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Abstract 

 

Background: Patients with end-stage renal disease (ESRD) undergoing haemodialysis (HD) 

experience enhanced oxidative stress and systemic inflammation, which are risk factors for 

cardiovascular disease, the most common cause of excess morbidity and mortality for these 

patients. Different pathways producing different types of oxidative stress occur in ESRD. The 

purpose of our study was to determine the effect of HD on plasma levels of protein-bound 

dityrosine (di-Tyr), a biomarker of protein oxidation. 

Methods: Protein-bound di-Tyr formation was measured by size exclusion HPLC coupled to 

fluorescence detector. Clinical laboratory parameters were measured by standardized methods. 

Results: In most ESRD patients, a single HD session decreased significantly the plasma protein-

bound di-Tyr level, although the mean post-HD level remained significantly greater than the one in 

healthy people. Furthermore, pre-HD plasma protein-bound di-Tyr level was positively correlated 

with pre-HD serum creatinine and albumin concentrations. No significant correlation was found 

between plasma protein-bound di-Tyr level and serum concentration of C-reactive protein, a 

biomarker of systemic inflammation. 

Conclusions:This study demonstrates that a single HD session does not increase, rather partially 

decreases, oxidative pathways producing di-Tyr in the haemodialyzed patient.  

General significance: The choice of the most pertinent biomarkers of oxidative stress is critical for 

the development of novel treatments for ESRD. However, the relative importance of oxidative 

stress and inflammation in ESRD remains largely undetermined, and several questions concerning 

oxidative stress and inflammation remain poorly defined. These results could stimulate further 

studies on the use of plasma protein-bound di-Tyr as a longlasting oxidative stress biomarker in 

ESRD. 

Keywords: chronic kidney disease, hemodialysis, oxidative stress, biomarker, protein-bound di-

tyrosine, creatinine.  
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1. Introduction   

 

Chronic kidney disease (CKD), or chronic renal failure, is an important public health problem 

since its prevalence has reached epidemic proportions, with 10-13% of the population affected in 

different countries around the world [1]. Patients affected by CKD are categorized into five stages 

according to the glomerular filtration rate and presence of signs of kidney damage [2]. Compared 

with the general population, CKD patients have a higher risk for premature death, primarily as a 

result of cardiovascular disease (CVD), and their cardiovascular risk increases continuously with 

the decrease in kidney function [3]. Thus, most patients with mild to moderate (stage 3-4) CKD die 

of CVD rather than progress to end stage renal disease (ESRD, or CKD stage 5) [4]. ESRD 

represents the total inability of kidneys to maintain homeostasis and hence is incompatible with life. 

Therefore, to ensure survival of patients with ESRD, it is necessary to use methods that substitute 

for kidney function, including haemodialysis (HD), peritoneal dialysis and kidney transplantation. 

ESRD patients on maintenance HD too experience a higher risk for CVD and its associated 

mortality compared to the general population [5]. 

 Patients with CKD are at higher risk for CVD because of higher prevalence of traditional 

(such as age, diabetes mellitus, left ventricular hypertrophy, dyslipidemia, hypertension) and non-

traditional cardiovascular risk factors [6,7]. The latter include anaemia, uraemia, altered calcium-

phosphate metabolism, malnutrition, inflammation and oxidative stress [8−11]. In patients with 

ESRD, HD may also impose an additional oxidative stress, mainly attributed to loss of circulating 

low-molecular-mass dialyzable antioxidants and to the activation of neutrophil NADPH oxidase, 

provoking inflammation with release of reactive oxygen species [11−14]. In fact, the extracorporeal 

treatment itself represents a bioincompatible event in the patient’s life: during the HD session, 

blood is exposed 3 to 4 hours to synthetic material, i.e., blood lines and filter. Historically, the first 

filters used in HD were composed of cellulose: this treatment was so bioincompatible that patients 

used to experience fever and chills during HD due to complement activation [15]. Currently, with 
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the use of synthetic filters, patients do not experience fever yet, but sub-clinical activation and 

degranulation of polymorphonuclear neutrophils still occurs [16]. Moreover, intravenous iron 

therapy in HD patients, even in recommended doses, could further aggravate oxidative stress and 

atherosclerotic disease. Furthermore, increased total body iron level exacerbates deficiency of 

lycopene and other lipophilic antioxidants [17]. 

 Four pathways producing different types of “oxidative” stress can be hypothesized in CKD 

patients, i.e., classical oxidative stress, carbonyl stress, nitrosative stress, and chlorine stress [18]. 

Increased oxidative stress in patients with ESRD and CKD stage 3 or higher is demonstrated by 

increase in plasma thiol-specific oxidative stress [19−23] and protein carbonyls (PCO) 

[19,20,24−26] and by the presence of plasma advanced oxidation protein products (AOPPs) 

[26−29]. 

 AOPPs are considered as potential uremic toxins and inflammatory mediators [30], involved 

in the activation of polymorphonuclear granulocytes, monocytes and vascular endothelial cells 

[31,32]. Chronic accumulation of AOPPs accelerates atherosclerosis by promoting oxidative stress 

and inflammation [33]. Furthermore, AOPPs directly impair metabolism of high-density 

lipoproteins, being potent antagonists of their receptor and, therefore, might be directly involved in 

the development of CVD [34].  

 AOPPs are a heterogeneous group of dityrosine (di-Tyr)
1
, pentosidine and carbonyl-

containing protein products generated in plasma proteins by both myeloperoxidase (MPO)-

dependent (e.g., in ESRD patients) and MPO-independent (e.g., in the predialysis phase of CKD) 

mechanisms during oxidative/chlorine stress [27,35]. AOPPs are considered a generic biomarker of 

protein oxidation because their molecular composition has not yet been precisely defined and their 

easy spectrophotometric determination is often invalidated by poor reproducibility and accuracy of 

most colorimetric methods for their detection. Furthermore, measuring AOPPs in diluted plasma as 

absorbance at 340 nm is a rather nonselective way to determine the level of oxidized proteins; 

                                                 
1
 In this manuscript the term dityrosine will refer to 3,3’-dityrosine (3,3’-bityrosine or o,o’-dityrosine) 
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therefore, it is necessary to take precautions to minimize the contribution of species other than 

AOPPs. Consequently, reliable, validated AOPP reference values in healthy humans are still 

lacking [27,34−37]. In addition, measurement of AOPPs during HD session gave contrasting results 

[20,38,39].  

 Our preliminary results showed a significant (p < 0.001) increase in di-Tyr fluorescence 

(normalized to protein concentration) in plasma samples of patients with ESRD undergoing regular 

maintenance HD as compared to healthy controls [37]. As mentioned above, there is concern that 

the HD session itself can be, at least in part, responsible of this tremendous oxidative burden [38]. 

The purpose of the present study was to determine the effect of a single HD session on plasma 

levels of protein-bound di-Tyr, a biomarker of irreversible protein oxidation, in ESRD patients on 

maintenance HD. We also examined the potential correlation between plasma protein-bound di-Tyr 

concentration, taken as a biomarker of oxidative stress and creatinine, albumin, and C-reactive 

protein (CRP) concentration, taken as biomarkers of systemic inflammation.   

 

2. Materials and methods 

 

2.1 Study participants  

 

All the patients enrolled in the study belong to stage 5 of CKD and are referred to as ESRD 

patients. These patients do not show any residual renal function and thus require renal replacement 

therapy. In addition to hemodialysis, patients are treated with a pharmacological treatment that 

varies upon the clinical necessities and consists mainly on the treatment of ESRD complications. 

Most of the patients assume drugs for anaemia and bone mineral disorder. In particular, for anaemia 

they may assume iron endovenous supplementation and/or erythropoietin, and for bone mineral 

disorder calcium supplementation, phosphate binders, vitamin D, paracalcitol and/or calcimimetics. 

In addition to these therapies, patients may also take specific drugs for other comorbidities, e.g. 
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hypertension, diabetes mellitus, ischemic cardiopathy and other vasculopathies. Blood samples 

were collected after informed written consent from ESRD patients undergoing maintenance HD at 

the Nephrology Unit of the Humanitas Clinical and Research Center (Rozzano, Milan, Italy). The 

samples have been collected at the arterial line at the beginning and at the end of HD session. All 

the filters used were made of polyethersulphone (Polyflux™ Gambro-Baxter, Rome, Italy). The 

presence of a clinically evident infectious process was the only exclusion criteria. For every patient 

an anamnestic record was collected. A de-identification of the samples was made for the further 

data treatment. Seventy-three haemodialyzed patients joined the study (Table 1). Control blood 

samples were collected from 25 (13 male and 12 female) age-matched voluntary healthy donors at 

the Analysis Laboratory of the University of Milan (Laboratorio Analisi Università di Milano), after 

obtaining informed verbal consent. Criteria included no known history of CKD or other diseases 

that could influence the analysis. In particular, healthy subjects were tested for serum creatinine in 

order to exclude CKD. 

 

Table 1. Characteristics of study group. Data are expressed as mean ± SE. 

 

 

 

 

 

 

 

 

 

 

 

 Haemodialyzed Patients 

(n = 73) 

Age (years) 69.62 ± 1.48 

Sex 48 male, 25 female  

Diabetes 50 nondiabetic, 23 diabetic 

Length of time on dialysis (years) 5.71 ± 0.44 

CRP (mg/dL) 0.51 ± 0.06 

Albumin (g/dL) 3.50 ± 0.04 

Fibrinogen(mg/dL) 355.47 ± 9.01 

White Blood Cells (cells/mm
3
) 7293.15 ± 257.90 

Haemoglobin (g/dL) 11.02 ± 0.11 

Urea (mg/dL) 150.14 ± 4.76 

Creatinine (mg/dL) 9.16 ± 0.35 

Sodium  (mmol/L) 137.80 ± 0.36 

Potassium (mmol/L) 5.22 ± 0.09 

Calcium (mmol/L) 2.23 ± 0.02 

Phosphorus (mmol/L) 1.65 ± 0.05 

Ferritin (ng/mL) 199.90 ± 16.03 

Total Iron-Binding Capacity (g/L) 184.62 ± 7.18 
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2.2 Sample collection 

 

From ESRD patients, venous blood samples of 10 ml were collected before HD and 5 ml were 

obtained after the same HD session. All samples were collected on the long inter-dialytic interval, 

i.e., two days apart from the previous HD session. Blood was taken from the arteriovenous fistula or 

central venous catheter. From healthy donors, 10 ml of venous blood was collected from the 

antecubital vein. K3EDTA was used as anticoagulant in all the blood samples. All the samples were 

processed within the first hour from blood sampling through centrifugation for 10 min at 1000 g, 

obtaining pre-HD and post-HD plasma aliquots from haemodialyzed patients and plasma aliquots 

from healthy controls. Such aliquots were stored at -80°C until the execution of the assays. 

 

2.3 Plasma protein-bound di-Tyr determination 

 

Protein-bound di-Tyr formation was evaluated by Size Exclusion/Gel Filtration High 

Performance Liquid Chromatography (GF-HPLC, same as SE-HPLC) on a BioSep-SEC-S4000 

column (300 mm × 7.8 mm) with a guard column (SecurityGuard™ GFC-4000, 4 mm length × 3 

mm ID) and UV–VIS detector. Plasma samples were diluted 1:15 in 50 mM Tris-HCl, pH 7.4 and 

20 μl was loaded into the column for each sample. The mobile phase consisted of Milli-Q water, 

containing 0.5% (w/v) SDS and was eluted at 1 ml/min. Eluates were monitored both at 215 nm for 

measuring absorbance of peptide bonds and at 415-nm emission with 325-nm excitation for 

measuring di-Tyr fluorescence. In the time range between 6 and 9 min, both the area under the 215-

nm absorbance chromatogram (A215) and the area under the 415-nm emission fluorescence 

chromatogram (IF415nm em) were considered (Supplementary Fig. S1). The ratio between total 

fluorescence and total absorbance (IF415nm em /A215nm) was calculated for each sample. 
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2.4 Determination of clinical laboratory parameters 

 

CRP, white blood cells count, albumin, creatinine, fibrinogen, haemoglobin, ferritin, total 

iron-binding capacity, urea, sodium, potassium, calcium, and phosphorus were measured by 

standardized methods at the clinical laboratory of the Humanitas Clinical and Research Center. 

 

2.5 Statistical analysis  

 

Student’s t-test for independent samples was used to test for differences between the ESRD 

patients on maintenance HD and the age-matched healthy subjects. The α-level of the tests was set 

at p < 0.05. In Table 2, we reported the mean (standard error, SE) values estimated on the largest 

sample available for each sex separately. Sex-specific mean values were compared by independent-

sample t-tests. The data met the assumptions of homogeneity of within-sex variances (Levene’s test 

for homoscedasticity; F  1.52, p ≥ 0.22 for both markers) and of within-sex normality 

(Kolmogorov-Smirnov test, Z  1.00, p ≥ 0.27 for all sex-by-marker combinations). Analyses of 

covariance were used to test for consistency of any sex-dependent variation in di-Tyr while 

controlling for the potentially confounding effects of age. Predialysis (pre-HD) and postdialysis 

(post-HD) di-Tyr values were compared by Student’s t-tests for paired samples within each sex 

separately. The relationships between variables were investigated by linear regression and Pearson’s 

correlation coefficient. Estimated parameters are presented with their associate standard error (SE). 

 

Table 2. Plasma protein-bound di-Tyr content in male and female ESRD patients. Mean (SE) 

of plasma protein-bound di-Tyr level in male and female ESRD patients before (pre-HD) and after 

(post-HD) a single HD session. Sex-specific mean values were compared by independent-sample t-

tests. 
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3. Results   

 

3.1 Plasma protein-bound di-Tyr levels in healthy people and ESRD patients on maintenance HD 

 

 There are significant differences in total plasma protein and albumin concentrations between 

healthy subjects and patients with ESRD [23,40], as well as for each ESRD patient before and after 

a single HD session [23]. The latter is due to ultrafiltration performed during the dialysis session in 

order to restore the dry body weight of the patient. This deserves close consideration in the analysis 

of plasma protein-bound di-Tyr concentrations, since any increase or decrease in total plasma 

protein and albumin concentration can dramatically affect the di-Tyr measured values. Therefore, in 

this study we express plasma protein-bound di-Tyr content as IF415nm em /A215nm ratio.  

 Firstly, we determined the plasma protein-bound di-Tyr content in healthy subjects and in 

ESRD patients before HD (Fig. 1). Plasma protein-bound di-Tyr content ranged from 0.064 to 0.116 

IF415nm em/A215nm (mean 0.084 ± 0.0024 IF415nm em /A215nm) in healthy subjects (Fig. 1A) and from 

0.109 to 0.324 IF415nm em/A215nm (mean 0.185 ± 0.0051 IF415nm em /A215nm) in ESRD patients before 

HD session (Fig. 1B), being significantly higher in ESRD patients (t = 11.32, d.f. = 96, p < 

0.00001).  

 We evaluated the discriminative power of plasma protein-bound di-Tyr content in 

distinguishing ESRD patients from age-matched healthy subjects by means of receiver operating 

  N Mean (SE) t df P 

       di-Tyr pre-HD 

     

       Males 48 0.193 (0.005) 2.23 71 0.029 

 Females 25 0.170 (0.010) 

               

       di-Tyr post-HD 

     

       Males 47 0.174 (0.174) 2.11 70 0.039 

 Females 25 0.154 (0.010) 
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characteristic (ROC) curve analysis (Supplementary Fig. S2). Plasma protein-bound di-Tyr levels 

from healthy subjects and ESRD patients yielded an area under the curve (AUC) of 0.99 (95% 

confidence interval 0.9943 to 1.002; p < 0.0001) (Supplementary Fig. S2A). The cut-off level for 

plasma protein-bound di-Tyr content as predictor of ESRD was determined by maximizing 

sensitivity and specificity, at 0.112 IF415nm em /A215nm (Supplementary Fig. S2B). Conversely, plasma 

protein-bound di-Tyr levels from diabetic (n = 23) and non-diabetic (n = 50) ESRD patients yielded 

an AUC of 0.54 (not shown), implying that di-Tyr cannot discriminate between diabetic and non-

diabetic ESRD patients. 

 

Fig. 1. Plasma protein-bound di-Tyr level in healthy subjects and ESRD patients. (A) Plasma 

protein-bound di-Tyr in individual healthy subjects (n = 25). (B) Plasma protein-bound di-Tyr 

content in individual ESRD patients (n = 73) before HD session (pre-HD). In both (A) and (B), the 

horizontal solid and dashed lines represent, respectively, the mean and the SE of the plasma protein-

bound di-Tyr level. 

 

3.2 Effect of a single HD session on the level of plasma protein-bound di-Tyr 

 

 To determine the effect of HD on the plasma protein-bound di-Tyr level, we measured 

protein-bound di-Tyr in the plasma of the same ESRD patients immediately before and immediately 

after a single HD session. The scatter diagram of plasma protein-bound di-Tyr levels in 

haemodialyzed patients is presented in Fig. 2A. In most ESRD patients, we observed a small 
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decrease in the plasma protein-bound di-Tyr level after the HD procedure compared to the pre-HD 

value. Differently, some ESRD patients showed the same or a slightly higher plasma protein-bound 

di-Tyr level immediately after the HD procedure compared to the pre-HD value. The result of the 

Student’s t-test for paired data of plasma protein-bound di-Tyr level measured in ESRD patients 

pre-HD (mean 0.185 ± 0.0051 IF415nm em /A215nm) and post-HD (mean 0.167 ± 0.0045 IF415nm em 

/A215nm) proved that the means are significantly different (t = 7.11, d.f. = 71, p < 0.0001) (Fig. 2B). 

However, this decrease did not result in normalization of plasma protein-bound di-Tyr content that 

remained significantly greater in ESRD patients post-HD than in age-matched healthy subjects 

(mean 0.084 ± 0.0024 IF415nm em /A215nm ) (Fig. 2B; see also Fig. 1A). It is worth noting that plasma 

protein-bound di-Tyr level immediately before (pre-HD) and after (post-HD) a single HD session 

differed between male and female ESRD patients (Table 2). These results were confirmed when we 

checked for the potentially confounding effect of age on sex-dependent variation in both pre-HD 

and post-HD plasma protein-bound di-Tyr level in analyses of covariance, where age was entered as 

a covariate (effect of sex on pre-HD and post-HD plasma protein-bound di-Tyr level: F = 5.71, df = 

1.70, p = 0.020 and F = 4.73, df = 1.69, p = 0.033, respectively). Analyses of covariance revealed 

no significant effect of age on plasma protein-bound di-Tyr level before and after HD (F  1.70, p ≥ 

0.19). Simple linear regression analysis revealed that plasma protein-bound di-Tyr level measured 

pre-HD was significantly positively correlated with post-HD di-Tyr level in both male (Fig. 3A) 

and female (Fig. 3B) ESRD patients (panel A: r = 0.884, p < 0.0001; panel B: r = 0.866, p < 

0.0001). 
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Fig. 2. Effect of a single HD session on the level of plasma protein-bound di-Tyr. (A) Scatter 

diagram showing plasma protein-bound di-Tyr level in patients with ESRD (n = 73) immediately 

before (black circles) and after (gray circles) a single HD session. (B) Plasma protein-bound di-Tyr 

content in ESRD patients immediately before (pre-HD) and after (post-HD) a single HD session. 

Data are expressed as mean ± SE. The horizontal solid and dashed lines represent, respectively, the 

mean and the SE of the plasma protein-bound di-Tyr level in age-matched healthy subjects (n = 25). 

 

 

Fig. 3. Correlations between plasma protein-bound di-Tyr levels in ESRD patients (n = 73) 

measured immediately before (pre-HD) and after (post-HD) a single HD session. (A) Males (n 

= 48), (B) females (n = 25). Correlations were investigated using simple linear regression analysis. 

 

3.3 Correlation between pre-HD serum creatinine and albumin concentrations and plasma protein-

bound di-Tyr level measured pre-HD  
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 Haemodialyzed patients have less than 15-10% kidney functions and the severely damaged 

kidneys do not efficiently remove creatinine from the blood. Therefore, all ESRD patients develop 

high serum creatinine levels. However, as a small molecule, creatinine is efficiently cleared by 

dialysis. Thus, we examined the relationship between plasma protein-bound di-Tyr level and 

predialysis creatinine concentration in ESRD patients before a single HD session (Fig. 4). The 

scatter diagram of predialysis serum creatinine concentration in individual ESRD patients is 

presented in Fig. 4A Predialysis creatinine concentrations in ESRD patients ranged from 2.67 to 

19.52 mg/dl (mean 9.1614 ± 0.3494 mg/dl) (Fig. 4A) and were significantly positively correlated 

with pre-HD plasma protein-bound di-Tyr levels (Fig. 4B) (r = 0.318, p = 0.006).  

 The IF415nm em/A215nm ratio relative to total plasma proteins actually mainly measures the di-

Tyr content of albumin, because albumin is the most abundant plasma protein, accounting for 50%-

60% of total proteins in human plasma [41]. Therefore, we examined the relationship between 

plasma protein-bound di-Tyr content and albumin concentration in ESRD patients before a single 

HD session (Fig. 5). The scatter diagram of pre-HD plasma albumin concentration in individual 

ESRD patients is presented in Fig. 5A. Predialysis albumin concentrations in ESRD patients ranged 

from 2.6 to 4.2 g/dl (mean 3.537 ± 0.0474 g/dl) (Fig. 5A) and were significantly positively 

correlated with pre-HD plasma protein-bound di-Tyr levels (Fig. 5B) (r = 0.315, p = 0.0055).  
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Fig. 4. Correlation between pre-HD serum creatinine concentration and pre-HD plasma 

protein-bound di-Tyr level in ESRD patients. (A) Serum creatinine concentrations in individual 

ESRD patients (n = 73) before HD session (pre-HD). The horizontal solid and dashed lines 

represent, respectively, the mean and the SE of the serum creatinine concentration. (B) Positive 

linear correlation between serum creatinine concentration and plasma protein-bound di-Tyr level 

pre-HD in ESRD patients (n = 73).  

 

 

Fig. 5. Correlation between pre-HD plasma albumin concentration and pre-HD plasma 

protein-bound di-Tyr level in ESRD patients. (A) Plasma albumin concentrations in individual 

ESRD patients (n = 73) before HD (pre-HD). The horizontal solid and dashed lines represent, 

respectively, the mean and the SD of the plasma albumin concentration.  (B) Positive linear 

correlation between plasma albumin concentration and plasma protein-bound di-Tyr content pre-

HD in ESRD patients (n = 73). 

 

3.4 Correlation between pre-HD serum CRP concentration and plasma protein-bound di-Tyr 

content measured pre-HD 

 

 Persistent inflammation is a prominent characteristic of patients with ESRD, where it is a 

local process that is also reflected systemically [42]. CRP, which is the most widely used 

inflammatory biomarker in the clinical setting since high-sensitivity CRP assays are widely 
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available [43], is elevated up to ten-fold in haemodialyzed patients compared to healthy individuals 

[44]. Hence, we investigated whether plasma protein-bound di-Tyr level was related to the serum 

CRP concentration in ESRD patients before HD (Fig. 6). The scatter diagram shows that pre-HD 

serum CRP concentration in ESRD patients ranged from 0.02 to 1.99 mg/dl (mean 0.515 ± 0.0609 

mg/dl) (Fig. 6A). As shown in Fig. 6B, no correlation was found between plasma protein-bound di-

Tyr content and the serum CRP concentration in ESRD patients (r = 0.03; p = 0.796). 

 

 

Fig. 6. Correlation between pre-HD serum CRP concentration and pre-HD plasma protein-

bound di-Tyr content in ESRD patients. (A) Serum CRP concentrations in individual ESRD 

patients (n = 73) before HD (pre-HD). (B) Relationship between serum CRP concentration and 

plasma protein-bound di-Tyr level pre-HD in ESRD patients (n = 73).     

 

4. Discussion 

 

 The accessibility of plasma proteins for sampling, the relatively long half-lives of many 

plasma proteins, and the well-characterized biochemical pathways of protein oxidation make 

plasma proteins an attractive biomarker of oxidative stress in ESRD patients on HD. Biomarkers of 

protein oxidation can be classified in two types: (i) generic biomarkers, which include oxidation of 

multiple residues within protein to form several products, e.g., PCO and AOPPs [37,45]; and (ii) 

specific biomarkers, which are very specific in both the residue oxidized and the product generated: 
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e.g., oxidation of protein free sulphydryl groups (P-SH) and oxidation of protein Tyr residues to 

give di-tyrosines [46]. 

 Single HD sessions have different effects on the different types of biomarkers of protein 

oxidation. For example, in haemodialyzed patients plasma protein oxidation is revealed by 

decreased P-SH [23], which might result from S-thiolation, the formation of mixed disulphides 

between P-SH and low-molecular-mass aminothiols, which is considered to be the mechanism 

protecting P-SH from losing their biological activity by irreversible oxidation [47,48]. S-thiolated 

plasma proteins are indeed increased in haemodialyzed patients [21−23,40]. However, a single HD 

session, by removing solutes responsible for increasing ROS production and the low-molecular-

mass aminothiols involved in S-thiolation [21], caused transient return of plasma P-SH to the level 

equal or close to that occurring in healthy subjects [20,21,23]. De-thiolation of S-thiolated proteins 

during a single HD session can be explained by considering the reversible reactions involved in S-

thiolation [47]. This is very important in the case of albumin, because its Cys34 thiol represents the 

largest fraction of all free thiols in plasma, thus attributing to albumin a major role in total plasma 

antioxidant capacity [41]. Serum albumin de-thiolation during a single HD session may restore 

transiently its antioxidant activity in haemodialyzed patients [49]. Therefore, S-thiolated proteins 

represent a useful indicator of thiol-specific reversible oxidative stress in ESRD patients on HD. 

 Otherwise, by measuring plasma PCO after reaction with 2,4-dinitrophenylhydrazine 

(DNPH), a number of studies have demonstrated that plasma PCO concentrations increase in ESRD 

patients [19,20,24,25]. Detection and quantification of PCO by means of DNPH-based methods 

does not allow for any distinction between primary, or direct, and secondary, or indirect, protein 

carbonylation [46,50] and also measure sulphenic acids [51]. Therefore, PCO provide a general and 

widely used biomarker of severe protein oxidation in ESRD patients. 

 Increased oxidative stress in ESRD patients is also revealed by the formation of plasma 

AOPPs [27−29], which are considered a generic biomarker of protein oxidation and oxidative 

stress. In this respect, determination of protein-bound di-Tyr by GF-HPLC with fluorometric 
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detection could be taken as a highly specific biomarker of protein oxidation [23,52−54]. Protein-

bound di-Tyr are final, chemically stable and easily detectable products of tyrosine oxidation in 

response to oxidative stress induced by both non-enzymatic and peroxidase-catalyzed mechanisms 

[52,55]. Myeloperoxidase (MPO), a haemoprotein present in phagocytes, uses hydrogen peroxide to 

generate di-Tyr from Tyr residues via its peroxidase cycle, in a manner that functions most 

efficiently at neutral to slightly alkaline pH (7.5–8), near the physiological concentrations of 

chloride ions and amino acids [56]. In haemodialyzed patients, plasma levels of MPO are 

significantly higher than the reference value for healthy subjects and further increase during HD 

[38,57]. Indeed, the measurement of MPO may serve as a reliable marker of the degree of oxidative 

stress induced using dialysis membranes of different biocompatibilities [38]. Increased MPO 

activity could also serve as one mechanistic link between inflammation, oxidative stress and 

endothelial dysfunction in ESRD [58] and was found to be associated with mortality in ESRD 

patients undergoing HD [18,59]. 

 We found significantly higher pre-HD levels of plasma protein-bound di-Tyr in 

haemodialyzed patients compared with di-Tyr level in age-matched healthy subjects (Fig. 1). The 

AUC (0.99) indicates that the ROC curve has excellent accuracy and that plasma protein-bound di-

Tyr level is good indicator of ESRD due to its high sensitivity and specificity in discriminating 

between ESRD patients and age-matched healthy subjects (Supplementary Fig. S2). However, the 

usefulness of plasma protein-bound di-Tyr level in clinical practice is questionable, as there is no 

need for a new biomarker to dignose ESRD. Rather, the interesting finding is that, in most ESRD 

patients, a single HD session decreased significantly the plasma protein-bound di-Tyr level, even if 

the mean level of plasma protein-bound di-Tyr post-HD remained significantly greater in ESRD 

patients compared to the mean di-Tyr level in age-matched healthy subjects (Fig. 2). Conversely, in 

a previous study, AOPPs increased during dialysis session, both in patients using a cellulose filter 

and in patients using polysulphone filters, the latters being the filters also used in our group of 

patients [38]. In two other studies, a single HD session had no effect on AOPP concentration, which 
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remained significantly greater than normal after the HD session [20,39]. Given that di-Tyr is a more 

specific biomarker of protein oxidation and oxidative stress than AOPPs [52,55], our data challenge 

the previous findings, suggesting that, in general, the HD session itself does not make the patient’s 

oxidative status worse and can even improve it. It is worthy to note that, in our patients, creatinine 

levels were correlated with pre-HD plasma protein-bound di-Tyr levels (Fig. 4). Altough creatinine 

is influenced by lean body mass in ESRD patients on HD [60], it is one of the historically used 

biomarkers of uraemia in HD and its levels efficiently predict mortality in this population [61,62]. 

Thus, creatinine is a faithful biomarker of uraemia that, on turn, is known to affect deeply the 

oxidative status of the patient: this explains the good correlation that we found between di-Tyr 

levels and creatinine concentration before dialysis. Therefore, we can speculate that the oxidative 

damage due to uraemic toxins is efficiently improved by the HD session, as demonstrated by 

reduction of protein-bound di-Tyr. On the other hand, AOPPs may represent a grosser marker of 

oxidative stress that, in HD patients, is also due the presence of comorbidities, such as diabetes 

mellitus, and the occurrence of acute clinical events, such as infections. However, future studies 

with a greater number of patients, inclusive of patients with CKD stages 1-5, are needed to extend 

these findings, because the usefulness of the ideal biomarker of oxidative damage lies in its ability 

to provide early indication of disease and/or its progression. As we expected, plasma protein-bound 

di-Tyr levels measured pre-HD were significantly positively correlated with post-HD plasma 

protein-bound di-Tyr levels (Fig. 3).  

 We also found a moderate positive correlation between plasma protein-bound di-Tyr level and 

pre-dialysis serum albumin concentration (Fig. 5). This result is particularly interesting considering 

that serum albumin, which is frequently considered a predictor of nutritional status in patients with 

ESRD [63], is typically low in ESRD patients and hypoalbuminaemia is associated with mortality 

in haemodialyzed patients [64−67]. However, other studies suggest that hypoalbuminaemia may be 

more reflective of inflammation than nutritional status in ESRD patients [58,68−70]. In addition, a 

linkage of hypoalbuminaemia, inflammation, and oxidative stress has been shown in ESRD patients 
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receiving maintenance HD therapy. Indeed, there is a high prevalence of inflammation and 

oxidative stress in these patients and levels of inflammatory and oxidative stress biomarkers are 

increased further in hypoalbuminaemic compared with normoalbuminaemic haemodialyzed patients 

[71]. Therefore, we hypothesized that plasma protein-bound di-Tyr level could correlate with 

circulating inflammatory biomarkers. 

 Among the variety of circulating inflammatory biomarkers, CRP, the major acute phase 

response protein, is elevated in ESRD patients and is the most widely used inflammatory marker 

predicting future cardiovascular risk and mortality in ESRD patients [42,72−74]. In contrast to our 

hypothesis, the results do not show any statistically significant correlation between plasma protein-

bound di-Tyr level and serum concentration of CRP (Fig. 6). These results are in line with others 

showing no correlations between plasma AOPPs and CRP [28,75]. Anyway, these results are 

somewhat surprising considering that inflammation, which is not confined to the kidney, rather it is 

systemic [76−78], is a common feature of ESRD patients and both oxidative stress and 

inflammation are usually inseparably linked and participate in a self-perpetuating vicious circuit. 

Consequently, the presence and severity of systemic inflammation contribute to ESRD-associated 

oxidative stress. Indeed, there is evidence to suggest that renal transplantation is associated with 

almost complete correction of the biomarkers of oxidative stress (measured as PCO) and 

inflammation (measured as CRP) in patients with ESRD [79,80]. Thus, our results could suggest 

that, in haemodialyzed patients, oxidative stress and inflammation may also be in part independent 

of each other. Otherwise, the absence of correlation between plasma protein-bound di-Tyr level and 

CRP concentration (measured as “pinpoint marker”) could be explained by the fact that CRP 

concentration fluctuates substantially over time in patients undergoing HD; therefore, reliable CRP 

levels can be obtained following regular, repeated measurements [74].  

 This study has strengths and limitations. Strengths include, firstly, the use of a highly specific 

biomarker of protein oxidation easy to detect: the intrinsic fluorescence properties of di-Tyr and its 

chemical stability (fairly unreactive to changes in oxygen and/or pH) allow for its sensitive 
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detection in proteins [23,52−55]. Furthermore, plasma protein-bound di-Tyr are obviously not 

washed out during HD session, unlike some small molecules, such as 4-hydroxynonenal, 

malonyldialdehyde, and free F2-isoprostanes, which were considered promising biomarkers of 

oxidative stress in ESRD patients  [81−83]), which are washed out during HD session. In addition, 

if we consider that protein-bound di-Tyr are carried mainly by albumin in the blood and that 

albumin half-life in plasma is ~19 days [84], protein-bound di-Tyr might serve as long-lasting 

biomarkers of oxidative stress in ESRD patients. The finding that di-Tyr levels decreased at the end 

of the dialysis session has to be further discussed, since di-Tyr represents an irreversible oxidative 

product and, of course, dialysis cannot modify it. However, modern dialyzers have an increased 

molecular cut-off compared to the older ones, and are capable to dialyze low molecular weigth 

proteins, such as beta-2 microglobulin, which has a molecular weigth of 11.8 kD and six Tyr 

residues. Given that we assessed di-Tyr levels as the ratio to total serum proteins, we can speculate 

that the dialysis of low molecular weigth proteins richer in di-Tyr could have improved the overall 

content of di-Tyr at the end of the dialysis session. This, of course, does not imply that the di-Tyr 

content of larger proteins that are not dialyzed, such as albumin, has been modified by the dialysis 

session. Limitations include the relatively small number of ESRD patients, the fact that the study 

has been performed in only one single HD centre, and measurements have been made at single time 

points (“pinpoint marker”). Another limitation is that we assessed the effect of a single HD session 

using only a single filter type: it would be interesting, in the future, to analyze the influence of 

different type of dialyzers on plasma protein-bound di-Tyr levels. We thus consider our findings as 

hypothesis-generating and hope that these results stimulate further studies on the use of plasma 

protein-bound di-Tyr as a biomarker for oxidative stress in ESRD, with a larger number of 

haemodialyzed patients enrolled from different dialysis centres. 

 In conclusion, the choice/indication of the most pertinent biomarkers of oxidative stress is a 

critical step in the development of novel treatment options for ESRD patients. Furthermore, ESRD 

is associated with other pro-oxidant conditions such as CVD and diabetes mellitus. In this regard, 
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the relative importance of the different types of oxidative stress and inflammation in ESRD remains 

largely undetermined, and several questions concerning oxidative stress and inflammation remain 

poorly defined. Additional large-scale studies with the inclusion of clinically relevant endpoints are 

required to examine the potential correlations between a panel of biomarkers of inflammation and 

oxidative stress in ESRD patients on HD. This may pave the way for potential therapeutic 

intervention aimed at reducing the oxidative stress in hemodialysed patients. The widespread use of 

anti-oxidants cannot be recommended yet, as large studies with hard end-points are currently 

lacking. However, when taking into account some surrogate end-points, such as albumin for 

malnutrition, the already available data are encouraging [85]. Moreover, the use of more 

biocompatible and anti-oxidant filters, such as vitamin E-coated polysulfone membranes, could 

potentially change the clinical practice in the future [86,87]. 
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P-SH – protein sulphydryl group(s) 
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Figure legends 

 

Fig. 1. Plasma protein-bound di-Tyr level in healthy subjects and ESRD patients. (A) Plasma 

protein-bound di-Tyr in individual healthy subjects (n = 25). (B) Plasma protein-bound di-Tyr 

content in individual ESRD patients (n = 73) before HD session (pre-HD). In both (A) and (B), the 

horizontal solid and dashed lines represent, respectively, the mean and the SE of the plasma protein-

bound di-Tyr level. 

 

Fig. 2. Effect of a single HD session on the level of plasma protein-bound di-Tyr. (A) Scatter 

diagram showing plasma protein-bound di-Tyr level in patients with ESRD (n = 73) immediately 

before (black circles) and after (gray circles) a single HD session. (B) Plasma protein-bound di-Tyr 

content in ESRD patients immediately before (pre-HD) and after (post-HD) a single HD session. 

Data are expressed as mean ± SE. The horizontal solid and dashed lines represent, respectively, the 

mean and the SE of the plasma protein-bound di-Tyr level in age-matched healthy subjects (n = 25). 
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Fig. 3. Correlations between plasma protein-bound di-Tyr levels in ESRD patients (n = 73) 

measured immediately before (pre-HD) and after (post-HD) a single HD session. (A) Males (n 

= 48), (B) females (n = 25). Correlations were investigated using simple linear regression analysis. 

 

Fig. 4. Correlation between pre-HD serum creatinine concentration and pre-HD plasma 

protein-bound di-Tyr level in ESRD patients. (A) Serum creatinine concentrations in individual 

ESRD patients (n = 73) before HD session (pre-HD). The horizontal solid and dashed lines 

represent, respectively, the mean and the SE of the serum creatinine concentration. (B) Positive 

linear correlation between serum creatinine concentration and plasma protein-bound di-Tyr level 

pre-HD in ESRD patients (n = 73).  

 

Fig. 5. Correlation between pre-HD plasma albumin concentration and pre-HD plasma 

protein-bound di-Tyr level in ESRD patients. (A) Plasma albumin concentrations in individual 

ESRD patients (n = 73) before HD (pre-HD). The horizontal solid and dashed lines represent, 

respectively, the mean and the SD of the plasma albumin concentration.  (B) Positive linear 

correlation between plasma albumin concentration and plasma protein-bound di-Tyr content pre-

HD in ESRD patients (n = 73). 

 

Fig. 6. Correlation between pre-HD serum CRP concentration and pre-HD plasma protein-

bound di-Tyr content in ESRD patients. (A) Serum CRP concentrations in individual ESRD 

patients (n = 73) before HD (pre-HD). (B) Relationship between serum CRP concentration and 

plasma protein-bound di-Tyr level pre-HD in ESRD patients (n = 73).     
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Highlights 

 Haemodialyzed patients experience oxidative stress and systemic inflammation. 

 We assessed haemodialysis (HD) effect on plasma protein-bound dityrosine (di-Tyr). 

 In most patients, a single HD session decreased significantly the di-Tyr level. 

 Pre-HD di-Tyr level was positively correlated with those of creatinine and albumin. 

 No correlation was found between di-Tyr level and C-reactive protein concentration. 


