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 “Look wide, and even when you think 

you are looking wide, look wider still." 

Robert Baden-Powell 
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ABSTRACT 

Exposure of the embryo to environmental chemicals (pesticides, air and water pollutants) can 

result in congenital malformations or developmental defects such as oro-facial cleftings. 

Unfortunately, the human embryo is not usually exposed to a single substance, but to many 

substances simultaneously. Despite the efforts in elucidating mechanism of action (MoA) of 

substances that perturb the normal embryonic development, only a small part of involved 

pathways have been understood to date (Giavini and Menegola, 2004). This is why, evaluating 

the toxicity of mixtures of multiple chemicals is one of the major objectives of today’s 

toxicology despite the effect of exposure to a mixture is still difficult to understand. To arrive in 

the future to the creation of a realistic overall picture of human exposure to mixtures, the 

development of integrated approaches between in vitro and in silico techniques and 

computational systems biology, able to predict the effects of mixtures starting from the 

concentrations of their individual components, will be essential. Recent studies suggest that the 

similarity of molecular initiating events (MIEs) is not an essential requirement to induce additive 

effects, because mixtures composed of chemicals with different MIE can exhibit mixture effects 

too, probably acting on the same biological pathway and contributing to the same adverse 

outcome (EFSA, 2013). This is in recognition of emerging evidence that biological effects can 

be similar, although the molecular details of toxicological mechanisms may profoundly differ in 

many respects (Kortenkamp, 2007). Considering the previously reported data, this could be the 

case of embryonic co-exposure to fluconazole (FLUCO) and ethanol (Eth). Both, in fact, lead to 

the same adverse outcome (AO), craniofacial malformations, both after in utero and in vitro 

exposure. The two molecules are able to induce cranio-facial defects (in embryos visible as 

cranio-facial abnormalities), probably acting on the same Adverse Outcome Pathway (AOP) 

altering, with different MIEs, the biological event cascade regulated by the morphogen retinoic 

acid (RA). 

The specific aim of this PhD project was to investigate this hypothesis through the development 

of an in silico model,  useful to simulate and predict the effects on embryo development after co-

exposure to substances with independent MoAs but acting on the same biological pathway and 

potentially contributing to the same adverse outcome (cranio-facial malformations). The in silico 

model was based on experimental data and validated by in vitro experiments. For this purpose, 

the project was divided into three parts. 
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In the first part, we evaluated the effects of the molecules on post-implantation rat embryos 

cultures, using the in vitro technique WEC (Whole Embryo Culture). Embryos were cultured in 

presence of increasing concentration of RA (0.025-0.0375-0.05-0.125-0.25 µM), to increasing 

concentrations of Eth (17-42.5-85-127 mM), to increasing concentrations of FLUCO (62.5-125-

250-500 µM). Specific and concentration related abnormalities at the level of the branchial 

arches (reductions or fusions) were observed after exposure to single Eth or FLUCO and were 

comparable to those elicited by RA. These results suggest a common AO for Eth, FLUCO and 

RA. Embryos were then co-exposed to binary mixtures of FLUCO and Eth. To better 

characterize the contribution of each component to the observed effects, the “fixed + moving” 

approach was applied: embryos were exposed to the no effect concentration (NOAEL) of one 

chemical (“fixed”) and increasing concentrations of the other chemical (“moving”). A significant 

enhancement of teratogenic effects was observed after co-exposure to FLUCO and Eth in 

comparison to the single exposure. The mixture between the two NOAELs was effective too, 

inducing almost 40% of branchial arch abnormalities. These data suggest the presence of a 

cumulative effect in mixture, probably due to the capability of both molecules to perturb RA 

endogenous concentrations in specific tissues (the precursors of cranio-facial skeletal tissues, 

originated in the embryonic hindbrain). This theory could be explained considering the ability of 

Eth to induce alcohol-dehydrogenases (including ADH7, the embryonic enzyme involved in RA 

synthesis) and the inhibitory effects of FLUCO on cytochromes p450 (including CYP26, 

involved in embryonic RA degradation). 

In the second part of the project, we evaluated these hypothetical mechanisms inducing the Eth-

FLUCO mixture effects through the development of an in silico tool, able to simulate both the 

formation of the physiological RA gradient in the rat embryo hindbrain and its perturbation after 

exposure to FLUCO, Eth and to their binary mixtures. The obtained system biology model, 

developed using an integrated approach combining mathematical modelling, molecular docking 

and in vitro experiments, seems to be reasonably predictive for the mixture’s effects, confirming 

the accuracy of the hypothesized pathogenic pathway. Experimental data and model predictions, 

in fact, showed a promising agreement. The model, in spite of its limitations, could have many 

potential mechanistic or predictive applications for the study of risk assessment. However, since 

the model is based on experimental data obtained in mammals, the last part of the project was 

aimed to evaluate alternative animal models. 
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In the third part of the project, the evaluation of the effects after co-exposure to FLUCO and Eth 

were performed using the ascidian Ciona intestinalis embryo model as a new alternative 

teratological screening test (AET, Ascidian Embryo Teratogenicity assay). An ascidian species 

was selected because Ascidiacea represent the sister group of Vertebrates. For this purpose, C. 

intestinalis embryos were exposed to Eth alone (1.7-8.5-17-42.5-85 mM) to FLUCO alone (7.8- 

15.75-31.5-250 µM), or co-exposed to binary mixtures of FLUCO and Eth until the larval stage, 

applying the fix + moving protocol. Specific and concentration related abnormalities at the level 

of the anterior structures were elicited by Eth or FLUCO, and were comparable to those 

described in literature after RA exposure. A significant enhancement of the general 

teratogenicity was observed after co-exposure to FLUCO and Eth in comparison to the single 

exposure, suggesting the presence of a mixture effect induced by FLUCO and Eth also in this 

model. These results, similar to those observed in the WEC model, encourage the use of AET as a 

complementary alternative method for embryotoxicity studies on mixtures. The possibility to 

translate data obtained in this model in our in silico model is still to evaluate. 

In conclusion, our data suggest that: 1. the integrated use of data from in vitro and in silico 

approaches used in this study support the hypothesis that embryonic exposure to FLUCO and 

Eth can lead to the same AO (craniofacial abnormalities) acting with different MIEs but both 

converging on the same AOP by altering the RA production (Eth) and the RA catabolism 

(FLUCO); 2. the hypothesis that substances with different MoAs but acting on the same pathway 

could produce an additive effect also at concentrations considered not effective is supported; 3. 

the obtained results highlight the potential additive effect that could occur after exposure to 

azoles and ethanol, suggesting a precautionary position in alcohol consumption during azoles 

exposure in pregnancy. The overall view of the obtained results support the need of a cumulative 

risk assessment not only for chemicals grouped on the base of similarities in chemical structure 

or derived from mechanistic considerations but also for chemicals differently acting on the same 

biological pathway. 
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RIASSUNTO 

L'esposizione embrionale a composti chimici ambientali (pesticidi, contaminanti acquatici o 

dell'aria), può provocare malformazioni congenite o anomalie dello sviluppo come le schisi oro-

facciali. Purtroppo, la realtà dell'esposizione embrionale umana è caratterizzata dalla presenza 

contemporanea di più sostanze anziché di una singola sostanza per volta. Nonostante gli sforzi 

fatti finora per chiarire il meccanismo di azione (mechanism of action, MoA) delle sostanze che 

possono perturbare il normale sviluppo embrionale, ad oggi sono stati compresi solo una piccola 

parte dei pathway coinvolti (Giavini and Menegola, 2004). Per questo motivo, la valutazione 

della tossicità delle miscele di più sostanze chimiche è uno dei principali obiettivi della 

tossicologia moderna, nonostante gli effetti dati dall'esposizione a miscele siano ancora difficili 

da capire. Per giungere in futuro alla realizzazione di un quadro complessivo realistico 

dell'esposizione umana a queste sostanze, lo sviluppo di approcci integrati tra tecniche in vitro e 

in silico e tra modelli computazionali di system biology in grado di prevedere gli effetti delle 

miscele partendo dalla concentrazione dei loro singoli componenti si rivelerà essenziale. Studi 

recenti suggeriscono che la somiglianza tra eventi molecolari iniziali (molecular initiating 

events, MIEs) non è un requisito essenziale nell'induzione di effetti additivi, perché miscele di 

composti chimici con MIE diversi possono comunque presentare effetti miscela, probabilmente 

agendo sullo stesso pathway biologico e contribuendo allo stesso effetto avverso (EFSA, 2013). 

Esistono infatti prove emergenti che indicano che gli effetti biologici possono essere simili, 

nonostante i dettagli molecolari dei meccanismi tossicologici differiscano profondamente per 

molti aspetti (Kortenkamp, 2007). Considerando i dati precedentemente riportati, questo può 

essere il caso della co-esposizione embrionale a fluconazolo (FLUCO) ed etanolo (Eth). 

Entrambi, infatti, possono portare allo stesso effetto avverso (adverse outcome, AO), le 

malformazioni cranio-facciali, sia dopo esposizione in utero che in vitro. Le due molecole sono 

in grado di indurre malformazioni craniofacciali (visibili negli embrioni come anomalie cranio-

facciali), agendo probabilmente sullo stesso adverse outcome pathway (AOP) alterando, con 

MIE diversi, la cascata di eventi biologici regolata dal morfogeno acido retinoico (RA).  

L'obiettivo specifico di questo progetto di dottorato era verificare questa ipotesi tramite lo 

sviluppo di un modello in silico capace di simulare e predire gli effetti sullo sviluppo embrionale 

dati dalla co-esposizione a sostanze con MoA indipendenti ma che agiscono sullo stesso pathway 

biologico e che contribuiscono potenzialmente allo stesso effetto avverso (malformazioni cranio-



9 

facciali). Lo sviluppo del modello in silico si è basato su dati sperimentali e validato da 

esperimenti in vitro. A questo scopo, il progetto è stato diviso in tre parti. 

Nella prima parte, sono stati valutati gli effetti delle molecole su embrioni post-impianto di ratto 

utilizzando la tecnica in vitro WEC (Whole Embryo Culture). Gli embrioni sono stati coltivati in 

presenza di concentrazioni crescenti di RA (0.025-0.0375-0.05-0.125-0.25 µM), di 

concentrazioni crescenti di Eth (17-42.5-85-127 mM), di concentrazioni crescenti di FLUCO 

(62.5-125-250-500 µM). Sono state osservate anomalie specifiche e concentrazione-dipendente a 

livello degli archi branchiali (riduzioni o fusioni) dopo l'esposizione al singolo Eth o FLUCO, 

comparabili a quelle ottenute con RA. Questi risultati suggeriscono un AO comune per Eth, 

FLUCO e RA. Gli embrioni sono stati quindi co-esposti alle miscele binarie di FLUCO e Eth. 

Per meglio caratterizzare il contributo di ciascun componente agli effetti osservati, è stato 

applicato l’approccio “fixed + moving”: gli embrioni sono stati esposti alla concentrazione non 

effetto di una sostanza ("fixed") e a concentrazioni crescenti dell'altra ("moving"). È stato 

osservato un aumento significativo degli effetti teratogeni dopo la co-esposizione a FLUCO e 

Eth rispetto all'esposizione singola. Anche la miscela delle due NOAELs è risultata con effetto, 

inducendo quasi il 40% delle anomalie agli archi branchiali. Questi dati suggeriscono la presenza 

di un effetto cumulativo in miscela, probabilmente dovuto alla capacità di entrambe le molecole 

di perturbare la concentrazione endogena di RA in tessuti specifici (i precursori dei tessuti 

scheletrici cranio-facciali, che si originano nel rombencefalo embrionale). Questa teoria può 

essere spiegata considerando l’abilità di Eth di indurre le alcol deidrogenasi (compresa ADH7, 

l’enzima embrionale coinvolto nella sintesi di RA) e gli effetti inibitori del FLUCO sul 

citocromo p450 (compreso CYP26, coinvolto nella degradazione dell’RA embrionale). 

Nella seconda parte, sono stati valutati gli ipotetici meccanismi che inducono gli effetti miscela 

Eth-FLUCO tramite lo sviluppo di uno strumento in silico, in grado di simulare sia la formazione 

di un gradiente di RA nel rombencefalo di un embrione di ratto sia la sua perturbazione in 

seguito ad esposizione a fungicidi azolici, ad Eth e alle loro miscele binarie. Il modello di system 

biology, sviluppato utilizzando un approccio integrato che combina modelli matematici, docking 

molecolare ed esperimenti in vitro, sembra essere ragionevolmente predittivo per gli effetti 

miscela, confermando l'accuratezza del pathway ipotizzato. Infatti, i dati sperimentali e le 

predizioni del modello mostrano un accordo promettente. Il modello, nonostante i suoi limiti, 

potrebbe avere molte potenziali applicazioni meccanicistiche o predittive per lo studio della 
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valutazione del rischio. Tuttavia, dal momento che il modello si basa su dati sperimentali ottenuti 

nei mammiferi, l'ultima parte del progetto era finalizzato a valutare modelli animali alternativi. 

Nella terza parte, la valutazione degli effetti dati dalla co-esposizione a FLUCO e Eth è stata 

effettuata utilizzando il modello di embrione di ascidia Ciona intestinalis come un nuovo test 

alternativo per lo screening teratologico (ascidian embryo teratogenicity assay, AET). È stata 

scelta una specie di ascidia in quanto gli Ascidiacea rappresentano il sister group dei Vertebrati. 

A questo scopo, embrioni di C. intestinalis allo stadio di neurula precoce (7 hpf) sono stati 

esposti per 15 h a concentrazioni crescenti di Eth (1.7-8.5-17-42.5-85 mM), concentrazioni 

crescenti di FLUCO (7.8-15.75-31.5-250 µM) o co-esposti alle miscele binarie di FLUCO e Eth, 

applicando il protocollo fix + moving, fino allo stadio di larva. Sono state osservate anomalie 

specifiche e concentrazione-dipendenti a livello dello strutture anteriori dopo l'esposizione 

singola a Eth o FLUCO, paragonabili a quelle descritte in letteratura dopo esposizione con RA. È 

stato osservato inoltre un aumento significativo della teratogenicità generale dopo la co-

esposizione a FLUCO e Eth rispetto alle esposizioni singole, il che suggerisce la presenza di un 

effetto miscela indotto da FLUCO e Eth anche in questo modello. I risultati ottenuti, simili a 

quelli osservati nel modello WEC, incoraggiano l'uso dell'AET come un metodo alternativo 

complementare per gli studi di embriotossicità. La possibilità di traslare i dati ottenuti in questo 

modello nel nostro modello in silico è ancora valutare. 

Concludendo, i nostri dati: 1. Suggeriscono che l'uso integrato di dati provenienti dagli approcci 

in vitro e in silico usati in questo studio supporta l'ipotesi che l'esposizione embrionale a FLUCO 

e Eth può portare allo stesso AO (anomalie cranio-facciali) agendo con MIE diversi ma entrambi 

convergenti sullo stesso pathway biologico, alterando la produzione di RA (Eth) e il suo 

catabolismo (FLUCO); 2. Avvalorano l'ipotesi per cui sostanze con MoA diversi che agiscono 

sullo stesso pathway possono produrre un effetto additivo anche a concentrazioni considerate 

non effetto; 3. Sottolineano il potenziale effetto additivo che potrebbe verificarsi dopo 

esposizione contemporanea ad azoli ed etanolo, suggerendo cautela nel consumo di alcol durante 

l'esposizione ad azoli durante la gravidanza. La visione d’insieme dei risultati ottenuti 

supportano la necessità di una valutazione del rischio cumulativo non solo per quelle sostanze 

raggruppate sulla base di somiglianze nella struttura chimica o derivati da considerazione 

meccanicistiche, ma anche per quelle sostanze che agiscono diversamente sullo stesso pathway 

biologico. 



11 

GENERAL INTRODUCTION 
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1. CRANIO-FACIAL DEFECTS

Congenital anomalies are a major cause of infant mortality and childhood morbidity, affecting 2-

3% of newborns. Among congenital anomalies, oral cleft (cleft lip and/or palate alone or 

associated with other cranio-facial deformities) are one of the most frequent (1:700 live births), 

both as isolated anomalies and in syndromic conditions (Mossey et al., 2009). The most frequent 

defects associated with facial clefts are malformation of the limbs, followed by cardiovascular 

and other facial anomalies. Cranio-facial anomalies, other than cleft lip and palate, occur in 1 in 

every 1600 newborns in the United States of America (USA) and include jaw deformities, 

malformed or missing teeth, defects in the ossification of facial or cranial bones, and facial 

asymmetries. In Europe, higher prevalence rates of cleft lip/palate are reported from northern 

countries (Mossey and Little, 2002), even if such a geographical distribution is not the rule 

worldwide. Evidence suggests that oral clefts are multifactorial in origin, involving both genetic 

and environmental risk factors (Mossey et al., 2009). The specific causes inducing cranio-facial 

defects are unknown, even if some risk factors have been identified, such as maternal active and 

passive smoking (Hackshaw et al., 2011; Sabbagh et al., 2015), maternal diabetes (Spilson et al., 

2001), use of medicaments, such as some antiepileptic drugs, during the first trimester of 

pregnancy (Nguyen et al., 2009; Alsaad et al., 2015). The human embryo is not usually exposed 

to a single substance, but to many substances simultaneously and the effect of exposure to a 

mixture of chemicals is still difficult to understand. The chemicals a pregnant woman may be 

exposed to are numerous and include several categories: medicines, recreational drugs (alcohol, 

smoking, cocaine, etc.), workplace chemicals, environmental chemicals (pesticides, air and water 

pollutants). Although experimental teratology data are considered sufficient for risk assessment, 

in the case of a possible, multiple aetiology of an adverse outcome (AO), the risk of a multiple 

exposure to different risk factors showing additive effects should be taken into account. An 

adverse outcome pathway (AOP) describes a framework of information about the progression of 

toxicity events starting from one molecular initiating events (MIE). Alterations along a sequence 

of more and more complex biological organizations are described as key events (KEs) and lead, 

at the end, to the AO. The possibility that different AOP could converge and induce the same AO 

is to take in account. Detailed mechanistic knowledge is necessary in order to develop alternative 

testing methods on chemicals potentially acting on the same AOP. The elucidation of the 

different potential chemical actors switching on the same or different MIEs/ KEs but 

contributing to the same AO (for our purposes cranio-facial defects) is fundamental in order to 

plan researches on the contribution of multiple exposures for facial cleftings.  
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2. CRANIOFACIAL DEVELOPMENT

2.1. Role of Neural Crest Cells 

The oropharyngeal region is of considerable importance for both feeding and respiration, but it 

also generates important endocrine structures, such as the thyroid and parathyroid, as well as 

being the site of formation of the thymus (Graham, 2003). The development of this region of the 

embryo is extremely complex, involving interaction between a numbers of different embryonic 

cell types whose development must be well co-ordinated. The oropharyngeal apparatus has a 

segmented origin arising from series of bulges clearly visible on the lateral surface of the 

embryonic head: the branchial arches. In Mammals, there are six transient branchial arches, of 

which the first and the second are involved in craniofacial morphogenesis.  

The neural crest cells (NCCs) play a pivotal role in the correct development of this region. The 

NCCs are a transient vertebrate cell type, characterized by its site of origin within the central 

nervous system (CNS), multipotency, and its ability to migrate and differentiate into numerous 

derivatives (Le Douarin and Kalcheim, 1999). Each branchial arch is characterized by a 

mesenchymal (the embryonic connective) core, externally constituted by migrated NCCs, which 

surrounds a central group of mesodermal cells (Fig. 1).  

Fig. 1. The pharyngeal arches. A: A side view of the head region of an embryo. The pharyngeal arches are numbered 

from anterior to posterior I, II, III, IV and VI. The pharyngeal pouches (derived from the anterior gut) are labelled red, 

while the external epithelium is grey. The position of the eye vesicle as well as the otic vesicle (OV) are indicated. B: A 

longitudinal section through the pharyngeal arches. Again, the arches are labelled I through VI. The surface epithelium is 

green, the neural crest cells yellow, the mesoderm blue and the endoderm red. (Figure from Graham et al., 2003) 

The NCCs migrated into the branchial apparatus will originate the connective and skeletal tissues 

of each arch, while the mesodermal mesenchyme will form the musculature and the endothelial 

cells of the arch arteries (Noden, 1983; Couly et al., 1993; Trainor and Tam, 1995). NCCs 

migrated into the branchial arches originate from the hindbrain (rhomboencephalon, segmented 
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in 7 metameric units, named rhombomeres) and from the caudal midbrain regions (Noden, 

1983). Three distinct cell streams detach during the neural tube formation and reach the 

branchial apparatus (Lumsden et al., 1991): the NCCs that fill the first arch arise from the caudal 

midbrain and rhombomeres 1 and 2 of the hindbrain, those that fill the second arch arise 

primarily from rhombomere 4, and finally the caudal arches (III-VI) are populate by the post-otic 

NCCs generated by rhombomeres 6 and 7 (Lumsden et al., 1991; Schilling and Kimmel, 1994) 

(Fig. 2). 

Fig. 2. Neural crest streams migrating from neural tube in formation to the head. (Figure from Carstens and Ewings, 2009) 

The segregation of the NCCs into the streams is controlled through localized cell death. 

Rhombomeres 3 and 5 are depleted in NCCs production and, although these two hindbrain 

segments produce some NCCs, the majority of them from these rhombomeres die by apoptosis 

(Graham et al., 1993). Rhombomeres 3 and 5 constitute the so-called neural crest free zones. 

During normal development, jaw structures only form in the first arch, as well as the hyoid 

structure forms only in the second arch. Transplant experiments of the anterior hindbrain in the 

place of the mid hindbrain has shown that the NCCs produced by this tissue populate the second 

rather than the first arch with dramatic consequences on arch pattering: first arch structures 

developed in the second arch, while second arch form skeletal elements typical of the first arch 

(Noden, 1983). This suggests that NCCs acquire their positional information when they are 

within the neural tube and then transfer this information to the arches through their migratory 

capability. In fact, it seems that the prepatterned information contained in the hindbrain NCCs is 

associated with the expression pattern of Hox genes (Krumlauf, 1993). NCCs of the first arch do 

not express Hox genes at all, while second arch NCCs expresses Hox-a2 (Graham, 2003). Hox 

genes are conserved genes present in all animals, and involved in the specification of cephalic-
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caudal axis and segment identity during early development, among which the formation and 

identity of the rhombomeres that constitute the hindbrain (Wilkinson, 1993). Therefore, Hox 

genes are essential both for the morphogenesis of the encephalon and to specify the 

rhomboencefalic NCCs. In this way, they can properly migrate into the corresponding branchial 

arches where they differentiate to give rise to the craniofacial structures (Trainor et al., 2002). 

Hox expression is activated by Retinoic Acid (RA) and regulated by growth and transcription 

factors like FGF8 (Ross et al., 2000). 

2.2. Retinoic Acid pathway 

RA, a metabolite of vitamin A, is a well-known morphogen in invertebrates and vertebrates 

(Morriss-Kay, 1992). RA is considered the main molecule involved in craniofacial 

morphogenesis in vertebrates with jaws (gnathostomes), and in activating the expression of a 

cascade of growth factors and then of genes controlling craniofacial development (Suzuki et al., 

1999). Excess or deficiency of retinoids can induce craniofacial abnormalities (Kochhar, 2009), 

therefore the regulation of the amount of RA that is available to the embryo at specific times and 

to a given site is of critical importance.  

The teratogenic effects of vitamin A excess in pregnant rats caused exencephaly, cleft palate, 

micrognathia, and eye defects (Cohlan, 1953). RA, available as a drug for severe cystic acne 

(Accutane), produced severe malformations in human newborns exposed during pregnancy, 

including reduced or absent ears, micrognathia, cleft palate, aortic arch abnormalities, and 

abnormalities of the central nervous system (Ross et al., 2000). Several animal studies have 

confirmed the teratogenic potential of RA excess, which produces overlapping defect patterns in 

many different animal species (monkeys, rats, mice, rabbits and hamsters). The malformations 

were those previously observed in humans. RA levels are tightly regulated by a combination of 

synthesis and degradation, and depends on the availability of its precursor, vitamin A (White and 

Schilling, 2008). All animals obtain form of vitamin A (retinol) from their diet in form of beta-

carotene from plants and retinyl esters from animal sources. The major storage in embryos varies 

from species to species (Simões-costa et al., 2008). In placental mammals, retinol and retinyl 

esters are provided to the embryo through the maternal circulation. Retinol is secreted by the 

liver and transported in the blood at micromolar levels via serum retinol-binding-protein (RBP4) 

and is made available to the cells (including embryonic cells by maternal transfer) for potential 

conversion to RA (Quadro, 2004). In a RA-generating tissue, conversion of retinol to RA 

involves two steps: retinol is reversibly oxidized to retinaldehyde by either alcohol 

dehydrogenases (ADH) or retinol dehydrogenases (RDH), and retinaldehyde is irreversibly 
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oxidized to RA by retinaldehyde dehydrogenases (RALDH). RA is then released and taken up by 

surrounding cells. Some RA target cells express cellular RA-binding-protein (CRABP2) that 

facilitates uptake of RA and transport to the nucleus where RA binds the RA receptor (RAR) and 

retinoids X receptor (RXR) at the level of retinoic acid response element (RARE). The thus 

ternary complex formed regulates transcription of RA target genes (Hox genes) by modulating 

the binding of corepressors and coactivators. In no target cells, RA is sequester at cytoplasmic 

level by CRABP1 and delivered to CYP26 enzymes for degradation and excretion (Duester, 

2008) (Fig. 3). In mammals there are three isoforms of CYP26 each with a specific spatial and 

temporal expression in the embryo: CYP26A1, expressed in the spinal cord and on rhombomere 

2 at mouse stage E8.5 (MacLean et al., 2001); CYP26B1, expressed at the level of the heart and 

developing vasculature and at the level of rhombomeres 3 and 5 at mouse stage E8 and later in 

branchial ectomesenchyme; CYP26C1 expressed in rhombomeres 2and 4 at mouse stage E8-8.5, 

in the first branchial arch (MacLean et al., 2001; Reijntjes et al., 2005).  

Fig. 3. Retinoic Acid synthesis and signalling. (Figure from Duester, 2008) 

2.3. Hindbrain Pattering 

One of the main functions of RA is in the developing hindbrain where it contributes to the 

anterior-posterior patterning (Morriss-Kay, 1992). In the mouse, the RA needed for this function 

is first produced at embryonic day 7.5 (E 7.5) in the trunk paraxial mesoderm by RALDH2 and 

diffuses into the adjacent central nervous system (Niederreither et al., 1999). The generation and 

diffusion of RA has been proposed to form a gradient that patterns the hindbrain into seven 

rhombomeres (r1-7) (White et al., 2007; Schilling et al., 2012). Because morphogens act at a 
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distance from their source of production, eliciting distinct cellular responses in a concentration-

dependent manner (Rogers and Schier, 2011), they need to be robust and precise. Mechanism 

that enhance RA gradient robustness include: 1) tight feedback regulation of RA synthesis 

(recent evidence demonstrates that it also downregulates retinol dehydrogenase, RDH10, the 

enzyme that converts retinol to retinal (Strate et al., 2009)); 2) self-enhanced degradation with a 

negative feedback loop that regulates RA levels and compensate for changes in RA level (RA 

induces the expression of Cyp26A1 enzyme that specifically degrades RA (White et al., 2007)); 

3) interactions between RA and other morphogens like the fibroblast growth factor (FGF)

(Kudoh et al., 2002). 

The FGF gradient is thought to be responsible for maintaining the cells of the posterior 

presomitic mesoderm in an immature state and to prevent them from activating their activation 

program (Dubrulle et al., 2001). Both RA and FGF gradient are produced in the posterior 

mesoderm during gastrulation, and induce posterior and suppress anterior expression of genes 

involved in rhombomeres specifications. FGF expression may drive the gastrulation movements 

that make the hindbrain field growing in size, and could activate the Cyp26 mRNA expression 

(del Corral and Storey, 2004). 

However, RA activity during hindbrain development seems to be more complex and probably 

does not correspond to a simple concentration gradient of endogenous RA. Moreover, a gradient 

of RA has never been directly visualized, largely due to technical reasons. Sirbu et al. (2005) 

demonstrated in the mouse hindbrain the existence of dynamic shifting boundaries of RA 

activity: they showed that RA generated by RALDH2 in paraxial mesoderm initially travels as 

far anteriorly as presumptive r3 forming an early RA signalling boundary at r2/r3, just posterior 

to the RA-degrading enzyme Cyp26A1 expression domain. However, this boundary shifts 

posteriorly to the r4/r5 border as soon as Cyp26C1 is expressed in r4 (Fig. 4). Hence, the 

hindbrain utilizes the RA-degrading function of Cyp26A1 and Cyp26C1 to establish shifting 

boundaries of RA activity that induce both Hoxb1 and vHnf1, a repressor of Hoxb1. They also 

showed that the initial RA boundary at r2/r3 is independent of RA concentrations, as Cyp26A1 

expression does is not substrate-dependent, while the shift to the r4/r5 boundary is RA-

dependent, because Cyp26C1 expression in r4 is activated by the substrate itself. This study 

show that a stable RA gradient is not established across the hindbrain, but the initial gradient of 

RA entering the posterior hindbrain is converted by RA-degrading enzymes into RA boundaries 

that shift over time such that anterior tissues receive a short pulse of RA and posterior tissues 

receives a long pulse of RA.  
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Fig. 4. Model of shifting RA boundaries during mouse hindbrain segmentation. Initially, RA forms an early anterior 

boundary at r2/r3 (next to the r2 border of Cyp26A1 expression), followed soon after by a late anterior boundary at r4/r5 

(next to the r4 border of Cyp26C1 expression). RA acts firstly directly to induce Hoxb1 expression, then RA acts both 

directly and indirectly (through induction of vHnf1) to restrict Hoxb1 expression to r4.  (Figure from Sirbu et al., 2005) 

Thanks to its fine regulation, RA can form gradients that are roust, precise and capable of 

inducing multiple sharp boundaries of target gene expression (Hox genes) which give rise to a 

correct hindbrain segmentation. The correct NCCs migration from rhombomeres to branchial 

arches (and the subsequent correct craniofacial morphogenesis) is therefore established by the 

correctly establishment of the hindbrain RA gradient. By consequence, it is plausible that severe 

malformations of the face could result both by a generalized RA synthesis/degradation 

imbalance with altered amounts of RA in rhombomeres, and with a consequent ectopic 

expression of transcription and growth factors both in the hindbrain and rhomboencephalic 

NCC-derived tissues (Morriss-Kay, 1992; Osumi-Yamashita et al., 1994; Mark et al., 1995; 

Whiting, 1997; Schneider et al., 2001). The causes of local imbalance in RA content may be 

different: genetic risk factors, maternal infections during pregnancy, physical factors, or 

exposure to chemicals, including to chemical mixtures. There are many substances related to 

alterations in craniofacial development: exogenous retinoids, ethanol, some drugs (valproic acid, 

thalidomide, antimycotics) and pesticides (such as the class of the azoles fungicides).  

RA excess due to exogenous RA exposure is related to the over- or ectopic- expression of 

homeotic genes, resulting in the homeotic transformation of any segmental region controlled by 

RA (somites, leading to vertebrae, or rhombomeres, leading to cranio-facial elements) (Mark et 

al., 1995). On the other hand, as the concentration of RA in embryonic tissues is controlled by 
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RA metabolism, it is likely that chemicals able to perturb ADH, ALDH or CYP26 functions may 

act as teratogens, by reducing or increasing the concentration of RA.  

Inhibitors of the cytochrome P450- dependent RA catabolism, like the azole fungicide 

Fluconazole, are clinically used to increase plasma levels of RA (Schwartz et al., 1995). A 

similar mechanism has been suggested in order to explain the azole teratogenicity (Tiboni et al., 

2009; Menegola et al., 2000, 2001). This hypothesis seems confirmed by the evidence that the 

embryonic normal morphology is restored after the co-exposure to azoles and to a specific RA 

production (Citral) (Schuh et al., 1993; Di Renzo et al., 2007). 

As far as Eth is concerned, studies on mouse embryos exposed to ethanol showed interference 

with normal hindbrain RA controlled genes (Hox), suggesting an interference with RA metabolic 

enzymes (Dunty et al., 2002). Interaction between ethanol and RA is an intriguing hypothesis, 

but deserve confirmation studies. 
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3. AZOLE FUNGICIDES TERATOLOGY

Azole fungicides are a family of heterocyclic aromatic compounds with five atoms. Based on the 

number of nitrogen atoms, they are classified as imidazoles (two nitrogen atoms) and triazoles (3 

nitrogen atoms) (Fig. 5). 

Both imidazole- and triazole-derivatives are largely used in agriculture as well as in medicine as 

antifungal agents because of their capability to inhibit the P450 enzyme CYP51 (lanosterol 14α-

demethylase), involved in the fungal wall formation (Vanden Bossche et al., 1984). The 

inhibitory action towards CYP51, which mediate the conversion of lanosterol to ergosterol, 

results in accumulation of lanosterol, changing the exact shape and physical properties of the 

fungal membrane, causing permeability changes and malfunction of membrane-imbedded 

proteins. The mechanism seems to be related to the interaction of the nitrogen atom with the 

central iron atom in the porphyrin system of cytochrome P450 (Zarn et al., 2002). The inhibitory 

potencies of these compounds is not limited to fungi. Inhibition has been observed in a number 

of mammalian cytochrome P450-dependent activities, including hepatic microsomal metabolism 

(Sheets and Mason, 1984), cholesterol and steroids metabolism (Loose et al., 1983; Mason et al., 

1985), accounting for the possible interference of azoles with the metabolism of other drugs 

(Blum et al., 1991; Kantola et al., 2000). A concentration-dependent inhibition of the P450 

cytochrome involved in the catabolism of RA (CYP26) has been reported in vitro and in patients 

with promyelocytic leukemia after treatment with the bis-triazole-derivative Fluconazole 

(Schwartz et al., 1995; Vanier et al., 2003). Due to their antifungal activities, more than 20 

different compounds, including Fluconazole, are on the market for medical use, even during 

pregnancy, against superficial and deep mycosis for oral, topical, vaginal or systemic treatment 

of candidiasis and coccidioidal or cryptococcal meningitis (King et al., 1998; Kale and Johnson, 

2005). About 40 different azole agrochemicals (including Cyproconazole, Triadimefon and 

Fig. 5. Structure of the chemical groups characterizing the class of different azoles: (A) Imidazole; (B) Triazole. 

A B 
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Flusilazole) are used worldwide against mildews and rust or cereal grains, fruits, vegetables and 

ornamentals accounting for several thousand per year (Giavini and Menegola, 2010). 

Experimental studies demonstrated that the exposure, both in vitro and in utero, of rodent 

embryos to azole derivatives is able to alter hindbrain organization, NCC migration, 

ectomesenchyme compaction, and branchial arch and nerve morphogenesis, and to induce 

craniofacial alterations associated to axial, skeletal, and limb defects quite similar to those 

observed due to RA excess  (Menegola et al., 2000, 2001, 2003, 2005a, 2005b, 2006a, 2006b; Di 

Renzo et al., 2007, 2011a, 2011b). In vitro exposed rat embryos showed specific malformation at 

the level of the branchial apparatus: hypoplasia of the first and second branchial arch or fusion of 

the branchial arches. The in vivo treatment of E8 mice pregnant females was related to cleft 

palate, skeletal craniofacial abnormalities and axial defects. The observed craniofacial 

malformations were at the level of skeletal structures derived from the first and second branchial 

arch: fusion, agenesis, ectopic elements and/or abnormal shape of the osseous or cartilaginous 

elements of the jaw, of the tympanic ring, of the zygomatic bone, of the middle ear ossicles. 

Malformations observed at the axial level consist of fusion of vertebrae or ribs, duplication of 

axles or morphological transformations of the same homeotic segments (Menegola et al., 2005b). 

Both the craniofacial and axial defects were similar to those described after RA in utero 

exposure. Since the antimycotic activity of the azole derivatives is based on their ability to 

inhibit CYP51, the hypothesis is that the effects related to the embryonic exposure to azole 

fungicides may depend by the inhibition of other embryonic CYP enzymes, such as the RA-

degrading enzyme CYP26, that regulate the spatial-temporal distribution of RA. CYP26 is one of 

the cytochrome P450 specifically expressed in vertebrate embryos during development, with 

more than 61% identity identified in aminoacidic sequence of CYP26 in fish, chicken and 

mammals. Such conservation in the sequence supports a high conservation of functions (Stoilov 

et al., 2001; Abu-Abed et al., 2002). Similar to mammalian embryos, other vertebrate (the frog 

Xenopus laevis), and invertebrate (the ascidian Phallusia mammillata and Ciona intestinalis) 

embryos showed congenital malformations similar to those obtained in mammals after azole 

embryo exposure. (Groppelli et al., 2005; Pennati et al., 2006; Zega et al., 2009).  

From the finding that the abnormalities observed both in mammals and non-mammals 

(amphibians and ascidiacea) are quite similar to those evoked by overexposure to morphogen 

RA, it can be extended that the inhibition of the CYP26 enzyme, responsible for the catabolism 

of RA, and the subsequent endogenous increase of the embryonic RA levels, is the possible 

mechanism of teratogenesis (Menegola et al., 2006a). 
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This hypothesis is supported by several indirect proofs: 

1) some malformations induced by azole fungicides mimic those obtained with excess of RA

(Menegola et al., 2005b); 

2) Exposure of embryos to azole fungicides results in CYP26 overexpression (Tiboni et al.,

2009); 

3) azoles alter the rhombomeric structure of the hindbrain and the migration pattern of NCCs

(Menegola et al., 2003, 2004); 

4) exposure to some azoles alters the expression of specific genes controlled by RA as Krox20,

TGFβ, CRABP1, Hoxb1, Hoxb2 (Massa et al., 2007; Di Renzo et al., 2009); 

5) co-exposure to Triadimefon and subteratogenic doses of RA induces a synergistic effect

(Menegola et al., 2004); 

6) exposure to an inhibitor of RA synthesis (Citral) attenuates the teratogenic effects induced by

triazole derivatives (Di Renzo et al., 2007). 

3.1. Azole exposure in mixture and teratogenicity 

The large use of azole fungicides both in agriculture and for pharmaceutical use makes concrete 

the possibility of simultaneous exposure to these compounds for humans and the occurrence of 

mixture effects. In this regard, the European Food Safety Authority (EFSA) asked the Panel on 

Plant Protection Products and their Residues (PPR Panel) to deliver a scientific opinion on risk 

assessment for a selected group of pesticides from the triazole group to test possible 

methodologies to assess cumulative effects from exposure to these pesticides on human health 

(EFSA, 2009). Currently, little information is still available regarding the embryo-toxicological 

effects deriving from exposure to mixtures of azoles. In their study of 2013, Menegola and co-

workers showed that mixtures of no effect levels of Triadimefon, Imazalil, Fluconazole and 

mixtures of lower concentrations (derived from the Admissible Daily Intake, ADI) of 

Cyproconazole, Triadimefon, Triadimenol, Flusilazole, Tebuconazole, Imazalil with or without 

therapeutic doses of Fluconazole, produced an additive effect on post-implantation rat embryos, 

supporting the hypothesis that the individual tested substances share a same MoA (the inhibition 

of CYP26) and that the class of the azole fungicides constitute a common mechanism group 

(CMG). 
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3.2.Fluconazole 

Among azoles, FLUCO (a bis-triazole derivative, Fig. 6) is a clinically used fungicides 

commonly dosed for treating a variety of mycoses and infections (Laverda et al., 1996; 

Mastroiacovo et al., 1996). Dose and administration period depend on type and severity of the 

infection: vaginal candidiasis is usually treated with a 150-mg single dose, while systemic 

mycoses are daily treated for several months with 400 mg FLUCO, respecting the total 

maximum daily recommended dose of 1600 mg. FLUCO excellent bioavailability has been 

reported after oral dosing and a linear pharmacokinetic has been demonstrated at doses of 200-

400-800 mg/day (corresponding to a maximum plasma concentration of 33-163-229 µM) 

(Santos et al., 2010). As far as the use in pregnancy is concerned, the American Food and Drug 

Administration agency (FDA) recently changed the indications on the risk category in pregnancy 

for high dose fluconazole from category C (animal reproduction studies have shown an adverse 

effect on the foetus and there are no adequate and well-controlled studies in humans, but 

potential benefits may warrant use of the drug in pregnant women despite potential risks) to 

category D (there is positive evidence of human foetal risk based on adverse reaction data from 

investigational or marketing experience or studies in humans, but potential benefits may warrant 

use of the drug in pregnant women despite potential risks), while the pregnancy category for a 

single, low dose of fluconazole is category C (Sannerstedt et al., 1996).  

Considering that teratogenic effects observed after in vitro exposure to FLUCO of whole 

postimplantation rodent embryos (Tiboni, 1993; Menegola et al., 2001) and after exposure of 

amphibian embryos (Groppelli et al., 2005) strictly resemble the alterations induced by RA 

excess in mammals (Menegola et al., 2003; 2004) and in frogs (Groppelli et al., 2005), and 

considering that the inhibitory activity of FLUCO on CYP26 enzyme accounts for the use of 

FLUCO in patients with acute promyelocytic leukaemia (Schwartz et al., 1995; Vanier et al., 

2003; Van Wauwe et al., 1990), the proposed teratogenic mechanism for FLUCO is the 

Fig. 6. Fluconazole structure 
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inhibition of CYP26 embryonic enzymes with the consequent increase in local RA levels. The 

observation in rodents embryos that the co-exposure to sub-teratogenic doses of both RA and 

FLUCO (62.5µM) leads to the same phenotype as the teratogenic doses of RA and FLUCO 

alone, definitively supported the hypothesis of local increase of RA as key event in FLUCO 

teratogenicity ( Menegola et al., 2006; Menegola et al., 2004). Furthermore, exposure to FLUCO 

has been linked to altered gene expression of some CYP26 isoforms (increased expression of 

CYP26A1 and CYP26B1, but no changes in CYP26C1 expression) (Tiboni et al., 2009). 
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4. ETHANOL TERATOLOGY

Ethanol (Fig. 7) is a well-known teratogen agent in human population mainly taken by alcoholic 

beverages. Being a xenobiotic, its detoxification occurs at the hepatic level: it is oxidized, by the 

enzyme alcohol dehydrogenase (ADH), to acetaldehyde, which is again oxidized to acetate by 

the enzyme aldehyde dehydrogenase (ALDH). 

The abuse of alcoholic substances involves a series of complications at the physiological, 

psychological and sociological level. Therefore, prevention and information programs to avert 

alcohol abuse and promote the responsible consumption of alcoholic beverages, play an 

important role both at social and individual level. Controlling alcohol intake is even more 

important for pregnant women, because of the dose-dependent teratogenic effects that ethanol 

can exert on embryos developing (Ornoy and Ergaz, 2010). For this reason, the general 

recommendations are to avoid completely the intake of alcohol during pregnancy. Both ethanol 

and its metabolite (acetaldehyde) are small non-ionized hydrophilic molecules able to cross 

easily the placenta. Waltman and Iniquez (1972) have shown that ethanol, administered 

intravenously to the mother at the time of delivery, traverses the placenta and, within 1 minute, is 

present in the bloodstream of the newborns.  

Ethanol consumption during pregnancy can produce a wide range of physical, cognitive, and 

behavioural disabilities in newborns classified in a recognised syndromic picture named as foetal 

alcohol spectrum disorder (FASD) (Abel and Hannigan, 1995). The most severe form, that 

includes morphological abnormalities, is defined as foetal alcohol syndrome (FAS) (de Sanctis et 

al., 2011; Joya et al., 2012; Memo et al., 2013) and is characterized by microcephaly, flat 

midface with short palpebral fissures, low nasal bridge with short nose and long smooth or flat 

phyltrum (de Sanctis et al., 2011). In studies on postimplantation rat embryos exposed in vitro to 

Eth, the reported malformations are mostly neural tube defects, rotation and cardiac 

abnormalities and hypoplasia of the first branchial arch (Giavini et al., 1992; Deltour et al., 1996; 

Fig. 7. Chemical reaction of Ethanol metabolism 
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Duester, 1998; E. Menegola et al., 2001; Kot-Leibovich and Fainsod, 2009). FAS pathogenesis 

has been deeply investigated and the altered pathway, by which Eth acts as teratogen, comprise: 

 Action on neural crest cells. In a study on Xenopus laevis NCCs after exposure with

ethanol, Shi and colleagues found abnormalities in the migration of these cells, and

abnormalities at the level of pigmentation and the trunk. Increasing the dose of alcohol,

the NCCs migration decreased until they entirely ceased (2% ethanol) (Shi et al., 2014).

The Xenopus laevis NCCs behaviour in culture was also studied: the NCCs showed

abnormalities when treated with ethanol, such as a reduction of the number of migration

cells and disorganization of their migration pattern (Czarnobaj et al., 2014).

 Increased levels of apoptosis among NCCs (Kotch and Sulik, 1992; Ewald and Shao,

1993; Holownia et al., 1997; Ikonomidou, 2000; Climent et al., 2002; Light et al., 2002;

Kilburn et al., 2006).

 Impaired signalling by transcription factors or growth factors, including RA (Miller and

Kuhn, 1995; Smith, 1997; Sulik, 2005; Yelin et al., 2005; Zhou et al., 2011).

 Metabolic stress (including oxidative stress) (Kotch et al., 1995).

The characterization of the mechanism by which ethanol exerts its teratogenic effects is difficult 

due the pleiotropic nature of its action. It is not possible to study all the processes simultaneously 

involved, but it is possible to explore some of them in order to better understand the 

mechanisms, the main target and the developmental stage of effect (Kiecker, 2016). 
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5. STATE OF THE ART ON THE RISK ASSESSMENT FROM EXPOSURE TO

MIXTURES OF CHEMICALS

In the last years, the effects on human health and environment after exposure to different 

multiple chemicals have become an item of concern. These effects are known as “mixture 

effects”. The European Parliament pointed the attention to the need to consider the risk 

assessment of chemical mixtures within the context of EU (European Union) legislation on 

chemicals. 

The risk assessment of exposure to mixtures and the estimation of potential interactions between 

chemicals are very complex problems. They are also problems of great importance since human 

exposure, both in the living environment both in the workplace, is characterized by the 

simultaneous presence of a multiplicity of chemical substances. It should be emphasized that, 

despite the availability in the literature of numerous toxicological studies on the interactions 

between chemical agents, the current knowledge about the mechanisms of interaction between 

chemicals is rather limited and has gaps. A European Commission has been asked to assess how 

and whether relevant existing legislation adequately addresses risk from exposure to multiple 

chemicals from different sources and pathways, and on this basis to consider appropriate 

modifications, guidelines and assessment methods (European Commission, 2009). 

First, it is appropriate to define what a mixture, the risk and the risk assessment are: 

 MIXTURE: any combination of two or more chemicals, regardless of source and spatial

or temporal proximity, that may jointly contribute to actual or potential effects in a

receptor population (EPA, 1986).

 RISK: chance of harmful effects to human health or to ecological systems resulting from

exposure to an environmental stressor that may be a physical, chemical or biological

entity.

 RISK ASSESSMENT: it is the probability of the adverse health effects that may occur

after exposure to a chemical, physical or biological entity.

The risk assessment is carried out through the analysis of three key moments: 

1) HAZARD IDENTIFICATION: the process to identify the types of adverse health effects

that can be caused by exposure to a stressor, and to characterize the quality and weight of

evidence supporting this identification. For this purpose, the study of the toxicokinetic

properties (absorption and distribution of the substance and/or of its metabolites) and the

study of the toxicodynamics property (interaction among the substance and the target of
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the toxic effect) of the tested chemical are needed. It is possible to understand the 

qualitative and quantitative aspects related to absorption, bioaccumulation potential, 

distribution, metabolism and elimination. 

2) RISK CHARACTERISATION: the assessment of the significance of the toxic effects to

the human species by applying the formula ADI = NOAEL / SF where

ADI = (Admissible Daily Intake) is the dose, expressed in mg/kg of body weight, which

can be taken daily by an individual for the entire lifetime without risk to health.

NOAEL = (No Observed Adverse Effect Level) is the amount of a substance that does not

cause adverse toxic effects. It is a value obtained from experimental studies and

epidemiological observations.

SF = (Safety Factor) It is the factor used to transform the NOAEL in ADI and depends on

the nature of the toxic effect, on the type of the at-risk population and on the quality of

the toxicological information available.

3) Human exposure assessment based on theoretical or analytical data.

The final stage of the process is the comparison of the knowledge gained during the risk

characterization process with data collected on human exposure. The greater the distance

between the ADI and the exposure value, the higher the confidence level and then lower

the probability that individuals should run into a risk for health.

The 95% of the resources in toxicology was devoted to studies on single chemicals (Groten, 

2000). Actually, since humans and all other organisms are typically exposed to multi-component 

chemical mixtures present in the surrounding environmental media (water, air, soil), in food or in 

consumer products (European Commission, 2009), the exposure to chemical mixtures is the rule 

rather than the exception. For this reason, the hazard identification, the exposure assessment and 

risk characterization should focus on mixture, rather than on the single compounds. As 

consequence, the interest of scientists and regulators in the toxicology and in the potential risk of 

combined exposures is growing and the risk assessment caused by exposure to chemical 

mixtures is suggested as an integral part of protecting public health (Feron et al., 1998; Groten, 

2000). In 1986 the United State Environmental Protection Agency (EPA) published the 

Guidelines for the Health Risk Assessment of Chemical Mixtures (EPA, 1986). Recently, the 

Agency for Toxic Substances and Disease Registry (ATDSR) proposed studies on chemical 

mixtures as one of six priority research areas identified in its environmental public health agenda 

(De Rosa et al., 2004). 
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The major aims of research programs on the toxicology of chemical mixtures are: 1) to introduce 

the concepts of joint action and interaction and risk assessment of chemical mixtures; 2) to 

explore methods to predict and to identify hazardous combinations of chemicals relevant to 

humans (Feron and Groten, 2002). 

To study the toxicity of chemical mixtures successfully and to assess their potential risk 

properly, the first step is to understand the basic concepts of joint action and interaction of 

chemicals. The toxicological effects of combinations of chemicals can be described as 

independent, additive or due to interaction (Wilkinson et al., 2000; Feron and Groten, 2002; 

Moretto, 2008). 

The effects are independent (Simple dissimilar action) when the mechanism/ MoA and possibly, 

but not necessarily, the nature of and sites of the toxic effects differ between the chemicals in a 

mixture, and one chemical does not influence the toxicity of toxicity of another. The effects of 

the exposure are the combination of the effects that each compound would have caused when 

give alone (response-addition). 

The additive effect (Simple similar action) is a non-interactive process, which occur when all the 

chemicals in a mixture act by the same MoA and differ only in their potencies. The effect of the 

exposure to the mixture is equivalent to the effect of the sum of the potency-corrected doses of 

each compound in the mixture (dose-addition). The principle of dose-addiction means that 

mixture effects are to be expected even when each chemicals is present below the No Observable 

Adverse Effect Level (NOAEL), because it is assumed that all chemicals in the mixture behave 

as if they were a dilution of one other (European Commission, 2009). Compounds acting with 

similar MoA are said to belong to a CMG. EFSA (European Food Safety Agency), according to 

EPA, proposed several criteria to identify a CMG regarding the pesticides (EPA, 2002; EFSA, 

2009). A preliminary identification of substances that might cause a common toxic effect is 

based on chemical structure (core molecular structure, functional groups or their metabolic 

precursor) and on the mechanism of pesticide action, since it is assumed that substances that 

share similar chemical structure or the same mechanism of action can cause a similar toxic 

effect. Subsequently, a first refinement of the grouping can be performed by definitively 

identifying those substances that cause a common toxic effect. Then the toxic MoA by which 

each substance causes a common toxic effect is determined. 

All other forms of joint action deviating from the two classes of combined toxicity that are 

described above, fall within the group of interactions. The combined effects can be stronger 

(synergistic, potentiating, supra-additive) or weaker (antagonistic, inhibitive, sub-additive) than 

would be expected on the basis of dose-addition for CMG compounds (Moretto, 2008). 
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All three basic principles are theoretical. Actually, one will most likely have to deal with these 

concepts simultaneously, especially when mixtures consist of more than two compounds and 

when the targets (individuals rather than cells) are more complex (Groten, 2000). It is therefore 

crucial to distinguish between simple and complex mixtures, according to which it will also 

change the risk assessment method. A simple mixture is defined as a mixture that consists of a 

relatively small number of chemicals (ten or less), the composition of which is qualitatively and 

quantitative known (Feron et al., 1998). Typical examples are a cocktail of pesticides or a 

combination of medicines. A complex mixture is defined as a mixture that consists of tens, 

hundreds or thousands of chemicals, the composition of which is qualitatively and quantitative 

not fully known (Feron et al., 1998). Examples are welding fume, drinking water a workplace 

atmosphere and wood dust. 

There are limited number of studies in literature on toxic effects from combinations of 

compounds at doses below their individual NOAEL, although the levels of human exposure to 

many different chemicals are generally low and below the NOAELs. The major concern is 

therefore the possibility of a mixture effect even when these substances are present at low 

concentrations. In agreement with Jonker et al. (1996), Moretto (2008) collected the most 

relevant data of in vivo and in vitro studies with mixtures whose components have doses or 

concentrations at or below the effect level and obtained that: 

a) Mixtures of compounds sharing the same MoA show dose-additivity at low doses;

b) Mixtures of compounds sharing the same MoA generally show dose-additivity, although

all possible combined affects may occur;

c) Mixtures of compounds not sharing the same MoA do not show dose-additivity at doses

below the NOAEL;

d) Mixtures of compounds not sharing the same MoA show all possible combined effects at

higher doses

These studies indicate that the type of combined action observed at clearly toxic-effect-levels 

does not predict what will happen at no-toxic-effect-levels, including levels below the NOAEL. 

Therefore, what happens at no-toxic-effect-levels is what counts in assessing the potential health 

risk of human exposed to mixtures. 

Humans are exposed to an almost infinite number of possible combinations of chemicals. Is 

therefore required some form of initial filter that allows to focus on the potentially dangerous 
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mixtures. The EPA Guidelines of 2002 suggest to investigate a few mixtures considered "high 

priority" and to use those data for extrapolation to other environmental mixtures considered 

similar. The Commission proposed a number of criteria to focus and identify mixtures of 

potential concern:  

1) Human exposure at significant levels;

2) Chemicals that are produced and/or marketed as multiple substances or commercial

mixtures that contain several active ingredients and/or potentially dangerous substances;

3) Evidence for potential serious adverse effects for one or more chemicals at the likely

exposure levels;

4) Likelihood of frequent or large scale exposure of the human population or the

environment to the mixture;

5) Persistence of chemicals in the body and/or in the environment;

6) Evidence for potential interaction at levels of human and environmental exposure;

7) Predictive information on the action of such substances;

8) Particular attention to the mixtures with one or more components, which are assumed not

to have a threshold effect.

Examples of mixtures considered high priority are diesel fuels, mixtures of PCBs 

(polychlorinated biphenyls) for which there is a large amount of toxicity data concerning 

commercial mixtures, PAH (polycyclic aromatic hydrocarbons), heavy metals, and pesticides. 

Exposure to multiple residues of pesticides derived from food is a common event in the general 

population. According to EU data, 53-64% of the food samples did not contain pesticide residues 

at detectable levels, 32-42% contained residues below the maximum residue levels (MRLs); 14-

23% of the samples with residues contained more than one active ingredient (CEC, 2007). 

Therefore, exposure to mixture of pesticides occurs as a consequence of intake of food items 

containing multiple residues. Workers in productive industries, farmers and the consumers of 

agricultural products may be those who are most at risk of exposure. Hence, there is a reason for 

conducting the risk assessment of exposure to mixture of pesticides, keeping in mind that doses 

to which people are exposed are relatively low. 

Once given priority to a mixture, we need to focus on the methods to be developed to extrapolate 

the exposure and toxicity estimates. The EPA's 2002 guidance distinguishes between specific 

risk assessments methods for complex mixtures and for simple mixtures. 

For complex mixtures, particularly those that consist of commonly, produced commercial or 

industrial mixtures (e.g. diesel fuels), the preferred method is the use of mixture toxicity data 
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considered in its totality. With the release of the mixtures in the environment, however, the 

components of the mixture can be altered. Then, the mixture for which there are toxicological 

data can no longer be identical in composition to the mixture released into the environment. 

For simple mixtures, the approach based on the risk assessment of the single mixture 

components can be used. The EPA Guidelines of 2002 suggest, in the absence of adequate 

information on the presence of chemical interactions, to assume a situation of non-interaction 

and recommend the use of the models of dose additivity if the MoA are identical or similar. To 

ensure an appropriate level of protection in the absence of adequate data or when the MoA are 

different, it is still preferable to use an approach based on dose additivity which will not 

underestimate the toxicity of the mixture. There are different methods used for the calculation of 

dose additivity. The best known is the TEF (Toxic Equivalency Factor), widely used for the 

evaluation of mixtures of dioxins. Other methods are the RPF (Relative Potency Factor) and the 

HI (Hazard Index). Despite the dose additivity has proved effective in predicting and evaluating 

the toxicity of mixtures, recent studies suggest that the similarity of molecular initiating events 

(MIEs) is not an essential requirement to induce additive effects, because mixtures composed of 

chemicals with different MIEs can exhibit mixture effects too, probably acting on the same 

biological pathway (EFSA, 2013). Recently, it has been argued that grouping criteria based 

solely on chemical similarity or similar mechanisms may lead to unrealistically narrow 

groupings, with the exclusion of chemicals that also might contribute to combination effects 

(Boobis et al., 2011). This is in recognition of emerging evidence that biological effects can be 

similar, although the molecular details of toxicological mechanisms may profoundly differ in 

many respects (Kortenkamp, 2007). 

The analysis of the methodologies for mixtures risk assessment allowed us to highlight the main 

limitations and weaknesses of these approaches, highlighting which are the aspects to be 

improved and which need further study in the future. Analysis reveals three main problems: 1) 

there are little toxicological data on most of the mixtures of chemicals; 2) the majority of the 

available data only covers the evaluation of binary interactions between substances; 3) there are 

few studies on chronic exposure to low concentrations, despite it represents the most common 

situation for environmental exposures. 

The large current gaps are: 

- It is ignored in such places, how often and to what extent, humans and the environment 

are exposed to certain mixtures and how the exposure may change over time. 
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- The composition, especially of complex mixtures, is never known at all. 

- For many substances, we do not have reliable information on the mode of action. 

Moreover, it is very difficult to know all the modes of action that may arise in different 

types of organisms of a complex biological community. 

- It is difficult to predict the interaction (strengthening, synergism) of chemicals in 

mixtures, in particular the long-term effects. In addition, the generalized use of models of 

non-interaction (dose or response additivity) does not take account of the possibility of 

interactions. 

- We do not consider the fact that both the mechanisms of action and the mechanism of 

interaction of the chemicals are dose dependent with different effects and/or possible 

interactions at different dose ranges. 

The last one is a particularly critical point, as most of the studies on mixtures available in 

literature are experiments of exposure to high doses on a reduced number of components of the 

mixture. Actually, most of the human and environmental exposures occur at low doses and in the 

presence of complex mixtures (CEC, 2007). 

Despite gaps in knowledge and data, a better systematic in evaluating the toxicity of mixtures is 

possible. The next steps of the scientific challenge to the toxicology of mixtures are: 

- To better understand humans and environmental exposure to mixtures by monitoring and 

by mathematical modelling in order to be able to predict the risk.  

- To establish criteria for defining the "relevant" components of a mixture, which do not 

take into account only the concentration but also of the contribution to the general 

toxicity.  

- To establish the criteria under which characterize or predict a mode of action. 

- To define the conditions that can lead to potentiation or synergy situations, and to 

determine which the probability of their occurrence is. 

The assessment of exposure to chemical mixtures is certainly a very complex issue. Especially 

considering that, although methodologies for the identification of priority mixtures and for the 

risk assessment are available, there are serious gaps in knowledge and in data that limits the 

ability to assess properly the mixtures. 

To reached the hoped more systematic evaluation of the toxicity of mixtures, in the context of 

EU regulations, the European Commission will issue some technical guidelines in order to: 

- Promote a consistent approach to the assessment of priority mixtures; 
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- Promote the development of knowledge about the chemical mixtures to which human 

populations and the environment are actually exposed; 

- Fill gaps in knowledge, especially regarding the mode of action of chemicals and of 

prediction of the interactions. 

In general, risk assessment of combined exposure to mixtures poses several challenges to 

scientists, risk assessor and risk manager, such as the need for assessing an ever-increasing 

number of chemicals, while reducing animal use, costs and time required for chemical testing 

(EFSA, 2013). Although the evaluation of the teratogenic risk of chemicals should be based 

primarily on tests of treated animals (in vivo exposure), in recent years we are trying to develop 

and validate alternatives to in vivo testing, such as testing in vitro or in silico or the application of 

integrated approaches at different levels. Those approaches can also contribute to the 

improvement and the reduction of conventional tests on the animal model (Landesmann et al., 

2013). Therefore, a mechanistic approach and the development of integrated models are crucial 

to assessing mixtures' risks.  
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6. ALTERNATIVE MODELS IN DEVELOPMENTAL TOXICICTY EVALUATION 

As society progresses through the second decade of the 21st century, there is increased need to 

develop new ideas and new information in the practice of toxicology and risk assessment. In 

addition, there is a societal pressure to reduce the use of animals; hence, greater emphasis is put 

on alternative methods to assist in making decisions regarding risk assessment. Together with the 

need for toxicity evaluations for the large number of chemicals in commercial use, new in vitro 

and in silico technologies and computational system biology to complement, and eventually 

replace, whole animal testing need to be introduced or, when already in place, their use greatly 

increased (Moretto et al., 2015). 

 

6.1. ANIMAL MODELS 

 

6.1.1. Whole Embryo Culture (WEC) 

The rodent whole embryo culture technique was first introduced in 1960s by the pioneering 

research of Denis New (New, 1978). WEC is a technique by which postimplantation embryos 

are removed to an in vitro environment capable of supporting normal growth and development 

from pre-somite to the limb bud stages of organogenesis. This method gave to embryologist and 

teratologists an unprecedent degree of access to the developing embryo: they could for the first 

time directly observe, treat, and manipulate embryos in order to characterize the pathogenesis of 

teratogenic agents and elucidate mechanism of action (Ellis-Hutchings and Carney, 2010). 

New’s work on WEC started with chick embryo model, which unfortunately did not allow more 

detailed manipulations, which required separation of the embryo from the yolk sac. The use of 

chicken embryo was finally replaced in the early 1960s by the use of rodent embryos: rats 

(Rattus norvegicus) and mice (Mus musculus) are the most used in experimental studies of 

developmental biology and still constitute the major animal models for mammals. The choice of 

these rodent species was critical in that the embryos, at the beginning of their development, form 

a transient visceral yolk sac that is closely apposed, but not physically attached to the maternal 

system. So that the embryo and the amnion enclosed within the visceral yolk sac could be 

explanted intact, hence the name “whole” embryo culture (Ellis-Hutchings and Carney, 2010). 

The culture of postimplantation rat embryos from 9.5 days post coitum (late gastrula/early 

neurula stage) allows to support embryonic development for a duration of 48 hours at which the 

embryo reaches the phylotypic stage (period in which all the vertebrate embryos have the same 
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features) (Fig. 8). It is possible to prolong the culture for additional 12 hours maximum in which, 

however, the development is slower compared to the in utero development. 

With the ability to culture postimplantation embryos in vitro, came the need to devise 

quantitative end points for evaluating the effects of treatment on various aspect of 

development. Standards end points included viability (presence of a heartbeat and blood 

cells circulating through the vitelline vessels) and growth, as measured by somite count and 

crown-rump length. In addition, quantitative morphological scoring system were devised in 

which a suite of developmental landmarks were assigned numerical scores reflecting their 

progression of development (Nigel A. Brown and Fabro, 1981). 

Fig. 8. Development of postimplantation rat embryos in WEC: A: gestational day 9.5 rat embryo used at the start of 

culture. B: rat embryo cultured for 48 hours in enclosed visceral sac. C: rat embryo cultured for 48 hours after removing 

of extra-embryonic membranes, left side view. (Figure from Flick and Klug, 2006) 

WEC, as an in vitro technique, has ethical, financial and scientific advantages over in vivo tests. 

It is suitable for the assessment of a very wide range of different teratogenic agents including 

drugs, pesticides, environmental chemicals, nutritional excesses and deficiencies, and physical 

factors. It also has been used to asses many different types of research question, including: (1) to 

distinguish between maternally-mediated effects apart from direct actions on the conceptus, (2) 

identifying which features of chemical structure drive teratogenic potency within a given class of 

compounds, and (3) elucidating the toxicokinetic determinants of teratogenicity. Finally, the use 

of the WEC allows embryos to be chosen at constant and optimal stages, permits continuous 

exposure at selected concentrations, and makes it possible to stop the development at selected 

critical stages (Ellis-Hutchings and Carney, 2010). 

The impact of WEC on the field of teratology has been enormous and there are a number of 

different applications and discoveries that could exemplify WEC contributions to this field: 

- Identification of proximate teratogen, which in many cases is not the administered 

compounds, but a metabolite (Nagano et al., 1981; Yonemoto et al., 1984; Horton et al., 



 

37 

1985; Clarke et al., 1991; Dorman et al., 1995; Carney et al., 1996; Andrews et al., 1998; 

Klug et al., 2001). 

- Study of mother temperature changes associated with influenza or hypoglycaemia 

(Cockroft and New, 1978). 

- Mechanistic studies of teratogenicity induced by oxidative stress produced by radiation 

(Manda et al., 2007), nitric oxide (Lee and Juchau, 1994), alcohol (Kotch et al., 1995) 

and thalidomide (Hansen et al., 1999; Parman et al., 1999). 

- Study of alteration in the expression of left-right polarity (Fujinaga et al., 1990). 

- Study of the direct effects on the embryo of nutrient excess or deficiency, as well as the 

interference with embryonic nutrition as a mode of teratogenic action. It is with retinoids 

that there is a direct link between WEC and human reproduction since there is a good 

correlation between rat embryo studies in vitro and in vivo and clinical malformations 

(Morriss and Steele, 1974, 1977; Steele et al., 1987; Klug et al., 1989). 

- Study of the pathogenic pathway involved in teratogenic processes induced by exposure 

to triazole derivatives and mixture of fungicides (E. Menegola et al., 2006; Menegola et 

al., 2013). 

 

WEC is also useful to molecular techniques such as whole mount in situ hybridization and whole 

mount immunohistochemistry to assess gene and protein expression, respectively (Ellis-

Hutchings and Carney, 2010). 

WEC technique has been also validated by the European Centre for the Validation of Alternative 

Methods (ECVAM) in 2001 (Anon, 2002) as a screening and/or prioritization tool for 

pharmaceutical, agricultural, and industrial chemicals.  

 

 

  



 

38 

 6.1.2. Ascidian Embryo Teratogenesis Assay (AET) 

Ascidians are marine sessile, filter-feeding organisms ubiquitous through the world and 

belonging to the sub-phylum Urochordata or Tunicata. Phylogenetic analysis, performed 

comparing the sequences of 5S and 18S ribosomal ribonucleic acid (rRNA), recognized the sub-

phylum Urochordata as the sister group of vertebrates and there is a big gap between ascidians 

and other invertebrates (Delsuc et al., 2006). As adults, ascidians are sessile filter feeders and the 

entire body is invested with a thick covering: the tunic, from which the name “tunicate” is 

derived. One of the major constituents of the tunic is cellulose (Satoh, 1994). Indeed, these 

animals are the only known metazoan able to synthesize cellulose, a capability probably acquired 

through a lateral transfer of genes from bacterial genome (Passamaneck and Di Gregorio, 2005). 

Particularly, ascidian embryos display striking similarities to vertebrate ones as they develop 

through a swimming, tadpole like larva, which represents a simple prototype of the chordate 

body plan (Passamaneck and Di Gregorio, 2005), comprising a hollow neural tube lying dorsal 

to a rod-like notochord (Satoh, 1994).  

The solitary ascidian Ciona intestinalis is one of the most cosmopolitan and studied species. The 

tadpole larva consists of only ~2,600 cells, which constitute all the organs including epidermis, 

central and peripheral nervous system, endoderm and mesenchyme in the trunk, notochord and 

muscles in the tail (Satoh, 2003). In addition, early embryos are well suited for experimental 

analysis; in fact, they are relatively transparent with an overall dimension of 200 µm. The 

blastomeres are large and easy to manipulate. Ascidian embryogenesis is rapid, taking ~18 hours 

from fertilization to the development of a free-swimming tadpole at 18°C, and the entire life 

cycle takes 3 months, which facilitates genetic analyses. C. intestinalis genome has been 

sequenced and it consists of ~16.000 genes, approximately half the number present in the human 

genome (Dehal, 2002). The small size of this genome provides further advantages for 

understanding genome organization and gene function (Passamaneck and Di Gregorio, 2005). 

Finally, transgenic DNA can be introduced into developing embryos using microinjection or 

even simple electroporation methods, which allow the simultaneous transformation of hundreds, 

even thousands, of synchronously developing embryos (Satoh, 2003).  

 

One peculiar characteristic of the late tailbud and larval phases is the detection in trunk region of 

some migrating cells called Neural Crest Like Cells (NCLCs) supposed to be the precursor of the 

neural crest cells (NCCs), traditionally considered as a vertebrate innovation (Jeffery, 2007). In 

ascidians, NCLCs were first described in Ecteinascidia turbinata, where clusters of cells 

displayed long distance migration from the dorsal midline during embryo development (Jeffery 
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et al., 2004). Subsequently, NCLCs were identified in several ascidian species, including both 

colonial and solitary ones (Jeffery, 2006). In C. intestinalis hatching larvae, these scattered cells 

are localized lateral and posterior to the sensory vesicle. In swimming larvae, these cells 

appeared to migrate anteriorly toward the developing oral siphon (Jeffery et al., 2008). The most 

striking similarity between ascidian NCLCs and vertebrates NCCs is their common role in 

pigment cell development. These resemblances support the possibility that the ascidian and 

vertebrate cells had a common origin during chordate evolution, perhaps originating from a 

primordial neural crest cell with a primary role of generating body pigment cells. While 

maintaining their primary function in ascidians as well as in vertebrates, in the vertebrates’ 

lineage the primordial neural crest cell subsequently evolved many additional fates (Jeffery, 

2006). 

 

During embryogenesis of ascidians, RA is a crucial morphogen too (Stoilov et al., 2001; 

Nagatomo and Fujiwara, 2003). It was seen, in fact, that excess of RA can induce deficiency 

mainly in the anterior neural tissues, such as the adhesive organ (papillae) with sensory neurons, 

forebrain containing sensory organ pigment cells (De Bernardi et al., 1994; Katsuyama et al., 

1995) and pharyngeal gill slits (Hinman and Degnan, 1998). In addition, Nagatomo et al. 

identified Ciona homologs of the RA pathway enzymes RALDH2 and CYP26. The Ciona 

homolog of RALDH2, Ci-RALDH2, was expressed in a few muscle-lineage blastomeres in the 

middle gastrula. Strong expression was then restricted to the anterior-most three muscle cells on 

each side of the tailbud embryo. The Ciona CYP26 homolog, Ci-CYP26, was expressed in the 

anterior neural tissues and presumptive papilla region in the middle gastrula. The non-

overlapping expression domains of Ci-RALDH2 and Ci-CYP26 look similar to those in 

vertebrates, although the expression of both genes was restricted to a small number of cells in 

Ciona embryos (Fig. 9) (Nagatomo and Fujiwara, 2003). Moreover, treatment with RA 

upregulate Ci-CYP26 expression, slightly downregulate Ci-RALDH2 expression and shifts 

anteriorly the expression of CiHox-1 (homolog of the vertebrate RA target gene Hox-1) in the 

tailbud embryo (Katsuyama et al., 1995; Nagatomo and Fujiwara, 2003). The Ci-CYP26 

expression in neck region, as well as CiHox-1 expression, may be induced by endogenous RA. 

These data suggest that a role for RA-dependent Hox codes in specifying the antero-posterior 

identities was probably present at the base of chordates (Campo-Paysaa et al., 2008). 
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Thanks to their cosmopolitan distribution, basic body plan (Satoh, 2003) and key phylogenetic 

position (Delsuc et al., 2006), ascidian larvae have been proposed as an excellent alternative 

experimental system for investigating the mechanisms underlying the development of chordates 

(Passamaneck and Di Gregorio, 2005; Sasakura et al., 2012), and therefore of vertebrates, and 

for applying embryo-toxicity tests (Cima et al., 1996; Zega et al., 2009; Matsushima et al., 

2013).  

Ascidian embryos have been proposed as suitable models to evaluate embryotoxicity related to 

xenobiotic exposure (Pennati et al., 2006; Zega et al., 2009). Previous studies reported that 

ascidian larvae exposed to different azole fungicides showed characteristic malformations 

resembling those elicited by RA (Pennati et al., 2006; Groppelli et al., 2007; Zega et al., 2009). 

In both the analysed species, Phallusia mammillata and Ciona intestinalis, azole-induced 

malformations affected the anterior region of the trunk, in which the sensory vesicle appeared 

reduced and the pigmented organs were severely altered. Moreover, the development of the 

adhesive papillae, the anterior most organs, was impaired. Similarly, larvae exposed to RA 

displayed truncation of the anterior structures and malformed sensory vesicle (Hinman and 

Degnan, 1998; Nagatomo and Fujiwara, 2003; Kanda et al., 2009). This observation suggests 

that, similarly to what proposed in vertebrates, in ascidians the teratogenic action of azoles 

depends on perturbation of RA pathway (Pennati et al., 2006; Groppelli et al., 2007; Zega et al., 

2009). 

 

  

Fig. 9. Gene expression pattern in gastrulae and tailbud 

embryos of vertebrates and ascidians. All illustrations are 

dorsal view and the anterior is to the top. Expression of 

CYP26, RALDH2 and Hox-1 is indicated in blue, red and 

green, respectively. Putative secretion and diffusion of RA is 

also indicated in red. A: Vertebrate presomite-stage embryo. B: 

Ascidian gastrula. C: Vertebrate somite-stage embryo. D: 

Ascidian tailbud embryo. br, brain; ep, epidermis; mes, 

mesoderm; mu, muscle; nc, nerve cord; no, node; np, neural 

plate; ps, primitive streak; sc, spinal cord; so, somite. (Figure 

from Nagatomo and Fujiwara, 2008) 
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6.2. IN SILICO MODELS 

Strategies for the safety evaluation of combined exposures and complex chemical mixtures, and 

models facilitating the interpretation of findings in the context of risk assessment of mixtures 

have become increasingly important. Key to further maturation of mixture toxicology is the 

development of integrated approaches between experimental toxicology, biomathematics, 

biology, bioengineering, pharmacology and model developing to ensure parallel and coordinated 

research in this challenging area of toxicology (Groten et al., 2001). In addition, ethical, 

scientific, and economic needs are driving the reduction of toxicity testing in animals, with the 

eventual aim of complete replacement. An integrated testing strategy is any approach to the 

evaluation of toxicity which serves to reduce, refine or replace an existing animal procedure, and 

which is based on the use of two or more of the following: physicochemical data, in vitro data, 

human data (epidemiological, clinical case reports), animal data (where unavoidable), 

computational methods and biokinetic models (Blaauboer et al., 1999). 

However, the knowledge about the relationships between the administered dose of a chemical 

and its effects still presents gaps. To fill those gaps, two solutions are available: (1) increasing 

the complexity of in vitro systems to reproduce tissues and interactions between them or (2) 

using computational (in silico) modelling to simulate numerically the behaviour of the complex 

systems, starting from in vitro data to provide model parameter values. Those solutions are 

complementary in the sense that some, even if limited, amount of mathematical modelling will 

be needed anyway to scale up the results of in vitro assays to a whole body. Conversely, better in 

vitro systems will provide better input data to mathematical models (Quignot et al., 2014). In 

silico methods to predict toxicity of chemicals have been widely used in environmental sciences 

for over 40 years, and provide a simplistic representation of a system (hence the complexities of 

interactions ad processes within an organism cannot be fully characterized) based on that the 

activity effected by a chemical is a consequence of its physico-chemical and structural 

properties. Hence, knowledge of a chemical’s properties (or knowledge of related chemicals) can 

be used to make predictions on activity (Madden et al., 2014). 

 

One challenge in this field arises from the need to have models for dosimetry (the delivery of 

active forms of the test molecules/metabolites to target tissues) and for responses (the manner in 

which the molecular and cellular interactions of toxic compounds cause perturbations leading to 

an adverse response) (Andersen et al., 2005). The models for dose - response are conveniently 

dichotomized as pharmacokinetic (PK) and pharmacodynamic (PD) models. PK or 

toxicokinetics describes quantitatively the fate of molecules in the body; PD or toxicodynamics 
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focuses on their effects (therapeutic or toxic) at the biological target level. It is classical to 

differentiate PK from PD, but they form a continuum and may feedback one on each other. 

Obviously, PK conditions PD, since the timing and intensity of effects on a given target depend 

on the concentration time course of the active chemical species (parent molecule or metabolites) 

at that target site (Quignot et al., 2014). To have confidence in predictions from PK and PD 

models, these models need to be biologically realistic. Physiologically based (PB) models, both 

PBPK and PBPD models, assume then a central role in quantitative extrapolation from in vitro 

data. PBPK models investigate variables such as the rates of absorption, distribution, excretion, 

and biotransformation of chemicals and their metabolites. In toxicology research and chemical 

risk assessment, they are used to make more accurate predictions of target tissue dose for 

different exposure situations (Andersen, 1995). One risk assessment goal is co-ordination of 

PBPK models to create biologically based dose–response (BBDR) models that predict expected 

incidence of adverse responses for varied exposure situations (Andersen et al., 2005). 

Another trend is the development of systems biology models for predictive toxicology and for 

efficient quantitative in vitro to in vivo extrapolations (QIVIVE) (Geenen et al., 2012; Hamon et 

al., 2015). Systems biology models are characterized by synergistic integration of theory, 

computational modelling, and experiments. This new discipline has provided a framework for 

investigating the interactions between the separate parts of biological systems in order to 

understand its functioning (Kitano, 2002). An important part of systems biology is therefore 

collecting the experimental data of components of a system into a mathematical model 

(Alberghina and Westerhoff, 2005) and integrating that model over time. The information gained 

from modelling is of particular relevance. Firstly, comparisons between experimental 

observation and the mathematical model behaviour can link knowledge of system components to 

explanations of system behaviour. Secondly, in silico experiments can be carried out on the 

model to test the effects of perturbations on the system and to identify the processes that control 

the system. These experiments may either be only feasible using a computer, or are faster and 

cheaper than laboratory experiments (Bakker et al., 2000). 

Biological systems are highly complex due to both the number of components present and the 

nonlinear interactions between them (Kitano, 2002). In order to understand emergent properties 

of the system, the interactions between the components must be studied. For toxicology, using 

models in terms of rate equations and balance equations, together culminating in ordinary 

differential equations (ODEs), would be beneficial as it is a well-understood formalism, fast and 
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mathematically robust. In the ODE methodology, the biochemistry of the reactions is essentially 

translated into mathematics. The biological system and the corresponding network of chemical 

reactions are described in terms of a set of balance equations with reaction stoichiometries 

indicating which metabolite is produced or consumed in which reaction, plus a set of reaction 

rate equations. The ODEs resulting from the combination of these two sets are then solved using 

numerical methods. Enzymes or transporters catalyse most processes in biological systems. 

Examples of well-known and popular equations used to describe enzyme-catalysed reactions are 

Michaelis–Menten kinetics and Hill equation, which express the dependence of the reaction rates 

on the concentrations of the small molecules in the systems (Cornish-Bowden, 1979). 

In the past, modelling has been unattractive to experimental biologists due to the necessity to 

acquire extensive programming and mathematic knowledge. This should no longer be the case. 

There are a number of software packages to perform several mathematical tasks and to make 

modelling more user-friendly. One of those is GNU MCSim, which is a numerical simulation 

and Bayesian statistical inference tool for algebraic or differential equation systems. GNU 

MCSim was created specifically to perform Monte Carlo analyses in an optimized, and easy to 

maintain environment (Bois, 2009). 

In addition, the accumulation through the years of experimental data on structure and function of 

proteins, and on the relationship between them, features an extensive database, from which 

general rules have been derived. The database may indeed be used to predict the properties of 

incompletely characterized to entirely uncharacterized proteins based on current biochemical 

knowledge using computational procedures. The molecular docking, for example, is a computer 

simulation technique used to predict the preferred orientation of one molecule (such as a small-

size ligand) relative to a second molecule (such as a protein) when they are bound in a complex. 

This knowledge is then used to evaluate the strength of association, or binding affinity, using 

suitable statistical scoring functions (Gianazza et al., 2016). Molecular Operating Environment 

(MOE) is a leading drug discovery software platform, which allow the molecular docking 

investigations (Chemical Computing Group, Montreal, Quebec, Canada). MOE integrates 

visualization, modelling and simulations, as well as methodology development, in one package. 

MOE scientific applications are used by biologists, medicinal chemists and computational 

chemists in pharmaceutical, biotechnology and academic research. 
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7. AIM OF THE WORK

Exposure of the embryo to environmental chemicals (pesticides, air and water pollutants) can 

result in congenital malformations or developmental defects such as oro-facial cleftings. 

Unfortunately, the human embryo is not usually exposed to a single substance, but to many 

substances simultaneously. In fact, evaluating the toxicity of mixtures of multiple chemicals is 

one of the major objectives of today’s toxicology, despite the effect of exposure to a mixture is 

still difficult to understand.  

The EPA Guidelines of 2002 suggest to investigate a few mixtures considered "high priority" 

and recommend the use of the models of dose additivity in the absence of adequate information 

on the presence of chemical interactions. However, recent studies suggest that the similarity of 

molecular initiating events (MIEs) is not an essential requirement to induce additive effects, 

because mixtures composed of chemicals with different MIE can exhibit mixture effects too, 

probably acting on the same biological pathway and contributing to the same adverse outcome 

(EFSA 2013). In addition, it has been argued that grouping criteria based solely on chemical 

similarity or similar mechanisms may lead to unrealistically narrow groupings, with the 

exclusion of chemicals that also might contribute to combination effects (Boobis et al., 2011). 

This is in recognition of emerging evidence that biological effects can be similar, although the 

molecular details of toxicological mechanisms may profoundly differ in many respects 

(Kortenkamp, 2007). It appears evident that a clear and efficient test strategy for risk assessment 

of mixtures is still lacking. Furthermore, there is an increasing societal need to reduce animal 

testing. 

To arrive in the future to the creation of a realistic overall picture of human exposure to 

mixtures, the development of integrated approaches between in vitro and in silico techniques and 

computational systems biology able to predict the effects of mixtures starting from the 

concentrations of their individual components will be essential. 

Mechanistic studies of some teratogenic agents such as retinoids, ethanol and some pesticides of 

the class of the azoles fungicides suggested that they could exert their teratogenic action by 

interfering with the same pathway. From literature data, it is clear that ethanol (Eth) and azoles 

can lead to the same adverse outcome (craniofacial abnormalities after embryonic exposure) 

probably acting with different MIEs both potentially converging on Retinoic Acid (RA) 

metabolic pathway, altering the RA production (Eth) and the RA catabolism (azoles) (Menegola 

et al., 2000, 2001, 2003, 2005a, 2005b; E. Menegola et al., 2006; Menegola et al., 2006b; Di 
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Renzo et al., 2007, 2011a, 2011b; Deltour et al., 1996; Dunty Jr. et al., 2002; Kot-Leibovich and 

Fainsod, 2009; Kane et al., 2010).  

Data previously obtained described specific teratogenic effects (reduction and fusion of branchial 

arches mediated by altered hindbrain segmentation and neural crest migration) in 

postimplantation rat whole embryos cultured in vitro in presence of some azole fungicides alone 

or in binary mixtures. Results showed a clear concentration-response effect for single fungicides 

while co-exposure resulted in an additive effect. The observed additive effect of the binary 

mixture supports the hypothesis that the tested individual substances share the same mode of 

action (inhibition of CYP26 enzymes involved in retinoic acid, RA, catabolism with subsequent 

local increase in endogenous RA levels) and that azole fungicides constitute a common 

mechanism group.  

Considering these premises, the aim of my work is to investigate our hypothesis through the 

development of an in silico model, validated by in vitro experiments, useful to simulate and 

predict the effects on embryo development after co-exposure to different classes of substances 

with independent mode of action (MoA) but acting on the same pathway and potentially 

contributing to the same adverse outcome. 

For this purpose, three parts were considered. 

 In the first part, post-implantation rat embryos were cultured using the in vitro technique

Whole Embryo Culture (WEC) in presence of RA, Fluconazole (FLUCO), ethanol (Eth)

and mixtures of FLUCO and Eth, in order to draw the toxicity dose-response curves.

FLUCO was chosen because it is a well-known azole fungicide whose mode of action is

the inhibition of CYP26 enzymes involved in RA catabolism, whereas Eth was chosen

because it is a well-known teratogen which probably affects the RA metabolic pathway

by altering its production. To better characterize the contribution of each component to

the observed effects, the mixtures will be obtained with the “fixed + moving” approach,

in which embryos were exposed to the no effect concentration of one chemical (“fixed”)

and increasing concentrations of the other chemical (“moving”). So that, it would be

possible to test the feasibility of using in vitro methods to refine cumulative assessment

groups and to assess the outcome of combined exposures. In particular to confirm or

discount the dose-additivity hypothesis for compounds having different mode of action

but potentially contributing to the same adverse outcome.
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An additional mixture obtained co-exposing embryos to the no effect concentrations of 

both RA and Eth was also performed. Data from the single substances and mixtures will 

be compared with those obtained for RA. 

 In the second part, the mechanisms of action which we assume at the basis of the

observed effects were evaluated through the development of a system biology model able

to simulate both the formation of a RA gradient in the rat embryo hindbrain and its

perturbation after exposure to azole fungicides, to Eth and their binary mixtures, starting

from the concentration of the single substances. The model was developed using an

integrated approach combining mathematical modelling, molecular docking and in vitro

experiments.

RA data (percentage of malformations at the branchial apparatus) from in vitro

experiments were used to fit an empirical RA concentration-response model. The

parameters for FLUCO and Eth were adjusted according to the fit to the previous

experimental data and their affinities for CYP26 or ADH7 were computed following a

computational approach based on molecular docking. Predictive simulations for the

mixtures were then performed.

To confirm the feasibility of the model, predictions of the effects of previous different

mixtures of azoles were finally performed.

 The use of alternative models in toxicology has been strictly recommended to evaluate 

the potential effects of the co-exposure of chemicals in a mixture (EPA, 2002). 

Considering the data obtained in non-mammalian species, in the last part of this work the 

evaluation of the effects after co-exposure to FLUCO and Eth were performed using the 

ascidian Ciona intestinalis embryo model as a new alternative teratological screening test 

(AET, Ascidian Embryo Teratogenicity assay).

Therefore, through comparative teratological analysis, it would be possible to reduce 

more and more the use of mammal models.
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8. LEGEND OF ABBREVIATIONS

ADH = Alcohol dehydrogenases 

AET = Ascidian embryo teratogenicity assay 

AO = Adverse outcome 

AOP = Adverse outcome pathway 

BMD = Bench mark dose 

CMG = Common mechanism group 

CNS = Central nervous system 

CRABP = Cellular RA-binding-protein 

CYPRO = Cyproconazole 

Eth = Ethanol 

FASD = Foetal alcohol spectrum disorder 

FGF = Fibroblast growth factor 

FLUCO = Fluconazole 

FLUSI = Flusilazole 

FON = Triadimefon 

KE = Key event 

LAOEL = Lower observed adverse effect level 

MIE = Molecular initiating event 

MoA = Mechanism of action 

MOE = Molecular operating environment 

NCC = Neural crest cell 

NOAEL = No observed adverse effect level 

ODE = Ordinary differential equation 

PBPK = Physiologically-based pharmacokinetic model 

RA = Retinoic acid 

RALDH = Retinaldehyde dehydrogenases 

WEC = Whole embryo culture 



48 

PART 1:  

PERTURBATION OF THE RETINOIC ACID PATHWAY 



49 

Introduction 

Retinoic Acid (RA), a Vitamin A derivative, is a well-known morphogen in invertebrates and 

vertebrates and it is essential for normal embryonic development (Morriss-Kay, 1992; Ross et 

al., 2000). It is also known that the excess or deficiency during pregnancy can induce 

abnormalities in mammalian embryos and that the developing hindbrain and branchial region are 

particularly sensitive target tissue resulting in craniofacial defects (Maden and Holder, 1992; 

Kochhar, 2009). Studies in vitro on rodent embryos, showed that excess of RA influences 

craniofacial development in a stage-dependent manner causing alteration in the identity of 

branchial arches, cranial ganglia and rhombomeres at morphological and molecular levels (Lee 

et al., 1995). 

Various studies demonstrated that the exposure, both in vitro and in utero, of rodent embryos to 

a number of azole derivatives is able to induce branchial malformations similar to those induced 

by excess of RA (Menegola et al., 2000, 2001, 2003, 2005a, 2005b; E. Menegola et al., 2006; 

Menegola et al., 2006b; Di Renzo et al., 2007, 2011a, 2011b). Considering these data and 

considering that a concentration-dependent inhibition of CYP26, involved in the catabolism of 

RA, has been reported in vitro and in patients with promyelocytic leukemia (Schwartz et al., 

1995; Vanier et al., 2003), the proposed teratogenic mechanism for the azole fungicides is the 

inhibition of CYP26 embryonic enzyme with the consequent increase in local RA levels 

(Menegola et al., 2006a). The observation in rodents embryos that the co-exposure to sub-

teratogenic doses of both RA (0.025 µM)  and Fluconazole (FLUCO) (62.5 µM) leads to the 

same phenotype as the teratogenic doses of RA and FLUCO alone, definitively supported the 

hypothesis of local increase of RA as key event in FLUCO teratogenicity (Menegola et al., 2004; 

E. Menegola et al., 2006). Furthermore, the observed additive effects previously obtained by our 

research group after exposure to mixtures of azoles supports the hypothesis that all the tested 

individual substances share the same mode of action and that the class of the azole fungicides 

constitute a common mechanism group (Menegola et al., 2013). 

Ethanol (Eth) is a well-known teratogen agent whose consumption during pregnancy can 

produce a wide range of physical, cognitive, and behavioural disabilities in newborns classified 

in a recognised syndromic picture named as foetal alcohol spectrum disorder (FASD) (Abel and 

Hannigan, 1995). In studies on postimplantation rat embryos exposed in vitro to Eth, the reported 

malformations are mostly neural tube defects, rotation and cardiac abnormalities and hypoplasia 
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of the first branchial arch (Giavini et al., 1992; Deltour et al., 1996; Duester, 1998; E. Menegola 

et al., 2001; Kot-Leibovich and Fainsod, 2009). The characterization of the mechanism by which 

ethanol exerts its teratogenic effects is difficult due the pleiotropic nature of its action. It is not 

possible to study all the processes simultaneously involved, but it is possible to explore some of 

them in order to better understand the mechanisms, the main target and the developmental stage 

of effect (Kiecker, 2016). One of the potential mechanisms, by which Eth acts as teratogen, is 

RA content impairment (Deltour et al., 1996; Kot-Leibovich and Fainsod, 2009; Kane et al., 

2010). Early studies suggest that ethanol functions as a competitive inhibitor of the enzymatic 

conversion of retinol to RA, thereby lowering the overall levels of RA in the embryo (Duester, 

1998). However, the exposure to ethanol could have also the opposite effect on RA level in the 

embryo: alcohol consumption is known to induce the enzymes involved in its catabolism and is 

related to the mobilisation of retinol stored in mother’s liver, leading to increased retinoid 

exposure of the embryo (Kiecker, 2016). An effect of ethanol on the concentrations of RA likely 

would have a large impact on processes governed by vitamin A, including cranio-facial 

morphogenesis. 

 

To verify the teratogenic mechanism exert by RA, FLUCO and Eth, post-implantation rat 

embryos were exposed to increasing concentration of RA (0.025, 0.0375, 0.05, 0.125, 0.25 µM), 

to increasing concentrations of Eth (17-42.5-85-127 mM), to increasing concentrations of 

FLUCO (62.5-125-250-500 µM), or co-exposed to binary mixtures of FLUCO and Eth, in order 

to draw its toxicity dose-response curve. Data from the single substances and mixtures were 

finally compared with those obtained for RA. Whole mount immunostainings were also 

performed at the end of the culture period in order to evaluate the distribution of CRABP1 

(marker of neural crest cells at the phylotypic stage), CYP26A1, CYP26B1, CYP26C1 and 

ADH7. 
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Materials and methods 

Materials and compound preparation 

The medium used for the extraction of embryos from the uteri was sterilized Tyrode solution 

(Sigma); the medium used for the postimplantation whole embryo culture was undiluted heat 

inactivated rat serum added with antibiotics (penicillin 100 IU/mL culture medium and 

streptomycin 100µg/mL culture medium, Sigma). All-trans RA (Sigma, Italy), dissolved in 

DMSO, FLUCO (98%, Sigma), freshly dissolved in distilled water, and Eth (99.8%, Sigma) 

were used as test substances. 

The primary antibody, used in order to specifically mark neural crest cells, was the mouse 

monoclonal anti-CRABP1 (ABR, Italy), diluted 1:500 in PBS; antibodies against CYP26a1, 

CYP26b1 and CYP26c1 (SantaCruz Biotechnology Inc, Italy) respectively diluted 1:100, 1:50, 

1:100 in PBS. The secondary antibody was the anti-mouse or anti-rabbit-Ig-peroxidase (Fab 

fragment, Boehringer, Italy), diluted 1:40 in PBS. The staining was performed with the 

substrates 4-Cl-1-naphthol and 0.006% oxygen peroxide (Sigma, Italy). 

Selection of compound concentrations 

The concentrations of RA (0.025-0.0375-0.05-0.125-0.25 µM) were those used in previous 

published experiments, 0.025 µM being the No Observed Adverse effect Level (NOAEL), 0.5 

µM the concentration teratogenic for 100% of embryos (Menegola et al., 2004).  Groups of 

control + DMSO (5 µl DMSO per bottle) were also performed. 

The concentrations of FLUCO (62.5-125-250-500 µM) were those used in previous published 

experiments, 62.5 µM being the No Observed Adverse effect Level (NOAEL), 500 µM the 

concentration teratogenic for 100% of embryos (Menegola et al., 2001).  The concentration of 

Eth were 17-42.5-85-127.5 mM. The lower tested concentration of Eth is the well known not 

teratogenic concentration for postimplantation rodents embryos cultured in vitro, suggested for 

the use of Eth as solvent in postimplantation rodent embryo cultures (1µL/mL culture medium, 

corresponding to 0.1%, 17.35mM) (Kitchin and Ebron, 1984). Rat embryos were exposed to Eth 

alone (17-42.5-85-127 mM), to FLUCO alone (62.5-125-250-500 µM), or co-exposed to the 

NOAEL of Eth (17mM) and to different concentrations of FLUCO or were co-exposed to the 

NOAEL of FLUCO (62.5 µM) and to different concentrations of Eth. A control group (CONT) 

and a group of Eth 17 mM + RA 0.025 µM were also performed. 
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Embryo culture 

Virgin female CD:Crl rats (Charles River, Calco, Italy), housed in a thermostatically maintained 

room (T = 22 ± 2 °C, relative humidity = 55 ± 5%) with a 12 h light cycle (light from 6.00 a.m. 

to 6.00 p.m.), free access to food (Mucedola, Milano, Italia) and tap water ad libitum, were caged 

overnight with males of proven fertility. The morning of a positive vaginal smear was considered 

day 0 of gestation. Embryos were explanted from pregnant rats at day 9.5 post coitum (p.c.) 

under aseptic conditions. Embryos at stage 1-3 somites (late gastrulation/ early neurulation) were 

selected and cultured according to the New’s method (1978), modified by Giavini et al. (1992) in 

20 ml glass bottles (5 embryo/bottle), containing 5 mL culture medium. The bottles, inserted in a 

thermostatic (37.8 °C) roller (30 rpm) apparatus, were periodically gas equilibrated according to 

Giavini et al. (1992). After 24 and 48 h of culture, embryos were morphologically examined and 

specifically processed for the whole mount immunostaining. At least three replications (bottles) 

were performed for each group. 

Whole-mount immunostaining 

Embryos were immunostained according to the method described by Wei et al. (1999). After 48 

h of culture and morphological examination, embryos destined to immunostaining were fixed in 

Dent’s fixative (1:4 in volume dimethyl sulfoxide: methanol) overnight at −20 °C. Stained cells 

appeared dark brown through the dissecting microscope. Images obtained from embryos of 

different groups were compared.  

Acridine orange 

In order to visualize apoptotic cells, the embryos exposed to Eth and to FLUCO were 

immediately stained with the vital dye acridine orange (Sigma, Italy; 5 mg/ml PBS), according to 

the method described by Abrams et al. (1993), washed in PBS, and viewed under a fluorescence 

microscope (EX = 450±490 nm; LP= 520 nm). 

Morphological examination 

To evaluate the development degree and any morphological abnormality in the different groups, 

embryos were examined under a dissecting microscope and yolk sac diameter, crown-rump and 

head length and somite number were recorded. A morphological score was determined according 

to Brown and Fabro (1981) and any abnormality recorded. The percentage of abnormal embryos 

was determined. Data were statistically analysed using ANOVA followed by Tukey’s test and 

using χ2 test. The level of significance was set at p < 0.05. 
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Results 

Effects of exposure to RA on rat embryo development 

At the end of 48 h in culture, the morphometric parameters (VYS diameter, crown-rump length, 

head length, somite number, total score), recorded as means ± standard deviations, were similar 

to the values reached by the control group indicating the absence of a general toxicity. Only the 

somite number of the RA 0.125 µM group resulted different from CONT. The 60% of the 

embryos from RA 0.25 µM group were plurimalformed; for this group somite number was not 

recorded. (Tab. 1.1). In the control group no abnormalities has been observed (Fig. 1.3 A-A’). 

By contrast, concentration-related abnormalities at different districts were observed in embryos 

exposed to RA (Tab. 1.2). RA 0.0375 µM was identified as the no effect level (NOAEL) for 

encephalon and otic vesicle district, as it did not cause a significant increase of abnormalities, 

while RA 0.05 µM could be considered the NOAEL for the posterior districts level, comprising 

somites, caudal and flexion abnormalities. On the contrary, all the tested concentrations resulted 

effective for branchial arch abnormalities; RA 0.025 was the LOAEL for this parameter (Fig. 

1.1, Fig. 1.3 C-D).  

Effects of co-exposure to FLUCO and Eth on rat embryo development.  

At the end of 48 h in culture, the morphometric parameters (VYS diameter, crown-rump length, 

head length, somite number, total score), recorded as means ± standard deviations, were similar 

in all considered groups indicating the absence of a general toxicity (data not shown).  

ETH 

Eth at 17 mM was ineffective in inducing any developmental abnormality at the branchial arches 

district. At this concentration, were recorded only sporadic extra-branchial abnormalities 

(microcephaly). By contrast, concentration-related and specific branchial dysmorphogenic 

effects (fused or abnormal branchial arches) and severe extrabranchial abnormalities (swollen 

hindbrain and severe flexion anomalies (hook-shaped tail)) were described in Eth 42.5-127.5 

mM-exposed groups (Tab. 1.3, Fig. 1.2A, Fig. 1.3 B-B’). Groups exposed to Eth 127.5 mM 

showed a high percentage of plurimalformed embryos (Tab. 1.3). 

FLUCO 

Groups exposed to FLUCO 125–250–500 μM showed specific abnormalities only at the level of 

the branchial apparatus (fused or abnormal branchial arches) and the effects were FLUCO 
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concentration-related (Tab. 1.4, Fig. 1.2B). In particular, FLUCO 500 μM caused the 100% of 

embryos with branchial arch malformations. Those data confirmed the branchial apparatus as the 

main target of the teratogenic effects induced by FLUCO. FLUCO 62.5 was identified as the no 

effect level (NOAEL), as it did not cause a significant increase of abnormalities. 

FLUCO moving + Eth fixed 

The co-exposure to the sub-teratogenic Eth concentration for branchial abnormalities (17 mM) 

and increasing concentrations of FLUCO (62.5-125-250-500 µM) induced a worsened 

malformative picture, showing in these groups a very significant increase of percentage of 

malformed embryos in comparison to groups exposed to FLUCO alone. In mixture with Eth, 

FLUCO 62.5 µM was an effective concentration (37.5% abnormal embryos). The abnormalities 

were those specifically induced by FLUCO (Tab. 1.5, Fig. 1.2A, Fig. 1.3 E-E’).  

Eth moving + FLUCO fixed 

The co-exposure to the NOAEL FLUCO concentration (62.5 µM) and increasing Eth 

concentrations (17-42.5-85 mM) enhanced the incidence of branchial arch malformations (fused 

or abnormal branchial arches) while the typical effects induced by Eth in the extrafaringeal 

regions (hook-shaped tail, swollen hindbrain, plurimalformations) where enhanced by FLUCO 

only in Eth 85 mM group (Tab. 1.6, Fig. 1.2B). In mixture with FLUCO, also the lower tested 

concentration (Eth 17 mM) was highly teratogenic (47.4% abnormal embryos). 

Effects of co-exposure to RA and Eth on rat embryo development.  

An additional mixture obtained co-exposing embryos to the lowest concentrations of both RA 

(0.025 µM) and Eth (17 mM) was also performed. The RA 0.025 µM plus Eth 17 mM group was 

highly effective, with the 100% of the embryo showing branchial arches and extra branchial 

abnormalities (swollen hindbrain and microcephaly) (Tab. 1.7). 
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Immunostaining 

CRABP1 

The immunostaining of CRABP1 was used as a biomarker for the visualisation of NCCs.  

After 24 h in culture, CRABP1 positive cells were visible at the level of the welding edges of the 

neural tube and at the level of rhombomeres 2, 4 and 6 in embryos with normal phenotype (Fig. 

1.4). Embryos with altered phenotype, presented a properly immunostaining of the welding 

edges of the anterior neural tube, but showed specific defects in the hindbrain segmentation: the 

NCCs were located in not well delimited rhombomeres, characterized by less clear boundaries 

and a weak and diffuse colouring (Fig. 1.5).   

After 48 h of culture, embryos with normal phenotype showed visible immunostained areas at 

the level of the frontonasal region, at the level of the welding edge of the neural tube, at the level 

of the otic vesicle and at the level of the pharyngeal arches with three distinct migratory flows 

from the rhomboencephalon to the branchial arches (where the ectomesenchyme appeared 

condensed) (Fig. 1.4). Embryos with branchial altered phenotype showed a continuous 

immunostained mass migrating from the hindbrain to the branchial apparatus (Fig. 1.5).  

CYP26s 

The immunostaining of CYP26A1, CYP26B1 and CYP26C1 was used to evaluate the expression 

sites of the enzyme in the different embryonic districts. The expression of each isoform partially 

overlap the expression of CRABP. With some differences at the level of the limits of expression, 

CYP26A1, CYP26B1, CYP26C1were expressed at the level of frontonasal region, around the 

otic and optic vesicle, at the welding edges of the anterior neural tube, at the first branchial arch 

and at the caudal region. The immunostaining on embryos with abnormal branchial arch 

formation (reduced branchial arches) revealed no differences on protein distribution among 

different groups in comparison to normal embryos (Fig. 1.4, Fig. 1.5). 

ADH7 

The immunostaining of ADH7 was used to evaluate the expression sites of the enzyme in the 

different districts of the embryos exposed to Eth.  

After 24 h in culture, ADH7 positive cells were visible at the level of the closing edge of the 

neural tube and at the level of the NCCs migration flows to the branchial arches (Fig. 1.4) 
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After 48 h in culture, in embryos with normal phenotype the immunostained cells were mainly 

located around the otic and optic vesicles, at the level of the first branchial arch and at the level 

of the frontonasal region. Immunostained cells are also visible at the level of the welding edge of 

the neural tube and the level of the developing trigeminal ganglion. In groups with altered 

phenotype, the expression sites of ADH7 in the embryonic district was unchanged (Fig. 1.5). 

Acridine Orange 

The vital staining with acridine orange allows to highlight the territories in apoptosis in the 

different embryonic districts, thanks to the intense fluorescence of cells with fragmented DNA. 

In embryos with normal phenotype, the presence of physiological apoptotic areas at the level of 

the otic vesicle, the maxillary process and weakly at the level of the first gill arch and frontonasal 

region was observed. In embryos treated with the highest concentrations of Eth, a widespread 

massive apoptosis in the craniofacial region was observed. FLUCO induced apoptosis at the 

level of the pharyngeal region only at the highest concentration tested and in mixture with 

ethanol. Considering that apoptosis was induced only in groups exposed at the highest 

concentration, the cell death was not considered as the first event involved in the induction of the 

teratogenic effects. 
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Discussion 

Exposure to RA 

The teratogenic potential of RA on post implantation rat whole embryo culture was confirmed by 

the present study. The alteration recorded shown that the effects of RA exposure have multiple 

targets at different body level (encephalon, the branchial apparatus, the otic vesicle and the 

caudal region), consistent with literature (Klug et al., 1989; Lee et al., 1995; Menegola et al., 

2004). Anyway, the enhancing of the extra-pharyngeal malformations (hook-shaped tail, swollen 

hindbrain, microcephaly, plurimalformed embryos) was present only at the higher RA 

concentrations, while the branchial arches district was selectively affected at each concentration 

tested. The abnormalities were concentration-related with a significant increase of fusions at the 

level of the branchial arches (most severe than reductions).  

Exposure to FLUCO+Eth 

From morphological examination it was observed that both Eth and FLUCO could induce 

alterations at the pharyngeal region: exposure to FLUCO leads to severe and specific 

malformations at the level of the branchial arches (reductions or fusions), while exposure to Eth 

commonly leads to less severe pharyngeal malformations (reduction of branchial arches) but also 

induces extra-pharyngeal malformations and plurimalformations. Those data confirmed the 

branchial apparatus as the main target of the teratogenic effects induced by FLUCO as 

previously observed (Menegola et al., 2000, 2001, 2003, 2004, 2006b). 

After exposure to Eth, extra-pharyngeal malformations were observed: caudal anomalies (hook-

shaped tail, which likely indicates alterations in the caudal neurulation), swollen hindbrain and 

reduced prosencephalon. High concentrations of Eth have been related to a high percentage of 

plurimalformed embryos. 

As regards the mixtures, a significant effect was observed in all FLUCO groups co-exposed to 

the sub-teratogenic concentration of Eth (17 mM), in comparison to those exposed to FLUCO 

alone. The most impressive effects were those on the FLUCO NOAEL (62.5 µM) group, that 

resulted effective for nearly 40% of embryos after Eth co-exposure. 

In all Eth groups co-exposed with FLUCO NOAEL (62.5 µM), a significant increasing of 

fusions at the level of the branchial arches was observed (exposure to Eth alone causes this type 

of malformation only sporadically). In mixture with FLUCO, Eth 17 mM cannot be considered 

the NOAEL as it was an effective concentration (47.4% abnormal embryos). In addition, the co-

exposure caused the enhancing of the extra-pharyngeal malformations (hook-shaped tail, swollen 
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hindbrain, plurimalformed embryos) at the higher Eth concentrations. Furthermore, RA and Eth 

showed synergistic effects because when given simultaneously at subteratogenic concentrations, 

they produced a severe teratogenic effect with the 100% of malformed embryos. 

Immunostaining 

Whole mount immunostaining for CRABP1 allowed to correlate the defects at the branchial 

arches induced by both Eth and FLUCO with severe alterations in the migration and 

specification pattern of the neural crest cells (NCCs). In addition, a correspondence between 

expression sites of CYP26 isoforms and ADH7 with the expression sites of CRABP1 has been 

recorded, further confirming that the target structures of the teratogenic effect are the NCCs and 

the same for each molecule. In fact, there are no differences of expression signals between 

embryos with normal and altered phenotype: what changes is the localization of the 

immunostained target tissues, which follows the anomalous migration of the NCCs. 

A correspondence between expression sites of ADH7 and apoptotic areas (branchial arches, 

frontonasal region, otic and optic vesicle and neuroepithelium) was also detected in embryos 

exposed to effective concentrations of Eth. The specificity in inducing massive cell death only in 

limited target tissue, allows to hypothesize that Eth could exert his teratogenic potential on 

molecules specifically expressed in the affected tissue, instead of a general cellular homeostasis 

imbalance (Kotch et al., 1995; Wentzel and Eriksson, 2009). Anyway, the apoptotic effect is not 

observable at lower doses but appears only at the higher ones where other causes (oxidative 

stress) can concur to the development of the observed effects. For this reason, these results were 

not considered relevant to the adverse outcome pathway (AOP) outline. These data support the 

hypothesis that these alterations, induced by altered RA levels, are a part of a more complex 

mechanism that ultimately lead to severe foetal malformations of the NCC-derived cranio-facial 

structures (Morriss-Kay, 1992; Osumi-Yamashita et al., 1994; Mark et al., 1995; Whiting, 1997; 

Schneider et al., 2001). 

The different structure targets of effect of Eth and FLUCO could be justified by their different 

mode of actions (MOA). 

Eth is a well-known teratogenic agent, able to induce facial dysmorphogenesis and reduced I.Q. 

(Kotch and Sulik, 1992; Sulik, 2005). The effective teratogenic concentrations commonly used 

in whole embryo cultures to generate alcohol-related abnormalities are 44-88 mM 

(corresponding to 0.25-0.5%) (Zhou et al., 2011). The Eth-related pathogenesis and MoA seem 

to be multifactorial, mostly related to disrupted cell-cell interactions, impaired cell proliferation 
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and enhanced cell death in target districts, including neural crest and the branchial apparatus 

(Wentzel and Eriksson, 2009). Potential MoA comprise RA content impairment (Deltour et al., 

1996; Duester, 1998; Kot-Leibovich and Fainsod, 2009; Kane et al., 2010; Kiecker, 2016). 

As far as the mechanism of action of FLUCO is concerned, evidence suggests that azole-

fungicides could exert their embryotoxic effects by inhibiting the embryonic enzymes involved 

in RA catabolism (CYP26), increasing RA signalling in tissues expressing these enzymes.  

Several indirect studies suggested that FLUCO might interfere with endogenous embryonic RA 

levels: 1) the similarities between phenotypes of RA and FLUCO treated embryos, the similar 

effect of RA or FLUCO treatment on hindbrain patterning (Menegola et al., 2004); 2) the 

additive effects as treatment with sub-teratogenic doses of both RA and FLUCO leading to the 

same phenotype as the teratogenic dose of RA or FLUCO alone (Menegola et al., 2004); 3) the 

inhibitor of RA synthesis Citral is able to attenuate the frequency and severity of branchial arch 

abnormalities induced by FLUCO in embryos cultured in vitro (Di Renzo et al., 2007); 4) the 

evaluation of CYP26 expression in mouse embryos exposed in utero to FLUCO at neurulation 

stages showed that FLUCO exposure was associated, in total embryo extracts, to an up-

regulation of cyp26a1, cyp26b1, whereas no significant change was identified for the cyp26c1 

isoform (Tiboni et al., 2009). 

The mixture effect of the co-exposure to azole fungicides and Eth has never been investigated 

until now, but it seems that the co-exposure to FLUCO and Eth is able to induce mixture effects, 

with the selective enhancement of branchial abnormalities. In particular, the fix sub-teratogenic 

concentration of one chemical in the culture medium resulted active in influencing the branchial 

embryotoxicity of the other ones in vitro. Considering that the altered district are those colonized 

by RA and that they are the unique districts expressing both the RA metabolic and catabolic 

enzymes, it could be hypothesized that both the molecules concur to increase the RA levels in 

specific responsive embryonic tissues, probably altering different steps in the same pathway. 

Finally, our data focus the attention on the effects of mixtures of different mode of action 

molecules. Albeit the classical theories on mixture toxicity indicate the common mechanism as 

the main criterion for mixture effects, recent studies suggest that the MoA similarity is not an 

essential requirement to induce additive effects, because mixtures composed of chemicals with 

diverse modes of action can exhibit mixture effects too (P. on P. P. P. and their R. (PPR) EFSA, 

2013). Recently, it has been argued that grouping criteria based solely on chemical similarity or 
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similar mechanisms may lead to unrealistically narrow groupings, with the exclusion of 

chemicals that also might contribute to combination effects (Boobis et al., 2011). This is in 

recognition of emerging evidence that biological effects can be similar, although the molecular 

details of toxicological mechanisms may differ profoundly in many respects (Kortenkamp, 

2007). This could be the case of Eth-FLUCO mixture, in which the biological effect induced by 

the local increase of RA levels could be evocated by different molecular actions. 

Our data support the need of a cumulative risk assessment not only for chemicals grouped on the 

base of similarities in chemical structure or derived from mechanistic considerations but also for 

chemicals differently acting on the same biological pathway. 
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Tables and Figures 

Table 1.1. Numbers of somites from embryos exposed to increasing RA concentrations 

(µM) expressed as means ± standard deviations. 

NUMBER OF SOMITES AFTER 48 H OF CULTURE
STATISTICS 

vs. CONT

GROUP EXAMINED (M + DS)

CON 22 23.33 + 0.58

RA 0.0375 8 23.25 + 0.50

RA 0.05 14 23.25 + 0.75

RA 0.125 18 20.55 + 1.51 **
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Table 1.2. Evaluation of the teratogenic effects, as detected at term of the culture period, of the exposure to RA at increasing 

concentrations. The observed teratogenic effects were at the level of both branchial and extrabranchial districts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories (** p<0.01, chi-square test) 

aa p<0.01 vs. CONTROL;  

b p<0.05 vs. RA 0.025 µM; 

bb p<0.01 vs. RA 0.025 µM;  

c  p<0.05 vs. RA 0.0375µM;  

cc p<0.01 vs. RA 0.0375µM;  

dd p<0.01 vs RA 0.05 µM; 

ee p<0.01 vs RA 0.125 

  CONTROL RA 0.025 µM RA 0.0375 µM RA 0.05 µM RA 0.125 µM RA 0.250 µM 

TOTAL EXAMINED  22 22 14 14 19 5 

PLURIMALFORMED EMBRYOS, % 0 0 0 0 5.26 60        
TOTAL EXAMINED WITHOUT PLURI 22 22 8 14 18 5 
       

     aa aabb aabbcc aabbccdd aabbccdde 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), %  ** 

0 9.09 25.00 78.57 94.44 100 

     aabbcc aabbccdd aabbccddee 

EMBRYOS WITH FUSED BA, % ** 0 0 0 57.14 77.78 100 

   aa aabbcc aabbcc aab bbccddee 

EMBRYOS WITH REDUCED BA, % 0 9.09 25 57.14 22.22 0 

   aabb aabb aabbc aabbccddee 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % ** 

0 0 75 85.71 88.88 100 
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Table 1.3. Evaluation of the teratogenic effects, as detected at term of the culture period, of the exposure to Eth at increasing 

concentrations. The observed teratogenic effects were at the level of both branchial and extrabranchial districts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories (** p<0.01, chi-square test)  

aa p<0.01 vs. CONTROL;   

bb p<0.01 vs. Eth 17 mM;  

cc p<0.01 vs. Eth 42.5 mM;  

dd p<0.01 vs. Eth 85 mM 

 

  CONTROL Eth 17 mM Eth 42.5 mM Eth 85 mM Eth 127.5 mM 

TOTAL EXAMINED  36 30 11 15 11 

      

   aabb aabb aabbccdd 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % ** 

0 0 72.72 80 100 

      

 EMBRYOS WITH FUSED BA, % 0 0 0 6.67 0 

   aabb aabb aabbccdd 

EMBRYOS WITH REDUCED BA, % ** 0 0 72.72 80 100 

  aa aabb aabbcc aabbccdd 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % ** 

0 10 27.27 53.33 100 
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Table 1.4. Evaluation of the teratogenic effects of the exposure to FLUCO at increasing concentrations. The teratogenic effects observed at 

the end of the culture period were specifically at the level of the branchial apparatus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories (** p<0.01, chi-square test)  

aa p<0.01 vs. CONTROL;  

bb p<0.01 vs. FLUCO 62.5 µM;  

cc p<0.01 vs. FLUCO 125 µM;  

dd p<0.01 vs. FLUCO 250 µM   

 

 CONTROL FLUCO 62.5 
µM 

FLUCO 125 
µM 

FLUCO 250 
µM 

FLUCO 500 
µM 

TOTAL EXAMINED  36 15 9 18 10 

   aabb aabbcc aabbccdd 

      

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % ** 

0 0 44.44 72.22 100 

    aabbcc aabbccdd 

 EMBRYOS WITH FUSED BA, % ** 0 0 0 33.33 100 

   aabb aabb ccdd 

EMBRYOS WITH REDUCED BA, % ** 0 0 44.44 38.89 0 

      

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % 

0 0 0 0 0 



 

65 

Table 1.5. Evaluation of the effects of the co-exposure to Eth (at the fixed concentration level, 17 mM) and FLUCO (at moving 

concentrations). The observed teratogenic effect was specifically at the level of the branchial apparatus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories (** p<0.01, chi-square test)  

aa p<0.01 vs. CONTROL 

bb p<0.01 vs. Eth 17 mM 

c p<0.05; cc  p<0.01 vs. Eth 17 mM + FLUCO 62.5 µM 

dd p<0.01 vs. Eth 17 mM+ FLUCO 125 µM 

ee p<0.01 vs. Eth 17 mM + FLUCO 250 µM 

  CONTROL 
Eth 17 

mM 
Eth 17 mM + 

FLUCO 62.5 µM 
Eth 17 mM + 

FLUCO 125 µM 
Eth 17 mM + 

FLUCO 250 µM 
Eth 17 mM + 

FLUCO 500 µM 

TOTAL EXAMINED  36 30 19 18 18 9 

              

      aabb aabbcc aabbccdd aabbccddee 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % ** 

0 0 47.37 72.22 94.44 100 

      aabb aabbcc aabbccdd aabbccddee 

 EMBRYOS WITH FUSED BA, % ** 0 0 26.31 50 72.22 100 

      aabb aabbcc aabbcc ccddee 

EMBRYOS WITH REDUCED BA, % ** 0 0 47.37 22.22 22.22 0 

              

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % 

0 10 5.26 0 16.67 0 
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Table 1.6. Evaluation of the effects of the co-exposure to FLUCO (at the fixed concentration level, 62.5 µM) and Eth (at moving 

concentrations). The observed teratogenic effects included branchial and extrabranchial districts. 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories (** p<0.01, chi-square test) 

aa p<0.01 vs. CONTROL;  

bb p<0.01 vs. FLUCO 62.5 µM 

c p<0.05; cc p<0.01 vs. FLUCO 62.5 µM + Eth 17 mM 

dd p<0.01 vs. FLUCO 62.5 µM + Eth 42.5 mM 

CONTROL FLUCO 62.5 
µM 

FLUCO 62.5 µM +
Eth 17 mM 

FLUCO 62.5 µM +
Eth 42.5 mM 

FLUCO 62.5 µM +
Eth 85 mM 

TOTAL EXAMINED 36 15 19 8 10 

aabb aabbcc aabbccdd 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % ** 

0 0 47.37 87.5 100 

aabb aabb aabbccdd 

 EMBRYOS WITH FUSED BA, % ** 0 0 26.31 25 100 

aabb aabbc ccdd 

EMBRYOS WITH REDUCED BA, % ** 0 0 47.37 62.5 0 

aabb aabbccdd 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % ** 

0 0 5.26 12.5 100 
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Table 1.7. Evaluation of the effects of RA and of the co-exposure to Eth and RA (at concentrations ineffective for branchial development). 

The clear effect of the mixture supports the hypothesis of a contribution of Eth in RA pathway deregulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical analysis was performed in order to compare data obtained in mixture group with controls (DMSO, RA 0.25) and with the single exposure to Eth or RA 0.025  µM.  

aa p<0.01 vs. SOLVENT (DMSO);  

bb p<0.01 vs.  POSITIVE CONTROL (RA 0.25 µM);  

cc p<0.01 vs. Eth 17 mM;  

dd p<0.01 vs. RA 0.025 µM.

 

  
SOLVENT 

CONTROL GROUP  
(DMSO 1µL/mL) 

  
POSITIVE 

CONTROL (RA 0.25 
µM) 

  
Eth 17 

mM 
RA 0.025 µM 

Eth 17 mM +  RA 
0.025 µM 

TOTAL EXAMINED  10   10   30 8 12 

              aaccdd 

                

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % 

0   100   0 0 100 

              bb 

 EMBRYOS WITH FUSED BA, % 0   100   0 0 0 

              aabbccdd 

EMBRYOS WITH REDUCED BA, % 0   0   0 0 100 

              aaccdd 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % 

0   100   10 0 100 
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Figure 1.1. Histograms showing the branchial arch abnormalities (%) collected on embryos 

exposed to increasing RA concentrations.  
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Figure 1.2. Histograms showing embryos with branchial arches abnormalities (%) after 

exposure to Eth and Eth moving + FLUCO fixed (A), or FLUCO and FLUCO moving + 

Eth fixed (B).  
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Figure 1.3. Morphology of the different observed phenotypes after 48 h of culture 

(Magnifications: 20X, 40X).  
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Figure A, A': Morphology of an embryo with NORMAL phenotype after 48 h of culture (Control + DMSO). Note the dorsal 

region of the embryo with the embryonic axial structures (somites, s) and the anterior and posterior limb bud (#), ventrally the 

heart (h), the cephalic region with the optic (>), the otic (o) vesicles and the branchial apparatus with the first (I), second (II), and 

third (III) separated branchial arches.  

 

Figure B, B': Morphology of an embryo with REDUCED branchial arches after 48 h of culture (Eth 42.5 mM). Note the swollen 

hindbrain (white arrow), the reduction of the second branchial arch (black arrow) and the hook-shaped tail (white arrowhead) 

with a severe developmental delay of the posterior neuropore. 

 

Figure C, C': Morphology of an embryo with a PARTIAL FUSION of the branchial arches after 48 h of culture (RA 0.05 µM). 

The embryonic structures appear normal except for the partial fusion between the first and the second branchial arch (§). 

 

Figure D, D': Morphology of an embryo with FUSED branchial arches after 48 h of culture (RA 0.125 µM). Note the swollen 

midbrain and hindbrain (white arrows). The hindbrain is short and the branchial arches are fused in a single structure (§). 

 

Figure E, E': Morphology of an embryo with TOTAL FUSION of the branchial arches after 48 h of culture (FLUCO 250 µM + 

Eth 17 mM). Note the total fusion between the branchial arches in a continuous structure (§). 
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Figure 1.4. Embryos with normal phenotype after 24 h or 48 h of culture immunostained to 

detect the NCC marker (CRABPI) or the enzymes involved in RA oxidization (CYP26) or 

production (ADH) (Magnifications: 32X, 20X).  
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Left images: Lateral view of embryos with normal phenotype after 24 h of culture. Note, for each antibody, the well 

immunostained welding edge of the neural tube (red arrow), and the migration streams of the NCCs from specific rhombomeres 

to the branchial arches (white arrows).  

 

Right images: Lateral view of embryos with normal phenotype after 48 h of culture. For CRABP1, note the immunostained areas 

at the level of the frontonasal region (red arrowhead), at the welding edges of the neural tube (red arrow), at the level of the otic 

vesicle (o) and at the level of the branchial arches with three separate streams (white arrows), indicating the successful migration 

of NCCs.  

CYP26 isoforms are expressed, with some minor differences, in the frontonasal region (red arrowhead), at the level of the margin 

of the optic and otic vesicle (o), at the level of the closing edge of the encephalon (red arrow), at caudal level and in the branchial 

region (white arrows). 

Note the expression of ADH7 at the level of the trigeminal ganglion (red circle) with the ophthalmic branch, at the level of the 

first branchial arch (*), around the otic (o) and optic vesicles, in the frontonasal region (red arrowhead) and at the level of the 

welding edge of the neural tube (red arrow). 
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Figure 1.5. Comparison between embryos showing the normal phenotype or reduced 

branchial arches after 48 h of culture immunostained with the different antibodies 

(Magnification: 20X).  
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Lateral view of embryos with normal and reduced branchial arches phenotype after 48 h of culture. 

CRABP1: In embryos with branchial abnormalities (reduced branchial arches) note the immunostained areas at the level of the 

frontonasal region (red arrowhead), at the welding edges of the neural tube (red arrow), and in the continuous mass (red circle) at 

the level of the fusion between the second and the third branchial arch.  

CYP26: Note as in embryos of equal developmental stage with reduced branchial arches, there is no difference about 

immunostained areas compared to normal phenotypes.  

ADH7: Note the reduction of the second branchial (black arrow) arch and the delayed development at the level of the structure of 

the trigeminal ganglion (red circle). 
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PART 2:  

DEVELOPMENT OF AN INTEGRATED SYSTEM BIOLOGY MODEL 

FOR PREDICTING MIXTURE OF CHEMICALS ACTING  

ON THE SAME PATHWAY 
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Introduction 

In the last years, the effects on human health and environment after exposure to different 

multiple chemicals have become an item of concern. These effects are known as “mixture 

effects”. The study of risk assessment of exposure to mixtures of chemicals is a problem of great 

importance since humans and all other organisms are typically exposed to multi-component 

chemical mixtures, present in the surrounding environmental media (water, air, soil), in food or 

in consumer products (Feron et al., 1998; Groten, 2000). Despite the availability of numerous 

toxicological studies in the literature on the interactions between chemicals, the current 

knowledge of the mechanisms of interaction between chemicals is rather limited. One of the 

major aims of research programs on the toxicology of chemical mixtures is to explore methods to 

predict and to identify hazardous combinations of chemicals relevant to humans. To arrive in the 

future to the creation of a realistic overall picture of human exposure to these substances, the 

development of mathematical models to predict the effects of mixtures starting from the 

concentrations of their individual components will be essential (Feron and Groten, 2002). Key to 

further maturation of mixture toxicology is the development of integrated approaches between 

experimental toxicology, biomathematics, biology, bioengineering, pharmacology and model 

developing to ensure parallel and coordinated research in this challenging area of toxicology 

(Groten et al., 2001). In addition, ethical, scientific, and economic factors are driving the 

reduction of toxicity testing in animals, with the eventual aim of complete replacement. 

 

Retinoic acid (RA), a metabolite of vitamin A (retinol, RO), is a well-known morphogen in 

invertebrates and vertebrates embryo produced by ADH7 and degraded by the enzyme CYP26 

isoforms (CYP26A1, CYP26B1, CYP26C1) of the cytochrome P450 family (Morriss-Kay, 

1992). RA is considered the main molecule involved in craniofacial morphogenesis. It activates a 

cascade of  expressions  of growth factors and  genes controlling craniofacial development 

(Suzuki et al., 1999). The generation and diffusion of RA has been proposed to form a gradient 

that patterns the hindbrain into seven rhombomeres (r1-7) (Richard J. White et al., 2007; 

Schilling et al., 2012). Because morphogens act at a distance from their source of production, 

eliciting distinct cellular responses in a concentration-dependent manner (Rogers and Schier, 

2011), their action needs to be robust and precise. The self-enhanced degradation of RA is a 

mechanism that enhances RA gradient robustness.  RA induces the expression of CYP26a1  that 

specifically degrades RA (White et al., 2007), inducing a negative feedback loop to regulate RA 

levels. Despite that control, severe malformations of the face can result from either a generalized 

RA imbalance or from an ectopic localization of RA in rhombomeres (with a subsequent ectopic 
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expression of growth factors and genes in the hindbrain and rhomboencephalic NCC-derived 

tissues (Morriss-Kay, 1992; Osumi-Yamashita et al., 1994; Mark et al., 1995; Whiting, 1997; 

Schneider et al., 2001). There are several possible causes of imbalance in RA concentrations and 

many substances are able to alter craniofacial development: valproic acid, thalidomide, retinoids, 

ethanol and some drugs and pesticides such as the class of the azoles fungicides (Morriss and 

Steele, 1974, 1977; Steele et al., 1987; Klug et al., 1989; Kotch et al., 1995; Hansen et al., 1999; 

Parman et al., 1999; Menegola et al., 2013).  

Azoles are synthetic antifungal compounds, derived from triazole or imidazole, sold annually to 

thousands of tons for the purpose of plant protection (Hof, 2001). Their large use in agriculture 

and presence as residues in food carry the potential for human exposure. In addition to 

environmental exposure, humans can be exposed to some azole fungicides for the treatment of 

local or deep fungal infections (Zarn et al., 2002; EFSA, 2009). The specific teratogenic effect of 

some azole fungicides has been investigated using postimplantation rat whole embryo culture. 

Embryos exposed to single azoles develop abnormal branchial structures related to the abnormal 

hindbrain segmentation and abnormal neural crest cell (NCC) migration and compaction 

(Menegola et al., 2000, 2001, 2003, 2005a, 2005b, 2006a, 2006b; Di Renzo et al., 2007, 2011a, 

2011b). The postulated mechanism of action was the inhibition of CYP26 enzymes involved in 

RA degradation during early embryonic development, with the consequent increase in local RA 

concentration (Menegola et al., 2006a; Marotta and Tiboni, 2010). 

Humans could be exposed simultaneously to azole fungicides acting with the same mode of 

action (MoA). Since in standard human risk assessment, chemicals thought to exhibit their 

effects through common mechanisms are assumed to show dose-additivity and are grouped 

together (cumulative risk assessment), our hypothesis is that mixtures of azole fungicides could 

show dose-additivity too. In fact, data previously obtained by Menegola and colleagues (2013) 

described an increase of the teratogenic effects (reduction  and fusion of branchial arches) in 

postimplantation rat whole embryo culture in vitro in presence of mixtures of azole fungicides, 

including fluconazole (FLUCO), triadimefon (FON), flusilazole (FLUSI) and cyproconazole 

(CYPRO), compared to single exposures. In order to test the hypothesis that the in vitro 

responses to mixtures of azoles, causing craniofacial malformations, could be derived under the 

assumption of dose-additivity on the basis of the concentration–response curves of each 

individual compound, we modelled the outcome of mixture of azoles basing on benchmark dose 

(BMD) and relative potency factor (RPF) approaches. The predicted effects were compared with 

the results obtained in vitro. Deviation from additivity was calculated as ratio of observed versus 
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expected effect size (Boobis et al., 2011). Experimental data on branchial abnormalities caused 

by the individual compounds were retrieved and analysed with PROAST which can analyse 

ordinal data: all tested azoles are teratogenic at micromolar (µM) concentrations, but 

characterized by different potencies (Fig. 2.1). 

Figure 2.1. Table indicating the teratogenic potency in whole embryo culture (WEC) of different azoles. 

Results showed a clear concentration-response effect for single fungicides while in the co-

exposure, regarding branchial arch abnormalities, there are no significant deviations from 

concentration–additivity. The observed additive effect of the binary mixture supports the 

hypothesis that the tested individual substances share the same MoA and that azole fungicides 

can be grouped together for risk assessment as regards craniofacial malformations (Menegola et 

al., 2013).  

Ethanol (Eth) can also alter craniofacial morphogenesis in the developing conceptus. Eth is 

commonly consumed in alcoholic beverages during pregnancy, even though it is a known 

teratogen. The teratogenic effects of Eth have been well investigated, but its specific molecular 

initiating events (MIEs) have not yet been completely clarified. One of the potential mechanism 

by which Eth could act as teratogen, is the possible interference with ADH7, a key enzyme for 

the synthesis of RA from RO. 

Recent studies (EFSA, 2013) suggest that the similarity of MIEs is not an essential requirement 

to induce additive effects, because mixtures composed of chemicals with different MIE can 

exhibit additivity too, probably acting on the same biological pathway and contributing to the 

same adverse outcome.  

In order to test the hypothesis that also the in vitro responses to mixtures of azoles and Eth could 

be derived under the assumption of dose-additivity on the basis of the concentration–response 

curves of each individual compound, the outcome of mixture of FLUCO and ETH was modelled 
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based on bench mark dose (BMD) and relative potency factor (RPF) approaches. The predicted 

effects, derived under the dose-additivity hypothesis, were compared with the results obtained in 

vitro in the first part/chapter of this work. The co-exposure to Eth and FLUCO at their NOAELs 

resulted effective, inducing almost 40% branchial arch abnormalities. In addition, a significant 

enhancement of teratogenic effects were observed in the other groups co-exposed to FLUCO and 

Eth in comparison to the single exposure. As for mixtures of azoles, regarding branchial arch 

abnormalities, there are no significant deviations from concentration–additivity. Whereby, the 

present data suggest that FLUCO and Eth, limited to the branchial pathogenesis, could produce 

additive effect affecting the same pathway but with different MoA. 

 

To investigate the mechanisms of action which we assume at the basis of the observed effects, 

the aim of this work was to obtain an in silico model, validated by in vitro experiments, useful to 

simulate and predict the probability of cranio-facial malformations of co-exposure substances 

with independent MoA but acting on the same pathway and potentially contributing to the same 

adverse outcome. The model was developed using an integrated approach combining 

mathematical modelling, computer simulations of molecular docking and in vitro experiments. 

 

Part of this project was developed inside the EuroMix project, funded by the Horizon 2020 

framework program of the European Union. The overall objective of the EuroMix project is to 

establish and to disseminate new, efficient, validated test strategies for the toxicity of chemicals 

in a mixture aiming to deliver refined information for future safety assessment of chemicals. This 

includes exposure assessment via multiple exposure routes. 

Specific objects are: 

- Determine a refined grouping strategy for cumulative assessment groups. 

- Establish criteria for prioritization of chemicals for carrying out mixture testing. 

- Verify the reliability of in silico methods and in vitro bioassays against in vivo animal 

tests. 

- Determine how to extrapolate the results of in vitro bioassays and in silico models to 

humans. 

- Develop harmonized tools and models for performing realistic assessment of chemical 

mixtures.  
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Materials and methods 

In vitro experiments  

We generated all the teratological data used in this study as reported in the first part/chapter of 

this work. Only the frequencies of malformations of the branchial arches (Tab. 2.1) were 

considered here. 

In silico molecular modelling 

Comparative Modelling 

The sequences of the three isoforms of CYP26 (CYP26A1, CYP26B1, CYP26C1) were selected 

from Uniprot - Protein Knowledgebase database (http://www.uniprot.org/), (entry UniProt ID: 

Q8VIL0, G3V7X8, D4AAL3, respectively), and used as query sequences for searching homolog 

template sequences with a solved 3D structure in the Protein Data Bank via BLASTP 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). The crystal structure of 

Cyanobacterial CYP120A1 (entry PDB: 2VE3) was selected and then a multiple alignment was 

then performed using Clustal W (http://www.ebi.ac.uk/Tools/msa/clustalo). The alignment 

between target sequences and template proteins was subsequently manually adjusted. 

Comparative modelling of the three isoforms was carried out with the MOE Homology Model 

program (Molecular Operating Environment, release 2013.08, by Chemical Computing Group 

Inc., Montreal, QC, Canada), using default settings and MMFF94x as force field. All models 

were refined down to a Root Mean Square (RMS) gradient of 0.01 kcal/mol/Å2. The quality of 

the final models was checked with the MOE Protein Geometry module to make sure that the 

stereochemical quality of the proposed structure was acceptable. 

Binding site analysis 

The binding site of each CYP26 isoform was identified through the MOE Site Finder program, 

which uses a geometric approach to calculate putative binding sites in a protein, starting from its 

3D structure. This method is not based on energy models, but only on alpha spheres, which are a 

generalization of convex hulls (Edelsbrunner et al., 1995). The prediction of the binding sites 

confirmed the binding sites defined for RA, imported from its CYP120A1 co-crystallised 

structure during the homology modelling procedure.  
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Molecular docking 

Molecular docking of azoles and ethanol was performed on CYP26a1, CYP26b1 and CYP26c1 

isozymes. In silico screening was carried out with the MOE Dock program, part of the MOE 

Simulation module, and was divided in two step: placement and refinement. For the first one, 

“Triangle Matcher” (the best method for standard and well-defined binding sites) was selected as 

placement methodology. For the second one, “Induced fit” was used. Thirty complexes were 

generated for each tested ligand, and only five were kept after refinement. 

 

In silico dissociation constant evaluation 

For each ligand, the best poses binding the heme group (according to the GBVI/WSA dG scoring 

parameter) were selected for computing affinity. The estimated binding affinities were calculated 

through the MOE Quickprep module, in which the complexes are refined through a set of 

specific MOE molecular mechanics procedures aimed at the relaxation of ligands in the receptor-

binding site. During these steps, protein side-chain atoms and ligand atoms were left free to 

move. The dissociation constants (Ki) were then computed through the binding free energy, as 

estimated via the GBVI/WSA dG scoring function, according to the following equation: Ki = 

eΔG/RT, where R represents the gas constant and T the absolute temperature (300 K), and 

expressed as pKi values (-Log10 of Ki). 

 

 

Mathematical modelling of RA gradient disruption 

 

The model described the formation of RA during the early development of a rat embryo 

hindbrain (between days 9.5 and 10 post coitum, which is the sensitive window to azole 

fungicides), and its perturbation after exposure to FLUCO, Eth and their binary mixtures. 

According to our model, the synthesis of RA is catalyzed by ADH7, whose production is 

induced by RO and Eth. RA is assumed to be catabolised by CYP26A1. The inhibitory effect 

exerted on CYP26 isoforms by FLUCO and to a lesser extent by Eth has been reported in the 

first chapter of this work. In addition, the level of CYP26a1 mRNA in the hindbrain is up-

regulated by FGF and of  RA (Reijntjes et al., 2005). The CYP26 enzymes plays a central role in 

protecting the developing embryo from supra-physiological levels of RA. In particular, the 

crucial role of CYP26a1 during development is underlined by the notion that Cyp26a1-/- mutant 

embryos show abnormal hindbrain specification, abnormal neural crest cell migration and 

abnormal anterior branchial arches (Sakai, 2001; Abu-Abed et al., 2002; Uehara et al., 2007). 
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Previous studies indicates that Cyp26a1 is initially expressed in the anterior neural plate during 

gastrulation (Kudoh et al., 2002) and that it first establishes the anterior boundary of the RA 

signal at r2–r3 (Sirbu, 2005). Cyp26a1 is also required for exogenous RA treatments to rescue 

RA-deficient embryos (Hernandez et al., 2007). Furthermore, exposure to FLUCO has been 

linked to an increased expression of CYP26A1 (Tiboni et al., 2009). Thus, Cyp26a1 seems to 

have a key role in the hindbrain, distinct from that of the other two isoforms Cyp26b1 or 

Cyp26c1 (which are not induced in the nervous system by RA) as the major RA-degrading 

enzyme (White et al., 2007).  

Considering both the essential role of Cyp26a1 during the initial phases of the embryonic 

development, and the complexity of ODEs (ordinary differential equations) system to describe 

temporal-dependent CYPs’ isoforms expression, in the present model only the dissociation 

constant related to cyp26a1 was considered. 

Kinetics equations 

The following equations are based on those reported in Goldbeter et al., 2007. The variables are 

the concentrations of FLUCO, Eth (ETH), ADH (ADH), RA (RA), RO, cyp26a1 mRNA (mRNA), 

CYP26A1 protein (CYP26) and FGF protein (FGF). The time evolution of these variables a 

distance x from the starting of the RA signal at the bottom of the hindbrain is governed by the 

following set of kinetic equations:  

     (1) 

Parameters ksyn_ADH and kdeg_ADH measure respectively the rate of synthesis and the first order 

degradation rate of ADH. In our hypothesis, ADH is induced by ETH: ktrs_by_ETH measure the 

transcription rate of ADH induced by ETH, while ki_ETH_ADH and ki_RO measure the affinity for 

ADH respectively by ETH and RO. 

                                      (2) 
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Parameters ksyn_by_ADH and kmet_RA measure respectively the rate of synthesis of RA by ADH and 

the first order degradation rate of RA by enzyme CYP26, while kdeg_RA represents the rate of non-

specific degradation of RA besides that catalysed by CYP26. ki_FLUCO and ki_ETH represent the 

affinity constant for CYP26 respectively for FLUCO and ETH, while kmet_FLUCO and kmet_ETH 

represent the rate of FLUCO and ETH degradation. We consider the parallel linear gradients 

(1 − 𝑥/𝐿) in the rate of synthesis of RA by ADH enzyme, and in the amount of FGF protein 

(White et al., 2007). 𝐿 is the number of the hindbrain cells (𝐿 = 50) at the considered stage, 

while 𝑥 is the cell considered for the prediction in the model which correspond at the middle of 

the hindbrain (𝑥 = 25). 

(3) 

The ktrs parameter measure the transcription constant of CYP26 mRNA and Vmax represent the 

maximum rate of transcription of CYP26 mRNA by RA. Parameters kact and kdeg represent 

respectively the CYP26 activation by RA constant and the first order degradation rate of CYP26 

mRNA. 

(4) 

Parameters ktrd and kdeg represent respectively the CYP26 translation constant and the first order 

degradation rate of CYP26 protein. 

(5) 

Parameters ktrd and kdeg represent respectively the FGF translation constant and the first order 

degradation rate of FGF protein. 
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In these kinetic equations, we assume that the regulatory effects of ETH on ADH and of RA and 

FGF on cyp26 mRNA obey cooperative kinetics, described by Hill functions with cooperativity 

degree 2.  

In order to predict malformation risk with the model, the above equations were solved by 

numerical integration to obtain RA concentrations at the center of the hindbrain (x = 25). To 

predict the probability of malformation as a function of (excess) RA concentrations we used a 

multistage model: 

(6) 

Parameter values and model calibration 

We used our experimental data on branchial arch malformation frequencies following 48 h of 

exposures to RA, Eth and FLUCO (Tab. 2.1). The measured counts of malformations were 

assumed to be binomially distributed with a probability p given by the multistage equation of the 

model. The priors were set to uninformative uniform distribution.  Most model parameters were 

set on the basis of the values reported in Goldbeter et al., 2007, or derived from the molecular 

affinity calculations. The remaining model parameters were numerically estimated via Bayesian 

calibration  (Bois, 2009). Each parameter value is reported in Tab. 2.2. 

Independent data on malformation rates in WEC as a function of RA concentration (after 48h) 

were used to calibrate the parameters Q0 and Q1 of the multistage equation of the model. 

Markov-chain Monte Carlo (MCMC) simulations were performed with GNU MCSim version 

5.5.0 (http://www.gnu.org/software/mcsim). Two MCMC chains were run in parallel for 10,000 

iterations. Plots were produced with R, version 2.14.0 {R Development Core Team (2011) 

R:http://www.R-project.org/}. 

  2510exp1  xRAQQP
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Results 

Molecular docking 

All the tested azoles show affinities in the range of those calculated for RA, for the three CYP26 

isoforms (Fig. 2.2). The affinities are consistent with the azoles’ teratogenic profiles and 

potencies. A correlation between CYP26A1 affinity and teratogenic potency is observed, except 

for TEBU. TEBU effects (less than expected considering CYP26A1 affinity) could be lowered 

by the higher affinity of TEBU for CYP26B1 isoform, not involved during hindbrain patterning 

and facial morphogenesis. 

Literature shows, in fact, that: 

- Cyp26a1-/- mutant embryos show abnormal hindbrain specification, abnormal neural crest cell 

migration and abnormal anterior branchial arches (Sakai, 2001; Abu-Abed et al., 2002; Uehara et 

al., 2007). 

- Cyp26b1-/- embryos have normal hindbrain patterning and show abnormal neural crest 

migration only at the level of posterior branchial arches (Maclean et al., 2009). 

- Cyp26c1-/- mutant embryos are normal, even if Cyp26a1/c1 double null mutants exhibit a 

worsening on hindbrain patterning and neural crest cells anomalies (Uehara et al., 2007).  

Mathematical model calibration 

The empirical RA concentration-response model (in the figure below) was fitted on the basis of 

the previous experimental data of percentage of branchial arch malformations caused by 

increasing RA concentrations. The calibration of the multistage model with the RA-

malformation data gives the resulting parameter: Q_0 = -0.364297; Q_1 = 0.0202369. 
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Fig. 2.3 A-B shows the fitted dose-response curve for Eth and for FLUCO on the basis of the 

experimental data of percentage of branchial arch malformations. The data are well reproduced. 

Fig. 2.3 C-D show the predicted relationship between concentrations of Eth or FLUCO and the 

concentration of RA in the center of the hindbrain. FLUCO is much more potent at increasing 

RA concentration than Eth. The uncertainty resulting from the unavoidable measurement errors 

and modelling approximations is reflected by the grey areas, which correspond to the 95% 

confidence interval for the probability prediction curves (dark grey) and for the data themselves 

(light grey). Remember that the data are binomially distributed with a probability given by the 

predicted curve; the limited sample size of the data leads to increased uncertainty and to discrete 

confidence bounds (hence the staircase aspect of the data confidence intervals. The red bars 

indicate the lower and upper bounds of the 95% confidence interval. 

Fig. 2.3 E-F show pure model predictions of the percentage of branchial arch malformations 

after co-exposures to FLUCO and Eth. For comparison with the predictions, actual experimental 

data are superimposed to the curve (they were not used in the calibration process and just serve 

as validation). The malformation data are somewhat underestimated by model predictions, but 

they fall within the 95% confidence intervals of the model predictions. Note the strong 

interaction effect between FLUCO and Eth: 17 mM Eth or 62.5 µM of FLUCO alone have no 

effect, but induce consistently about 40% malformations when given together.  
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Discussion 

One of the major aims of research programs on the toxicology of chemical mixtures is to predict 

and identify hazardous combinations of chemicals relevant to humans. To come to a realistic 

overall picture of human exposure to these substances, the development of mathematical models 

to predict the effects of mixtures starting from the concentrations of their individual components 

will be essential (Feron and Groten, 2002). 

Azole fungicides and ethanol can affect cranio-facial morphogenesis during the early 

development of an embryo and this is well documented in in vitro exposure experiments (Giavini 

et al., 1992; Abel and Hannigan, 1995; Deltour et al., 1996; Duester, 1998; Menegola et al., 

2001, 2006a; Kot-Leibovich and Fainsod, 2009; Marotta and Tiboni, 2010). In addition, data 

obtained by Menegola and colleagues (2013) in postimplantation rat whole embryo cultured in 

vitro in presence of mixtures of azole fungicides show that the co-exposure resulted in an 

additive effect. The postulated mechanism of action for the azole fungicides class is the 

inhibition of CYP26 enzymes (involved in RA degradation during early embryonic 

development), with subsequent increase in RA local content. On the other hand, one of the 

potential mechanism by which Eth could act as teratogen, is the possible interference with 

ADH7, a key enzyme for the synthesis of RA. Recent studies suggest that the similarity of MIEs 

is not an essential requirement to induce additive effects, because mixtures composed of 

chemicals with different MIE can exhibit mixture effects too, probably acting on the same 

biological pathway and contributing to the same adverse outcome (EFSA, 2013).  

Our starting hypothesis was that FLUCO and Eth, limited to the branchial pathogenesis, could 

produce additive effect affecting the RA pathway despite they act with different MoA. The first 

conclusion of our experimental work is that FLUCO and Eth could not act only additively, but 

synergistically. No-effect concentrations of FLUCO and Eth alone (17 mM and 62.5 µM 

respectively) induce consistently about 40% malformations when given together, as can be 

observed on Fig. 2.3. 

We went further and developed an integrated approach combining pathway modelling, molecular 

docking and in vitro experiments, to predict for mixture effects and for the estimations of the RA 

levels in rat hindbrain after FLUCO and Eth co-exposure starting from the concentrations of the 

individual substances. The model seems to confirm the accuracy of the hypothesized pathogenic 

pathway: in fact, experimental data and model predictions have a promising agreement.  
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The Bayesian approach used for calibrating the model parameters permitted us to take into 

account both uncertainty and variability in experimental data, which is an asset for the relevance 

of the predictions. The previous obtained in vitro experimental data allowed us to finely calibrate 

and cross-validate the model, which was able to simulate both the formation of a RA gradient in 

the rat embryo hindbrain and its perturbation after exposure to Eth, to FLUCO and their binary 

mixtures. 

 

To verify the accuracy of the model, we simulated the effects of binary mixtures of azole 

fungicides (cyproconazole, CYPRO; triadimefon, FON; flusilazole, FLUSI) previously studied 

in our laboratory. We modified the kinetic equation (2), which describe the time evolution of RA 

concentration along the hindbrain, adding the CYPRO, the FON and the FLUSI CYP inhibition 

terms:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We calibrated the new parameters (the different kmet) of the model with data on branchial arch 

malformations caused by the single azole (Tab. 2.3), in the same Bayesian framework as for 

FLUCO and Eth (see material and methods section). Predictive simulations for mixtures were 

then performed. The corresponding parameters are reported in Tab. 2.4. 
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Fig. 2.4 show the model predictions for binary mixtures of CYPRO + FON 7.8 µM (A), FON + 

FLUSI 3.125 µM (B) and FLUSI + FON 12.5 µM (C). The model appears to be reasonably 

predictive also for the mixture’s effects after different azoles co-exposures. That model and the 

postulated MoA can also predict rather well the effects of mixtures of azoles. 

The model is not perfect though, and the predicted effects somewhat underestimated the 

experimental results. This may be due to the fact that we only considered action of the azoles on 

the CYP26A1 isoform while at least three isoforms are expressed or partially co-expressed in 

early embryonic tissues (including branchial arches) (White and Schilling, 2008).  

It is also known from literature that morphogenic gradients during hindbrain development are 

more complex and probably do not correspond to a simple concentration gradient of endogenous 

RA. Sirbu et al. (2005) demonstrated the existence of dynamic shifting boundaries of  hindbrain 

RA activity: they showed that RA generated by RALDH2 in paraxial mesoderm initially travels 

as far anteriorly as presumptive r3 forming an early RA signalling boundary at r2/r3 just 

posterior to the RA-degrading enzyme Cyp26a1 expression domain. However, this boundary 

shifts posteriorly to the r4/r5 border to the expression of Cyp26c1 in r4 (Fig. 2.5). 

Figure 2.5. Model of shifting RA boundaries during mouse hindbrain segmentation. Initially, RA forms an early anterior 

boundary at r2/r3 (next to the r2 border of Cyp26a1 expression), followed soon after by a late anterior boundary at r4/r5 (next to 

the r4 border of Cyp26c1 expression). Moreover, RA acts directly to induce Hoxb1 expression and then RA acts both directly 

and indirectly (through induction of vHnf1) to restrict Hoxb1 expression to r4.  (Figure from Sirbu et al., 2005). 
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Cyp26a1 is initially expressed in the anterior neural plate during gastrulation (Kudoh et al., 

2002) and forms a boundary at presumptive r2/r3 (Pennimpede et al., 2010). This is followed by 

the later expression of Cyp26A1 in r2 and Cyp26C1 in r2 and r4 (Fujii, 1997; Abu-Abed et al., 

2002; Tahayato et al., 2003; Uehara et al., 2007). Cyp26a1-/- mutant embryos show abnormal 

hindbrain specification, abnormal neural crest cell migration and abnormal anterior branchial 

arches (Sakai, 2001; Abu-Abed et al., 2002; Uehara et al., 2007). Sakai et al. (2001) showed 

using an RA-responsive lacZ transgene that RA signalling expands anteriorly into prospective r2 

and r3 in Cyp26a1-/- mutants. Thus, Cyp26a1 acts as a local antagonist of RA signalling. In 

addition, Cyp26a1-/- mutants seems to be more sensitive to RA than wild types. Expansion of 

the posterior hindbrain caused by low doses of exogenous RA (5 nM) in mutants resembles wild-

type embryos treated with much higher doses (Hernandez et al., 2007). This suggests that 

Cyp26a1 protects the embryo from elevated RA. Consistent with this idea, injection of high 

levels of retinal posteriorizes embryos lacking Cyp26a1 expression. Cyp26a1 is also required for 

exogenous RA treatments to rescue RA-deficient embryos (Hernandez et al., 2007). Thus 

Cyp26a1 seems to have a key role in the developing hindbrain to precisely restrict the field of 

endogenous RA signalling (White and Schilling, 2008). 

In contrast to Cyp26a1, Cyp26b1 expression appears later and in a more dynamic pattern in the 

hindbrain in mice initially in r3 and r5 and later in r2–6 (MacLean et al., 2001). These patterns 

suggest that Cyp26b1 creates a new sink for RA within the central hindbrain (r3–5) at the end of 

gastrulation that eventually covers all but the most posterior rhombomeres. Loss-of-function 

Cyp26b1-/- mutations in mice cause abnormalities in the limbs and craniofacial skeleton as well 

as a loss of germ cells from the testis, but no major hindbrain defects (MacLean et al., 2007). 

Cyp26c1 is also expressed in the hindbrain in mouse. Cyp26c1 expression initially appears in the 

head mesenchyme at E7.5 (Uehara et al., 2007), and is then expressed after gastrulation in r4 

earlier than does that of Cyp26b1 at r3 and r5 (MacLean et al., 2001; Sirbu, 2005). These 

patterns suggest that Cyp26c1, like Cyp26b1, forms a sink for RA within the central 

rhombomeres (r2– 6) of the hindbrain that both reduces RA within cells that express it and helps 

shape gradients of RA in adjacent cells. Cyp26c1-deficient mice are viable and have no overt 

anatomical abnormalities. However, Cyp26a1-/- Cyp26c1-/- double mutants have severely 

posteriorized hindbrains and die during embryogenesis (Uehara et al., 2007) (Fig. 2.6). 
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Figure 2.6. Schematic representation of the complementary RALDH2 retinoic acid (RA)-synthesizing and CYP26A1 

RA-metabolizing activities during early embryo patterning (A) and hindbrain development (B). (A) RA generated by 

RALDH2 in the posterior mesoderm forms an early anterior boundary of activity in the neural plate at presumptive 

rhombomere (pr) 2/pr3, whereas Cyp26A1 and Cyp26C1 are expressed rostral to the pr2 border. (B) By E8.0 to E8.5, 

RA is being expressed by the somites and anterior presomitic mesoderm, and acts on the overlying hindbrain and spinal 

cord. The activity of the CYP26 enzymes regulate access of the neuroepithelium to RA (Clagett-Dame and Knutson, 

2011). 

Hence, the hindbrain utilizes the RA-degrading function of Cyp26s isoforms to establish shifting 

boundaries of RA activity. Sirbu et al. also showed that the initial RA boundary at r2/r3 is 

independent of RA activity, as Cyp26a1 expression does not require RA, but that the shift to an 

r4/r5 boundary is dependent upon RA to activate Cyp26c1 expression in r4. Their study showed 

that a stable RA gradient is not established across the hindbrain, but the initial gradient of RA 

entering the posterior hindbrain is converted by CYP26s isoforms into RA boundaries that shift 

over time such that anterior tissues receive a short pulse of RA and posterior tissues receives a 

long pulse of RA. This is essential for the specification of both rhombomeres and rhombomeric 

neural crest cells (NCC) migrating to the corresponding branchial region (Trainor and Krumlauf, 

2000). These results provide strong evidence that the combined action of all three Cyp26s, 

differentially expressed in embryonic tissues, are required to pattern the A-P axis of the 

hindbrain. 

All these subtle effects are not described by our model. To develop and validate a more 

sophisticated model we would need data on RA and other morphogens concentration in the 

hindbrain as a function of time and xenobiotic exposure concentrations. This could be the subject 

of further research. It may start from the development of branchial arches morphogenesis model, 

which could describe the triggering of NCCs migration. 

Results from molecular docking showed that all the tested azoles have high affinities for all the 

three CYP26 isoforms and that the affinities are consistent with the different azole teratogenic 

profiles and potencies. The possibility of a different affinity of different azoles for the expressed 
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CYP26 isoforms could explain the underestimation of the predicted effects when compared to 

experimental results and it should be taken in account for a future improvement of the model. 

Moreover, azole-related inhibition of other CYP enzymes expressed in embryos at early stages 

such as CYP51, CYP2S1, and CYP11A1, all involved during the synthesis of cholesterol, 

steroids, and other lipids (Choudhary et al., 2003) could also be considered. 

In any case, our model, despite the limitations discussed above, has several potential mechanistic 

or predictive applications for the risk assessment of exposures to mixtures of azoles acting with 

the same MoA or exposure to mixtures of Eth and azoles, which probably act with different 

MoA on the RA pathway. We also demonstrated that molecular docking could be a useful tool to 

screen molecules potentially interfering with CYP26 activity. 

This in silico tool, developed by integrating different approaches, could be the starting point in 

the EuroMix project context to deliver refined safety assessment of mixtures of chemicals acting 

in the framework of a skeletal malformation AOP. 
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Tables and Figures 

Table 2.1. Frequencies of malformations at the branchial arches in embryos exposed to 

Eth, FLUCO and FLUCO+Eth. 

Dose N_malformed N_observed

0 0 22

0.025 2 23

0.05 11 16

0.125 19 19

0.25 15 17

0.5 28 28

0 0 19

17 0 15

26 1 12

34.7 2 12

42.5 4 14

85 12 15

127 2 2

0 0 19

62.5 0 15

125 4 9

250 13 18

500 10 10

0 0 15

62.5 6 16

125 13 18

250 17 18

500 9 9

0 0 15

17 9 19

42.5 7 9

85 10 10

ETH + FLUCO 62.5 µM

Fluconazole (µM)

FLUCO + ETH 17 mM

Retinoic Acid (µM)

Ethanol (mM)
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Table 2.2. Model parameter values. 

RA pathway parameters 

Parameter Description (Units) Value 

RA Amount of RA (nM) 26 a

k_syn_by_ADH RA transcription by ADH constant (nM/min) 3.61022 b 

k_met_RA RA metabolized constant (1/(nM * min)) 0.01667 

k_deg_RA RA degradation constant 0 

k_trs_CYP26_base CYP26 transcription constant (0.365 nM/min) 0.00608333 

vmax_trs_CYP26_by_RA 
Maximum rate of transcription of CYP26 by RA (7.1 

nM/min) 

0.118333 

CYP26_mRNA Amount of cyp26 mRNA (nM) 4 

CYP26 Amount of CYP26 (nM) 14.28 

k_act_CYP26_by_RA CYP26 activation by RA constant (nM) 7.083839 

k_deg_CYP26_mRNA CYP26 mRNA degradation constant (1 min^-1) 0.01667 

k_trd_CYP26 CYP26 translation constant (1 min^-1) 0.01667 

k_deg_CYP26 CYP26 degradation constant (0.28 min^-1) 0.00466667 

FGF Amount of FGF (nM) 2.45 

k_syn_FGF FGF synthesis constant (min^-1) 0.083333 

k_deg_FGF FGF degradation constant (1 min^-1) 0.016667 

k_inh_CYP26_by_FGF CYP26 inhibition constant by FGF 1 

k_i_RA RA affinity constant to CYP26 85 

Retinol parameters 

Parameter Description (Units) Value 

RO Amount of Retinol (nM) 150 c 

k_syn_ADH ADH synthesis constant (nM/min) 0.016666667 

k_deg_ADH ADH degradation constant (1 min^-1) 0.00234742 b 

k_i_RO RO affinity constant to ADH (nM) 49 d 

ADH Amount of ADH (nM) 7.1 
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Ethanol parameters 

Parameter Description (Units) Value 

ETH Initial amount of Ethanol (mM) 0 

K_i_ETH ETH affinity constant to CYP26 (nM) 2.05 e 

k_met_ETH ETH metabolized constant 0.0058433 f 

k_trs_ADH_by_ETH ADH transcription constant by ETH (nM/min) 0.000380705 f 

k_i_ETH_ADH ETH affinity constant to ADH (mM) 36 d 

Fluconazole parameters 

Parameter Description (Units) Value 

FLUCO Initial amount of fluconazole (µM) 0 

K_i_FLUCO FLUCO affinity constant to CYP26 (nM) 0.142 e 

k_met_FLUCO FLUCO metabolized constant 0.00368049 f 

a Duester, 2008. 
b fitted with MatLab. 
c Horton and Maden, 1995. 

d Chase et al., 2009. 
e molecular docking. 
f Bayesian-numerically evaluated . 
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Figure 2.2. Cyp26's isoforms crystallographic structure (A: CYP26A1, B: CYP26B1, C: 

CYP26C1) and table of the affinities for different azoles. The affinities are consistent with 

different azole teratogenic potencies.  

Compound pKi Compound pKi Compound pKi

FLUSI 7.720 TEBU 7.466 TEBU 7.849

TEBU 7.613 CYPRO 7.326 IMA 7.161

IMA 7.495 FLUCO 7.175 CYPRO 7.087

Retinoic Acid 7.425 FLUSI 6.925 Retinoic Acid 7.028

CYPRO 6.953 FON 6.844 FLUCO 6.954

FON 6.845 Retinoic Acid 6.785 FON 6.840

NOL 6.655 IMA 6.550 FLUSI 6.837

FLUCO 6.601 NOL 6.511 NOL 6.763

ETH 3.174 ETH 2.348 ETH 2.988

CYP26A1 CYP26B1 CYP26C1
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Figure 2.3. Experimental data vs fitting and model predictions. 
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Table 2.3. Frequencies of malformations at the branchial arches in embryos exposed to 

cyproconazole, triadimefon, flusilazole and their binary mixtures. 

Dose N_malformed N_observed

0 0 9

7.8 4 14

15 8 9

31.5 7 7

250 3 3

0 0 18

1.5625 0 10

3.125 5 11

6.25 9 9

9.375 5 5

0 0 9

6.25 0 8

7.8 5 12

12.5 3 11

15 6 10

25 8 8

31.5 6 7

50 7 7

250 4 4

0 0 9

7.8 9 11

15 3 3

0 0 22

6.25 10 10

12.5 11 12

25 8 8

50 7 7

0 0 22

1.5625 4 7

3.125 11 12

6.25 6 6

9.375 6 6

Triadimefon (µM)

Cyproconazole (µM)

CYPRO + FON 7.8

FON + FLUSI 3.125

Flusilazole (µM)

FLUSI + FON 12.5
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Table 2.4. Model parameter values for cyproconazole, triadimefon and flusilazole. 

Cyproconazole parameters 

Parameter Description (Units) Value 

CYPRO Initial amount of cyproconazole (µM) 0 

K_i_CYPRO CYPRO affinity constant to CYP26 (nM) 0.108 e 

k_met_CYPRO CYPRO metabolized constant 0.062215 f 

Triadimefon parameters 

Parameter Description (Units) Value 

FON Initial amount of triadimefon (µM) 0 

K_i_FON FON affinity constant to CYP26 (nM) 0.148 e 

k_met_FON FON metabolized constant 0.0412004 f 

Flusilazole parameters 

Parameter Description (Units) Value 

FLUSI Initial amount of flusilazole (µM) 0 

K_i_FLUSI FLUSI affinity constant to CYP26 (nM) 0.091 e 

k_met_FLUSI FLUSI metabolized constant 0.170554 f 

e molecular docking.
f Bayesian-numerically evaluated . 
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Figure 2.4. Experimental data vs model predictions for CYPRO, FON and FLUSI 

mixtures. 
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PART 3:  

THE MIXTURE EFFECT OF CO-EXPOSURE TO ETHANOL AND 

FLUCONAZOLE: A STUDY IN AN ALTERNATIVE DEVELOPMENTAL 

MODEL, THE ASCIDIAN CIONA INTESTINALIS (AET)
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Introduction 

Ascidians are marine sessile, filter-feeding chordate organisms belonging to the Subphylum 

Urochordata, which has been recognized as the sister group of vertebrates (Delsuc et al., 2006). 

Particularly, ascidian embryos display striking similarities to vertebrate ones as they develop 

through a swimming, tadpole like larva, which represents a simple prototype of the chordate 

body plan (Passamaneck and Di Gregorio, 2005). Recently, ascidian embryos have been 

proposed as an excellent alternative experimental system for investigating the mechanisms 

underlying the development of chordates (Passamaneck and Di Gregorio, 2005; Sasakura et al., 

2012), and therefore of vertebrates. They have also been used to outline the embryotoxic profile 

of numerous xenobiotics, including retinoic acid and certain azoles (De Bernardi et al., 1994; 

Cima et al., 1996; Nagatomo et al., 2003; Pennati et al., 2006; Groppelli et al., 2007; Zega et al., 

2009; Matsushima et al., 2013). Previous studies reported that ascidian larvae exposed to 

different azole fungicides showed characteristic malformations resembling those elicited by 

retinoic acid (RA) (Pennati et al., 2006; Groppelli et al., 2007; Zega et al., 2009). In both the 

analysed species, Phallusia mammillata and Ciona intestinalis, azole-induced malformations 

were specifically at the anterior region of the trunk, in which the sensory vesicle appeared 

reduced and the pigmented organs were severely altered. Moreover, the development of the 

adhesive papillae, the anterior most organs, was impaired. The observation that the affected 

structure are in ascidians those controlled by RA (Nagatomo et al., 2003) and the evidence that 

the same alterations are produced by exogenous RA exposure (Hinman and Degnan, 1998; 

Nagatomo and Fujiwara, 2003; Nagatomo et al., 2003; Kanda et al., 2009) suggest that, similarly 

to what proposed in vertebrates (Menegola et al., 2003; Di Renzo et al., 2009; Marotta and 

Tiboni, 2010), also in ascidians the teratogenic action of azoles could depend on perturbation of 

RA pathway (Pennati et al., 2006; Groppelli et al., 2007; Zega et al., 2009)..  

The use of alternative models in toxicology has been strictly recommended to evaluate the 

potential effects of the co-exposure of chemicals in a mixture (EPA, 2002). Considering the data 

obtained in ascidian species after azoles exposure, the aim of the last part of this work is to 

evaluate the ascidian Ciona intestinalis embryo model as a new alternative teratological 

screening test (AET, Ascidian Embryo Teratogenicity assay). The effects after exposure to 

FLUCO and Eth alone or in mixture will be compared with those obtained after exposing C. 

intestinalis embryos to increasing concentration of RA. 
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Materials and methods 

Animals and embryos maintenance 

Adults of C. intestinalis were collected by the fishing service of the Roscoff Biological Station 

(France) for what concern exposure to FLUCO and FLUCO+Eth fixed; or collected from the 

lagoon of Chioggia (Padova) for what concern exposure to RA, to Eth and to Eth+FLUCO fixed. 

Animals were maintained in aquaria filled with artificial sea water (Instant Ocean, salinity 32‰) 

at 16° C and provided with circulation system as well as mechanical, chemical and biological 

filters. Constant light condition was preferred to promote gamete production.  

Gametes of at least three adults were collected from dissected gonoducts and in vitro cross 

fertilization was performed in Petri glass dishes containing artificial sea water with Hepes 

(ASWH; pH 8). Embryos were maintained at 16 °C until they reached the hatching larva stage 

(22 hours post fertilization (hpf), Hotta et al., 2007). 

Materials and compound preparation. 

All-trans RA (Sigma, Italy), dissolved in DMSO, FLUCO (98%, Sigma), freshly dissolved in 

ASWH, and Eth (99.8%, Sigma) were used as test substances. All chemicals were of reagent 

grade and freshly prepared. The concentrations of RA (0.1, 0.2, 0.5, 1 µM) were those used in 

previous published experiments (De Bernardi et al., 1994; Nagatomo and Fujiwara, 2003). 

Groups of control + DMSO were also performed. The concentrations of FLUCO (0, 7.8, 15.75, 

31.5, 250 µM) were chosen based on previous works (Groppelli et al., 2007) focusing on lower 

doses to identify the NOAEL (No Observed Adverse Effect Level), plus a high dose as positive 

control. The concentration of Eth were 1.7, 8.5, 17, 42.5, 85 mM. Groups of control (CONT) 

were also performed. Each treatment solution was dissolved in 10 mL of ASWH. 

Embryo exposure 

C. intestinalis embryos at early neurula stage (7 hpf) were exposed for 15 h, until control 

embryos reached the larval stage, to RA (0.1, 0.2, 0.5, 1 µM), to Eth alone (1.7, 8.5, 17, 42.5, 85 

mM), to FLUCO alone (0, 7.8, 15.75, 31.5, 250 µM), or co-exposed to the NOAEL of Eth (1.7 

mM) and to different concentrations of FLUCO or were co-exposed to the NOAEL of FLUCO 

(7.8 µM) and to different concentrations of Eth. 

Approximately 100 embryos were used for each treatment and each experimental group. Each 

experiment was replicated at least three times (total n per groups ≈ 300). When controls reached 

swimming larva stage (22 hpf), all specimens were evaluated and the percentage of dead larvae 

was recorded. After fixation in 4% paraformaldehyde in PBS larvae were morphologically 
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examined in detail under a dissecting microscope. The number of larvae showing abnormalities 

at tail, trunk and pigmented sensory organs as well as plurimalformed larvae were recorded. 

 

Statistical analysis  

To evaluate any morphological abnormality in the different groups, larvae were examined under 

a dissecting microscope and any abnormality recorded. The percentage of abnormal larvae was 

determined. Data were statistically analysed using χ2 test. The level of significance was set at p < 

0.05.
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Results 

Morphological analysis of induced abnormalities 

Ciona intestinalis larvae of each experimental group were morphologically examined under a 

dissecting microscope in order to evaluate the presence of abnormalities as well as 

plurimalformed larvae.  

Nearly 80% of unexposed larvae (Tab. 3.1; Tab. 3.2) developed normally, displaying an 

elongated trunk with three elongated adhesive papillae, the sensory vesicle clearly visible and the 

two pigmented organs (otolith and ocellus) differentiated. The ocellus, the dorsally located 

photoreceptor, and the otolith, the gravity-sensing organ, were located inside the sensory vesicle. 

The tail was straight and elongated (Fig. 3.1 A-B).  

Larval abnormalities were classified in four malformed phenotypes:  

- trunk abnormalities, in which trunk appeared round in shape and the anterior side was flat, due 

to impairment of adhesive papillae development (Fig. 3.1 B-C); 

- pigmented organ abnormalities, in which the pigmented organs (otolith and ocellus) appeared 

fused in a single spot and/or they were displaced on the dorsal portion of the sensory vesicle 

(Fig. 3.1 D-F). In the samples displaying sensory vesicle protrusion on the trunk dorsal side, the 

pigmented organs were exposed to the surface; 

- tail abnormalities, in which the larval tail appeared coiled, flexed or reduced in length (Fig. 3.1 

G); 

- severe malformations, in which plurimalformed larvae were characterized by absence of 

sensory vesicle cavity, presence of a short, bent tail, round trunk with not elongated papillae. 

This group includes also larvae that failed the hatching event (Fig. 3.1 H). 

RA 

All the concentrations tested resulted effective (Tab. 3.1) confirming what was already described 

by other authors in C. intestinalis and in other ascidian species (De Bernardi et al., 1994; 

Katsuyama et al., 1995; Hinman and Degnan, 1998; Nagatomo et al., 2003). RA-treated larvae 

showed malformations of the anterior trunk portion, with shortened trunk and head, and severe 

anomalies at the pigmented organs compared to controls. Larvae exposed to RA 1 µM showed 

also a shortened tail and a higher incidence of plurimalformed larvae. 
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Eth 

During the development of C. intestinalis embryos, exposure to Eth increased the total number 

of malformed larvae. The percentage of malformed larvae increased in a concentration-related 

manner (Tab. 3.2). The lower effective concentration was 8.5 mM (Fig. 3.2). The Eth lower 

tested concentration (1.7 mM) did not cause a significant increase of malformations at any 

district compared to the controls. The main target for Eth were specifically the pigmented 

sensory organs: otolith and ocellus appeared fused or protruded at any effective concentration. 

Eth determined also a significant increase on trunk malformations, but this effect was evident 

only from concentration 1.7 mM (Fig. 3.2). The incidence of tail abnormalities was not 

significantly affected by Eth. The percentage of total malformations increased significantly with 

Eth concentration from the concentration of 1.7 mM on (Tab. 3.2). Overall, Eth 1.7 mM resulted 

the NOAEL for C. intestinalis development, as did not cause a significant increase of any 

abnormalities. 

FLUCO  

The incidence of total number of malformations induced by FLUCO during the development of 

C. intestinalis embryos was dose-dependent. FLUCO specifically affected the pigmented organs 

and the trunk. FLUCO concentrations ≥ 15.75 µM significantly increased the total number of 

malformations, compared to controls, while FLUCO 7.8 µM resulted effective only as concern 

the pigmented organs abnormalities (Tab. 3.3). Larvae showed significantly more malformations 

than controls if FLUCO dose was ≥ 15.75 µM. The severity of FLUCO induced malformations 

was dose dependent, and the phenotype induced closely resembled that caused by RA treatment. 

Tail abnormalities were not significantly affected by FLUCO at any tested concentration, as well 

as the number of severe malformations. 

Overall, FLUCO 7.8 µM could not be considered the NOAEL for C. intestinalis, as it causes a 

significant increase of abnormalities at the pigmented organs compared to control groups (Tab. 

3.3). 

ETH + FLUCO fixed 

Comparing the larvae developed from embryos exposed to Eth alone and from embryos exposed 

to the Eth + FLUCO 7.8 µM mixture, we found that the co-exposure increased in a significant 

and dose-dependent manner the number of larvae with trunk abnormalities and the total number 

of observed malformations. Pigmented organs and tail abnormalities were not significantly 

affected by co-exposure with FLUCO (Tab. 3.2, Fig. 3.2). Overall, in co-exposure with FLUCO, 



 

108 

Eth 1.7 mM caused a significant increase of total malformations and of the trunk abnormalities 

(Tab. 3.2). There is a clear and specific mixture effect of FLUCO in increasing the total number 

of trunk abnormalities.  

 

FLUCO + Eth fixed 

Comparing the larvae developed from embryos exposed to FLUCO alone and from embryos 

exposed to the FLUCO + 1.7 mM ethanol mixture, we found that the co-exposure increased in a 

significant and dose-dependent manner the total number of malformed larvae. 

(Tab. 3.3, Fig. 3.3). Overall, there is a general effect of Eth in increasing the FLUCO effects. 
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Discussion 

The main aim of the present work was to evaluate the suitability of the ascidian developmental 

model (AET) to test mixture effects. In particular, AET was used as new alternative invertebrate 

model to test the developmental effects of the co-exposure to Eth and FLUCO.  

The teratogenic potential of Eth had never been previously evaluated in ascidians, while 

teratogenic effects of FLUCO were observed in the ascidian Phallusia mammillata at 

concentrations similar to those used in the present work (Groppelli et al., 2007).  Data obtained 

in both ascidian species after FLUCO exposure and those obtained after the exposure of C. 

intestinalis to the azole Imazalil (Zega et al., 2009) showed that the elicited phenotype after azole 

exposure is striking similar to that induced by RA. According to literature, exposure to RA 

during development causes stereotypical malformations in ascidian larvae, which develop with a 

rounded trunk and malformed sensory vesicle and pigmented organs (De Bernardi et al., 1994; 

Katsuyama et al., 1995; Hinman and Degnan, 1998; Nagatomo and Fujiwara, 2003). 

Results from the present study showed that Eth is teratogenic in the ascidian C. intestinalis at 

concentrations equal or higher than 8.5 mM.  

Remarkably, the co-exposure to the sub-teratogenic concentration of Eth (1.7 mM) significantly 

increased the general teratogenicity of the effective concentrations of FLUCO alone, suggesting 

the presence of a mixture effect. In addition, co-exposure to increasing concentrations of Eth and 

FLUCO 7.8 µM significantly increases the incidence of number of trunk-malformed larvae, 

suggesting the presence of a specific effect exert by FLUCO at the level of the anterior structures 

with a consequent synergistic effect. 

These data support the hypothesis that both Eth and FLUCO could act affecting the same 

pathway. In vertebrate embryos the MOA proposed is the inhibition of cytochrome P-450 

(CYP26) enzymes, involved in RA catabolism, with the consequent increase in local RA levels 

in vertebrate embryos (Menegola et al., 2004; E. Menegola et al., 2006). The similarity between 

FLUCO- and RA-induced phenotypes suggests that a similar pathway could be suggested also in 

tunicates. In ascidians, the role of RA cascade and the expression of CYP26 has been described 

and compared to the expression of CYP26 in vertebrate embryos. Considering that both the 

expression pattern of ascidian CYP26 and of Hox-1 (a key gene in RA controlled cascade) were 

considered corresponding to those described in vertebrate hindbrain (Nagatomo and Fujiwara, 

2003), it could be hypothesized that FLUCO alters the RA morphogenetic activity in specific 

responsive ascidian embryonic tissues, with a consequent significant alterations at the anterior 

structures.  
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Evidence obtained by the phenotypes of Eth-exposed larvae by mixture data suggests that Eth 

can alter ascidian morphogenesis, probably by interfering with the same pathway. Eth 

involvement in this process represents an intriguing but still highly speculative hypothesis and 

further analyses to confirm Eth interferences in RA pathways are needed. 

In conclusion, this work shows that AET assay offers several advantages as a model system for 

the study of mixture effects. First, the adults are widespread in coastal area, easily handled as 

aquarium animals, and by in vitro fertilization it is possible to produce thousands of 

synchronously dividing embryos. Moreover, since the ascidian embryos develop quickly into 

swimming tadpole larvae (18 hours at 18 °C; Hotta et al., 2007), it is possible to observe the 

effects of treatment within a day. Finally, considering that ascidians are basal chordates 

recognized as belonging to the sister group of vertebrates (Delsuc et al., 2006), results obtained 

in these species could be considered indicative for  deep toxicological investigation in mammal 

embryos. Concerning the issue of exposure to mixtures, our data support the need of a 

cumulative risk assessment not only for chemicals grouped on the base of similarities in 

chemical structure or derived from mechanistic considerations but also for any chemical acting 

on the same biological pathway. 
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Tables and Figures 

Figure 3.1. Morphological analysis of Ciona intestinalis larvae. 

Figure 3.1: (A and B) Normally developed larvae. The lateral view of the trunk (B) allows to distinguish the otolith (Ot) and the 

ocellus (Oc), separated and well-differentiated. Adhesive papillae (Pa) are also visible at the anterior end. (C and D) Larvae 

displaying trunk abnormalities. The trunk appears round in shape with impairment of adhesive papillae development. (D and F) 

Larvae displaying malformed pigmented organs, abnormal in shape (D – E) or fused (F). (G) Larvae with coiled or flexed tail. 

(H) Plurimalformed larvae displaying severe malformations to almost all organs. Magnifications: 60X (A, C, G, H), 120X (B, D, 

E, F). Scale bar: 100 µm. 



 

112 

Figure 3.2. Histograms showing the effect of the co-exposure to increasing Eth 

concentration with FLUCO 62.5 µM on different categories of malformation.  

* = Effect of FLUCO compared to Eth alone. 
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Figure 3.3. Histograms showing the effect of the co-exposure to increasing FLUCO 

concentration with Eth 0.01% on different categories of malformation.  

* = Effect of Eth compared to FLUCO alone.
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Table 3.1.  Abnormalities (%) of larvae exposed to increasing RA concentrations (µM). 

 

 

 

 

 

 

 

 

 

C
O

N
T
 (

n
=

3
0

0
)

C
O

N
T
+

D
M

S
O

 (
n

=
2

8
3

)
R

A
 0

.1
 µ

M
 (

n
=

2
6

6
)

R
A

 0
.2

 µ
M

 (
n

=
2

3
3

)
R

A
 0

.5
 µ

M
 (

n
=

2
0

7
)

R
A

 1
 µ

M
 (

n
=

1
4

5
)

A
B

A
B

A
B

A
B

N
O

R
M

A
L

8
2

.3
3

8
0

.8
6

0
.0

0
0

.4
4

0
.0

0
0

.0
0

A
B

C
D

E

T
A

IL
5

.2
6

2
.3

4
5

.1
6

4
.4

2
6

.6
3

3
2

.0
9

A
B

A
B

C
d

A
B

C
D

P
IG

M
E
N

T
E
D

 O
R

G
A

N
S

1
.8

8
1

.1
7

5
.9

5
1

3
.2

7
2

5
.5

1
2

9
.1

0

A
B

A
B

A
B

A
B

C
D

E

T
R

U
N

K
6

.7
7

8
.9

8
8

2
.9

4
8

0
.9

7
8

1
.6

3
5

9
.7

0

a
A

b
A

b
A

B
C

D
E

S
E
V

E
R

E
LY

 M
A

LF
O

R
M

E
D

5
.2

6
7

.4
2

1
7

.0
6

1
8

.1
4

1
8

.3
7

4
0

.3
0

A
B

A
B

A
B

A
B

C
D

E

T
O

T
 A

B
N

O
R

M
A

LI
T
IE

S
1

2
.4

1
1

1
.7

2
8

2
.9

4
8

1
.4

2
8

1
.6

3
5

9
.7

0

A
B

A
B

A
B

A
B

T
O

T
 M

A
LF

O
R

M
E
D

1
7

.6
7

1
9

.1
4

1
0

0
.0

0
9

9
.5

6
1

0
0

.0
0

1
0

0
.0

0

a
 p

<
0

.0
5

 v
s.

 C
O

N
T

C
 p

<
0

.0
1

 v
s.

 R
A

 0
.1

 µ
M

A
 p

<
0

.0
1

 v
s.

 C
O

N
T

d
 p

<
0

.0
5

 v
s.

 R
A

 0
.2

 µ
M

b
 p

<
0

.0
5

 v
s.

 C
O

N
T
+

D
M

S
O

D
 p

<
0

.0
1

 v
s.

 R
A

 0
.2

 µ
M

B
 p

<
0

.0
1

 v
s.

 C
O

N
T
+

D
M

S
O

E
 p

<
0

.0
1

 v
s.

 R
A

 0
.5

 µ
M



115 

Table 3.2. Abnormalities (%) of larvae exposed to increasing Eth concentrations (mM) and 

to the mixture Eth + FLUCO fixed. 
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Table 3.3. Abnormalities (%) of larvae exposed to increasing FLUCO concentrations (µM) 

and to the mixture FLUCO + Eth fixed. 
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GENERAL DISCUSSION 
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Congenital anomalies are a major cause of infant mortality and childhood morbidity, affecting 2-

3% of newborns. Exposure of the embryo to environmental chemicals (pesticides, air and water 

pollutants) can result in congenital malformations or developmental defects such as oro-facial 

cleftings (cleft lip and/or palate alone or associated with other cranio-facial deformities), which 

are one of the most frequent (1:700 live births) (Mossey et al., 2009). Usually, the human 

embryo is not usually exposed to a single substance, but to many substances simultaneously. 

Despite the efforts in elucidating mechanism of action of substances that perturb the normal 

embryonic development, only a small part of involved pathways have been understood to date 

(Giavini and Menegola, 2004). This is why, evaluating the toxicity of mixtures of multiple 

chemicals is one of the major objectives of today’s toxicology despite the effect of exposure to a 

mixture is still difficult to understand.  

The EPA Guidelines of 2002 suggest investigating a few mixtures considered "high priority" and 

recommend the use of the models of dose additivity in the absence of adequate information on 

the presence of chemical interactions. However, recent studies suggest that the similarity of 

molecular initiating events (MIEs) is not an essential requirement to induce additive effects, 

because mixtures composed of chemicals with different MIE can exhibit mixture effects too, 

probably acting on the same biological pathway and contributing to the same adverse outcome 

(P. on P. P. P. and their R. (PPR) EFSA, 2013). In addition, it has been argued that grouping 

criteria based solely on chemical similarity or similar mechanisms may lead to unrealistically 

narrow groupings, with the exclusion of chemicals that also might contribute to combination 

effects (Boobis et al., 2011). This is in recognition of emerging evidence that biological effects 

can be similar, although the molecular details of toxicological mechanisms may profoundly 

differ in many respects (Kortenkamp, 2007). It appears evident that a clear and efficient test 

strategy for risk assessment of mixtures is still lacking. Furthermore, there is an increasing 

societal need to reduce animal testing. 

In the case of a possible, multiple aetiology of an adverse outcome (AO), the risk of a multiple 

exposure to different risk factors showing additive effect should be taken into account. 

One concept that has been proposed to aid in addressing these challenges and the resulting 

regulatory needs is the Adverse Outcome Pathway (AOP). An AOP (Fig. 10) describes a 

framework of information about the progression of toxicity events starting from one or more 

molecular initiating events (MIEs). Alterations along a sequence of more and more complex 

biological organizations are described as key events (KEs) and lead, at the end, to the AO 

(Villeneuve et al., 2014).  
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Detailed mechanistic knowledge is necessary in order to develop alternative testing methods on 

chemicals potentially acting on the same AOP. The elucidation of the different potential 

chemical actors switching on the same or different MIEs/ KEs but contributing to the same AO 

(for our purposes cranio-facial defects) is fundamental in order to plan researches on the 

contribution of multiple exposures for facial cleftings.  

Respect to the MoA framework developed for analysing the relevance of toxicological effects 

observed in animals to human risk assessment, the AOP framework is substance independent 

(knowing the specific molecules trigging the MIE is not relevant). Fundamentally, AOPs are not 

intended to be a complete representation of complex biological processes but rather provide a 

structured and simplified way to organizing toxicological knowledge in a manner that enhances 

its utility in decision support and chemical risk assessment. In fact, each AOP need to be clear, 

transparent, easy to understand and apply and must provide a large degree of flexibility and 

accommodate varying levels of detail (Meek et al., 2014). Generally, an individual AOP, defined 

as a single chain of KEs connecting a specific type of MIE to an AO, is the simplest functional 

unit of prediction. In real world, the exposure scenarios involve exposure to complex mixture, 

not individual chemicals. Therefore, a more realistic representation of the complex biological 

interactions that would occur in response to mixtures are systems of multiple interacting AOPs 

(AOP networks) sharing one or more common KEs or KERs (Villeneuve et al., 2014). One 

advantage of the AOPs is that they are “living documents” that have the potential to develop and 

evolve over time as additional knowledge became available. The other advantage is their ability 

to incorporate data from a wide range of sources (in silico, in vitro, in vivo, etc.) and use this 

information to provide the linkages between the MIE and the adverse outcome (Madden et al., 

2014). 

Fig. 10. Representation of a generic Adverse Outcome Pathway (AOP) (Figure from Madden et al., 2014) 
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In fact, to arrive in the future to the creation of a realistic overall picture of human exposure to 

mixtures, the development of integrated approaches between in vitro and in silico techniques and 

computational systems biology able to predict the effects of mixtures starting from the 

concentrations of their individual components will be essential. In this context, the AOP 

framework provides an ideal opportunity for the integrated use of data from in silico, in vitro and 

in vivo approaches, essential to address the scientific challenge that mixtures pose us. 

Mechanistic studies of some teratogenic agents such as retinoids, ethanol and some pesticides of 

the class of the azoles fungicides suggested that they could exert their teratogenic action by 

interfering with the same pathway.  

Azoles are synthetic antifungal compounds, derived from triazole or imidazole, selected to test 

possible methodologies to assess cumulative effects on human health (EFSA, 2009).  

The postulated mechanism of action is the inhibition of CYP26 enzymes (involved in retinoic 

acid (RA) degradation during early embryonic development), with the consequent increase in 

RA local content. Excess of RA at the critical window of sensitivity has been shown to be 

responsible for the specific branchial arch malformations and the subsequent craniofacial 

malformations described after experimental azole exposure (Menegola et al., 2006a; Marotta and 

Tiboni, 2010) (Fig. 11). 

Fig. 11. Postulated MoA of fluconazole. 
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Craniofacial morphogenesis is affected also by ethanol (Eth). Eth in fact is a commonly 

consumed in alcoholic beverages also during pregnancy even if it is known to be a teratogen. 

The teratogenic effects of Eth have been deeply investigated, but the specific molecular initiating 

events (MIEs) have not been completely clarify until now. One of the potential mechanism by 

which Eth could act as teratogen, is the possible interference with ADH7, a key enzyme in 

retinoic acid (RA) pathway, responsible of its production (Fig. 12). 

Fig. 12. Postulated MoA of ethanol. 
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This PhD project was conducted with the specific aim to investigate the mechanisms of action 

which we assume at the basis of the observed effects through the development of an in silico 

tool, validated by in vitro experiments, useful to simulate and predict the effects on embryo 

development after co-exposure to substances with independent MoA but acting on the same 

pathway and potentially contributing to the same adverse outcome (cranio-facial malformations).  

For this purpose, the project was divided into three parts. 

In the first part, we verified the teratogenic mechanism exert by RA, FLUCO and Eth in post-

implantation rat embryos exposed in vitro to increasing concentration of RA (0.025-0.0375-0.05-

0.125-0.25 µM), to increasing concentrations of Eth (17-42.5-85-127 mM), to increasing 

concentrations of FLUCO (62.5-125-250-500 µM), or co-exposed to binary mixtures of FLUCO 

and Eth, in order to draw its toxicity dose-response curve. Concentration related effects were 

observed after the exposure to Eth (42.5-127mM) or FLUCO (125-500μM) comparable to those 

elicited by RA. The observed abnormalities were specifically at the level of the branchial 

apparatus (reductions or fusions), confirming the branchial apparatus as the main target of the 

teratogenic effects induced by FLUCO as previously observed (Menegola et al., 2000, 2001, 

2003, 2004, 2006b). The co exposure to Eth and FLUCO at their NOAELs resulted effective, 

inducing almost 40% of branchial arch abnormalities. A significant enhancement of teratogenic 

effects were also observed in the other groups co-exposed to FLUCO and Eth in comparison to 

the single exposure. It seems that the co-exposure to FLUCO and Eth is able to induce mixture 

effects. In particular, the presence of sub-teratogenic concentrations of one chemical in the 

culture medium can influence the other one's embryotoxicity in vitro. The results confirm those 

from BMD approach, which suggest that there are no significant deviations from concentration 

additivity. In addition, the performed whole mount immunostainings allowed to correlate the 

defects at the branchial arches induced by both Eth and FLUCO with severe alterations in the 

migration and specification pattern of the neural crest cells (NCCs). From these results, it is clear 

that both molecules could affect the craniofacial morphogenesis acting with different MIEs both 

converging on the same biological pathway, altering the RA production (Eth) and the RA 

catabolism (azoles). This study moreover promotes the use of in vitro whole embryo culture 

approach as a good method to assess the toxicological outcome of combined exposures to azole 

fungicides and ethanol on embryo development. This work represents an example that alternative 

in vitro tools can provide suitable means for reducing and refining the use of animal procedures. 
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In the second part, we decided to investigate the mechanism of action which we assume at the 

basis of the observed effects, by obtaining an in silico tool, validated by our previous in vitro 

experiments, useful to simulate and predict the effects on embryo development after co-exposure 

to substances with independent MoA but acting on the same pathway and potentially 

contributing to the same adverse outcome (cranio-facial malformations). Using an integrated 

approach combining mathematical modelling, molecular docking and in vitro experiments, we 

have developed an integrated system biology model, which is reasonably predictive for the 

mixture’s effects and for the estimations of the RA levels in rat hindbrain after FLUCO and Eth 

co-exposure starting from the concentrations of the individual substances. The model seems to 

confirm the accuracy of the hypothesized pathogenic pathway: in fact, experimental data and 

model predictions have a promising agreement. Anyway, this model, in spite of its limitations, 

has many potential mechanistic or predictive applications for the study of risk assessment of both 

exposure to mixtures of azoles acting with the same MoA and exposure to mixtures of Eth and 

azoles, which probably act on the same pathway but with different MoA 

 

The aim of the third part of this work was to evaluate the Ascidian Embryo Teratogenicity assay 

(AET) as an alternative invertebrate model to test the developmental effects of the co-exposure 

to Eth and FLUCO. C. intestinalis embryos at early neurula stage (7 hpf) were exposed for 15 h 

to Eth alone (1.7-8.5-17-42.5-85 mM), to FLUCO alone (7.8-15.75-31.5-250 µM), or co-

exposed to binary mixtures of FLUCO and Eth. At the end of the exposure period, larvae were 

morphologically analysed. Both compounds were teratogenic in a concentration-related manner. 

Moreover, the co-exposure to the sub-teratogenic concentration of Eth (17 mM) significantly 

increased the general teratogenicity of the effective concentrations of FLUCO, suggesting the 

presence of a mixture effect. The co-exposure to increasing concentrations of Eth and FLUCO 

7.8 µM significantly increases the incidence of number of trunk-malformed larvae, suggesting 

the presence of a specific effect exert by FLUCO at the level of the anterior structures with a 

consequent synergistic effect. These data, similar to those induced in vertebrates, support the 

hypothesis that both Eth and FLUCO could affect C. intestinalis morphogenesis affecting the 

same pathway also in tunicates with subsequent alteration of their anterior structures. Finally, 

considering that ascidians are basal chordates recognized as belonging to the sister group of 

vertebrates (Delsuc et al., 2006), the results obtained with the Ascidian Embryo Teratogenicity 

assay could be considered indicative for  deep toxicological investigation in mammal embryos. 

The results encourage the use AET as a complementary alternative method for embryotoxicity 

studies. The possibility to apply mathematical models on AET is to evaluate. 
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In conclusion, our overall results demonstrate that embryonic exposure to FLUCO and Eth could 

lead to the same adverse outcome by acting with different MIEs converging on the same AOP, 

altering the RA production (Eth) and the RA catabolism (azoles). The KEs subsequent to the 

alteration of the RA endogenous level (alteration of the Hox genes expression, alteration of the 

hindbrain segmentation, alteration of the NCCs migration and incorrect branchial arches 

formation) shared by both MoA of FLUCO and Eth, could lead to the same adverse outcome: 

craniofacial abnormalities in the foetus and in the adult (Fig. 13). 

Fig. 13. Postulated interaction between the MoA of fluconazole and ethanol leading to craniofacial abnormalities 
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The integrated use of data from in vitro and in silico approaches in the AOP framework used in 

this study allows us to demonstrate that substances with different MoA but acting on the same 

pathway could produce an additive effect also at concentrations considered not effective. This is 

particularly relevant considering the molecules under examination. 

Eth, in fact, as alcoholic beverages, is often consumed also during pregnancy. A blood alcohol 

percentage equal to our experimental NOAEL (17 mM) can be reached by a woman with a 

normal body weight with just three alcoholic doses (Fig. 14).  

Fig. 14. Approximate blood alcohol percentage in relationship with body weight and alcohol doses in women. 17 

mM is equal to 0. 1 %. 

The use of FLUCO for prophylaxis and treatment of mycotic infections is also widespread 

among pregnant women and our experimental NOAEL (62 µM) could be reached with the lower 

therapeutic dose. In fact, vaginal candidiasis is usually treated with a 150-mg single dose; 

oropharyngeal and oesophageal candidiasis are generally treated for weeks or months with 50–

150 mg FLUCO daily. Higher doses (200–400 mg daily) for long periods are used to treat deep 

mycoses (meningitis, ophthalmitis, pneumonia, hepatosplenic mycosis, endocarditis), whereas 

systemic mycoses are treated for several months with 400 mg FLUCO daily, respecting the total 

maximum daily recommended dose of 1,600 mg (Menegola et al., 2003). The FLUCO linear 
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pharmacokinetic has been demonstrated at doses of 200-400-800 mg/day (corresponding to a 

maximum plasma concentration of 33-163-229 µM) (Santos et al., 2010). 

The results highlight the potential additive effect that could occur after exposure to azoles and 

ethanol, suggesting a precautionary position in alcohol consumption during azoles exposure in 

pregnancy. In addition, our data support the need of a cumulative risk assessment not only for 

chemicals grouped on the base of similarities in chemical structure or derived from mechanistic 

considerations but also for chemicals differently acting on the same biological pathway as 

FLUCO and Eth. This aspect may contribute to the development of a methodology to ensure that 

the missing aspects in the risk assessment of mixtures can be addressed in future risk 

management.  

Finally, as seen in this study, the in vitro tests as WEC are particularly suitable to reinforce the 

relevance of key events in Adverse Outcome Pathway (AOP) constructs in providing a better 

understanding of mechanism of toxicity and the role of these data in risk assessment (Madden et 

al., 2014). The impact of WEC on the field of teratology is evident and, thanks to its flexibility, 

its rapidity and its sensitivity and with increasing pressure to reduce the use of animals in 

toxicity testing, it is expected that WEC will remain an ideal mechanistic research model for 

many years to come. In addition, it is more and more evident the emerging contributions of 

systems biology in shaping new directions for physiologically-based pharmacokinetic models 

(PBPK), and dose - response modelling in quantitative human health risk assessment and 

reproductive toxicology. Data obtained in this study could be, for example, the starting point for 

the development of PBPK which could make more accurate predictions for different exposure 

situations. 
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Abstract:

The aim of the present work was to evaluate the suitability of the Ascidian Embryo Teratogenicity 

assay (AET) to test mixture effects. In particular, AET was used as new alternative invertebrate 

model to test the developmental effects of the co-exposure to ethanol and fluconazole. 

Ciona.intestinalis embryos were exposed to the azolic fungicide fluconazole, (FLUCO, 7.8-250 

µM), to ethanol (Eth, 0.01-0.5%) and to their mixtures (0.01% Eth + FLUCO 7.8-250 µM) from 

neurula to larval stage. At the end of the exposure period, larvae were morphologically evaluated. 

Both compounds were teratogenic in a concentration-related manner, particularly affecting the 

pigmented sensory organs. FLUCO exposure was also correlated to trunk abnormalities, while Eth 

determined a significant increase of trunk malformations only at the highest tested concentration. 

The co-exposure to the sub-teratogenic concentration of Eth enhanced the effects of FLUCO. These 

results suggest that both Eth and FLUCO could affect the same developmental pathway.

Keywords: Alternative test, Ascidian, Fluconazole, Ethanol, Mixture, Teratogenesis
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1. Introduction

Everyday humans are exposed to multi-component chemical mixtures present in the surrounding 

environmental media (water, air, soil), in food or in consumer products [1,2]. The risk that may 

result from this exposure depends on how the effects of the different chemicals can combine in the 

mixture and whether there is any kind of interaction between them. Thus, evaluating the toxicity of 

mixtures is one of the major objectives of today toxicology. The infinite number of different 

combinations of chemicals in a mixture, the lacking of an efficient test strategy for mixtures risk 

assessment and the increasing societal need to reduce animal testing, make the study of mixtures a 

very complex issue [3]. 

In order to investigate the basis of mixture toxicology, triazole group has been selected as studied 

molecules to assess cumulative effects on human health [4]. The use of alternative models in 

toxicology has been strictly recommended to evaluate the potential effects of the co-exposure of 

chemicals in a mixture [3]. Considering all these points, the aim of the present work is to evaluate 

the effects of the co-exposure to the triazole fungicide fluconazole (FLUCO) and to ethanol (Eth) 

by using the ascidian Ciona intestinalis embryo model as new alternative teratological screening 

test (AET, Ascidian Embryo Teratogenicity assay). 

Ascidians are marine sessile, filter-feeding chordate organisms belonging to the Subphylum 

Urochordata, which has been recognized as the sister group of vertebrates [5]. Particularly, ascidian 

embryos display striking similarities to vertebrate ones as they develop through a swimming, 

tadpole like larva, which represents a simple prototype of the chordate body plan [6], comprising a 

hollow neural tube lying dorsal to a rod-like notochord [7]. Thanks to their cosmopolitan 

distribution, basic body plan [8] and key phylogenetic position [5], ascidian larvae have been 

proposed as an excellent alternative experimental system for investigating the mechanisms 

underlying the development of chordates [5,9], and therefore of vertebrates, for applying embryo-

toxicity tests and to evaluate embryotoxicity related to xenobiotic exposure as well [10–14]. 

Previous studies reported that ascidian larvae exposed to different azole fungicides showed 

characteristic malformations resembling those elicited by retinoic acid (RA) [11,12]. In both the 

analysed species, Phallusia mammillata and Ciona intestinalis, azole-induced malformations were 

specifically at the anterior region of the trunk, in which the sensory vesicle appeared reduced and 

the pigmented organs were severely altered. Moreover, the development of the adhesive papillae, 

the anterior most larval organs, was impaired. The observation that the affected structure are in 

ascidians those controlled by RA [15] and the evidence that the same alterations are produced by 
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exogenous RA exposure [15-18] suggest that, similarly to what proposed in vertebrates [19–21], 

also in ascidians the teratogenic action of azoles could depend on perturbation of RA pathway [11–

13].

Among azoles, FLUCO (a bis-triazole derivative) is a clinically used fungicides commonly dosed 

for treating a variety of mycoses and infections [22]. Dose and administration period depend on 

type and severity of the infection: vaginal candidiasis is usually treated with a 150-mg single dose, 

while systemic mycoses are daily treated for several months with 400 mg FLUCO, respecting the 

total maximum daily recommended dose of 1600 mg. FLUCO excellent bioavailability has been 

reported after oral dosing and a linear pharmacokinetic has been demonstrated at doses of 200-400-

800 mg/day (corresponding to a maximum plasma concentration of 33-163-229 µM) [23]. As far as 

the use in pregnancy is concerned, the American Food and Drug Administration agency (FDA) 

recently changed the indications on the risk category in pregnancy for high dose fluconazole from 

category C (animal reproduction studies have shown an adverse effect on the foetus and there are no 

adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug 

in pregnant women despite potential risks) to category D (there is positive evidence of human foetal 

risk based on adverse reaction data from investigational or marketing experience or studies in 

humans, but potential benefits may warrant use of the drug in pregnant women despite potential 

risks), while the pregnancy category for a single, low dose of fluconazole remains category C [24]. 

Considering that teratogenic effects observed after in vitro exposure to FLUCO of whole 

postimplantation rodent embryos [25,26]) and after exposure of amphibian embryos [27] strictly 

resemble the alterations induced by RA excess in mammals [19,28] and in frogs [27] and that the 

inhibitory activity of FLUCO on the P-450 enzyme that degrades RA (CYP26) accounts for the use 

of FLUCO in patients with acute promyelocytic leukaemia [29–31], the proposed teratogenic 

mechanism for FLUCO is the inhibition of CYP26 embryonic enzymes with the consequent 

increase in local RA levels. 

The observation that the in vitro co-exposure to sub-teratogenic doses of both RA and FLUCO 

leads to the same phenotype as the teratogenic doses of RA and FLUCO alone, definitively 

supported the hypothesis of local increase of RA as key event in FLUCO teratogenicity [28,32].

RA-like malformations have been reported after the exposure of mammalian and frog embryos to 

Eth as well. Eth is a well-known teratogen agent and its consumption during pregnancy can produce 

a wide range of physical, cognitive, and behavioural disabilities in newborns classified in a 

recognised syndromic picture named as foetal alcohol spectrum disorder (FASD) [33]. The most 

severe form, that includes morphological abnormalities, is defined as foetal alcohol syndrome 
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(FAS), characterized by microcephaly, flat midface with short palpebral fissures, low nasal bridge 

with short nose and long smooth or flat phyltrum [34–36]. In studies on postimplantation rat 

embryos exposed in vitro to Eth, the reported malformations are mostly neural tube defects, rotation 

and cardiac abnormalities and hypoplasia of the first branchial arch [37–40]. FAS pathogenesis has 

been deeply investigated and several teratogenic mechanisms identified. They comprise metabolic 

stress (including oxidative stress) and impaired signalling by transcription factor or growth factor 

signalling [41–50]. RA content impairment has also been described [38,40,51]. 

The aim of the present work is to evaluate the effects on C. intestinalis development of FLUCO and 

Eth alone or in mixture, in order to evaluate the AET assay as a new, rapid, inexpensive invertebrate 

alternative animal model for studies on mixture effects.

2. Materials and methods

2.1 Animals and embryos maintenance

Adults of C. intestinalis were collected by the fishing service of the Roscoff Biological Station 

(France). Animals were maintained in aquaria filled with artificial seawater (Instant Ocean, salinity 

32‰) at 16° C and provided with circulation system as well as mechanical, chemical and biological 

filters. Constant light condition was preferred to promote gamete production. 

Gametes of at least three adults were collected from dissected gonoducts and in vitro cross 

fertilization was performed in Petri glass dishes containing artificial seawater with Hepes (ASWH; 

pH 8). Embryos were maintained at 16 °C until they reached the hatching larva stage (22 hours post 

fertilization (hpf), [52].

2.2 Embryo exposure

All chemicals were of reagent grade. FLUCO and Eth absolute were purchased from Sigma, Italy. 

FLUCO stock solution (250 µM) was prepared in ASWH to reach the final treatment 

concentrations. All solutions were freshly prepared.

C. intestinalis embryos at early neurula stage (7 hpf) were exposed for 15 h, until control embryos 

reached the larval stage, to increasing concentrations of Eth (0.01, 0.05, 0.1, 0.25, 0.5%), to 

increasing concentrations of FLUCO (0, 7.8, 15.75, 31.5, 250 µM) and to mixtures of 0.01% Eth + 

FLUCO (0, 7.8, 15.75, 31.5, 250 µM) dissolved in 10 mL of ASWH. FLUCO concentrations were 
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chosen based on previous works [12] focusing on lower doses to identify the NOAEL (No Observed 

Adverse Effect Level), plus a high dose as positive control.

Approximately 100 embryos were used for each treatment and each experimental group. Each 

experiment was replicated at least three times (total n per groups ≈ 300). When controls reached 

swimming larva stage (22 hpf), all specimens were evaluated and the percentage of dead larvae was 

recorded. After fixation in 4% paraformaldehyde in PBS, larvae were morphologically examined in 

detail under a dissecting microscope.

The number of larvae showing abnormalities at tail, trunk and pigmented sensory organs as well as 

plurimalformed larvae were recorded.

2.3 Statistical analysis 

We used generalized linear models (GLM) to test the significance of differences in the incidence of 

malformations between each treatment group. The number of individuals with/without 

malformation per each batch was the dependent variable, while treatments were the considered as 

fixed factors. GLMs showed overdispersion, as residual deviance was larger than the residual 

degrees of freedom, therefore we used a quasi-binomial error structure, and we tested significance 

using a F-test [53]. If substance exposures were significant, we performed Tukey’s post-hoc tests 

(significant at P < 0.05) using the multcomp package in R [54], in order to identify specific effects 

of each concentration on larvae development.

3. Results

3.1 Morphological analysis of induced abnormalities

C. intestinalis larvae of each experimental group were morphologically examined under a dissecting 

microscope in order to evaluate the presence of abnormalities as well as plurimalformed larvae. 

Nearly 80% of unexposed larvae (Tab. 1; Tab. 2; Tab. 3) developed normally, displaying an 

elongated trunk with three elongated adhesive papillae, a clearly visible sensory vesicle and two 

pigmented organs (otolith and ocellus) well-differentiated. Particularly, the ocellus, the dorsally 

located photoreceptor, and the otolith, the gravity-sensing organ, were normally located inside the 

sensory vesicle. The tail was straight and elongated (Fig. 1 A and B). 

Larval abnormalities were classified in four malformed phenotypes: 

- trunk abnormalities, in which trunk appeared round in shape and the anterior side was flat, due to 

impairment of adhesive papillae development (Fig. 1 C and D);
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- pigmented organ abnormalities, in which the pigmented organs (otolith and ocellus) appeared 

fused in a single spot and/or displaced on the dorsal portion of the sensory vesicle (Fig. 1 E and F). 

In the samples displaying sensory vesicle protrusion on the trunk dorsal side, the pigmented organs 

were exposed to the surface;

- tail abnormalities, in which the larval tail appeared coiled, flexed or reduced in length (Fig 1 G);

- severe malformations, in which plurimalformed larvae were characterized by absence of sensory 

vesicle cavity, presence of a short, bent tail, round trunk with not elongated papillae. This group 

includes also larvae that failed the hatching event (Fig. 1 H);

The percentage of the total number of larvae with abnormalities and of plurimalformed larvae in 

different groups is reported in Table 1, 2 and 3. 

3.2 Eth

During the development of C. intestinalis embryos, exposure to Eth increased the total number of 

malformed larvae (GLM: F5,12 = 4.67, P = 0.013). The percentage of malformed larvae increased in 

a concentration-related manner (Tab. 1). The lower effective concentration was 0.05% (Tukey’s 

post-hoc, all P ≤ 0.001). The Eth lower tested concentration (0.01%) did not cause a significant 

increase of malformations at any district compared to the controls (post-hoc, P = 0.632) and was 

thus considered as the NOAEL. The percentage of total malformations increased significantly with 

Eth concentration from 0.05% on (Tukey's post-hoc test: all P<0.05). The main target for Eth were 

specifically the pigmented sensory organs (F5,12 = 15.33, P < 0.0001): otolith and ocellus appeared 

fused or protruded at any effective concentrations. A strict dose-relationship was observed and 

confirmed also by post-hoc tests. Eth determined also, but every times At the highest tested 

concentration (0.5%) in less than 10% of larvae, Eth also determined a significant increase on trunk 

malformations (F5,12 = 6.42, P ≤ 0.001), but this effect was evident only at the highest tested 

concentration (0.5%). The incidence of tail abnormalities was not significantly affected by Eth at 

any concentration level (F5,12 = 1.58, P = 0.239). Overall, Eth 0.01% resulted the NOAEL for C. 

intestinalis development, as did not cause a significant increase of any abnormalities.

3.3 FLUCO 

The incidence of total number of malformations induced by FLUCO during the development of C. 

intestinalis embryos was dose-dependent (GLM: F4,20 = 12.003, P<0.00001): FLUCO 

concentrations ≥ 15.75 µM significantly increased the total number of malformations, compared to 

controls (post-hoc: all P < 0.002), while we did not detect significant differences between the 

controls and FLUCO 7.8 µM groups (P = 0.170) (Tab. 2). FLUCO specifically affected the 
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pigmented organs and the trunk (respectively GLM: F4,20 = 10.43, P<0.00001, GLM: F4,20 = 16.34, 

P<0.00001). The lower FLUCO concentration (7.8 µM) did not cause a significant increase of these 

malformations compared to the controls (Tukey’s post-hoc, pigmented organs: P = 0.15, trunk: P = 

0.05), while larvae showed significantly more malformations than controls if FLUCO concentration 

was ≥ 15.75 µM (post-hoc, all P ≤ 0.001). A clear dose-dependence is visible for these 

abnormalities. Tail abnormalities were not significantly affected by FLUCO (F4,20 = 1.48, P = 

0.245) at any tested concentration. The total number of severe malformations was significantly 

affected by FLUCO (F4,20 = 3.52, P = 0.025), even though post-hoc tests did not detect significant 

differences between specific treatments (all P > 0.2). Overall, FLUCO 7.8 µM resulted the NOAEL 

for C. intestinalis, as it did not cause a significant increase of abnormalities in any of the body parts 

considered (Tab. 2). 

3.4 FLUCO + Eth

Similarly to what described after FLUCO exposure, after co-exposure to FLUCO (7.8 – 250 µM) 

and Eth (0.01%), larvae exposed at embryotoxic concentrations of FLUCO (15.75 – 250 µM) 

showed abnormalities at the level of pigmented organs (F4,10 = 4.48, P = 0.02479), trunk (F4,10 = 

5.89, P = 0.01058), and severely malformed larvae (F4,10 = 3.25, P = 0.05942)(Tab. 3). Comparing 

the larvae developed from embryos exposed to FLUCO alone and from embryos exposed to the 

FLUCO + 0.01% ethanol mixture a worsened picture was evident (Fig. 2) in the total number of 

malformed larvae (GLM: F1,20 = 7.69, P = 0.012) and the number of malformed the pigmented 

organs (GLM: F1,20 = 11.89, P = 0.0025). By contrast, Eth was unable to increase the percentage of 

FLUCO-related trunk malformation (GLM: F1,20 = 2.25, P = 0.15) and tail development was not 

significantly affected by the co-exposure of FLUCO and Eth (F4,20 = 0.02, P = 0.883, Tab. 3). 

4. Discussion

The evaluation of effects of chemicals in mixtures is of particular interest since humans and all 

other organisms are exposed to multi-component chemical mixtures. The classical theories on 

mixture toxicity indicate that the similarity of modes of action (MoA) is the main criterion to assess 

the mixture effect: evidence that mixtures of compounds sharing the same MoA show dose-

additivity at low doses has been, in fact, reported [55,56]. Nevertheless, recent studies suggest that 

the similarity of molecular initiating events (MIEs) is not an essential requirement to induce 

additive effects, because mixtures composed of chemicals with different MIE can exhibit mixture 

effects too, if acting on the same biological pathway [57]. Recently, it has been argued that 
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grouping criteria based solely on chemical similarity or similar MoA may lead to unrealistically 

narrow groupings, with the exclusion of chemicals that also might contribute to combination effects 

[58]. This is in recognition of emerging evidence that biological effects can be similar, although the 

molecular details of toxicological mechanisms may profoundly differ in many respects [59]. 

The main aim of the present work was to evaluate the suitability of the ascidian embryo 

teratogenicity model (AET) to test mixture effects. In particular, AET was used as new alternative 

invertebrate model to test the developmental effects of the co-exposure to Eth and FLUCO. 

The teratogenic potential of Eth had never been previously evaluated in ascidians, while teratogenic 

effects of FLUCO were observed in the ascidian Phallusia mammillata at concentrations similar to 

those used in the present work [12]. Results from the present study showed that Eth is teratogenic in 

the ascidian C. intestinalis at concentrations equal or higher than 0.05 specifically affecting the 

pigmented organs. Considering otolith and ocellus as a common target for both FLUCO and Eth, 

the aim of the present work was to evaluate the effects of FLUCO and Eth in mixture. Remarkably, 

co-exposure to FLUCO and to the sub-teratogenic concentration of Eth (0.01%), significantly 

increased the incidence of malformed larvae at pigmented organs if compared to the single exposure 

to FLUCO alone, suggesting  an additive effect, as both Eth and FLUCO could act affecting the 

same pathway. In vertebrate embryos the MoA proposed is the inhibition of cytochrome P-450 

(CYP26) enzymes, involved in RA catabolism, with the consequent increase in local RA levels in 

vertebrate embryos [28], [32]. Data obtained in both ascidian species after FLUCO exposure and 

those obtained after the exposure of C. intestinalis to the azole Imazalil [13] showed that the elicited 

phenotype after azole exposure is striking similar to that induced by RA. According to literature, 

exposure to RA during development causes stereotypical malformations in ascidian larvae, which 

develop with a rounded trunk and malformed sensory vesicle and pigmented organs [16,17,60,61]. 

In ascidians, the role of RA cascade and the expression of CYP26 has been described and compared 

to the expression of CYP26 in vertebrate embryos. Considering that both the expression pattern of 

ascidian CYP26 and of Hox-1 (a key gene in RA controlled cascade) were detected in Tunicates 

[17], it could be hypothesized that FLUCO could affect the ascidian development altering the RA 

morphogenetic activity in specific responsive embryonic tissues. 

Evidence obtained by both the phenotypes of Eth-exposed larvae and by mixture data suggests that 

Eth could alter ascidian morphogenesis, interfering with the same pathway. Eth involvement in this 

process represents an intriguing but still highly speculative hypothesis and further analyses to 

confirm Eth interferences in RA pathways are needed.
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In conclusion, this work shows that AET assay offers several advantages as a model system for the 

study of mixture effects. First, the ascidian adults are widespread in coastal area, easily maintained 

in aquarium, and by in vitro fertilization it is possible to produce thousands of synchronously 

dividing embryos. Moreover, since the embryos develop quickly into swimming tadpole larvae (18 

hours at 18 °C; [52], it is possible to observe the effects of treatment within a day. Finally, 

considering that ascidians are basal chordates recognized as belonging to the sister group of 

vertebrates [5], results obtained in these species could be considered indicative for a need for 

toxicological investigation in mammals. Concerning the issue of exposure to mixtures, our data 

support the need of a cumulative risk assessment not only for chemicals grouped on the base of 

similarities in chemical structure or derived from mechanistic considerations but also for any 

chemical acting on the same biological pathway.

The present work was performed using an invertebrate species not subjected to regulative 

guidelines. 
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Figure captions

Fig. 1. Morphological analysis of C. intestinalis larvae. A and B) Normally developed larvae. The 

lateral view of the trunk (B) allows to distinguish the otolith (Ot) and the ocellus (Oc), separated 

and well differentiated. Adhesive papillae (Pa) are also visible at the anterior end. C and D) Larvae 

displaying trunk abnormalities. The trunk appears round in shape with impairment of adhesive 

papillae development. D - F) Larvae displaying malformed pigmented organs, abnormal in shape (D 

and E) or fused (F). G) Larvae with coiled or flexed tail. H) Plurimalformed larvae displaying 

severe malformations to almost all organs. Magnification: 60X (A, C, G, H), 120X (B, D, E, F). 

Scale bar: 100 µm.

Fig. 2. Histograms showing the effect of the co-exposure to increasing FLUCO concentration with 

Eth 0.01% on different categories of malformation: pigmented organs, trunk and total malformed 

larvae. 

* = Effect of Eth compared to the FLUCO dose alone.

Tab. 1.  Percentage averages of frequency and standard error of malformed larvae at increasing Eth 

concentrations.

Tab. 2. Percentage averages of frequency and standard error of malformed larvae at increasing 

FLUCO concentrations (µM).

Tab. 3.  Percentage averages of frequency and standard error of malformed larvae after co-exposure 

to increasing FLUCO concentration (µM) with Eth 0.01%.



11

Figure 1



12

0
10
20
30
40
50
60
70
80
90

100

CONT FLUCO 7.8 FLUCO 15.75 FLUCO 31.5 FLUCO 250

TOT MALFORMED

0
10
20
30
40
50
60
70
80
90

100

CONT FLUCO 7.8 FLUCO 15.75 FLUCO 31.5 FLUCO 250

PIGMENTED ORGANS

Figure 2



TA
B. 1  

Percentage averages of frequency and standard error of m
alform

ed larvae at increasing Eth concentrations.

0
(N

=290)
0.01%

(N
 = 300)

0.05%
(N

 = 289)
0.1%

(N
 = 290)

0.25%
(N

 = 300)
0.5%

(N
= 300)

Tail
11.30  ±  1.48

15.00  ±  7.56
21.72  ±  5.91

29.11  ±  2.19
22  ±  3.52

20.67  ±  4.41

Pigm
ented organs

5.63  ±  1.63
10.00  ±  3.22

20.45  ±  4.70 A
B

22.26  ±  2.26
 A

BC
31.00  ±  1.73 A

BC
D

35.33  ±  1.67 A
BC

D
E

Trunk
0.00  ±  0.00

2.33  ±  1.45
4.83  ±  0.60

5.85  ±  0.60
3.33  ±  1.33

9.67  ±  3.39 A
B

Severe m
alform

ations
4.59  ±  1.70

5.67  ±  3.48
5.47  ±  1.82

9.70  ±  1.87
7.33  ±  2.61

9.67  ±  3.18

Tot. M
alform

ed
21.52  ±  2.04

31.33  ±  12.21
49.39  ±  5.71 A

56.96  ±  5.29 A
B

53.00  ±  6.03 A
61.00  ±  2.89 A

B

A
 p<0.01 vs. ETH

 0
D

 p<0.01 vs. ETH
 0.1%

B p<0.01 vs. ETH
 0.01%

E p<0.01 vs. ETH
 0.25%

C
 p<0.01 vs. ETH

 0.05%



TA
B. 2 

Percentage averages of frequency and standard error of m
alform

ed larvae at increasing FLU
C

O
 concentrations (µM

).

0
(N

 = 300)
7.8

(N
 = 251)

15.75
(N

 = 300)
31.5

(N
 = 300)

250
(N

 = 264)

Tail
8.33  ±  1.86

6.26  ±  1.13
3.33  ±  1.20

14.33  ±  6.97
7.62  ±  1.79

Pigm
ented organs

3.33  ±  2.03
9.14  ±  0.78

16.33  ±  3.85 A
21.66  ±  4.41 A

27.18  ±  2.52 A
BC

Trunk
7.00  ±  1.53

11.76  ±  3.45
21.66  ±  3.18 A

41.33  ±  7.70 A
B

40.39  ±  3.87 A
B

Severe m
alform

ations
6.00  ±  3.06

1.29  ±  0.66
3.00  ±  1.16

4.33  ±  1.86
9.72  ±  2.57

Tot. M
alform

ed
24.33  ±  2.85

27.18  ±  5.30
41.67  ±  3.93 A

64.00  ±  5.14 A
B

62.98  ±  3.46 A
B

A
 p<0.01 vs. FLU

C
O

 0 µM

B p<0.01 vs. FLU
C

O
 7.8 µM

C
 p<0.01 vs. FLU

C
O

 15.75 µM



TA
B. 3 

Percentage averages of frequency and standard error of m
alform

ed larvae after co-exposure to increasing FLU
C

O
 concentration (µM

) w
ith Eth 0.01%

.

0 + ETH
 0.01%

                 
(N

 = 286)
7.8 + ETH

 0.01%
                           

(N
 = 300)

15.75 + ETH
 0.01%

                       
(N

 = 300)
31.5 + ETH

 0.01%
             

(N
 = 299)

250 + ETH
 0.01%

                         
(N

 = 275)

Tail
5.60  ±  2.03

9.33  ±  0.88
10.00  ±  3.47

9.69  ±  1.31
6.56  ±  1.45

Pigm
ented organs

8.22  ±  1.88
21.66  ±  8.85

27.00  ±  5.01
27.09  ±  3.78

51.44  ±  15.21 A

Trunk
7.55  ±  1.45

24.00  ±  5.51
37.33  ±  6.07 A

36.42  ±  6.68 A
40.56  ±  9.71 A

Severe 
m

alform
ations

3.00  ±  2.08
7.66  ±  2.73

12.33  ±  3.93 A
19.05  ±  5.02

15.77  ±  3.62

Tot. M
alform

ed
22.32  ±  4.28

52.00  ±  8.09
64.00  ±  7.01

70.50  ±  10.66 A
B

78.80  ±  14.77 A
B

A
 p<0.01 vs. FLU

C
O

 0 + ETH
 0.01%

B p<0.01 vs. FLU
C

O
 7.8 + ETH

 0.01%

C
 p<0.01 vs. FLU

C
O

 17.75 + ETH
 0.01%
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Abstract 

Ethanol (Eth) and Fluconazole (FLUCO) are chemicals related to facial defects (including oral clefts), 

affecting the facial development also in in vitro models.FLUCO teratogenic Mode of Action (MoA) is probably due to 

the inhibition of retinoic acid (RA) catabolism. Eth is a teratogen with multifactorial not completely understood MoA. 

The aim is to evaluate the effects of Eth and FLUCO co-exposure in postimplantation rat whole embryo cultures 

(WEC). E9.5 embryos were exposed to Eth (17-85 mM), FLUCO (62.5-500 µM) or, according to the fix-and-moving 

model, co-exposed to Eth (17 mM, NOAEL) and FLUCO (62.5-500 µM) or, vice versa, to FLUCO NOAEL (62.5µM) 

and Eth (17-85 mM).   Based on bench mark dose (BMD) and relative potency factor (RPF) approaches, the outcome of 

mixtures was modeled and the predicted effects, derived under the dose-additivity hypothesis, compared with the 

experimental results.  Concentration-related effects were observed after the Eth or FLUCO exposure. The common 

targets for teratogenicity were the facial primordia (branchial arches). A significant enhancement of teratogenic effects 

was observed in the groups co-exposed to FLUCO and Eth in comparison to the single exposures. Results from BMD 

approach show that there are no significant deviations from concentration–additivity, suggesting a common MoA for 

both molecules. In order to test the hypothesis of an Eth-mediated imbalance on RA-related pathway, a mixture of Eth 

and RA at their NOAELs (17mM + 0.025) µM has been performed and results compared to a positive control (RA 0.25 

µM), showing results in line with the hypothesis. 

Key words: Mixture, facial defects, BMD, retinoic acid, embryo. 
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Introduction 

Among congenital anomalies, oral clefts (cleft lip and/or palate alone or associated with other cranio-facial 

deformities) are one of the most frequent (1:700 live births) both as isolated anomalies and in syndromic 

conditions (Mossey et al. 2009). The main environmental factors which have been reported as possibly 

increasing the risk of oro-facial clefts are tobacco smoking  (Kallen 1997), alcohol consumption (Werler et 

al. 1991; Munger et al. 1996), solvents (Holmberg et al. 1982), agricultural chemicals (Gordon and Shy 

1981; Thomas et al. 1992; Nurminen et al. 1995); and several classes of drugs (Jentink et al. 2010; Howley et 

al. 2016). Among antifungals, the specific teratogenic effect of some agrochemical and clinically-used azole 

fungicides, including fluconazole (FLUCO), has been documented in the past by other research groups and us, using 

postimplantation rodent whole embryo culture (Tiboni 1993; Menegola et al. 2001; 2003; 2004; 2005). FLUCO is a bis-

triazole derivative used by oral, topic or intravenous administration for treating vaginal, oral, and esophageal mycoses, 

urinary tract infections, peritonitis, pneumonia and disseminated infections caused by Candida. FLUCO is also used for 

treating cryptococcal meningitis, and prevention of Candida infections in patients undergoing chemotherapy or 

radiation therapy. Excellent bioavailability has been reported after oral dosing, and a linear pharmacokinetics has been 

demonstrated at doses of 200-400-800 mg daily (corresponding to a maximum plasma concentration of 33-163-229µM) 

(Santos et al. 2010). A larger dosage (1200 mg/die) is suggested for deep mycoses. Similar to the other azole-derivative 

fungicides, FLUCO inhibits the fungal wall formation exerting a high fungistatic activity. The FDA pregnancy category 

for high dose FLUCO indications has been recently changed from category C (animal reproduction studies have shown 

an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits 

may warrant use of the drug in pregnant women despite potential risks) to category D (there is positive evidence of 

human fetal risk based on adverse reaction data from investigational or marketing experience or studies in humans, but 

potential benefits may warrant use of the drug in pregnant women despite potential risks), while the pregnancy category 

for a single, low dose of FLUCO is category C. Animal in vivo studies, case reports and a recent birth defect prevention 

study reported cleft lip/palate after in utero exposure to FLUCO (Tachibana et al. 1987; Lee et al. 1992; Aleck and 

Bartley 1997; Sanchez and Moya 1998; Lopez-Rangel and Van Allen 2005; Pursley et al. 1996; Howley et al. 2016). 

Concentration-related teratogenic effects have been also observed after in vitro exposure of whole rodent embryos to 

FLUCO concentrations in the range of therapeutical plasma levels (125-500µM): the abnormalities were specifically at 

the branchial arch apparatus (the embryonic precursor of facial elements) (Tiboni, 1993; Menegola et al. 2001). During 

the whole culture period, severe alterations in migration of hindbrain neural crest cells (NCCs, the precursors of facial 

skeletal elements) into the branchial arches were observed in FLUCO-exposed embryos, while physiological apoptosis, 
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cell proliferation, and mesenchymal cell induction were unaffected (Menegola et al. 2003). In accordance to the Mode 

of Action (MoA) accounting for FLUCO therapeutical properties against acute promyelocytic leukaemia (Schwartz et 

al. 1995; Vanier et al. 2003; Holmes et al. 2012), it has been hypothesized that the inhibition of the retinoic acid (RA) 

catabolic enzyme CYP26 (with the consequent tissutal RA increase) could be at the basis of azole side effects in 

pregnancy (Menegola et al., 2003).  A strict relationship between hindbrain segmentation, neural crest cell migration 

and branchial arch abnormalities elicited in rat embryos by the exposure in vitro to teratogenic concentrations of 

FLUCO or RA or to the mixture of the sub-teratogenic concentrations of FLUCO and RA has been described, and 

accounts for the imbalance of RA-related pathway as the MoA for FLUCO teratogenicity (Menegola et al. 2004). 

Ethanol (Eth) is a known teratogenic agent and its consumption during pregnancy has been related to a wide range of 

adverse effects in newborns. The severity of damage due to Eth exposure depends on several factors which include the 

timing, pattern, and dose of consumption (Abel and Hannigan, 1995). The collective evidence from human and animal 

studies strongly suggests that even light drinking during pregnancy can produce significant long-lasting alterations 

(Flak et al. 2014). Maternal Eth consumption can develop a spectrum of physical, cognitive, and behavioral disabilities 

in newborns, known as fetal alcohol spectrum disorder (FASD) (Sulik, 2005; Kotch and Sulik, 1992; Willford et al. 

2006). The most severe form, that includes morphological abnormalities, is defined as fetal alcohol syndrome (FAS) (de 

Sanctis et al. 2011; Joya et al. 2012; Memo et al. 2013). FAS facial characteristics include microcephaly, flat midface 

with short palpebral fissures, low nasal bridge with short nose and long smooth or flat phyltrum (de Sanctis et al. 2011). 

As many as 50% of affected children also exhibit identifiable facial anomalies, such as maxillary hypoplasia, cleft 

palate, and micrognathia (American Academy of Pediatrics report, 2000). After in vitro or in utero exposure to Eth, 

postimplantation rodent embryos show developmental delays, neural tube defects and branchial arch abnormalities 

related to alteration in hindbrain NCC migration (Fadel and Persaud, 1992; Giavini et al. 1992; Van Maele-Fabry et al. 

1995; Kotch et al. 1995; Chen and Sulik, 1996; Dunty et al. 2001). In rodent whole embryos cultured in vitro, the 

reported effective teratogenic concentrations are 44-88 mM (Zhou et al. 2011), while 17 mM is considered safe and 

suggested when Eth is used as a solvent (Kitchin and Ebron 1984). In spite of the fact that FAS pathogenesis has been 

deeply investigated (Wentzel and Eriksson, 2009; Yamada et al. 2005; Czarnobaj et al. 2014), for Eth a univocal 

teratogenic MoA has not yet been established. Potential mechanistically relevant events include impaired RA signaling 

cascade (Sulik  2005; Zhou et al. 2011). 

Considering that literature describes cranio-facial and branchial abnormalities as a common outcome elicited by 

FLUCO and Eth, the aim of the present work is to evaluate the effects of co-exposure of Eth and FLUCO by using a 

fix-and-moving model (one molecule at its No Adverse Effect Level (NOAEL) + the other one at increasing 
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concentrations, including NOAEL). The goals were: 1. to deeply describe and compare the effects of FLUCO and Eth 

on postimplantation rat whole embryo culture; 2. to verify if the co-exposure influences the dose-response relationship 

of the single molecule; 3. to evaluate if the teratogenic pathway is common for the two molecules. Finally, we tested the 

hypothesis that one MoA contributing to Eth teratogenicity could be the imbalance of RA-related pathway. For this 

reason, similarly to what previously described for FLUCO (Menegola et al. 2004), some embryos were co-exposed to 

the Eth and RA at their NOAELs and data compared to those obtained in a group exposed to the 100% teratogenic 

concentration of RA. 

Materials and Methods 

Materials and compound preparation. FLUCO (Sigma), Eth (Fluka), RA (Sigma) were used as test substances. FLUCO 

was dissolved in distilled water, RA was diluted in DMSO, Eth was used undiluted. The medium used for the extraction 

of embryos from the uteri was sterilized Tyrode solution (Sigma); the medium used for the postimplantation whole 

embryo culture was undiluted heat inactivated rat serum added with antibiotics (penicillin 100 IU/mL culture medium 

and streptomycin 100µg/mL culture medium, Sigma). 

Selection of compound concentrations. The concentrations of test molecules were selected from previous published 

experiments: FLUCO 62.5-125-250-500µM (Menegola et al. 2001), Eth 17-42.5-85-127.5 mM (Priscott, 1982; Wynter 

et al. 1983; Kitchin and Ebron, 1984; Clode et al. 1987; Giavini et al. 1992; Hunter et al. 1994, Van Maele-Fabry, 

1995), RA 0.025-0.25µM (Menegola et al. 2004). Mixture groups were performed following the fix and moving 

criterion: Eth fix (17 mM) + FLUCO moving (62.5-125-250-500µM); FLUCO fix (62.5 µM) + Eth moving (17-42.5-

85mM); Eth + RA at their NOAELs (respectively 17 mM and 0.025 µM). An unexposed control group and a group 

exposed to the solvent used for RA (DMSO, 1µL/mL), were also performed. 

Embryo culture. Virgin female CD:Crl rats (Charles River, Calco, Italy), housed in a thermostatically maintained room 

(T = 22 ± 2 °C; relative humidity 55 ± 5%) with a 12 h light cycle (light from 6.00 a.m. to 6.00 p.m.), free access to 

food (Italiana Mangimi, Settimo Milanese, Italy) and tap water ad libitum, were caged overnight with males of proven 

fertility. All animal use protocols were approved by the Ministry of Health - Department for Veterinary Public Health, 

Nutrition and Food Safety committee. Animals were treated humanely and with regard for alleviation of suffering. 

Embryos were explanted from pregnant rats at E9.5 (early neurula stage, 1–3 somites; day of positive vaginal smear = 

0) and cultured according to the New’s method (1978) in 20 ml glass bottles (5 embryos/bottle), containing 5 mL

culture medium. At least a triplicate was performed for each group. 
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The bottles, inserted in a thermostatic (37.8°C) roller (30 rpm) apparatus, were periodically gas equilibrated according 

to Giavini et al. (1992). After 48 h of culture, embryos were morphologically examined and processed for whole mount 

immunohistochemistry. 

Morphological examination. To evaluate the developmental degree and any morphological abnormality in the different 

groups, embryos were examined under a dissecting microscope. Yolk sac diameter, crown-rump and head length, 

somite number and the morphological score (determined according to Brown and Fabro, 1981) were collected as 

morphometrical parameters. Any branchial or extra-branchial abnormality was recorded. Data were statistically 

analyzed using ANOVA followed by Tukey’s test and chi square test. The level of significance was set at p < 0.05. If 

the overall tests for association between response and treatment were significant, the follow-up analyses were 

performed. 

Bench mark dose (BMD) approach and modeling of combined exposure. Based on bench mark dose (BMD) and relative 

potency factor (RPF) approaches, the outcome of mixture of FLUCO and Eth was modeled and the predicted effects, 

derived under the dose-additivity hypothesis, compared with the experimentally obtained results. FLUCO and Eth 

single dose response curves for branchial abnormalities were retrieved and modeled using EPA BMDS version 2.6 

software, the best fitting model has been chosen according to BMDS criteria. 

Starting from the selected model, the appropriate BMR was chosen that would have given a BMD (central) equal or 

very close to the dose used in the mixture for each compound. For each mixture two different dose levels were found 

using, alternatively, one compound in the mixture as Index Compound. 

In the last modeling step, the appropriate BMR (that would have given a BMD (central) equal or very close to the two 

different doses of the mixture) was chosen. 

Finally, the modeled effect for the mixture has been compared with the empirical study results to confirm the hypothesis 

of additivity. 

Whole mount immunohistochemistry. Embryos were immunostained according to the method described by Wei et al. 

(1999) using a primary antibody against a specific NCC marker (anti-CRABP, ABR). After morphological examination, 

embryos were fixed in Dent’s fixative (1:4 in volume DMSO: methanol) and processed according the previously 

described method (Menegola et al. 2003). At the end of the procedure, stained cells appeared dark brown through the 

dissecting microscope. Images obtained from embryos of different groups were compared. 
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Results 

Effects of the single exposure to RA, FLUCO and Eth on rat embryo development. After 48 h in culture, normal 

embryos were dorsally convex and reached the phylotypic stage: tripartite encephalon (forebrain, midbrain, hindbrain) 

with enlarged ventricles, open posterior neuropore, 21-25 somites, three well separated branchial arches (the embryonic 

precursors of facial structures) (Fig 1 a). Branchial abnormalities (reductions, fusions between branchial arches) were 

detected in affected embryos exposed to effective concentration levels of Eth, RA or FLUCO (Fig 1 b-c). 

Morphometric parameters were unaffected in any exposed group (data not shown), while dose-related teratogenic 

effects were detected in embryos exposed to Eth or FLUCO (Tables 1, 2) and in the positive control (RA 0.25 M) (Tab 

3). A syndromic picture was observed after Eth or RA exposure (Tables 1, 3): the affected districts were the branchial 

arches (reduced or fused), and, at the extrabranchial level, the encephalon (swollen romboencephalon, microcephalia) 

and the tail (hook-shaped tail). By contrast, at the tested concentration levels, only the branchial apparatus resulted 

affected by FLUCO (reduced or fused branchial arches) (Table 2). Limited to the branchial morphology, the NOAELs 

were Eth 17mM and FLUCO 62.5M (Tables 1, 2). RA 0.025 M resulted ineffective too (Table 3). 

Effects of mixtures on development. In all mixture groups, morphometric parameters were unchanged (data not shown), 

while a concentration-related effect was observed in groups co-exposed to Eth and FLUCO (Tables 4, 5). The co-

exposure increased the percentage of embryos with branchial arch abnormalities in respect to groups exposed to the 

single molecules; the mixture of NOAELs (Eth 17mM + FLUCO 62.5M) resulted effective too (Figures 2, 3), 

suggesting that a common pathway is altered by the two molecules. Branchial and extra-branchial abnormalities were 

induced by co-exposure to Eth 17mM + RA 0.025M (Table 3), suggesting a common pathway involved in Eth and RA 

teratogenicity. 

Considering the branchial apparatus the common target for Eth and FLUCO, the BMD approach was applied on 

branchial outcomes. Results suggested no significant deviations from concentration-additivity (Table 6), supporting the 

hypothesis that a common MoA triggers the branchial effects induced by Eth and FLUCO exposure. 

Immunostaining. The immunostaining allowed the evaluation of distribution of cranial NCCs in the whole embryos at 

the end of the culture period. The immuno-localization of this cell population showed, in normal embryos, three 

separated cell flows migrating from hindbrain to branchial arches. By contrast, in embryos showing branchial arch 

defects, an abnormal unique flow emerging from the hindbrain and reaching the branchial region was observed. This 

evidence supports the hypothesis that branchial defects are related to an abnormal NCC migration pathway (Figure 4). 
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Discussion 

We compared the effects of Eth, FLUCO and RA on branchial arch morphogenesis using the in vitro postimplantation 

rat whole embryo culture. The three molecules were able to induce quite similar branchial arch defects at their 

teratogenic concentrations. The concentrations without teratogenic effects at the level of the branchial apparatus were 

Eth 17 mM, FLUCO 62.5 M, RA 0.025 M. The effect of co-exposure to Eth plus FLUCO did not deviate from 

additivity on branchial abnormalities, as estimated by the BMD approach. Since it is generally assumed that 

dose/concentration addition occurs if chemicals in a mixture act by the same MoA, even if they differ in their potencies, 

this evidence suggests that, at the branchial level, Eth and FLUCO share, at least partly, a common MoA. For molecules 

sharing a same MoA, dose additivity is assumed, in fact, in the dose range around or below the individual NOAELs of 

the mixture components, whereas at higher doses deviations are more likely to occur because of toxicokinetics or, less 

frequently, toxicodynamic interactions (Moretto, 2008; Boobis et al. 2011). The addition of doses implies that toxicity 

can be expected if the summed dose is high enough to exceed the threshold of toxicity of the mixture, even when the 

dose level of each individual chemical is below its own effect threshold. Due to this assumption, the dose-additivity 

approach is suggested in order to correctly group chemicals. As reviewed by Kortenkamp et al. (2009), in fact, there is 

evidence that dose/concentration addition can produce reliable estimates of combined effects, if the components share a 

strictly identical molecular mechanism of action. A dose-additive approach was, also, used by Wolansky et al. (2009) 

who showed that sub-threshold doses of chemicals with the same MoA, when combined in a mixture, produced 

measurable toxicity. 

As far as FLUCO is concerned, branchial arch abnormalities have been indirectly related to a local increase of RA 

(Menegola et al. 2003; Tiboni et al. 2009). In order to evaluate the hypothesis of Eth MoA imbalancing RA pathway, 

we performed a group co-exposed to the NOAELs of Eth and RA. The effect of the mixture on branchial morphology 

suggests that an abnormal RA pathway could link Eth exposure and branchial defects. 

The mixture effect of the co-exposure to azole fungicides and Eth has not been investigated so far, but it could be 

hypothesized that both the molecules concur to imbalance the RA pathway in specific responsive embryonic tissues. 

Further investigations are needed to explain the different specific molecular events leading to the RA pathway 

deregulation after Eth and FLUCO embryo exposure. Moreover, our data support the need of a cumulative risk 

assessment not only for chemicals grouped on the base of similarities in chemical structure but also for chemicals 

differently acting on the same biological pathway. 
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Considering that the lowest tested Eth concentrations are largely plausible (the legal limit of Eth blood concentrations 

for drivers is nearly equal to 10 mM in the majority of European Countries and in Australia, 18 mM in United States 

and United Kingdom) and that the tested FLUCO concentrations are at therapeutic effective plasma levels, our data 

strongly suggest a precautionary position in alcohol consumption during FLUCO exposure in pregnancy. 
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Figure legends 

Fig. 1 Rat embryos after 48h of culture. a) Normal morphology. Note the structure of the branchial apparatus with three 

separated branchial arches (I, II, III). The dotted line marks the limit of the cephalic region; b-c) Embryos showing 

specific branchial abnormalities, b) reduced second branchial arch (*); c) fusion among I-II-III branchial arches (#). 

Magnification 20x/40x. 

Fig. 2 Percentage of embryos with branchial defects in groups exposed to FLUCO alone (62.5-500 M) or to the 

ineffective level of Eth (17 mM) plus the increasing concentrations of FLUCO (62.5-500 M). 

Fig. 3 Percentage of embryos with branchial defects in groups exposed to Eth alone (17-85 mM) or to the ineffective 

level of FLUCO (62.5 M) plus the increasing concentrations of Eth (17-85 mM). 

Fig. 4 Head region of rat embryos after 48h of culture, immunostained in order to visualize NCCs. a) Normal 

morphology. Note the stained mass condensed at the level of the fronto-nasal region (°) and at the level of the branchial 

apparatus: the maxillary region of the first branchial arch (Ia), the mandibular region of the first branchial arch (Ib) and 

the stained region corresponding to the second (II) and posterior (III) branchial arches. Branchial arch immunostained 

tissues resulted well separated by not stained borders; b) Embryo showing unseparated stained tissues at the level of the 

branchial region (dotted square). Magnification: 40x. 
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Table 1. Evaluation of the teratogenic effects, as detected at term of the culture period, of the exposure to Eth at increasing 
concentrations. The observed teratogenic effects were at the level of both branchial and extrabranchial districts. 

CONTROL Eth 17 mM Eth 42.5 mM Eth 85 mM Eth 127.5 mM 

TOTAL EXAMINED 36 30 11 15 11 

aabb aabb aabbccdd 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % ** 

0 0 72.72 80 100 

 EMBRYOS WITH FUSED BA, % 0 0 0 6.67 0 

aabb aabb aabbccdd 

EMBRYOS WITH REDUCED BA, % ** 0 0 72.72 80 100 

aa aabb aabbcc aabbccdd 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % ** 

0 10 27.27 53.33 100 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories 
(** p<0.01, chi-square test)  

aa p<0.01 vs. CONTROL;  bb p<0.01 vs. Eth 17 mM; cc p<0.01 vs. Eth 42.5 mM; dd p<0.01 vs. Eth 85 mM 

Table 1



Table 2. Evaluation of the teratogenic effects of the exposure to  FLUCO at increasing concentrations. The teratogenic 
effects observed at the end of the culture period were specifically at the level of the branchial apparatus. 

CONTROL FLUCO 62.5 
µM 

FLUCO 125 
µM 

FLUCO 250 
µM 

FLUCO 500 
µM 

TOTAL EXAMINED 36 15 9 18 10 

aabb aabbcc aabbccdd 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % ** 

0 0 44.44 72.22 100 

aabbcc aabbccdd 

 EMBRYOS WITH FUSED BA, % ** 0 0 0 33.33 100 

aabb aabb ccdd 

EMBRYOS WITH REDUCED BA, % ** 0 0 44.44 38.89 0 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % 

0 0 0 0 0 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories 
(** p<0.01, chi-square test)  

aa p<0.01 vs. CONTROL; bb p<0.01 vs. FLUCO 62.5 µM; cc p<0.01 vs. FLUCO 125 µM; dd p<0.01 vs. FLUCO 250 µM 

Table 2



Table 3. Evaluation of the effects of RA and of the co-exposure to Eth and RA (at concentrations ineffective for branchial development). The clear 
effect of the mixture supports the hypothesis of a contribution of Eth in RA pathway deregulation. 

SOLVENT 
CONTROL GROUP  
(DMSO 1µL/mL) 

POSITIVE 
CONTROL (RA 0.25 

µM) 

Eth 17 
mM 

RA 0.025 µM 
Eth 17 mM +  RA 

0.025 µM 

TOTAL EXAMINED 10 10 30 8 12 

aaccdd 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % 

0 100 0 0 100 

bb 

 EMBRYOS WITH FUSED BA, % 0 100 0 0 0 

aabbccdd 

EMBRYOS WITH REDUCED BA, % 0 0 0 0 100 

aaccdd 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % 

0 100 10 0 100 

Statystical analysis was performed in order to compare data obtained in mixture group with controls (DMSO, RA 0.25) and with the single exposure to 
Eth or RA 0.025  µM.  

aa p<0.01 vs. SOLVENT (DMSO); bb p<0.01 vs.  POSITIVE CONTROL (RA 0.25 µM); cc p<0.01 vs. Eth 17 mM; dd p<0.01 vs. RA 0.025 µM. 

Table 3



Table 4. Evaluation of the effects of the co-exposure to Eth (at the fixed concentration level, 17 mM) and FLUCO (at moving concentrations). The 
observed teratogenic effect was specifically at the level of the branchial apparatus. 

CONTROL 
Eth 17 

mM 
Eth 17 mM + 

FLUCO 62.5 µM 
Eth 17 mM + 

FLUCO 125 µM 
Eth 17 mM + 

FLUCO 250 µM 
Eth 17 mM + 

FLUCO 500 µM 

TOTAL EXAMINED 36 30 19 18 18 9 

aabb aabbcc aabbccdd aabbccddee 

EMBRYOS WITH BA ABNORMALITIES (FUSED 
AND/OR REDUCED BA), % ** 

0 0 47.37 72.22 94.44 100 

aabb aabbcc aabbccdd aabbccddee 

 EMBRYOS WITH FUSED BA, % ** 0 0 26.31 50 72.22 100 

aabb aabbcc aabbcc ccddee 

EMBRYOS WITH REDUCED BA, % ** 0 0 47.37 22.22 22.22 0 

EMBRYOS WITH EXTRABRANCHIAL 
ABNORMALITIES, % 

0 10 5.26 0 16.67 0 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories 
(** p<0.01, chi-square test) 

aa p<0.01 vs. CONTROL 

bb p<0.01 vs. Eth 17 mM 

c p<0.05; cc  p<0.01 vs. Eth 17 mM + FLUCO 62.5 µM 

dd p<0.01 vs. Eth 17 mM+ FLUCO 125 µM 

ee p<0.01 vs. Eth 17 mM + FLUCO 250 µM 

Table 4



Table 5. Evaluation of the effects of the co-exposure to FLUCO (at the fixed concentration level, 62.5 µM) and Eth (at moving concentrations). The observed 
teratogenic effects included branchial and extrabranchial districts. 

CONTROL FLUCO 62.5 µM FLUCO 62.5 µM + 
Eth 17 mM 

FLUCO 62.5 µM + 
Eth 42.5 mM 

FLUCO 62.5 µM + 
Eth 85 mM 

TOTAL EXAMINED 36 15 19 8 10 

aabb aabbcc aabbccdd 
EMBRYOS WITH BA ABNORMALITIES (FUSED AND/OR 
REDUCED BA), % ** 

0 0 47.37 87.5 100 

aabb aabb aabbccdd 
 EMBRYOS WITH FUSED BA, % ** 0 0 26.31 25 100 

aabb aabbc ccdd 
EMBRYOS WITH REDUCED BA, % ** 0 0 47.37 62.5 0 

aabb aabbccdd 
EMBRYOS WITH EXTRABRANCHIAL ABNORMALITIES, 
% ** 

0 0 5.26 12.5 100 

Post hoc analysis performed if overall test showed that there is a significant linear trend among the ordered categories  
(** p<0.01, chi-square test) 
aa p<0.01 vs. CONTROL;  bb p<0.01 vs. FLUCO 62.5 µM;  c p<0.05; cc p<0.01 vs. FLUCO 62.5 µM + Eth 17 mM;  dd p<0.01 vs. FLUCO 62.5 µM + Eth 42.5 mM 

Table 5



Table 6. Parameters used for BMD approach: starting from the selected model, compound specific BMRs have been chosen to find the equivalent BMDs (central equal or very close to 
the two different doses of the mixture) for the other compound in order to calculate the total dose in the mixture. Finally, the model extimate  effects for the mixture has been 
compared with the empirical results to confirm (mixture effect <3) or reject the hypothesis of additivity. Concentrations are expressed as micromolar. 

BMR DOSE (BMD) DOSE (MIXTURE) 
EXPECTED EFFECT 

(BMD modeling) 

OBSERVED 
EFFECT (% 

abnormal embryos) 

MIXTURE EFFECT (ratio 
observed/expected) 

fluconazole 8.1 62.5 
143.3 36.0 

47.4 

1.3 
ethanol fluconazole equivalent 13.2 80.8 

fluconazole ethanol equivalent 8.1 12055 
29055.0 28.2 1.7 

ethanol 13.2 17000 

fluconazole 28.7 125 
205.8 58.7 

72.2 

1.2 
ethanol fluconazole equivalent 13.2 80.8 

fluconazole ethanol equivalent 28.7 29413 
46413.0 52.2 1.4 

ethanol 13.2 17000 

fluconazole 74.2 250 
330.8 90.5 

94.4 

1.0 
ethanol fluconazole equivalent 13.2 80.8 

fluconazole ethanol equivalent 74.2 65222 
82222.0 87.4 1.1 

ethanol 13.2 17000 

fluconazole 99.6 500 
580.8 99.9 

100 

1.0 
ethanol fluconazole equivalent 13.2 80.8 

fluconazole ethanol equivalent 99.6 138726 
155726.0 99.9 1.0 

ethanol 13.2 17000 

Table 6



fluconazole 8.1 62.5 
143.3 36.0 

47.4 

1.3 
ethanol fluconazole equivalent 13.2 80.8 

fluconazole ethanol equivalent 8.1 12055 
29055.0 28.2 1.7 

ethanol 13.2 17000 

fluconazole 8.1 62.5 
233.7 70.0 

77.8 

1.1 
ethanol fluconazole equivalent 47 171.2 

fluconazole ethanol equivalent 8.1 12055 
54555.0 62.0 1.3 

ethanol 47 42500 

fluconazole 8.1 62.5 
383.7 96.0 

100 

1.0 
ethanol fluconazole equivalent 89.3 321.2 

fluconazole ethanol equivalent 8.1 12055 
97055.0 94.0 1.1 

ethanol 89.3 85000 
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