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Many bosonic (fermionic) fractional quantum Hall states, such as Laughlin, Moore-Read, and Read-Rezayi
wave functions, belong to a special class of orthogonal polynomials: the Jack polynomials (times a Vandermonde
determinant). This fundamental observation allows one to point out two different recurrence relations for the
coefficients of the permanent (Slater) decomposition of the bosonic (fermionic) states. Here we provide an
explicit Fock space representation for these wave functions by introducing a two-body squeezing operator
which represents them as a Jastrow operator applied to reference states, which are, in general, simple periodic
one-dimensional patterns. Remarkably, this operator representation is the same for bosons and fermions, and the
different nature of the two recurrence relations is an outcome of particle statistics.
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I. INTRODUCTION

Model wave functions, such as Laughlin [1], Moore-Read
[2], and Read-Rezayi [3] states, together with the composite
fermions picture [4,5] describe with incredible accuracy the
ground state at different filling fractions of strongly correlated
two-dimensional electrons in the fractional quantum Hall
effect (FQHE) [6]. They have an elegant representation as
functions of the coordinates of the N electrons. For instance,
in the symmetric gauge and neglecting the Gaussian factor, the
Laughlin state is a homogeneous polynomial of the variables
zi = xi − iyi ,

ψ
(q)
L (�z) =

∏
j<i

(zi − zj )q, (1)

where �z = (z1,z2, . . . ,zN ) is the vector of particle positions
and the positive integer q is related to the filling fraction ν by
ν = 1/q. The state is bosonic (fermionic) if q is even (odd).

Despite their simplicity as functions of the coordinates,
Laughlin wave functions are nontrivial superpositions of
permanents (Slater determinants) of the single-particle states
of the lowest Landau level (LLL), whose number increases
exponentially with N . The problem of finding the expansion
of a Laughlin state on this single-particle basis was considered
a formidable task for a long time [7]. In the 1990s, it was ad-
dressed by Dunne [8] and by Di Francesco and co-workers [9].
They found that the coefficients of the Slater decomposition of
the q = 3 Laughlin state possess symmetries, suggesting that
a deep mathematical structure is hidden.

Recently, Haldane and Bernevig [10] shed light on this
structure by noticing that many bosonic FQHE states belong
to a special class of symmetric orthogonal polynomials: the
Jack polynomials J α

λ (�z), widely studied in the mathematical
literature [11–13]. The authors were then able to find a recur-
rence relation satisfied by the coefficients of the permanent
decomposition of the bosonic states. A different recurrence
relation was recognized to hold for fermionic states, which
are the product of a Jack polynomial and the Vandermonde
determinant [14,15].

On another side, Bergholtz and co-workers [16] considered
a truncation of the Trugman-Kivelson Hamiltonian, which is
known to have the Laughlin state q = 3 as the ground state
at ν = 1/3 [17]. They showed that the ground state of this
approximated problem has the Fock space representation

|ψGS〉 = U |100100100 · · ·〉, (2)

where U is a two-body fermionic operator and the reference
state is the corresponding ν = 1/3 thin-torus occupancy
pattern [18–20]. Remarkably, the precise form of U is known.
This is not the case for other FQHE states; however, the
link between fractional quantum Hall states and Jack poly-
nomials suggests that a similar explicit representation should
exist.

This is precisely the result of this paper: we exhibit an
explicit Fock space representation of the bosonic (fermionic)
fractional quantum Hall states that can be written as a Jack
polynomial (times a Vandermonde determinant). More in
detail, we show that these wave functions result from the
action of a universal operator acting on proper “root states”, in
analogy with Eq. (2). Remarkably, we find that this operator
has the same functional form for both the bosonic and
fermionic sectors, thus bringing together the two recurrence
relations found previously [15], whose difference is shown to
descend from particle statistics.

The paper is organized as follows. In Sec. II, we introduce
a coherent formalism to properly treat the many-particle
problem in the LLL, both in the abstract Fock space and
in its coordinate representation space (Bargmann space).
We introduce the standard creation and destruction operator
algebra and use it to implement the squeezing operation,
fundamental in the theory of Jack polynomials. In Sec. III,
we discuss our main result, i.e., the Fock space representation
of many fractional quantum Hall model states, and we recover
in a unified way the known recurrence relations between
the coefficients of the state decompositions on the bases
introduced in Sec. II. Finally, in Sec. IV, we give our
conclusions.
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II. SQUEEZINGS IN FOCK SPACE

In the symmetric gauge, the single-particle basis of the
LLL is the functions uλ(z) = zλ/(λ!), where z = x − iy is
the particle’s position (in units of magnetic length) and λ =
0,1,2, . . . is the angular momentum (the Gaussian factor is
included in the Hilbert-space measure). They build the basis
of permanents (determinants) for N bosons (fermions).

A. Basis for the Fock space of N particles

Let |λ〉, λ = 0,1,2, . . . be an orthogonal basis for a
single-particle Hilbert space, where each vector may not be
normalized. The associated normalized basis is 1√

νλ
|λ〉, with

νλ = 〈λ|λ〉.
An orthogonal basis for the Hilbert space of N bosons or
fermions is given, respectively, by

|perλ〉 =
∑
π

∣∣λπ1 . . . λπN

〉
,

|slλ〉 =
∑
π

(−)π
∣∣λπ1 . . . λπN

〉
, (3)

where λ = (λ1, . . . ,λN ), with λ1 � · · · � λN , specifies the
single-particle states (for fermions, equality is forbidden), the
sum runs over the permutations of indices {1, . . . ,N}, and
(−)π is the parity of the permutation. In accordance with the
mathematical literature [11,12], the sequence λ is called a
“partition” (of length N ).

For example,

|per440〉 = 2 |440〉 + 2 |404〉 + 2 |044〉 ,

|sl410〉 = |410〉 − |401〉 + |041〉 − |014〉 + |104〉 − |140〉 .

(4)

These bases can be normalized by a factor which accounts
for the normalization of single-particle states and for the
multiplicities produced by permutations,

1√
νλ

=
√

1

N !

√
1

n0! . . . n∞!

√
1

νλ1 . . . νλN

, (5)

where nλ is the number of repetitions of λ in the partition λ.
Notice that for fermions, ni = 0,1.

The bases have two equivalent notations [see Fig. 1(a)]:
(i) the single-particle notation, where the emphasis is on the

single-particle quantum numbers λi , |λ1 � λ2 � · · · � λN 〉;
(ii) the occupation number notation, where the emphasis

is on how many particles share the same quantum number,
|n0,n1, . . . ,n∞〉.

B. Creation and destruction operators

We introduce a canonical algebra of creation and destruc-
tion operators for the one-particle orthonormal states 1√

νλ
|λ〉,

for bosons and fermions,

a
†
λ |. . . nλ . . .〉 = (±1)n0+···+nλ−1

√
nλ + 1 |. . . nλ + 1 . . .〉 ,

aλ |. . . nλ . . .〉 = (±1)n0+···+nλ−1
√

nλ |. . . nλ − 1 . . .〉 ,

aλ |. . . nλ . . .〉 = 0 if nλ = 0, (6)

where + is for bosons and − for fermions.

(6,1,0)(a)
1 2 3 4 5 60

(b)
1 2 3 4 5 60 1 2 3 4 5 60
(6,1,0) (5,2,0)

(c)
1 2 3 4 5 60 1 2 3 4 5 60
(6,1,0) (4,2,1)

FIG. 1. (a) Each site 0,1,2, . . . is an angular momentum state in
the LLL. A configuration of occupancies corresponds to a partition.
Here the lattice configuration on the left corresponds to the partition
(6,1,0). (b) Lattice and partition representation of one of the possible
squeezings of the partition (6,1,0). In Fock space, this corresponds
to the action of the two-body operator a

†
2a

†
5a6a1. (c) The squeezing

(6,1,0) → (4,2,1) shows the power of the Fock space representation.
Indeed using the operator a

†
2a

†
4a6a0, minus signs arising in the

fermionic case are automatically taken into account, making the
unification of the bosonic and fermionic FQH states made in Eq. (16)
possible.

From now on, we will use Latin letters to indicate single-
particle quantum numbers, Greek letters to indicate partitions,
and Greek letters with subscripts to indicate the elements of
the corresponding partition. The explicit actions on |perλ〉 are

a†
r |perλ〉 =

√
1

(N+1) νr
|perλ+r〉 ,

ar |perλ〉 = nr

√
N νr |perλ−r〉 or 0 if r /∈ λ, (7)

where λ ± r is the partition obtained by adding or removing
the entry r in λ. The action on |slλ〉 is the same, except for the
(−)n0+···+nr−1 factor (remember that ni = 0,1 for fermions).
The number operator is n̂λ = a

†
λaλ.

C. Squeezing operations

The creation and destruction operators allow for an efficient
description of the squeezing operation, ubiquitous in the theory
of Jack polynomials. Squeezing operations are implemented
by the following operator:

su,m,k =
√

νu−kνm+k

νuνm

a
†
u+ka

†
m−kamau, (8)

for 0 � u < m, 0 < k < m − u. Notice that this operator
satisfies su,m,k = ±su,m,m−u−k , based on the statistics of the
particles.

The explicit action of operator (8) on the |perλ〉 basis is

su,m,k |perλ〉 = nunm |perμ〉 , (9)

where μ is constructed from λ by substituting two particles of
quantum numbers u and m with two particles of quantum
numbers u + k and m − k, hence by “squeezing the two
particles by k”.

On |slλ〉, one has

su,m,k |slλ〉 = (−)Nsw |slμ〉 , (10)

245123-2



UNIFIED FOCK SPACE REPRESENTATION OF . . . PHYSICAL REVIEW B 95, 245123 (2017)

where Nsw is the number of exchanges that restore the
decreasing order of the sequence.

Squeezing operations can be used to introduce a partial
ordering on partitions: λ > μ ⇔ |perμ〉 can be constructed
from |perλ〉 through squeezing operations (and the same with
sl in the fermionic case). The notation μ ← λ is used if |perμ〉
or |slμ〉 is obtained with a single squeezing operation from
|perλ〉 or |slλ〉.

Notice that a squeezing does not change the quantity∑N
i=1 λi . In the quantum Hall effect, the squeezing operations

preserve the total angular momentum of the system. Two
examples are given in Fig. 1.

D. Bargmann space representation

Within this formalism, we recover the usual LLL many-
particle wave functions in the Bargmann space, in which we
consider the basis of monomials 〈z|r〉 = zr , r = 0,1,2, . . . ,
with νr = r!,

〈�z|perλ〉 = perλ(�z) = Permanent
[
z
λj

i

]
,

〈�z|slλ〉 = slλ(�z) = Determinant
[
z
λj

i

]
. (11)

For example, the states in Eq. (4) become

per440(z1,z2,z3) = 2z4
1z

4
2 + 2z4

1z
4
3 + 2z4

2z
4
3,

sl410(z1,z2,z3) = z4
1z2−z4

1z3+z4
2z3−z2z

4
3+z1z

4
3−z1z

4
2.

(12)

Notice that while slλ coincides with the antisymmetric mono-
mials used in mathematics, perλ does not coincide with the
usual symmetric monomials mλ. The latter are defined as perλ,
with only one copy of each monomial. For example,

m440(z1,z2,z3) = 1
2 per440(z1,z2,z3). (13)

In general, mλ(�z) = 1
n0!...n∞! perλ(�z). Thus, the normalization

constant for mλ is

1√
νm

λ

=
√

1

N !

√
n0! . . . n∞!

νλ1 . . . νλN

. (14)

It is useful to specify the action of a†, a, and s on the basis
of monomials,

a†
r mλ =

√
1

(N + 1) νr

(nr + 1) mλ+r ,

armλ =
√

N νr mλ−r or 0 if r /∈ λ,

n̂rmλ = nrmλ,

su,m,kmλ =
⎧⎨
⎩

0 if u /∈ λ or m /∈ λ

(nu+k + 2)(nu+k + 1)mμ, k = m−u
2 ∈ N

(nu+k + 1)(nm−k + 1)mμ otherwise,

(15)

where μ is the partition squeezed from λ.

(a)

(b)

FIG. 2. The repeated action of the squeezing operator of Eq. (17)
on the bosonic and fermionic Laughlin states with (a) ν = 1/2 and
(b) ν = 1/3, with three particles. Each state is specified by the
occupancy numbers and each arrow represents the action of a
squeeze. The operator in Eq. (17) automatically takes into account
the possibility of multiple occupancies of the bosonic case.

III. FOCK SPACE REPRESENTATION
OF FQHE JACK STATES

A. Main result

The bosonic (fermionic) Jack polynomials (times a Van-
dermonde determinant), including Laughlin, Moore-Read, and
Read-Rezayi wave functions, can be obtained in Fock space
by the action of an operator on an appropriate root,

|ψλ〉 =
[
I − K

Eλ − D
S

]−1

|λ〉. (16)

The root |λ〉 is a permanent |perλ〉 (bosons) or a determinant
|slλ〉 (fermions). In the following, we will unify the notation
and use simply |λ〉. S is a two-body operator, which we call
squeezing operator,

S =
∞∑

s=0

∞∑
t=1

∞∑
u=1

u

√
(s + t)!(s + u)!

(s + t + u)!s!
a
†
s+t a

†
s+u as+t+u as .

(17)

The sums encompass all possible squeezing operations
(“squeezings” for brevity) described in Sec. II C, where one
particle in s and one in s + t + u are taken to s + t and
s + u. The initial distance t + u is squeezed to |t − u|. The
coefficients produce the proper combination of squeezed
permanents (determinants) that compound a Jack polynomial
(times a Vandermonde). A simple example is illustrated in
Fig. 2.
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D is an operator diagonal on permanents or determinants:
D|μ〉 = Eμ|μ〉 with

Eμ = 〈μ| D |μ〉 =
N∑

j=1

μ2
j + K

2

∑
i<j

(μi − μj ), (18)

where μ = (μ1, . . . ,μN ) and K = (1 − 2q ± 1)/(p + 1) (+1
for bosons, −1 for fermions). The positive integers p,q are
related to the filling fraction of the wave function through
ν = p/q [15]. In the literature, the parameter α is often used:
K = 2/α for bosons and K = (2/α) − 2 for fermions. α is the
custom label of Jack polynomials, J α

λ (�z).
The well-known series of bosonic and fermionic FQH states

is recovered if the roots are chosen as permanents (B) or
determinants (F), with partitions specified by the occupation
numbers

λ(B) = (p, 0, . . . ,0︸ ︷︷ ︸
q−1

,p, 0, . . . ,0︸ ︷︷ ︸
q−1

,p, . . . ), (19)

λ(F ) = (1, . . . ,1︸ ︷︷ ︸
p

, 0, . . . ,0︸ ︷︷ ︸
q−p

, 1, . . . ,1︸ ︷︷ ︸
p

, 0, . . . ,0︸ ︷︷ ︸
q−p

, . . . ). (20)

The choice p = 1 gives the Laughlin states q [bosonic (B)
partition for even q, fermionic partition (F) for odd q], the
partitions with p = 2, q = 2m + 2 give the ν = 2/(2m + 2)
Moore-Read states [bosonic (fermionic) for even (odd) m],
and the Read-Rezayi k states are obtained with the bosonic
partition with p = k, q = 2 [21].

B. Proof of main result

The bosonic (B) and fermionic (F) wave functions
ψλ(z1, . . . ,zN ) are eigenstates of the “generalized Laplace-
Beltrami” operator [15], which acts on the Bargmann space
introduced in Sec. II D,

H =
N∑

k=1

(zk∂k)2 + K
∑
j �=k

zk + zj

zk − zj

(zk∂k − zj ∂j )

−K
∑
j �=k

z2
j + z2

k

(zj − zk)2
(1 − πjk), (21)

where πjk is the exchange operator of particles j,k. In the
bosonic (fermionic) sector, it is πjk = 1 (−1). By writing
H in second quantization, we obtain the form (the detailed
calculations are in Appendix A)

H = D + KS, (22)

where S is the operator in Eq. (17) and D is the same operator
of Eq. (18). It incorporates the kinetic term and the diagonal
part of the two-body potential, and its explicit form is (up to
an irrelevant additive constant for fermions)

D =
∞∑

m=0

m2a†
mam + K

2

∑
m′<m

(m − m′)a†
mama

†
m′am′ . (23)

A notable feature of the formalism of second quantization is
to be independent of the number N of particles.

For any state |λ〉 of length N , there is a power n such that
Sn|λ〉 = 0. This allows one to prove the following proposition:

If Eλ is a nondegenerate eigenvalue of D, with eigenvector |λ〉,
then

|ψλ〉 =
n∑

k=0

[(Eλ − D)−1S]k|λ〉 (24)

is an eigenvector of H with the same eigenvalue Eλ.
Indeed, multiplication of Eq. (24) by (Eλ − D)−1S gives

(Eλ − D)−1S|ψλ〉 = |ψλ〉 − |λ〉. (25)

Multiplication by (Eλ − D) gives S|ψλ〉 = (Eλ − D)|ψλ〉.
The reverse is also true: If |ψ〉 is an eigenstate of H

with nondegenerate eigenvalue E, then |λ〉 = |ψ〉 − (E −
D)−1S|ψ〉 is an eigenvector of D with the same eigenvalue.

C. Recovering the recurrence relations

By construction, (16) implies that |ψλ〉 is a linear com-
bination of permanents (determinants) that are obtained by
squeezings on the root |λ〉,

|ψλ〉 =
∑
μ�λ

bλ,μ|μ〉, (26)

with coefficients bλ,μ = 〈μ|ψλ〉. Equation (25) gives bλ,λ = 1
and, straightforwardly, the recursive relation for μ �= λ,

bλ,μ = K

Eλ − Eμ

∑
μ←θ<λ

〈μ|S|θ〉bλ,θ . (27)

The notation μ ← θ < λ means that the sum only involves
partitions θ that yield μ after just one squeezing (μ ← θ ) and
that descend from the root λ after one or more squeezings
(θ < λ). All partitions involved have the same length N and
angular momentum of the root,

∑N
j=1 λj . In the difference of

eigenvalues [written in Eq. (18)], in Eq. (27) the constant term
for fermions cancels. For both statistics, one evaluates

Eλ − Eμ =
N∑

j=1

(λj − μj )(λj + μj − jK). (28)

In Appendix B, we show that the sums on partitions in Eq. (27)
and in S give∑

μ←θ<λ

〈μ|S|θ〉bλ,θ

=
∑

μ←θ<λ

bλ,θ ×
{

(θi − θj )yθi ,θj
(bosons)

(μi − μj )(−1)Nsw (fermions),
(29)

where the partition μ is obtained by a squeezing from θ , and
this squeeze moves the particles with quantum numbers μi

and μj in θi and θj ; Nsw is the number of swaps to properly
reorder the partition after the squeeze and

yθi ,θj
= nθi

nθj
(30)

(nθi
is the number of occurrences of θi in the partition θ). The

square-root factors in Eq. (17) are canceled by the action of
the creation and annihilation operators on the many-particle
states.

The different factors (μi − μj ) or (θi − θj ) for the matrix
element 〈μ|S|θ〉 are explained as a consequence of statistics.
Consider two occupied sites s and s + t + u of the partition
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(a)

(b)

s s+t s+u s+t+u s s+t s+u s+t+u

s s+t s+u s+t+u s s+t s+u s+t+u

FIG. 3. The different factors μi − μj (bosons) and θi − θj

(fermions) in Eq. (29) can be understood graphically: squeezings
(a) and (b) produce the same physical state because the two particles
which are colored in green and red are actually indistinguishable.
However, due to the fact that in (b) there is a crossing between
particles, the two states differ for a phase which depends on the
statistics: +1 for bosons, −1 for fermions. The squeezing operator
defined in Eq. (17) automatically accounts for the difference between
bosons and fermions, as explicitly shown in Appendix B.

θ , and two occupied sites s + t and s + u of the partition
μ, with t � u (see Fig. 3). There are two squeezings in S

connecting the pairs: the one making the particle in s jump
to s + t and s + t + u to s + u [Fig. 3(a)] and the other one
making s jump to s + u and s + t + u to s + t [Fig. 3(b)].
They differ by the exchange of t and u, and give the same state
because particles are indistinguishable. In the latter squeezing,
the creation operators must be (anti)commuted. Therefore,
according to particle statistics, the final coefficients for the
pair of squeezings are u ± t where the upper (lower) sign holds
for bosons (fermions). However, u + t is the distance between
particles before the squeezing, i.e., θi − θj , while u − t is the
distance after the squeezing, i.e., μi − μj . This qualitative
argument is behind the calculations done in Appendix B.

From Eqs. (27) and (29), it is straightforward to obtain the
recurrence relations for the bosonic and fermionic FQH states.
We emphasize a technical point: in the mathematical literature
on Jack polynomials in N variables, the expansion is done on
the monomial basis, introduced in Sec. II D (we use sans-serif
symbols when referring to the monomial basis),

ψλ(�z) = mλ(�z) +
∑
μ<λ

bλμ mμ(�z), (31)

where mμ(�z) are monomials labeled by partitions μ of same
length N as the root λ. Since each monomial of a partition with
at least one repeated element differs from the corresponding
permanent by a constant factor, a change of basis results
in a change of recurrence relations between coefficients.
In particular, the difference is encoded in the y factor (as
discussed in Appendix B). In the monomial basis, we obtain
the following recurrence relations:

b(B)
μλ = 2/α

ρ
(B)
λ − ρ

(B)
μ

∑
μ←θ�λ

b(B)
θλ (θi − θj)yμi,μj , (32)

b(F)
μλ = 2

( 1
α

− 1
)

ρ
(F)
λ − ρ

(F)
μ

∑
μ←θ�λ

b(F)
θλ (μi − μj)(−1)Nsw , (33)

where ρ
(B)
λ =∑

i λi(λi − 2
α
i), ρ(F )

λ =∑
i λi[λi + 2i(1 − 1/α)],

and

yμi,μj =
{ (

nμi

2

)
if μi = μj

nμi
nμj

otherwise.
(34)

These equations were first obtained by exploiting known
properties of Jack polynomials [22,23] and then extending
them to Jack polynomials times a Vandermonde [15].

IV. CONCLUSIONS

We show that the Fock space operators provide a natural
formulation of the squeezing operations, ubiquitous in the
mathematical and physics literature on Jack polynomials.
We exhibit an explicit Fock space representation of bosonic
(fermionic) FQH states of the form of a Jack polynomial (times
a Vandermonde). Though the recurrence relations for bosons
[10] and fermions [14] are different when expressed in the
Bargmann space [Eqs. (32) and (33)], our representation shows
that this is only a result of particle statistics, thus allowing one
to treat bosons and fermions on the same footing. An open
question remains regarding the reason why such Jack FQHE
states are so effective for FQHE. Another interesting question
to address is to understand whether there is a connection
between our Fock space representation and the matrix product
state representation for the Laughlin wave function [24].

We finally stress that our results might be of interest in the
context of integrable models, such as the generalized Calogero-
Sutherland model [25,26].

APPENDIX A: SECOND QUANTIZATION OF
GENERALIZED LAPLACE-BELTRAMI OPERATOR

Here, we use the Fock space formalism to rewrite the
Laplace-Beltrami operator and associated fermionic general-
ization in terms of creation and annihilation operators.

1. Laplace-Beltrami operator and Jack polynomials

In the Bargmann space of N bosons, the Laplace-Beltrami
operator is defined as

Hα
LB =

N∑
k=1

(zk∂k)2 + 1

α

∑
i<j

zi + zj

zi − zj

(zi∂i − zj ∂j )

=
N∑

i=1

Oi + 1

2α

∑
i �=j

Vij . (A1)

Jack polynomials can be defined, up to normalization, by the
following conditions [22]:

J α
λ =

∑
μ<λ

cλμmμ,

Hα
LBJ α

λ = Eα
λJ α

λ , (A2)

Eα
λ = ρ

(B)
λ + 1

α
(N + 1)

∑
λi,

where ρ
(B)
λ = ∑

i λi(λi − 2
α
i) and mλ are elements of the

monomial basis, introduced in Sec. II D. Hence, Jack polyno-
mials J α

λ are the eigenvectors of the Laplace-Beltrami operator,
whose decomposition in the monomial basis involves only mλ

and squeezed terms.
Notice that the basis of permanents mλ was used in the

definition to recall the usual mathematical notation. The basis
of perλ can be used as well, with a proper rescaling of cλμ
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coefficients. For example,

J−2
(2,0)(z1,z2) = (z1 − z2)2 = per(2,0)(z1,z2) − per(1,1)(z1,z2)

= m(2,0)(z1,z2) − 2m(1,1)(z1,z2). (A3)

Physical interest for Jack polynomials arises both for positive
and for negative α. The first case is related to Calogero-
Sutherland models [27]. The latter is related to fractional
quantum Hall effect model wave functions.

2. Second quantization of Laplace-Beltrami operator

The second quantization of the Laplace-Beltrami operator,
in term of the bosonic operators a and a†, is given by

Hα
LB =

∞∑
t,u=0

〈t |O1|u〉 a
†
t au

+ 1

2α

∞∑
s,t,r,m=0

〈st |V12|rm〉 a†
s a

†
t amar . (A4)

Notice that here |ab〉 is a factored state, not symmetrized.
The first matrix element evaluates to

〈t |O1|u〉 = 1√
t!u!

∫
dμ(z∗)t (z∂)2zu =

√
u!

t!
u2δt,u, (A5)

where dμ = (1/π )d2z exp[−|z|2/2] is the measure in the one-
particle Bargmann space.

The second matrix element is 0 for u = m. It is computed
for u > m:

〈st |V12|rm〉
= 1√

s!t!r!m!

∫
dμ1dμ2

(
zs

1z
t
2

)∗ z1 + z2

z1 − z2

× (z1∂1 − z2∂2)
(
zr

1z
m
2

)
= r − m√

s!t!r!m!

∫
dμ1dμ2

(
zs

1z
t
2

)∗
(z1 + z2)(z1z2)m

×
r−m∑
k=1

zr−m−k
1 zk−1

2

= 2

√
s!t!

r!m!
(r − m)

r−m∑
k=1

δs,k+mδt,r−k. (A6)

Thus,

Hα
LB =

∞∑
r=0

r2n̂r + 1

α

∞∑
r=1

r−1∑
m=0

(r − m)n̂mn̂r

+ 1

α

∞∑
r=1

r−1∑
m=0

(r − m)
r−m−1∑

k=1

sm,r,k. (A7)

The last term is a sum over all possible squeezings, identified
by the destruction sites r and m and by the inward shift k. It can
be simplified by setting s = m, t = k, and u = r − m − k, i.e.,
converting the sums by summing over the lowest destruction
site s and the relative distances of the created particles from s,

namely, t and u:

Hα
LB =

∞∑
r=0

r2n̂r + 1

α

∞∑
r=1

r−1∑
m=0

(r − m)n̂mn̂r

+ 2

α

∞∑
s=0

∞∑
t=1

∞∑
u=1

u ss,s+t+u,t

= D + KS, (A8)

with D diagonal, S sum of squeezings, and K = 2/α.

3. Fermionic Laplace-Beltrami operator and
fermionic Jack polynomials

Let us consider the fermionic Jack polynomials, i.e., Jack
polynomials times a Vandermonde, in the space of N fermions,

Sα
λ′(�z) = J α

λ (�z)

⎡
⎣∏

i<j

(zi − zj )

⎤
⎦,

λ′
i = λi + N − i. (A9)

From this definition, one can construct a fermionic Laplace-
Beltrami operator [15], diagonal on the fermionic Jack
polynomials,

Hα
LB,F =

N∑
i=1

Oi +
(

1

α
− 1

)
1

2

∑
i �=j

V F
ij , (A10)

where Oi = (zi∂i)2 and

V F
ij = zi + zj

zi − zj

(zi∂i − zj ∂j ) − 2
z2
i + z2

j

(zi − zj )2
. (A11)

It is possible to show that

Sα
λ =

∑
μ<λ

cλμslμ,

Hα
LB,F Sα

λ = Eα
λSα

λ , (A12)

Eα
λ = ρ

(F )
λ + K

2

[
(N + 1)

N∑
k=1

λk − (N2 − N )

]
,

where ρ
(F )
λ = ∑

i λi[λi + 2i(1 − 1/α)] and K = ( 2
α

− 2).

4. Second quantization of fermionic Laplace-Beltrami operator

The second quantization of the fermionic Laplace-Beltrami
operator, in terms of the fermionic creation and destruction
operators, is

Hα
LB,F =

∑
r

r2n̂r

+ K

2

∑
r>m

∞∑
s,t=0

〈st | V F
12(|rm〉 − |mr〉)a†

s a
†
t amar ,

(A13)

where we used the fact that the matrix element vanishes for
r = m and that amar = −aram.
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V F
12(|rm〉 − |mr〉) is computed (for r > m):

V F
12(|rm〉 − |mr〉) =

[
z1 + z2

z1 − z2
(z1∂1 − z2∂2) − 2

z2
1 + z2

2

(z1 − z2)2

](
zr

1z
m
2 − zm

1 zr
2

)
= zm

1 zm
2

z1 − z2

[
(r − m)

(
zr−m

1 + zr−m
2

)
(z1 + z2) − 2

z2
1 + z2

2

z1 − z2

(
zr−m

1 − zr−m
2

)]

= zm
1 zm

2

z1 − z2

{
r−m∑
l=1

[(
zr−m

1 + zr−m
2

)
(z1 + z2)

]− (
z2

1 + z2
2

) r−m∑
l=1

[
zr−m−l

1 zl−1
2 + zl−1

1 zr−m−l
2

]}

= (
zm

1 zm
2

) r−m∑
l=1

[(
zr−m−l+2

1 − zr−m−l+2
2

) l−1∑
t=1

zl−1−t
1 zt−1

2 + zt−1
1 zl−1−t

2

2

+ (
zr−m−l

1 z2 − z1z
r−m−l
2

) l∑
t=1

zl−t
1 zt−1

2 + zt−1
1 zl−t

2

2

]

= (r − m − 2)sl(r,m) + 2
r−m−1∑

l=1

(r − m − l)sl(r−l,m+l). (A14)

Finally, the second quantization of the fermionic Laplace-
Beltrami operator is

Hα
LB,F =

∑
r

r2n̂r + K

2

∞∑
r=1

r−1∑
m=0

[(r − m − 2)n̂r n̂m]

+ K

2

∞∑
r=1

r−1∑
m=0

r−m−1∑
k=1

(r − m − 2k)sm,r,k. (A15)

In analogy with the bosonic case, we rewrite the squeezing
sum as

∞∑
r=1

r−1∑
m=0

r−m−1∑
k=1

(r − m − 2k)sm,r,k

= 2
∞∑

s=0

∞∑
u=1

∞∑
u=1

u ss,s+t+u,t . (A16)

Therefore,

Hα
LB,F = Hα

0,F + V α
F = D + KS, (A17)

where the second equality holds apart from a constant term,
and D and S are those introduced in Eq. (A8).

APPENDIX B: PROOF OF EQS. (29), (32), (33)

In this section, the nonstraightforward calculations needed
to obtain Eqs. (32) and (33) are presented. They are very similar
to those needed to obtain Eq. (29), except for two points:

(i) Since |mλ〉 and |slλ〉 are unnormalized states, in the proof
of Eqs. (32) and (33) there is a coefficient νμ = 〈μ|μ〉.

(ii) When acting with the squeezing operator on permanents
or monomials, we obtain different coefficients, as pointed out
in Eqs. (9) and (15). This leads to the difference between
Eqs. (30) and (34).
In the following, only the monomial case is considered.

We now prove the following equality, where |λ〉 = |mλ〉 for
bosons and |λ〉 = |slλ〉 for fermions:

1

νμ

∑
μ<μ′<λ

〈μ| S |μ′〉 bλ,μ′ =
∑

θ ;μ<θ

(θi−θj )
(μi−μj ) yμi,μj

(±1)Nswbλθ ,

(B1)

where yμi,μj
is defined in Eq. (34). Using νμ = 1 and

normalized |λ〉, this same proof accounts for Eq. (29). First,
the operator S must be rewritten to recast the sum over all the
possible squeezings into a sum over squeezed partitions. It was
shown in Eqs. (A7) and (A15) that

S(B) = 1

2

∞∑
r=1

r−1∑
m=0

(r − m)
r−m−1∑

k=1

sm,r,k for bosons,

S(F ) = 1

2

∞∑
r=1

r−1∑
m=0

r−m−1∑
k=1

(r − m − 2k)sm,r,k for fermions.

(B2)

For bosons, we have

S(B) = 1

2

∞∑
r=1

r−1∑
m=0

(r − m)

⎡
⎣ �(r−m)/2�∑

k=1

sm,r,k

+
r−m−1∑

k=�(r−m)/2�
sm,r,k + sm,r,(r−m)/2

⎤
⎦

= 1

2

∞∑
r=1

r−1∑
m=0

(r − m)

[
2

�(r−m)/2�∑
k=1

sm,r,k + sm,r,(r−m)/2

]
,

(B3)

where the terms with sm,r,(r−m)/2 are present only if (r −
m)/2 ∈ N, �x� is the greatest integer number smaller than
x, and �x� is the smallest integer number greater than x. Here
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the fact that su,m,k = su,m,m−u−k has been used. Then,

S(B) |λ〉 = 1

2

∞∑
r=1

r−1∑
m=0

(r − m)

[
2

�(r−m)/2�∑
k=1

(nm+k + 1)(nr−k + 1)

+ 2

(
n(r+m)/2

2

)]
|μ〉

=
∑
μ←λ

(λr − λm)yμr ,μm
|μ〉 , (B4)

where the sums over positions involved in the squeezing are
converted in a sum over squeezed partitions μ, λr and λm are
the quantum numbers of the annihilated particles, and μr and
μm are those of the created particles. Notice that μ depends
on r,m,k.

For fermions, we have

S(F ) = 1

2

∞∑
r=1

r−1∑
m=0

⎡
⎣ �(r−m)/2�∑

k=1

(r − m − 2k)sm,r,k

+
r−m−1∑

k=�(r−m)/2�
(r − m − 2k)sm,r,k

⎤
⎦

=
∞∑

r=1

r−1∑
m=0

{�(r−m)/2�∑
k=1

[(r − k)−(m + k)]sm,r,k

}
, (B5)

since in the fermionic case the creation of two particles in site
(r + m)/2 is forbidden due to the Pauli principle. Here the fact
that su,m,k = −su,m,m−u−k has been used. Then,

S(F )|λ〉 =
∞∑

r=1

r−1∑
m=0

{�(r−m)/2�∑
k=1

[(r − k)−(m + k)](−)Nsw |μ〉
}

=
∑
μ←λ

(μr − μm)(−)Nsw |μ〉 , (B6)

in complete analogy with the bosonic case. Notice that the y
factor for fermions always equals 1.

Finally,

1

νμ

∑
μ<θ<λ

〈μ|S(B/F )|θ〉 bλ,θ

= 1

νμ

∑
μ<θ<λ

〈μ|
∑
μ′←θ

(θi−θj )
(μ′

i−μ′
j ) yμ′

i ,μ
′
j
(±1)Nsw |μ′〉 bλ,θ

=
∑

μ←θ<λ

(θi−θj )
(μi−μj ) yμi,μj

(±1)Nswbλ,θ . (B7)
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