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SUNTO. – La pelle è preposta a prevenire l’assorbimento di sostanze esogene. Questa fun-
zione è esercitata dallo strato più superficiale dell’epidermide, lo strato corneo, costituito
da circa 15-20 strati di corneociti parzialmente sovrapposti e supportati da un’impalcatu-
ra di cheratina. Gli spazi extracellulari sono riempiti con una matrice lipidica molto densa
organizzata in lamelle periodiche. Gli spazi interlamellari sono invece costituiti da una
matrice lipidica più fluida. Infine, dove i corneociti non sono perfettamente sovrapposti
si creano dei pori a maggior contenuto di acqua. Questa complessa organizzazione per-
mette la diffusione passiva solo di piccole molecole con peculiari proprietà chimico-fisi-
che. In tutti gli altri casi in cui sia auspicabile la veicolazione transdermica è necessario
ricorrere all’impiego di tecniche che alterino in modo reversibile la funzionalità dello stra-
to corneo come i promotori chimici dell’assorbimento, la ionoforesi o la sonoforesi.
Nell’era delle nanotecnologie, un intenso sforzo è stato dedicato alla ricerca di nanovet-
tori in grado di eludere le difese della pelle (nanoparticelle polimeriche, metalliche o soli-
do-lipidiche, micro e nanoemulsioni, vescicole lipidiche). I risultati sono tuttora contra-
stanti e vi è nella comunità scientifica scetticismo sui reali vantaggi di questi sistemi rispet-
to agli altri approcci più tradizionali. Infatti, anche considerando lo strato corneo come
una membrana nanoporosa con aperture di circa 20-40 nm, le dimensioni della maggior
parte dei nanovettori sono tali da non consentirne teoricamente la diffusione. Tuttavia,
nonostante queste criticità sul mercato si trovano alcuni medicinali costituiti da vescicole
lipidiche “ultradeformabili”. Partendo dall’analisi critica delle informazioni reperibili sui
possibili meccanismi di penetrazione delle diverse tipologie di nanovettori si cercherà di
evidenziare luci ed ombre della somministrazione di questi sistemi sulla cute.

***
ABSTRACT. – The skin is the most important barrier of human body to prevent the absorp-
tion of exogenous substances. Its ability to limit the absorption of exogenous substances
is exercised by the most superficial layer of the epidermis, the stratum corneum, which
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consists of about 15-20 layers of corneocytes supported by keratin fibres. The extracellu-
lar spaces are filled with a very dense lipid matrix organized in periodic lamellae, whereas
the interlamellar spaces are constituted by a more fluid lipid matrix. In addition, where
the corneocytes are not perfectly overlapped, pores with a higher water content are cre-
ated. This complex organization allows only the passive diffusion of small molecules with
peculiar chemical-physical properties. In all the other cases, it is necessary to improve the
transdermal absorption of drugs using techniques able to alter reversibly the functionality
of the stratum corneum, such as chemical skin penetration enhancers, iontophoresis or
sonophoresis. In the era of nanotechnology, an intense effort has been made to design
nanocarriers able to permeate the skin (e.g., polymeric nanoparticles, metal or solid-lipid,
micro- and nanoemulsions, lipid vesicles). Nevertheless, the results are contradictory and
there is scepticism in the scientific community about the real benefits of these systems
compared to other traditional approaches. In fact, assuming the stratum corneum as a
nanoporous membrane with openings of about 20-40 nm, the size of most of the nanocar-
riers is too big for permitting theoretically the skin penetration and diffusion. However,
despite this consideration, on the market there are some medicinal products consisting of
lipid vesicles. Starting from the critical analysis of the published information on possible
permeation mechanisms of different types of nanocarriers, this review outlines lights and
shadows on the (trans-)dermal administration of these drug delivery systems.

1.  INTRODUCTION

The (trans)dermal administration of drugs may be advantageously
exploited to overcome the limits related to the poor oral bioavailability
of many compounds and to minimize the side effects associated to par-
enteral route. Moreover, it allows to reach both a local or a systemic
effect. Nevertheless, the skin structure evolved to prevent the contact of
the body with exogenous molecules thanks to the excellent barrier prop-
erties of the stratum corneum, which is the outermost layer of the skin
having a highly packed structure. When observed in longitudinal sec-
tion, the stratum corneum appears as a wall composed of several columns
of partially overlapped corneocytes (Fig. 1). Each brick of this wall is
made of 12-15 layers of corneocytes surrounded by a crystalline lipid
matrix, organized in periodic lamellae. However, some defects in these
junctions exist and, as a result of the imperfect overlapping of cell mem-
branes, the whole structure could be considered as a poorly permeable
nano-porous membrane (Cevc and Vierl, 2010) with a water content of
about 10% (Fig. 2). Considering the overall complexity of the skin, only
few compounds having peculiar features can passively diffuse through
this barrier. In general, such molecules have a low molecular weight
(<500 Da), they do not have charge and they have a good hydrophilici-
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ty/lipophilicity ratio (LogP ~ 2-3). The passive diffusion of other com-
pounds has to be enhanced by specialized techniques. Such approaches
are based on the perturbation of the architecture of the stratum corneum
that can be achieved by chemical or physical enhancement techniques
(William and Barry, 2004; Swain et al., 2011). The use of chemical skin
penetration enhancers represents the long-standing approach for
improving transdermal delivery of drugs. They are small molecules able
to penetrate in the intercellular regions of the stratum corneum and
increase the fluidity of the lipid components determining a temporary
disruption of the skin barrier properties (William and Barry, 2004).
Alternatively, they may increase the drug solubility in the stratum
corneum and, improving the drug thermodynamic activity, favour the
passive diffusion process through the skin. Among the physical enhance-
ment techniques, the iontophoresis and electroporation are the widely
studied since the perturbation of the stratum corneum is reversible con-
versely to sonophoresis and the use of microneedles, which determine a
disruption of its structure (Swain et al., 2011).

Besides these well-established approaches, the possible use of
nanovectors is also studied as demonstrated by the number of articles pub-
lished in the last two decades which increased in an exponential fashion.

Fig. 1. Structure of human epidermis: A) cross-sectional view of human epidermis
showing stratum corneum desquamation (SEM image); B) lamellar structure of human

stratum corneum (TEM image); C) planar view of stratum corneum showing
the hexagonal shape of corneocytes (confocal microscope image).
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2.  NANOVECTORS AS (TRANS)DERMAL DELIVERY SYSTEMS

The nanovectors have been widely investigated to target a specific
organ after parenteral administration and in this case the main issues in
their clinical development are related to the uptake into the cells of the
mononuclear phagocyte system and the difficulty to selectively target the
pathological tissue. In the case of the cutaneous administration, these issues
are further complicated by the stratum corneum properties that significant-
ly limit the bioavailability of nanovectors (Fig. 2). Thus, the use of nan-
otechnology should be thought mainly to target a drug in the deep layers
of viable epidermis and/or dermis, rather than to obtain a systemic or
regional pharmacological effect. Altogether, the nanosystems proposed for
a cutaneous administration have been studied to reach one or more goals:
–   to favour the partition of a drug into the stratum corneum or viable
epidermis;

–   to prevent the systemic absorption of the drug through the capillar-
ies in the dermis;

–   to perform an occlusive function increasing the hydration of corneo-
cytes and widening the hydrophilic pores (channel-like hydrophilic
pathway, Fig. 2) within the lipids of stratum corneum;

–   to act as a local depot of the drug in the outer skin layers to delay
the frequency of administration (this is desirable for drugs such as
antibiotics, corticosteroids).

Fig. 2. Scheme of the stratum corneum organization, showing the potential
corneocyte alignment and the channels formed by the imperfect overlapping

of their membranes; preferential permeation pathways of drugs (solid blue lines)
and nanovectors (dashed red lines) through stratum corneum:

a) intercellular, b) transcellular, c) channel-like hydrophilic pathway.

FRANCESCO CILURZO, SILVIA FRANZÉ, UMBERTO M. MUSAZZI26



Moreover, they could behave as skin penetration enhancers and,
more in general, as controlled drug delivery systems.

The characteristics of the most frequently studied nanovectors are
described in the following sections and their performances discussed
on the basis of the considerations reported above.

2.1.   Nanovesicles

The use of lipid to design nanovesicles is undoubtedly the most
investigated approach over the past twenty years. The first efforts dealt
with liposomes, which are made of lipid bilayers enclosing aqueous
compartments (Fig. 3). However, conventional liposomes are unable to
penetrate the stratum corneum due to their stiffness. Nowadays, it is
generally recognized that they can only enhance the drug retention into
the skin disintegrating or fusing on the skin surface, thus exchanging
lipid components with the stratum corneum and favouring the drug
release (Cosco et al., 2008). Hence, they can be advantageously used
only to treat superficial skin diseases when a local depot is required.

Fig. 3. Main types of nanovectors that have been investigated as (trans)dermal drug
delivery systems. Blue arrows indicate the relocation of the single chain surfactant

in the areas of maximum pressure during the deformation of ultradeformable liposomes.
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Thus, many formulative modifications of the basic composition of
liposomes have been made to ameliorate their efficiency after applica-
tion onto the skin.

Niosomes are self-assembled vesicles composed of non-ionic sur-
factants having a suitable packing parameter to form bilayers stabilized
by cholesterol which lends, as in the case of phospholipids, to ordered
structures and a modulation of the membrane’s permeability (Khan et
al., 2016, Fig. 3). Since niosomes are characterized by a higher chemical
stability with respect to liposomes, they have been proposed for a great
variety of applications in the field of drug delivery, including their use
for the cutaneous delivery of several active molecules (Abidin et al.,
2016; Auda et al., 2016; Ghanbarzadeh et al., 2015; Gupta et al., 2016;
Ioele et al., 2015; Lather et al., 2016; Moghddam et al., 2016; Pando et
al., 2015; Zidan et al., 2016).

The penetration mechanism in the case of niosomes is comparable
to that described in case of conventional liposomes. First, they improve
the thermodynamic activity of drugs acting as solubilizing agents; more-
over, similarly to lipid vesicles, they partially loosen the lipid barrier of the
stratum corneum fusing or aggregating on the skin surface (Ogiso et al.,
1996), thus behaving as skin penetration enhancers.

However, besides the existence of some scientific evidences on
the efficacy of such systems (Manca et al., 2016), huge doubts remain
about their real penetration pattern after the cutaneous application and
the real usefulness of these systems in cutaneous drug delivery.

Conversely, a further modification of the bilayer composition of
liposomes led to the development of proper novel generations of lipid
vesicles defined as “ultradeformable liposomes” and “ethosomes”. The
“ultradeformable” liposomes were described for the first time in 1992 by
Cevc and co-workers and patented with the name of Transferosomes
(IDEA AG) (Cevc et al., 1992). In their basic structure, these systems are
composed of phospholipids having fluid chains, and a single chain, non-
ionic surfactant, which destabilizes the bilayer allowing shape deforma-
tion at low energetic cost which permits the vesicles to pass through
pores having a diameter up to one tenth of their radius (Romero et al.,
2013, Fig. 3). The force that drives the penetration of these vesicles seems
to be the osmotic gradient. However, this potential mechanism of action
is questioned since the water gradient would be abolished at the stratum
corneum/epidermis interface and the hydrophilic pores are rare furrows.
However, after dermal application of radioactive labelled transferosomes
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on a model animal, Cevc and Blume found moderate radioactivity levels
in blood, whereas it was revealed in the liver suggesting the penetration
of transferosomes as intact vesicles, since the organ cannot accumulate
simple lipid molecules (Cevc and Blume, 1992). The hypothesis of entire
vesicles penetration is also supported by the efficiency of these carriers in
enabling the skin delivery of macromolecules such as insulin (Cevc et al.,
1996), other large proteins for immunization (Paul A. et al., 1995), low
molecular weight heparins (Song et al., 2006; Song et al., 2011), siRNA
(Geunsens et al., 2009).

As a consequence of these promising data, a number of carriers
are currently under clinical investigation for the treatment of several
local pathologies. For a complete review see Romero and Morilla
(2013) and Morilla and Romero (2016).

Ethosomes are highly fluid vesicles derived from the combination of
phospholipids and high ethanol content (20-45%), proposed for the first
time by Touitou and co-workers in 2000 (Touitou et al., 2000, Fig. 3). The
presence of the alcoholic counterpart notably increases the permeability
of the bilayer, which is less packed, and lends to the particles a negative
zeta potential responsible of an increased colloidal stability (Morilla and
Romero, 2016). Since ethanol is also a well-known skin penetration
enhancer, the increased penetration of such carriers through the skin bar-
rier would be the result of a synergistic action of ethanol and lipid vesi-
cles. In particular, ethanol is able to intercalate into the polar heads of the
lipids of the stratum corneum loosening their tight organization and cre-
ating some gaps that would open the passage to the vesicles, which are
fluids for the presence of ethanol itself (Touitou et al., 2000). Following
this pathway, ethosomes would enable the flux of the carried active mol-
ecules deeply into the skin, up to the dermis, where they can be absorbed
to reach systemic effect. Then, compared to deformable liposomes, they
are not the most suitable carriers when a local effect is desirable
(Campani et al., 2016).

Moreover, with respect to deformable liposomes, ethosomes can be
applied under occlusive conditions and they can be formulated also as a
transdermal patch (Romero et al., 2014), which is the most accepted
transdermal dosage form. Touitou and co-authors (2000) compared the
performances of patches containing ethosomal testosterone with those of
the commercial patch Testoderm®. They found a 30-time increase of the
in vitro permeated amount of testosterone through rabbit skin when it
was delivered by ethosomal system in comparison to conventional patch.
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The ethosomal patch also confirmed its higher efficacy in vivo, leading to
higher blood level of testosterone after 5 days of application. Recently,
glimepiride transdermal films loaded with a drug in ethosomal formula-
tion were proposed as a valuable alternative to conventional oral tablets,
since they showed a prolonged drug release with an in vitro good perme-
ation profile of the active molecules. Moreover, the pharmacokinetic
studies on human volunteers evidenced a decrease of the Cmax with
respect to tablets, with following diminution of the side effects often asso-
ciated to the oral administration of glimeripide (Ahmed et al., 2016).

A further improvement of ethosomes performances was obtained
with the development of transethosomes, that, as suggested by their
name, combine the deformability properties of transferosomes with the
high fluidity of ethosomes, having in their composition both ethanol
and an edge activator (e.g., a surfactant or a skin penetration enhancer)
(Fig. 3) (Song et al., 2012). However, also in this case, many efforts are
required to better comprehend the real pathway of penetration of these
vesicles and their efficacy on human skin in vivo.

2.2.   Solid lipid nanoparticles

The solid lipid nanoparticles (SLN) and nanostructured lipid car-
riers (NLC) are spherical-like nanostructures characterized by a homo-
geneous inner structure of lipids that are solid at room temperature
(Pardeike et al., 2009; Fig. 3). With respect to SLN which are composed
only by a solid matrix, the lipidic phase of NLC can also contain lipids
with lower melting points. SLN and NLC can be conveniently prepared
using techniques (e.g., high pressure homogenization) that allow a fast
production and an easy scale up, avoiding the use of organic solvents.
In addition, small molecules, peptides and proteins can be homoge-
nously dispersed in the SLN matrix (Almeida and Souto, 2007).
Considering these advantages, SLN were extensively studied as
nanovectors for both pharmaceutical and cosmetic applications. In par-
ticular, SLN were proposed in cosmetic products for protecting active
ingredients and increasing their penetration through the upper layers of
human skin (Müller et al., 2002). Indeed, Detoni and co-authors (2012)
compared the performances of NLC loaded by resveratrol to those of
liposomes and lipid-core nanocapsules in terms of chemical stability of
the loaded drug and in vitro penetration profile through porcine skin.
The results demonstrated that after exposure of UV-A radiation, NLC
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were more stable than liposomes protecting resveratrol from isomeriza-
tion in the same extent that lipid-core nanocapsules. In addition, the
permeation profile of resveratrol loaded in NLC was superimposable to
that of the free-drug, when experiments were conducted in dark condi-
tions; on the contrary an important improvement in the drug permeat-
ed amount was obtained when the dermis was exposed to UV-A radia-
tion. However, these encouraging results of SLN or NLC were not due
to the ability of the nanovector itself to penetrate through the skin.
Since lipids used to design SLN or NLC generally melt at the skin tem-
perature (i.e., 32°C), after cutaneous application both SLN and NCL
melt on the skin surface, forming an adhesive layer with occlusive prop-
erties (Schäfer-Korting et al., 2007). The consequent increase of the
stratum corneum hydration, is the key factor to enhance the skin pene-
tration of a drug (Wissing et al., 2001).

2.3.   Polymer-based nanovectors

2.3.1. Polymeric nanoparticles

Polymeric nanoparticles are nanostructures formed by a dense
polymeric matrix, which ranges from 20 nm to about 500 nm (Fig. 3).
Their possible application to transdermal delivery was systematically
studied by Alvarez-Román and co-authors (2004), using fluorescent
polystyrene nanoparticles as model nanovector. The results evidenced
that both 20-nm and 200-nm nanoparticles were not able to permeate
significantly through the porcine skin, but 20-nm nanoparticles were
highly distributed in follicular space. In agreement with these results,
Vogt et al. demonstrated that only 40-nm polystyrene nanoparticles
could distribute in hair follicles and permeated via their epithelium to
distribute in the epidermal layer (Vogt et al., 2006). Other authors sug-
gested that polymeric nanoparticles could penetrate skin via follicular
route when its barrier properties were altered. As an example, Abdel-
Mottaleb et al. showed that ethyl cellulose nanoparticles (diameter
<500 nm) significantly permeated through a mice skin model of dithra-
nol-induced dermatitis inflammation (Abdel-Mottaleb et al., 2012a).
Again, Try et al. showed that the skin penetration of 70-nm PLGA-
nanoparticles was significantly increased both in murine and pig mod-
els of atopic dermatitis (Try et al., 2016). In particular, the accumulation
of nanoparticles were 15-fold and 3-fold higher in murine and pig
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inflamed skin, respectively, in comparison to corresponding healthy
membranes.

2.3.2. Nanogels

Nanogels are a particular type of polymeric nanoparticles charac-
terized by a loose inner structure, so that they can be imagined as
nanosponges (Mavuso et al., 2015; Fig. 3). Made of synthetic (e.g.,
PLGA, Eudragit® RL 100) or natural polymers (e.g., chitosan, chitin,
hyaluronic acid, gellan), they are obtained by chemically or physically
crosslinking of polymeric chains in spherical-like networks (Di Meo et
al., 2015). This peculiar structure, along with the related physicochem-
ical properties, permits designing nanogels with a high drug loading
and able to be stimuli responsive (Chacko et al., 2012), increasing the
interest for their possible clinical applications.

In the field of transdermal drug delivery, they were recently pro-
posed for the administration of both small molecules and proteins.
Divya et al. prepared chitin nanogels loaded by two anti-psoriasis
drugs, namely acitretin and aloe-emodin (Divya et al., 2016). Although
the dimension of these nanogels ranged from 100 to 250 nm, the in
vitro permeation studies through pig ear skin showed that the retention
and permeation profiles of drug-loaded nanogels were similar or higher
than the control, a drug methanolic solution. Samah and Heard (2013)
demonstrated that stimuli responsive nanogels, made of poly(N-iso-
propylacrylamide) and acrylic acid, were also able to improve the per-
meation profiles of small molecules (i.e., caffeine). Finally, Choi et al.
(2012) demonstrated that Pluronic/chitosan nanogels were able to pen-
etrate through the stratum corneum of human cadaver skin, improving
the permeation profile of FITC-BSA.

As in the case of the previous nanovectors, the permeation
mechanism of nanogel through animal and human skin models is far
from being completely clarified. On the basis of the results obtained
by polyglycerol-based nanogels, Rancan et al. (2016) suggested that
their effectiveness to enhance the drug permeation could be related to
their softness and their high stability due to the crosslinking. On the
contrary, Smejkalova et al. (2017) showed that hyaluronan polymeric
micelles, which have a nanogel-like structure, were able to permeate
through pig ear skin, but they lost their structure in the deepest layers
of the skin.
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2.4    Metallic nanocarriers

Several inorganic nanosystems of various shape and materials,
such as metals (e.g., gold, silver), metal oxide (e.g., iron oxide, zinc
oxide, titanium dioxide), carbon or silica, were widely studied for der-
matologic applications (Papakostas et al., 2011; Fig. 3). Nevertheless,
only nanomaterials made of zinc or titanium oxides are currently used
in cosmetic products as physical sunscreen filters. Recently, the inter-
est of scientific community for inorganic core nanoparticles (IONs)
intended as drug-loaded nanovectors for treating cutaneous diseases
has risen (Lee et al., 2015; Santini et al., 2015). Constituted by an inor-
ganic core, made of iron oxide or gold, coated by a polymer, such
nanovectors combine the advantages given by the peculiar physico-
chemical properties of the inorganic core with the possibility to deliv-
er active pharmacological moieties (e.g., small molecules, peptides,
nucleic acids; Lee et al., 2015; Zheng et al., 2012). In particular, iron-
oxide nanoparticles, which can be detect by MRI due to their super-
paramagnetic properties (Rockall et al., 2005), could be proposed as
theranostic agent for cutaneous or loco-regional diseases. According
to literature, the skin permeation of inorganic nanovectors was signif-
icantly influenced by the core size, core shape and type of polymeric
coating. Sonavane et al. (2008) demonstrated that both the perme-
ation and the diffusion of gold nanoparticles through rat skin
decreased significantly when the particle diameter moved from 15 to
105 nm.

The selection of a proper coating for IONs resulted also critical
because of its impact on both the core stability in aqueous vehicle
(Santini et al., 2015) and nanoparticles skin penetration (Baroli et al.,
2007; Hsiao et al., 2016). As an example, the permeation profile of gold
nanoparticles (diameter measured by DLS: 20-40 nm) was significantly
improved if they were coated by poly-(ethylene glycol) (Hsiao et al.
2016). Similarly, the surface coating of IONs (diameter measured by
TEM: <20nm) can alter their penetration profiles through full-thick-
ness skin (Baroli et al. 2007). Nevertheless, the capability of IONs to
permeate the skin is far from being univocally proved. Indeed, although
several studies have demonstrated the in vitro and in vivo permeation
of such nanovectors in animal models, the scientific community is still
discussing if such findings can be predictive of the IONs tendency to
permeate the human skin (Monteiro-Riviere and Riviere, 2009).
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3.  CONCLUSIONS

Despite the possible advantages of nanovectors to improve the
therapeutic performances of some active ingredients, the mechanism of
penetration is not completely understood since contradictory results
are available in literature. One of the reasons can be due to the species
used in the skin penetration experiments and, in some cases, the exper-
imental conditions. These differences are underlined by comparing the
results obtained after exposing the skin of different mammalians to
quantum dots (QD) that are nanoparticles in the 14-45 nm range char-
acterized by an intense and photostable fluorescence (Monteiro-Riviere
and Riviere, 2009). Indeed, QD were found in the liver of hairless
mouse after their application on the intact skin suggesting that these
nanoparticles could be minimally absorbed after transdermal adminis-
tration (Tang et al., 2013; Gopee et al., 2009). In the case of rats, QD
are able to reach dermis only depending on their morphology and sur-
face characteristics (Zhang and Monteiro-Riviere, 2008; Monteiro-
Riviere and Riviere, 2009) and to penetrate in the porcine epidermis
(Ryman-Rasmussen et al. 2006) and reach the stratum granulosum as in
the case of fullerenes (Rouse, et al., 2007), but remained confined on
the stratum corneum surface when applied on the human skin (Gratieri
et al., 2010). Therefore, further investigations are required to better
understand the possible mechanistic aspects involved in the penetra-
tion of these nanovectors rather than to obtain proofs of concept of
their efficiency in different animal models, whether the human skin
cannot be used as skin model in in vitro permeation studies.

In conclusion, although the great number of attempts made on
this field, up to now we are still far from the development of cutaneous
dosage forms containing nanovectors able to deeply penetrate the skin
barrier for treating effectively severe diseases. Indeed, the only drug
products appeared on the European market are based on lipid vesicles,
namely a conventional liposome intended for the localization in the
stratum corneum of econazole, an antimycotic drug, and a transetho-
some designed to enhance the skin penetration of diclofenac.
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