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ABSTRACT. SAXS experiments provide low-resolution but valuable information about the 

dynamics of biomolecular systems, which could be ideally integrated into MD simulations to 

accurately determine conformational ensembles of flexible proteins. The applicability of this 

strategy is hampered by the high computational cost required to calculate scattering intensities 

from three-dimensional structures. We previously presented a hybrid resolution method that makes 

atomistic SAXS-restrained MD simulation feasible by adopting a coarse-grained approach to 

efficiently back-calculate scattering intensities; here, we extend this technique, applying it in the 

framework of metainference with the aim to investigate the dynamical behavior of flexible 

biomolecules. The efficacy of the method is assessed on the K63-diubiquitin, showing that the 
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inclusion of SAXS-restraints is effective in generating a reliable conformational ensemble, 

improving the agreement with independent experimental data. 

 

1. INTRODUCTION 

Biomolecules in solution can be characterized by a different extent of conformational dynamics 

depending on the specific system and experimental conditions1–3. While the dynamics of single 

domain proteins in native condition is generally limited to fluctuations around a well-defined 

structure, fully disordered proteins can only be described as statistical ensembles of conformations. 

In between these cases, multi-domain proteins connected by linker regions can populate multiple 

states generally characterized by a different size4.  

Experimentally the characterization of conformational heterogeneity can be achieved by 

employing multiple solution techniques like nuclear magnetic resonance (NMR), Förster 

resonance energy transfer (FRET) and small angle X-ray scattering (SAXS)1,2. The latter has the 

advantage to be label free, to work with systems of any size and in essentially all experimental 

conditions5. An atomistic interpretation of scattering data could benefit from its combination with 

computational techniques, as Molecular Dynamics (MD) simulations, which could provide an 

accurate physical model to generate reliable conformational ensembles in agreement with SAXS 

data6. Common approaches employ SAXS to reweight conformational ensembles a posteriori, 

making use of statistically founded theoretical frameworks7–12. Recently, few methods in which 

SAXS experimental data are integrated into MD to drive conformational sampling have been 

proposed, nevertheless their application is hindered by the high computational cost required to 

calculate scattering intensities13–16. 
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In a previous work17, we developed a MD-based multi-resolution strategy to efficiently refine 

protein-DNA and protein-RNA complexes integrating SAXS experimental data with 

metainference18. According to this strategy, MD is run with full atomistic details, using standard 

atomistic force-field, while the back-calculation of SAXS intensities is performed in a coarse-grain 

fashion19, based on the Martini force field20. In the refinement protocol conformational averaging 

was not considered, under the assumption that a single structure, representing the most populated 

state of the system, could reliably reproduce all the measured experimental data used as restraints. 

In this work, we aim to further extend this approach to investigate the conformational space of 

biomolecules that can adopt multiple conformations in solution.  

Here we applied our multi-resolution strategy to investigate the conformational ensemble of 

K63-linked diubiquitin (K63-Ub2). Diubiquitins represent an ideal test system as they are known 

to populate multiple conformational states due to the presence of a highly flexible linker 

connecting the C-terminal of the distal ubiquitin with either a lysine or the N-terminus methionine 

of the proximal domain (Figure 1A)21–27. In particular, the heterogeneity of K63-Ub2 

conformational space is supported by the presence of numerous crystallographic structures of this 

protein, free or in complex with diverse targets, displaying different degrees of opening and 

arrangements of the two subunits28–34. Furthermore, studies based on different biophysical 

techniques, including SAXS, NMR, cross-linking and FRET, support the hypothesis that K63-Ub2 

in solution populates a dynamic ensemble, including both extended and compact states26,27,35. This 

equilibrium between multiple states is considered critical in modulating the affinity of diubiquitin 

towards its biological partners26.. 

In the following, we present our SAXS-restrained all-atom M&M1,36,37 simulation of K63-Ub2, 

performed with the hybrid resolution approach (hySAXS simulation), in comparison with an 
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unrestrained reference simulation, in which the same setting was used but for the inclusion of 

experimental data. Both conformational ensembles indicate an equilibrium between extended and 

compact conformations, but their assessment with independent experimental NMR paramagnetic 

relaxation enhancement (PRE) experiments27 reveals that only the hySAXS restrained simulations 

can accurately describe the specific contacts responsible for the formation of compact states. All 

the methods described in this paper are freely available in the PLUMED-ISDB module38 of the 

PLUMED library39, furthermore all the input files used are available on the PLUMED-NEST 

repository40, as plumID:19.057. 

 

2. THEORY AND METHODS 

2.1 Metainference 

Metainference allows integrating experimental data with prior information, generally represented 

by a molecular mechanic force field18, taking into account the effect of conformational averaging 

and other sources of errors. In the case of Gaussian noise, the metainference energy can be written 
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ABC  is averaged over the 𝑁A replicas,  𝑓E(𝑋𝒓) is the forward model used to predict 

observable 𝑖 from conformation 𝑋𝒓, 𝜎A,EGEPQ is an uncertainty parameter that describes random and 

systematic errors, 𝜎A,ERS" is the standard error of the mean related to the conformational averaging 

and 𝐸8 is an energy term that accounts for normalization of the data likelihood and error priors. 

Monte Carlo sampling is used to sample the uncertainty 𝜎A,EGEPQ and optionally a scaling parameter 
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𝜆 that relates experimental and back-calculated data (as in the case of SAXS experiment): these 

parameters are inferred during the simulation along with the model of the system. Importantly, if 

only one replica is considered, metainference becomes equivalent to the Inferential Structure 

Determination approach42; conversely, if 𝜎A,EGEPQ = 0 (i.e. in absence of data and forward model 

errors) it is equivalent to the replica-averaged MaxEnt modelling43. 

Metainference can be combined with metadynamics to accelerate the exploration of the 

conformational space36,44. In particular, it was proposed to apply it in combination with parallel 

bias metadynamics45 (PBMetaD), which allows the use of many collective variables (CVs) 

applying multiple low-dimensional bias potentials and therefore reducing the risk of missing slow 

degrees of freedom. In M&M multiple copies of the simulation are run in parallel, where all the 

replicas use the same conditions and force field and share the bias potential as in the case of 

multiple-walkers method46. The coupling of metainference and metadynamics is given by the 

calculation of the average forward model 𝑓E(𝑿), where each replica contributes differently to the 

average with a weight 𝑤(𝑋A) depending on the bias potential 𝑉XG according to: 𝑤(𝑋A) =

	𝑒
[\((][(^9),_)
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2.2 Hybrid-resolution SAXS-driven metainference simulations 

Given a coarse grain representation of a molecule of N atoms as a collection of 𝑀 beads, each 

comprising a variable number of atoms, if the form factors 𝐹(𝑞) of the beads are known the 

scattering intensities can be approximated as: 
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where 𝑅Ef indicates the distance between the center of mass of beads 𝑖𝑗 and with the sum running 

over the number of beads. The complexity is therefore reduced from 𝑂(𝑁*) to	𝑂(𝑀*). The form 

factors 𝐹(𝑞) for custom beads can be computed adopting the Single Bead Approximation 

averaging over multiple structures19. Alternatively, form factors for beads based on Martini force 

field20 are available47 and were previously implemented in the PLUMED-ISDB module17,38. 

Recently, we have implemented a hybrid multi-resolution strategy to perform full atomistic MD 

simulations in which SAXS intensities, computed at a coarse-grain level based on the Martini force 

field, are used as restraints within the metainference framework17 (see Figure 1A). The virtual 

positions of the Martini beads are computed on-the-fly and are used in combination with Martini 

form factors47 for SAXS calculations. The computational efficiency of this strategy can be further 

improved using a multiple time-step protocol, where the metainference bias is applied only every 

few time steps48. In our previous work, we demonstrated the reliability of the hybrid resolution 

approach for single-replica simulations in which two protein-nucleic acids complexes were refined 

against SAXS data. Here we extended the described approach to multi-replicas M&M simulations, 

with the aim to exhaustively explore the conformational space of flexible biomolecules, able to 

populate multiple conformational states. 

2.3 Computational details of the simulations 

K63-Ub2, for which both SAXS and PRE experimental data are available27,35, was used as a test 

system. As a starting model for the simulations, we used the chains B and C of PDB 2ZNV32: the 

K63R and D77 mutations in distal and proximal ubiquitin, respectively, were maintained to be 

coherent with SAXS measurements. MD simulations were performed with GROMACS 201849, 

PLUMED 239 and the PLUMED-ISDB38 module, using the Amber ff03w force field50 with 
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TIP4P/2005 water model51 and scaled protein-water Lennard-Jones parameters (amber03ws)52. 

The choice of this force field, that was specifically designed to increase molecules solvation, 

avoiding collapsed states and nonspecific protein-protein interactions, was guided by the fact that 

we expect an equilibrium between open and compact states of K63-Ub2 with only transient inter-

domain contacts. The system was solvated in a periodic dodecahedron box, initially 1.2 nm larger 

than the protein in each direction, and neutralized. After an initial energy minimization to a 

maximum force of 100 kJ/mol/nm, the solute was equilibrated under NVT condition at the 

temperature of 300 K for 50 ps using the Berendsen thermostat53; then Berendsen barostat was 

used to equilibrate the system in the NPT ensemble to the target pressure of 1 atm for 200 ps. The 

equilibration phase was followed by an initial MD simulation of 100 ns, from which a pool of 

well-equilibrated conformations was extracted to be used as staring models for the subsequent 

runs. During the production runs in the NPT ensemble, the md integrator was employed with a 

time step of 2 fs; the temperature was maintained at 300 K using the Bussi thermostat54 and the 

pressure was controlled with Parrinello-Rahman barostat55. Bonds were constrained with the 

LINCS algorithm56, using a matrix expansion of the order of 6 and 2 iterations per step. 

Electrostatic was treated by using the particle mesh Ewald scheme57 with a short-range cut‐off of 

0.9 nm and a Fourier grid spacing of 0.12 nm; van der Waals interaction cut‐off was set to 0.9 nm. 

Two metadynamics multi-replicas simulations were performed: 1) a metainference simulation, 

consisting of 32 replicas, in which metainference was used to enforce the agreement with SAXS 

data according to the hybrid approach (hySAXS) and 2) an unrestrained simulation, consisting of 

8 replicas, in which similar settings of simulation (1) were used but without the inclusion of 

experimental restraints. PBMetaD was performed in combination with well-tempered 

metadynamics58 and the multiple-walker scheme46, where Gaussians with an initial height of 1.0 
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kJ/mol were deposited every 0.4 ps using a bias factor of 30. Four CVs were biased: two of them 

(hydContacts and polContacts) counts the number of the hydrophobic and polar contacts between 

the two ubiquitin domains, the other two (TICAcv1 and TICAcv2) are the results of the linear 

combination of numerous angles as determined by a Time-lagged Independent Component 

Analysis59 (TICA) performed on the initial 100 ns MD simulation (see Supplementary Information 

for more details). The width of the Gaussians was determined with the dynamically-adapted 

gaussian approach60, using a time window of 4 ps to estimate CVs fluctuations and setting as 

minimum values for the width 0.01, 0.05, 0.01 and 0.01 for hydContacts, polContacts, TICAcv1 

and TICAcv2, respectively. 

Experimental SAXS intensities for K63-Ub2 are available in the SASDCG735 entry of the SASDB 

database61. For the hySAXS simulation, a set of 11 representative SAXS intensities at different 

scattering vectors, ranging between 0.06  Å/C and 0.16  Å/C and equally spaced, were included as 

restraints. These representative intensities were extracted from the experimental data, where a 21-

point running average was performed to reduce the influence of experimental noise. Metainference 

was applied every 10 steps, using a single Gaussian noise per data-point and sampling a scaling 

factor between experimental and calculated SAXS intensities with a flat prior between 0.5 and 1.5. 

For the hySAXS simulation, each replica was evolved for 250 ns, resulting in a total simulation 

time of 8 𝜇s; for the unrestrained simulation, 750 ns per replica were run, for a total of 6 𝜇s. 

Convergence was assessed using the block analysis procedure, in which free-energy profiles are 

computed over different blocks of simulations and lastly, the weighted average error along the free 

energy profile is computed as a function of the block length. In Figure S1, the free-energy profiles 

and the block average analysis are reported, showing that both simulations converged with 

comparable errors. As a preliminary control, we checked the RMSD of the single Ub domains. In 



 9 

both simulations, the Ub domains are well folded. The comparison of RMSD distribution in the 

two simulations (Figure S2) showed lower RMSD values for the hySAXS ensemble with respect 

to the unrestrained one: that could be due to the shorter simulation time per replica as well as to a 

protective effect of the SAXS restraints against some destabilization resulting from the use of 

amber03ws. 

3. RESULTS AND DISCUSSION 

To evaluate our hySAXS approach, after assessing its computational performances in comparison 

with conventional MD simulations and atomistic SASX restraints, we tested its ability to improve 

the agreement of MD with experimental SAXS data in comparison with a state-of-the-art force-

field (unrestrained simulations). As a model system, we employed K63-Ub2 for which independent 

data are available to validate our results.  

3.1 The hySAXS approach is computationally efficient. 

In Figure 1B we compared the performances of i) a conventional atomistic MD simulation 

(yellow); ii) all-atom metainference simulations where SAXS restraints with atomistic forward 

model were included every step (green); iii) all-atom hySAXS simulations where SAXS restraints 

were included every step (purple) or every 10 steps (blue). The use of the hybrid approach 

significantly improved the performances of SAXS-driven MD simulations compared to the ones 

adopting atomistic scattering evaluation. This gain can be further increased using a multiple time-

step protocol (Figure 1B, blue line), in which the restraint is applied every few time steps. This 

strategy is well justified in the case of SAXS data, which are characterized by slow temporal 

fluctuations, and allows to approach the performances of conventional MD simulations.  
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Figure 1. (A)  K63-Ub2 (2473 atoms)  showed as cartoon representation (top) or highlighting the 

centers of the 328 Martini beads (bottom), colored in white and orange for backbone and sidechain, 

respectively. (B) Performances, as a function of the number of cores, estimated on Intel Xeon E5-

2697 2.30 GHz for a single replica of K63-Ub2 in water.  

3.2 Monitoring hySAXS simulation. 

To evaluate on-the-fly the effectiveness of SAXS restraints, we monitored the correlation between 

back-calculated and experimental data as a function of the simulation time (Figure 2A) comparing 

hySAXS to an unrestrained simulation. The comparison revealed a better agreement in the 

hySAXS simulation (Figure 2A), confirming the efficacy of the restraints. This is supported by 

other statistical properties, including the sum of square deviation and the slope/intercept of the 

linear fit (Figure S3). 

We also monitored the intensity of experimental restraints, which depends on the square sum of 

the uncertainty parameters 𝜎A,EGEPQ and 𝜎A,ERS" (cf. Theory and Methods). To this aim, we computed 

the distribution across the hySAXS ensemble of both 𝜎A,EGEPQ, which is associated with experimental 
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and forward model inaccuracies, and 𝜎A,ERS", i.e. the standard error of the mean over the replicas. 

We observed a broader distribution of the sampled parameter 𝜎A,EGEPQ with respect to 𝜎A,ERS"(Figure 

2B), with greater uncertainties associated with smaller scattering angles (where indeed the global 

conformation mostly influences SAXS profiles). The values of 𝜎A,ERS"are always within the range 

sampled by 𝜎A,EGEPQ, indicating that the two sources of error comparably contribute to the restraint 

weight and suggesting that the number of replicas (which concurs in determining the magnitude 

of 𝜎A,ERS") is sufficient.  

 

 

Figure 2. (A) Correlation, as a function of the simulation time, between experimental and back-

calculated SAXS intensities, averaged over the replicas. The intensities considered are the ones 

used as restraints in the hySAXS simulation. (B) Probability density functions of the uncertainty 

parameters 𝜎GEPQ and 𝜎RS"	(expressed in a.u.) for the 11 scattering angles considered. 
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3.3 Comparison of the resulting conformational ensembles. 

The agreement with experimental SAXS data was eventually evaluated considering the whole 

conformational ensembles sampled within the unrestrained or hySAXS simulations. To this aim, 

we needed to estimate a scaling factor 𝜆 that relates experimental and calculated data. This value 

could in principle be determined by comparing the intensities at q = 0 scattering angle, but since 

I(0) cannot be measured in SAXS experiments, we chose the 𝜆 that minimizes the 𝜒* (computed 

over 19 q-values in the range 0.02-0.20 Å/C) between hySAXS and experimental intensities. We 

observed that hySAXS provides a better match with experimental data (as confirmed by the 

𝜒*,	0.44 and 3.6 for the hySAXS and unrestrained simulations respectively), while the unrestrained 

ensemble strongly deviates from the experimental profile, showing a shape that is indicative of an 

over-sampling of extended conformation (Figure 3A). Importantly, our conclusions are 

independent upon the choice of the scaling factor, indeed hySAXS simulation provides a better 

agreement with experiments also when choosing a 𝜆 that minimizes the 𝜒* of unrestrained 

intensities (Figure S4).  

Accordingly, we noticed a remarkable effect of SAXS restraints on the inter-domain dynamics, as 

shown by the comparison of the probability density function of the gyration radius and the 

minimum inter-domains distance (Figure 3B and S5). Both the ensembles populate a wide range 

of gyration radius values (spanning from 1.5 to 3.0 nm), in agreement with the observation that 

K63-Ub2 exists in a dynamic ensemble comprising both extended and compact states. 

Nevertheless, the hySAXS ensemble prefers more compact conformations, resulting in an average 

gyration radius of 2.05±0.03 nm, in contrast with the one of 2.16±0.05 nm obtained for the 

unrestrained ensemble. Altogether, our results support the idea that the unrestrained ensemble 
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over-estimates the population of extended conformations while the hySAXS ensemble better 

reproduces the correct balance between compact and open states. This propensity towards 

extended states for the unrestrained ensemble could be explained by the use of the amber03ws, a 

force-field that was specifically designed to prevent the over-stabilization of compact states for 

IDPs but that has some known limitations with well-folded biomolecules62. Importantly, here we 

showed that SAXS restraints could be effectively used to contain this trend. 

Figure 3. (A) Kratky plot comparing the experimental curve with the ones calculated (via atomistic 

approach) from the hySAXS and the unrestrained conformational ensembles. (B) Distribution of 

the gyration radius in the hySAXS (green) and in the unrestrained (light blue) conformational 

ensembles. The vertical bars indicate the average back-calculated gyration radius, the shade 

indicates the standard error, computed via block-average analysis. 

Lastly, in Figure 4, we reconstructed 2d-free energy landscapes in a space defined by the C𝛼-

gyration radius and a global dihedral angle 𝜃 (used also as metadynamics CVs, see Figure S6), 

that describes the relative orientation of the two ubiquitin domains. Interestingly, the coordinates 

in this space of the available K63-Ub2 PDB structures mostly fall in regions characterized by low 
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free-energy according to both hySAXS and unrestrained simulations, indirectly supporting the 

reliability of the employed force field. The inspection of the 2d-fes revealed that in the two 

ensembles the Ub domains can reorient freely when extended but prefer different Ub-Ub 

orientation in compact conformations. The contact map analysis (Figure S7) confirms the absence 

of highly stable inter-domains contacts, supporting the idea that numerous different interfaces are 

accessible, and shows that in the two simulations diverse groups of residues are preferred for inter-

domain interactions, where the major differences concern the residues of distal ubiquitin (the 

majority of contacts are engaged by distal residues 42-49 according to hySAXS and by residues 

6-11 according to the unrestrained simulation). Based on this observation, we hypothesized that 

SAXS restraints could help in sampling more reliable protein-protein interfaces. To test this 

hypothesis, we proceeded by validating our conformational ensemble against PRE data. 

 

Figure 4. 2d-free energy surface for K63-Ub2, derived by the hySAXS (left panel) and the 

unrestrained (right panel) ensembles, as a function of the C𝛼-gyration radius and the global 

dihedral angle 𝜃 (see Supplementary Text S1 and Figure S6). The coordinates of the available 

PDB structures in this space are plotted with points (colored from red to white, from more compact 
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to extended conformations). To make the C𝛼-gyration radius comparable with the one back-

calculated from the PDB structures, only residues 1-72 of the two ubiquitin domains were 

considered. 

3.4 Validation and analysis of the Ub-Ub interfaces. 

PRE experiments from NMR are particularly suited to provide information about inter subunit 

distances in multi-domain proteins. In these experiments, after conjugation of a specific residue 

with a paramagnetic probe, PRE can be measured for the other domain, where PRE values are 

proportional to the inverse sixth power of the distance between the paramagnetic center and the 

nuclei. Due to this functional form, PRE data are extremely sensitive to closed states even if 

sparsely populated63. Therefore, a comparison of the conformational ensemble against PRE is 

particularly indicated to validate the Ub-Ub interfaces of the compact states and their relative 

population. 

Liu and co-workers previously acquired inter-subunit PRE data for K63-Ub2, conjugating the 

paramagnetic probe on residues N25 or K48 of the distal ubiquitin, after N25C/K48C mutations, 

and detecting many large PRE for some residues of the proximal unit27,64. We back-calculated the 

same PRE values from our hySAXS and unrestrained conformational ensembles, approximating 

the paramagnetic center–nuclei distances with the distances between the C𝛽 atom of N25 or K48 

and all the amide hydrogens of the proximal ubiquitin. To account for this approximation, we 

evaluated an error of ±3Å on the estimation of these distances, which finally gave us an estimation 

of the minimum/maximum PRE values. We observed that experimental N25-PRE is in good 

agreement with the ones calculated from the hySAXS ensemble (Figure 5, upper-left panel), 

suggesting that the compact interfaces are correctly sampled in our hySAXS run. Conversely, the 
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unrestrained ensemble fails to reproduce N25-PRE for the proximal unit residues 8-14 (Figure 5, 

lower-left panel). Both the hySAXS and the unrestrained ensembles correctly identify the regions 

where high K48-PRE are detected (Figure 5, right panels), nevertheless in both cases we observe 

a significant over-estimation of the PRE involving the residues 20-23 of the proximal unit.  

 

Figure 5. Comparison of experimental (black line) and back-calculated inter-subunit PRE for the 

residues of K63-Ub2 proximal ubiquitin, with the paramagnetic probe conjugated at N25C (left 

panels) or K48C (right panels) of the distal ubiquitin. The area between the minimum/maximum 

back-calculated PRE values, considering a ±3Å error on the estimation of probe-nuclei distances, 

is colored with green or light-blue shades, for hySAXS and unrestrained ensembles, respectively. 

The respective back-calculated PRE, without distance correction, is shown with green and light 

blue lines. PRE values higher than 120 s-1 are indicated with a star on the top of the graph.  
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As the comparison with both N25 and K48-PRE supports the reliability of our hySAXS ensemble 

in sampling correct Ub-Ub interfaces, we hypothesized that the observed deviations could arise as 

a consequence of the introduction of the paramagnetic probe at the K48 site in PRE experiments, 

along with the K48C mutation. Indeed, while N25C mutation is more conservative, the 

replacement of a charged amino acid (K48C) could destabilize relevant inter-domains contacts. To 

support this hypothesis, we analyzed the energetic contributions of each residue to the interface 

formation. We found that, according to the hySAXS ensemble, K48 of proximal ubiquitin is 

important in stabilizing electrostatic interactions at the interface and that a part of these contacts 

are indeed engaged with the negatively charged D21 residue of distal ubiquitin, belonging to the 

region where the major deviations were observed (Fig 6A,B). Importantly, we verified that this is 

not the case for N25, where neither Coulomb nor Lennard-Jones interactions seem to play a major 

role in stabilizing the Ub-Ub interfaces (Figure 6A and S8). 

In order to have a deeper insight into the sampled Ub-Ub interfaces, we analyzed the 

conformational minima identified by our hySAXS run. The pool of compact conformations 

(defined as the ones with C𝛼-gyration radius lower than 2.0 nm and accounting for the 57% of the 

conformational space) were clustered based on backbone RMSD with a cutoff of 6 Å. This 

procedure identified three main clusters, with populations of 21%, 10%, and 7%, respectively. As 

expected, these three conformational minima contain quite heterogeneous conformational states 

(Figure S9), supporting the idea that K63-Ub2 can transiently populate many different possible 

interfaces. Nevertheless, the inspection of both their structures and of the corresponding energy 

matrices (Figure S9) allowed us to characterize more in detail the interfaces and the contacts 

driving the inter-domain recognition (Figure 6C-E). We observed that in all the three minima the 

positive residues R42, R72 and/or R74 of distal ubiquitin engage electrostatic interactions with 
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negatively charged residues of the proximal domain (mainly E16-E64, E18 and E64 for minima 1, 

2 and 3, respectively). In addition to these interactions further contacts characterize the different 

minima, again involving mainly charged residues (Figure 6C-E). While in the most populated 

minimum 1 hydrophobic interactions are almost absent, these are present in the other minima: in 

minimum 2 contacts between distal I44 and proximal S20 are observed, while in minimum 3 the 

interface is stabilized also by contacts between the aliphatic side-chains of distal residues E24-N25 

and the proximal F45-A46.  

Overall, our analysis revealed the involvement of many charged residues in the Ub-Ub interface 

and suggests that K63-Ub2 prefer electrostatic interfacial contacts, being hindered by steric 

constraints to interact via the common I44/I36 hydrophobic patches, in line with previous reports65. 

Our results are in agreement with previous mutagenesis experiments concerning the E64 residue 

of the proximal unit, which plays a major role in both minima 1 and 3 interfaces. Indeed, it was 

reported that E64 is important for the stabilization of closed conformations, where an E64R 

mutation was shown to decrease the binding affinity toward ligands, known to bind the K63-Ub2 

closed states, via an entropically-driven mechanism. Herein, our results support the conformational 

selection mechanism proposed by Liu and coworkers27 for K63-Ub2 ligand recognition. 
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Figure 6. (A) Per-residue Coulomb energy obtained summing over the residue-residue energetic 

contributions for pairs of residues belonging to the two different Ub domains. Residues of distal 

and proximal ubiquitin are colored in orange and red, respectively; the lowest energy peaks are 

labeled. (B) Coulomb energy matrix reporting on the electrostatic interactions between the two 

domains. The column corresponding to the interactions engaged by distal K48 is highlighted in 

red. (C-E) Representative conformations extracted from the main minima of the compact state. 

Their population is reported and relevant residues for the interface are highlighted in sticks. 

4. CONCLUSIONS 

In this work, we presented a hybrid-resolution MD-based strategy, useful to determine 

conformational ensembles providing an accurate interpretation of SAXS data. The proposed 

approach makes the inclusion of SAXS in MD simulations feasible in terms of computational 

efficiency without losing atomistic details and allows us to deal with highly flexible systems, 

aiding in the estimation of the population of the different existing conformational states. 
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To prove the efficacy of the method, it has been here applied to study the conformational 

ensemble of the multidomain protein K63-Ub2. Our results reveal that the inclusion of SAXS 

restraints can significantly influence the relative positioning of the different sub-units and the 

degree of protein extension improving the reliability of the conformational sampling, as supported 

by indirect validations and by quantitative comparison with independent experimental data. 
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