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We consider the description of quantum noise within the framework of the standard

Copenhagen interpretation of quantum mechanics applied to a composite system envi-

ronment setting. Averaging over the environmental degrees of freedom leads to a stochas-
tic quantum dynamics, described by equations complying with the constraints arising

from the statistical structure of quantum mechanics. Simple examples are considered in

the framework of open system dynamics described within a master equation approach,
pointing in particular to the appearance of the phenomenon of decoherence and to the

relevance of quantum correlation functions of the environment in the determination of

the action of quantum noise.

1. Introduction

The corner stone for the successful description of experiments with microscopic sys-

tems as statistical experiments was laid by Bohr through his probabilistic reading of

the square modulus of the wavefunction, finally leading to the so called Copenhagen

interpretation of quantum mechanics. This interpretation of quantum mechanics is

often also termed orthodox, to stress the existence of alternative viewpoints, still

compatible with present day most refined experiments on the foundations of quan-

tum mechanics (see e.g. the special issue [1]). Further developments have deepened

and strengthened the understanding of quantum mechanics as a theory describing

experiments in a statistical framework. In this spirit it has become clear that quan-

tum mechanics naturally leads to a new probabilistic description with respect to

the classical one, sometimes termed quantum probability [2], so that from now on

we will use the general term quantum theory, even though it actually started as an

alternative to classical mechanics.

Quantum theory includes and extends the classical probabilistic description, so

that bringing over ideas and concepts from classical probability theory through

the quantum border is a fruitful path in order to further understand and explore

the statistical structure of quantum theory, and leads to a reach variety of new
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phenomena (for a presentation of quantum theory along these lines see e.g. [3, 4]).

Actually it is an amusing, and possibly telling, coincidence the fact that the book

in which von Neumann laid the mathematical foundations of quantum theory [5]

appeared almost at the same time as the contribution in which Kolmogorov laid

the foundations of classical probability theory basing its axiomatic presentation on

measure theory [6].

The Copenhagen interpretation, which tells us that the quantum description

of physical systems brings with itself an intrinsic statistical aspect, can equally

well describe composite systems, that is a situation in which one can distinguish

between different parts of the overall system. Let us call system the subset of

degrees of freedom we are interested in and can access experimentally, as well as

environment the other degrees of freedom, still to be described with the aid of

quantum theory. A relevant and interesting question is the quantum prediction for

the dynamics of the relevant degrees of freedom we call system if one does not or

can not observe the environmental degrees of freedom. In such a situation, on top

of the in principle unavoidable statistical aspect due to the very nature of quantum

theory, an additional source of randomness appears, which can be termed quantum

noise [7,8]. This situation can be seen as the analogue of what happens in a classical

setting when a given system undergoes a stochastic dynamics. However, in the

classical case the dynamics of a small isolated system is in principle deterministic,

and the statistical aspect in the description can always be seen as arising from

the effect of a classical noise, possibly effectively describing the interaction with

other classical degrees of freedom. In the quantum setting the action of quantum

noise on the contrary builds on the original statistical description. Besides this,

important constraints on the structure of the equations describing the quantum

stochastic dynamics as well as on the properties of the quantum noise itself appear,

essentially related to the non commutativity of observables, playing the role of

random variables in quantum theory, and to the tensor product structure of the

Hilbert space on which composite systems are described.

It is to be stressed that quantum noise, or actually more precisely noise in

a quantum system, can describe a phenomenon which is typical of the quantum

realm, namely decoherence. The latter can be understood as the dynamical loss of

the capability to show up quantum interference effects in a given system basis, as a

consequence of the interaction with other external quantum degrees of freedom. We

recall that the term decoherence or dephasing is sometimes also used to describe

more generically a loss of coherence or visibility which can be obtained within a

classical description. As a result quantum noise can induce an effective classical

dynamics for certain system observables, still not selecting a definite outcome so

that it does not lead to a solution of the measurement problem.

An interesting issue within the description of randomness in the dynamics of

a quantum system is also the distinction between noise which can be avoided by

means of a more refined control or noise which is actually intrinsic to the quantum
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description [9]. Most recently an approach has also been suggested [10] in order

to discriminate between decoherence arising from an actual interaction with unob-

served degrees of freedom and decoherence arising from modifications of quantum

mechanics as suggested by collapse models or other alternative theories.

In this contribution we will briefly describe the emergence of a dynamics driven

by quantum noise in the framework of open quantum system theory, considering

basic examples.

2. Reduced system dynamics

Let us consider the general framework of open quantum system dynamics [11],

introducing a quantum system described on the Hilbert space HS , interacting with

a quantum environment living in HE , as depicted in Fig. 1. If we denote with ρSE
the total state and describe the interaction by means of the unitary operators U(t)

acting on HS ⊗HE , further assuming that the state at the initial time is factorized

ρSE(0) = ρS(0)⊗ ρE , we have that the reduced state of the system, describing the

dynamics of the system’s observables only, is given by

ρS(t) = TrE{U(t)ρS(0)⊗ ρEU(t)†}. (1)

The assignment ρS(0) 7→ ρS(t) turns out to define a map which is in particular

completely positive, that is remains positive when extended to act on a tensor

product extension of the considered Hilbert space HS .

Fig. 1. A schematic illustration of an open system with Hilbert space HS and reduced state ρS ,
interacting with an environment described in the Hilbert space HE , with reduced state ρE .

In many situations of interest the reduced system state dynamics is well de-

scribed by a time-local master equation of the form

d

dt
ρS(t) = L(t)ρS(t), (2)
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where the superoperator L(t) is know as generators of the dynamics. For the case

in which this superoperator is actually time independent, according to a famous

result [12, 13] it is known to have the so called Gorini-Kossakowski-Sudarshan-

Lindblad form

d

dt
ρS(t) = − i

~
[H, ρS(t)] +

∑
j,k

ajk

[
LjρS(t)L†k −

1

2
{L†kLj , ρS(t)}

]
, (3)

where H is a self-adjoint operator on the space of the system and the matrix

ajk has to be positive. In particular together with the system operators {Lk} this

matrix defines the details of the system-environment interaction and depends on

the quantum correlation functions of the environment. Properties of the quantum

noise affecting the open system dynamics are therefore encoded in the operator

structure of the r.h.s. of Eq. (3), as well as in the features of correlation functions

of quantum operators, as we shall see in the examples. The situation described by

Eq. (3) corresponds to a semigroup dynamics for the open quantum system, which

can be considered Markovian, in the sense that the state of the system at a given

time is enough to determine it at later times. Actually the proper definition of

what should be considered as non-Markovian dynamics in a quantum framework,

and therefore also of non-Markovian quantum noise, has newly become the object

of an extensive research activity (see e.g. [14,15]). It is important to stress that the

strategy that we have here briefly outlined is certainly not the only approach to the

description of quantum noise arising within the Copenhagen interpretation by the

interaction of the system with other unobserved quantum degrees of freedom, for

the presentation of other viewpoints and techniques see e.g. [7,11,16,17]. A crucial

point to stress is the measurement character of such time evolution, at variance with

a standard unitary dynamics. Indeed as it has been shown within the framework of

continuous measurement theory (see e.g. [18]), such a dynamics can be obtained as

a result of measurements performed on the side of the system, and can be described

introducing non commuting noises. A thorough quantum description of noise allows

in particular the preservation of basic features of quantum mechanics, such as e.g.

Heisenberg’s commutation relations [19], which are generally not accounted for in

phenomenological models which can be used to describe a stochastic dynamics.

2.1. Decoherence models

For the sake of example we will now briefly consider two quantum dynamics which

can be addressed within the previously introduced framework, and show how quan-

tum noise can induce decoherence on the system degrees of freedom, determined

by the environmental correlation functions.

Let us first consider a massive quantum particle interacting through collisions

with a background ideal quantum gas. In such a setting for a sufficiently dilute gas

memory effects can be safely neglected, so that indeed the dynamics can be taken

to be Markovian. It can therefore be assumed that the dynamics can be described
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by an equation of the form Eq. (3), upon suitable microscopic or phenomenological

determination of the different coefficients and operators. In this case the interaction

can be naturally taken of the form [20]

V =

∫
d3x

∫
d3yNS(x)v(x− y)NE(y), (4)

where NS(x) and NE(y) denote the number operator density for system and en-

vironment respectively. In this situation it can be shown [21] that tracing over the

gas degrees of freedom the master equation takes on the form

d

dt
ρS(t) = − i

~
[H0, ρS(t)]

+

∫
d3qµ(q)

[
e

i
~q·x̂

√
S(q, E(q, p̂))ρS(t)

√
S(q, E(q, p̂))e−

i
~q·x̂

−1

2
{S(q, E(q, p̂)), ρS(t)}

]
, (5)

where H0 is the free kinetic Hamiltonian, µ(q) = (2π)4~2n|ṽ(q)|2, with n gas parti-

cle density and ṽ(q) Fourier transform of the interaction potential. In the expression

x̂ and p̂ denote position and momentum operators of the test particle, so that the

unitary operators e
i
~q·x̂ describe momentum translations, while

S(q, E) =
1

2π~

∫
dt

∫
d3xe

i
~ (Et−q·x) 1

N

∫
d3y〈NE(y)NE(x + y, t)〉

=
1

2π~
1

N

∫
dte

i
~Et〈%†q%q(t)〉 (6)

upon defining

%q =

∫
d3xe−

i
~q·xNE(x). (7)

The master equation is fixed by the function S(q, E) defined in Eq. (6), also known

as dynamic structure factor [22], which is actually the Fourier transform of the

density-density correlation function of the environment, which appears operator-

valued being evaluated in E(q, p̂), with E(q,p) = (p+q)2/(2M)−p2/(2M) energy

transfer in a single collision, M mass of the gas particle. Note that one has the

identity

〈%†q%q(t)〉 =
1

2
〈{%†q, %q(t)}〉+

1

2
〈[%†q, %q(t)]〉, (8)

where the last contribution is non vanishing just due to the operator nature of the

environmental quantities in the quantum description. This quantity depending on

the density fluctuations can be directly related to the dynamic response function

of the environment χ
′′
(q, E) according to the fluctuation-dissipation formula

S(q, E) =
1

π

1

1− eβE
χ

′′
(q, E). (9)
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The considered master equation describes both dissipation and decoherence effects

in the stochastic dynamics of the particle undergoing quantum Brownian motion. To

put into evidence decoherence effects in the position representation it is convenient

to consider a simplified expression in which we treat momentum as a classical

variable, so that Eq. (5) takes the much simpler expression

d

dt
ρS(t) =

∫
d3qµ̃(q)

[
e

i
~q·x̂ρS(t)e−

i
~q·x̂ − ρS(t)

]
, (10)

with µ̃(q) a suitable positive density and its solution in the position matrix elements

can be written as

〈x|ρS(t)|y〉 = e−Λ[1−Φ(x−y)]t〈x|ρS(0)|y〉, (11)

with Φ(x) the characteristic function of the probability distribution of momentum

transfers between test and gas particles, and Λ a collision rate [23]. As a result

off-diagonal matrix elements in the position representation are suppressed with

elapsing time. This means in particular that if the system is initially in a coherent

superposition of spatially separated states the quantum noise can drive the system

to a classical mixture, which is a typical decoherence effect. This kind of models

can explain decoherence effects in interference experiments with massive particles

[24,25]. Note that a similar result for the dynamics of the statistical operator ρS(t)

arises in dynamical reduction models [26], however only the average effect can

be compared, in such models one has a localization effect acting on the single

realizations, leading to a possible solution of the measurement problem [27].

As a further example showing the relevance of quantum correlation functions in

the description of a noisy quantum dynamics we consider an exactly solvable model

of decoherence [11]. In this case one considers a two-level system interacting with

a bosonic reservoir according to the coupling

V = σz
∑
k

(gkb
†
k + g∗kbk), (12)

where besides the standard Pauli operator we have introduced complex coupling

coefficients gk, as well as the creation and annihilation operators bk and b†k obeying

the standard canonical commutation relations. If we assume the bosonic reservoir

to be in a thermal state the reduced dynamics can be exactly worked out and

leads to a master equation which is in a form similar to Eq. (3), albeit with a time

dependent coefficient

d

dt
ρS(t) = − i

~
[H0, ρS(t)] + γ(t)[σzρS(t)σz − ρS(t)], (13)

where H0 = ~ω0σz is the free system Hamiltonian. The time dependent coefficient

γ(t) is determined again from a correlation function depending on the environment



April 18, 2017 20:1 WSPC/INSTRUCTION FILE vacchini

QCFN Special Issue: Decoherence and noise in open quantum system dynamics 7

operators appearing in the interaction term Eq. (12) and given by

α(t) =
∑
k

|gk|2(〈bk(t)b†k〉+ 〈b†k(t)bk〉)

=

∫ ∞
0

dωJ(ω)

{
coth

(
β

2
~ω
)

cos(ωt)− i sin(ωt)

}
, (14)

where the two contributions at the r.h.s. come from the evaluation of the correlation

function relying on a decomposition as the one considered in Eq. (8), where now

the commutator part typically related to dissipation amounts to a C-number term.

We have further introduced the so called spectral density J(ω), formally defined as

J(ω) =
∑
k |gk|2δ(ω−ωk), with ωk the frequency of the bosonic modes appearing in

the free Hamiltonian of the environment
∑
k ~ωkb

†
kbk, which actually allows to go

over to a continuum limit embodying in itself dependence of the coupling strength

on the environment frequencies as well as on the distribution of the environmental

modes. For the decoherence dynamics described by the present model only the

anticommutator part of the correlation function related to decoherence is relevant

and one has in particular

γ(t) = <
∫ t

0

dτα(t− τ)

=

∫ ∞
0

dωJ(ω) coth

(
β

2
~ω
)

sin(ωt)

ω
. (15)

In view of the interaction term Eq. (12) one immediately sees that the diagonal

matrix elements of the statistical operator in the basis of eigenvectors of the system

Hamiltonian are constant, while coherences are generally suppressed according to

〈1|ρS(t)|0〉 = e−Γ(t)eiω0t〈1|ρS(0)|0〉, (16)

where bra and ket denote the eigenvectors of the σz operator, and the decoherence

function Γ(t) is still determined by the spectral density and the correlation function

of the environment through the expression

Γ(t) =

∫ t

0

dτγ(τ)

=

∫ ∞
0

dωJ(ω) coth

(
β

2
~ω
)

1− cos(ωt)

ω2
. (17)

As a result one has a general description of the decoherence dynamics of a two-level

system coupled to bosonic degrees of freedom, allowing for a phenomenological

modelling of the effective reservoir through the suitable definition of a spectral

density. Also in this model we have seen how the quantum stochastic dynamics is

driven by correlation functions of the environment operators, which embody the

noisy action of the quantum environment.
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3. Conclusions and outlook

If one considers a non isolated quantum system, its dynamics shows up an addi-

tional layer of stochasticity, on top of the probabilistic quantum description, which

arises due to the interaction with the unobserved quantum environmental degrees of

freedom. In this perspective quantum noise can be described applying the standard

Copenhagen formulation of quantum mechanics to the overall degrees of freedom.

In this framework one is able to describe in a consistent way both dissipative and

decoherence effects. The latter lead from a quantum probabilistic setting to a classi-

cal one, in which the interference capability of selected quantum degrees of freedom

is suppressed. As a result one recovers a classical behaviour for certain degrees of

freedom, however still not solving the measurement problem, which has to face the

fact that macroscopic objects do appear in definite states, rather than in super-

positions or classical mixture states. Different techniques and approaches can be

devised in order to describe the quantum noisy dynamics of such open quantum

systems and in this contribution we have considered two paradigmatic examples

within the framework of a master equation approach. It appears how the action of

quantum noise in this description typically depends on the features of two-point

correlation functions of the quantum operators of the environment involved in the

interaction term.

An important open issue in this and other descriptions of quantum noise within

the standard Copenhagen interpretation is the formulation and characterization

of memory effects. Recent work on the subject [14, 15] has put quantum non-

Markovianity in connection with properties of the statistical operator of the open

system undergoing a stochastic dynamics, or of the mapping describing the reduced

dynamics. This is at variance with the classical case, in which there is a clearcut def-

inition of Markovian noise in the framework of classical stochastic processes, which

cannot be directly used in the quantum framework [28]. Future characterization

of quantum noise in view of its memory properties might well be connected with

expression and features of multitime correlation functions of environmental quan-

tum operators. A better understanding of the description of quantum noise will

also be useful in view of a comparison between orthodox quantum mechanics and

modifications of it, such as dynamical reduction models, aiming to a solution of the

quantum measurement problem and leading to distinct experimental predictions,

which are in principle detectable. Indeed determination of experimental bounds on

the value of the parameters appearing in such models, as well as their extension to

a non-Markovian regime, are the object of an intense research activity [29].
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