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Dynamic insulin sensitivity index: importance in diabetes
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Pillonetto G, Caumo A, Cobelli C. Dynamic insulin sensitivity
index: importance in diabetes. Am J Physiol Endocrinol Metab
298: E440 –E448, 2010. First published November 17, 2009;
doi:10.1152/ajpendo.90340.2008.—The classical minimal model
(MM) index of insulin sensitivity, SI, does not account for how fast or
slow insulin action takes place. In a recent work, we proposed a new
dynamic insulin sensitivity index, SI

D, which is able to take into
account the dynamics of insulin action as well. The new index is a
function of two MM parameters, namely SI and p2, the latter param-
eter governing the speed of rise and decay of insulin action. We have
previously shown that in normal glucose tolerant subjects SI

D provides
a more comprehensive picture of insulin action on glucose metabo-
lism than SI. The aim of this study is to show that resorting to SI

D

rather SI is even more appropriate when studying diabetic patients
who have a low and slow insulin action. We analyzed insulin-
modified intravenous glucose tolerance test studies performed in 10
diabetic subjects and mixed meal glucose tolerance test studies ex-
ploiting the triple tracer technique in 14 diabetic subjects. We derived
both SI and SI

D resorting to Bayesian and Fisherian identification
strategies. The results show that SI

D is estimated more precisely than
SI when using the Bayesian approach. In addition, the less labor-
intensive Fisherian approach can still be used to obtain reliable point
estimates of SI

D but not of SI. These results suggest that SI
D yields a

comprehensive, precise, and cost-effective assessment of insulin sen-
sitivity in subjects with impaired insulin action like impaired glucose
tolerant subjects or diabetic patients.

model; insulin resistance; parameter estimation; Bayesian estimation;
Markov chain Monte Carlo strategy; diabetes

THE MINIMAL MODEL (MM) of glucose kinetics has been used in
nearly 600 papers since its inception in the late seventies (4).
The reason for such popularity is related to the ability of MM
to provide an index of insulin sensitivity, denoted by SI, from
the analysis of an intravenous glucose tolerance test (IVGTT).
An extension of this model is being currently used also to
determine SI from an oral/meal glucose tolerance test (OGTT/
MGTT; Ref. 8).

Albeit of paramount importance, it must be recognized that
SI does not yield an exhaustive picture of insulin action. The
reason can be more easily grasped by making reference to the
assessment of insulin sensitivity with the gold standard
method, which is the euglycemic hyperinsulinemic clamp. The
clamp-based insulin sensitivity, of which the MM-based SI is a
theoretical counterpart, is measured at the end of the clamp
when insulin action is at steady state. However, in those clamp
studies that monitored in detail the time course of insulin action
from the initial to the final steady state, it became apparent that
the speed of rise of insulin action varied considerably among
individuals and that such speed was related to the degree of

insulin sensitivity measured at steady state (15). This observa-
tion indicates that when judging on the individual’s ability to
dispose glucose, not only is the maximum excursion of insulin
action relevant, but also the dynamics of insulin action plays a
role. If this is true during a clamp, a fortiori is true during an
IVGTT in which insulin action never attains a plateau and its
speed of rise and decay certainly influence the return of glucose
to the baseline. For this reason, we proposed a new insulin
sensitivity index that, at variance with the classic one, also
accounts for the dynamics of insulin action. The new index,
denoted by S

I

D, is able to account for both the speed and the
capacity of response. Thanks to this peculiarity, in Ref. 17 we
have shown that in normal glucose tolerant (NGT) subjects S

I

D

provides, compared with SI, a more comprehensive picture of
insulin action on glucose metabolism. In addition, S

I

D is intrin-
sically more robust than SI, which makes its identification
easier and more reliable with respect to SI.

The aim of the present study is to compare the estimation of
SI and S

I

D in diabetic patients and verify whether in these
subjects the assessment of S

I

D produces even greater benefits
than in NGT subjects. There are two reasons for this to happen.
The first one is related to the notion that not only are diabetic
patients insulin resistant, but, according to the above-men-
tioned euglycemic hyperinsulinemic studies, their insulin ac-
tion develops at a slower pace than in NGT subjects (1, 15). As
a result, in diabetic patients S

I

D should be more capable than SI

to provide a realistic picture of how a diabetic patient is able to
handle the glucose challenge. Moreover, S

I

D should be more
accurate than SI in ranking diabetic patients. The second reason
why S

I

D is expected to perform better than SI in diabetic
patients is related to the numerical identifiability of the MM in
such patients. It is well known that in diabetics the MM
identification is difficult because it is often associated with
large parameters uncertainties (see Refs. 1, 18, 19, 21). The
greater robustness of S

I

D with respect to SI should ensure that
S

I

D is precisely estimated even in those patients in which the
estimation of SI is difficult or impossible.

MATERIALS AND METHODS

Estimates of SI and SI
D were obtained in diabetic patients under two

different experimental conditions: an insulin-modified IVGTT and a
MGTT. The IVGTT studies were performed in 10 type 2 diabetic
patients whose characteristics have been already described in Refs. 1
and 19. Briefly, the IVGTT consisted of a glucose dose of 300 mg/kg
injected at time 0 followed by a short insulin infusion (0.05 U/kg)
administered between 20 and 25 min. The MGTT studies were
performed in 14 type 2 diabetic subjects who underwent a mixed meal
test in which three tracers were simultaneously infused to allow an
accurate determination of the rate of appearance of the orally admin-
istered glucose into the circulation (see Ref. 3 for details about the
experimental protocol and the subjects’ characteristics). The protocol
was approved by The Mayo Clinic Institutional Review Board.

Address for reprint requests and other correspondence: C. Cobelli, Diparti-
mento di Ingegneria dell’Informazione, Università degli Studi di Padova, Via
Gradenigo, 6/B-35131 Padova, Italy (e-mail: cobelli@dei.unipd.it).

Am J Physiol Endocrinol Metab 298: E440–E448, 2010.
First published November 17, 2009; doi:10.1152/ajpendo.90340.2008.

0193-1849/10 $8.00 Copyright © 2010 the American Physiological Society http://www.ajpendo.orgE440

 on A
ugust 16, 2011

ajpendo.physiology.org
D

ow
nloaded from

 

http://ajpendo.physiology.org/


To compare the ability of SI and SI
D to discriminate between

diabetic and NGT subjects, we performed a simulation study. Esti-
mates of SI and SI

D were obtained from synthetic insulin modified
IVGTT experiments performed in 1,000 diabetic and 1,000 NGT
subjects. Synthetic data were generated using two log-normal priors
for MM parameters. The first prior was obtained from the estimates in
diabetic subjects reported in Table 1, while the second prior was
derived from the estimates obtained in 10 NGT individuals in a
previous study (details are reported in Ref. 17). Then, the typical
insulin profile that can be observed during an insulin-modified IVGTT
in a diabetic subject was used as the insulin input to the model. We
sampled all the generated glucose profiles at 5, 8, 10, 12, 15, 20, 25,
30, 40, 60, 80, 100, 120, 140, 160, 180, and 240 min and finally
corrupted them by white normal noise with a coefficient of percentage
variation equal to 2.

To validate the new insulin sensitivity index, we used correlation
analysis to compare the estimates of SI

D obtained in 21 subjects [11
impaired glucose tolerant (IGT) and 10 NGT] undergoing both an
OGTT and a euglycemic hyperinsulinemic clamp. Details about the
experimental procedures are reported in the METHODS in Ref. 9. Here,
we just recall that, during the clamp, regular human insulin was
infused at a constant rate (25 mU·m�2·min�1) for 180 min. A
hyperinsulinemic plateau level was achieved within 30–45 min from
the initiation of the insulin infusion. Due to the natural variability of
the insulin clearance among subjects, the hyperinsulinemic plateau
level differed slightly among individuals (means � SD close to 50 and
10 �U/ml, respectively). However, the clamp-based index of insulin
sensitivity [SI(clamp) and the new SI

D(clamp)], as well as the MM-
based indices SI and SI

D, have the intrinsic ability to properly account
for different hyperinsulinemic levels among individuals (e.g., see Eqs.
2 and 5).

MM and derivation of dynamic insulin sensitivity. In the following
we refer, without loss of generality, to the MM equations describing
glucose disappearance during an IVGTT. The equations describing
glucose disappearance during an MGTT are the same with the only
difference that the exogenous glucose input is the rate of appearance
of orally administered glucose that has been accurately estimated
thanks to the triple-tracer technique (see Ref. 3 for details). MM
equations are as follows:

Ġ�t� � ��p1 � X�t��G�t� � p1Gb G�0� � G0 (1)

Ẋ�t� � �p2X�t� � p3�I�t� � Ib� X�0� � 0 (2)

where G(t) (mg/dl) and I(t) (�U/ml) are glucose and insulin concen-
trations in plasma, respectively, while Gb and Ib are their baseline
values. Equation 1 represents glucose kinetics, whereas Eq. 2 de-
scribes insulin action exerted from a compartment remote from
plasma. Uniquely identifiable model parameters are p1, p2, p3, and G0.
Parameters of interest provided by the model are glucose effectiveness
(SG � p1, min�1), which measures the effect of glucose per se on both

glucose disappearance and endogenous glucose production, and insu-
lin sensitivity (SI � p3/p2, min�1�U�1ml), which measures insulin’s
ability to enhance glucose effectiveness by both increasing glucose
disappearance and inhibiting endogenous glucose production. Param-
eter p2 is the time constant of the remote insulin compartment and
thus governs the speed of rise and decay of insulin action. Param-
eters SI and p2 can be used to derive a dynamic index of insulin
sensitivity, as already demonstrated in Ref. 17. For the sake of
clarity and completeness, we will briefly state without proof the
steps leading to the derivation of SI

D. The first step consists of
obtaining a closed form of the MM glucose prediction, as a
function of model parameters and insulin profile. This aim can be
accomplished by noticing that Eq. 2 can be integrated indepen-
dently from Eq. 1. We use Z(t) to denote the integral function of
remote insulin. We see from Eq. 2 that the impulse response
relating the deviation of insulin from basal and X(t) is p3e�p2� �
SIp2e�p2� for � � 0 and zero otherwise. Thus Z(t) is the output of
a system with impulse response

�0

t
SIp2e��p2d� � �SIe

��p2|0
t � SI�1 � e�p2t�, i . e .

Z�t���0

t
X���d� � SI�0

t
�1 � e�p2�t�����I��� � Ib�d�

(3)

From a standard result on linear differential equations (see Ref. 6)
glucose prediction is given by

G�t� � G0e�SGt�Z�t� � SGGb�0

t
e�SG�t����Z�t��Z���d� (4)

Equation 4 allows one to appreciate that, according to the MM,
glucose concentration is a function of two signals, i.e., SGt and Z(t).
The term G0e�SGt�Z(t) is a single decaying exponential with a coeffi-
cient proportional to the sum of these two signals. In particular, the
first of these two signals, i.e., SGt, is linearly dependent on glucose
effectiveness, SG. The second signal, i.e., Z(t), describes the ability of
insulin to enhance glucose effectiveness and depends in a more
complex way on both SI and p2. In fact, from Eq. 3 one can see that
Z(t) is the output of a time-invariant linear system having I(t) � Ib as
input and h(t) � SI(1 � e�p2t) as unit impulse response. This impulse
response, denoted by integrated insulin action impulse response
(IAIR; Refs. 17, 18), describes the modalities by which incremental
(above basal) insulin concentration is able to influence the glucose
profile. Dynamic insulin sensitivity, SI

D, is defined as the mean value
of the IAIR in a time interval of duration T (how T is chosen will be
clarified in a moment). In mathematical terms, we have:

SI
D �

�0

T
SI�1 � e�p2t�dt

T
� SI�1 �

1 � e�p2T

p2T � (5)

It can be verified that SI
D is always less or equal to SI. Thus SI

D can be
conveniently expressed as a fraction, comprised between 0 and 1, of
SI. Such fraction is denoted as efficiency:

Table 1. IVGTT in diabetic subjects: Bayesian estimates of minimal model parameters

Subject Nos. SI, 10�4 min�1�U�1ml p2, 10�2 min�1 SI
D, 10�4 min�1�U�1ml SG, 10�2 min�1 G0, mg/dl

1 1.2 (0.61–2.7) 1.3 (0.13–3.3) 0.3 (0.09–0.65) 1.59 (1.07–1.98) 299.7 (284.1–313.3)
2 1.5 (1.4–1.6) 7 (5.7–84) 1.17 (1.1–1.23) 2.1 (1.8–2.38) 382 (369.9–394.7)
3 1.7 (0.4–4.1) 0.18 (0.04–0.68) 0.06 (0.028–0.1) 1.06 (0.78–1.35) 434.6 (421.9–448.4)
4 0.77 (0.58–1.1) 0.8 (0.33–1.3) 0.15 (0.09–0.23) 1.02 (0.76–1.25) 318 (307.4–329.2)
5 2.1 (1.8–2.2) 9.8 (7.8–12) 1.7 (1.52–1.91) 0.89 (0.48–1.32) 411 (395.6–428.4)
6 0.39 (0.032–2.3) 0.7 (0.014–7) 0.02 (0.006–0.058) 1.35 (1–1.62) 563 (543.3–581.3)
7 1.51 (0.36–4.1) 0.19 (0.033–0.8) 0.05 (0.03–0.087) 1.48 (1.32–1.62) 314 (304.8–323.5)
8 0.98 (0.84–1.11) 35 (20–68) 0.93 (0.8–1.06) 0.92 (0.66–1.19) 325.4 (315.3–336.2)
9 0.8 (0.18–2.7) 0.6 (0.034–2.4) 0.06 (0.018–0.2) 1.61 (1–1.85) 350.9 (335.4–363.2)

10 0.6 (0.46–0.72) 2.5 (2.1–3) 0.29 (0.22–0.36) 0.84 (0.52–1.18) 263 (252.5–275.2)

Nos. in parentheses show 95% confidence intervals. IVGTT, intravenous glucose tolerance test; SI, insulin sensitivity; p2, rate parameter, SI
D, dynamic insulin

sensitivity index; SG, glucose effectiveness, G0, glucose at time 0.
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�(p2, T) �
SI

D

SI
� �1 �

1 � e�p2T

p2T � (6)

Efficiency � measures which fraction of the potentially available
insulin sensitivity, denoted by SI, is translated into effective glycemic
control by means of a rapid increase of insulin action. The rapidity of
insulin action is governed by parameter p2 and � increases monoton-
ically as a function of p2 (once T has been fixed). Notice that the closer
� to 1, the larger the efficiency of the metabolic system in converting
SI into an effective insulin control on glucose. Conversely, a very low
� renders SI

D close to zero, i.e., in this case insulin action is virtually
unavailable during the experiment. This observation explains why a
high SI value does not necessarily imply an effective control of insulin
on glucose, since it can be associated with a low p2 and thus with a
low efficiency.

As far as the choice of T is concerned, such a parameter does not
represent the length of the IVGTT but is the duration of a “thought
experiment” where insulin action has time to develop and IAIR can be
directly observed. The “optimal” value of T should allow � to vary in
the largest possible range of values so as to magnify differences
between � values of the subjects under study. The reader is referred
to Ref. 17 for all the details. Here, we just recall that after considering
a wide population of NGT, IGT, and diabetic individuals, a robust
choice consists of setting T to 60 min.

MM identification: IVGTT data. The four unknown MM parame-
ters that are estimated from IVGTT data are hereby defined by the
parameter vector � � [SI, SG, p2, G0]. These parameters are a priori
uniquely identifiable given G(t) and I(t). As usual, we assume that I(t)
in Eq. 2 is known at any t by linearly interpolating its measured
plasma concentration samples. G(t) is instead known in sampled and
noisy form on a grid (t1, t2, . . . tN). The measurement error is a
zero-mean Gaussian with uncorrelated components and a 2% coeffi-
cient of variation.

The MM parameters were estimated using either a Bayesian or a
Fisherian approach. The Bayesian approach (10) was implemented by
using the Markov chain Monte Carlo (MCMC) strategy (11, 13),
already used in Refs. 17, 18, 19. This powerful approach allows one
to reconstruct (in sampled form) the entire a posteriori probability
density function of SI

D and SI, thus permitting a more effective
comparison of the performance of the new index with respect to the
classic one. The Bayesian approach requires a probabilistic descrip-
tion of the a priori knowledge concerning the parameters to be
estimated. The MM parameters SI, SG, p2, and G0 were assumed
independent of each other and since all of them are nonnegative,
priors whose support extends only in the positive axis were used. The
a priori probability density functions of SG and G0 were assumed to be
uniform in [0,a] with a ¡ �	. The choice of the a priori probability
density function of SI was based on the information on diabetic
subjects reported in literature, e.g., Refs. 16 and 19. Specifically, we
assumed for SI an a priori probability density function where SI values

2 � 10�4 (min�1/�Uml) are equally probable, whereas SI values
�2 � 10�4 are less and less probable according to a decreasing
exponential law (with exponent equal to 104 �Uml�1/min). The
choice of the a priori probability density function of p2 was based on
the rationale described in Ref. 18; that is, we assumed a uniform
distribution in the interval [0,5] min�1. It is worth anticipating that the
prior information on the MM parameters did not influence the general
conclusions obtained in the study.

The MM was also identified using a Fisher parameter estimation
scheme, which, albeit less sophisticated than the Bayesian one, makes
it possible the adoption of mode-finding algorithms that are much less
demanding than MCMC. This can have practical relevance in large-
scale or epidemiological studies in which SI

D has to be estimated in
many subjects. To carry out the Fisherian estimation of the MM
parameters, a maximum likelihood (ML) estimator (2, 7) was adopted.

MM identification: MGTT data. As already observed in Ref. 3,
when the MM is identified from MGTT data, some difficulties arise

because the slow changes that glucose and insulin concentrations
exhibit under postprandial conditions make it difficult to distinguish
the individual contribution of insulin sensitivity and glucose effec-
tiveness to glucose disappearance. To overcome this drawback, we
followed the same strategy that was adopted in Ref. 3 to improve the
numerical identifiability of the model, i.e., we exploited the fact that
SG, measuring glucose effectiveness at basal insulin, can be factored
out in the sum of the glucose effectiveness at zero insulin (GEZI) and
the product of insulin sensitivity times basal insulin concentration:

SG � GEZI � SIIb (7)

The advantage of expressing SG in these terms lies in the possibility
of introducing some reasonable assumptions about GEZI that guar-
antee an easier numerical identification of the MM. GEZI was as-
sumed Gaussian with a mean of 0.025 and SD of 0.0025. The MM
parameters were estimated by maximizing a penalized likelihood
accounting for Eq. 7 and the prior on GEZI. To investigate the
sensitivity of the MM estimates to the prior on GEZI, the MM
identification was also carried out using a much less informative prior
on GEZI (the SD of GEZI was increased from 0.0025 to 0.01).

Estimation of S
I
D from an OGTT and a euglycemic hyperinsuline-

mic clamp. We assessed the validity of SI
D by comparing its estimates

obtained in 21 subjects who underwent both an OGTT and a eugly-
cemic hyperinsulinemic clamp.

OGTT-based estimates of SI
D were computed from Eq. 5 using the

estimates of SI and p2 obtained in Ref. 9. Of note is that the
OGTT-based SI

D estimate also accounts for the glucose distribution
volume, V (see Eq. 7 in Ref. 9).

For what concerns computation of SI
D(clamp), we simply refer to

the theoretical definition of SI
D. During an ideal clamp, the glucose

infusion rate, R(t), is proportional to IAIR (see Appendix of Ref. 17)
and equals insulin action multiplied by the distribution volume. Thus
from Eq. 2 we have:

Ṙ�t� � �p2R�t� � V � p3�I�t� � Ib� R�0� � 0 (8)

Parameters p2 and V � p3 governing the dynamics of R(t) were
estimated by fitting the samples of R(t) via nonlinear least squares (the
forcing input was defined by linearly interpolating the samples of
insulin collected during the clamp). Finally, the dynamic insulin
sensitivity was computed as follows:

SI
D(clamp) �

Vp3

p2
�1 �

1 � e�p2T

p2T � with T � 60 min (9)

RESULTS

The MM identification results of the 10 diabetic patients
who underwent the IVGTT are reported in Table 1 (Bayesian
approach) and Table 2 (Fisherian approach). In particular,
Table 1 reports the minimum variance estimates of SI, p2, S

I

D,
SG, and G0, and the 95% confidence intervals (obtained as the

Table 2. IVGTT in diabetic subjects: maximum likelihood SI

and S
I

D estimates

Subject Nos. SI, 10�4 min�1�U�1ml SI
D, 10�4 min�1�U�1ml

1 0.92 0.31
2 1.51 1.16
3 0.22 0.029
4 0.86 0.15
5 2.1 1.74
6 0.14 0.027
7 0.98 0.046
8 0.99 0.935
9 0.52 0.017

10 0.58 0.29
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interval between quantiles 2.5 and 97.5%) in parentheses.
Table 2 shows the ML estimates of SI and S

I

D. Figure 1 shows
the marginal posteriors (obtained in sampled form by MCMC)
of the parameters SI, p2, and S

I

D for subjects 2 (top) and 3
(bottom). Figure 2 displays SI and S

I

D point estimates obtained
in all the 10 subjects with 95% confidence intervals. Figure 3
compares SI (left) and S

I

D (right) estimates obtained using the
Fisherian and the Bayesian approach. The correlation coeffi-
cient between ML and Bayes estimates of SI and of S

I

D turns
out to be 0.67 and 0.99, respectively.

Table 3 reports the identification results of the 14 diabetic
patients who underwent the MGTT. In this table, the estimates
of SI, p2, and S

I

D obtained using both the full as well as the less
informative prior on GEZI are shown. Figure 4 compares the SI

(left) and S
I

D (right) estimates obtained with the two priors.
Figure 5 reports the results of the simulation study designed

to compare the performance of SI and S
I

D in NGT and diabetic
subjects. The true values of SI and S

I

D are plotted against the
values estimated by ML in the two groups. The correlation
coefficients between true and estimated SI are 
0.1 and 0.4 in
diabetic and NGT subjects, respectively, while those concern-
ing S

I

D are 0.98 and 0.99, respectively.
Figures 6 and 7 concern the results obtained in the 21

subjects who underwent both an OGTT and a clamp experi-
ment. Figure 6 shows the fit of clamp data in one representative
IGT subject: the glucose infusion rate values during the clamp
are denoted by the open circles, while the solid line describes
the curve, proportional to IAIR, obtained after fitting the
samples using Eq. 8 and nonlinear least squares. The area
under the curve in the first 60 min (shaded area) is proportional
to S

I

D(clamp). Figure 7 compares the S
I

D(clamp) and S
I

D esti-
mates obtained in the two experimental situations via correla-

tion analysis. In particular, the correlation coefficient between
OGTT-based estimate of S

I

D and S
I

D(clamp) is 0.82.

DISCUSSION

IVGTT in diabetic subjects: SI vs. S
I

D using Bayes estimation.
To comment on the results of the Bayesian estimation, it is
helpful to examine the MM identification results obtained in
two paradigmatic subjects. Figure 1 plots the marginal poste-
riors (obtained in sampled form by MCMC) of the parameters
SI, p2, and S

I

D for subject 2 (top) and 3 (bottom). As far as SI

is concerned (first column of Fig. 1), one can see that this
parameter is well estimated in subject 2. In fact, its posterior
appears well concentrated around its mean. From Table 1, one
can see that the point estimate of SI is 1.5 (1.4–1.6) in this
subject. The situation is completely different for subject 3. In
this subject, SI suffers of poor numerical identifiability, as
indicated by its long-tailed marginal posterior (this phenome-
non is mathematically explained by Proposition 2 in Ref. 18).
In addition, the point estimate of SI is 1.7 (0.4–4.1) and thus
very close to the mean of the prior (whose value is 
1.67).
This suggests that the IVGTT data provide little information to
estimate SI in this subject. All in all, it is difficult to tell
whether the SI of subject 3 is really higher than that of subject
2. The examination of the S

I

D results obtained in the same
subjects offers a completely different scenario. In fact, the
marginal posteriors of S

I

D (third column of Fig. 1), are well
concentrated around their means in both subjects. The S

I

D point
estimates are 1.17 (1.1–1.23) and 0.06 (0.028–0.1), respec-
tively, and this suggests that insulin is in all likelihood more
effective to enhance glucose disappearance in subject 2 than in
subject 3. To understand why the point estimate of S

I

D is much

Fig. 1. Intravenous glucose tolerance test
(IVGTT): diabetic subjects 2 (top) and 3
(bottom). Marginal posterior [obtained in
sampled form by Markov Chain Monte Carlo
(MCMC)] of the index of insulin sensitivity
(SI; left), parameter p2 (middle), and new
dynamic insulin sensitivity index (SI

D; right).
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lower in subject 3 than in subject 2, one must consider that S
I

D

embodies the information brought about by both SI and p2 (the
latter parameter is reported in the second column of Fig. 1). It
can be seen that in subject 3 the SI 95% confidence interval
includes many SI values that are coupled with very low values
of p2. This means that in this subject SI is frequently associated
with very low values of the efficiency �, which translates into
a low point estimate of S

I

D.
The usefulness of the new index is also apparent when the

whole group of diabetic subjects is considered. The results
reported in Fig. 2 displaying the SI and S

I

D estimates together
with their 95% confidence intervals indicate that S

I

D never
exhibited numerical identifiability problems. In contrast, the SI

results found in subjects 1, 3, 6, 7, and 9 are rather difficult to
interpret.

IVGTT in diabetic subjects: Bayes vs. Fisher estimation of
S

I

D. In Ref. 19, the Bayes approach was shown to be much more
robust than the Fisher one in estimating SI and p2 in NGT
subjects. Bayes superiority over Fisher can be even more

appreciated in the present study because diabetic patients
exhibit low values of SI that are often coupled with low values
of p2. In this case, the profile of insulin action becomes so low
and slow so as to degrade the precision of the MM parameter
estimates. In fact, ML often yields an estimate of SI that is
affected by a large uncertainty and cannot be discriminated
from zero (this is known in the literature as the “SI�0”
problem; Refs. 1, 18, 19). As a consequence, the histogram
describing the SI frequency distribution is bimodal showing an
artifactual peak at SI�0 and another peak at a positive SI value,
which leads to interpretative difficulties. Another problem is
also that SI estimates can turn out to be unrealistically high.
Bayes estimation, implemented by using MCMC, is more
robust than Fisher estimation since it provides a nonzero
minimum variance estimate of SI that hinges on the entire
marginal posterior of SI. In addition, rigorous confidence
intervals for SI can be calculated. The question arises as to
whether the same results also hold for S

I

D. Since S
I

D depends on
both p2 and SI (see Eq. 5), one would not be surprised to find

Fig. 2. IVGTT: Bayes SI and SI
D in diabetic subjects. Point

estimates are shown with the 95% confidence intervals (hori-
zontal bars).
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out that also the Fisherian point estimate of S
I

D is plagued by
the same problem described above for SI. Fortunately, how-
ever, the Fisherian estimate of S

I

D was often very close to the
one obtained with the Bayesian approach. This can be appre-
ciated by looking at Fig. 3 where the Bayesian and Fisherian
estimates of SI a S

I

D are reported. As said, the correlation
coefficient between ML and Bayes estimates of SI and of
S

I

D was 0.67 and 0.99, respectively. This favorable outcome for S
I

D is
related with the functional relationships among SI, p2, IAIR,
and S

I

D. While it is difficult to estimate precisely SI and p2, due
to the presence of numerical nonidentifiability regions that
make many different combinations of SI and p2 capable of
generating virtually the same IAIR on a finite time interval,
IAIR itself and its integral (and thus S

I

D) can be precisely
determined. Thus, although Bayes is more robust in estimating
SI and p2 separately, Bayes and Fisher behave similarly as
regards S

I

D.

In summary, the Fisher estimator often provides S
I

D esti-
mates comparable to the Bayesian ones with a reduced com-
putational effort (few seconds in place of minutes, since
Markov chain generation and Monte Carlo integration are more
demanding than mode-finding algorithms). This advantage of
S

I

D over SI may be particularly relevant in large-scale studies in
which many model identifications must be carried out.

IVGTT and MGTT in diabetic subjects: sensitivity of SI and
S

I

D to prior. To assess the sensitivity of the results to the prior
information on SI used in the MM Bayesian identification from
IVGTT in diabetics, the estimation process was repeated using
larger thresholds (3 and 4 in place of 2). As already found in
Ref. 19, SI and p2 were particularly sensitive to prior informa-
tion. In particular, the prior information exerted a profound
influence on the tails of the SI and p2 marginal posteriors. Quite
to the contrary, we found (results not shown) that the new
index S

I

D is scarcely sensitive to the prior information. MM

Fig. 3. IVGTT. Left: maximum likelihood vs.
Bayesian SI estimates in diabetic subjects. Right:
ML vs. Bayesian SI

D in diabetic subjects.

Table 3. MGTT in diabetic subjects: SI, S
I

D, and p2 estimates obtained using prior information on GEZI

Subject Nos. SI(1) SI(2) SI
D(1) SI

D(2) p2(1) p2(2)

1 5.9 12.2 0.31 0.29 0.18 0.081
2 2.0 2.0 0.41 0.39 0.78 0.758
3 6.8 6.6 0.73 0.74 0.38 0.404
4 2.5 5 0.12 0.11 0.167 0.078
5 2.1 4.3 0.16 0.14 0.258 0.116
6 4.4 6.5 0.349 0.33 0.28 0.177
7 1.5 1.38 0.55 0.23 1.7 0.63
8 6.3 5.74 1.46 1.87 0.92 1.42
9 6.9 6.9 0.72 0.72 0.37 0.377

10 2.0 2.7 0.0149 0.015 0.025 0.019
11 4.6 0.8 0.17 0.17 0.13 0.053
12 5.8 2.5 0.42 0.39 0.26 0.107
13 9.9 20 0.31 0.3 0.107 0.05
14 24.1 24.3 0.0064 0.0057 0.00088 0.00078

Estimates are denoted by SI(1), SI
D(1), and p2(1) when using the full prior and by SI(2), SI

D(2), and p2(2) when using the less informative prior; GEZI, glucose
effectiveness at zero insulin; MGTT, meal glucose tolerance test; measurement units of MM purameters are the same as in Tables 1 and 2.
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identification from MGTT data in the 14 diabetic patients
provides further support to these findings. In fact, inspection of
Table 3 and Fig. 4 indicate that, at variance with SI and p2, the
estimates of S

I

D are virtually insensitive to the prior information
on GEZI.

The reasons for the higher robustness of S
I

D with respect to
SI and p2 are the same already put forth to discuss the Bayesian
vs. Fisherian identification results. The parameters SI and p2

are more sensitive to the prior information because of the
existence of numerical nonidentifiability regions in the param-

eter space where changes in these two parameters only produce
negligible changes in the likelihood (18). Within such numer-
ical nonidentifiability regions, many different combinations of
SI and p2 may lead to similar IAIR. Since S

I

D is the mean of
IAIR in the interval (0,T) with T � 60 min, many different
combinations of SI and p2 are mapped into the same S

I

D.
Therefore, whereas SI and p2 may be very uncertain, S

I

D is not.
This peculiarity of S

I

D can be easily grasped by resorting to a
clamp thought experiment, where SI depends on the asymptotic
value of the exogenous glucose infusion. Large and unrealistic

Fig. 4. Meal glucose tolerance test (MGTT). Left:
insulin sensitivity using full prior information on
glucose effectiveness at zero insulin [GEZI; SI(1)]
vs. less informative [SI(2)]. Right: dynamic insulin
sensitivity using full prior information on GEZI
[SI

D(1)] vs. less informative [SI
D(2)].

Fig. 5. Left: true SI vs. estimated SI in diabetic
(top) and NGT subjects (bottom). Right: true SI

D

vs. estimated SI
D in diabetic (top) and NGT sub-

jects (bottom).
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SI values may be obtained in diabetic subjects since they are
associated with low p2 values that define virtual glucose
infusions similar to straight lines, which “almost diverge” at
infinity. On the other hand, by definition, S

I

D is proportional to
the area of glucose infusion in the first 60 min and it is thus
much less sensitive to poor numerical identifiability of p2. As
a practical consequence, S

I

D can be reliably estimated from
IVGTT/MGTT experiments also under conditions where SI

and p2 suffer from poor numerical identifiability. The small
sensitivity of S

I

D to the prior information contributes to make
S

I

D a much more robust and objective measure of insulin ability
to control glucose.

IVGTT: SI vs. S
I

D ability in discriminating NGT and diabetic
subjects. The results reported in Fig. 5 provide further support
to the notion that S

I

D can be estimated with much more
precision than SI during an IVGTT experiment, especially
when diabetic subjects are under study. As already said, the
correlation coefficients between true and estimated SI are 
0.1
and 0.4 in diabetic and NGT subjects, respectively, while those
concerning S

I

D are 0.98 and 0.99, respectively. It is of interest
that in Fig. 5, top left, almost 10% of estimated SI values turn
out to be 10 times larger than the true ones. This means that, in
a nonnegligible number of cases, a diabetic patient is errone-
ously classified as a subject with a normal insulin sensitivity. In
contrast, the discriminatory power of S

I

D is always excellent.
This new evidence of the superior performance of S

I

D against SI

adds to the one previously reported in Refs. 17 and 20, where
we showed that the new dynamic index is better correlated than
SI with the time by which glucose concentration reattains its
basal level after a glucose perturbation.

Validation of S
I

D against the euglycemic hyperinsulinemic
clamp. Figure 6 shows the area under the curve in the first 60
min of the clamp experiment, proportional to S

I

D(clamp). This
clearly shows how the new index measures the ability of
insulin to control glucose by accounting not only for the final
value achieved by the glucose infusion but also for the speed of
rise of the glucose infusion.

The results displayed in Fig. 7 show that the OGTT-based
estimates of S

I

D and S
I

D(clamp) are well correlated (r � 0.82).

Such degree of correlation is almost identical to the one
between SI and SI(clamp) (r � 0.81) obtained from the analysis
of the same experimental data in a previous report (9). It is
worth noticing that if we focus our attention on the results
obtained in the 11 IGT subjects, the correlation index between
S

I

D and S
I

D(clamp) is 0.91, whereas that between SI and SI-

(clamp) is only 0.7. Instead, in the 10 NGT subjects, the two
correlation indexes are similar and 
0.6. This dissimilarity
also points in the direction that the benefits of S

I

D become more
and more relevant as the degree of glucose tolerance decreases.

Conclusions

The present study is a follow up of previous paper in NGT
subjects (17) where we pointed out the limitations of the
classical MM index of insulin sensitivity, SI, and proposed a
novel index, S

I

D. The new index yields a more comprehensive
picture of insulin’s ability to control glucose metabolism be-
cause it hinges upon a theoretically based combination of p2

and p3 that better accounts for the dynamic properties of insulin
action. For instance, S

I

D has been shown to be better correlated
than SI with the time by which glucose concentration reattains
its basal level after a glucose bolus (17). Further, by incorpo-
rating the concept of efficiency, the new index provides an
elegant answer to those perplexing situations in which, despite
an elevated value of SI, the rate of glucose disappearance
seems to be scarcely affected by insulin. This occurs when the
elevated SI cannot be promptly translated into effective insulin
action due to a low p2 value. This situation is exemplified by
the results of patient 14 in Table 3. In fact, in this subject, the
large SI value would suggest that insulin control is in the
normal range, whereas the S

I

D value unmasks a low ability to
restore glucose homeostasis. The simulation study results re-
ported in Fig. 5 further corroborate the notion that S

I

D can
considerably improve the reliability of the assessment of insu-
lin sensitivity in diabetic patients. Furthermore, the issue of the
validity of S

I

D against a reference measure has been tackled in
the present study by comparing the estimates of S

I

D obtained
from an OGTT with those obtained in the same subjects from
a euglycemic hyperinsulinemic clamp, i.e., the gold standard
technique for the assessment of insulin sensitivity.

Fig. 7. Clamp and oral minimal model. SI
D vs. SI

D(clamp) estimates in IGT and
NGT subjects.

Fig. 6. Clamp model. Samples of glucose infusion measured in the first IGT
subject (circles) and curve (proportional to IAIR) obtained after fitting the
samples using Eq. 8 (solid line). Area under the curve in the first 60 min is
proportional to SI

D(clamp).
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The results of the present study indicate that the new
dynamic index is especially useful in those diabetic subjects
having a slow timing of insulin action. It is well known that,
when analyzing IVGTT data, the estimation of p2 in diabetic
subjects is often problematic. One of the most relevant findings
of the present study is that S

I

D is much less affected than SI by
such a drawback. Thus S

I

D has the additional advantage over SI

in that its estimation is much more robust and can be accom-
plished by resorting to the Fisher approach. In fact, at variance
with what happens with SI, the Fisherian and Bayesian point
estimates of S

I

D are similar, with the latter being virtually
insensitive to the prior information incorporated in the estima-
tor. Since ML is much less computationally demanding than
MCMC, this makes S

I

D more appealing than SI in studies where
many subjects have to be analyzed. S

I

D thus appears particu-
larly suitable to be employed in population studies where
glucose intolerant subjects are likely to be present, as well as in
studies seeking for diabetes-relevant genes in the human ge-
nome (12, 14, 21, 22).
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