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Abstract 

Under stress, metabolism is changing: specific up- or down-regulation of proteins and 

metabolites occurs as well as side-effects. Distinguishing specific stress-signaling metabolites 

(alarmones) from side-products (damage metabolites) is not trivial. One example is 

diadenosine tetraphosphate, Ap4A – a side-product of aminoacyl-tRNA synthetases found in 

all domains of life. The earliest observations suggested that Ap4A serves as an alarmone for 

heat stress in E. coli. However, despite 50 years of research, the signaling mechanisms 

associated with Ap4A remain unknown. We defined a set of criteria for distinguishing 

alarmones from damage metabolites to systematically classify Ap4A. In a nutshell, no 

indications for a signaling cascade that is triggered by Ap4A were found; rather, we found 

that Ap4A is efficiently removed in a constitutive, non-regulated manner. Several-fold 

perturbations in Ap4A concentrations have no effect, yet accumulation at very high levels is 

toxic due to disturbance of zinc homeostasis, and also because Ap4A’s structural overlap 

with ATP can result in spurious binding and inactivation of ATP binding proteins. Overall, 

Ap4A met all criteria for a damage metabolite. While we do not exclude any role in 

signaling, our results indicate that the damage metabolite option should be considered as the 

null hypothesis when examining Ap4A and other metabolites whose levels change upon 

stress.  
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Introduction 

Metabolites are small, natural organic molecules. The vast majority of metabolites take part 

in catabolic and anabolic reactions, while others serve to initiate signaling cascades, as 

secondary messengers, including alarmones. In bacteria, alarmone production is induced 

during stress (e.g., starvation, heat, oxidative stress) and their presence activates adequate 

cellular responses [1,2]. In most cases, secondary messengers comprise specific metabolites 

with no additional roles. However, metabolites with dual roles are also known, including 

NAD – an essential enzymatic cofactor that also acts as a signaling molecule in regulating 

transcription, apoptosis and DNA repair [3]. In recent years, another class of metabolites, 

damage metabolites, has attracted considerable attention
 
[4,5]. Damage metabolites are side-

products of enzymatic reactions, or products of non-enzymatic breakdown of other 

metabolites. Their accumulation can be deleterious, and thus, enzymatic pathways that 

convert them into harmless products have evolved. Under stress, damage metabolites may 

accumulate more rapidly, and their effects on cell growth and viability may become 

pronounced [6]. However, not every side-product is a damage metabolite, and not every 

metabolite whose concentration rises under stress is an alarmone. Distinguishing between 

side-effects and specifically induced effects of stress is not trivial. For example, increased 

mutation rates under stress  have been proposed to be adaptive [7], but high mutation rates 

can also be a mere side-effect of stress [8].  

Diadenosine tetraphosphate (Ap4A) is the example of a metabolite that could belong to either 

category – damage metabolite, or alarmone. Discovered 50 years ago [9], this molecule 

remains a mystery. Ap4A is generated as a side-product of aminoacyl-tRNA synthetases 
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(AARS) [10], by ATP reacting with the amino-acid-AMP intermediate, or directly, via 

reaction of two ATPs [11]. During normal growth, in vivo concentrations of Ap4A seem to 

vary widely from 0.05-1 µM in mammalian cells [12] to 1-3 µM in bacteria [13]. These 

relatively low concentrations (< 103-fold lower than ATP) are the outcome of Ap4A 

hydrolases, and/or Ap4A phosphorylases (where phosphate acts as nucleophile instead of 

water), seen in all kingdoms of life. In E. coli, Ap4A concentrations were reported to respond 

to external stimuli such as heat [14], oxidative stress [15,16], and ethanol [17]. These 

observations led to the hypothesis that Ap4A functions as an alarmone [15,18]. Throughout 

the years, Ap4A has been linked to a wide range of key biological functions ranging from 

heat-stress response in E. coli [14] to mammalian tear secretion [19] and is described in > 500 

research reports. However, to date, no signaling pathways that are specifically triggered by 

Ap4A are known, certainly not in bacteria. On the other hand, knockout of Ap4A hydrolase 

(ApaH) results in high Ap4A levels, increased sensitivity to heat and starvation [20], 

weakened stress-induced mutagenesis response [21], decreased persister formation [22] and 

inhibit sporulation [16]. 

Two hypotheses should be therefore considered: (i) Ap4A is an alarmone with specific 

signaling and/or regulatory roles in stress, or (ii) Ap4A is a damage metabolite. These 

hypotheses are not necessarily mutually exclusive – Ap4A may have emerged as damage 

metabolite, and mechanisms for its removal have consequently evolved, but it may had also 

been recruited in some organisms for specific signaling. To assign Ap4A, or any metabolite, 

to one category or another, it is necessary to establish specific criteria. 
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An alarmone and/or a secondary messenger should meet the following criteria: 

1. Alarmone levels must be regulated such that basal levels persist during ambient 

conditions and a transient concentration change is triggered by stress [23].  

2. An increase in concentration under stress is not indicative in itself. Rather, 

alarmone levels are controlled via production and/or degradation, whereby the 

corresponding enzymes are regulated, transcriptionally and/or at the protein level, 

in response to specific triggers [24,25].  

3. Alarmone production and/or degradation via an artificially regulated enzyme 

would affect growth, under normal conditions and/or stress [26–28]. 

4. Transcription factors or allosteric enzymes are found that are selectively 

modulated by the alarmone. These regulated proteins would be associated with 

other proteins whose levels change when alarmone levels change (e.g. via 

transcriptional regulation networks) [29].  

Not all criteria must be fulfilled. For example, changes in NAD levels are not induced as 

such, but they are sensed and can initiate a signaling cascade. Thus, while criterion 1 is 

irrelevant for NAD, criterion 4 has been met [30].  

On the other hand, distinct criteria of damage metabolites include: 

5. It is a side-product of a metabolic enzyme rather than being produced by a 

dedicated enzyme that is accordingly regulated [31]. 

6. Enzyme(s) that degrade damage metabolites exist and degradation is 

constitutive rather then regulated [32].  
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7. The damage metabolite can accumulate to some degree with no physiological 

effects yet become toxic upon exceeding a certain threshold, especially under 

stress. Accordingly, removal of a damage-metabolite degrading enzyme(s) is 

deleterious but not lethal [33].  

We attempted to systematically examine these criteria, using E. coli as a case study. We 

found that Ap4A is constitutively removed - its degradation is not regulated, neither 

transcriptionally nor at the enzyme level (criteria 1 and 2 not met). Artificially induced 

production, or complete degradation of the Ap4A, had no growth effect (criteria 3 not met) 

and proteins that sense and respond to change in Ap4A cellular level were not identified 

(criteria 4 not met). On the other hand, Ap4A is a side-product of essential, metabolic 

enzymes, and its homeostasis is maintained by a constitutively expressed Ap4A hydrolase 

(criteria 5 and 6 fulfilled). Ap4A becomes toxic but not lethal, only when its concentration 

rises dramatically, and even then, only under stress conditions (criterion 7 fulfilled). Overall, 

Ap4A does not fit any of the alarmone criteria, while all damage metabolite criteria are 

fulfilled. The criteria and tools developed here, foremost, the laboratory sub-functionalization 

of E. coli’s lysyl tRNA-synthetase (LysRS) to generate an Ap4A synthetase - can be applied 

to decipher the role of Ap4A, and of other stress-related metabolites, in other organisms. 

 

Results 

Ap4A hydrolase (ApaH) deficient strains 

The only currently available way of perturbing Ap4A levels has been via knockout of E. 

coli’s Ap4A hydrolase (ApaH), a symmetrical hydrolase which generates two ADP 

molecules and belongs to the Nudix superfamily [34,35]. Several phenotypes associated with 

the apaH knockout have been reported, but their mechanistic basis remains unknown. 
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Specifically, the apaH knockout was reported to have intracellular Ap4A levels that are 

~100-fold higher than wild-type and increased sensitivity to stress [20–22].  

We constructed a series of apaH genetic constructs, aiming to ensure that the observed 

ΔapaH phenotypes are a direct outcome of increased Ap4A concentration and not due to 

other, unknown secondary functions of ApaH (Table 1). The level of Ap4A in the ΔapaH 

strain, measured by LC-MS, during growth in minimal medium (M9 with 0.4 % glucose; M9-

Glc) increased ~350-fold, from 0.2 µM in wild-type to 65 µM in ΔapaH (Table 1). In rich 

media, the E. coli K12 ΔapaH strain exhibited the same maximal growth rate as the parental, 

wild-type strain, also upon serial transfer of exponentially growing cultures (Fig 1A and 1B). 

However, when cells grown in LB medium were transferred to minimal medium, the growth 

yield was lower in ΔapaH (Fig 1C). Accordingly, transfer of ΔapaH cells grown to stationary 

phase in minimal medium to fresh minimal medium led to a longer lag phase (Fig 1D). 

Additionally, as previously reported, growth in rich medium at 46 °C was almost completely 

inhibited in ΔapaH and cells exhibited an elongated morphology (Fig 1E and 1F). However, 

cell death was not observed, at least within the first 3 h of incubation at 46 °C (Table 2). As 

described later, we also compared the proteome of the apaH knockout to wild-type, aiming to 

uncover which proteins are up- or down-regulated at elevated Ap4A levels. 

Regulation of ApaH 

Following the apaH knockout characterization, we replaced the endogenous ApaH with 

various Ap4A hydrolase variants, chromosomally encoded and expressed under different 

promoters (Table 1). The S. cerevisiae Ap4A phosphorylase, Apa2, was placed under the 

apaH promoter. Apa2 belongs to the HIT (histidine triad) superfamily. It is not a hydrolase, 

but rather an asymmetrical phosphorylase, generating ATP and ADP from Ap4A and 

phosphate, and shows no homology in structure, or sequence, to E. coli’s ApaH. Both growth 
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inhibition at 46 ºC (Fig 2A) and the longer lag time in minimal medium (Fig 2B) of the apaH 

knockout were complemented by apa2. Accordingly, the cellular level of Ap4A was restored, 

to a level that is ≥10-fold lower than wild-type and below the detection limit of our assay 

(Table 1). Complementation by an enzyme that shares nothing but ApaH’s ability to remove 

Ap4A suggests that the observed apaH phenotype relates directly to elevated Ap4A levels, 

and not any secondary functions of ApaH. Further, if Ap4A has some signaling role in heat-

stress and/or starvation, unregulated removal should have an effect. However, regulation 

(allosteric via a small molecule, or by an E. coli protein regulator) is unlikely to be 

recapitulated by the evolutionarily and biochemically unrelated Apa2. 

Furthermore, upon analyzing ApaH, we found that it exhibits low thermostability (TM  ≈ 50 

°C). This low melting point could relate to signaling of higher environmental temperatures. 

To examine this option, we engineered a thermostable variant of ApaH using computational 

design [36]. We generated an ApaH variant carrying 29 mutations and exhibiting a TM of 64 

°C, well above the observed heat-stress phenotype at 46 °C (mutations are listed in Material 

and Methods section). However, genomic complementation of the endogenous ApaH with 

this variant, ApaH_D7, showed wild-type-like behavior including at 46 °C (Fig 2A and 2B). 

Thus, as indicated by the Apa2 complementation, ApaH regulation at the enzyme level is 

unlikely. 

We also tested complementation by ApaH mutants with impaired activity to detect the 

concentration threshold of Ap4A above which phenotypes are observed (Fig 2A and 2B). 

Active-site mutations may also cause misfolding and loss of protein, as we observed with the 

ApaH mutants. Thus, we used the stabilized ApaH_D7 variant to introduce two active-site 

mutations, H120A and H227A. Both of these mutants produced soluble, folded proteins, yet 

H120A was essentially inactive, while the Ap4A hydrolyzing activity of H227A decreased by 

240-fold compared to wild-type ApaH. Complementation with the enzymatically inactive 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ApaH-H120A resulted in a phenotype indistinguishable from the knockout strain, apaH. 

The ApaH-H227A mutant resulted in growth inhibition that is slightly weaker than the apaH 

knockout (Fig 2A and 2B) although its Ap4A level was similar to that of ΔapaH (Table 1). 

Since the cellular Ap4A concentrations were compared on the basis of the culture’s optical 

density and dry cell weight, it may well be that the actual Ap4A levels differ due to different 

cellular morphology. 

Replacement of not only of the hydrolase itself (Apa2 instead of ApaH), but also of its 

transcriptional regulation, had no effect either. Specifically, we generated constructs 

expressing Apa2 in the pZA vector – a low copy number plasmid with expression under the 

anhydrotetracycline (AHT) promoter. This construct was expressed in both the ΔapaH and 

the parental strain, alongside a control construct bearing an inactive Apa2 mutant (Apa2-

H161A). Expression of Apa2 or its inactive variant in the parental strain had no effect on 

growth in LB medium at 46 °C (Fig 3A). The growth rate of the Apa2 complemented ΔapaH 

strain in either LB medium at 46 °C, or in minimal medium at 37 °C, was identical to the 

parental K12 strain as long as the inducer, AHT, was present, while ΔapaH cells expressing 

the inactive Apa2 mutant behaved as the ΔapaH strain (Fig 3B and 3C). 

The above results indicated that E. coli growth rate is not affected by replacement its 

endogenous Ap4A hydrolase by another enzyme that removes Ap4A (Apa2). However, small 

differences cannot be detected by parallel growth and monitoring absorbance.  We thus 

performed a direct growth competition between a K12 strain expressing yeast Apa2 (in 

addition to the endogenous ApaH) and an identical control strain expressing an inactive Apa2 

mutant. Expression of active Apa2 resulted in non-regulated removal of Ap4A, and to levels 

below detection (in oppose to ~0.2 µM in the parental K12 strain). To quantify the ratio of 

the competing versus the control cells, the competing strain contained a chloramphenicol 

resistance marker. The effect of chloramphenicol marker was determined by competing K12 
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strains with and without it (both expressing inactive Apa2). The direct competition 

experiment also indicated no significant growth advantage or disadvantage of Ap4A non-

regulated removal neither in LB (Fig 3D) nor in M9-Glc medium (Fig 3E). 

Overall, it appears that ApaH’s function is not regulated, neither at the enzyme level nor 

transcriptionally, and certainly not under the conditions tested here; thus, criteria 1 and 2 are 

not fulfilled. Further, Ap4A levels in the strain expressing yeast Apa2 were significantly 

reduced – ≤ 0.02 µM, compared to 0.2 µM in the wild-type (Table 1), yet within the 

perturbation range expected for a signaling molecule. If Ap4A has a signaling role, altered 

regulation and degradation kinetics should both have some effect (criterion 3 not fulfilled). 

The above results are, however, entirely consistent with Ap4A being a damage metabolite 

that is constitutively removed (criterion 6 met). Its accumulation at low levels has no effect, 

while very high levels (≥ 100-fold compared to wild-type) inhibit growth, but only under 

challenging conditions and without causing cell death (criterion 7 met). 

LysU does not affect the presumed Ap4A-triggered phenotypes 

If degradation of Ap4A is not regulated, perhaps synthesis is. Lysyl-tRNA synthetases 

(LysRS) is considered the main producer of Ap4A in E. coli, with two isoforms, LysS and 

LysU [37]. LysS is constitutively expressed and is likely to be responsible for house-keeping 

aminoacylation. LysU’s expression is thought to be triggered by heat stress, and it has thus 

been suggested to act primarily as an Ap4A synthetase [38,39].  A lysU deletion strain 

(lysU) was reported to grow normally at low temperature (28 °C) but poorly at 44 °C, and 

this growth defect was ascribed to disruption of Ap4A-mediated heat stress signaling [37]. 

Further, E. coli cells evolved to grow at high temperature exhibited elevated lysU levels, and 

its deletion rendered them thermosensitive [40]. However, a later publication reported that 

lysU deletion has no effect on growth at high temperature [41]. Given these conflicting 
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reports, we tested the ΔlysU phenotype. In E. coli K12, we could not identify any significant 

growth difference, or any other observable phenotype, upon deletion of lysU, including at 

elevated growth temperatures. Further, the lysU and the lysS strains showed the very same 

growth rates at ambient and high temperatures in both rich and minimal media.  

Laboratory sub-functionalization of LysRS to generate an Ap4A synthetase 

An enzyme whose primary function is Ap4A synthesis is not known, neither in E. coli nor in 

other organisms. However, in nature, secondary, moonlighting functions often evolve to 

become the primary function of a duplicated, paralogue gene (sub-functionalization) [42]. We 

engineered a sub-funtionalized LysU variant that produced Ap4A yet had no aminoacylation 

function.  

We established an assay for Ap4A synthetase activity in crude cell lysates based on 

luminescent detection of ATP generated upon Ap4A hydrolysis. By combining screens of 

gene libraries and site-directed mutagenesis, we generated a LysU variant capable of 

executing only Ap4A synthesis. The libraries included mutations in and around LysU’s 

active-site aimed at increasing the Ap4A synthetase activity, and consensus mutations to 

compensate for the stability losses associated with the function altering mutations (Table S1). 

Following 3 rounds of mutagenesis and screening for higher synthetase activity, variant A2 

(K178E, L231M, V268T, E362R, E373R, F426Y) was isolated. To abolish the 

aminoacylation activity, we first tried to truncate the N-terminal tRNA binding domain, but 

this resulted in an almost complete loss of activity. We thus mutated 3 residues known to 

mediate tRNA binding (R77A, Q95A, T130A) [43,44]. The new LysU variant, dubbed 

LysU_Ap4Asynth, exhibited ~2-fold increased Ap4A synthetase activity with no detectable 

aminoacylation activity (Fig 4A).  
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LysU_Ap4Asynth was expressed from a pZA plasmid in various E. coli strains, thus enabling 

us to examine the outcome of artificially triggered production of Ap4A. Wild-type LysU, and 

an inactive variant devoid of both aminoacylation and Ap4A synthesis, were used as controls. 

E. coli K12 cells expressing these 3 different LysU variants exhibited the very same growth 

rate as wild-type, including under heat-shock and starvation (Fig 4B) despite the fact that the 

cellular concentrations of Ap4A were up to 4.5-fold higher in the strains over-expressing 

wild-type LysU and its sub-functionalized variant, LysU_Ap4Asynth (Table 1).  

As expected in the ΔapaH strain, over-expression of LysU, and especially of 

LysU_Ap4Asynth, resulted in a longer lag phase in minimal medium (Fig 4C). However, the 

Ap4A concentrations in the ΔapaH cells expressing these LysU variants, or with no LysU 

over-expression, were all similar. This could be due to the fact that Ap4A concentrations 

were measured during the exponential phase and not during the lag phase, and also because 

of biases in the calculated concentrations due to differences in cell morphology.  

The above result is meaningful, because removal of ApaH results in a huge increase in Ap4A 

levels (>300-fold; Table 1) and thus causes a global physiological disturbance. It seems, 

however, that a mild perturbation at the range expected for a signaling molecule has no 

effect. Further, in direct competition assay the ratio between cells expressing 

LysU_Ap4Asynth and cells expressing an inactive LysU variant did not change during 

growth in LB (Fig 4D) or M9-Glc medium (Fig 4E) at 37 °C for 48 h. Thus, a mild increase 

in Ap4A levels does not confer any advantage or disadvantage.  

 

Overall, these data suggest that untimely and elevated Ap4A production has no observable 

physiological effect, unless the accumulating Ap4A is not removed (criterion 7 met). Mild 

increases, e.g. 4-fold, had no observable effect, and particularly not higher resistance to heat-
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stress. If anything, elevated Ap4A levels seem to induce heat sensitivity rather than heat 

resistance.  This result is inconsistent with Ap4A playing a role in specific signaling 

(criterion 3 not met), but is entirely consistent with Ap4A being a damage metabolite.  

Proteomics of E. coli ΔapaH  

We examined the changes in E. coli’s proteome in the apaH knockout whereby Ap4A levels 

are ~350-fold elevated. We opted for growth in minimal medium, and during the exponential 

phase, rather than heat-shock, to examine changes that occur prior to, and not during stress. 

Additionally, although apaH cells did not die at 46 °C, they did not grow and hence limited 

cell mass. Protein intensities in the ΔapaH strain were compared to the parental, wild-type 

strain. We only considered changes in proteins where ≥2 peptides were consistently 

identified. Overall, ~2,000 proteins, namely about half of the E. coli proteome, were reliably 

detected in both conditions.  

The proteome changes were relatively subtle. Only 9 proteins were identified whose levels 

decreased by 2-13-fold in apaH in at least two independent experiments (Table 3). No up-

regulated proteins were observed, not reproducibly and given our analysis criteria.  

 

 

The proteins listed in Table 3 can be divided into 3 groups: (i) proteins regulated by Zur - the 

Zn
2+

 DNA-binding transcriptional repressor (YkgM, ZinT, ZnuA); (ii) enzymes belonging to 

aromatic amino acid biosynthesis pathways (AroF, TyrA, TrpE, TrpA); (iii) proteins that 

regulate the starvation sensing during stationary phase (RspA, RspB). The last two groups are 

related because a shortage of aromatic amino acids is known to be a hallmark of starvation 

[45]. It therefore appears that elevated Ap4A levels result in a lower ability to sense 

starvation, thus accounting for the slower recovery of ΔapaH strain after starvation and 

http://ecocyc.org/gene?orgid=ECOLI&id=CPLX0-7680
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probably also for the growth arrest at 46 °C.  Indeed, we observed no indications for a heat-

stress response - most heat-shock proteins and chaperones were reliably detected and showed 

no changes. 

Ap4A and Zn
2+

 homeostasis 

A distinct change in response to elevated Ap4A levels was the decrease in expression of 3 out 

of the 5 operons controlled by the zinc transcriptional factor, Zur. Down-regulation the other 

two operons was also observed (pliG and znuB,C), with a milder, ~1.5-fold decrease. The 

result is in accordance with the affinity of Zur for those operons. The strongest binding was 

reported to the ykgM,O operon and the weakest to pliG [46]. The down-regulation of Zur-

regulated genes, including the Zn2+ importer, suggests that the ΔapaH strain has elevated 

cellular zinc levels, or perhaps that erroneously senses high levels. If the ΔapaH strain has 

increased intracellular zinc concentration, then the apaH knockout strain might exhibit some 

advantage in a Zn2+ depleted media. Indeed, while the parental K12 strain showed no growth 

in minimal medium containing the metal chelator EDTA, the ΔapaH strain grew after a lag 

phase to a final cell density that is similar to that without a chelator (Fig 5). Although EDTA 

chelates a range of bivalent metals including Mg2+ and Ca2+, its affinity towards zinc is ≥ 10
5
-

fold higher, and the concentrations of the latter were higher than that of EDTA. 

Overall, the proteomics data are consistent with the observed phenotype of the ΔapaH strain 

in relation to its compromised response to starvation. Further, these data do not indicate a 

linkage between Ap4A and heat-stress. However, we observed a previously unreported 

linkage between Ap4A and Zn
2+

 homeostasis that may relate to the observation that Ap4A 

binds Zn
2+

 with high affinity [47]. Although the affinity measurement was later questioned 

[48], Zn
2+

 is also known to activate the Ap4A synthetase activity of AARS [49]. However, 

while Ap4A may contribute to zinc storage under some conditions, a specific role for Ap4A 
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in sensing Zn
2+

 depletion is unlikely, given that, as discussed in the next section, none of the 

identified putative Ap4A binders are associated (regulatory, or otherwise) with Zn
2+

 

homeostasis.  

Identification of Ap4A binding proteins in E. coli 

If Ap4A is part of a signaling network, this network must involve selective Ap4A binding to 

at least one protein. Previous attempts to identify Ap4A binders yielded few putative targets 

including DnaK [20], ClpB [50], GroEL [20] and IMPDH [51]. We attempted to identify 

Ap4A binding proteins by pull-down with biotin labeled Ap4A. We tested several 

biotinylated analogs, yet the only one that gave consistent results had the biotin tethered to 

the N8 of the adenine ring (as opposed to attachment via the ribose or adenine-N6). Owing to 

the minimal interference of N8 modification, this analog was also the only one that could be 

enzymatically synthesized from N8-biotinylated ATP using Apa2, the yeast Ap4A 

phosphorylase, which catalyzes the conversion of adenosine-5’-phosphosulfate (APS) and 

ATP into Ap4A [52]. Pull-downs were performed in two alternative modes: The lysate was 

pre-incubated with biotin-Ap4A, and the streptavidin beads were added later; or, with 

streptavidin beads pre-coated with biotin-Ap4A. In both modes, ATP was present in the 

binding step to favor selective Ap4A binders. After extensive washing, the remaining, bound 

proteins were identified by shotgun proteomics. As controls, pull downs were performed with 

either biotin, or biotin-ATP.  

Potential Ap4A binders were identified on the basis of a cumulative score that included 3 

criteria: (i) The number of unique peptide fragments that are observed (2 as a minimum); (ii) 

> 2-fold enrichment in the biotin-Ap4A samples relative to the biotin and biotin-ATP 

controls; (iii) consistent enrichment in more than one pull-down. The highest scoring proteins 

are listed in Table 4. A few of these were previously implicated with Ap4A binding (IMPDH, 
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DnaK). Interestingly, most of these putative Ap4A binders are regulatory proteins, with 

particular enrichment of ssDNA binding proteins. However, although all pull-downs were 

done in the presence of ATP to minimize unspecific binding, nearly all the identified proteins 

are known ATP binders. 

The two proteins showing the highest enrichments in all pull-down experiments were inosine 

monophosphate dehydrogenase (IMPDH; previously implicated with Ap4A [51]) and a 

transcriptional regulatory protein, NrdR. These were further characterized to determine if 

Ap4A binding is biologically relevant.  

IMPDH binds Ap4A but with no selectivity over ATP 

IMPDH catalyzes the NAD-dependent oxidation of inosine-5'-monophosphate (IMP) to 

xanthosine 5’-phosphate (XMP) [53]. Bacterial IMPDHs possess an additional domain, a 

cysthathionine β-synthase (CBS) domain, that acts as transcriptional regulator [54] in 

maintaining the ATP/GTP pool [55]. Accordingly, the CBS domain binds phosphorylated 

nucleosides such as ATP or AMP that may comprise allosteric regulators of IMPDH, and 

also binds ssDNA [56]. Bacterial IMPDHs are divided to two classes: Class I comprises 

enzymes that are allosterically activated by ATP and are permanently octameric; Class II 

enzymes exhibit ordinary kinetics, are tetramers in the apo state, and shift to octamers in the 

presence of NAD or ATP [57]. E. coli’s IMPDH (ecIMPDH) belongs to Class II, yet aiming 

to examine how evolutionary conserved Ap4A binding is, we also tested a IMPDH from P. 

aeruginosa that belongs to Class I.  

In agreement with its dominance in pull-downs, purified ecIMPDH exhibited tight binding to 

biotinylated-Ap4A (Fig 6A). Soluble ATP or Ap4A did not inhibit binding, suggesting a 

large avidity effect (multiple immobilized Ap4A molecules and IMPDH’s octameric state). 

Using radioactively labeled Ap4A and equilibrium dialysis, we confirmed that ecIMPDH 
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binds soluble Ap4A with 5-fold higher affinity than ATP. This affinity ratio indicates that 

Ap4A binding is physiologically irrelevant. Cellular ATP concentrations in E. coli are in the 

range of 1-10 mM [58,59] while Ap4A’s concentration is in the range of 0.2 µM (Table 1). In 

fact, ATP dominates (≥ 14-fold molar excess) even at the abnormally high Ap4A 

concentrations observed in the apaH knockout (~70 µM).  

Indeed, we could not identify any physiologically relevant modulation of ecIMPDH by 

Ap4A. Neither ATP nor Ap4A influenced the enzymatic activity of ecIMPDH (Fig 6B). Both 

ligands inhibited the binding of ecIMPDH to ssDNA, but in the same manner, and in any 

case, significant inhibition by Ap4A was only observed at 0.1 mM, i.e., at a physiologically 

irrelevant range (Fig 6C). 

In contrast to the Class II ecIMPDH, the Class I IMPDH of P. aeruginosa (paIMPDH) is 

allosterically activated by ATP [60]. We found that Ap4A is a weaker allosterically activator 

of paIMPDH and competes for the same binding site as ATP (Fig 6D). However, the effect of 

Ap4A could only be observed at ATP concentrations below 1 mM (Fig 6E and Fig 6F). 

Further, even at 0.1 mM ATP (10-fold below the minimal reported cellular concentration), 

the effect of Ap4A was only seen at 10 µM (50-fold above the normal cellular levels).  

Overall, our results indicate that although in vitro Ap4A binds and modulates IMPDHs 

belonging to both Class I and II, in vivo Ap4A is unlikely to be relevant because its effects 

are completely masked by ATP. From the point of view IMPDH’s physiological role, our 

results suggest that ATP comprises an inhibitor of ssDNA binding. Thus, ATP is not only an 

allosteric and oligomeric regulator of IMPDHs [60], but may also affect their function as 

transcriptional regulators. Specifically, IMPDHs have been suggested to suppress 

transcription of genes involved in adenylate nucleotide synthesis [56] and our results suggest 

that ATP binding to the CBS domain of IMPDH may alleviate this suppression. 
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NrdR also binds Ap4A as an ATP surrogate 

The second-best Ap4A binder identified by our pull-downs was NrdR – a zinc-finger 

transcriptional regulator that modulates the expression of several operons encoding 

ribonucleotide reductases (RNRs) according to the abundance of deoxyribonucleoside 

triphosphates (dNTPs) relative to ribonucleotides (NTPs) [61,62]. NrdR has been reported to 

bind ATP [62]. We confirmed NrdR’s strong affinity to biotinylated Ap4A immobilized onto 

streptavidin plates, as opposed to no binding of immobilized ATP (Fig 7A). Subsequently, we 

compared the effect of Ap4A and ATP on NrdR’s binding to DNA. NrdR regulates RNRs 

expression through binding to so-called ‘NrdR boxes’, 16 bp motifs within RNRs promoters. 

We used a 237 bp dsDNA stretch that corresponds to nrdA promoter region and assayed 

NrdR’s binding as for IMPDH. Although Ap4A showed a slightly stronger inhibitory effect, 

under our assay conditions, ATP completely inhibited DNA binding at 0.1 mM 

concentrations (Fig 7B).  

Other putative Ap4A binding proteins 

The effect of Ap4A on DNA binding was also tested for transcriptional regulators HU and 

HNS, which were also identified in the pull-downs, but our in vitro assays indicated that 

Ap4A did not modulate DNA binding of these proteins.  

DnaK and ClpB are reported Ap4A binders [20,50] and DnaK was also identified in our pull-

downs. Both proteins (DnaK, ClpB) are part of a chaperone complex that includes DnaJ and 

GrpE [63]. We tested the effect of Ap4A on the refolding activity of the DnaK-DnaJ-GrpE-

ClpB complex but did not observe a significant effect. Since the DnaK-DnaJ-GrpE complex 

is also involved in bacteriophage λ DNA replication, we tested the effect of ATP and Ap4A 

on ssDNA binding. ATP strongly activated DnaK’s binding to ssDNA while Ap4A had no 

effect.  
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In conclusion, the pull-down experiments did not identify selective Ap4A binders, let alone 

proteins where Ap4A binding has potential relevance in vivo. As is clear from the detailed 

analysis of IMPDH and NrdR, Ap4A binds these proteins as an ATP surrogate. Furthermore, 

although IMPDH and NrdR bind Ap4A at the µM range, and in some in vitro assays exhibit 

higher affinity to Ap4A compared to ATP, a biological relevance is unlikely. Firstly, because 

the cellular ATP concentrations are normally ≥ 5,000-fold higher compared to Ap4A (1-10 

mM versus 0.2 µM, respectively). Secondly, none of the genes/proteins that are under 

regulation of the proteins identified as potential Ap4A binders exhibited changes in 

expression in the apaH knockout. For example, the levels of proteins under NrdR’s 

regulation (NrdA, NrdB, NrdE, NrdI) did not change at elevated Ap4A levels (Table 3). 

Thus, the effects of Ap4A on NrdR do not seem to differ from those of ATP, certainly not in 

the concentration range that is physiologically relevant. Conversely, none of the proteins 

whose expression significantly changes in apaH knockout is linked, even indirectly, to the 

identified Ap4A binders (criterion 4 not met). 

 

Discussion 

It is generally easier to prove the existence of a given biological mechanism, or entity, than to 

prove its absence (which in some cases, would be impossible). Nonetheless, a set of Occam’s 

razor criteria can be applied to distinguish between two alternative hypotheses: a damage 

metabolite versus a specific signaling role. In the case of Ap4A in E. coli, all criteria for 

damage metabolite were met as opposed to none of those indicating specific signaling. 

However, it is clear that these results do completely not rule an involvement of Ap4A in 

signaling. Firstly, our assays were limited to starvation and heat stress, and Ap4A could be 

involved in signaling other challenges. Secondly, Ap4A could be indirectly involved, for 
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example, via the modulation of other alarmones such as ppGpp. Finally, a lack of signaling 

function in E. coli does not exclude the possibility that Ap4A acts as secondary messenger, 

and especially in mammalian cells [64]. The new tools we have established allow controlled 

perturbations of cellular Ap4A concentrations. Beyond the routinely applied knockout of 

Ap4A hydrolase, an Ap4A synthetase is now available that may assist the identification of 

signaling roles of Ap4A, in E. coli or another organism. 

Given the complexity of the cellular milieu, we recognize the risk of claiming that we have 

exhausted the search for function. On the other hand, not every compound in the cell must 

have function. There exists a Panglossian tendency to assume that “any trait has to have a 

good use to explain its presence”. However, “the default assumption should now be that the 

products of metabolite damage are merely adventitious, particularly if there is an efficient 

system to remove them” [31]. As shown here, Ap4A is not only efficiently removed in E. 

coli, but also constitutively – neither the expression nor the enzymatic activity of its Ap4A 

hydrolase are regulated. Additionally, only massive accumulation of Ap4A such in the case 

of ApaH knockout induces phenotypic changes. Unlike in the case of alarmone where even 2-

fold increase above basal level has effect, slight Ap4A increase or decrease observed with 

expression of LysU variants, and Apa2, respectively, did not affect cell fitness. Effects of 

mild Ap4A increase or decrease were not observed even in growth competitions that can 

detect relatively subtle effects. These results are in clear contrast to what had been observed 

with other alarmones, most distinctly with ppGpp that bears obvious analogy to Ap4A. Subtle 

changes in ppGpp levels, in the order of 10-fold, affected growth rate [23]. Over-expression 

of ppGpp synthase results in severe growth inhibition [27], while strains lacking ppGpp show 

complex phenotypes, from amino acid auxotrophy to morphological changes [26]. 
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Our results also indicate two potential toxic effects of Ap4A accumulation. Firstly, Ap4A 

mimics ATP. The pull-down experiments identified known ATP binders. Their 

characterization indicated that Ap4A can displace ATP and inhibit those proteins. Indeed, 

enzyme inhibition by mimicry is a common effect of damage metabolites. For example, 

spontaneously modified products of NADH and NADPH at neutral pH, cannot serve as 

electron acceptors or donors, but they bind and inhibit dehydrogenases [65]. Secondly, high 

Ap4A concentrations seem to disrupt Zn
2+ 

homeostasis. The proteome analysis revealed that 

high Ap4A levels inhibit expression of Zn
2+ 

importers. Accordingly, the growth advantage of 

the apaH strain in Zn
2+

-deficient medium suggests that high Ap4A levels lead to increase in 

Zn
2+ 

levels.   

In E. coli, and as far as we know, in other organisms, Ap4A is not produced by a dedicated 

enzyme, but rather, it is a side-product of one of the most ancient and essential enzyme 

classes, AARSs. Although Ap4A is probably present in all organisms, not all aminoacyl-

tRNA synthetases produce it, certainly not to the same degree. This observation, and the 

deleterious effects of accumulating Ap4A, may suggest that, unless beneficial, Ap4A 

production by AARSs would have been eliminated by evolution. However, whether Ap4A 

production can be eliminated with no effect on AARS function is unknown. Thus, AARSs 

could be yet another example, out of many, where the most accessible evolutionary solution 

was an enzyme that degrades the damage metabolite rather than eliminating its production in 

the first place. 
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Material and methods 

Bacterial strains and procedures 

The applied E. coli strains are listed in Table 1. E. coli K12 ΔapaH strain was generated by 

P1 transduction [66] using the apaH knockout from Keio collection [67] as a starting point. 

The strains where the apaH gene was replaced with other genes were generated using the λ-

red system [68], whereby the kanamycin cassette in E. coli K12 ΔapaH strain was replaced 

with the open reading frame of the complementing gene followed by a chloramphenicol 

cassette. 

The open-reading frame (ORF) of the apa2 gene (Gene ID: 852143) was PCR amplified from 

the genome of S. cerevisiae ATCC 204508/S288c, and cloned into a pZA vector with 

anhydrous tetracycline inducible promoter [69]. The list of primers used for cloning is 

provided as Table S2. The inactive variant Apa2-H161A was generated by site directed 

mutagenesis [70]. Plasmids were transformed to E. coli K12 or its ΔapaH strain, using 

ampicillin (100 µg/ml) as a selection marker.  

Growth experiments were done in LB, or in M9 medium plus 0.4 % glucose (M9-Glc) 

without presence of antibiotics. A pre-culture in LB, or M9, with antibiotics (2 ml; grown for 

24 h), was diluted to OD600nm = 0.2, and 3 µl inoculates were transfer to 150 µl of LB, or 

M9-Glc, in 96-well microtiter plates. Growth was subsequently followed in a plate reader 

(BIO-TEK, Synergy HT), at 37 °C with shaking (for 30 s with 5 min intervals) while 

monitoring OD600nm. Growth at elevated temperature was followed in LB. Inoculating an LB 

culture as above, and growing in a plate reader at 46 °C. The inoculated culture was overlaid 

with 100 µl of mineral oil to prevent evaporation. Growth of strain carrying pZA plasmids 

(encoding ApaH, Apa2 or LysU variants) was done as above, except that ampicillin, and 

anhydrous tetracycline (AHT; 200 ng/ml) as inducer, were added. 
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Growth competitions  

We used two platform strains, both containing E. coli’s original ApaH gene: unmodified E. 

coli K12, or E. coli K12 ΔapaH::apaH-CAP that  contains the original apaH gene alongside a 

chloramphenicol (CAP) cassette used as a marker. E. coli K12 that carried pZA_Apa2 

H161A plasmid (inactive Apa2) served as the reference strain. The competing strains were 

based on E. coli K12 ΔapaH::apaH-CAP. They carried either pZA_Apa2 H161A plasmid 

(inactive apa2) or  pZA_Apa2 (active apa2). These strains were grown separately in LB plus 

Amp (100 µg/ml) until OD600nm ~ 1. They were then mixed at a 1:1 ratio. An aliquot of this 

mix was immediately diluted and plated in parallel on LB agar plus Amp, and LB agar plus 

Amp plus CAP, to measure the initial cell counts of each strain. Another aliquot of the 

starting mix was diluted 1000-fold in 8 ml of LB plus Amp plus AHT (100 ng/ml), and in 8 

ml of M9-Glc plus Amp plus AHT (100 ng/ml). After 24 h growth at 37 °C (200 rpm, 50 ml 

falcon tubes), the resulting cultures were plated in parallel on selective LB agar to measure 

the cell counts of the two competing strains. An aliquot of 24 h culture was diluted 1000-fold 

in the fresh medium (serial passage) and after 24 h of growth at 37 °C the cultures were 

plated again on selective agar to measure the cell counts. 

The control competition was of [E. coli K12 pZA_Apa2 H161A] versus [E. coli K12 

ΔapaH::apaH-CAP pZA_Apa2 H161A] thus determining the effect of chloramphenicol 

cassette at wild-type like Ap4A levels (inactive Apa2, in both strains). Subsequently, [E. coli 

K12 pZA_Apa2 H161A] was competed versus [E. coli K12 ΔapaH::apaH-CAP pZA_Apa2] 

to measure the fitness effects associated with decreased Ap4A level.  

The same procedure was used for the fitness assay with the increased levels of Ap4A. E. coli 

K12 carrying pZA_InT plasmid (inactive variant of LysU) was competing against E. coli K12 

ΔapaH::apaH-CAP pZA_InT and E. coli K12 ΔapaH::apaH-CAP pZA_Ap4Asynth. 
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Data are presented as percentage of selected strain (number of colonies on LB agar + Amp + 

CAP) versus total cell number (number of colonies on LB agar + Amp) with standard 

deviation from 3 biological replicas. 

ApaH cloning, purification, activity and thermal denaturation assay 

The ORF of apaH gene (Gene ID: 944770) was PCR amplified from the genome of E. coli 

K12 and cloned into a pET-21a vector with a C-terminal 6-His tag. A synthetic gene 

encoding the designed ApaH_D7 (D7 design contains following mutations: I17Q, H21D, 

E24N, T26D, G28K, D47K, Y51F, F74A, S78R, K114R, T124A, Q130E, D138E, S147N, 

F150W, D153E, H162R, R168T, G171D, N189D, Q191R, Y195K, S196C, P206E, G215S, 

A218S, E219K, S222N, E238P) was cloned in pET21a vector with the same tag. The H120A 

and H227A mutants of ApaH_D7 were generated by site directed mutagenesis. The 

recombinant plasmids were transformed into E. coli BL21 (DE3) and cultured in 100 ml LB 

medium. Protein expression was induced with 1 mM IPTG at OD600nm ≈ 0.6. After being 

cultured for another 6 h at 37 °C, cells were harvested, collected by centrifugation, and 

resuspended in 5 mL of lysis buffer (50 mM HEPES, pH 7.8, and 150 mM KCl, 15 mM 

imidazole). After sonication and removal of pellet, the proteins in the supernatant were 

loaded on a Ni-NTA column that was pre-equilibrated with the binding buffer (50 mM 

HEPES, pH 7.8, and 150 mM KCl). The ApaH variants were eluted with 200 mM imidazole, 

elution fractions were pulled, the buffer was exchanged to 50 mM HEPES, pH 7.8, 150 mM 

KCl, 7 mM MgCl2, and the proteins concentrated to 0.15 mg/ml, 9 mg/ml, 7.8 mg/ml, 4.1 

mg/ml wild type ApaH, ApaH_D7, ApaH_D7 H120A and ApaH_D7 H227A, respectively. 

Protein purity was assessed by electrophoresis and the samples were stored at -20 °C.  
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The thermal stability of ApaH variants was measured following heat-induced unfolding. 

Solutions of 15 μM enzyme containing 5× SYPRO Orange dye (Invitrogen) were heated 

from 4 to 99 °C in a 7500 Fast Real-Time PCR system (Applied Biosystems) and unfolding 

was followed by measuring the change in fluorescence excitation, 488 nm; emission, 570 

nm). Measurements were conducted in duplicates and the midpoint of denaturation (TM) was 

determined as the maximum of the first derivative for each temperature. 

Ap4A hydrolase activity was assayed using 0.15 μM (wild type, and stabilized variant) or 12 

μM (D7 variants H120A and H227A) enzyme, 1 mM Ap4A, in 50 mM HEPES, pH 7.8, and 

150 mM KCl, 7 mM MgCl2. Aliquots of the reaction mixtures (1.5 µl) were taken at after 5, 

10 and 60 min, and analyzed by thin-layer chromatography (TLC) using silica-gel-60 plates 

with fluorescent indicator (Merck; catalog no. 5554). The mobile phase comprised a mixture 

of isopropanol:2,4-dioxane:water:25 % ammonia solution at a ratio of 2:4:4:3 [71]. The plates 

were dried and visualized by UV light. Samples were run in duplicates and the UV images 

were analyzed by IMAGEJ. 

Cloning, expression and purification of Apa2  

Full-length apa2 gene (Gene ID: 852143) was PCR amplified from the genome of S. 

cerevisiae ATCC 204508/S288c and cloned into a pET- 21a vector, with an C-terminal 

hexahistidine tag. The recombinant plasmid was transformed into E. coli BL21 (DE3) 

cultured in 100 ml LB medium. The expression of the proteins was induced with 1 mM IPTG 

when OD600nm reached 0.6. After being cultured for another 16 h at 20 °C, cells were 

harvested and collected by centrifugation at 4000 g for 15 min, and resuspended in 5 mL of 

lysis buffer (20 mM TRIS, pH 7.8, and 150 mM KCl, 15 mM imidazole). The purification 

procedure is the same as described above for ApaH. Purified protein (5.7 mg/ml) in 20 mM 

TRIS, pH 7.8, and 150 mM KCl buffer was stored at -20 °C for further use.  
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LysU engineering and characterization 

The ORF of lysU gene (Gene ID: 948645) was PCR amplified from the genome of E. coli 

and cloned into pET-21a, with an C-terminal 6-His tag. The lysU gene library was generated 

using the ISOR method [72], including functional mutations in aminoacylation domain and 

consensus mutations derived from a sequence alignment (the list of library mutation primers 

is in Table S2). The assembly PCR was optimized to yield ~2.5 mutations per gene, thus 

resulting in ~ 50 % of active clones.  

The library was cloned in pET-21a and transformed into E. coli BL21 (DE3) cells. Single 

colonies were inoculated in 500 µl LB media and grown overnight at 37 °C in deep-well 

plates. This preculture (8 µl) was used to inoculate 800 µl of 2YT medium. After 2.5 h of 

growth at 37 °C with shaking, expression was induced with 1 mM IPTG, and growth was 

continued for 6 h at 37 °C. The cell pellet was lysed in 20 mM TRIS pH 7.5, 150 mM KCl, 7 

mM MgCl2 with bensonase (1 U/µl), lysozyme (0.3 mg/ml) and protease inhibitor (Sigma 

Aldrich, S8830). For assaying Ap4A synthesis, 5 µl of clarified lysate was added to 45 µl of 

reaction buffer (20 mM TRIS pH 7.5, 150 mM KCl, 7 mM MgCl2) plus mixture with 1 mM 

ATP. The reaction was incubated for 1 h at 37 °C and stopped by heating (5 min at 65 °C). 

The unreacted ATP was hydrolyzed by calf intestine phosphatase (4 U) for 3 h min at 37 °C, 

and the phosphatase was inactivated by heating at 85 °C for 5 min. A 10 µl aliquot of the 

inactivated reaction mix was added to 9.75 µl aliquot of the luciferase ATP determination kit 

(LBR-T010, Proteinkinase.de) plus recombinant human Ap4A hydrolase in order to 

hydrolyze the synthesized Ap4A to AMP and ATP (0.25 µl of 1 mg/ml; the enzyme was 

cloned in pET-21a with C-terminal His tag and purified as Apa2). The assay was calibrated 

such that the amount of ATP generated by Ap4A hydrolysis was proportional to the 

luminescence signal. The first-round variants that showed higher activity that wild-type LysU 

were reshuffled to generate the second library. The variants with the highest Ap4A synthetase 
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activity were characterized as described below. The mutations in the tRNA binding domain 

(R77A, Q95A, T130A) were introduced by site directed mutagenesis protocol [70].  

The engineered LysU variants were expressed in E. coli BL21 (DE3) cells cultured in 100 ml 

LB. Expression was induced with IPTG, and growth was continued for 6 hr as above. The 

purification procedure was the same as for Apa2 described above. 

Ap4A synthesis and aminoacylation assay 

Ap4A synthesis was assayed by the luminescence assay or by HPLC. The reaction mixture 

contains 0.05 mg/ml LysU variants, 2.5 mM ATP and 0.2 mM lysine, in 20 mM TRIS pH 

7.5, 150 mM KCl, 7 mM MgCl2. At different time points, aliquots of 10 µl were added to 

acetonitrile (10 µl), diluted 5 times in water, filtered through 0.2-µm filters (0.22 µm, Millex-

GV 4 mm PVDF, Merck-Millipore) and loaded on ion-exchange HPLC column (SAX-NP5, 

50x4.6 mm). The mobile phase comprised 10 mM TRIS pH 7.2, and elution with a gradient 

of NaCl (from 0 to 0.5 M NaCl in 10 minutes). The faction of ATP and Ap4A was 

determined by relative peak intensities (OD260nm).  

Aminoacylation was assayed in 50 µl reactions, contacting 0.1 mg/ml LysU variants, 2 mM 

ATP, 0.2 mM lysine (spiked with 1 µCi of 
3
H labeled lysine, Perkin Elmer NET376250UC) 

and 10 µM tRNALys, in 20 mM TRIS pH 7.5, 150 mM KCl, 7 mM MgCl2, incubated at 37 

°C for 2-12 h. Reactions were stopped by addition of 100 µl of salmon sperm DNA (1 mg/ml, 

in sodium acetate pH 3.0) followed by 150 µl of 20 % TCA. The pellet was isolated and 

washed 4 times with 5 % TCA containing 0.2 mM cold lysine by centrifugation. The last 

washing was with 96 % ethanol, and the precipitate was then dried and dissolved in 75 µl of 

0.1 M NaOH. The resuspended samples were added to 3 ml of liquid scintillation cocktail 

(Ultima Gold; Perkin Elmer) and analyzed in a liquid scintillation analyzer (Packard TRE-

CARB 2100TR). 
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Determination of cellular Ap4A concentrations 

Extract preparation 

E. coli K12 wild type and ΔapaH cultures were grown in M9-Glc for 24 h , and used to 

inoculate a fresh 10 ml culture of M9-Glc (at 100 dilution).  The cultures were grown with 

shaking at 37 °C and cells were pelleted by 3 min centrifugation at 10000 g, at OD600nm ≈ 0.3 

(exponential). The cell pellets were frozen in liquid nitrogen and analyzed by MS. The 

samples were extracted with methanol-acetonitrile-water [40:40:20] with 0.1 N formic acid. 

The internal standard mix (15 µL) was added to the extracts, and the obtained mixtures were 

concentrated in speedvac to eliminate extraction solution, and then lyophilized till dryness. 

Before LC-MS analysis the obtained residues were re-dissolved in 50 µl of starting eluent (70 

% A/30 % B), and filtered through 0.2-µm filters (0.22 µm, Millex-GV 4 mm PVDF, Merck-

Millipore) to remove insoluble material.  

Preparation of internal standard mix 

13
C10-ATP (2 mM, Sigma Aldrich cat. number 710695) was reacted with 0.25 mM lysine and 

LysU enzyme (0.1 mg/ml) to produce 
13

C20-Ap4A. The reaction progress was followed by 

TLC (method described above), at 10 % of conversion the enzyme was eliminated by 

addition of acetonitrile (1:1 v/v) to prevent further reaction progress. Precipitated enzyme 

was removed by centrifugation, solution diluted 2-fold in water and filtered through 0.2-µm 

filters. To prepare internal standard mix stock, the reaction mixture was diluted in water 

providing 5 µM concentration of 
13

C20-Ap4A and 45 µM of 
13

C10-ATP. 

LCMS analysis 

The LC-MS/MS instrument consisted of Acquity I-class UPLC system (Waters) and Xevo 

TQ-S triple quadrupole mass spectrometer (Waters) equipped with an electrospray ion source 

and operated in positive ion mode was used for analysis of nucleoside phosphates. MassLynx 
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and TargetLynx software (v.4.1, Waters) were applied for the acquisition and analysis of 

data. The analysis was done on a 50 x 2-mm i.d., 3-µm 100 Å Luna-NH2 column equipped 

with 4.0 x 2.0 security guard amine cartridge (both Phenomenex) with mobile phases A (10 

mM ammonium formate, pH 5.0 adjusted with 10 % acetic acid, followed by addition of 40 

mL of acetonitrile) and B (1 mM ammonium formate, pH 10.6 adjusted with 29 % ammonia, 

followed by addition of 17 mL of acetonitrile) at a flow rate of 0.3 ml/min and column 

temperature 25°C. A 10-minute gradient was as follows: linear increase from 30 to 70 % B 

during 4 minutes, then increase to 90 % in 0.5 minute, followed by return to 30 % B in the 

next 0.5 minute, and equilibration for 5 minutes. Samples kept at 4°C were automatically 

injected in a volume of 5 μl. 

For mass spectrometry argon was used as the collision gas with flow 0.10 ml/min. The 

capillary voltage was set to 2.50 kV, source temperature - 150°C, desolvation temperature - 

600°C, desolvation gas flow - 800 L/h. Analytes were detected using multiple reaction 

monitoring (MRM) applying following parameters: Ap4A (retention time 3,57 min; transition 

837.1>136.2 (cone 14 V, CE 35 eV); transition 837.1>348.2 (cone 14 V, CE 26 eV)), 
13

C20-

Ap4A (retention time 3,57 min; transition 857.1>141.1 (cone 14 V, CE 35 eV); transition 

857.1>358.1 (cone 14 V, CE 26 eV)), 
13

C10-ATP  (retention time 3,90 min; transition 

518.0>141.1 (cone 14 V, CE 35 eV); transition 508.0>358.1 (cone 14 V, CE 18 eV)). 

Cellular concentration was determined in two ways: based on the dry weight of the extracted 

cells and OD600nm. The total intracellular volume: the dry weight of the extracted cells 

(measured using cultures that are treated identically to those used for metabolite extraction) 

multiplied by the ratio of aqueous volume to cellular dry weight. The ratio of aqueous volume 

to cellular dry weight is 0.0023 liter g/1 for E. coli [73]. The total intracellular volume 

calculated on the basis of the OD600nm: total number of cells (OD600nm = 1 corresponds to 10
9
 

cells/ml) multiplied by the single cell volume (1 µm
3
 [74]). The measured concentration was 
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multiplied with dilution factor (sample volume/total cellular volume) to determine 

intracellular concentration of Ap4A. Concentrations calculated by both methods were similar. 

Synthesis of biotin labeled Ap4A 

Synthesis of 8-[(6-amino)-hexyl]-amino-Ap4A-biotin 

The reaction mixture contained 0.25 mM 8-[(6-amino)-hexyl]-amino-ATP-biotin (NU-807-

BIO, Jena Bioscience), 0.5 mM adenosine-phosphosulfate (APS) and 0.25 mg/ml Apa2, in a 

reaction buffer of 50 mM HEPES, pH 7.8,150 mM NaCl and 1 mM MgCl2. The reaction was 

analyzed by HPLC (ion-exchange, as above). Apa2 was removed from reaction mixture by 

centrifugation through 10 kDa cut-off spin column (Millipore) and samples were stored at -20 

°C. Using the same protocol, 
3
H-labeled Ap4A was synthesized from 

3
H-ATP 

(NET420250UC, Perkin Elmer). 

Synthesis of PEG3-biotin Ap4A 

In a round bottom vial, 0.012 mmol (10.0 mg) of Ap4A (Sigma) and 0.014 mmol (2.33 mg) 

of carboxydiimidazole (CDI) were added in 70 l of water. The vial was vibrated for 30 

minutes, after which PEG3-Biotin (Pirece) was added. The vial was vibrated overnight at 

room temperature and product formation was monitored by TLC (dioxane/isopropyl alcohol/ 

25% NH4OH/ 6 mM EDTA; 4:2:3:4). Water was removed by lyophilisation and the crude 

product was obtain as waxy white solid.
 1

H-NMR and 
31

P-NMR were recorded in D2O at 

ambient temperature (20°C) operating at 300 MHz and 121.5 Mhz respectively.  

 

1
H-NMR (300 MHz, D2O)  8.34 (2H, s), 8.06 (2H, s), 5.96 (2H, d), 4.68 (2H, t), 4,51(3H, 

m), 4,23-4,00 (7H, m), 3.60-3.40(12H,m), 3.20 (2H, m), 3.10 (1H,m), 3.01 (2H, t), 2.80 (1H, 

m), 2.58 (1H, m),  2,11(2H, m), 1.59-1.1 (6H, m). To be noted is the upfield shift of the 
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triplet due to the methylene group (3.01 ppm, -CH2-CH2-NH-P(O)(OR2)-) in alpha position 

respect to the terminal amine of the PEG3-Biotin chain (2.68 ppm, -CH2-CH2-NH2). 
31

P-

NMR (121.5 MHz, D2O)  -10.30, -22.13. 

It appears, however, that the p-NH- bond was unstable, thus making this mode of coupling 

inapplicable for pull-downs. 

Proteomics and pull-down experiments  

Proteomics: The culture was prepared in the same way as described above for metabolomic 

analysis. The cell pellets were frozen in liquid nitrogen and analyzed by MS.  

Pull-down experiments: E. coli K12 MG1655 cells were cultured in 10 ml of LB medium and 

pelleted at OD600 ≈ 0.5. Cell pellets were isolated by centrifugation, washed and resuspended 

in 50 mM HEPES, pH 7.8,150 mM NaCl and 1 mM MgCl2. Cells were disrupted by 

sonication. The total protein concentration was measured by BCA kit (23227, 

ThermoScientific) and all lysates were all diluted to 2 mg protein/ml. Pull-downs were 

performed with either pre-coated magnetic beads (Merck Millipore, LSKMAGT10), or by 

pre-incubation with biotinylated ligands. Overall, 3 parallel pull-down experiments were 

performed.  Experiment #1 included the following steps: (1) The rinsed beads (1 mg) were 

incubated with 100 µl of 20 µM biotin, bioATP, or bioAp4A, for 1 h at 4 °C; (2) Unbound 

ligands were removed by rinsing with HEPES buffer (7x250 µl); (3) 50 µl of E. coli lysate 

and 50 µM ATP were incubated with biotinylated beads for 1.5 h at 4 °C; (4) Unbound 

proteins were removed by rinsing with HEPES buffer (7x250 µl) and beads were analyzed by 

MS. Experiment #2 included the following steps: (1) 25 µM biotin, bioATP or bioAp4A, 

were incubated with E. coli lysate plus 50  µM  ATP (100 µl total volume) for 1 h at 4 °C; (2) 

Rinsed beads (1 mg) were added to the above mixture and incubated for an hour at 4 °C; (3) 

Unbound proteins were rinsed by washing with HEPES buffer (7x250 µl) and beads were 
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analyzed by MS. Experiment #3 included the following steps: (1) Beads (4 mg) were 

incubated with 400 µl of 25 µM bioAp4A for 1 h at 4 °C; (2) Unbound ligand was removed 

by rinsing with HEPES buffer (7x250 µl); (3) BioAp4A beads were incubated with 200 µl of 

E. coli lysate plus 50 µM ATP for 1.5 h at 4 °C; (4) Unbound proteins were removed by 

rinsing with HEPES buffer (7x250 µl), and in the last rinse, the beads were split into 4 

aliquots (4x100 µl) and buffer was removed; (5) Proteins bound to BioAp4A beads were 

eluted with 100 µl of HEPES buffer, 10 µM, 50 µM, or 100 µM Ap4A solution, and analyzed 

by MS. 

 

For the MS analysis, samples were subjected to in-solution, on-bead, tryptic digestion. 

Proteins were first reduced by incubation with dithiothreitol for 30 min at 60°C, and alkylated 

with 10 mM iodoacetamide in the dark for 30 min at 21 °C. Proteins were then subjected to 

digestion with trypsin (Promega; Madison, WI, USA) for 16 h at 37°C. The digestions were 

stopped by trifluroacetic acid (1%). Following digestion, peptides were desalted using solid-

phase extraction columns (Oasis HLB, Waters, Milford, MA, USA). The samples were stored 

in -80˚C until further analysis. For lysate analysis, samples were subjected to in-solution 

tryptic digestion using a modified Filter Aided Sample Preparation protocol (FASP). Sodium 

dodecyl sulfate buffer (SDT) included: 4 % (w/v) SDS, 100 mM TRIS pH 7.6, 0.1 M DTT. 

Urea buffer (UB): 8 M urea (Sigma, U5128) in 0.1 M TRIS pH 8.0 and 50 mM Ammonium 

Bicarbonate. Cells were dissolved in 100 μL SDT buffer and lysed for 3 min at 95 °C. Then 

spin down at 16,000 RCF for 10 min. 100 µg were mixed with 200 μL UB and loaded onto 

30 kDa molecular weight cutoff filters and spin down. 200 μl of UB were added to the filter 

unit and centrifuge at 14,000 x g for 40 min. Alkylation using 100 µl IAA, 2 washed with 

Ammonium Bicarbonate. Trypsin was then added and samples incubated at 37 °C overnight. 

Additional amount of trypsin was added and incubated for 4 hours at 37 °C. Digested 
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proteins were then spun down to a clean collecting tube, 50 µl NaCl 0.5 M was added and 

spin down, acidified with trifloroacetic acid, desalted using HBL Oasis, Speed vac to dry and 

stored in -80°C until analysis. 

Liquid chromatography  

ULC/MS grade solvents were used for all chromatographic steps. Each sample was loaded 

using split-less nano-Ultra Performance Liquid Chromatography (10 kpsi nanoAcquity; 

Waters, Milford, MA, USA). The mobile phase was: A) H2O + 0.1 % formic acid and B) 

acetonitrile + 0.1 % formic acid. Desalting of the samples was performed online using a 

reversed-phase C18 trapping column (180 µm internal diameter, 20 mm length, 5 µm particle 

size; Waters). The peptides were then separated using a T3 HSS nano-column (75 µm 

internal diameter, 250 mm length, 1.8 µm particle size; Waters) at 0.35 µL/min. Peptides 

(proteomics analysis) were eluted from the column into the mass spectrometer using the 

following gradient: 4  % to 20 % B in 155 min, 20 % to 90 % B in 5 min, maintained at 95 % 

for 5 min and then back to initial conditions. 

Peptides (pull-down analysis) were eluted from the column into the mass spectrometer using 

the following gradient: 4 % to 35 % B in 105 min, 35 % to 90 % B in 5 min, maintained at 95 

% for 5 min and then back to initial conditions. 

Mass Spectrometry 

The nanoUPLC was coupled online through a nanoESI emitter (10 μm tip; New Objective; 

Woburn, MA, USA) to a quadrupole orbitrap mass spectrometer (Q Exactive HF or Q 

Exactive Plus,  Thermo Scientific) using a FlexIon nanospray apparatus (Proxeon).  

Data was acquired in DDA mode, using a Top20 method. For Q Exactive HF analysis, MS1 

resolution was set to 60,000 (at 400 m/z) and maximum injection time was set to 20 msec. 

MS2 resolution was set to 15,000 and maximum injection time of 60 msec. For Q Exactive 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Plus analysis, MS1 resolution was set to 70,000 (at 400 m/z) and maximum injection time 

was set to 120 msec. MS2 resolution was set to 35,000 and maximum injection time of 60 

msec. 

Data processing and analysis 

Raw data was imported into the Expressionist® software (Genedata) and processed as 

described here
 
[75]. The software was used for retention time alignment and peak detection of 

precursor peptides. A master peak list was generated from all MS/MS events and sent for 

database searching using Mascot v2.5 (Matrix Sciences). For proteomics lysate analysis 

MS/MS spectra was also searched using MSGF+ (Integrative Omics, 

https://omics.pnl.gov/software/ms-gf). Data was searched against the E. coli K12 protein 

sequences as downloaded from UniprotKB (http://www.uniprot.org/), and appended with 125 

common laboratory contaminant proteins. Fixed modification was set to 

carbamidomethylation of cysteines and variable modifications were set to oxidation of 

methionines and deamidation of N or Q. Search results were then filtered using the 

PeptideProphet
 
[76] algorithm to achieve maximum false discovery rate of 1% at the protein 

level. Peptide identifications were imported back to Expressions to annotate identified peaks. 

Quantification of proteins from the peptide data was performed using an in-house script
 
[75]. 

For lysate analysis protein intensity was normalized based on the total ion current. For pull-

down experiments the data was not normalized. Protein abundance was obtained by summing 

the three most intense, unique peptides per protein. A Student’s t-Test, after logarithmic 

transformation, was used to identify significant differences across the biological replica. Fold 

changes were calculated based on the ratio of arithmetic means of the case versus control 

samples. 

 

http://www.uniprot.org/
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Purification and characterization of IMPDHs and NrdR 

Full-length guaB (Gene ID: 946985) and nrdR (Gene ID: 947437) genes were PCR amplified 

from the genome of E. coli and guaB gene (Gene ID: 880535) from P. aeruginosa. Cloned 

into a pET-21a vector, with an C-terminal hexahistidine tag. The expression and purification 

procedure for IMPDHs was the same as for ApaH, while NrdR expression was for 16 h at 16 

°C after IPTG induction and purification process the same as described above for Apa2.  

IMPDHs (11 mg/ml) were stored in 50 mM HEPES pH 7.8, 150 mM KCl and 7 mM MgCl2 

buffer and NrdR (8.9 mg/ml) in 50 mM TRIS pH 8.3, 300 mM NaCl, 5 mM DTT, 100 µM 

ZnCl2, 20 % glycerol buffer. Proteins were stored at – 20 °C. 

For assaying IMPDH’s activity 2 µM enzyme was incubated with 1 mM NAD and 2 mM 

inosine monophosphate (IMP) in reaction buffer of 50 mM HEPES pH 7.8, 150 mM KCl and 

7 mM MgCl2. The reaction was monitored by increase in absorbance at 340 nm (Synergy HT, 

BIO-TEK) in 96-well plates (655801, Greiner Bio-one). 

ELISA assays 

Binding to DNA was performed by an ELISA-like assay. The promoter region of gsk (Gene 

ID: 946584) and nrdA (Gene ID: 946612) genes were amplified from E. coli genome using 

specific primers, followed by a second PCR using a forward biotinylated primer (Table S1). 

The PCR products were purified, and the DNA concentration was determined by measuring 

A260nm (NanoDrop 2000, ThermoScientific). Streptavidin-coated plates (StreptaWell, Roche) 

were incubated for 30 min with 100 µl solutions of either biotin, biotinylated ATP or 

biotinylated Ap4A (at 2 µM), or biotinylated dsDNA (3 ng/µl). The wells were washed (50 

mM HEPES pH 7.8, 150 mM KCl, 7 mM MgCl2), and the ones coated with dsDNA were 

treated with 0.125 M NaOH (3 x 100 µl) to generate ssDNA [77]. After further washing, the 

wells were blocked with 1 % BSA. Coated wells were incubated for 1 h with 5 µM 
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ecIMPDH, paIMPDH, or NrdR in 50 mM HEPES pH 7.8, 150 mM KCl, 7 mM MgCl2, plus 

various concentrations of ATP and Ap4A as specified. The unbound proteins were washed, 

and 100 µl 1 µg/ml HRP labeled mouse antiHis-antibody (200 µg/ml, Santa Cruz 

Biotechnology) was added. Following 1 h incubation, the wells were washed, the substrate 

was added 3,3’,5,5’-tetramethybenzidine (TMB; ES001, Millipore), and OD650nm was 

monitored .The results are presented as the rate of increase in OD650nm. 
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Supporting information 

Table S1. Primers used for generation and cloning in pET_21a of LysU library. 

Table S2. Primers used for cloning. 

Tables 

Table 1. Ap4A intracellular concentrations in the generated E. coli K12 strains. Cells 

were grown in M9-Glc medium for 24 h, diluted 100-fold in fresh M9-Glc, grown and 

pelleted at the exponential phase. Measurements of Ap4A concentrations were done in 

duplicate and mean values with standard deviation are presented. 

# Strain Description 
Ap4A 

(µM) 

1 
Parental strain E. coli K12 

MG1655 
K12 (wild type) 0.2 ± 0.1 

2 
Knockout of Ap4A 

hydrolase 
K12 ΔapaH 63.6 ± 1.9 

 
Strains where apaH’s ORF was exchanged with ORFs of 

the denoted Ap4A hydrolase variants plus a TetR cassette 
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3 K12 ΔapaH::apaH Wild type E. coli ApaH 0.2 ± 0.0 

4 K12 ΔapaH::apa2 S. cerevisiae Ap4A phosphorylase < 0.02 

5 K12 ΔapaH::apaH_D7 
A computationally designed ApaH 

variant with higher thermostability 
0.1 ± 0.0 

6 
K12 ΔapaH::apaH_D7 

H120A 

An active-site mutation, H120A, 

yielding an inactive ApaH 
72.0 ± 3.5 

7 
K12 ΔapaH::apaH_D7 

H227A 

An active-site mutation, H227A, 

with > 200 fold decreased Ap4A 

hydrolase activity 

78.1 ± 19.9 

 Strains with pZA plasmid expression of LysU variants  

8 K12; pZA_LysU Wild type LysU 0.8 ± 0.1 

9 K12; pZA_InT An inactive variant of LysU 0.2 ± 0.1 

10 
K12; pZA_ 

LysU_Ap4Asynth 

A LysU variant with increased 

Ap4A synthetase activity and 

abolished aminoacylation 

0.9 ± 0.1 

11 K12 ΔapaH; pZA_LysU As # 8 at ΔapaH background 62.9 ± 12.5 

12 K12 ΔapaH; pZA_InT As # 9 at ΔapaH background 58.8 ± 10.7 

13 
K12 ΔapaH; 

pZA_LysU_Ap4Asynth 
As # 10 at ΔapaH background 59.5 ± 15.9 
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Table 2. High Ap4A levels do not cause cell death. E. coli K12 WT and ΔapaH cell pre-

cultures were adjusted to OD 0.2 and further diluted 100-fold in LB media and incubated at 

46 °C. Every hour, 250 µl aliquots of 10
-4

 dilutions of these cultures were plated on LB agar, 

and the number of colonies was counted after overnight growth at 37 °C. Experiments were 

done in duplicates and the mean values and standard deviations are presented. 

 

Time (h) Wild type (cells/ml * 10
6
) ΔapaH (cells/ml * 10

6
) 

0 1.88 ± 0.28 1.30 ± 0.14 

1 3.42 ± 0.08 1.08 ± 0.17 

2 16.08 ± 0.06 1.34 ± 0.48 

3 41.60 ± 4.63 1.54 ± 0.28 

4 54.00 ± 8.49 1.04 ± 0.28 

5 180.00 ± 33.94 0.72 ± 0.06 
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Table 3: Proteins down-regulated in E. coli K12 ΔapaH during exponential growth in 

M9-Glc. 

 

Name 

WT/ΔapaH 

ratio, (number 

of identified 

peptides) 

Notes 

50S ribosomal protein 

L31 type B, YkgM 
4-8, (3-7) 

A paralog of L31, a 50S ribosomal subunit 

protein, that lost the metal-binding "zinc 

ribbon" motif; may take over L31’s function 

at low zinc [78] 

Metal-binding protein, 

ZinT 
2-6, (4-10) 

Binds divalent metal ions (Zn
2+

, Cd
2+

, Ni
2+

) 

and is up-regulated in response to low zinc  

[79] 

High-affinity zinc uptake 

system protein, ZnuA 
4-13, (8-16) 

Zn
2+

-binding component of ABC transporter 

[80] 

Anthranilate synthase 

component 1, TrpE 
2-7, (11-21) Biosynthesis of tryptophan [81] 

Tryptophan synthase 

alpha chain, TrpA 
2-4, (9-18) Biosynthesis of tryptophan [82] 

Phospho-2-dehydro-3-

deoxyheptonate aldolase, 

AroF 

3-4, (14-21) Biosynthesis of aromatic amino acids [83] 

T-protein, TyrA 2-3, (12-24) 
Biosynthesis of aromatic amino acids 

(tyrosine and phenylalanine) [84] 

Starvation-sensing 

protein, RspA 
4-7, (2-7) 

Bifunctional dehydratase that utilizes both D-

mannonate and D-altronate as substrates [85] 

Starvation-sensing 

protein, RspB 
2-3, (3-5) 

Predicted Zn
2+

-dependent oxidoreductase, on 

the same operon with rspA [85] 
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Table 4. Putative Ap4A binding proteins identified by pull-downs. 

 

Protein name 

Enrichment in 

bioAp4A samples 

(number of 

identified peptides) 

Notes 

Inosine-5'-monophosphate 

dehydrogenase (IMPDH), GuaB 
50-120 (28-53) 

Catalyzes the first step in de novo 

guanine biosynthesis [53] 

Transcriptional repressor, NrdR 3-68, (4-9) 

Zinc-finger/ATP transcriptional 

regulatory protein, regulates the 

expression of ribonucleotide 

reductases (RNRs) [61] 

30S ribosomal protein S8, RpsH 2-6, (3-5) 

Functions in the post-transcriptional 

regulation of the ribosomal protein 

genes [86] 

DNA-binding protein, H-NS 2-12, (6-9) 

Regulates 5% of all E. coli genes and 

has a key role in bacterial chromosome 

organization [87] 

Chaperone protein, DnaK ~2, (6-64) 

The Hsp70 chaperone in E. coli. 

Contributes to control of the heat 

shock. Also involved in the initiation 

complex at the viral origin of 

replication ori-λ [88] 

DNA-binding protein HU-beta, 

HupB 
2-3, (2) 

β-subunit of HU transcriptional 

regulator, small DNA-binding protein 

that is considered a global regulatory 

protein [89] 

50S ribosomal protein L7/L12, RplL 2-4, (3-5) 50S ribosomal subunit protein [90] 
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Figure 1. Phenotypic characterization of the apaH knockout alongside the parental E. 

coli K12 strain. Cells grown to late stationary phase. This pre-culture was diluted to OD600nm 

= 0.2 and transferred at 50-fold dilution to a fresh medium. (A) LB pre-culture transferred to 

LB, growth at 37 °C. (B) M9-Glc pre-culture transferred to in LB, growth at 37 °C. (C) LB 
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pre-culture transferred to M9-Glc, growth at 37 °C. (D) M9-Glc pre-culture transferred to 

M9-Glc, growth at 37 °C. (E) Growth in LB at 46 °C. (F) Light microscopy image after 4h 

growth in LB at 46 °C. All growth experiments were done in 4 repeats and the mean OD600nm 

values with standard deviation are presented.  

 

 

 

 

 

 

Figure 2. Replacements of ApaH have no growth effect as long as Ap4A is effectively 

removed. Shown are growth curves in LB at 46 °C (A) and M9-Glc at 37 °C (B). Ap4A 

levels of these strains are provided in Table 1. Chromosomal replacements of ApaH (open 

reading frame only) with yeast Apa2, a stabilized ApaH variant (ApaH_D7), and ApaH 

mutants with impaired enzymatic activity. Growth experiments were done in 4 repeats and 

the mean OD600nm values with standard deviation are presented. 
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Figure 3. Decrease of Ap4A levels below wild-type’s level has no fitness effect.  (A) 

Plasmid expression of Apa2, or its enzymatically inactive mutant (H161A), in the wild type 

strain in LB at 46 °C. (B) Plasmid expression of Apa2, or its enzymatically inactive mutant 

(H161A), in ΔapaH strain in LB at 46 °C and (C) in M9-Glc at 37 °C. (D, E) Growth 
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competitions between E. coli K12 expressing an active yeast Apa2 and the same strain with 

an inactive Apa2 control. Cells were mixed at equal ratios and this inoculate was grown over 

48 h at 37 °C in LB medium (D) and M9-Glc medium (E). The ratio of the competing strain 

(active yeast Apa2; undetectable Ap4A levels) over the control strain (inactive Apa2; WT-

like Ap4A levels) is indicated in dark red squares. These ratios are essentially identical to 

those seen in a parallel competition of a K12 strain carrying a chloramphenicol resistance 

marker with an identical strain with no such marker (black circles). All growth experiments 

were done in 3 repeats and the mean values with standard deviation are presented. 
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Figure 4. Artificially induced Ap4A production has no observable phenotype. (A) Ap4A 

synthetase and aminoacylation activities of LysU evolved variants, LysU_A2 and 

LysU_Ap4Asynth, compared to wild-type LysU. Measurements were done in duplicate and 

ratio of the mean values with standard deviations are presented. (B) Induced expression of 

LysU in E. coli K12 has no growth effect, regardless if wild-type LysU is expressed, or 
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LysU-inactive (InT), or the engineered Ap4A synthase, LysU_Ap4Asynth. Shown is growth 

in M9-Glc at 37 °C; identical growth of these strains was also seen at 46 °C. (C) Growth 

effects in M9-Gl at 37 °C were observed in the ΔapaH strain and upon induction of LysU 

expression with AHT. Wild-type LysU, but not its inactivated mutant, InT, caused a lag 

phase that was further elongated by the engineered Ap4A synthetase variant 

LysU_Ap4Asynth. (D, E) Growth competitions between an E. coli K12 strain expressing the 

Ap4A producing LysU variant and a control strain expressing a LysU inactive variant over 48 

h at 37 °C in LB medium (D) and M9-Glc medium (E). The ratio of the competing strain 

(~4.5-fold higher Ap4A levels) over the control strain (WT-like Ap4A levels) is indicated in 

purple squares, and the control competition is indicated in black circles.  Growth experiments 

were done in 3 repeats and the mean values with standard deviation are presented. 
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Figure 5. Elevated Ap4A levels enable growth under Zn
2+

 deprivation. Growth of the 

parental E. coli K12 and the ΔapaH strain at 37 ºC in M9-Glc, and in same medium 

supplemented with 0.2 mM EDTA. Growth experiments were done in 3 repeats and the mean 

OD600nm values with standard deviation are presented. 
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Figure 6. The effects of ATP and Ap4A on the catalytic and regulatory activity of 

IMPDHs. (A) Binding of E. coli IMPDH (ecIMPDH) to biotinylated ATP and Ap4A was 

determined by ELISA (coating ligands onto streptavidin coated plates, and detection of His-

tagged IMPDH with anti-His antibodies). (B) The enzymatic activity of ecIMPDH in the 

presence of ATP and Ap4A. (Shown are initial rates of NAD
+
 reduction, at [IMPDH] = 2 

µM; [IMP]0 = 2 mM; [NAD
+
]0 = 1 mM.) (C) Binding of ecIMPDH to ssDNA in the presence 

of various concentrations of ATP and Ap4A. (Measured as in part A, with an immobilized 5’-

biotinylated 300 nt long ssDNA that includes the gsk gene promoter region). (D) The 

enzymatic activity of paIMPDH in the presence of varying concentrations of ATP and Ap4A 

(measured as in part B). (E) The enzymatic activity of paIMPDH in the presence of 1 mM 

ATP and different Ap4A concentrations. (F) The enzymatic activity of paIMPDH in the 

presence of 0.1 mM ATP and different Ap4A concentrations. All the measurements were 

done in 3 repeats and the mean values with standard deviation are presented. 
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Figure 7. NrdR binding of Ap4A and ATP. (A) Binding of E. coli NrdR to biotinylated 

ATP and Ap4A (determined by ELISA; as in Fig. 6A). (B) NrdR binding to the nrdA 

promoter is inhibited by both ATP and Ap4A. All the measurements were done in 3 repeats 

and the mean values with standard deviation are presented.  

 


