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Summary

Tight control of p63 protein levels must be achieved under differentiation or apoptotic conditions. Here, we describe a new regulatory
pathway for the ANp63a protein. We found that MDM2 binds ANp63a in the nucleus promoting its translocation to the cytoplasm.
The MDM2 nuclear localization signal is required for ANp63a. nuclear export and subsequent degradation, whereas the MDM2 ring-
finger domain is dispensable. Once exported to the cytoplasm by MDM2, p63 is targeted for degradation by the Fbw7 E3-ubiquitin
ligase. Efficient degradation of ANp63a. by Fbw7 (also known as FBXW?7) requires GSK3 kinase activity. By deletion and point
mutations analysis we have identified a phosphodegron located in the o and B tail of p63 that is required for degradation. Furthermore,
we show that MDM2 or Fbw7 depletion inhibits degradation of endogenous ANp63a in cells exposed to UV irradiation, adriamycin
and upon keratinocyte differentiation. Our findings suggest that following DNA damage and cellular differentiation MDM2 and Fbw7

can cooperate to regulate the levels of the pro-proliferative ANp63a protein.
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Introduction

Loss of the p53 tumor suppressor protein has been shown to play
an important role in promoting tumor growth, whereas its
activation following a variety of stress signals promotes a potent
cell growth inhibition (Kruse and Gu, 2009; Vousden and Lane,
2007). p63, a pS3-related protein, has been shown to activate p53-
responsive genes and induce apoptosis in certain cell types,
however the biological role of p63 appears to be more complex
than that of a classic tumor suppressor (Flores et al., 2005). A
clear role for p63 during embryonic development has been
established by the study of p63 knockout mice. These mice have
severe defects in epithelial stratification and fail to form epidermal
appendages such as teeth, hair and glands (Mills et al., 1999; Yang
et al., 1999). Also, it is debated whether p63 might act as a tumor
suppressor or an oncogene. p63 is not mutated in tumors, which
is in stark contrast to the high mutation status of p53 in a large
group of cancer types. Conversely, p63 is often overexpressed and
amplified in cancer, thus suggesting that p63 provides cancer cells
with a selective advantage (Thurfjell et al., 2004; Finlan et al.,
2007).

The p63 gene is expressed as multiple isoforms because of
alternative transcription start sites and splicing at the C-terminus
(van Bokhoven and Brunner, 2002). The six major isoforms of p63
have several conserved regions common to the p53 family

members, such as the DNA-binding domain (DBD) and the
oligomerization domain (OD). Trans-activating (TA) isoforms
contain an amino-terminal exon that encodes a p53-like trans-
activation domain, whereas ANp63 isoforms lacking this domain
were initially considered to be dominant-negative regulators of the
TA isoforms. However, additional domains have been identified
that account for transcriptional activities of the AN isoforms (Dohn
et al., 2001; Ghioni et al., 2002; Laurikkala et al., 2006). In
addition, three alternative splicing routes at the 3" end generate TA
and ANp63 proteins with different C-termini, denoted o, 3 and v.

The p63o. isoforms are the most commonly expressed p63
proteins, in particular ANp63o is abundantly expressed in
embryonic ectoderm and highly proliferative basal cells of many
adult epithelial tissues including skin, breast, prostate and oral
epithelium and is overexpressed in squamous cell carcinomas
(Thurfjell et al., 2004).

The p53 protein is usually labile in normal cells but is
dramatically stabilized upon a variety of cellular stresses. Although
several ubiquitin ligases such as Pirh2, COP1 and ARF-BP1 have
been reported to regulate p53 levels, MDM2 has been demonstrated
to be the most important E3 ubiquitin ligase of p53 (Michael and
Oren, 2002). Promoting p53 for degradation is the major
mechanism by which MDM2 inhibits p53 (Itahana et al., 2007,
Clegg et al., 2008).
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The MDM2 gene is a bona fide target downstream of the p53
gene, therefore activation of p53 upregulates its own inhibitor.
MDM?2 is also a p63 target but, despite the similarity between
p53 and p63, the role of MDM?2 in p63 protein regulation remains
controversial. For instance, although we have shown that MDM?2
stabilizes p63 protein and enhances its transcriptional activity in
Saos2 cells (Calabro et al., 2002), others have reported that
MDM2 down-modulates p63o and p637y transactivation functions
without affecting p63 protein levels (Kadakia et al., 2001). MDM2
was also reported to be unable to affect both p63-induced
transcription and p63 protein half-life (Little and Jochemsen,
2001). All these studies, however, were performed in p53-deficient
cells.

Fbw7 (also known as FBXW?7) is an E3 ubiquitin ligase that
interacts with the p53 pathway. It is a tumor suppressor that is
mutated in various cancers (Akhoondi et al., 2007; Fuchs, 2005).
Furthermore, its gene is located at chromosome 4q31.3 which is
deleted in approximately 30 percent of all human cancers (Knuutila
et al., 1999). It was demonstrated that p53 regulates the expression
of the cytoplasmic isoform of Fbw7, Fbw7p (Kimura et al., 2003;
Mao et al., 2004). Fbw7 might also be positioned upstream of p53
in a signaling axis that activates the tetraploidy checkpoint in
response to mitotic inhibitors (Finkin et al., 2008). Moreover,
Fbw7 controls the expression of central regulators of the cell cycle
including cyclin E, Myc, Jun, Aurora A and the cell fate and

differentiation regulator Notch (Tan et al., 2008; Sears et al., 2000;
Wei et al., 2005; Welcker and Clurman, 2008; O’Neil et al., 2007).
A tight functional relationship was found between Fbw7-dependent
degradation and glycogen synthase kinase 3 (GSK3) activity. Fbow7
recognition sequences, the phosphodegrons, are usually identified
and bound upon phosphorylation by the GSK3 kinase (Punga et
al., 2006; Welcker et al., 2003).

p63 protein stability is regulated by protein modifications such
as phosphorylation, ubiquitylation and sumoylation (Ghioni et al.,
2005; Rossi et al., 2006a; Rossi et al., 2006b). Proteasomes and
lysosomes have both been found to be involved in p63 protein
degradation (Watson and Irwin, 2006). So far, several distinct
mechanisms controlling p63 protein levels have been reported. For
instance, p53 was shown to be able to associate with and target
ANp63 into a protein degradation pathway requiring caspase 1
activity (Ratovitski et al., 2001). Recently, we have demonstrated
that the homeodomain DIx3 protein triggers proteasome-dependent
ANp63a. degradation (Di Costanzo et al., 2009) whereas ANp63 .
proteasomal degradation, in response to genotoxic stress, has been
proposed to involve RACK1 (Li et al., 2009). Also, the E3 ubiquitin
ligases NEDD4 and ITCH/AIP4 have both been found to be
involved in the control of p63 steady state level (Rossi et al.,
2006a; Rossi et al., 2006b).

In the present study, we show that MDM2 binds ANp63c. in the
nucleus promoting its translocation to the cytoplasm, where p63 is
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Fig. 1. MDM2 overexpression induces ANp63c. and ANp63p proteasomal mediated degradation. (A) U20S cells were transiently co-transfected with ANp63c
(20 ng) and increasing amounts of MDM2 (20, 40 and 80 ng) expression vectors. 24 hours after transfection cell extracts were prepared and analyzed by western
blotting (WB) with an anti-MDM2, anti-p63 or anti-p53 antibodies. Tubulin was used as a loading control. (B) Upper panel, HaCaT cells were transfected with
MDM2 expression vector (50 and 100 ng). 24 hours after transfection, cell extracts were prepared and subjected to WB using anti-MDM2, anti-p63 and anti tubulin
antibodies. Lower panel, plates from mock or MDM2-transfected HaCaT cells were collected for total RNA isolation. RT-PCR assays were carried out to determine
the level of specific transcripts for total p63c. (TAa+ANo) or ANp63. HPRT transcript levels were determined as control. The histograms represent three
independent experiments, normalized for the expression of HPRT. (C) U20S cells were transiently co-transfected with p63 (20 ng) and MDM2 (20, 40, 80 ng)
expression plasmids. 24 hours after transfection cell extracts were analyzed by WB with anti-MDM2, anti-p63 or anti-actin antibodies. (D) Extracts from U20S
cells transfected with ANp63o (20 ng) and MDM2 (40 ng), treated 16 hours after transfection with 10 uM MG132 for 5 hours; p63 and MDM2 levels were

evaluated by WB.
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targeted for degradation by the Fbw7 E3-ubiquitin ligase. Our data
suggest that, following DNA damage, MDM2 and Fbw7 can
cooperate to regulate the levels of the pro-proliferative ANp63a
protein.

Results
MDM2 regulates ANp63c and ANp63p protein levels by a
p53-independent mechanism
Owing to the functional interplay between p53 family members
and MDM2, so far the effects of MDM?2 on p63 and p73 stability
have been investigated in cells lacking p53 such as the H1299 or
Saos2 cells (Calabro et al., 2002; Little and Jochemsen, 2001). We
have previously shown that enforced expression of MDM2, in
Saos2 cells, causes an increase of TAp63 protein levels and
enhancement of its transcriptional activity (Calabro et al., 2002).
Likewise, we have recently found that all ANp63 isoforms were
stabilized by MDM2 overexpression in Saos2 cells (supplementary
material Fig. S1). Surprisingly, we observed that co-transfection of
MDM2 in U20S cells, expressing wild-type p53, resulted in a
sharp decrease of ANp63a protein. As expected, endogenous pS53
protein was also strongly reduced by MDM?2 overexpression (Fig.
1A).

To gain insight into this mechanism, we overexpressed MDM?2
in HaCaT keratinocytes, a more physiological cell context, in
which ANp63a is endogenously expressed (Di Costanzo et al.,

2009). MDM2 overexpression resulted in a dose-dependent
reduction of ANp63a. protein levels (Fig. 1B). To determine if
downregulation of endogenous ANp63c, following MDM?2
expression, was at the protein or mRNA level, we performed semi-
quantitative RT-PCR analysis. As shown in Fig. 1B, MDM2-
enforced expression did not result in a significant reduction of
ANp63-specific or p63a-specific transcripts, indicating that MDM2
was acting mainly at p63 protein level.

Next, we compared the effect of MDM2 on ANp63c., ANp63[3
and ANp63y expression levels in U20S cells. Interestingly, although
the levels of ANp63c. and ANp63f proteins were considerably
reduced, ANp63y was unaffected by MDM2 (Fig. 1C). Moreover,
treatment of U20S cells with the proteasome inhibitor MG132
appeared to reverse MDM2-mediated ANp63 o degradation (Fig.
1D), while neither MDM2 nor p63 protein levels were affected by
treatment with chloroquine, a lysosome-specific inhibitor (data not
shown), thus suggesting that MDM2-mediated p63 degradation
was proteasome-dependent.

Next, we performed co-immunoprecipitation (co-IP) experiments
on U20S cells, by transfecting ANp63o. and ANp63y alone or
together with MDM2. In both cases, cells were treated with MG132
in order to minimize protein degradation. Equal amount of cell
extracts were immunoprecipitated with antibodies against the
MDM2 protein. As shown in Fig. 2A, ANp63o. was present in
MDM2 immunocomplexes, whereas ANp63y was not. Remarkably,
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Fig. 2. MDM2 regulates ANp63c levels by a p53-independent mechanism. (A) Extracts from U20S cells transfected with ANp630. or ANp63y with or without
MDM2 expression vector (1 g each), were analyzed by immunoprecipitation (IP) with an anti-MDM?2 antibody followed by WB analysis with the same antibody
or p63 antibody. As a control, equal aliquots of extracts were processed for IP, without addition of antibodies (IP no Ab-2 lanes). Cells were treated with 5 uM
MG132 for 5 hours in order to reduce protein degradation. The input lanes contain 5% of the material used in IP. Anti-tubulin antibodies were used as loading
controls. (B) Extracts from U20S cells co-transfected with ANp630,, ANp63f or ANp637 (20 ng each) and p53 (20, 40, 80 ng) were analyzed by WB using anti-
p53, p63 and tubulin antibodies. (C) MEF cells (p537~ and MDM2”") were co-transfected with ANp630. (50 ng) and MDM2 or p53 (50, 100, 150 ng in both cases).
WB analysis was performed using MDM2, p53, p63 and anti-actin antibodies. (D) Extracts from MEF cells transfected with ANp63o. (1 ng) with or without
MDM2 expression vector (1 [1g), were analyzed by immunoprecipitation (IP) with the indicated antibodies. As control, equal aliquots of extracts were processed for
IP, without addition of antibodies (IP no Ab-2 lanes). The input lanes contain 5% of the material used in IP (upper panels). Cells were treated with 5 uM MG132 for

5 hours in order to reduce protein degradation.
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in Saos2 cells, where p63 was not regulated by MDM2, we could
not detect ANp63a-MDM2 immunocomplexes (data not shown).

U20S and Saos2 cells, both derived from human osteosarcomas,
express similar levels of endogenous MDM2 and differ mainly in
their p53 status. As p53 is a positive upstream regulator of MDM2
and was reported to induce ANp63a degradation (Ratovitski et al.,
2001), it was of interest to evaluate the effects of p53
overexpression on ANp63 isoforms in the U20S cell line.
Interestingly, expression of all ANp63 proteins, including ANp63y,
was reduced by p53 expression (Fig. 2B). Moreover, in contrast to
the results obtained with MDM2, p53 overexpression resulted in
degradation of all ANp63 isoforms also in Saos2 cells
(supplementary material Fig. S2). Furthermore, in MEF cells,
derived from p53 and MDM2 double knock-out mice,
overexpression of either p53 or MDM2 reduced ANp63o protein
levels (Fig. 2C) and MDM2 was shown to interact with ANp63o
in co-IP experiments (Fig. 2D). These results demonstrate that
MDM2 and p53 can promote p63 protein degradation by
independent mechanisms and that MDM2 can interact with
ANp63a. in the absence of p53.

The RING-finger domain of MDM2 is not required to
promote ANp63a nuclear export and degradation

In order to address the mechanism through which MDM2 reduces
p63 levels, we used two MDM?2 mutants, the 1-441/MDM2, which
lacks the RING-finger domain, necessary for protein ubiquitylation
and the A150-230/MDM2 lacking the nuclear localization signal
(NLS) (Jin et al., 2003; Sdek et al., 2005). As shown in Fig. 3A,
the A150-230/MDM?2 mutant was not efficient in promoting p63
degradation but p63 degradation triggered by 1-441/MDM2 was
comparable to that obtained with wild-type MDM2. As expected,
the opposite was true for the p53 protein (Fig. 3B). Similar results
were obtained for p63 in p53 and MDM2 double knock-out MEF
cells (data not shown).

MDM?2 and p53 are nuclear proteins that shuttle constantly
through the nuclear pore complex (Carter et al., 2007; O’Keefe et
al., 2003) and a role for MDM2 in nuclear-cytoplasmic shuttling
of p63 has been reported (Kadakia et al., 2001).
Immunofluorescence analysis of U20S cells transfected with
ANp630. alone or with wild-type or mutant MDM?2 proteins showed
that the 1-441/MDM2 protein leads to ANp63a nuclear export and
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Fig. 3. MDM2 does not require its RING-finger domain to mediate ANp63a nuclear export. (A) U20S cells were transiently co-transfected with ANp63at

(20 ng) or with wild-type MDM2 or MDM2A150-230 plasmids (20, 40 and 80 ng); lower amounts of MDM2-1-441 plasmid were used (10, 20 and 30 ng) in order
to obtain comparable levels of the MDM2 proteins. (B) U20S cells were transiently co-transfected with p53 expression plasmid (20 ng) and increasing amount of
MDM2 expression plasmids (20, 40 and 80 ng). In both cases (A and B), WB analysis was performed using MDM2, p53 or anti-p63 antibodies. Anti-actin was
used to show equal loadings. (C) Immunofluorescence staining of U20S cells transfected with ANp63o. alone or with wild-type MDM2, MDM2-1-441 or
MDM2A150-230. Nuclei were stained with DAPI. In the absence of co-transfected MDM2, p63 localized primarily to the nucleus (100% of transfected cells)
whereas co-transfection with wild-type MDM2 or MDM2 1-441 resulted in cytoplasmic p63 staining (80% and 78% of co-transfected cells, respectively).
However, in cells co-transfected with MDM2A150-230, p63 remained largely nuclear (95%). (D) 24 hours post-transfection, U20S cells transfected with ANp63 o
and MDM2 were treated with leptomycin B (LMB) at 40 ng/ml, for 5 hours. Nuclei were stained with DAPI. (E) Extracts from cells treated as in D were analyzed
by WB with anti-p63 and anti-MDM2 antibodies.
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this was not observed with the A150-230/MDM2 that did not enter
the nucleus (Fig. 3C). Treatment with leptomicin B (LMB), a drug
that blocks nuclear export, prevents p63 and MDM2 nuclear export
in cells co-transfected with ANp63a. and MDM2, thus inhibiting
ANp63o. degradation (Fig. 3D,E).

These data indicate that the MDM2 shuttling function rather
than its ubiquitin ligase activity is required to mediate p63
degradation. Moreover, our data suggest that in the cytoplasm a
ubiquitin ligase activity other than MDM?2 is probably responsible
for ANp63a. degradation.

S$383 in ANp63 is required for MDM2-mediated p63 protein
degradation

The observation that ANp63y was not affected by MDM2
overexpression (Fig. 1C) and did not interact with MDM2 (Fig.
2A), suggests that the C-terminal region of ANp63, absent in the
ANp637y protein, is required for MDM2-mediated interaction. To
further narrow-down the region of p63 required for MDM?2
action, we employed a truncated version of ANp63 with a stop
codon inserted at position 373 (Di Costanzo et al., 2009). As
shown in Fig. 4A, the ANp63A373 construct was not sensitive
to MDM?2 thus further defining the region required for ANp63
degradation.

Recently, we have identified two residues, serine 383 and
threonine 397 (S383 and T397), contained within the o and B p63
isoforms, as important mediators of p63 degradation induced by
DIx3 expression (Di Costanzo et al., 2009). Interestingly, the
S383A mutant was found to be resistant to MDM2-mediated
degradation (Fig. 4A) whereas the T397A mutant was still sensitive
to MDM2 overexpression. The opposite was true for DIx3-mediated
ANp63 degradation (Di Costanzo et al., 2009). These two residues
are centered on two predicted phosphodegrons for the Fbw7 E3
ligase (Fig. 4B) that binds to its substrates in a phosphorylation-
dependent manner. As glycogen synthase kinase 3 (GSK3)
phosphorylates most of the known substrates of the Fbw7 ligase,
we tested the effects of the GSK3 inhibitor SB216763 on the levels
of wild-type ANp63c, S383A or T397A mutants. Treatment of
U20S cells with SB216763 increased the level of wild-type and
T397A mutant, while the S383A protein level was unaffected by
this treatment, suggesting that endogenous GSK3 was regulating
ANp63a. steady-state levels (Fig. 4B) and that Fbw7 could be

responsible for ANp63a degradation once exported to the cytoplasm
by MDM2.

The Fbw7 E3 ligase is responsible for MDM2-induced
ANp63 degradation

To investigate the role of Fbw7 in p63 protein turnover, we co-
transfected U20S cells with ANp63a and an shRNA plasmid
targeting Fbw7 (Anzi et al., 2008); the levels of transfected ANp63 o
were enhanced by Fbw7 depletion (Fig. 5A). Transient or stable
transfection of the shFbw7 plasmid in HaCaT cells resulted in
stabilization of endogenous ANp63o. (Fig. 5B). Conversely, co-
transfection of Fbw7 with ANp63a resulted in the reduction of
ANp63a levels, that was reversed upon treatment with proteasome
or GSK3 inhibitors (Fig. 5C).

In perfect correlation with the ability of MDM2 to degrade
wild-type and mutant p63 isoforms, Fbw7 also promoted the
degradation of ANp63a,, ANp633, ANp630T397A, but not that of
ANp63y, ANp63A373, ANp63aiS383A or ANp63BS383A (Fig.
5D.E). In HaCaT cells, the endogenous levels of ANp63o. were
also modulated by Fbw7 transfection (Fig. SF). Moreover, Fbw7
interacted with ANp63a but not with ANp637y in co-IP experiments
(Fig. 5G).

The Fbw7 gene encodes three isoforms, o, B and 7y that have
distinct subcellular localizations, with o being nuclear, P
cytoplasmic and 7y nucleolar. We next verified which of the Fbw7
isoforms was active on ANp63a by transfecting the three Fbw?7
isoforms in HaCaT cells (Fig. 6A); both the Fbw7a and Fbw7f3
isoforms promoted the degradation of endogenous ANp63c., with
the Fbw7f isoform being more efficient in promoting ANp63c.
degradation and Fbw77y having no effect on ANp63a protein levels.
In the U20S cell line similar results to the one obtained with
overexpression of the three Fbw7 isoforms in the HaCaT cell line
(Fig. 6A) were obtained; moreover, overexpression of Fbw7 did
not affect MDM2 endogenous expression (Fig. 6B). Interestingly,
Fbw7B also triggered TAp63c. and TAp63f downregulation
suggesting that the same phosphodegrons are recognized by Fbw?7
in the TA and ANp63 isoforms (supplementary material Fig. S3A).
It has to be noted that our U20S cells do not endogenously express
the Fbw7a isoform as revealed by RT-PCR with Fbw7-isoform-
specific primers (supplementary material Fig. S3B). In accordance
with the results obtained with MDM2, overexpression of the Fbw7(
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Fig. 5. Mdm2 and Fbw7 cooperate to regulate ANp63 protein levels. (A) Left: WB analysis of U20S cells transiently co-transfected with ANp63a (10 ng) and
shFbw7 (20 ng) plasmids. Right, as control for the shFbw7 plasmid, U20S cells were co-transfected with the Fow7 expression plasmid (20 ng) and increasing
amounts of shFbw7 plasmid (10, 20, 40 ng); silencing of transfected Fbw7 was visualized by anti-FLAG antibodies. (B) WB analysis of HaCaT cells transiently
(left) or stably (right) transfected with the shFbw7 plasmid; endogenous ANp63 o was stabilized upon transfection of the Fbw7 plasmid. (C) U20S cells were
transiently co-transfected with ANp63o (20 ng) and Fbw7 (40 ng) expression plasmids; 18 hours after transfection 10 uM SB216763 or MG132 were added to the
cultures 5 hours before harvesting. (D,E) WB analysis of U20S cells transfected with 20 ng of the indicated ANp630. (D) or ANp63f3 (E) constructs and increasing
amounts of the Fbw7 plasmid (40 and 80 ng). (F) HaCaT cells were transfected with the Fbw7 plasmid (40 and 80 ng) and WB analysis revealed modulation of
endogenous ANp63a. (G) Extracts from U20S cells transfected with ANp63o. or ANp637 (1 pg) with or without Fbw7 expression vector (1 ng), were analyzed by
immunoprecipitation (IP) with an anti-p63 antibody followed by WB with the anti-FLAG antibody for Fbow7-FLAG detection (bottom panel). The input panels
contain 5% of the material used in the IPs (upper panels). Cells were treated with 5 uM MG132 for 5 hours in order to reduce protein degradation.

isoform in the Saos2 cell line resulted in ANp630. stabilization
(supplementary material Fig. S4).

Finally, to prove that Fbw7 overexpression was altering
ANp63a. protein stability, we transfected Fbw7f into HaCaT
cells and measured protein half-life by treating cells with the
protein synthesis inhibitor cycloheximide. As shown in Fig. 6C,
the half-life of ANp63a was greatly reduced by the co-transfection
of Fbw7f, being around 6 hours in the absence of Fbw7f3 and
less then 2 hours in the presence of Fbw7[. Very similar results
were obtained in U20S cells (Fig. 6D). Interestingly, transfection
of the shFbw7 plasmid could overcome the ability of MDM2 to
promote ANp63o. degradation (Fig. 7A) and, accordingly,
silencing of endogenous MDM2 by siRNA could partially
overcome the action of the Fbw7f cytoplasmic isoform on
ANp630. degradation (Fig. 7B). Therefore, these results
demonstrate the ability of Fbw7 E3 ligase to act downstream of
MDM?2 in ANp63a degradation and that MDM2 action is required
to export ANp63a to the cytoplasm.

Fbw7 is known to interact with its targets through the F-box
domain. In order to further validate our data, we used ANp63a
with Fbw70 and Fbw7f expression plasmids deleted in the F-box
domain in co-transfection experiments; both mutants had no effects
on ANp63a. protein levels (Fig. 7C). We next verified whether

Fbw7 overexpression could increase the levels of ubiquitylated
ANp63a. by co-transfecting U20S cells with ANp630., ubiquitin
and Fbw70. or Fbw7f. The levels of ubiquitylated ANp63 o indeed
increased in the presence of Fbw70 or Fbw7f: as expected, in the
presence of mutated Fbw7o or Fbw7[ the levels of ubiquitylated
ANp63a. did not increase (Fig. 7D).

We had previously identified lysines at position 193 and 194 in
ANp63 to be necessary for Itch-mediated degradation of p63 (Rossi
et al., 2006b). We therefore used the double K193R/K194R mutant,
in the ANp63o. and ANp63fB isoforms, in co-transfection
experiments and found that mutations of these residues in ANp63[3
conferred resistance to MDM?2 as well as to Fbw7[3 overexpression
(Fig. 8) whereas the ANp63a isoform was only partially protected.
Lysines 494 and 505 had been previously identified as necessary
for ubiquitin-mediated degradation of ANp63o (F.G. and L.G.,
unpublished results). These two lysines are not present in the
ANp63B isoform and therefore cannot account for ANp63
degradation. To further elucidate this point, we examined whether
lysines 494 and 505 were involved in MDM2 and Fbw7
degradation of ANp63c.. Remarkably, the ANp630K494R/KS505R
mutations conferred complete resistance to MDM2- and Fbw7-
mediated degradation (Fig. 8). These results suggest that K494 and
K505 are involved in ANp63a. degradation.
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Fig. 6. MDM2 and Fbw7 act in concert to regulate ANp63a. protein levels. (A) HaCaT cells were transiently transfected with the three Fbw7 isoforms (20, 40
and 80 ng). WB analysis revealed modulation of endogenous ANp63a in the presence of Fbw70 and Fbw7. Fbw7y had no effect on ANp63a. protein. (B) U20S
cells were transiently co-transfected with ANp63c. and the Fbw7 isoforms. (C) HaCaT cells were transiently transfected with Fbw7f and protein half-life was
measured upon cycloheximide (CHX) treatment either in the absence or in the presence of Fbw7, for the indicated times (numbers indicate hours after CHX
addition). (D) U20S cells were transiently transfected with ANp63o and protein half-life was measured upon cycloheximide (CHX) treatment either in the absence
or in the presence of Fbw7f, for the indicated times (numbers indicate hours after CHX addition). WB analysis revealed that Fbw7 greatly reduced ANp63a.

protein half-life.

MDM2 and Fbw7 cooperate to regulate ANp63c.
degradation upon DNA damage and keratinocyte
differentiation

ANp63a has been shown to be degraded upon exposure of cells
to UV and adriamycin (Papoutsaki et al., 2005). In order to gain
insight into the physiological mechanisms involved in the
regulation of ANp63o. protein levels by the MDM2-Fbw7
pathway, we examined whether knockdown of Fbw7, by shRNA,
or MDM2, by siRNA oligonucleotides, could inhibit degradation
of ANp63a in HaCaT cells treated with UV. As shown in Fig.
9A.B, UV exposure caused downregulation of endogenous
ANp630 protein levels, and silencing of endogenous MDM2 or
Fbw7 blocked the degradative process. Similar results were
obtained in U20S cells co-transfected with ANp63o and the
shFbw7 plasmid upon UV exposure (Fig. 9C) or adriamycin
treatment (supplementary material Fig. S5). The levels of the
endogenous MDM2 protein were not altered by Fbw7 silencing
in both cell lines (Fig. 9C and not shown). As controls, siLuc or
shLuc were used.

ANp63a has also been shown to be degraded upon keratinocyte
differentiation (Di Costanzo et al., 2009). In order to verify whether
MDM?2 and Fbw7 could regulate ANp63a protein levels during
this process as well, pools of clones of HaCaT cells stably silenced
for Fbw7 expression were induced to differentiate by the addition
of 2 mM Ca?" to the culture medium. In the control clones, stably
transfected with the shLuc plasmid, ANp63o was downregulated
after 24 hours and upregulation of keratin-1, a differentiation

marker, was also evident. In the Fbw7-silenced clones, both
ANp63o. downregulation and keratin-1 upregulation were impaired
(Fig. 9D).

These data suggest that, under stress conditions that might lead
to cell cycle arrest or apoptosis and during cell differentiation,
MDM2 and Fbw?7 act in concert to trigger ANp63 0. degradation.

Discussion

Protein degradation is a major regulatory mechanism of all cellular
functions. This process is associated in most cases with labeling of
the target protein with a low molecular mass protein, ubiquitin.
The Fbw7 protein is an F-box factor that determines which proteins
will be targeted for degradation by ubiquitin ligation. Fbw7 targets
for degradation a long list of proteins with central regulatory roles
in cell division, cell growth and differentiation, including Myc, Jun
and Notch. Its activity is essential for preservation of genomic
stability and for prevention of tumor formation. In fact, the Fbw7
gene is mutated in a wide spectrum of human cancers, thus
suggesting that it is a bona fide tumor suppressor. Numerous
cancer-associated mutations in Fbw7 and its substrates have been
identified, and loss of Fbw7 function causes chromosomal
instability and tumorigenesis.

Because there are three Fbw7 isoforms that reside in different
subcellular compartments, as well as multiple Fbw7 substrates
that are the products of proto-oncogenes, the mechanisms of
tumor suppression by Fbw7 are complex and not completely
understood.
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MDM?2 (40 ng) expression plasmids with or without the shFbw7 plasmid (40 ng). (B) WB analysis of U20S cells transfected with ANp63c. (20 ng) and Fbw7f3
(40 uM) with or without siRNA oligonucleotides targeting MDM2 (5 nM). (C) WB analysis of U20S cells transiently co-transfected with ANp63o (20 ng) and
wild-type or mutated Fbw7c and Fbw7f (20 and 40 ng) expression plasmids. (D) U20S cells were transiently transfected with the indicated expression plasmids:
His-ubiquitin (1 pg), Myc-ANp63 (2 ng), FLAG-Fbw70. and FLAG-Fbw7 (4 ng), mutant Fbow7c and Fbw7p (4 LLg). 24 hours later, cells were treated with
MG132 (20 uM, 4 hours) and lysed under denaturing conditions. Proteins linked to His-ubiquitin were purified using Ni*-resin beads, washed and eluted with
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Here, we show that MDM2 and Fbw7 cooperate in the regulation
of ANp63 protein stability in human tumor cell lines as well as in
HaCaT keratinocytes, a more physiological cell context in which
ANp63a. is endogenously expressed. Our immunofluorescence and
western blot data with wild-type and mutant MDM2 proteins

indicate that MDM2 associates with and shuttles ANp63 0. from the
nucleus to the cytoplasm. Moreover, our ubiquitylation assays in
U20S cells, show that Fbw7 coexpression increases the levels of
ubiquitylated ANp63. By overexpression and silencing approaches,
we demonstrate that Fbw7f3 is acting downstream of MDM2 in
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Fig. 8. Efficient regulation by MDM2 and Fbw7 requires
different lysines in ANp63c and ANp63P. WB analysis of
U20S cells transiently co-transfected with the indicated p63
(20 ng), MDM2 or Fbw7 (40 and 80 ng) expression plasmids.
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Fig. 9. Fbw7 induces ANp63ca degradation upon DNA damage. (A,B) HaCaT cells were transiently transfected with siRNA-MDM2 oligonucleotides (5 nM) or
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The levels of endogenous p53 activation were evaluated as controls for the treatments. (D) Stable pools of HaCaT cells were induced to differentiate by addition of
2 mM Ca*" to the culture medium. 12 and 24 hours after Ca*" addition, cell extracts were collected and analyzed by western blotting.

this mechanism. Interestingly, the activity of GSK3, the kinase
known to phosphorylate Fbow7 recognition sites, is required for this
mechanism.

DNA-damaging agents exert opposite effect on p53 and
ANp63a; downregulation of ANp63o while activating p53
(Petitjean et al., 2006). This is not surprising since it has been
proposed that the ANp63 0. oncogenic role is based exactly on its
ability to counteract the p53 transcriptional response to DNA
damage, by competing for DNA binding to common target
promoters (Crook et al., 2000; Murray-Zmijewski et al., 2006).
The pro-proliferative ANp63c. protein has also been shown to be
downregulated upon keratinocytes differentiation (Di Costanzo et
al., 2009).

Remarkably, by silencing experiments, we have demonstrated
that both MDM2 and Fbw7 contribute to reduce the endogenous
or transfected ANp63a protein levels when cells are treated with
DNA-damaging agents or upon cellular differentiation.
Interestingly, it has been reported that exposure to UV induces the
expression of the cytoplasmic Fbw7f isoform (Anzi et al., 2008).
Among the three Fbw7 isoforms, we found that the cytoplasmic
Fbw7f and nuclear Fbw7o. isoforms are active on ANp63a,
although Fbw7[3 was more efficient. Interestingly, the o-isoform is

not expressed in U20S cells. Further experiments will be necessary
to determine the physiological contexts in which the activity of one
or the other isoform becomes relevant.

pS53 and MDM2 are both able to induce ANp63o. degradation
(Ratovitski et al., 2001) (this work), although by different and
independent mechanisms. These observations seem to be
contradictory as it is known that p53 and MDM2 exert antagonistic
effects on cell proliferation and transformation. Actually, we and
others (Kadakia et al., 2001) have found that MDM?2 is able to
mediate ANp63a export to the cytoplasm. Accordingly, we propose
that, under appropriate stimuli, such as DNA damage that lead to
cell cycle arrest or apoptosis or cellular differentiation, MDM2 can
shuttle ANp63a. to the cytoplasm where it can encounter the
proteins that are specifically involved in its turnover, such as Fbw7
(this work) and Itch (Rossi et al., 2006a; Rossi et al., 2006b). At
the same time, removal of ANp63a. from the nuclear compartment,
allows p53 to exert its transcriptional activities. As reported, pS3
might finely regulate Fow7f and MDM2 expression that thereafter
cooperate in regulating the ANp63a protein level. However, it is
conceivable that, under apoptotic levels of DNA damage, p53
could directly regulate ANp63a. levels through caspase-1 activity
(Ratovitski et al., 2001). According to this model, our preliminary
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experiments indicate that the caspase-1-resistant ANp63o. mutant
(YVED to YVEA) is still responsive to the cooperative MDM?2
and Fbw7 degradation mechanism (F.G. and L.G., unpublished
data).

In epithelia, ANp63a. supports the proliferative potential of basal
cells and its downregulation is required for keratinocytes
differentiation (Koster et al., 2002; Koster et al., 2004). Several
mechanisms have been reported to govern ANp63a. levels, none of
them involving MDM2. Interestingly, a striking and transient
induction of MDM2 has been reported in the suprabasal layers of
stratified epithelia, whereas overexpression of MDM?2 in the basal
layers has been reported to cause skin hyperplasia (Ganguli et al.,
2000). Altogether these observations and our data suggest that both
MDM?2 and Fbw7 cooperate in order to finely tune ANp63a levels
during epithelia differentiation.

An outstanding question in the field of p63 epithelial biology is
whether, and to what extent, ANp630. can contribute to tumor growth
and response to anticancer agents. The hypothesis that ANp63o
plays a role in the genesis and progression of tumors is supported by
the findings that ANp63a is upregulated in human ovarian cancer
and squamous cell carcinomas (SCC) (Thurfjell et al., 2004; Deyoung
and Ellisen, 2007). Since the molecular mechanisms leading to
ANp63 overexpression are still unknown, our data open a new way
to future studies to correlate Fbw7 mutations with ANp63o
overexpression. Most of the natural Fbow7 mutations falls within the
F-box domain, the integrity of which we have now shown to be
necessary to promote ANp63a degradation and ubiquitylation.

The knowledge of the role of p63, MDM2 and Fbw7 in the
molecular mechanisms governing the response of cancer cells to
DNA damage is crucial for improving current anti-cancer therapies
(Koster et al., 2004; Ganguli et al., 2000).

Materials and Methods

Plasmids

All expression vectors encoding p63 cDNAs have been previously described (Ghioni
et al., 2002). The MDM2, Fbw7, shFbw7, ANp630.iS383A and ANp630T397A
constructs also have been previously described (Jin et al., 2003; Anzi et al., 2008;
Di Costanzo et al., 2009). The Fbw7 mutant plasmids having a deletion of the
conserved five amino acids right at the beginning of the F-box domain (LPKEL)
were a kind gift from B. E. Clurman and M. Welcker (Fred Hutchinson Cancer
Research Center, Seattle, WA).

The ANp630K193R/K194R, ANp63at K494R/K505R and ANp63BK193R/K194R
mutants were generated by site-directed mutagenesis with the following mutagenic
oligonucleotides. K193R-K194R: forward 5'-GCCATGCCTGTCTACAGGAGA-
GCTCAGCATGTCACC-3, reverse 5'-GGTGACATGCTCAGCTCTCCTGTAG-
ACAGGCATGGC-3"; K494R: forward 5'-GGCAAGTCTGAGGATCCCTGAA-
CAGTTCCGACATGCCATCTGG-3', reverse 5'-CCAGATGGCATGTCGGAACT-
GTTCAGGCATCCTCAGACTTGCC-3"; K505R: forward 5'-CCGACATGCC-
ATCTGGAGGGGCATCCTGGACCACAGG-3', reverse 5'-CCTGTGGTCCAG-
GATGCCCCTCCAGATGGCATGTCGG-3'.

Cell culture and transfection

Saos-2, U20S, MEF and HaCaT cells were maintained in DMEM supplemented
with 10% FBS (Gibco) at 37°C in a humidified atmosphere of 5% (v/v) CO, in air.
For transient transfection, 50,000 cells were seeded into 24-well multiplates and on
the next day transfected with Lipofectamine 2000 (Invitrogen) or Lipofectamine
LTX (Invitrogen) for HaCaT cells, under the conditions suggested by the
manufacturer. Transfection efficiency was always monitored in separate wells by
transfection of a B-gal expression vector. The total amount of transfected DNA (1
Hg) was kept constant using empty vector when necessary.

For stable transfection, 300,000 HaCaT cells were seeded into six-well multiplates
in DMEM supplemented with 10% FBS (Gibco). On the next day, cells were co-
transfected with 3 pg of shFbw7 and 3 pg pSuperRetro or 3 pg of shLuc and 3 ug
pSuperRetro using Lipofectamine LTX (Invitrogen). After 24 hours, cells were
trypsinized and plated in medium containing puromycin (0.8 pg/ml; Sigma). After
3 weeks of selection, clones were pooled and kept in puromycin (0.4 pg/ml). For the
differentiation assay, 50,000 cells were plated in 24-well plates and, on the following
day, induced to differentiate by the addition of Ca?* (2 mM) to the culture medium.
U20S and HaCaT cells were treated with 5 or 10 uM MG132, 100 uM chloroquine,

40 ng/ml leptomycin B, 10 uM cycloheximide, 2 UM adriamycin, 10 uM SB216763
or irradiated with 100 pJ. Stable pools of HaCaT clones were induced to differentiate
by addition of 2 mM Ca?" to the culture medium.

The sequences of the siRNA were as follows: siMDM2, 5'-AAG CCA UUG CUU
UUG AAG UUA TT-3'; siLuc, 5'-CGU ACG CGG AAU ACU UCG ATT-3".

Western blot analysis and antibodies

24 hours after transfection, cells were lysed in 50 mM Tris-HCI (pH 7.5), 150 mM
NaCl, 1% NP40, 5 mM EDTA, 0.5% sodium deoxycholate, 1 uM
phenylmethylsulfonyl fluoride and protease inhibitors. Cell lysates were incubated
on ice for 30 minutes and the extracts were centrifuged at 6600 g for 10 minutes to
remove cell debris. Protein concentration was determined with the Bio-Rad protein
assay. Samples were resuspended in 2X loading buffer (Sigma), incubated at 95°C
for 10 minutes and resolved by SDS-PAGE. Proteins were transferred to a PVDF
membrane (Millipore). The blots were incubated with the following antibodies: p63
(4A4 and H-129, Santa Cruz Biotechnology), p53 (p53 DO-1, Genespin, Italy),
MDM?2 (SMP14, Santa Cruz Biotechnology; Ab-2, Calbiochem), B-tubulin (H-235,
Santa Cruz Biotechnology), actin (A-2066, Sigma-Aldrich), vinculin (V 9131, Sigma-
Aldrich), FLAG (M2, Sigma). Proteins were visualized by an enhanced
chemiluminescence method (Genespin) according to the manufacturer’s instructions.

Co-immunoprecipitation

U20S, MEF-p53-MDM2 double knockout and Saos2 cells (1.25%X10%100 mm
plate) were transfected with the indicated vectors. 24 hours after transfection cells
were harvested for preparation of whole-cell lysates as described above. 1 mg/ml of
cell lysate was incubated overnight at 4°C with 3 ug of anti-p63 (4A4, H137 or H-
129; Santa Cruz, Biotechnology) or anti-MDM2 (Ab-2, Calbiochem). The
immunocomplexes were collected by incubating with protein-A—agarose (Roche)
at 4°C for 4 hours. The beads were washed vigorously three times with
coimmunoprecipitation buffer (50 mM Tris-HCI pH 7.5; 150 mM NaCl; 5 mM
EDTA; 0.5% NP40; 10% glycerol). The beads were then resuspended in 2X loading
buffer, loaded directly onto an 8% SDS polyacrylamide gel and subjected to western
blot with the indicated primary antibodies.

Immunofluorescence

For immunofluorescence staining, U20S cells were plated onto glass cover slips
before transfection. 24 hours after transfection, the cells were fixed with 3.7%
paraformaldehyde in PBS for 15 minutes at room temperature, and permeabilized by
dipping coverslips in 0.5% Triton X-100 in PBS for 15 minutes. Coverslips were
washed three times with PBS and then incubated for 1 hour at room temperature
with primary antibodies. p63 staining was carried out using the anti-p63 H-137
antibody (Santa Cruz, Biotechnology), and MDM2 staining was carried out using
the anti-MDM2 monoclonal antibody Ab-2 (Calbiochem). After three washes in
PBS, cells were incubated for 1 hour with secondary antibody [Cy3-labeled goat
anti-mouse (Jackson Lab) or fluorescein-labeled anti-rabbit (Roche)]. Nuclei were
stained with DAPI (Sigma).

RNA extraction and RT-PCR

24 hours post-transfection, HaCaT cells were collected and total RNA was extracted
using the RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions.
For RT-PCR analysis, 600 ng of total RNA were reverse-transcribed using
Superscriptlll ¢cDNA Preparation Kit (Life Technologies) with random hexamer
primers and the cDNAs were normalized to HPRT levels.

For PCR reaction the sequence of the primers pairs were as follows. ANp63a,
ANp63f and ANp63y: forward 5'-GAAGAAAGGACAGCAGCATTGAT-3', reverse
5'-GGGACTGGTGGACGAGGAG-3"; ANp63a (T4 and ANp63): forward
5'-GGGAGCCAACATTCCCATGAT-3', reverse 5'-ACTTGCCAGATCATCCA-
TGG-3'; HPRT: forward 5'-AAGCCAGACTTTGTTGGATTT-3'; reverse
5'-TTTACTGGCGATGTCAATAGGA-3"; Fbw7ou: forward 5'-GACCTCAGA-
ACCATGGTCCAACTT-3', reverse 5'-AGTAGTATGTGGACCTGCCCGTT-3';
Fbw7p: forward 5'-GACCTCAGAACCATGGTCCAACTT-3', reverse 5'-
TATTGTCAGAGACTGCCAAGCAGC-3'; Fbw7y: forward 5'-GCCTTGGG-
CAATGATGCTAATGCT-3', reverse 5'-CCATGGCTTGGTTCCTGTTGATC-3".

PCR products were analyzed on 2% agarose gel followed by ethidium bromide
staining.

In vivo ubiquitylation assay

The in vivo ubiquitylation assay was been done as previously described (Louria-
Hayon et al., 2009) with the only exception, that the lysis was performed with 10
mM imidazole (not 20 mM).
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