

Eradication of introduced brook trout and recovery of alpine lakes in the Gran Paradiso National Park (Italy)

Rocco Tiberti^{1,2}, Bruno Bassano¹, Stefano Brighenti¹, Rocco Iacobuzio³, Matteo Rolla¹, von Hardenberg Achaz¹

¹Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, 11010 Valsavarenche, Aosta, Italy ²DSTA-Dipartimento di Scienze della Terra e dell'Ambiente, University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy ³DBS-Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy

INTRODUCTION

Alien fish for recreational fishery have been introduced into once fishless mountain lakes Why eradicating worldwide, representing a major threat for biodiversity. Introduced fish are likely to survive in fish mountain lakes even if they are no longer stocked until an active eradication action is not implemented [1]

Non-chemical eradication methods should be preferred to preserve non-target organisms, **Non-chemical** possibly including unique taxa which have evolved thanks to the island-like nature of mountain methods lakes [2]. Based on a few experimental studies [3,4,5,6], gill-nets (combined with electrofishing

> in inlets and outlets) demonstrated to be an effective restoration measure in invaded mountain lakes. The natural absence of native fish is a basic -but very rare in freshwaters- condition to apply mechanic eradication techniques without concern for native species [3].

In the Gran Paradiso National Park (Western Italian Alps; Fig. 1), the impact of introduced brook LIFE+ trouts (Salvelinus fontinalis; Fig. 2) on biodiversity in high altitude alpine lakes was quantified **Bioaquae** [7,8], and was so strong as to lead the GPNP to undertake an eradication campaign, within the EU financed LIFE+ BIOAQUAE (Biodiversity Improvement of Aquatic Alpine Ecosystems) project. The ecological resilience of alpine lakes is monitored along with the eradication actions.

MATERIALS AND METHODS

Intensive gill-netting and electrofishing have been used as eradication methods. The eradication **Eradication** started in June 2013 in three small lakes (depth range: 3-7.4 m) and one large lake (depth: 22.1 m). The nets have been left in the lakes for the whole duration of the project, including the icecover season (October-May). Eradication will be considered concluded after one year without fish captures [3].

The effects of the eradication have been monitored comparing the "eradication" lakes with a set **Ecological** resilience of control lakes (both naturally fishless lakes and lakes still containing brook trout; Fig. 1) as a reference to quantify the ecosystem resilience using several indicators (hydrochemistry, water transparency, zooplankton and macroinvertebrate communities, emergent insects, and amphibians populations).

Rhemes

O Cogne

23

Fig. 1 Gran Paradiso National Park (Western Italian Alps) and studied lakes: naturally fishless control-lakes (white circles), stocked control-lakes (red squares) and "eradication" lakes (red triangles).

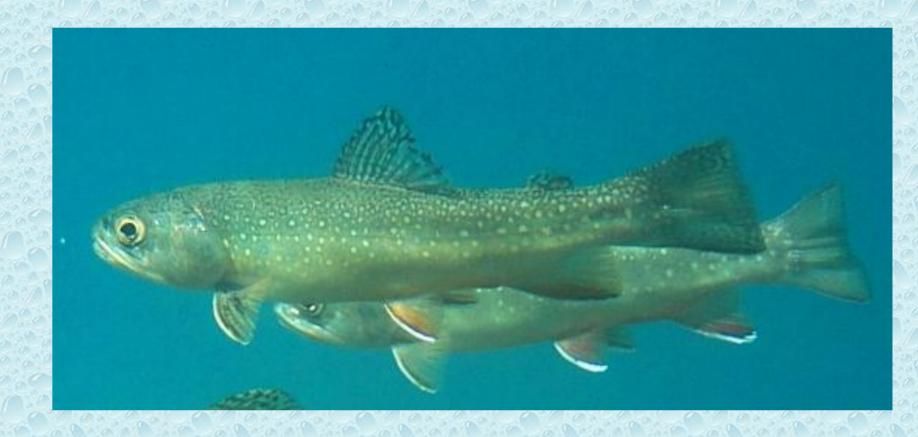


Fig. 2 Salvelinus fontinalis is native from North America and is widely used in mountain lakes stocking programs.

Area 1.3 ha Depth 3.0 mArea 2.6 ha Depth 7.4 mArea 1.7 ha Depth 6.0 mArea 4.5 ha Depth 2.1 mTotal nets surface 922 m² 1150 fish captured in the nets 260 fish captured with electrofishingDepth 7.4 m Total nets surface 3120 m² 2913 (+1297)* fish captured in the nets 6735 fish captured with electrofishingArea 1.7 ha Depth 6.0 m Total nets surface 1148 m² 201 fish captured in the nets 0 fish captured with electrofishingArea 4.5 ha Depth 2.1 m Total nets surface 8027 m² 2950 fish captured in the nets 0 fish captured with electrofishing $25 - 20 - 15 - 20 - 15 - 10 - 15 - 10 - 15 - 10 - 15 - 10 - 15 - 10 - 15 - 10 - 15 - 10 - 15 - 10 - 10$	DJOUAN	DRES	NERO	LEYNIR
Total nets surface 922 m ² 1150 fish captured in the nets 260 fish captured with electrofishing Total nets surface 3120 m ² 2913 (+1297)* fish captured in the nets 6735 fish captured with electrofishing Total nets surface 1148 m ² 201 fish captured in the nets 0 fish captured with electrofishing Total nets surface 8027 m ² 201 fish captured in the nets 0 fish captured with electrofishing Total nets surface 8027 m ² 201 fish captured in the nets 0 fish captured with electrofishing $\frac{3.5}{2}$ $\frac{3.5}{2$	Area 1.3 ha	Area 2.6 ha	Area 1.7 ha	Area 4.5 ha
1150 fish captured in the nets 260 fish captured with electrofishing 2913 (+1297)* fish captured in the nets 5735 fish captured with electrofishing 201 fish captured in the nets 6735 fish captured with electrofishing 201 fish captured with electrofishing 2950 fish captured in the nets 0 fish captured with electrofishing 2950 fish captured in the nets 0 fish captured with electrofishing 2950 fish captured in the nets 0 fish captured with electrofishing 2950 fish captured in the nets 0 fish captured with electrofishing 2950 fish captured in the nets 0 fish captured with electrofishing 2950 fish captured in the nets 0 fish captured with electrofishing 2950 fish captured in the nets 2950 fish captured with electrofishing 2950 fish captured with elect	Depth 3.0 m	Depth 7.4 m	Depth 6.0 m	Depth 22.1 m
260 fish captured with electrofishing 6735 fish captured with electrofishing 0 fish captured with electrofishing 480 fish captured with electrofishing 480 fish captured with electrofishing 535 fish captured with electrofishing 535 fish captured with electrofishing 0 fish captured with electrofishing 480 fish captured with electrofishing 535 fish captured with electrofishing 0 fish captured with electrofishing 480 fish captured with electrofishing 535 fish captured with electrofishing 0 fish captured with electrofishing 0 fish captured with electrofishing 535 fish captured with electrofishing 0 fish c	Total nets surface 922 m ²	Total nets surface 3120 m ²	Total nets surface 1148 m ²	Total nets surface 8027 m ²
260 fish captured with electrofishing 6735 fish captured with electrofishing 0 fish captured with electrofishing 480 fish captured with electrofishing 480 fish captured with electrofishing 535 fish captured with electrofishing 535 fish captured with electrofishing 0 fish captured with electrofishing 480 fish captured with electrofishing 535 fish captured with electrofishing 0 fish captured with electrofishing 480 fish captured with electrofishing 535 fish captured with electrofishing 0 fish captured with electrofishing 0 fish captured with electrofishing 535 fish captured with electrofishing 0 fish c	1150 fish captured in the nets	2913 (+1297)* fish captured in the nets	201 fish captured in the nets	2950 fish captured in the nets
$\begin{array}{c} 25 \\ 20 \\ 20 \\ 15 \\ 10 \\ 10 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	•		•	480 fish captured with electrofishing
0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 400 600 0 200 400 400 600 0 200 400 400 600 0 200 400 400 400 400 600 0 200 400 400 400 400 400 600 0 200 400			b	- 0.1

Days gone from the beginning of the eradication action

Fig. 3 Capture rates expressed as Capture Per Unit Effort (10³ x Fish x h⁻¹ x m⁻²). The main morphometric data as well as the data concerning the capture efforts in each lake are provided. The points indicate the dates in which the fish have been removed from the nets. In lake Djouan the CPUE dropped down to 0 at the second field season, while in the remaining lakes it decreased close to 0. To highlight the capture rates when fish density was very low (starting from day 300-400) we rescaled the Y axis of Panels a-c. * Some additive nets have been added in lake Dres to capture many fish hidden the littoral vegetation

RESULTS AND DISCUSSION

In the course of the third field season, the eradication actions were successful in eradicating S. fontinalis from one small lake (Lake Successful Djouan), while the fish population collapsed to values close to zero in the other three lakes. There are strong evidence of ecological eradication and resilience, with macroinvertebrates and Daphnia sp. being particularly sensitive to fish removal, but a longer resilience period is satisfactory needed to understand the long-term ecological consequences of this restoration project. To the best of our knowledge, this is the first short-term time that such an eradication program is successfully implemented in high altitude lakes in the European Alps. resilience

AKNOWLEDGEMENTS

PUE

The authors would like to thank Giuseppe Bogliani (University of Pavia), the Park wardens and many students and field assistants. Funding and logistic support for this research was provided by the Gran Paradiso National Park within the framework of the LIFE+ project BIOAQUAE (Biodiversity Improvement of Aquatic Alpine Ecosystems). All field work was performed under licenses from the GPNP and approved by the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA).

REFERENCES

[1] Armstrong and Knapp 2004. Can J Fish Aquat Sci 61:2025-2037. [2] Bellati et al. 2014. Zool J Linnean Soc 171: 697-715. [3] Knapp et al. 2001. Ecol Monogr 71: 401-421. [4] Parker et al. 2001. Ecosystems 4: 334–345. [5] Pacas and Taylor 2015. N Amer J Fish Manag 35: 748-754. [6] Toro and Granados 2006. 1997–2000, 'Laguna de Peñalara. Seguimiento Limnológico y Control de las Medidas Adoptadas en la Gestión del Parque Natural (1995–1996, 1997, 1998, 1999)', Technical Report, Consejería de Medio Ambiente de la Comunidad de Madrid, Madrid. [7] Tiberti and von Hardenberg 2012. Amphibia Reptilia 33: 303-307 [8] Tiberti et al. 2014. Hydrobiol 724:1-19.

