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This paper presents a quantum mechanical approximation to the calculation of thermal rate constants.
The rate is derived from a suitable stationary phase approximation to the time integral of the thermal
flux-flux correlation function. The goal is to obtain an expression that barely depends on the position
of the flux operators, i.e., of the dividing surfaces, so that it can be applied also to complex systems
by arbitrarily locating the dividing surfaces. The approach is tested on one and two dimensional
systems where quantum effects are predominant over a wide range of temperatures. The results are
quite accurate, i.e., within a few percent of the exact values for a reasonable range of dividing surface
positions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984099]

I. INTRODUCTION

The calculation of the thermal reaction rate constant k(T )
is a central problem in theoretical chemistry, and a quantum
theory for its estimate is important because there are several
physical processes including quantum nuclear tunneling and
reflection where classical mechanics is not appropriate. To
address this task, exact quantum expressions have been for-
mulated, and these methods are well established nowadays.1,2

For example, a bimolecular reaction can be described in great
detail by obtaining the S-matrix Snp,nr(E,J) as a function of
total energy E, and total angular momentum J. Snp,nr(E,J)
must be calculated for each open channel, i.e., for all reac-
tive processes going from the quantum ro-vibrational state of
the reactants (nr) to the product state (np), which are compat-
ible with the E and J values. However, in the vast majority
of chemical applications, the quantity of interest is k(T ). In
those cases, it is inefficient to calculate the full S-matrix and
then sum up all state-to-state probabilities to get the full rate
estimate. Instead, it is the more convenient “direct” and “cor-
rect” way introduced by Miller, where the rate k(T ) is obtained
by integrating over time the quantum flux-flux correlation
Cf f (t),

k (T ) Qr (T ) =
∫ ∞

0
Cf f (t) dt, (1)

where Qr (T ) is the reactant partition function. A possi-
ble quantum expression for Cf f (t) has been proposed by
Miller et al.,3

Cf f (t) = Tr
[
F̂1e−

βĤ
2 + iĤt

~ F̂2e−
βĤ
2 −

iĤt
~

]
, (2)

where the thermal part has been symmetrized. In Eq. (1), F̂1

and F̂2 are the quantum flux operators through two differ-
ent dividing surfaces (DSs) defined in the coordinate space,
where F̂i ≡

d
dt ĥi and ĥi is the Heavyside operator at the i-esime

DS location, Ĥ is the quantum Hamiltonian operator, and β
= 1/kBT is the reciprocal of the temperature where kB is the

Boltzmann constant. Equation (2) has been proven to mini-
mize re-crossing contributions,4 which suggests that Eq. (2) is
particularly suitable as a starting point for any approximation
that would avoid the explicit time-integration, and it stresses
the symmetry of the “complex time” forward and backward
evolution operators. This method has been applied using Dis-
crete Variable Representations (DVRs) for the calculations of
thermal rate constants of several reactive systems.5–9 Further-
more, by combining the multi-configurational time-dependent
Hartree (MCTDH) approach and the flux–flux correlation
function formalism, a direct calculation of accurate thermal
rate constants was obtained for systems up to twelve degrees
of freedom.10–12 However, the evaluation of the quantum
mechanical trace in Eq. (2) and the time evolution of Eq. (1)
remain computationally demanding in higher dimensional sys-
tems. For these reasons, approximate approaches are necessary
when dealing with complex reactions. The semiclassical initial
value representation (SC-IVR) and its approximations, such
as the linearized SC-IVR (LSC-IVR), the forward-backward
SC-IVR (FB-IVR), and the Van Vleck SC-IVR (VV-IVR),
have also been applied for the calculation of the thermal rate,
solving Eqs. (1) and (2) with phase space real-time classical
trajectory integration.13–21

A well known approximate approach for the rate con-
stant evaluation is the Transition State Theory (TST). TST is
a zero-time classical approximation that relies on the direct
dynamics approximation,22,23 where any re-crossings across
the DS are neglected. Thus TST provides an upper bound
to the exact classical rate constant and ignores any quantum
effects,24 such as tunneling and corner cutting. Given these
limitations, a quantum analog of TST is still under search.
The main reason is that it is difficult to have a universal defi-
nition of Quantum Transition State Theory (QTST) because,
opposite to classical TST,25,26 in QTST any local evaluation
of the reactive flux is invalidated by the uncertainty princi-
ple. The main advantage of a QTST approach is that no real
time evolution is requested.27–30 QTSTs are amenable to the
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imaginary time path integral formulation,31 thus avoiding to
face the difficult sign problem, which hampers the applica-
tion of other quantum6,32,33 or semiclassical methods explic-
itly including real-time evolution for the calculations of rate
constants.13–16,18,19,21,34–54

The most straightforward inclusion of quantum effects in
a TST formulation is to use the exact quantum partition func-
tions for reactants and transition states. A more refined strategy
is to employ semiclassical theories, which have already been
successfully employed in many fields of theoretical chem-
istry.54–57 In kinetics, the main semiclassical theories are Rice–
Ramsperger–Kassel–Marcus (RRKM), Semiclassical Transi-
tion State Theory (SCTST),27,58–60 and Semiclassical Instan-
ton (SCI).27,61,62 If the real-time evolution is approximated
with classical dynamics and the thermal part calculated by path
integral techniques, the state of the art is represented by Ring
Polymer Molecular Dynamics (RPMD),49,63,64 which can pro-
vide TST-like versions,65 and Centroid Molecular Dynamics
(CMD).69–71

Among QTST methods, the one that is of particular inter-
est for the present work is the Quantum Instanton (QI).45,69,70

QI is inspired from the semiclassical instanton theory27 but
adopts a path integral treatment for the quantum Boltzmann
statistics. QI has been proven to incorporate correctly all tun-
neling, corner-cutting, and quantum-fluctuation effects and
has provided very satisfactory results for a variety of prob-
lems, ranging from gas phase reactions20,72–75 to chemical
reactions in a polar solvent31 and from gas-surface reac-
tions73,74 to isotopic effects.75–79 On one hand, the method
has many appreciable features. First, it is very accurate, within
20%, over a wide temperature range, from the deep tunneling
regime up to the higher temperatures. Second, it makes no
arbitrary assumptions about a specific reaction path or reac-
tion coordinate. Finally, the only quantity which has to be
evaluated is the Boltzmann operator (and its thermodynamic
β derivatives) that can be estimated by well known imagi-
nary time path integral techniques.20,80 On the other hand,
the QI approach presents a few drawbacks. First, it needs a
fitted potential energy surface, which may be difficult to con-
struct for complex or high-dimensional systems despite recent
advances in the field.81–91 Second, like any other QTST, QI
does not reproduce recrossing effects, which are present in a
quantum world both along the reactive and the non-reactive
coordinates (i.e., the manifold space perpendicular to the
DS).

In this paper, we introduce a quantum formulation for the
calculation of the thermal rate constant with the main goal of
reducing the strong DS dependency of previous QTST for-
mulations. The method is obtained by the stationary phase
approximating the time integral of the thermal flux-flux cor-
relation function. The idea is pictorially described in Fig. 1,
where a wave function is transmitted across a barrier. Differ-
ently from classical TST and some previous QTST approaches,
we propose a two-DS approximation, where the DSs are arbi-
trarily located apart, i.e., on opposite sides of the barrier. The
idea is to have the wave packet propagating from one DS to
the barrier, tunneling through the barrier, and finally ending
up to the products’ side DS through an additional real time
quantum propagation. The picture can be easily extended to

FIG. 1. Pictorial representation of the method presented here: the thermal
rate constant is calculated at fixed DS positions by evaluating the quantum
real and imaginary time propagator for a fixed amount of total time.

many dimensions by considering the wave packet propagating
along any energy path. The amount of real versus imaginary
time and the expression of the quantum propagator that follow
this picture are not obtained by the product of three (two real
and one imaginary time) propagators. Since all paths should be
taken into account, this approach would end up in a real-time
path integral calculation, which is numerically quite challeng-
ing. Instead, we will show below how the rate expression
and the amount of real versus imaginary time can be found
directly through a stationary phase approximation to the flux-
flux correlation function time integral. Given this picture, any
re-crossing effect is greatly reduced, since the two DSs are far
apart, one on the reactants and the other one on the products’
valley. In particular, to obtain the rate estimate, we will show
that one needs only a single time evaluation of the flux-flux cor-
relation function, which is the time ts at which a given quantity
is stationary. When ts = 0, one may obtain the QI formulation,
a typical QTST approximation. When ts , 0, the estimate of
the thermal rate is much less dependent on the DS position
than other QTST formulations. This is a very important fea-
ture, since the best DS location is not trivial to find for complex
systems.

The paper is organized as follows. In Sec. II, we introduce
our stationary phase approximation to the thermal flux-flux
correlation function integral. In Sec. II, we show how the
approximation is related to the QI one, and we apply it to an
analytically solvable problem, i.e., the free particle. In Sec. III,
we test the method for the symmetric and asymmetric Eckart
barriers and for the two collinear reactions H + H2 and D + H2.
Finally, results are compared to some approximate methods for
the calculation of thermal reaction rate constants and to exact
values. In Sec. IV, we conclude and provide some perspective
developments.

II. THE METHOD
A. The approximate thermal rate expression

This paragraph presents the main idea of this paper and
introduces an approximate expression for the thermal rate
constant. The derivation is done for the one dimensional
case. However, the results can be easily generalized to many
dimensions.
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We start from the exact quantum rate expression given
by Eqs. (1) and (2). The value of the exact thermal rate con-
stant k(T ), which is the shaded area under the curves of Fig. 2,
is independent from the position of the two DSs. However,
the shape of the flux-flux correlation function significantly
changes depending on the position of the DSs, as shown in
Fig. 2. More specifically, when the two DSs are coincident,
i.e., when F̂1 = F̂2 = F̂, the profile of Cf f (t) has its maximum
at time t = 0. Once the two DSs are separated and the distance
between them increased, the correlation function becomes
double bell shaped with the maximum moving away from
t = 0.

Once the DSs are far enough, the flux-flux correlation
function value for t = 0 is Cf f (0) ≈ 0. We now use the sym-
metry property of Cf f (t), which is an even function of time,
and extend the integration limit of Eq. (1) to �∞ by taking half
the integral

k (T ) Qr (T ) =
1
2

∫ +∞

−∞

Cf f (t) dt. (3)

By multiplying and dividing the integrand by the positive-

definite term |〈x1 |e−
βĤ
2 −

iĤt
~ |x2〉|

2 where x1 and x2 are the DS
positions, we can restate the rate equation (3) in an equivalent
form

k (T ) Qr (T )=
1
2

∫ +∞

−∞

Cf f (t)

����

〈
x1

����e
−

βĤ
2 −

iĤt
~

���� x2

〉����
2

e
ln

�����

〈
x1

�����
e−

βĤ
2 −

iĤt
~

�����
x2

〉�����

2

dt.

(4)

We have numerically observed that depending on the DS loca-

tion, there is a certain range where Cf f (t) /|〈x1 |e−
βĤ
2 −

iĤt
~ |x2〉|

2

FIG. 2. Shape of the flux-flux correlation function at different DS locations
for the Eckart barrier at 400 K. The black curve is obtained when the two
DSs are both located on the top of the barrier, as shown for the potential
depicted in the inset. By increasing the distance between the two DSs, the
shape of the flux-flux correlation function gradually changes as shown by
the blue and the cyan curves. The shaded area represents the value of the rate
constant which is independent from the position of the two DSs. These features
are general and independent from the particular potential and temperature
considered.

is a slowly varying function of time and exp [ln |〈x1 |

e−
βĤ
2 −

iĤt
~ |x2〉|

2] is the fast varying part of the integrand. Under
this condition, we can evaluate the time integral of Eq. (3)
by the stationary phase approximation. The stationary phase
prescription implies that

d
dt

ln
����

〈
x1

����e
−

βĤ
2 −

iĤt
~

���� x2

〉����
2�����t=ts

= 0, (5)

where ts is the time when the phase is stationary. Equation (5)
implies that

−
i
~

〈
x1

����Ĥe−
βĤ
2 −

iĤts
~

���� x2

〉
〈
x1

����e
−

βĤ
2 −

iĤts
~

���� x2

〉 +
i
~

*...
,

〈
x1

����Ĥe−
βĤ
2 −

iĤts
~

���� x2

〉
〈
x1

����e
−

βĤ
2 −

iĤts
~

���� x2

〉 +///
-

∗

= −
i
~

[
E (β, ts) − E∗ (β, ts)

]
=

2
~

Im
[
E (β, ts)

]
= 0, (6)

where we have defined

E (β, t) =

〈
x1

����Ĥe−
βĤ
2 −

iĤt
~

���� x2

〉
〈
x1

����e
−

βĤ
2 −

iĤt
~

���� x2

〉 . (7)

E (β, t) is an odd function of time and ts = 0 is always a
solution of Eq. (6). Therefore, independently from the sys-
tem considered, there will be for all DS positions at least
one solution (ts = 0), and if ts , 0 is an additional sta-
tionary time, also �ts will be a stationary point. A typical
plot of Im

[
E (β, t)

]
versus time is reported in Fig. 3. We

can see that the DS position can be chosen such that ts is
smaller than the flux-flux correlation function decay time, i.e.,
~β.3

Now we expand the exponent in Eq. (4) in the Taylor series
up to second order around each stationary time ts point

FIG. 3. Typical plot of Im
[
E (β, t)

]
for the Eckart barrier at 150 K. The DSs

are placed at 4.62 a.u. distance. The Cf f (t) decay time ~β is indicated by a
vertical dashed-dotted line as well as the stationary time ts.



214115-4 C. Aieta and M. Ceotto J. Chem. Phys. 146, 214115 (2017)

ln
����

〈
x1

����e
−

βĤ
2 −

iĤt
~

���� x2

〉����
2
≈ ln

����

〈
x1

����e
−

βĤ
2 −

iĤts
~

���� x2

〉����
2

+ (t − ts)
d
dt

ln
����

〈
x1

����e
−

βĤ
2 −

iĤt
~

���� x2

〉����
2�����t=ts

+
(t − ts)2

2
d2

dt2
ln

����

〈
x1

����e
−

βĤ
2 −

iĤt
~

���� x2

〉����
2�����t=ts

.

(8)
By taking the second derivative

d2

dt2
ln

����

〈
x1

����e
−

βĤ
2 −

iĤt
~

���� x2

〉����
2�����t=ts

= −
2

~2
Re∆H2 (β, ts) , (9)

we evaluate the stationary-phase approximation,

k (T ) Qr (T ) ≈
∑

ts

1
2

∫ +∞

−∞

dt
Cf f (ts)

����

〈
x1

����e
−

βĤ
2 −

iĤts
~

���� x2

〉����
2

e
ln

�����

〈
x1

�����
e−

βĤ
2 −

iĤts
~

�����
x2

〉�����

2

+ (t−ts)2

2

(
− 2
~2

Re∆H2(β,ts)
)

=
∑

ts

1
2

Cf f (ts)

����

〈
x1

����e
−

βĤ
2 −

iĤts
~

���� x2

〉����
2

e
ln

�����

〈
x1

�����
e−

βĤ
2 −

iĤts
~

�����
x2

〉�����

2 ∫ +∞

−∞

dte−
(t−ts)2

~2
Re∆H2(β,ts), (10)

and after the Gaussian integration at each stationary point, we obtain

k (T ) Qr (T ) ≈
∑

ts

1
2

~
√
π√

Re∆H2 (β, ts)
Cf f (ts) , (11)

where

∆H2 (β, ts) =

〈
x1

����Ĥ
2e−

βĤ
2 −

iĤts
~

���� x2

〉
〈
x1

����e
−

βĤ
2 −

iĤts
~

���� x2

〉 −
*...
,

〈
x1

����Ĥe−
βĤ
2 −

iĤts
~

���� x2

〉
〈
x1

����e
−

βĤ
2 −

iĤts
~

����x2

〉 +///
-

2

(12)

and Cf f (ts) is the flux-flux correlation function value at time t = ts defined as

Cf f (ts) = Tr
[
F̂1e−

βĤ
2 + iĤts

~ F̂2e−
βĤ
2 −

iĤts
~

]
. (13)

From the symmetry considerations pointed out above, and considering that both the flux-flux correlation function and
Re∆H2 (β, ts) are even functions of time, we can restate Eq. (11) as the sum

k (T ) Qr (T ) ≈
1
2

~
√
πCf f (ts = 0)√

Re∆H2 (β, ts = 0)
+

1
2

~
√
πCf f (ts)√

Re∆H2 (β, ts)
+

1
2

~
√
πCf f (−ts)√

Re∆H2 (β,−ts)

=
1
2

~
√
πCf f (ts = 0)√

Re∆H2 (β, ts = 0)
+
~
√
πCf f (ts)√

Re∆H2 (β, ts)
, (14)

which includes a single value of ts , 0. Finally, recalling that we have chosen the two DSs sufficiently far apart that Cf f (0) = 0,
we obtain the central result of this paper

k (T ) Qr (T ) ≈
~
√
π√

Re∆H2 (β, ts)
Cf f (ts) . (15)

Following the work of Miller et al.,72 Eq. (15) can be extended to multidimensional problems by taking

∆H2 (β, ts) ≈
〈
∆H2 (β, ts)

〉
=
∫ dY1 ∫ dY2

〈
x1Y1

����Ĥ
2e−

βĤ
2 −

iĤts
~

���� x2Y2

〉 〈
x1Y1

����e
−

βĤ
2 −

iĤts
~

���� x2Y2

〉
∫ dY1 ∫ dY2

(〈
x1Y1

����e
−

βĤ
2 −

iĤts
~

���� x2Y2

〉)2

−
∫ dY1 ∫ dY2

(〈
x1Y1

����Ĥe−
βĤ
2 −

iĤts
~

���� x2Y2

〉)2

∫ dY1 ∫ dY2

(〈
x1Y1

����e
−

βĤ
2 −

iĤts
~

���� x2Y2

〉)2
, (16)

where the average is over the Y coordinates, i.e., the
set of coordinates orthogonal to the reactive one at the
TST location. This approximation is exact in the sep-
arable limit, and it is an extension to complex time

of what was previously derived for purely imaginary
time.72

In summary, the procedure for the approximate evalua-
tion of the thermal rate constant is first to fix the two DSs
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sufficiently far apart such that Cf f (0) = 0. Then, find the zero
of Eq. (6) and finally, evaluate Eq. (15) at the time ts.

B. An alternative derivation of the quantum
instanton approximation

In this paragraph, we show that the same procedure pre-
sented above can be employed to derive the QI expression, at
least in its simplest one DS version. To prove this, we first
choose the two DSs to be the same, i.e., x1 = x2 = x0,

k (T ) Qr (T ) =
1
2

∫ +∞

−∞

dt
Cf f (t)

����

〈
x0

����e
−

βĤ
2 −

iĤt
~

���� x0

〉����2
e

ln
�����

〈
x0

�����
e−

βĤ
2 −

iĤt
~

�����
x0

〉�����

2

.

(17)
We now remember that the QI approximation is a zero-time
approximation, i.e., a proper QTST approximation, differently

from Eq. (15). To retrieve its expression, one could naively
impose t = 0 in Eq. (17), but in this way the integral is too
approximated. Hence, we expand the exponent in Eq. (17) up
to the second order around the QI stationary time t = 0,

ln
����

〈
x0

����e
−

βĤ
2 −

iĤt
~

���� x0

〉����
2
' ln

����

〈
x0

����e
−

βĤ
2

���� x0

〉����
2

+ t
d
dt

ln
����

〈
x0

����e
−

βĤ
2 −

iĤt
~

���� x0

〉����
2�����t=0

+
t2

2
d2

dt2
ln

����

〈
x0

����e
−

βĤ
2 −

iĤt
~

���� x0

〉����
2�����t=0

.

(18)
Then, we observe that the stationary condition is always satis-
fied since the l.h.s. of Eq. (18) is an even function of time and
the first order term vanishes for any choice of x0. The second
derivative is given by Eq. (9), and we obtain

k (T ) Qr(T )approx
QI =

1
2

∫ +∞

−∞

dt
Cf f (0)

����

〈
x0

����e
−

βĤ
2

���� x0

〉����
2

e
ln

�����

〈
x0

�����
e−

βĤ
2

�����
x0

〉�����

2

+ t2
2

(
− 2
~2

Re∆H2(β,0)
)

=
1
2

Cf f (0)

����

〈
x0

����e
−

βĤ
2

���� x0

〉����
2

e
ln

�����

〈
x0

�����
e−

βĤ
2

�����
x0

〉�����

2 ∫ +∞

−∞

dte−
t2

~2
Re∆H2(β,0). (19)

We now perform the Gaussian integral and obtain the familiar
QI expression69

k (T ) Qr(T )approx
QI =

1
2

Cf f (0)
~
√
π√

Re∆H2 (β, 0)
, (20)

where

∆H2 (β, 0) =

〈
x0

����Ĥ
2e−

βĤ
2

���� x0

〉
〈
x0

����e
−

βĤ
2

���� x0

〉 −
*...
,

〈
x0

����Ĥe−
βĤ
2

���� x0

〉
〈
x0

����e
−

βĤ
2

���� x0

〉 +///
-

2

. (21)

The QI rate in Eq. (20) can be applied to any x0 dividing surface
position. However, this single stationary time formulation is

more accurate when the zeroth order term ln|〈x0 |e−
βĤ
2 |x0〉|

2

is maximized with respect to x0, i.e., ∂〈x0 |e−
βĤ
2 |x0〉/∂x0 = 0,

which is the original QI dividing surface requirement.69

C. An analytical case: The free particle

In order to investigate the general high temperature limit
of Eq. (15), we look at the free particle case. We start from the
matrix elements〈

x1
����e
−
(
β
2 + it
~

)
Ĥ ���� x2

〉
=

√
m

2π~2
(
β
2 + it

~

) e
−

m(x2−x1)2

2~2
(
β
2 + it
~

)
(22)

and the squared modulus of the propagator

����

〈
x1

����e
−
(
β
2 + it
~

)
Ĥ ���� x2

〉����
2
=

m

2π~
√

t2 +
(
β~
2

)2
e
−

m(x2−x1)2β

2

[
t2+

(
β~
2

)2
]

. (23)

For the free particle and considering two distinct DSs, the
flux-flux correlation function is

Cf f (t)fp =
kBT

h
(~β/2)2

[
t2 +

(
β~
2

)2
]3/2




1 +
mβ

(~β/2)2

(x2 − x1) t2

[
t2 +

(
β~
2

)2
]




× exp



−

m(x2 − x1)2 β

2
[
t2 +

(
β~
2

)2
]




, (24)

as demonstrated at the end of Appendix A.
From Eq. (23), the stationary phase condition (5) is

satisfied whenever the time variable t is such that

t




m(x2 − x1)2 β
[
t2 +

(
β~
2

)2
]2
−

1

t2 +
(
β~
2

)2




= 0, (25)

or besides the solution ts = 0, when

ts = ±

√
m(x2 − x1)2 β −

(
β~

2

)2

. (26)

Real time condition for ts implies that m(x2 − x1)2 β > (~β/2)2.
This inequality provides a lower bound for the minimum dis-
tance between the DSs at temperature β, according to the least
uncertainty principle. More specifically, the above inequality
can be written as

m(x2 − x1)2/β = ∆x2mkBT = ∆x2m2v2 = ∆x2
∆p2 >

(
~

2

)2

,

(27)
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where the equipartition theorem kBT/2 = mv2/2 has been
employed. The solution ts = 0 does not contribute to the approx-
imate rate. In fact, the flux-flux correlation function given in
Eq. (24) evaluated at this time gives

Cf f (0)fp =
1

π~2 β2
e
−

2m(x2−x1)2

β~2 , (28)

and its value vanishes when taking the two DSs sufficiently
distant from each other.

After evaluating

����

〈
x1

����e
−
(
β
2 + it
~

)
Ĥ ���� x2

〉����
2�����t=ts

=
m

2π~
√

m(x2 − x1)2 β

e−
1
2 , (29)

we obtain the ratio and evaluate it at t = ts,

Cf f (t)fp

����

〈
x1

����e
−
(
β
2 + it
~

)
Ĥ ���� x2

〉����
2

���������t=ts

=
1

mβ
. (30)

By evaluating the second derivative of the phase, i.e., the
first derivative of the stationary condition (25) at t= ts, we
obtain

d2

dt2
ln

(����

〈
x1

����e
−
(
β
2 + it
~

)
Ĥ ���� x2

〉����
2
) �����t=ts

=
2

m2(x2 − x1)4 β2



(
~β

2

)2

− m(x2 − x1)2 β


. (31)

Finally, after the Gaussian integration, we get to the approxi-
mate free particle rate

Qr (T ) k(T )fp ≈
1

mβ

me−1/2

2π~
√

m(x2 − x1)2 β

√
π

×



−
1
2

*...
,

2
((
~β
2

)2
− m(x2 − x1)2 β

)
m2(x2 − x1)4 β2

+///
-



−1/2

=
kBT

h

√
π

e

√√√
m(x2 − x1)2 β

m(x2 − x1)2 β −
(
β~
2

)2

=
kBT

h

√
π

e

√
1 +

(
~β

2ts

)2

. (32)

The free particle expression of Eq. (32) is quite accurate
at high temperatures, regardless of the actual position of the
two DSs. In fact, for small β, Qr (T ) k(T )fp ≈ (kBT/h)

√
π/e

which is quite a good approximation of the exact kBT /h rate,
since

√
π/e = 1.075, and to be compared with the QI free par-

ticle limit equals to (kBT/h)
√
π/2.69 At a low temperature, the

accuracy depends on the position of the DSs. However, fixing

the DSs such that ts ∼ ~β, we obtain again a better accuracy
than the QI one.

III. RESULTS AND DISCUSSION
A. Results for the 1D symmetric and asymmetric
Eckart barrier

The one dimensional Eckart barrier problem is a stan-
dard test for approximate rate theories. The Eckart symmetric
potential is

V (x) = V0sech2 (ax), (33)

and in this paper, the parameters are chosen to approximately
model the H + H2 minimum energy path, i.e., V0 = 0.425 eV,
a = 1.36 a.u., and m = 1060 a.u. Another useful one dimen-
sional potential is the Eckart asymmetric potential, which
can be regarded as a model for a heteroatomic bimolecular
reaction

V (x) =
V0 (1 − α)

1 + e−2ax
+

V0

(
1 +
√
α
)2

4 cosh2 (ax)
. (34)

In our tests, we set the parameters in Eq. (34) as
V0 = 0.015 62 eV, a = 1.3624 a.u., α = 1.25, and m = 1060 a.u.
The potentials of Eqs. (33) and (34) are reported in Fig. 4.
All the matrix elements needed to calculate Eq. (15) have
been evaluated by diagonalizing the Hamiltonian in a DVR
representation (sinc-DVR).95 For both potential profiles,
we have obtained the estimates of the thermal rate con-
stant at several positions of the two DSs (see Tables I
and II) after evaluating the stationary time ts as shown in
Fig. 3. Both for the symmetric and asymmetric potentials,
we intentionally set the surfaces symmetrically with respect
to the top of the barrier. We find that the results are just a
few percentage away from the exact ones that we calculated
by DVR, independently from the position of the two DSs

FIG. 4. The symmetric (a) and asymmetric (b) Eckart barrier potentials. The
two dashed vertical lines located at x1 and x2 represent possible positions of
the DSs.
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TABLE I. Percentage error [%Err = 100× (kapprox − kexact)/kexact] of the
calculated rate constant with respect to the exact rate for the 1D symmetric
Eckart potential of Eq. (33) at three temperatures (150 K, 300 K, and 1000 K).
x1 and x2 are the positions of the two DSs with respect to the top of the
barrier.

T (K)

x1 (a.u.) x2 (a.u.) 150 300 1000

�1.47 1.47 12.7% 0.8% �3.9%
�1.75 1.75 7.0% 2.5% �3.3%
�2.03 2.03 4.6% 3.4% �2.8%
�2.31 2.31 0.9% 2.5% �3.2%
�2.59 2.59 4.4% 3.4% �1.8%
�2.87 2.87 2.0% 1.3% �2.4%
�3.15 3.15 5.0% 2.0% �1.2%
�3.43 3.43 1.4% −0.5% �1.9%

TABLE II. The same as in Table I but for the asymmetric Eckart potential of
Eq. (34).

T (K)

x1 (a.u.) x2 (a.u.) 150 300 1000

�1.77 1.77 3.5% 2.2% �5.2%
�2.30 2.30 −7.8% 2.4% �4.2%
�2.83 2.83 −6.0% 0.9% �3.4%
�3.37 3.37 −3.8% −1.5% �3.0%
�3.90 3.90 −3.6% −4.1% �2.5%
�4.43 4.43 −3.4% −6.8% �2.3%
�4.97 4.97 −3.3% −9.3% �2.1%

and provided they are sufficiently far from each other. It is
surprising that a symmetric DS disposition gives accurate
results even for the asymmetric potential, and comparable in
accuracy to those obtained for the symmetric barrier.
Furthermore, the asymmetric potential results can be improved
by choosing the DS positions in an asymmetric fashion, as
shown in Table III.

To better appreciate the accuracy of the present approxi-
mation [Eq. (15)], we compare the results of Table I with other
approximate approaches for the calculation of the thermal rate
constants, as shown in Table IV. The present approach can
predict very accurate rate constants (with errors below 13%).
In contrast, the RPMD,49 the Linearized Semiclassical Initial
Value Representation (LSC-IVR),17 and the Semiclassical Van
Vleck Initial Value Representation (SC-VV-IVR)17 methods

TABLE III. Percentage error [%Err = 100× (kapprox − kexact)/kexact] of the
calculated rate constant with respect to the exact rate for different choices
of the DS positions at 300 K in the asymmetric Eckart barrier case. Results
are reported as a function of the position x2 of the right DS and for different
settings of the left DS x1.

x1 (a.u.)

x2 (a.u.) �2.03 �2.50 �3.10

2.03 2.6% 2.4% 1.4%
2.50 2.2% 1.8% 0.6%
3.10 2.0% 1.2% �0.2%
3.63 1.6% 0.4% �1.1%
4.17 1.2% −0.3% �1.8%

cannot retain a high accuracy for the rate estimates in the
deep tunneling regime for this one dimensional case. QI is
very precise at low temperatures but looses accuracy in the
high temperature limit.69 To correct this deviation, Miller
et al. introduced an ad hoc free particle correction reported
in brackets in Table IV. Also, a refined QI approach that
relies on the Higher Derivatives of the flux-flux correlation
function (HD-QI) is better performing over the entire temper-
ature range, but the calculation of higher flux-flux correlation
function derivatives can be quite demanding and the approach
difficult to be applied to more complex systems.45 Remark-
ably, the new approximation of Eq. (15) is stable over a wide
temperature range, from the deep tunneling regime up to higher
temperatures without any ad hoc correction. Furthermore, our
new approach provides a reliable estimate compared to pre-
existing methods even if the positions of the DSs have not been
optimized.

B. Application to the H + H2 and D + H2 reactions

A severe and common multidimensional test for quan-
tum transition state theories is without any doubt the collinear
H + H2 reaction, where the amount of tunneling and corner-
cutting for the rate calculation is prominent. Theories based
on the vibrational adiabatic separation fail to correctly predict
the rate for this simple bidimensional system because of the
rapid change of the curvature for the potential energy surface
around the saddle point.69 For these reasons, we tested Eq. (15)
on the collinear H + H2 reaction. To show that we do not take
advantages from any symmetry property of the potential, we
apply our rate approximation also to the collinear D + H2 reac-
tion. We have employed the Liu-Siegbahn-Truhlar-Horowitz
(LSTH) potential energy surface.97,98 The matrix elements of

TABLE IV. Comparison of the percentage error [%Err = 100× (kapprox − kexact)/kexact] of the thermal rate
constant with respect to the exact value for the symmetric Eckart barrier obtained with different approximate
approaches. Values deduced graphically from the cited paper are indicated by the symbol ∼. The percentage error
reported for the present method is the worst estimate obtained in Table I. Free particle corrected QI results in
brackets.

T (K) LSC-IVR17 SC-VV-IVR17 RPMD49 QI72 HD-QI45 Equation (15)

150 ∼�62 ∼�33 . . . +1.7 (−3.2) ∼+2 +12.7
200 ∼�37 ∼�16 ∼�45 +2.5 (−1.6) ∼�4 +10.7
300 ∼�11 ∼+3 ∼�25 +19.5 (+15.8) ∼+2 +3.4
1000 ∼�7 ∼+3 ∼�5 +21.4 (+2.5) ∼�2 −4
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FIG. 5. The LSTH potential energy surface plotted in mass scaled normal
mode coordinates for the H + H2 reaction. The black star represents the loca-
tion of the transition state. The dotted vertical lines represent three possible
positions (blue, green, and red) for the two DSs.

Eq. (15) are calculated again by DVR methods.92 For these
two dimensional cases, the DSs are assumed to be straight
lines, and we employ mass scaled normal mode coordinates (x
and y). Initially, we choose scaled normal mode coordinates
(x and y). Initially, we choose the DSs to be “vertical” surfaces
defined by the equation x= x1 and x= x2, where x is the asym-
metric stretch mass-scaled normal mode at the transition state,
as depicted in Fig. 5. The results obtained with this setup are
reported in Table V.

If compared with the one dimensional cases, the results
in Table V are less accurate and a stronger dependence on the
DS position can be observed. Nevertheless, the error is still
limited to 60 in the worst case scenario.

We now turn to the collinear D + H2 reaction, where the
potential in the mass scaled normal mode coordinates is asym-
metric. We set the two DSs in the same fashion as done for
the H + H2, i.e., along the y-coordinate and specularly with
respect to the saddle point. We find that the accuracy of rate
estimates is sensitive with respect to the position of the two
DSs, as reported in Table VI. The same range of precision
is found even if we try to set the two DSs in an asymmetric
fashion, following the idea we applied to the one-dimensional
asymmetric Eckart barrier.

At this point, we observe that the idea of the station-
ary phase approximation of the flux-flux correlation function

TABLE V. Percentage error [%Err = 100 × (kapprox − kexact)/kexact] of the
new approach [Eq. (15)]. The rate constants at four temperatures (150 K,
300 K, 600 K, and 1000 K) are reported as a function of the position of the
right DS. These results are obtained with the DSs placed as in Fig. 5, i.e.,
vertical and symmetric with respect to the saddle point position.

150 K 300 K 600 K 1000 K

x2 %Err x2 %Err x2 %Err x2 %Err

36 −20.7 16 +33.0 9 +47.3 9 +19.6
40 −18.0 18 +2.1 12 −3.2 12 �21.7
44 −10.3 20 −8.5 15 +37.1 18 �8.3
48 −5.4 24 −23.1 21 −23.3 21 �36.9
52 −0.3 28 −31.2 24 −43.4 24 �54.3
56 +4.4 30 −30.4 27 −49.5 27 �38.8

TABLE VI. Worst and best percentage error (%Err = 100× (kapprox

− kexact
)
/kexact) of the approach [Eq. (15)] for the D + H2 collinear reac-

tion at three different temperatures. These results are obtained with the DS
positions as indicated in Fig. 5.

T (K) %Err (max; min)

150 �34; �4.1
200 �59; �23
600 �68; �13

integral is based on a fast and a slow part of the time integration.
We also consider that the reactive coordinate usually changes
faster than the non-reactive ones, and we conclude that the
location of the DSs perpendicular to the minimum (classical)
energy path (MEP) better suits the rate constant approach pre-
sented above. Thus, if we place the DSs as shown in Fig. 6, we
obtain the results reported in Table VII. In this way, rate con-
stants are always within 10% of the exact ones and are almost
independent from the position of the DSs. We find a similar
accuracy for the isotopic D + H2 reaction, where the results are
in excellent agreement with the exact value of the rate constant,
even for symmetric DS locations (see Table VIII). These mul-
tidimensional calculations show that the position of the DSs is
close to each other at high temperatures and then they become
far apart as the temperature is lowered. The explanation for
this reasonable behavior is provided by reporting in Fig. 6 the
turning points of the Semiclassical Instanton (SCI) paths. The
SCI trajectories are imaginary time classical trajectories that
represent the analytical continuation in imaginary time of the
real time classical trajectories. Pictorially, one can imagine a
classical trajectory which represents the time evolution of the
reactants approaching the barrier. When the trajectory energy

FIG. 6. The DS location for the LSTH potential energy surface plotted in the
mass scaled normal mode coordinates for the H + H2 system. The black star
represents the position of the transition state. The potential is symmetric with
respect to the transition state. The colored lines represent the three possible
positions [blue (150 K), red (300 K), and green (600 K)] for the two DSs at
different temperatures but always perpendicular to the MEP, which is repre-
sented by the black dashed curve. The blue and the red dots are the positions of
the turning points of the Semiclassical Instanton (SCI) trajectory, respectively,
at 150 K (blue) and 300 K (red).60 The black cross indicates that the position
of the DS is provided by the value of the abscissa along the MEP.
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TABLE VII. Percentage error (%Err = 100 ×
(
kapprox − kexact

)
/kexact) of

the rate constant calculated with Eq. (15) for the collinear H + H2 reaction at
four temperatures (150 K, 300 K, 600 K, and 1000 K). The results are reported
as a function of the x coordinate intersection point between the right DS and
the MEP. The DSs are always perpendicular to the MEP and symmetric with
respect to the x = 0 axis.

150 K 300 K 600 K 1000 K

x2 %Err x2 %Err x2 %Err x2 %Err

35 �0.9 20 �4.9 20 �1.5 9 +4.1
40 +0.4 22 �9.3 22 �2.4 12 +0.6
45 +1.8 24 �10.3 25 �7.7 15 +7.7
50 +3.4 26 �10.0 30 �7.0 18 +2.2
55 +4.0 28 �9.5 32 �4.1 21 +7.4
60 +6.1 30 �9.2 35 �3.4 24 �4.2

is lower than the barrier height, instead of inverting the motion,
the trajectory is continued by the instanton periodic trajectory
oscillating from one turning point to the other, before continu-
ing as a real time trajectory on the other side of the barrier into
the products’ valley. The instanton trajectories are the repre-
sentative of a pure tunneling process and they can be obtained
as the periodic trajectories on the inverted potential.27 One
of us has calculated these periodic trajectories at several tem-
peratures also for the collinear H + H2 reaction and compared
them with a classical TST approach.61 The turning points of the
instanton periodic trajectories are reported in Fig. 6 as colored
dots. As expected from the idea reported in Fig. 1, and accord-
ing to the derivation that generates Eq. (15), a certain amount
of real-time dynamics is calculated from the DSs to the instan-
ton turning points. The distances along the MEP between the
DSs and the same colored dot in Fig. 6 allow us to estimate the
amount of real-time dynamics that the model foresees. Clearly
already at T = 600 K, the instanton trajectories are not present
since the rate is determined by real-time quantum dynamics,
which includes quantum reflection contributions.

Finally, Table IX compares the performance of the present
approach to other approximate methods that have been applied
to the H + H2 collinear reaction. For instance, the Quan-
tum Transition State Theory (QTST) from Liao and Pollak96

and the Mixed Quantum Classical Rate Theory (MQCLT)
approach97 are very precise at high temperature, but less at
low temperature. The QI approximation in its two-DS variant
is very accurate, provided that a free-particle correction at high
temperatures is employed. Our approximation retains a good

TABLE VIII. The same as in Table VII but for the collinear D + H2 reaction.

150 K 300 K 600 K 1000 K

x2 %Err x2 %Err x2 %Err x2 %Err

52 −1.8 26 −8.8 17.8 +0.6 7.5 +7.7
55 −0.1 31.2 −8.0 21.4 −0.4 9 +1.3
58.5 +1.1 36.4 −8.1 24.9 −2.2 10.5 +6.3
61.5 +1.6 41.6 −8.6 28.5 −7.9 13.5 +19.2
64.6 +1.9 46.8 −9.0 33.8 −5.5 16.5 +8.8
67.7 +2.6 52 −8.4 42.75 −6.9 18 +9.2

TABLE IX. Percentage error (%Err = 100 ×
(
kapprox − kexact

)
/kexact) com-

parison of the thermal rate constant for the H + H2 collinear reaction (all with
LSTH PES) between different approximate approaches. The values for the QI
are obtained with two DSs. The percentage error reported for our method is
for the worst case scenario we found.

T (K) QTST96 MQCLT97 QI69 Equation (15)

150 . . . . . . +10 +6.1
200 +270 +270 �4.2 −15.3
300 +91 +29.5 +9.8 −10.3
1000 +6 +3.6 +3 −10.9

accuracy (even if worse than the QI one) over the whole tem-
perature range, but without any ad hoc correction. In conclu-
sion, the main advantage of the present method is its simplicity
and flexibility because it does not need a precise position of
the two DSs along the MEP to get accurate results that could
be quite cumbersome for complex reactions. On the contrary,
other methods require a preliminary optimization of the DS
position.

IV. CONCLUSIONS

In this paper, we have presented a new quantum approx-
imate method for calculating thermal reaction rate constants.
The quantum propagator has to be evaluated at both real and
imaginary times, and one of the principal challenges was to
find a method that allows for a single time evaluation of the
propagator, instead of a complete time evolution. This task
is difficult considering that the reaction flux widely oscillates
between positive and negative values that almost cancel out.
Using the formalism of the flux-flux correlation function for
the exact quantum rate formulation, we performed a stationary
phase approximation to the time integration after extrapolat-
ing the rapidly changing part of the integrand. In this way,
we have obtained Eq. (15), which is the central result of this
paper. Furthermore, the goal was also to get to a formula-
tion able to provide accurate estimates without the need for a
preliminary optimization of the DS positions. We have demon-
strated that Eq. (15) includes this feature by applying this single
time approximation to well-known one- and bi-dimensional
systems, both symmetric and asymmetric, where the substan-
tial quantum effects are mainly responsible for the thermal
rate constant behavior. We found that the new formula of
Eq. (15) is quite accurate over the entire range of temper-
atures tested, despite the fact that we do not introduce any
ad hoc correction. We verified that the method accounts well
for the “corner cutting” observed in the collinear hydrogen
exchange reaction at low temperatures. Furthermore, for all
systems presented, the accuracy of the results is smoothly
dependent on the DS locations. This is important when dealing
with complex (high dimensional) systems, since it is not known
a priori, where the DSs can be more conveniently placed. The
high accuracy of the methods holds as long as the DSs are
set sufficiently far apart so that the flux-flux correlation func-
tion is zero at time zero. This is a necessary condition for
applying the stationary phase approximation, as explained in
Sec. II A. However, the method presents some limitations.
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For instance, opposite to classical TST and some semiclassi-
cal theories,24 this approximation is not a strict upper bound
to the exact quantum rate, as it is often the case for QTSTs.
Also, the better accuracy of the rate calculation with respect
to QTST methods is obtained at the cost of performing real-
time quantum dynamics. Future developments will include the
possibility to avoid the DVR calculation of the propagator and
perform the calculation of the real-time part via semiclassical
dynamics.101–106 This will introduce a further approximation,
since the semiclassical propagator is known to be not suitable
in the deep tunneling regime. However, it is quite accurate in
the calculation of shallow tunneling and quantum reflection
contributions to the rate constant. This foreseen implemen-
tation will allow us to calculate the thermal rate constant
directly from classical trajectories and without any prelim-
inary Monte Carlo or variational search for the best place-
ment of the DSs. We believe that the present approximation
will become very useful when real-time quantum effects are
determinant and important for the rate calculation in complex
reactions.
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APPENDIX A: DERIVATION OF THE FLUX
AUTOCORRELATION FUNCTION FOR TWO
DIVIDING SURFACES: THE PARABOLIC
BARRIER AND FREE PARTICLE CASES

Here we derive the expression of the flux correlation func-
tion for the parabolic barrier with two distinct dividing surfaces
and that one of Eq. (24) by taking the limit ω → 0. We recall
the matrix elements of the parabolic barrier propagator

〈
x1

����e
−iĤtc/~

���� x2

〉
=

√
mω

2πi~sinhωtc
exp

{
imω

2~sinhωtc

[(
x2

1 + x2
2

)
coshωtc − 2x1x2

]}
, (A1)

where Ĥ is given by Eq. (B1), x1 and x2 are the dividing surface positions, and tc = t − i~β/2.3 In the following derivation, we
will employ the relations

sinhωtc = sinhωtcos (u/2) − icoshωtsin (u/2) ,

coshωtc = coshωtcos (u/2) − isinhωtsin (u/2) ,
(A2)

where u = ~ωβ. We start from the following expression of the flux-flux correlation function:
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Where, for example, �
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−iĤtc/~

���� x2

〉
´ =

√
mω

2πi~sinhωtc

[
imω
~sinhωtc

(x2coshωtc − x1)

]
exp

(
imω

2~sinhωtc

[(
x2

1 + x2
2

)
coshωtc − 2x1x2

])
, (A5)

�

〈
x1

����e
−iĤtc/~

���� x2

〉
´ =

√
mω

2πi~sinhωtc
exp

{
imω

2~sinhωtc

[(
x2

1 + x2
2

)
coshωtc − 2x1x2

]}
×

[
−

imω
~sinhωtc

−
m2ω2

~2(sinhωtc)2
(x2coshωtc − x1) (x1coshωtc − x2)

]
, (A6)

〈
x2

����e
−iĤt∗c/~

���� x1

〉
=

√
mω

−2πi~sinhωt∗c
exp

{
−

imω
2~sinhωt∗c

[(
x2

1 + x2
2

)
coshωt∗c − 2x1x2

]}
, (A7)

�

〈
x2

����e
−iĤt∗c/~

���� x1

〉
=

√
mω

−2πi~sinhωt∗c

[
−

imω
~sinhωt∗c

(
x2coshωt∗c − x1

)]
exp

{
−

imω
2~sinhωt∗c

[(
x2

1 + x2
2

)
coshωt∗c − 2x1x2

]}
, (A8)

〈
x2

����e
−iĤt∗c/~

���� x1

〉
´ =

√
mω

−2πi~sinhωt∗c

[
−

imω
~sinhωt∗c

(
x1coshωt∗c − x2

)]
exp

{
−

imω
2~sinhωt∗c

[(
x2

1 + x2
2

)
coshωt∗c − 2x1x2

]}
, (A9)
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�

〈
x2

����e
−iĤt∗c/~

���� x1

〉
´ =

√
mω

−2πi~sinhωt∗c
exp

{
imω

2~sinhωt∗c

[(
x2

1 + x2
2

)
coshωtc − 2x1x2

]}
×

[
imω
~sinhωt∗c

−
m2ω2

~2(sinhωt∗c )2

(
x1coshωt∗c − x2

) (
x2coshωt∗c − x1

)]
. (A10)

By inserting the expressions (A1) and (A4)–(A10) into Eq. (A3), we obtain

Cf f (t)pb =

(
~

2m

)2 mω
2π~ |sinhωtc |

exp

{
imω

2~|sinhωtc |
2

[(
x2

1 + x2
2

) (
coshωtcsinhωt∗c − coshωt∗c sinhωtc

)
+ 2x1x2

(
sinhωtc − sinhωt∗c

)]} [
imω
~sinhωt∗c

−
m2ω2

~2(sinhωt∗c )2

(
x1coshωt∗c − x2

) (
x2coshωt∗c − x1

)
−

imω
~sinhωtc

−
m2ω2

~2(sinhωtc)2
(x2coshωtc − x1) (x1coshωtc − x2) −

m2ω2

~2 |sinhωtc |

(
x1coshωt∗c − x2

)
(x2coshωtc − x1)

−
m2ω2

~2 |sinhωtc |

(
x2coshωt∗c − x1

)
(x1coshωtc − x2)

]
, (A11)

and using the relations Eq. (A2), we obtain the flux-flux correlation function for the parabolic barrier

Cf f (t)pb =
kBT

h
u/2

sin (u/2)
ωsin2 (u/2) coshωt(

sinh2ωt + sin2 (u/2)
)3/2

exp



mωsin (u/2)

2~
(
sinh2ωt + sin2 (u/2)

) [
2x1x2cosh (ωt) −

(
x2

1 + x2
2

)
cos (u/2)

] 


×




1 +

(
2m
~

)2
~

2mωcoshωtsin (u/2)
ω2sinh2ωt(

sinh2ωt + sin2 (u/2)
)

×
[(

x2
1 + x2

2

)
coshωtcos (u/2) − x1x2

(
cosh2ωt + cos2 (u/2)

)] 


.

(A12)
By taking the limit ω → 0, one obtains Eq. (24) for the free particle flux autocorrelation function for arbitrary dividing surface
positions.

APPENDIX B: AN ANALYTICAL CASE:
THE PARABOLIC BARRIER

To further investigate the features of the proposed method,
it is useful to consider the analytically solvable model of the
one-dimensional parabolic barrier. The Hamiltonian for this
system is

Ĥ =
p̂2

2m
−

1
2

mω2x̂2. (B1)

To compute the rate constant with the approximation in
Eq. (15), one has to evaluate the expressions (6), (11), and (12).
The matrix elements involved in these calculations are〈

x1
����e
−

βĤ
2 −

iĤt
~

���� x2

〉
, (B2)〈

x1
����Ĥe−

βĤ
2 −

iĤt
~

���� x2

〉
, (B3)

〈
x1

����Ĥ
2e−

βĤ
2 −

iĤt
~

���� x2

〉
. (B4)

By defining the complex time βc = β
2 + it
~ , the required matrix

elements (B2)–(B4) can be conveniently expressed in terms of
βc as partial derivatives〈

x1
����e
−βcĤ ���� x2

〉
, (B5)〈

x1
����Ĥe−βcĤ ���� x2

〉
= −

∂

∂ βc

〈
x1

����e
−βcĤ ���� x2

〉
, (B6)

〈
x1

����Ĥ
2e−βcĤ ���� x2

〉
=

∂2

∂ β2
c

〈
x1

����e
−βcĤ ���� x2

〉
. (B7)

In the parabolic barrier case, the explicit expression for the
matrix elements of the complex time propagator is known.3

Following the definition of βc,

〈
x1

����e
−βcĤ ���� x2

〉
pb
=

√
mω

2π~ sin (~ωβc)
exp

{
−

mω
2~ sin (~ωβc)

[(
x2

2 + x2
1

)
cos (~ωβc) − 2x2x1

]}
, (B8)

the partial derivatives in Eqs. (B6) and (B7) can be evaluated analytically,〈
x1

����Ĥe−βcĤ ���� x2

〉
pb
=

ω

4sin2 (~βcω)

√
mω

2π~ sin (~βcω)

[
−2mω

(
x2

2 + x2
1

)
+ 4mωx1x2 cos (~βcω) + ~ sin (2~βcω)

]

× exp

{
−

mω
2~

[(
x2

2 + x2
1

) cos (~βcω)
sin (~βcω)

−
2x1x2

sin (~βcω)

]}
, (B9)
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〈
x1

����Ĥ
2e−βcĤ ���� x2

〉
pb
=

ω2

32sin4 (~βcω)

√
mω

2π~ sin (~βcω)

[
−8 cos(2βc~ω)

(
~2 − 2m2ω2x2

1x2
2

)
−~2 cos(4βc~ω)

− 32m2ω2x1x2

(
x2

1 + x2
2

)
cos(βc~ω) − 24~mω

(
x2

1 + x2
2

)
sin(2βc~ω)

+ 48~mωx1x2 sin(βc~ω) + 16~mωx1x2 sin(3βc~ω) + 9~2 + 8m2ω2
(
x4

1 + x4
2

)
+ 32m2ω2x2

1x2
2

]

× exp

{
−

mω
2~

[(
x2

2 + x2
1

) cos (~βcω)
sin (~βcω)

−
2x1x2

sin (~βcω)

]}
. (B10)

In addition, the exact expression for the flux-flux correlation function for an arbitrary position of the two DSs has been
derived in Eq. (A12) of Appendix A and by inserting it into the rate expression of Eq. (15), we obtain

k (T ) Qr(T )approx
pb =

~
√
π√

Re∆H2 (β, ts)
exp




mω sin
(
~ωβ

2

)
~

[
sinh2 (ωts) + sin2

(
~ωβ

2

)]
[
2x1x2 cosh (ωts) − (x1 + x2)2 cos

(
~ωβ

2

)] 


×




cosh (ωts) sin

(
~ωβ

2

)
−

2mω sinh2 (tsω)

~
[
sinh2 (ωts) + sin2

(
~ωβ

2

)]
{

x1x2

[
cosh2 (ωts) + cos2

(
~ωβ

2

)]

−
(
x2

1 + x2
2

)
cosh (ωts) cos

(
~ωβ

2

)}


ω2

4π
[
sinh2 (ωts) + sin2

(
~ωβ

2

)] 3
2

, (B11)

where ∆H2 can also be analytically evaluated in terms of the
partial derivatives (B6) and (B7) of (B8). Its form after writing
explicitly the complex time βc according to its definition is

∆H2
pb =

8~ω2sin4
(
ωβ~

2 − itω
)

sin
(
ωβ~

2 + itω
)

[
cos (β~ω) − cosh (2tω)

]4

×

[
−2mω

(
x2

1 + x2
2

)
cos

(
ωβ~

2
+ itω

)
+ 3mωx1x2

+ mωx1x2 cos (ωβ~ + i2tω) + ~ sin

(
ωβ~

2
+ itω

)]
.

(B12)
Formula (B11) requires to evaluate all the quantities at the

stationary time ts. In this case, the analytical solution of Eq. (6)
can be obtained. To accomplish this task, first, we introduce
three constants b, c, and d,

b = 4mωx1x2 sin

(
~βω

2

)
, (B13)

c = 2 + cos (~βω) , (B14)

d = ~ − 2~ cos (~βω) − 4mω
(
x2

2 + x2
1

)
sin (~βω) . (B15)

Then, Eq. (6) becomes

−
ω sinh (tω)

4
[
cos (~βω) − cosh (2tω)

] {~ cosh (3tω)

+ b [c + cosh (2tω)] + d cosh (tω)} = 0. (B16)

The solution of Eq. (B16) provides the time ts for the parabolic
barrier potential. A first group of solutions, independent from
the position of the two DSs x1 and x2, arises from the first
factor in Eq. (B16),

sin (ωts) = 0⇒ ts = 0 +
kπ
ω

, k ∈ N. (B17)

From the second factor, after some algebra and by defining the
auxiliary variable z = cosh (tω), we obtain a cubic equation
in z,

4~z3 + 2bz2 + (d − 3~) z − b + bc = 0. (B18)

Its unique real solution is

z = −
b
6~

+
3
√

2[b2 − 3~ (d − 3~)]
6f

+
3
√

4
12~

f , (B19)

where the constant f is defined as

f =

{
−2b3 + 9bd~ + 27b~2 − 54bc~2 +

√
−4

[
b2 − 3~ (d − 3~)

]3 + b2 [2b2 + 9~ (−d − 3~ + 6c~)
]2

} 1
3

.

Eventually the time ts is equal to

ts =
1
ω

arcosh *.
,
−

b
6~

+

3
√

2
[
b2 − 3~ (d − 3~)

]

6f
+

3
√

4
12~

f +/
-

. (B20)

It is important to point out that to compute Eq. (B23) one has to take into account the limits of applicability for the definition
of the rate, i.e., the rate must be always positive, which translates to the following relation between β and the frequency ω:

0 <
~ωβ

2
< π ⇒ 0 < β <

2π
~ω

. (B21)
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Starting from the exact parabolic barrier rate value obtained by the time integration of the flux-flux correlation function,

k (T ) Qr(T )ex
pb =

kBT
h

~ωβ

2 sin
(
~ωβ

2

) , (B22)

we look at the ratio between the approximated rate of Eq. (B11) and the exact one of Eq. (B22),

k (T ) Qr(T )approx
pb

k (T ) Qr(T )ex
pb

=
~
√
π√

Re∆H2 (β, ts)
exp




mω sin
(
~ωβ

2

)
~

[
sinh2 (ωts) + sin2

(
~ωβ

2

)]
[
2x1x2 cosh (ωts) −

(
x2

1 + x2
2

)
cos

(
~ωβ

2

)] 


×




cosh (ωts) sin

(
~ωβ

2

)
−

2mω sinh2 (tsω)

~
[
sinh2 (ωts) + sin2

(
~ωβ

2

)]
{

x1x2

[
cosh2 (ωts) + cos2

(
~ωβ

2

)]

−
(
x2

1 + x2
2

)
cosh (ωts) cos

(
~ωβ

2

)}


ω sin
(
~ωβ

2

)
[
sinh2 (ωts) + sin2

(
~ωβ

2

)] 3
2

. (B23)

The evaluation of this ratio and the calculation of the time ts
have been carried out analytically by solving Eq. (6).

To test the present approximation, we choose the potential
parameters so that the inverted parabola has a (downward) cur-
vature which corresponds to the frequency of the H2 molecule
vibration. The mass m = 918 a.u. is equal to the reduced
mass of H2, and the frequency is ω = 0.020 056 988 a.u. With
these parameters, the range of validity of the rate expres-
sion according to the condition (B21) is 0 < β < 313.27 a.u.
This means we can estimate rate constants only for temper-
atures higher than 1007 K, that is, the threshold temperature
when studying this model. We have investigated the outcomes

TABLE X. Minimum distance between the two DSs that gives a rate constant
estimate within 10% of the exact result. The two DSs are set symmetrically
with respect to the top of the barrier.

T (K) ∆xmin (a.u.)

1300 0.44
1500 0.33
2000 0.22
2500 0.19

FIG. 7. Ratio of the approximate rate constant value and the exact one for the
parabolic barrier as a function of the distance between the two DSs. For all
temperatures, the same limit value of precision is reached.

of Eq. (B23) from 1300 K up to 2500 K as a representa-
tive range of temperatures. When the temperature is high,
the two DSs have to be set close to each other to find an
acceptable value of ts, while decreasing the temperature the
distance between the surfaces becomes larger, as summarized
in Table X. The approximation that we have introduced is not
exact for the parabolic barrier. However, at all temperatures,
we have found that increasing the distance between the two
DSs, the rate estimates gradually decrease until a limit to the
precision of the approximate rate is reached, as depicted in
Fig. 7.
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81T. Zimmermann and J. Vanı́ček, J. Chem. Phys. 131, 024111 (2009).
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