Ratio paretic/
unaffected (%)

82.64 (33.45) 60.39 (20.46) 74.32 (37.38) 66.40 (47.01) – – – 113.56 (92.92) –

Peak power Work sEMG area Joint excursion (ss) Rotation speed (ss)

R2 P R2 P R2 P R2 P R2 P
0.82 0.00 0.78 0.00 0.77 0.01 0.68 0.12 0.73 0.06

Repeated ANOVA modeling P η2 P η2 P η2 P η2 p η2

Diagnostic category 0.78 0.00 0.75 0.00 0.04 0.12 0.14 0.06 0.00a 0.22
Side 0.08 0.09 0.07 0.09 0.40 0.02 0.51 0.01 0.83 0.00
Gait modality 0.01a 0.20 0.01a 0.14 0.00a 0.45 0.13 0.08 0.01a 0.20
Interaction 0.11 0.18 0.02a 0.28 0.25 0.13 0.01a 0.31 0.03a 0.28

Dynamic, sEMG from the Rectus femoris and kinematic parameters during erect gait and crouch gait.
Power is given as generated during knee extension. Other indications as in Table 3.
Interaction= category×modality× side.
ANOVA, analysis of variance; sEMG, surface electromyography.
P=0.05.
aSignificant after false discovery rate correction.
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hemiparetic patients compared with controls: 107–177%

from the paretic limb and 114–231% from the unaffected

limb. When gait shifted from erect to crouch, in hemi-

plegic patients at the hip, only, the paretic/unaffected

ratio increased significantly. For peak power, work,

sEMG area, and joint rotation, the paretic/unaffected

ratio increased from 55 to 85%, 56 to 72%, 68 to 91%, and

67 to 93%, respectively. Tables 3–5 also confirm that the

plantar flexors provide a higher positive power compared

with the hip and knee. In both patients and controls, and

erect and CG, the plantar flexors generated peak power

and work about two times higher compared with the hip

or the knee extensors.

For hemiplegic patients, the paretic/unaffected ratios of

dynamic and kinematic variables are graphically high-

lighted in Fig. 5. White and black bars refer to erect and

CG, respectively. From top to bottom, panels refer to the

hip, knee, and ankle joint, respectively.

It can be observed that CG consistently entails an

increased paretic/unaffected ratio for peak power, work,

and sEMG only for the hip joint.

Discussion
There are three main limitations of this study. First, the

small size and the low severity of the sample of hemi-

plegic patients must be noted. The reasons for con-

sidering this sample size sufficient are given in the

Methods section. Changes related to the crouched com-

pared with the erect posture, asymmetries between the

paretic and the unaffected step, and crouch-related

changes in asymmetry could be detected anyway. Even

greater asymmetries can be expected in patients more

impaired than those recruited in this study. Second,

treadmill walking may not be fully representative of

ground walking. Differences in kinematic, dynamic, and

sEMG parameters, however, have been shown to be

minimal at low and intermediate walking speeds (Tesio

and Rota, 2008). Finally, the speed imposed was very low

(0.3 m/s). This ensured that all patients could comfor-

tably adapt to the treadmill condition, mostly in the tiring

crouch position. In addition, this speed is the one adop-

ted on firm ground by many hemiplegic patients. It is

true that the results presented here cannot be safely

generalized to higher speeds. However, an even greater

recruitment of lower limb muscles, with an even greater

Table 5 Ankle motion

Erect gait

Ankle
Peak power

(W/kg) Work (J/kg) sEMG area (µVs)
Joint excursion

(deg.)
Joint rotation range

(minimum–maximum) (deg.)
Rotation speed

(deg./s)

Healthy controls
(n=12)

0.35 (0.18) 4.25 (2.96) 367.44 (189.36) 14.23 (8.42) 1.93–13.86 29.58 (10.77)

Hemiplegic (n=7)
Unaffected side 0.48 (0.24) 5.27 (1.67) 893.02 (652.86) 17.05 (11.25) 0.39–13.84 35.39 (16.46)
Paretic side 0.29 (0.12) 3.76 (1.89) 531.70 (191.11) 12.34 (4.26) 1.76–12.37 26.53 (10.20)

Ratio paretic/
unaffected (%)

72.59 (41.09) 74.89 (44.05) 95.71 (77.62) 68.89 (36.23) – 81.59 (35.75)

Crouch gait

Ankle
Peak power

(W/kg) Work (J/kg) sEMG area (µVs)
Joint excursion

(deg.)
Joint rotation range

(minimum–maximum) (deg.)
Rotation speed

(deg./s)

Healthy controls
(n=12)

0.65 (0.27) 7.20 (3.24) 550.33 (334.50) 21.13 (7.28) 7.15–26.22 44.77 (13.99)

Hemiplegic (n=7)
Unaffected side 0.94 (0.32) 9.89 (3.44) 1074.68 (572.75) 23.51 (9.17) 6.87–26.11 51.82 (14.55)
Paretic side 0.64 (0.28) 6.93 (2.97) 671.86 (251.96) 14.29 (4.43) 9.21–23.16 49.04 (19.17)

Ratio paretic/
unaffected (%)

74.67 (40.55) 77.82 (42.07) 67.23 (64.30) 68.81 (32.27) – 94.72 (54.30)

Peak power Work sEMG area Joint excursion Rotation speed

R2 P R2 P R2 P R2 P R2 P
0.81 0.00 0.78 0.00 0.80 0.00 0.93 0.00 0.85 0.00

Repeated ANOVA modeling P η2 P η2 P η2 P η2 P η2

Diagnostic category 0.20 0.05 0.46 0.02 0.00a 0.25 0.79 0.00 0.39 0.02
Side 0.05 0.11 0.30 0.03 0.10 0.08 0.30 0.03 0.16 0.06
Gait modality 0.00a 0.62 0.00a 0.54 0.02a 0.19 0.00a 0.56 0.00a 0.65
Interaction 0.48 0.07 0.72 0.04 0.99 0.00 0.16 0.15 0.39 0.09

Dynamic, sEMG from the lateral Gastrocnemius and kinematic parameters during erect and crouch gait.
Power is given as generated during plantar flexion. Other indications as in Table 3.
Interaction= category×modality× side.
ANOVA, analysis of variance; sEMG, surface electromyography.
P=0.05.
aSignificant after false discovery rate correction.
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difference between erect and CG, can be expected at

higher speeds (see above).

The results need to be discussed with respect to each of

the two hypotheses generating the present study.

Hypothesis 1: crouch gait is an effective form of ‘forced-

use’ exercise for the paretic lower limb

The results support the notion that both in healthy and

hemiplegic participants the plantar flexors of the pos-

terior limb are the main providers of the power required

to keep the body system in motion during walking and

that most of this power is exerted against the ground by

the rear plantar flexor muscles during the push-off phase.

This is consistent with the evidence that the energy-

saving pendulum-like mechanism of gait is discontinued

during double stance, when a strong injection of muscular

power is requested to maintain the body in motion

(Cavagna and Kaneko, 1977; Tesio et al., 1998a, 2011).
The increased power associated with CG cannot be

entirely ascribed to the mechanical advantage provided

by the greater length of muscle extensors entailed by the

more flexed joint positions. In fact, the parallel increase

of the sEMG areas shows an increase in the neural drive.

In addition, the latter was probably underestimated. The

sEMG areas were computed during the provision of

generated (‘positive’) muscle power only. Yet, the time of

electric activity anticipates the time of detectable force

because of the time needed for impulse conduction,

excitation–contraction coupling, alignment of pennate

fibers with the tendon, and stiffening of the series elastic

elements (Nordez et al., 2009), so that the overall elec-

tromechanical delay for force onset was presumably

around 50–80ms in this study. The delay is known to be

higher for contraction than for relaxation (Esposito et al.,
2016). Also, as a rule, the sEMG signal decreased

monotonically from just before to just after the time of

detectable positive power (Figs 2–4), so that the missed

sEMG was of non-negligible amplitude. The crouch-

related increase in joint power, work, and sEMG area was

also observed in hemiplegic patients. In both gait mod-

alities, the joints of the unaffected limb provided power

and work higher than normal, whereas power and work

were equal to or lower than normal in the paretic side.

This is consistent with the finding that in asymmetric gait

impairments such as those following stroke (Cavagna

et al., 1983), unilateral hip replacement (Tesio et al.,
1985), above-knee or below-knee amputation (Tesio

et al., 1998b), and knee rotationplasty (Rota et al., 2016),
the muscular power and work sustaining the motion of

the body center of gravity with respect to the ground

(‘external’ work and power) at push-off are about two to

Fig. 3

The panels replicate the information shown in (a) healthy controls and (b) hemiplegic patients. The variables refer to the knee joint and the surface
electromyography (sEMG) signal from the rectus femoris.
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five times lower when the posterior limb is the paretic

one compared with the next unaffected push-off. The

dynamic asymmetry during hemiplegic gait thus repli-

cates the one observed between erect and crouched

stance (Fig. 1) and it is reflected by the asymmetry in

single and double stance time (both lower on the paretic,

compared with the unaffected, side).

To sum up, the results are in agreement with the first

hypothesis put forward in this study by showing that on

the paretic side, the muscles of the lower limb can be

actually ‘awakened’ by simply imposing a crouched

posture that would make gait more difficult without their

enhanced intervention. In fact, during CG, both the

unaffected and the paretic lower limb are forced to be

much more active to prevent their own collapse. In the-

ory, isometric contractions would be sufficient to main-

tain the flexed posture of its lower limb joints during CG,

thus allowing the body to ‘pole-vault’ passively over a

flexed, yet stiffer, paretic limb. This was perhaps the case

for hip and knee joints, showing a decreased excursion

(Figs 2 and 3), but not for the ankle joint (Fig. 4), the

excursion of which increased. In all cases, power and

work were higher in crouched, compared with erect, gait.

This seems to support the hypothesis that in hemiparetic

patients, the forced recruitment of otherwise paretic

muscles reflects disinhibition of a survived mechanism of

neural control of gait, consistent with the conceptual

framework of LNU. Whichever this mechanism, the

results show that CG might be classified among the

‘forced-use’ exercises for the lower limb, as defined in a

previous work (Tesio, 2001), although no restraint is

imposed to the unaffected lower limb. Other gait mod-

alities can presumably obtain an increased power output

from the paretic lower limb. Dynamic results are available

from studies where patients were asked for both a self-

selected (0.73 m/s) and a maximal speed (1.26 m/s) (Milot

et al., 2007), and EMG results are available from a study

on walking uphill (Werner et al., 2007). The former study

evidenced that the ‘muscular utilization ratio’ (the peak

joint moment provided during push-off, compared with a

maximal isokinetic moment) is increased at maximal,

compared with spontaneous speed, more in hip than in

calf muscles. In this study, the plantar flexor muscular

utilization ratio on the paretic side increased on average

by 13.1% at maximal, compared with self-selected,

speed, that is much less than the two-fold increase in

power caused by CG, compared with erect gait, despite

the much lower speed adopted in the present study (0.30

vs. 0.73–1.26 m/s). However, the ‘maximal’ speed

required to the hemiplegic patients in the above-cited

study approached the one optimizing the pendulum-like

recovery of mechanical energy (Cavagna and Kaneko,

Fig. 4

The panels replicate the information shown in (a) healthy controls and (b) hemiplegic patients. The variables refer to the ankle joint and the surface
electromyography (sEMG) signal from the lateral Gastrocnemius.
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1977); by contrast, shifting from erect to CG decreases

markedly the efficiency of the pendulum (Wang et al.,
2003), thus imposing a much higher muscular work. With

respect to walking uphill, it is noteworthy that no changes

were observed in the sEMG output compared with level

walking at the same, self-selected, speed so that the

higher muscle work in that study can be ascribed to the

mechanical advantage provided by a higher muscle

length, not necessarily to a higher neural drive.

Therefore, CG, even at the low speeds adopted in this

work, seems to be the most effective way to elicit a

higher neural drive toward the paretic lower limb mus-

cles, thus contrasting their learned nonuse. Another

attractive, yet entirely speculative, explanation for the

strong effect of CG on recruitment of the muscles of the

lower limb focuses on the considerable neurologic dif-

ferences between erect and CG. The former is highly

specific for the human adults. Their gait has many

unique features across both quadruped and biped walk-

ing vertebrates. In particular, it implies full extension of

the hip and knee (allowing passive stability through

ligaments, with sparing of muscle contractions) and a

heel-toes sequence during foot–ground contact, allowing

for a high plantar flexor work. The kinematic sequence

provides the calf muscles with the possibility for a wide

stretch-shortening cycle fostering (the more, the faster

the cycle) their positive power output (Lai et al., 1985).
By contrast, most parameters of CG replicate those of

walking vertebrates (Alexander and Jayes, 2009), human

infants up to the age of 5–7 years (Ganley and Powers,

2005; Ivanenko et al., 2007), hemiplegic patients on their

paretic side (see above; Brandstater et al., 1983; Colborne
et al., 1993), and ancestors of the Homo sapiens (Wang

et al., 2003). Thanks to coordination at subcortical neural

centers, this gait pattern might ‘emerge’ unaffected from

the ‘dissolution of the nervous system’ caused by hemi-

spheric stroke in adult men, an old established, jackso-

nian concept (Franz and Gillett, 2011). Of course, it

remains doubtful whether this result can be transferred to

spontaneous gait. A peculiarity of CG in healthy and

hemiparetic individuals (on both sides), however, must

be highlighted, that is the increase in the neural drive to

the plantar flexors, contrary to what is observed in CP, at

push-off. This suggests that CG in human adults calls

into action a more mature pattern of recruitment, which

speaks in favor of its capacity to ‘awake’ calf recruitment

in erect gait, too.

Hypothesis 2: crouch gait entails a higher symmetry

between the motion of the paretic and the unaffected

lower limb, compared with erect gait

This hypothesis is not confirmed with respect to spatio-

temporal parameters (Table 2, bottom row). By contrast,

the hypothesis is confirmed for the peak power, positive

work, joint excursion, and rotation speed during positive

work at the hip joint (Table 3, bottom row). At the knee

and, most importantly, at the ankle, the paretic/unaf-

fected ratios of work and power do not change sig-

nificantly between erect and CG (Tables 4 and 5, bottom

rows). In this respect, therefore, CG is partly dis-

appointing as it does not ‘awaken’ selectively, on the

paretic side, the main engines of normal gait, that is the

calf muscles.

Its effectiveness as a force-use procedure, in any case,

justifies its application as a form of rehabilitation exercise

to be tested in dedicated clinical studies. The crouched

posture is uncomfortable and it may overload the hip and

knee joints. A point to be clarified, therefore, concerns

the patients’ tolerance to longer and/or more numerous

walks compared with the ones adopted in this study.
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Fig. 5

From top to bottom, the panels refer to (a) hip, (b) knee, and (c) ankle
joints, respectively. The ordinate shows the % ratio of the mean values
recorded from the paretic and the unaffected side, shown in Tables 3–5.
White and black bars refer to erect and crouch gait, respectively. In all
panels, each pair of bars refers to one of the parameters shown in the
abscissa [peak power, work, surface electromyography (sEMG) area,
joint excursion, and rotation speed, all computed while positive power is
generated]. Asterisks mark the significant pairwise comparisons
(P<0.05, Bonferroni correction for multiplicity; see Methods section).
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