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REMARKS ON THE NORMAL BUNDLES OF GENERIC

RATIONAL CURVES

ALBERTO ALZATI AND RICCARDO RE

Abstract. In this note we give a different proof of Sacchiero’s theorem about
the splitting type of the normal bundle of a generic rational curve. Moreover we
discuss the existence and the construction of smooth monomial curves having
generic type of the normal bundle.

1. Introduction

Let C = Im(f) be a degree d rational curve in Ps(C) (d > s ≥ 3) where f :
P1(C) → Ps(C) is a birational morphism. Let us assume that C is smooth, hence C
admits a well defined normal bundle NC , splitting as the direct sum of line bundles.
In [S] Sacchiero proved that, for a generic C as above, the splitting type of NC is
uniquely determined.

In [A-R2] we developed a general method to get the splitting type of NC based
on the fact that C is always a suitable projection of the rational normal curve Γd

of degree d in P
d(C) from a projective linear space of dimension d − s − 1. This

method was previously used in [A-R1] to get the splitting type of the restricted
tangent bundle of C. In [A-R-T] an explicit formula is given when C is a monomial
curve, i. e. when f is given by monomials of degree d in two variables.

Here we will use the method developed in [A-R2] to prove Sacchiero’s Theorem
and we will establish a range in which a monomial curve C can be considered generic
from the point of view of the splitting type of NC .

In §2 we fix notations and we recall some known results. In §3 we give our proof.
In §4 we consider the case of monomial curves. In §5 we take the opportunity to
give a corrective remark to [A-R2] suggested by the referee.

2. Notation and Background

As above, a rational curve C ⊂ Ps(C) will be the target of a birational morphism
f : P1(C) → Ps(C). We will work always over C. We will always assume that C is
not contained in any hyperplane and that it is smooth. Let us put d := deg(C) >
s ≥ 3. Let IC be the ideal sheaf of C, then NC := HomOC

(IC/I2
C ,OC) as usual

and, taking the differential of f, we get:

0 → TP1 → f∗TPs → f∗NC → 0

where T denotes the tangent bundle. Of course we can write:
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2 ALBERTO ALZATI AND RICCARDO RE

Nf := f∗NC =
s−1
⊕

i=1

OP1(ci + d+ 2)

for suitable integers ci ≥ 0 (see [S] Proposizione 1, see also Proposition 10 of [A-R2]).
Every curve C is, up to a projective transformation, the projection in Ps of

a d-Veronese embedding Γd of P1 in Pd := P(V ) from a (d − s − 1)-dimensional
projective space P(T ) where V and T are vector spaces of dimension, respectively,
d+ 1 and e+ 1 := d− s. Of course we require that P(T ) ∩ Γd = ∅ as we want that
f is a regular map.

Let us denote by U = 〈x, y〉 a fixed 2-dimensional vector space such that P1 =
P(U), then we can identify V with SdU (d-th symmetric power) in such a way that
the rational normal degree d curve Γd can be considered as the set of pure tensors
of degree d in P(SdU) and the d-Veronese embedding is the map

αx+ βy → (αx+ βy)d (α : β) ∈ P1.

From now on, any degree d rational curve C, will be determined (up to projective
equivalences which are not important in our context) by the choice of a proper
subspace T ⊂ SdU such that P(T ) ∩ Γd = ∅.

By arguing in this way, the elements of a base of T can be thought as ho-
mogeneous, degree d, polynomials in x, y. In [A-R1] and [A-R2] we related the
polynomials of any base of T with the splitting type of Tf and Nf . To describe this
relation we need some additional definitions.

Let us indicate by 〈∂x, ∂y〉 the dual space U∗of U, where ∂x and ∂y indicate the
partial derivatives with respect to x and y.

Definition 1. Let T be any proper subspace of SdU. Then:

∂T := 〈ω(T )|ω ∈ U∗〉 .

Note that Definition 1 allows to define also ∂kT for any integer k ≥ 1, by
induction.

To get the splitting type of Nf the following Proposition is useful:

Proposition 1. In the above notations, for any integer k ≥ 0, let us call ϕ(k) :=
h0(P1,Nf (−d− 2− k)). Then the splitting type of Nf is completely determined by
∆2[ϕ(k)] := ϕ(k + 2)− 2ϕ(k + 1) + ϕ(k).

Proof. We know that Nf (−d− 2) =
s−1
⊕

i=1

OP1(ci), so that we have only to determine

the integers ci. By definition, ∆2[ϕ(k)] is exactly the number of integers ci which
are equal to k.

From Proposition 1 it follows that to know the splitting type of Nf it suffices to
know ϕ(k) for any k ≥ 0.

Let us consider the linear operators Dk : SkU ⊗ SdU → Sk−1U ⊗ Sd−1U, such
that Dk := ∂x ⊗ ∂y − ∂y ⊗ ∂x, and D2

k : SkU ⊗ SdU → Sk−2U ⊗ Sd−2U. Of
course, as T ⊂ SdU, we can restrict D2

k to SkU ⊗ T and we get a linear map
ψk := D2

k|SkU⊗T : SkU ⊗ T → Sk−2U ⊗ ∂2T ; let us define:

Tk := ker(ψk).

Then we have the following:

Theorem 1. In the above notations:
ϕ(0) = d+ e
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COMPUTING NORMAL BUNDLE 3

ϕ(1) = 2(e+ 1)
ϕ(2) = 3(e+ 1)− dim(∂2T )
ϕ(k) = dim(Tk) for any k ≥ 2.
Moreover the number of integers ci such that ci = 0 is d− 1− dim(∂2T ).

Proof. See Theorem 1 and Proposition 11 of [A-R2].

To calculate ϕ(k), for k ≥ 2, it is very useful the following

Proposition 2. In the above notations, let us assume that T is decomposed as

T = T
1

⊕ T
2

⊕ .... ⊕ T q in such a way that ∂2T = ∂2T
1

⊕ ∂2T
2

⊕ .... ⊕ ∂2T q for
some q ≥ 1. Then, if we put Ki := ker(D2

k : SkU ⊗ T i → Sk−2U ⊗ ∂2T i) for any
i = 1, ..., q, we have that ϕ(k) = dim(K1) + ...+ dim(Kq).

Proof. See Lemma 13 of [A-R2] or Proposition 3 of [A-R-T].

Now let us state the Sacchiero’s theorem we want to re-prove (see [S] pag. 33):

Theorem 2. (G. Sacchiero) Let C be a smooth, generic, rational curve of degree
d in Ps(C) (d > s ≥ 3). Then

Nf = OP1(d+ 1 + c)⊕s−1−ρ
⊕

OP1(d+ 2 + c)⊕ρ, 0 ≤ ρ < s− 1

where c and ρ are, respectively, the quotient and remainder of the euclidean division
of 2d− s− 1 by s− 1.

To translate the original Sacchiero’s notations we have to put (n, r, δ) = (d, s −
1, c+1). Note also that the above result was generalized to some reducible rational
curves by Ran in [R].

3. Our proof of Sacchiero’s theorem

Let us recall that ϕ(k) is a strictly monotone decreasing function for k ≥ 0, by
definition. Let us remark that, if C is generic, T must be generated by e+1 generic
degree d polynomials pi with i = 1, ..., e+ 1.

Let us divide the proof of Theorem 2 into two cases.
First case: d ≥ 3e + 4. Then dim(∂2T ) = 3(e + 1) and ϕ(2) = 0. In fact every

polynomial pi gives rise to a plane in Pd−2 (generated by ∂x∂xpi, ∂x∂ypi, ∂y∂ypi),
so that we have e+1 generic planes in Pd−2 generating a projective space P(∂2T ) ⊆
Pd−2 of dimension 3(e+1)− 1 ≤ d− 2. As ϕ(2) = 0 we get ϕ(k) = 0 for any k ≥ 2
and, by using Theorem 1 we have

∆2[ϕ(0)] = d− 3e− 4,
∆2[ϕ(1)] = 2e+ 2,
∆2[ϕ(k)] = 0 otherwise.

If d−3e−4 > 0 we haveNf (−d−2) = O⊕d−3e−4
P1 ⊕OP1(1)⊕2e+2 by Proposition 1,

hence Nf = OP1(d+2)⊕d−3e−4 ⊕OP1(d+3)⊕2e+2. By putting c = 1 and ρ = 2e+2,
we have d − 3e − 4 = s − 1 − ρ and noticing that 2d − s − 1 = 1(s − 1) + ρ with
2e+ 2 < s− 1, we have proved Theorem 2 in this case.

If d − 3e − 4 = 0 we have Nf (−d − 2) = OP1(1)⊕2e+2 by Proposition 1, hence
Nf = OP1(d + 3)⊕2e+2. By putting c = 2 and ρ = 0, we have 2e + 2 = s − 1 and
noticing that 2d− s− 1 = 2(s− 1)+0, we have proved Theorem 2 also in this case.

Second case: d < 3e+4, i.e. d = 3e+4−v with v ∈ [1, 2e], in fact d−e−1 = s ≥ 3,
hence 3e+ 4− v − e− 1 ≥ 3 implies v ≤ 2e.
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4 ALBERTO ALZATI AND RICCARDO RE

In this case P(∂2T ) is always generated in Pd−2 by e+1 planes πi i = 1, ..., e+1,
in general position, however now 3(e + 1) − 1 > d − 2, hence P(∂2T ) = Pd−2,
dim(∂2T ) = d− 1 = 3(e+ 1)− v and ϕ(2) = v ≥ 1 by Theorem 1.

Let us consider ϕ(k) for k ≥ 3. The number ϕ(k) is the dimension of the kernel
of a linear map ψk : SkU ⊗ T → Sk−2U ⊗ ∂2T ; as C (hence T ) is generic the
map will be generic too, hence it will have maximal rank. In fact, it is possible to
choose a suitable basis for ∂2T , such that the matrix representing ψk has maximal
rank and it is sufficient to prove this fact when v = 2e, i.e. when ∂2T has the
minimal possible dimension. When v = 2e this fact is true by Proposition 15 of
[A-R2], showing the existence of suitable spaces T for which rk(ψk) is maximal; by
semicontinuity the same is true for the generic T.

It follows that ϕ(k) = dim(SkU ⊗ T ) − dim(Sk−2U ⊗ ∂2T ) if this number is
positive and ϕ(k) = 0 otherwise.

By considering that dim(∂2T ) = 3(e+ 1)− v we have:
ϕ(k) = k[v − 2(e+ 1)] + 4(e+ 1)− v if k[v − 2(e+ 1)] + 4(e+ 1)− v > 0
ϕ(k) = 0 if k[v − 2(e+ 1)] + 4(e+ 1)− v ≤ 0.
Note that the above formula is true also for k = 0, 1, 2 by Theorem 1:
ϕ(0) = d+ e = 4(e+ 1)− v > 0
ϕ(1) = 2(e+ 1) > 0
ϕ(2) = v > 0.
As ϕ(k) is a linear function (when it is strictly positive), there exists a unique

integer k ≥ 2 such that ϕ(k) > 0 and ϕ(k) = 0 for any k ≥ k + 1.
It follows that:
∆ϕ(k) = 2(e+ 1)− v > 0 for k ∈ [0, k − 1],

∆ϕ(k) = ϕ(k),
∆ϕ(k) = 0 for k ≥ k + 1.
Hence:
∆2ϕ(k) = ϕ(k) > 0,
∆2ϕ(k − 1) = 2(e+ 1)− v − ϕ(k) = [2(e+ 1)− v](k − 1)− 4(e+ 1) + v > 0,
∆2ϕ(k) = 0 otherwise.
By definition of k, we have that (k + 1)[v − 2(e + 1)] + 4(e + 1) − v ≤ 0, i.e.

ϕ(k) ≤ 2(e+ 1)− v = s− 1.
If 2(e+ 1)− v − ϕ(k) > 0, by Proposition 1 we get

Nf (−d− 2) = OP1(k − 1)⊕2(e+1)−v−ϕ(k) ⊕OP1(k)⊕ϕ(k),

hence Nf = OP1(d+ 1 + k)⊕2(e+1)−v−ϕ(k) ⊕OP1(d+ 2 + k)⊕ϕ(k).

By putting c = k and ρ = ϕ(k), we have 2(e + 1) − v − ϕ(k) = s − 1 − ρ and
noticing that 2d − s − 1 = k(s − 1) + ϕ(k) with ϕ(k) < s − 1, we have proved
Theorem 2 in this case.

If 2(e+ 1)− v − ϕ(k) = 0, by Proposition 1 we get

Nf (−d− 2) = OP1(k)⊕ϕ(k),

hence Nf = OP1(d+ 2 + k)⊕ϕ(k).

By putting c = k + 1 and ρ = 0, we have s − 1 = ϕ(k) and noticing that

2d− s− 1 = (k + 1)(s− 1) + 0, we have proved Theorem 2 also in this case.
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COMPUTING NORMAL BUNDLE 5

4. Monomial curves

In this section we consider monomial degree d rational curves in P
s, i.e. curves

such that the morphism f : P1 → Ps is given by monomials of degree d in two
variables, as follows:

(∗) f(x : y) = (xh0 : xh1yd−h1 : ... : xhiyd−hi : ... : xhsyd−hs),

with i = 0, ..., s and h0 > h1 > ... > hs ≥ 0. Let us recall that, as we are considering
smooth curves, it is necessary and sufficient that : h0 = d, h1 = d − 1, hs−1 = 1,
hs = 0 (see for instance Lemma 3.1 of [C-R]).

Concerning the generic type of splitting of Nf for such curves two natural ques-
tions arise:
I) Monomial curves are obviously not generic. However, is it possible to give a

notion of ”genericity” in this case too and what is the ”generic splitting type” ?
We will see that, in a certain range of d and e = d− s− 1, namely d ≥ 3e+ 4, it is
possible to give a notion of ”genericity” and to obtain the splitting type of Nf for
such ”general” curves and to give some informations when d < 3e+ 4.
II) The splitting type ofNf described by Theorem 2 is the most general one from

the point of view of deformation theory, hence it is interesting to get examples of
monomial curves whose normal bundles have generic splitting types. Is it possible
to get examples in any case ? We will see that the answer is positive if s − 1 is
even, and in general it is negative if s− 1 is odd.

I) As in [A-R-T] every monomial curve of degree d can be defined by choosing r ≥
1 disjoint intervals of integers Ii ⊆ [2, d−2], i = 1, ..., r, each integer z corresponding
to the monomial xd−zyz. Recall that d > s ≥ 3, hence d ≥ 4 and [2, d− 2] 6= ∅.

If there exists an interval Ii with length(Ii) ≥ 2 the involved monomials are
linked by some relations because they belong to ∂(xαyβ) for a suitable monomial
xαyβ of bigger degree. Hence, if we want to get ”generic” monomial curves, we are
forced to choose length(Ii) = 1 for any i = 1, ..., r. However this is not possible
when d−3 < 2e+1. It follows that a generic monomial curve can be defined only if
we choose e+1 monomials among {xd−2y2, xd−3y3, ..., x2yd−2} such that no two of
them correspond to consecutive integers in [2, d− 2] and assuming that d ≥ 2e+4.

Now let us consider any monomial curve as above. We can divide the set of e+1
monomials generating T into two subsets:

- first type monomials, belonging to some chain of type
{xd−jyj , xd−j−2yj+2, xd−j−4yj+4, ....} for some j;

- second type monomials, not belonging to chains of the above type.
If we decompose T as the direct sum of irreducible subspaces T i according to

Proposition 2, we get that every chain of monomials of the first type generates a
unique irreducible subspace of T, whose dimension is the length of the chain accord-
ing to Proposition 5 of [A-R-T]; while every monomial of the second type generates
an irreducible one dimensional subspace of T. In any case, by using Proposition 6
and Theorem 4 of [A-R-T], we have that every irreducible subspace of T gives no
contribute to ϕ(k) for k ≥ 3, hence ϕ(k) = 0 for k ≥ 3 by Proposition 2. Therefore
the splitting type of Nf depends only on the three values of ϕ(k) given by Theorem
1 and we have only to calculate dim(∂2T ).

Let us assume that T is generated by p monomials of the second type and by
q chains of length l1, l2, ..., lq of monomials of the first type; obviously li ≥ 2 for
any i. Each monomial of the second type gives rise to a plane in P

d−2 while every
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6 ALBERTO ALZATI AND RICCARDO RE

chain of monomials of the first type gives rise to a projective space of dimension
2li, contained in Pd−2.

All these projective spaces are in general position in Pd−2 by Proposition 6

of [A-R-T], hence their span has projective dimension 2
q
∑

i=1

li + q + 3p − 1 and

dim(∂2T ) = 2
q
∑

i=1

li + q + 3p. Note that e + 1 =
q
∑

i=1

li + p, hence we can write

dim(∂2T ) = 2(e+ 1) + p+ q. It follows that ϕ(2) = e+ 1− p− q =
q
∑

i=1

(li − 1) ≥ 0

and ϕ(2) = 0 if and only if q = 0 (i.e. when there are no chains) and p = e + 1.
By using Theorem 1 we get:
ϕ(0) = d+ e;
ϕ(1) = 2(e+ 1);
ϕ(2) = e+ 1− p− q;
and ϕ(k) = 0 for k ≥ 3. Hence:
∆2ϕ(0) = d− 2e− 3− p− q;
∆2ϕ(1) = 2(p+ q);
∆2ϕ(2) = e+ 1− p− q = ϕ(2);
∆2ϕ(k) = 0 otherwise.
Note that d− 2e− 3− p− q ≥ 0 because dim(∂2T ) ≤ d− 1, due to the fact that

P(dim(∂2T )) ⊆ Pd−2, hence dim(∂2T ) = 2
q
∑

i=1

li+q+3p = 2(e+1−p)+q+3p≤ d−1

implies d ≥ 2e+ 3 + p+ q.
If d ≥ 3e + 4, the existence of at least a chain for T is not necessary. Hence,

in this range, it is possible to have a reasonable definition of ”generic monomial
curves” simply by choosing p = e + 1 monomials in a generic way (q = 0). In this
case ϕ(2) = 0 and, according to Proposition 1, the splitting type of the normal
bundle of these curves is the following:

Nf = OP1(d+ 2)⊕d−3e−4 ⊕OP1(d+ 3)⊕2(e+1).

Note that this is exactly the same splitting type of a generic curve, hence, in this
range, generic curves and generic monomial curves are the same from the point of
view of the splitting type of Nf and the above monomial curves are smooth.

If 2e+4 ≤ d < 3e+4 it is not possible that q = 0, because at least a chain must
exist in T . The splitting type of Nf depends always on the two integers p and q
and not only on d and e, i.e. on d and s, and it is not clear what the ”generic” pair
(p, q) should be. In any case, for any fixed p and q, by Proposition 1 we have:

Nf = OP1(d+ 2)⊕d−2e−3−p−q ⊕OP1(d+ 3)⊕2(p+q) ⊕OP1(d+ 4)⊕e+1−p−q.

II) Let d and s be two positive integers such that d > s ≥ 3 and s − 1 is
even. Let c and ρ be, respectively, the quotient and the remainder of the euclidean
division of 2d − s − 1 by s − 1. Then there exists a (smooth) monomial curve of
degree d in Ps such that Nf splits as in Theorem 2. In fact, note that ρ is even
and c ≥ 1; let us put α := ρ/2 ≥ 0, β := (s − 1 − 2α)/2 > 0 and a := c − 2; let
us choose α intervals I ∈ [2, d− 2] of length a + 2 ≥ 0 and β intervals I of length
a+1 ≥ 0 generating a subspace T ⊂ SdU, of dimension e+1 = α(a+2)+β(a+1),
and defining a rational monomial curve C of degree d. Let us choose the intervals
in such a way that between any two intervals there are exactly two monomials,
(except of course the first one and the last one) this is possible thanks to the
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COMPUTING NORMAL BUNDLE 7

relation: 2d− s− 1 = c(s− 1)+ ρ implying d = e+2(α+ β) + 2 = e+ s+1, hence
C is a monomial rational curve of degree d in Ps.

We have that dim(∂2T ) = α(a+4)+ β(a+3), then P(∂2T ) ≃ Pd−2 and in Pd−2

we get α projective subspaces of dimension a + 3 and β projective subspaces of
dimension a + 2 which are all in general position. Hence all maps ψk, for k ≥ 3,
have maximal ranks: by using Proposition 2 we have that every ψk is the direct
sum of linear maps which are all injective or all surjective, due to the fact that
the dimensions of the above projective subspaces differ by only one unit. Then, by
arguing as in our proof of Sacchiero’s theorem, we get that Nf splits as in Theorem
2.

If s − 1 is odd, surprisingly, the situation is very different. In some cases (d, s)
there exist monomial curves having Nf with generic splitting, for instance when
(d, s) = (6, 4) we can take T =

〈

x4y2, x2y4
〉

. However in other cases this is not
possible: when (d, s) = (7, 4) =⇒ c = 3, ρ = 0, it is easy to see that no choice
of T defines a monomial curve whose Nf splits as OP1(11)⊕3, the expected type
according to Theorem 2.

Let us explain this last example in detail. To have Nf = OP1(11)⊕3 is equivalent
to have ∆2ϕ(2) = 3 and ∆2ϕ(k) = 0 for k 6= 2 (see Proposition 1). As dim(T ) = 3
we have only four possibilities for T :
i) T =

〈

x5y2, x4y3, x3y4
〉

ii) T =
〈

x5y2, x4y3, x2y5
〉

iii) T =
〈

x5y2, x3y4, x2y5
〉

iv) T =
〈

x4y3, x3y4, x2y5
〉

.
In cases i) and iv) we have ϕ(0) = 9, ϕ(1) = 6, ϕ(2) = 4 (see Theorem 1), hence

∆2ϕ(0) = 1. In case ii) we have ϕ(0) = 9, ϕ(1) = 6, ϕ(2) = 3, and ϕ(3) ≥ 1 because
ψ3(2y

3 ⊗ x5y2 + 5xy2 ⊗ x4y3 − x3 ⊗ x2y5) = 0, hence ∆2ϕ(1) ≥ 1. In case iii) we
have ϕ(0) = 9, ϕ(1) = 6, ϕ(2) = 3, and ϕ(3) ≥ 1 because ψ3(−y

3 ⊗ x5y2 + 5x2y ⊗
x3y4 − x3 ⊗ x2y5) = 0, hence ∆2ϕ(1) ≥ 1.

5. Corrective remark to [A-R2]

Here we correct a wrong statement given in [A-R2] detected by the referee,
while reading the first version of this paper where the statement was repeated. In
the introduction to [A-R2] and especially in section 1.1 therein, it was wrongly
stated that if C ⊂ P

s is a rational curve with ordinary singularities, with birational
parametrization map f : P1 → C ⊂ Ps, then one may identify f∗NC with the
quotient Q = f∗TPs/df(TP1) as the differential of f is injective by assumption.

The referee to the present paper has pointed out to us that this is wrong. One
simple example is a rational plane cubic C ⊂ P2 with one ordinary node, which
has f∗NC = OP1(9), while Q = OP1(7), by degree reasons. The same computation
works for any plane rational curve with ordinary singularities.

Note however that if C is smooth, then it is true that Q = f∗NC and we recall
that all the calculations and results in [A-R2] involve the vector bundle Q only.
Moreover, the main results of [A-R2], namely the construction of an example of
Hilbert scheme of the rational curves with a given splitting of Q given in section
6 and Theorem 7.3 of section 7, involve smooth rational curves. Indeed in section
6 we found two components of the Hilbert scheme of rational curves C ⊂ P8 of
degree d = 11 with Q ∼= OP1(d+4)⊕OP1(d+3)⊕OP1(d+2), such that the general
curve in any of the two components is smooth, as it is explicitly proved in that
section. Theorem 7.3 studies smooth rational curves in rational normal scrolls,
it characterizes them in terms of their restricted tangent bundle and computes
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their normal bundles. In conclusion, all the results of [A-R2] remain valid when
restricting oneself to smooth curves and in any case for the bundle Q in the place
of f∗NC .

Appendix

After this note was written, the paper [C-R] has appeared on ArXiv. Theorem
3.2 of [C-R] says that, for a monomial curve as in (∗),

Nf =
s−1
⊕

i=1

OP1(d+ hi−1 − hi+1) (C-R formula).

By using the above formula it is easy to prove the following theorem, saying
exactly for which smooth monomial curves Nf splits according to Theorem 2.

Theorem 3. There exists a smooth monomial curve of degree d in Ps, s ≥ 3, with
generic splitting type of Nf if and only if at least one of the following conditions
are satisfied:

(1) d < 3s/2.
(2) d ≥ 3s/2 and s− 1 is even.
(3) d ≥ 3s/2, s− 1 is odd and d = a(s/2)+ b, with 0 ≤ b ≤ (s/2)− a and a ≥ 3.

Proof. (1) It suffices to show that we can construct a smooth monomial curve with
the generic splitting type for Nf we want. The condition d < 3s/2 is equivalent to
d ≥ 3e + 4, hence the monomial curve is ”generic” in the sense of I) and we have
proved there that the splitting type of Nf is the generic one according to Theorem
2.

(2) As for (1), it suffices to show that we can construct a smooth monomial curve
with the generic splitting type for Nf we want. We can argue as in II).

(3)1 The condition is necessary. Let us assume that the sequence hi−1 − hi+1

consists of at most two integers a and a+ 1, with a appearing q > 0 times. Let us
consider the hi with even index, which are: h0, h2, ..., hs−2, hs, and the sum

s/2
∑

i=1

(h2(i−1) − h2i) = h0 − hs = d− 0 = d

Similarly, let us consider the hi with odd index: h1, h3, ..., hs−1 and the sum

s/2−1
∑

i=1

(h2i−1 − h2i+1) = h1 − hs−1 = (d− 1)− 1 = d− 2.

Suppose that within the even differences h2(i−1) − h2i the number a appears p1
times, and in the odd differences h2i−1−h2i+1 it appears p2 times, and the number
a appears, respectively, q1 times and q2 times with p = p1 + p2 and q = q1 + q2.
Then one has the following relations, which we will call (♣):
d = a(s/2) + p1 = q1a+ p1(a+ 1), 0 ≤ p1 ≤ s/2− 1, p1 + q1 = s/2
d−2 = a(s/2−1)+p2 = q2a+p2(a+1), 0 ≤ p2 ≤ s/2−2, p2+q2 = s/2−1.
From the first equality one also has that d− 2 = a(s/2− 1) + a+ p1 − 2, hence

one obtains p2 = a+ p1 − 2 ≤ s/2− 2, i.e. p1 ≤ s/2− a. Putting b = p1 we find the
stated necessary condition: d = a(s/2) + b with 0 ≤ b ≤ s/2− a. Moreover we also
have s/2 ≥ a ≥ 2s/(s− 2), (recall that s ≥ 3) hence a ≥ 3.

(3)2 The condition is sufficient. We observe that, if d = a(s/2) + b with 0 ≤ b ≤
s/2− a, then one has d − 2 = a(s/2 − 1) + a + b − 2 and one can put p1 = b and
p2 = a + b − 2 ≤ s/2 − 2, so one can reproduce the relations (♣). Then one can
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choose the integers h2i with even indexes so that in the s/2 differences h2(i−1)−h2i
the number a appears q1 := s/2 − p1 and the number a + 1 appears p1 times.
Similarly one can choose the integers h2i−1 with odd indexes so that in the s/2− 1
differences h2i−1 − h2i+1 the number a appears q2 := s/2 − 1 − p2 times and the
number a + 1 appears p2 times. By applying the C-R formula it follows that the
constructed sequence h0, ..., hs defines a smooth monomial curve with the required
splitting type for Nf , because hi−1 − hi+1 ∈ [a, a+ 1].

Acknowledgements: we wish to thank the referee for the correction and the
comments about the pulled back normal bundle f∗NC and for having implicitly
stimulated us to prove Theorem 3.
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