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Summary

Predator-prey models, homogeneous in space or with spatial diffusion, play a central
role in this thesis. Indeed, from a mathematical view point, we investigate stability
in systems of ordinary differential equations and of partial differential equations of
parabolic type.

First, we deal with a predator-prey model, described by a system of two ODEs, in
which a strong Allee effect on the prey growth and a predator-dependent trophic func-
tion are taken into account. The main strength of this part is that these functions are
not specified by analytical expressions, but only characterized by some biologically
meaningful properties determining their shapes. On the basis of these properties we
are able to perform the stability analysis of the system, using the predation efficiency
and a measure of the predator interference as bifurcation parameters. The system
admits codimension-two bifurcations points, such as a Bogdanov-Takens and a cusp
point; it is worthwhile to notice that they are independent of the particular expression
of the model functions. The numerical investigation is further carried on choosing
for the model equations some analytical expressions well known in literature, which
satisfied the assumed properties, and using Matcont, a continuation Matlab toolbox.
This investigation, in addition, has shown the presence of global bifurcations that
determine the disappearance of limit cycles through the formation of homoclinic and
heteroclinic orbits involving some equilibrium points. Moreover, we have detected
a further codimension-two bifurcation point, a Generalized-Hopf. Together with the
cusp and the Bogdanov-Takens bifurcation points, these three types of codimension-
two bifurcations are the only admissible by a planar system of ordinary differential
equations.

The second part of this thesis focuses on the study of two predator-prey models
with diffusion that justify, in a suitable limit, two classical types of functional re-
sponses in the reaction part and present a cross-diffusion term. In detail, two trophic
levels are considered, preys and predators which are further divided into searching
predators and handling predators. The former are predators active in the predation
process, the latter are resting individuals. Then, we start from a system of three
partial differential equations, with a standard linear diffusion in terms of Laplacian,
and with a Lotka-Volterra reaction term. Through a quasi steady-state approxima-
tion we end up with a system of two PDEs with prey and total predator densities as
unknowns, in which an Holling-type II functional response appears together with a
cross-diffusion term in the predator equation. It is proved that this class of predator-
prey models can not give rise to Turing instability. Then we modify the starting model
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inserting a competition among predators. With this change we end up after a quas:
steady-state approrimation with a system of two PDEs for prey and total predator
densities, characterized by a Beddington-DeAngelis-type functional response and a
cross-diffusion term in the predator equation. We look for conditions on the parame-
ters values which lead to Turing instability and we compare these Turing instability
regions with the ones obtained when the cross-diffusion term is substituted by a
linear diffusion.



Riassunto

Questa tesi riguarda modelli differenziali preda-predatore, trattati inizialmente nel
caso spazialmente omogeneo e successivamente considerando la diffusione spaziale.
Dal punto di vista matematico pertanto vengono considerati sistemi di equazioni dif-
ferenziali ordinarie e di equazioni differenziali alle derivate parziali di tipo parabolico.

In particolare, nella prima parte viene studiato un modello preda-predatore
spazialmente omogeneo, retto da due equazioni differenziali ordinarie, in cui sono
presi in considerazione un effetto Allee forte nella crescita delle prede e una risposta
funzionale predatore dipendente. Il punto di forza dello studio risiede nel fatto che le
funzioni che descrivono questi processi non hanno un’espressione esplicita, ma sono
caratterizzate solo da alcune proprietd comuni a funzioni specifiche utilizzate in let-
teratura. Tali proprieta sono sufficienti per effettuare ’analisi qualitativa del sistema,
con riguardo all’esistenza degli equilibri e alle loro proprieta di stabilita mediante i
criteri di Lyapunov, utilizzando due parametri di biforcazione che caratterizzano il
processo di predazione. Il modello presenta dei punti di biforcazione di codimen-
sione 2 quali una biforcazione Bogdanov-Takens e una di tipo cuspide, non legati
alla particolare realizzazione scelta per le funzioni del modello. Lo studio é stato
proseguito numericamente fissando un’espressione per la funzione di crescita delle
prede e per la funzione trofica che soddisfano le proprieta considerate e utilizzando
il software di continuazione Matcont per Matlab. Tale studio ha mostrato I'ulteriore
presenza di biforcazioni globali che determinano la sparizione dei cicli limite, medi-
ante la formazione di orbite omocline ed eterocline. Inoltre é stato individuato una
biforcazione di Hopf generalizzata, un altro punto di biforcazione di codimensione 2.
Le biforcazioni di codimensione 2 individuate sono tutte e sole quelle ammesse da un
sistema a due equazioni differenziali.

La seconda parte della tesi verte invece sullo studio di due sistemi preda-predatore
con diffusione in cui vengono dedotte in un opportuno limite due tipi di risposte
funzionali classiche come termine reattivo e un termine diffusivo non lineare. In
dettaglio, vengono considerati due livelli trofici, le prede e i predatori. Questi ultimi
sono suddivisi in due classi, searching predators e handling predators: i primi sono
i predatori effettivamente impegnati nella predazione, mentre i secondi non sono
attivi in tale processo. Ne deriva un sistema composto da tre equazioni differenziali
alle derivate parziali, in cui la diffusione é modellizzata in modo classico, mediante
un termine lineare in forma di Laplaciano e I'interazione tra prede e predatori é
inizialmente del tipo Lotka-Volterra. Mediante una approssimazione quasi steady-
state é possibile ridurre il sistema di partenza, ottenendo un sistema di due PDE,
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una per le prede e una per la totalita dei predatori, in cui la risposta funzionale é
del tipo Holling-1I1, in particolare preda-dipendente, e che presenta una non-linearita
nel termine di diffusione. Questa classe di modelli non da luogo a instabilita di
Turing. Viene quindi considerata nel modello a tre equazioni una competizione tra i
predatori che permette di ricavare, mediante un’approssimazione quasi steady-state,
un sistema preda-predatore con risposta funzionale del tipo Beddington-DeAngelis
nel termine di reazione e ancora una non-linearita nel termine di diffusione. Vengono
quindi ricavate condizioni sui parametri che permettono di avere instabilita di Turing
e confrontati i risultati sia nel caso di diffusione lineare che in quello non-lineare.
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Introduction

Predator-prey models, homogeneous in space or with spatial diffusion, play a central
role in this thesis. Indeed, by a mathematical view point, we investigate stability
in systems of ordinary differential equations and of partial differential equations of
parabolic type.

First, we deal with a predator-prey model,described by a system of two ODEs,
in which a strong Allee effect on the prey growth and a predator-dependent trophic
function are taken into account. The strong Allee effect models undercrowding phe-
nomena and is represented by a prey growth function which becomes negative for
sufficiently small values of prey biomass. To simulate the Allee effect, different for-
mulations of the prey growth rate, in the absence of predators, have been proposed
in the literature. Many authors [20, 42, 61, 46, 94, 98, 106] use for instance a mul-
tiplicative factor to the logistic term, which introduce another critical value for the
prey biomass, less than the carrying capacity. Concerning the trophic function, which
describes the predator functional response to prey abundance (|92, p. 80]), it was in-
troduced in predator-prey models to take into account the saturation limiting the
predation process. Different formulations have been proposed in the literature, see for
instance Gutierrez et al. [50], Beddington, DeAngelis and co-authors [1, 14, 29, 8§].
In this thesis these functions are not specified by analytical expressions, but only
characterized by some biologically meaningful properties determining their shapes.
One of the main achievements of this thesis is that, on the basis of these properties
only, the stability analysis of the system has been performed, using the predation
efficiency and a measure of the predator interference as bifurcation parameters. The
system admits codimension-two bifurcations points, such as a Bogdanov-Takens and
a cusp point. It is worthwhile to notice that they are independent of the particular
expression of the model functions. The numerical investigation is further carried on
choosing for the model equations some analytical expressions well known in the lit-
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erature, which satisfied the assumed properties, and using Matcont, a continuation
Matlab toolbox. This investigation, in addition, has shown the presence of global
bifurcations that determine the disappearance of limit cycles through the formation
of homoclinic and heteroclinic orbits involving some equilibrium points. Moreover,
we have detected a further codimension-two bifurcation point, a Generalized-Hopf.
Together with the cusp and the Bogdanov-Takens bifurcation points, these three
types of codimension-two bifurcations are the only admissible by a planar system of
ordinary differential equations.

The second part of this thesis focuses on the study of two “microscopic” (in terms
of time scales) predator-prey models with diffusion that justify, in a suitable limit,
two classical types of functional responses in the reaction part and present a cross-
diffusion term. In detail, two trophic levels are considered, prey and predators which
are further divided into searching predators and handling predators. The former are
predators active in the predation process, the latter are resting individuals. Then,
we start from a system of three partial differential equations, with a standard linear
diffusion in terms of Laplacian, and with a Lotka-Volterra reaction term. Through a
quast steady-state approrimation we end up with a system of two PDEs with prey and
total predator densities as unknowns, in which an Holling-type II functional response
appears together with a cross-diffusion term in the predator equation. Then we mod-
ify the starting model inserting a competition among predators. With this change
we end up after a quast steady-state approximation with a system of two PDEs for
prey and total predator densities, characterized by a Beddington-DeAngelis-like func-
tional response and a cross-diffusion term in the predator equation. We present also
rigorous result of convergence of the solutions of these system towards the solution
of the reaction-cross diffusion system. We are also interested in the Turing instability
analysis of these systems. For the first case, it is known that predator-prey models
with a prey-dependent trophic function in the reaction part and standard (linear)
diffusion can not give rise to Turing instability [10]. Even with the cross-diffusion
model, no patterns seem to appear under a (biologically reasonable) assumption on
the diffusion coefficients. For the second case, in which the functional response is a
Beddington-DeAngelis-like, we look for conditions on the parameters values which
lead to Turing instability and we compare these Turing Instability regions with the
ones obtained when the cross-diffusion term is substituted by a linear diffusion.

The thesis is organized as follow. We first introduce some basic concept on bifur-
cation theory and diffusion-driven instability, used in the sequel. Part I contains the
study of the general predator-prey model with a strong Allee effect in the prey growth
and predator-dependent trophic function. In detail, the basic assumptions and the
ordinary differential equations describing the local dynamics of a predator-prey sys-
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tem are presented, then the stability properties of the non-coexistence equilibrium
states are summarized and an existence and stability analysis of the coexistence equi-
librium states is performed, assuming two bifurcation parameters. Finally, results of
numerical simulations, obtained for some concrete realization of the model functions,
are presented to illustrate the behaviours of the system.

Part II presents the justification of the Holling-type II and a Beddington-
DeAngelis type functional response in the context of reaction-diffusion systems, start-
ing from a system of three partial differential equations for prey, searching predator
and handling predator. From this approach also a cross-diffusion term arises in the
predator equations, instead of a standard (linear) diffusion. Then the Turing insta-
bility analysis of these system is presented.

Where we go from here

The study of the general model of Part I suggests further improvements. First, a
deeper analysis of codimension-two bifurcation points is very challenging: we would
try to reduce the system on the center manifold in order to better characterize this
points. A possible future work, related also to the second part of this thesis, is the
extension of present results to the case of spatial diffusion: adding a linear diffusion in
the equations of this system, we could obtain general conditions for Turing Instability
for this class of predator-prey models.

Concerning the Part II, there are several further research directions. From the
numerical point of view, pattern simulations will complete the theoretical study.
Furthermore, the definition of an appropriate numerical scheme for the integration
of the cross-diffusion term is still an open question. As a consequence, a comparison
between the outcomes of the derived model and the classical one will be useful to
understand the role of the Beddington-DeAngelis-type functional response. From the
modeling point of view, starting from a more complex “microscopic” model [41, 56]
could lead to a different cross-diffusion term. Finally, the sub-classification of cross-
diffusion with respect to their properties of enhancing diffusion-driven instability
could be useful and interesting.

The final pages of this thesis present the publications coauthored by the candidate
and the list of talks and posters presented at conferences and Summer Schools.






Preliminaries

This chapter introduces some basic concept of bifurcation theory and Turing instabil-
ity used in this thesis. First, we define some type of bifurcations of finite dimensional
continuous-time dynamical systems, depending on one or two parameters. We follow
the notation of the Kuznetsov’s book [66]. Then, the main concepts of diffusion-driven
instability in reaction-diffusion systems are summarized [73, 78|, in the case of stan-
dard (linear) diffusion. Then, an extension of this theory to the case of cross-diffusion
is reported [39, 64, 99]: also in this case we determine the bifurcation threshold as
usual by a linear stability analysis.

Bifurcation of equilibria in continuous-time dynamical
systems

Consider a continuos-time parameter-dependent dynamical system

T = f(z,a)

where © € R” is the vector of the phase variables, o € R™ is a parameter, and f is
smooth with respect to both x and a.

Varying the parameter, the phase portrait also varies. The appearance of a non-
equivalent topological phase portrait under variation of parameter is called a bifur-
cation. Thus, a bifurcation is a change of the topological structure of the system as
its parameters pass through bifurcation (critical) values.

Bifurcations which can be detected looking at the phase portraits of the system in
a small neighborhood of the equilibrium point are called local bifurcations or bifurca-
tions of equilibria. There are also bifurcations that cannot be detected by looking at
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small neighborhoods of equilibrium points. Such bifurcations are called global. How-
ever, there are global bifurcations in which certain local bifurcations are involved. In
such cases, looking at the local bifurcation provides only partial information on the
behaviour of the system.

Let @ = ap and consider a maximal connected parameter set (called a stratum)
containing o and composed by those points for which the system has a phase portrait
that is topologically equivalent to that at ag. Taking all such strata in the parameter
space R™, we obtain the parametric portrait of the system. The parametric portrait
together with its characteristic phase portraits constitute a bifurcation diagram. In
the simplest cases, the parametric portrait is composed by a finite number of regions
in R™. Inside each region the phase portrait is topologically equivalent. These regions
are separated by bifurcation boundaries, which are smooth submanifolds in R™ (i.e.,
curves, surfaces). The boundaries can intersect, or meet. These intersections subdi-
vide the boundaries into subregions, and so on. A bifurcation boundary is defined by
specifying a phase object (equilibrium, cycle, etc.) and some bifurcation conditions
determining the type of its bifurcation. When a boundary is crossed, the bifurcation
occurs.

The codimension of a bifurcation is the difference between the dimension of the pa-
rameter space and the dimension of the corresponding bifurcation boundary. Equiva-
lently, but rather informally, the codimension is the number of independent conditions
determining the bifurcation. This is the most practical definition of the codimension
since it makes clear that the codimension of a certain bifurcation is the same in all
generic systems depending on a sufficient number of parameters.

One-parameter bifurcations

Consider a one-parameter continuous-time dynamical system
t=f(z,a), z€R" acR,

where f is smooth with respect to both x and a. Let x = z, be a non-hyperbolic
equilibrium' in the system for @ = «,. There are, generically, only two ways in
which the hyperbolicity condition can be violated. Either a simple real eigenvalue
approaches zero and we have \; = 0, or a pair of simple complex eigenvalues reaches
the imaginary axis and we have A\ o = Fiwy, wy > 0 for some value of the param-
eter. The occurrence of the zero eigenvalue is relevant to a transcritical or to a fold
bifurcation, whereas the occurrence of a pair of pure imaginary eigenvalues leads to
a Hopf bifurcation.

1 An equilibrium is called hyperbolic if there are no eigenvalues of the Jacobian matrix of the system
evaluated at the equilibrium with zero real part.
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Transcritical bifurcation

The topological normal form of a generic one-dimensional dynamical system depend-
ing on one parameter having a transcritical bifurcation is the following

i=f(r,a)=az—2°, v€R, acR

This system has two equilibria 1 = 0, z3(«) = «. For the former, A = f.(z1,a) =
—a which implies that the equilibrium is stable when a > 0 and unstable when
a < 0; for the latter A = f,(z9, ) = «, so that it is stable when o < 0 and unstable
when o > 0. For a = 0, we have x; = x5 = 0, namely the equilibria collide, A = 0
and the equilibria exchange their stability at the bifurcation point.

Fold bifurcation

In non-symmetric systems, the occurrence of a zero eigenvalue is related only to a
fold bifurcation. The topological normal form of a generic one-dimensional system
having a fold (or tangent or saddle-node) bifurcation is the following. Consider the
one-dimensional dynamical system depending on one parameter

i=f(z,a)=a+2*, z€R.

At a, = 0 this system has a nonhyperbolic equilibrium z, = 0 with A = f,(0,0) = 0.
For a < 0 there are two equilibria in the system:

[ELQ(Oé) = :t\/—_Oé,

the negative one of which is stable, while the positive one is unstable. For a > 0 there
are no equilibria in the system. When « crosses zero from negative to positive values,
the two equilibria (stable and unstable) “collide”, forming at « = 0 an equilibrium
with A = 0, and disappear. In the (o, z)-plane, the equation f(z,a) = 0 defines an
equilibrium manifold, which is simply the parabola o = —x2.

Consider now the generic two-dimensional system
i=f(z,0), x=(z1,20)" €R’ a€R,

with a smooth function f, which has at & = 0 the equilibrium z = 0 with one
eigenvalue A = 0. The Jacobian matrix J(«) can be written as
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which entries are smooth functions of a. Its eigenvalues are the roots of the charac-
teristic equation
A —tr JXA+detJ =0,

where tr J = tr J(a) = a(a) + d(a), and det J = det J(a) = a(a)d(a) — b(a)c(a).
So,

1
Amunzi(ujmyt¢Ume—4®mn@).
The fold bifurcation conditions implies

tr J(0) £0, detJ(0) = 0.

Andronov-Hopf bifurcation

The bifurcation corresponding to the presence of \; o = £iwy, wy > 01is called a Hopf
(or Andronov-Hopf) bifurcation. Consider the following system of two differential
equations depending on one parameter:

{Izl = Q0ry — To — I1<Jf% + CU%)

Iy = 1 + axy — To(x] + 3)

This system has the equilibrium x; = 9 = 0 for all a with the Jacobian matrix

= (52

having eigenvalues \; o = o £ 4. This equilibrium is a stable focus for o < 0 and an
unstable focus for o > 0. At the critical parameter value o = 0 the equilibrium is
nonlinearly stable and topologically equivalent to the focus (sometimes it is called a
weakly attracting focus). This equilibrium is surrounded for each value of a > 0 by
an isolated closed orbit (limit cycle) that is unique and stable. Similarly, the system

T = ax) — 79 + 21(2? + 23)
.Yfg = + axry + 1'2(513'% -+ 36%)

undergoes the Andronov-Hopf bifurcation at @« = 0, and the equilibrium at the
origin has the same stability for a # 0: it is stable for a < 0 and unstable for
a > 0. Contrary to the previous system, its stability at the critical parameter value
is opposite: it is (nonlinearly) unstable at « = 0, and there is an unstable limit
cycle for each o < 0, which disappears when « crosses zero from negative to positive
values.
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If we consider the general form

T = ar) — wry + Ly (22 + 23)
Ty = wry + awy + liwo (22 + 23)

where w, [; € R and w > 0, we can rewrite the system in polar coordinates

{P =ap+Lp’

b =w.

This last form shows that the trajectory spirals around the origin at constant angular
velocity w, while the distance from the origin varies in accordance with the first
ODE, which is the normal form of the pitchfork. Thus, the stability of the cycle
depends upon the sign of [y, called the first Lyapunov coefficient. Moreover, the Hopf
bifurcation is supercritical if [ < 0 and subcritical if [y > 0. In terms of collisions, this
bifurcation involves an equilibrium and a cycle which, however, shrinks to a point
when the collision occurs. In the supercritical case, a stable cycle has in its interior
an unstable focus. When the parameter is varied the cycle shrinks until it collides
with the equilibrium and after the collision only a stable equilibrium remains. By
contrast, in the subcritical case the cycle is unstable and is the boundary of the basin
of attraction of the stable equilibrium inside the cycle. Thus, after the collision there
is only a repeller.

Let us now define the condition for a Hopf bifurcation. Consider now the generic
two-dimensional system
[t:f(a?,()[% x:($1,$2>T€R2, OCGR,

with a smooth function f, which has at a = 0 the equilibrium x = 0 with eigenvalues
A12 = Fiwg, wp > 0. The Jacobian matrix J(a) can be written as

b
J(a) = a(a) b(a)
c(a) d()
with smooth functions of « as its elements. Its eigenvalues are the roots of the
characteristic equation

A —tr JA+detJ =0,
where tr J = tr J(a) = a(a) + d(a), and det J = det J(a) = a(a)d(a) — b(a)c(a).
So,

1
Aala) = 5 <tr J(@) £ /tr J()? — 4det J(a)) .
The Hopf bifurcation condition implies

tr J(0) =0, detJ(0) =wj > 0.
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Two-parameter bifurcations

Consider a two-parameter continuous-time dynamical system

= f(z,a)

where x = (21, 9,...,2,)7 € R™is the vector of the phase variables, a = (a1, as)? €
R? is the vector of parameters, and f is a sufficiently smooth function of (z,a).
Suppose that at a = «, the system has an equilibrium z = =z, for which either
the fold or Hopf bifurcation conditions are satisfied. Then, generically, there is a
bifurcation curve B in the (ay, as)-plane along which the system has an equilibrium
exhibiting the same bifurcation.

More precisely, assume that at a = a, = (a1, as,) the system

= f(r,a), z€eR, a= ((1/1,042)T € R?,

has an equilibrium =z = z, with eigenvalue A = f,(z.,a,) = 0. The system of two
scalar nonlinear equations in R3

f(z,a) =0
fe(z,) =0

generically defines a smooth one-dimensional manifold I" C R3, in particular a curve,
passing through the point (z., 1., @s.). Each point (z, ) € I" defines an equilibrium
point = with zero eigenvalue at the parameter value «. The standard projection
7 (z,a) — o maps I" onto a curve B, in the parameter plane, called fold bifurcation
curve, and a fold bifurcation takes place on this curve.

Consider now a planar system

= flr,a), == (xl,:vg)T eR? a= (al,ag)T € R?,

having at @ = a, = (ai., a9,)? an equilibrium x, = (21, 22.)7 with a pair of
eigenvalues on the imaginary axis A\; o = +iw,. The system of three scalar nonlinear
equations in R* with coordinates (1, To, a1, as)

f($a a) =0,
tr J(z,a) =0,

defines a curve I" C R* passing through (z,, ). Each point on the curve specifies
an equilibrium of the system with A\, = +iw,, w, > 0 as long as det J(z,a) > 0.
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The standard projection of I onto the (ay, as)-plane yields the Hopf bifurcation
boundary Bp.

Let the parameters (aq, ay) be varied simultaneously to track a bifurcation curve
I'. The the following events might happen to the monitored nonhyperbolic equilib-
rium at some parameter values: extra eigenvalues can approach the imaginary axis,
thus changing the dimension of the center manifold W€, or some of the genericity
conditions for the codimension one bifurcation can be violated.

First, we consider the fold bifurcation curve B;. A typical point on this curve
defines an equilibrium with a simple zero eigenvalue \; = 0 and no other eigenvalues
on the imaginary axis. The restriction of the system to a center manifold W€ has the
form

£ = at?,
where, by definition, the coefficient a is nonzero at a nondegenerate fold bifurcation
point. While the curve is being tracked, the following singularities can be met:

e An additional real eigenvalue Ay approaches the imaginary axis, and W, becomes
two-dimensional:

)\120, )\2:0

These are the conditions for the Bogdanov-Takens (or double-zero) bifurcation.
To have this bifurcation, we need n > 2. Clearly, the Bogdanov-Takens bifurca-
tion can also be located along a Hopf bifurcation curve, as wgy approaches zero.
At this point, two purely imaginary eigenvalues collide and we have a double zero
eigenvalue.

e Two extra complex eigenvalues g 3 arrive at the imaginary axis, and W¢ becomes
three-dimensional:
)\1 = 0, /\273 = iiwo,

for wyg > 0. These conditions correspond to the fold-Hopf bifurcation. Obviously,
this bifurcation can occur only if n > 3.

e The eigenvalue A\; = 0 remains simple and the only one on the imaginary axis
(dimW, = 1), but the normal form coefficient a vanishes:
)\1 = O, a=0.

These are the conditions for a cusp bifurcation, which is possible in systems with
n > 1.
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We consider now a Hopf bifurcation curve By. At a typical point on this curve,
the system has an equilibrium with a simple pair of purely imaginary eigenvalues
A2 = twy, wo > 0, and no other eigenvalues with Re\ = 0. The center manifold
W€ is two-dimensional in this case, and there are (polar) coordinates (p, ¢) for which
the restriction of the system to this manifold is orbitally equivalent to

p = Z1p37

o=1,
where by definition, the first Lyapunov coefficient [ # 0 at a nondegenerate Hopf
point. While moving along the curve, we can encounter the following possibilities:

e Two extra complex-conjugate eigenvalues A3, approach the imaginary axis, and
W€ becomes four-dimensional:

/\172 = :tin, )\3’4 = j:iwl,

with wp; > 0. These conditions define the Hopf-Hopf bifurcation. 1t is possible
only if n > 4.

e The first Lyapunov coefficient [; might vanish while \; o = +iwy remain simple
and, therefore, dimW¢ = 2:

)\172 = :i:’iCUQ, ll =0.

At this point, a subcritical Andronov-Hopf bifurcation turns into a supercritical
one (or vice versa). We call this event a Bautin bifurcation or generalized Hopf
bifurcation. It is possible if n > 2. As for the cusp bifurcation, the Bautin bifur-
cation cannot be detected by merely monitoring the eigenvalues.

Thus, five bifurcation points can be met in generic two-parameter systems while
moving along codimension-one bifurcation curves. Each of these bifurcations is char-
acterized by two independent conditions. There are no other codimension-two bi-
furcations in generic continuous-time systems. It follows that in a planar system,
only three codimension-two bifurcation are possible, the Bautin, the cusp and the
Bogdanov-Takens. We report more details for these three types.
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Cusp bifurcation

Consider the system
= f(z,0), z€R, a=(a,a)’ €R?

with a smooth function f which has at a, = 0 an equilibrium xz, = 0. The system
has a cusp bifurcation in (z., a,) if

A= fo(re,a.) =0, a= %fm(:v*,oz*) =0. (0.1)

Assume also that the following genericity conditions are satisfied:

fwmc(Oa 0) = 07 (quwacg - fa2fxa1)(0a 0) =0. (02)

Then there are smooth invertible coordinate and parameter changes transforming
the system into

77:51+5277i7737

that is the topological normal form for the cusp bifurcation. This system (consider
for instance the plus) can have from one to three equilibria. A fold bifurcation occurs
at a bifurcation curve T' = (B, Bs) : 433 — 2737 = 0 on the (By, f2)-plane, given by
the projection onto the parameter plane of the curve I

Bi+ B —1n? =0,
P2 — 3m2 = 0.

The curve T" has two branches, T} and 75, which meet tangentially at the cusp point
(0,0) (see Figure 0.1). The resulting wedge divides the parameter plane into two
regions. In region @, inside the wedge, there are three equilibria, two stable and

one unstable; in region @, outside the wedge, there is a single equilibrium, which
is stable, and a fold bifurcation (with respect to the parameter ;) takes place if we
cross either T} or Ty at any point other than the origin. If the curve 77 is crossed
from region @ to region @, the right stable equilibrium collides with the unstable
one and both disappear. The same happens to the left stable equilibrium and the
unstable equilibrium at 7T5. If we approach the cusp point from inside region @, all
three equilibria merge together into a triple root of the right-hand side of the normal
form.

An useful way to present this bifurcation is to plot the equilibrium manifold of
the normal form
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Fig. 0.1. Bifurcation diagram in the parameter space of a one-dimensional cusp point [66].

M ={(n,B1,B2) : B1 + Ban £1° = 0},

in R3. The standard projection of M onto the (3;, 82)- plane has singularities of fold
type along the fold bifurcation curve except in the origin, where a cusp singularity
shows up. Notice that the fold bifurcation curve is smooth everywhere and has no
geometrical singularity at the cusp point, but it is the projection that makes the fold
parametric boundary nonsmooth.

The cusp bifurcation implies the presence of the phenomenon known as hysteresis,
a catastrophic jump to a different stable equilibrium (caused by the disappearance
of a traced stable equilibrium via a fold bifurcation as the parameters vary).

Bautin (generalized Hopf) bifurcation
Consider the planar system
= f(r,a), z=(r1,22)7 €R? a= (o, )" €R?

with a smooth function f which has at «, = 0 an equilibrium z, = 0. The system has
a Bautin bifurcation in (x,, ay) if the equilibrium has purely imaginary eigenvalues
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and the first Lyapunov coefficient vanishes:
)\172 = :l:’iWQ, wo > 0, ll = 0.

In the presence of this bifurcation, we can expect the existence of two limit cycles
for nearby parameter values. Moreover, they will collide and disappear along a curve
emanating from the codimension-2 point.

More precisely, the normal form in polar coordinates (p, ¢) has two independent
equations

o =1.
The second equation describes a rotation with unit angular velocity. The system
admits a trivial equilibrium p = 0 and positive equilibria of the first equation satisfy

ﬁ1+52p2—04:0

and describe circular limit cycles. This equation can have zero, one, or two positive
solutions (cycles). As can be seen in Figure 0.2, these solutions branch from the
trivial one along the line

{p = p(B1 + B2p® — pY),

H = {(B1,B2) : B1 = 0}
and collide and disappear at the half-parabola

T ={(B1,02) : B3 + 451 = 0,8, > 0}

The line H corresponds to the Hopf bifurcation. The equilibrium is stable for 5; < 0
and unstable for 5; > 0. The first Lyapunov coefficient [;(8) = (5. Therefore, the
Bautin bifurcation point f; = 8, = 0 separates two branches, H_ and H,, corre-
sponding to a Hopf bifurcation with negative and with positive Lyapunov coefficient.
A stable limit cycle bifurcates from the equilibrium if we cross H_ from left to right,
while an unstable cycle appears if we cross H, in the opposite direction. The cycles
collide and disappear on the curve T, corresponding to a nondegenerate fold bifurca-
tion of the cycles. The curves divide the parameter plane into three regions. In region
@ in the parameter plane the system has a single stable equilibrium and no cycles.

Crossing the Hopf bifurcation boundary H_ from region @ to region @ implies the
appearance of a unique and stable limit cycle, which survives when we enter region
@. Crossing the Hopf boundary H, creates an extra unstable cycle inside the first
one, while the equilibrium regains its stability. Two cycles of opposite stability exist
inside region @ and disappear at the curve T through a fold bifurcation that leaves
a single stable equilibrium.
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B1

Fig. 0.2. Bifurcation diagram in the parameter space of a Bautin point [66].

Bogdanov-Takens (double-zero) bifurcation
Consider the planar system
= f(z,a), == (a:l,xg)T eR? a= (al,ag)T € R?,

with a smooth function f which has at a, = 0 an equilibrium z, = 0. The system has
a Bogdanov-Takens bifurcation in (z,, o) if the equilibrium has two zero eigenvalues

)\172 =0.
The bifurcation condition implies that
det J(z4, ) =0, tr J(z,, ) = 0.

As for the Bautin bifurcation, the Bogdanov-Takens bifurcation gives rise to a limit
cycle bifurcation, namely, the appearance of the homoclinic orbit, for nearby param-
eter values.
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It can be proved that any generic planar two-parameter system & = f(z,a),
having, at a = 0, an equilibrium that exhibits the Bogdanov-Takens bifurcation, is
locally topologically equivalent near the equilibrium to one of the following normal
formes:

77.1 = T2,

1y = B1 + Bamn + ni £ mnp.
The equilibria of the system are located on the horizontal axis, 7o = 0, and satisfy
the equation

Bi + Bam +77% =0,

which can have between zero and two real roots. The discriminant parabola

T ={(p1,B:2) : 451 — 53 =0}

corresponds to a fold bifurcation. If 55 # 0, then the fold bifurcation is nondegenerate
and crossing 1" from right to left implies the appearance of two equilibria, F; and
E,. The point 8 = 0 separates two branches 7_ (5, < 0) and T (52 > 0) of the
fold curve. That passage through 7" implies the coalescence of a stable node E; and
a saddle point FEs, while crossing T, generates an unstable node F; and a saddle
FE5. The vertical axis f; = 0 is a line on which the equilibrium E; has a pair of
eigenvalues with zero sum: A\; + Ay = 0. The lower part,

H = {(B1,52) : B1 = 0,58, <0},

corresponds to a nondegenerate Hopf bifurcation, while the upper half-axis is a nonbi-
furcation line corresponding to a neutral saddle. The Hopf bifurcation gives rise to
a stable limit cycle, (I; < 0). The cycle exists near H for 5; < 0. The equilibrium
E5 remains a saddle for all parameter values to the left of the curve T and does
not bifurcate. There are no other local bifurcations in the dynamics of this system.
Looking at Figure 0.3, in region @ there are no equilibria (and thus no limit cycles).

Entering from region @ into region @ crossing the component 7" of the fold curve
yields two equilibria: a saddle and a stable node. Then the node turns into a focus
and loses stability as we cross the Hopf bifurcation boundary H. A stable limit cycle
is present for parameter values close to the left of H, which does not bifurcate in
region @ and approaches the saddle, turning into a homoclinic orbit at P. Then, an

unstable node and a saddle, existing for the parameter values in region @, collide
and disappear at the fold curve T';.
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Fig. 0.3. Bifurcation diagram in the parameter space of a Bogdanov-Takens point [66].
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Diffusion-driven instability in reaction-diffusion systems

Reaction-diffusion equations are widely used for modeling chemical reactions, bio-
logical systems, population dynamics and nuclear reactor physics. They are of the
form

uy = DAu+ f(u, \)

where u = (uy, ..., uy) represents various substances in a chemical reaction or species
of a biological system; A € RP is a vector of control parameters, A is the Laplace
operator in the spatial variables and D € R*** is often diagonal and corresponds
to the diffusion rates: they describe diffusion of different substances or species. The
function f : R¥ x R? — R* is a vector of smooth non-linear functions and represents
the reaction among the substances.

Looking at chemical reactions, Turing (1952) suggested that, under certain con-
ditions, chemicals can react and diffuse in such a way as to produce steady state
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heterogeneous spatial patterns, due to a diffusion-driven instability of the steady
state.

A reaction-diffusion system exhibits diffusion-driven instability, sometimes called
Turing instability, if the homogeneous steady state is stable to small perturbations in
the absence of diffusion but unstable to small spatial perturbations when diffusion is
present. The interplay between interaction (the nonlinear kinetics) and diffusion is
crucial in driving the spatially inhomogeneous instability: these mechanism determine
the spatial pattern that evolves. In the following, we deduce necessary and sufficient
conditions for diffusion-driven instability of the steady state in the case of linear
diffusion (diagonal D) and also in the case of cross diffusion (more complex diffusion
terms).

Turing instability analysis

We deduce here the necessary and sufficient conditions for diffusion-driven instability
of the steady state and the initiation of spatial pattern for a general system of two
reaction-diffusion equations.

We assume that the process happens in a bounded region 2 C R”, assumed to
be smooth (C?), bounded and connected, where the “molecules” (individuals) are
moving. We shall concentrate on the case when the “molecules” diffuse (each species
has its own diffusion velocity) within a non-reactive background (supposed to be at
rest). All reaction-diffusion systems can be adimensionalized and scaled to take the
general form

uy — Au = vf(u,v),
Uy — dAU = 79(“? U)a

where the unknowns are u := wu(z,t) and v := v(x,t) (t € Rz € §2), f, g are
smooth non-linear functions and represent the reaction among the substances (or the
interaction mechanisms between species), d > 0 is the ratio of diffusion coefficients
and vy represents the relative strength of the reaction terms. We shall assume that
molecules (species) are confined in the region {2, so that the flux of density of each
species at the boundary 02 is 0. This gives the homogeneous Neumann boundary
conditions, no density flux of each species at the boundary:

n(z) -Veu=0, n(z) -Vo=0, x€df,

where 0f? is the closed boundary of the reaction diffusion domain {2 and 7 is the
unit outward normal to df2. In addition, we consider initial conditions
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u(x,0) = up(x), v(z,0)=wv(z), =€

Since we are concerned with diffusion-driven instability, we are interested in linear
instability of homogeneous steady state that is solely spatially dependent. In detail,
with no spatial variation v and v satisfy the ODE system

uy = v f(u,v),
vy = v9(u,v);

an homogeneous steady state (ug,vg) is a steady state for the reaction part with no
spatial variation, namely the solution of

flu,v) =0, g(u,v) =0.

A necessary condition to have Turing instability is that, in absence of any spatial
variation, the homogeneous steady state must be linearly stable: we first determine
the conditions for this to hold. Linearising about the steady state (ug,vo), we set

U — Ug
w = s
UV —

and the homogeneous system becomes, for |w| small,

fu  Jo

wy =yJw, J= < .
Ju Gy

|(uo,v0)

We now look for solutions of the form
w o e

where A is the eigenvalue. The steady state w = 0 is linearly stable if ReA < 0 since
in this case the perturbation w — 0 as t — oo. The eigenvalues A\ are the solutions
of det(yJ — AI) = 0, which is equivalent to

AN = v(fu+ g)A+ ¥V (fugo — fogu) = 0.

Linear stability, that is ReA < 0, is guaranteed if and only if
tr J=fu+g, <0, detJ= fug, — fogu >0,

which in general impose certain constraints on the parameters.
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Now consider the full reaction diffusion system and again linearise around the
steady state, which is w = 0, to get

1 0
wy =vJw+ DA w, D= )
0 d

To solve this system of equations subject to the boundary conditions, we first define
W (z) to be the time-independent solution of the spatial eigenvalue problem defined
by

AW + E2W =0, (z) VW =0

for x on 02 where k is the eigenvalue.

If the domain is one-dimensional, for example the interval [0,a|, we have that
W  cos(nmz/a) where n is an integer. The eigenvalue in this case is k = n7/a and
1/k is a measure of the wavelike pattern and it is proportional to the wavelength
w = 2w /k = 2a/n; the eigenvalue k is called wavenumber. From now on, we refer
to k as the wavenumbers. With finite domains there is a discrete set of possible
wavenumbers since n is an integer. If we consider a two-dimensional domain, for
example the rectangle [0, L,| x [0, L, ], we have that W o cos(kyma/Ly) cos(kemy/L2)

with k1, ko € N and
ki \? [k \?
L, L, '

Let Wi (z) be the eigenfunction corresponding to the wavenumber k. Each eigen-
function W}, satisfies zero flux boundary conditions. Because the problem is linear
we now look for solutions w(x,t) in the form

w(x,t) = Z creMWi (),

k

where the constants ¢, are determined by a Fourier expansion of the initial condi-
tions in terms of Wi (z), and A is the eigenvalue which determines temporal growth.
Substituting this form into the linearized reaction-diffusion equation and eliminating
eM, we get, for each k,

AWy, = v JWy, — DE*W,,.

We look for nontrivial solutions for Wy so the A\ are determined by the roots of the
characteristic polynomial

det(\ —~J + DE?) = 0,
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which is equivalent to find the eigenvalues of the matrix M), = vJ — Dk?. We get
the eigenvalues A(k) as functions of the wavenumber & as the roots of

N+ AR (L + d) = (fu + g0)] + h(K*) =0,

where

h(k?) = dk* — y(df, + go)k* + 7% det J.

Note that the coefficient of X\ is —tr My, while h(k?) = det My; since tr M}, < 0
for all k, the only way to have an unstable steady state to spatial disturbances
is that det M, < 0 for some k. Let us consider the equation for A. The steady
state (ug,vo) is unstable to spatial disturbances if ReA(k) > 0 for some k # 0.
Since tr J = (fy, + ¢,) < 0 and k2(1 +d) > 0 for all k& # 0, the only way is that
h(k*) < 0 for some k. Since we required detJ > 0 for the homogeneous steady
state, the only possibility for h(k?) to be negative is that (df, + g,) > 0. Since
(fu+ g») < 0, this implies that d # 1 and f, and g, must have opposite signs. So,
a further requirement to those implicated by the linear stability of the homogeneous
steady state is df, + g, > 0, so that d # 1. This inequality is necessary but not
sufficient for ReX > 0. For h(k?) to be negative for some non-zero k, the minimum
homin must be negative. Elementary differentiation with respect to k? shows that

(dfu+ 90)°
4d ’

dfu + v
k2. = JY
mwn fy 2d J

Rin = 72 det J —
thus the condition that h(k?) < 0 for some k? # 0 is
(dfu + go)* — 4ddet J > 0.

At bifurcation, when h,,;, = 0, from the definition of h,,;,, we require det J =
(dfy + g,)?/4d, which is equivalent to

d2f5 + 2(2fvgu - fugv)d + 93 = 07

and so for fixed parameters this defines a critical diffusion coefficient ratio d.(> 1)
as the appropriate root of this equation. The critical wavenumber k. is then given by

2 _
ke = 2d.. d.

defu + Go det J
Y7 =7

Whenever h(k?) < 0, the equation for A\ has a solution which is positive for the
same range of wavenumbers that make h < 0. With d > d. the range of unstable
wavenumbers k? < k? < k3 is obtained from the zeros k7 and k3 of h(k?) = 0 as
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K2, = %z <(dfu + gv) £ /(dfu + 90)% — Addet J) .

If we consider the solution w, the dominant contributions as ¢ increases are those
modes for which ReA(k?) > 0 since all other modes tend to zero exponentially. We
determine the range k¥ < k? < k2, where

w(zx,t) Z koW ()
k1

for large t.

Summarizing, the conditions for the generation of spatial patterns by two-species
reaction-diffusion mechanisms are

tr J = fu+g, <0,

det J = fugy — fugu >0,

dfu + go > 0,

(dfu + 90)* — 4d(fugo — fogu) > 0,

remembering that all derivatives are evaluated at the homogeneous steady state
(Uo,l}o).

Turing instability analysis with cross-diffusion

Recently, non-linear diffusion terms, or cross-diffusion, have appeared to model dif-
ferent physical phenomena in different contexts like population dynamics, ecology,
and chemical reactions [36, 96, 39]. Cross-diffusion terms should be introduced when
the gradient of the density of one species induces a flux of another species. In this
context, the general two-species reaction-cross-diffusion system is

u — Ag(a(u,v)) = f(u,v)

vy — Ay (b(u,v)) = g(u,v),
where the unknowns are u := wu(z,t) and v := v(x,t) (t € R,z € 2), f, g are
smooth non-linear functions and represent the reaction among the substances (or the

interaction mechanisms between species), a, b are smooth functions depending on
both u, v. Also in this case, we consider homogeneous Neumann boundary conditions

n(z) -Veyu=0, n(z) -Vo=0, x€df,
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where 0f2 is the closed boundary of the reaction diffusion domain {2 and 7 is the
unit outward normal to 0f2, and given initial conditions

u(z,0) =up(x), v(x,0)=uwvy(x), =€

Here we study the Turing bifurcation in the presence cross-diffusion, looking at
determining the threshold as usual by a linear stability analysis. Following the lin-
ear case, we consider an homogeneous steady state (ug,vg), which is stable for the
reaction part. The linearised system in the neighbourhood of (ug, vg) is

wy = Jw + DA w, wz(u_uo),

UV — g

where now

g Ji1 Ji2 o fu fv D di1 dy2 . Ay Qy
N Ja1 J2o - Gu 9o ’ N da dao - by b, .
[(uo,v0) [(uo,v0)

In this case, the diffusion matrix is no longer a diagonal matrix as in the previous
section because generally non-zero off-diagonal elements appear in the matrix D.
Furthermore, the cross-diffusion coefficients become effectively constant; their value
is determined by the homogeneous steady state of the system. If the cross-diffusion
term is positive, di; > 0, then the flux of species k is directed toward decreasing
values of the concentration of species j , whereas dj; < 0 implies that the flux is
directed toward increasing values of the concentration of species j.
We are interested in the eigenvalues of the matrix

Jii — dy K2 Jia — d21k2>

M, =J— Dk*=
J21 - d21k2 J22 - d22k2

The Turing instability sets in when at least one of the following conditions is

violated for some k:
tr M, <0, det M, > 0,

where
tr M, =tr J —tr D,

det Mk =det D ]{34 - (d11J22 — d12J21 - d21<]12 + d22J11>k32 + det J.

In general the sign of the elements of the diffusion matrix D, and then of the trace and
the determinant, is not prescribed. If we assume that both main (linearized) diffusion
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coefficients dy;, doo are positive, the condition on the trace of M} is always satisfied
when the homogeneous steady state is linearly stable for the reaction part. Hence,
only the violation of the second condition gives rise to diffusion-driven instability.
Thus, the condition for diffusion-driven instability occurs when

det Mk =det D ]{14 — <d11J22 — d12J21 — d21J12 + dggjll)k2 + det J < 0.

Again, in general we sign of the determinant of the diffusion matrix D is not pre-
scribed. However, for instance for chemical systems, thermodynamics imposes, in
addition, the constraint that all eigenvalues of the diffusion matrix must be real and
positive, which implies that tr D > 0 and det D > 0 [75]. If we also assume that
det D > 0, then

di1Jae — di2Ja1 — da1J1g + daaJ1n > 0

is a necessary, but not a sufficient, condition for a Turing instability. The onset of
the Turing instability occurs when det M}, < 0 which holds if
(d11J22 — d12<]21 — d21J12 + d22J11>2 > 4det Jdet D.

Summarizing as in the linear case, when tr D < 0 and det D > 0, the conditions
for the generation of spatial patterns by two-species reaction-diffusion mechanisms
are

tr J <0,
det J > 0,

di1J29 — diaJa1 — da1J12 + doaJin > 0,
(d11J22 — d12J21 — d21J12 + d22J11>2 > 4det Jdet D.

If these conditions holds, then the equilibrium (ug, vg) is cross-diffusion-driven insta-
bility (Turing instability).
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Introduction

This Part' deals with the dynamics of a predator-prey system described in terms
of a lumped parameter model [68, 24|, in which the demographic structure of the
populations is neglected, in particular the stage structure for insects and mites (eggs,
larvae, pupae, adults). Thus, the predator and prey populations may be characterized
by just one state variable, representing their abundance in terms of biomass/spatial
unit. Moreover, we assume a limited and controlled environment (for instance a green-
house, in which temperature and humidity are maintained approximately constant)
so that we can consider time independent bioecological parameters, and neglect the
spatial distribution of the individuals.

In this framework, the local dynamics of a predator-prey system is described by
a system of two ordinary differential equations and is mainly characterized by the
formulations of the prey growth rate, in the absence of predators, and of the prey
consumption rate by predators. Let these rate be expressed as

prey growth rate = r XG(X), (1.1)
prey consumption rate = Y F(X,Y), (1.2)

where X and Y are prey and predator abundances (here we assume that it is mea-
sured in terms of biomass/spatial unit). The model functions G(X) and F(X,Y") are
specific rates and their shapes determine the type of prey growth (r is, in general, the
maximum specific growth rate) and predation processes, respectively. They strongly
depend on the basic assumptions made on the bioecological processes to be simulated
and their shape is often unknown, thus only some of their qualitative properties can
be specified. In this case, we are dealing with a generalized or partially specified model
[47, 63, 103], which retains considerable structure, but involves a much less specific

! Most of the contents of this Part appeared on Nonlinear Analysis: Real World Applications 30 (2016):
143-169 [26].
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assumption about the nature of the predation process and the type of growth than a
fully specified model, where the main functions are spelled out clearly with a specific
parametric expression. The hope is that models specified in this fairly general way
will be capable of closer approximation to reality than more tightly specified ones,
especially by the model fitting point of view.

The main purpose of this work is to investigate the dynamical behaviours of a
predator-prey system, when the model functions describing the biological processes
occurring in the considered trophic chain are not specified by analytical expressions,
but by some characteristic properties determining their shapes. It will be shown that
this is feasible for the existence and stability analysis of the equilibrium states of
the system: indeed, existence and stability conditions of the equilibrium states can
be established in a general framework in terms of some crucial parameters. Unfortu-
nately, the stability analysis of limit cycles cannot be easily performed following this
general approach, and the model functions have to be specified to go further in the
qualitative analysis. Other authors [47, 63| presented a quite similar approach to the
investigation of the dynamics in generalized models, in which the processes that are
taken into account are not restricted to specific functional forms (in some cases there
are no hypothesis on the general functions). As in this work, that approach allows
to study the dynamical properties of generalized models in the framework of local
bifurcation theory. On the contrary, the key assumption is that at least one steady
state exists and the local asymptotic stability analysis of that (unknown) steady state
is then performed. Our point of view is different: assumptions on the prey growth
function and on the functional response are required, in order to take into account
biological properties and also to limit the number of the equilibrium states admitted
by the system. Furthermore, the stability and bifurcation analysis is studied for each
equilibrium state.

In the development of predator-prey theory, different formulations of the prey
growth rate, in absence of predators, have been proposed in the literature. In the
classical predator-prey model of Lotka-Volterra G(X) = 1, i.e. the growth of the
prey is exponential. This assumption holds for small X: when all trophic relations in
the system are strained and almost all the prey is consumed by the predator, always
hungry (a quite frequent situation in nature). This choice has been criticized since it
neglects the overcrowding effect, i.e. the restriction in population growth due to the
limits of the habitat’s carrying capacity: in this case G(X) should become negative
for sufficiently large X. To this end, Volterra himself [101] proposed the use of the
logistic model

X

(1.3)
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where KT is the carrying capacity of the habitat [100]. Another classical model,
taking into account the overcrowding effect, is the Gompertz model [45, 102]:
G(X) = log(Kt/X); we note that in this case r in (1.1) does not represent the
maximum specific growth rate, but a dimensional scale for the growth rate itself.
Also Kolmogorov [62], in his very general predator-prey model, considered only the
overcrowding effect in the prey growth by assuming G/(X) not specified by any ana-
lytical expression, but characterized by the monotonicity condition

G'(X) <0, G(0) =1, IEIEOO G(X) <0. (1.4)
In the last decades, the predator-prey dynamics resulting from the choice of a mono-
tonic G(X), namely considering only the overcrowding effect on the prey growth,
have been widely investigated by many authors (for more details see [23] and refer-
ences therein).

On the other hand, it is known that natural populations may exhibit either neg-
ative or positive correlation between G(X) and X, depending on the range of abun-
dance ([8], [93], [92] p.17, [104] p.275). In particular, these effects are found in pop-
ulations of bisexual organisms and/or with a team behaviour and a mutual help
[65]. A detailed treatment, from the ecological viewpoint, of different types of these
non-monotonic relationships (the so-called Allee effect [91]) is given in Allee et al. [9].

Mainly two types of Allee effects in prey population have been considered in the
literature (see for instance |7, 19, 20, 30, 42, 61, 65, 46, 91, 90, 94, 98, 106]): the weak
and the strong (or critical) Allee effect, depending on the fact that the prey growth
function G(X) is non-negative or negative, respectively, for small X [94]. According
to |94], if there is an Allee effect, then the prey growth function must have a positive
slope at X = 0. In addition, in case of strong Allee effect, the function G(X) becomes
negative for sufficiently small values of X. Thus, the problem of minimum population
size arises ([43], [104] p.275), and it is worth noticing that the extinction thresholds
are often difficult to quantify ([104] p.275, [95], [19]).

To simulate the Allee effect, many authors |20, 42, 61, 46, 94, 98, 106] use a
multiplicative factor to the logistic term (1 — X/K™), while other authors |7, 30, 65,
90| use an additive term (which can be rewritten, in the case of strong Allee effect,
as multiplicative factors with real zeros). Also the models listed in [19] (except one,
namely [60]), for a single species dynamics, simulate the Allee effect in the same way.
In all these models the growth function G(X) can be expressed as

_X)::a0+a1x7K+-@/K+y (ao + X/K*) (1 — X/K™)

N — . (1.5)

X:
G(X) % Do + b1 X/K+ Do + b1 X/K+
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where a;, b; are adimensional coefficients with a; = 1 — ag, by > 0, by = 0,1. The
function G(X) defined in (1.5) has one positive zero in X = K. When ag > 0
the second zero is non-positive, and G(X) simulates a weak Allee effect. Otherwise,
when ag < 0 the second zero is positive and G(X) simulates a strong Allee effect. We
note that also the prey flux model considered in [61] and [98] can be described by a
function G(X) as in (1.5) with by = 0 and b; = 1. The weak Allee effect, considered
by Zhou et al. [106] is instead modeled by decreasing the Malthusian prey growth
rate using a monotonic Holling-type II factor (Allee effect I in [106]).

The functions G(x) defined by (1.5) are not bounded for increasing X:

lim |G(X)| = +o.

X—+o0

However, the overcrowding effect can be taken into account also in terms of bounded
functions. As a first bounded model, let G(X) be defined as follows

G(X)asin (1.5) for X < Xp; G(X)=G(Xy) for X > Xy > K. (1.6)

A second bounded model can be formulated in terms of a birth rate which is increas-
ing for small X, and then decreasing and vanishing as X — +oo, together with a
constant death rate. A possible analytical realization of this model is given by

G(X) = g(%) ~ K%)V exp (71)_(0)/(—}/(?> - 1} | (1.7)

where 0 < v < 1, and Xj is the maximum point for G(X); its expression in terms of
the two zeros K~ and K of G(X) is

XO 1—c¢ ith K~
— = wi €= —.
K+ log € K+

In absence of predators, the evolution of the prey population is governed by the
equation

dX
s =rXG(X). (1.8)

If the function G(X), describing the strong Allee effect, is defined as in (1.5)-(1.7),
then we have three equilibrium states for the equation (1.8): X, =0, K—, K. Their
stability properties are independent of the choice of the specific shape of G(X): 0, K+
are asymptotically stable, while K~ is unstable. Typical behaviours of the growth
functions G(X) as defined in (1.5)-(1.7) and the corresponding trends of XG(X) are
shown in Figure 1.1.
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G(X) XG(X)
1 1
0 0
(3.5)
0K~ KT K- K+
1 1
0f # % 0
(3.6)
K KT K- K+
1 1
0 0
(3.7)
K KT K- KT

Fig. 1.1. Typical behaviours of the growth functions G(X) as defined in (1.5)-(1.7) (left) and the corre-
sponding trends of XG(X) (right).

The general function in (1.2) F(X,Y) is called the trophic function and describes
the predator functional response to prey abundance (|92, p. 80]). It was introduced in
predator-prey models to take into account the saturation limiting the predation pro-
cess. To have a biologically meaningful interpretation some qualitative assumptions
on F(X,Y) about the dependence on X and Y have to be required:

F(X,Y)>0 X>0,Y>0,  F0Y)=0  lim F(X,Y)<+o0
— 400
OF oF
ax >V gy <0

At first, the trophic function was assumed to be dependent only on prey abundance
(|13, 55, 58, 86| and [92, p. 109-112]). Moreover, the Holling-type II [55] or the Ivlev
type [58, 86] models were introduced to simulate the saturation effect of the predation
process. This formulation of F' only in terms of X gives rise to the “paradoxes of
enrichment and biological control” [11, 16, 44], and it is unable to generate the
outcome of the extinction of the two populations [11] without taking into account a
strong Allee effect in the prey growth [20].
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Later, the notion of per-capita availability of food was introduced. It was suggested
that the trophic function should be expressed in terms of the ratio X/Y of prey to
predator abundance [11, 44, 49]:

F(X,Y) = bf (%) | (1.9)

where b is the maximum prey consumption rate and P is referred to as the efficiency
of the predation process. This formulation solves the above-mentioned paradoxes, and
in addition allows to describe experimental observations, in particular the extinction
of predator or both prey and predator populations, without resorting to the Allee
effect. However, in this approach the trophic function has a singularity in the origin
X=0, Y=0. This problem is solved by some authors by the blow-up method [15] or
by a time rescaling [4]. Some other authors [97] modified the ratio X/Y by adding
a small constant A in the denominator, so that they wrote f(PX/(Y + A)), and
this trick [97] “...would alleviate the problem. Although this addition may appear
difficult to justify biologically, Gutierrez [49] used an exponent of this form in his
functional response term” of Ivlev type. It is worth noticing that the total extinction
is a possible outcome when A = 0, while it cannot be obtained with this non-singular
trophic function for any A > 0, as treated in detail in [23]. The efficiency P in (1.9)
is assumed to be constant by some authors in their models [11, 15, 44]. On the other
hand, it could be assumed predator-dependent [1, 14, 29, 50]: P(Y") has to increase
with Y, with a saturation effect for increasing Y due to the predator interference
during foraging, and P(Y)/Y has to decrease with Y to satisfy 0F/JY < 0. Note
that, under the assumption that P(Y) c Y as Y — 0, the trophic function is no more
singular in the origin. Different formulations have been proposed in the literature for
F(P(Y)X/Y). Gutierrez et al. [50] proposed an Ivlev-type formulation for both f(-)
and P(-), while Beddington, DeAngelis and co-authors [1, 14, 29, 88] proposed a
Holling-type II for both f(-) and P(+).

In this Part we will study a two-species, one-sex prey-predator model with a suffi-
ciently general formulation, regarding both the growth of the prey and the interaction
between prey and predator. The general properties of G(X) and F(X,Y) assumed
in this work are here enlightened. We will consider non-monotonic G(X) to include
the effects of both undercrowding and overcrowding of the prey. The growth function
G(X) is not specified by an analytical expression, but by the main properties of the
functions defined in (1.5)-(1.7) (Figure 1.1), suitable to model a strong or critical
Allee effect (according to |7, 19, 42, 65, 91, 94]): G(X) should be negative and in-
creasing for sufficiently small X, positive between K, referred to as the minimum
population size ([43]; [104], p. 275), and K™, often referred to as the carrying capac-
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ity of the environment ([92, p. 26]), and negative and non-increasing for sufficiently
large X. The predator-dependent trophic function given by

PX

where K is a reference biomass, Py and Hy are adimensional parameters: P, denotes
the predation efficiency and Hj is a measure of the predator interference process.
Regarding the trophic function f(-), we prefer, until it is feasible, to introduce just
one argument, instead of using a two-arguments function; this allows us to formulate
its properties in a more concise form. The behaviour described by such functions
shows some interesting features, e.g. the appearance of further equilibrium states,
with different stability properties. Consequently, the dynamics of the system would
exhibit a richer set of outcomes, depending on the range of values of the ecological
parameters introduced in the model equations.

This Part is organized as follows. In Chapter 2 the basic assumptions and equa-
tions for the local dynamics of a predator-prey system are presented: the equations
are written in terms of the adimensional variables X/K* and Y/K™, the growth of
the prey takes into account a strong Allee effect, and the interactions between prey
and predator are determined by a trophic function as in (1.10). Then the stability
properties of the non-coexistence equilibrium states are summarized and an existence
and stability analysis of the coexistence equilibrium states is performed: parameters
related to Py and H, will be assumed as bifurcation ones. In Chapter 3 results of
numerical simulations, obtained for some concrete realization of the model functions,
are presented to illustrate the behaviours of the system. Such results confirm ana-
lytical predictions and throw light on some aspects of the dynamics of the system.
In Chapter 4 some concluding remarks can be found and results are commented on
with reference to the existing literature. At the end of this Part, in Appendix A
details on some crucial parameters can be found; in Appendix B more detail about
the detected cusp bifurcation point are reported. For the readers’ convenience, the
symbols used in this Part have been collected in Appendix C.






2

The prey-predator model and the equilibrium
stability analysis

In this Chapter we introduce the model equations of the considered predator-prey
system, where the model functions describing the biological processes occurring in
the considered trophic chain are not specified by analytical expressions, but by some
characteristic properties determining their shapes. It will be shown that this is fea-
sible for the existence and stability analysis of the equilibrium states of the system,
assuming two bifurcation parameters.

2.1 Basic assumptions and model equations

We consider the dynamics of a predator-prey system described in terms of a lumped
parameter model [68, 24], in which the demographic structure of the populations is
neglected, in particular the stage structure for insects and mites (eggs, larvae, pu-
pae, adults). Thus, the predator and prey populations may be characterized by just
one state variable, representing their abundance in terms of biomass/spatial unit.
Moreover, we assume a limited and controlled environment (for instance a green-
house, in which temperature and humidity are maintained approximately constant)
so that we can consider time independent bioecological parameters, and neglect the
spatial distribution of the individuals. With these assumption, and taking into ac-
count the expression (1.10) for the trophic function, the balance equations for the
local dynamics of the two trophic levels in a controlled environment are written as

ax _

dt
ay ( P X
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where X and Y are prey and predator abundances (here we assume that it is mea-
sured in terms of biomass/spatial unit), and the model functions G(X) and f(X,Y)
are specific rates and their shapes determine the type of prey growth (r, is, in general,
the maximum specific growth rate of the prey) and predation processes, respectively.
The parameters b is the maximum specific rate of prey consumption, m is the specific
rate of predator mortality, ¢ is a conversion factor which measures the conversion ef-
ficiency from prey to predator biomass; K is a reference biomass, Py and H, are
adimensional parameters: Fy denotes the predation efficiency and Hj is a measure of
the predator interference process. Let
X Y K+ Kt

= Y p=F—, h=Hy—,

. T K+ K, K,

then the previous system can be rewritten in terms of adimensional variables (and
considering also the initial conditions)

(d —mmg(w)—byf( P )

dt 1+ hy

dy p (2.1)
=2 — ¢h _ .
a =l <1 +hy) m

(z(0) =2, y(0) =y,

where p and h are adimensional parameters referred to as predation efficiency and
predator interference during the predation process. The functions g(-) and f(-) should
satisfy some regularity and general assumptions dictated by biological considerations.
It is assumed that

Jde: 0<e<1, gle)=9g(1)=0; g(s)(s—e€)(1—s)>0, s#e]1; (2.2)
f(0) =0, Sg?mf(s) =1, f'(s) >0, s>0. (2.3)

Hereafter the prime indicates the derivative with respect to the argument. The as-
sumption (2.2) implies that the function g has only two zeroes, € and 1, that it is
positive when ¢ < z < 1 and negative when 0 < z < € or x > 1. The parameter € is
the ratio between minimum and maximum population size

e=K /KT,

so that it represent the minimum population size, while 1 is the carrying capacity of
the adimensional system. With these assumptions, such g is suitable to model a strong
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Allee effect (according to |7, 19, 42, 65, 91, 94]). With the assumption (2.3) we are
taking into account the saturation in the predation process. Moreover, some further
technical assumptions on the smoothness of these functions are required to limit the
number of equilibrium states of (2.1) and to make the stability analysis tractable.
We will assume: just one maximum when ¢(s) is positive, just one inflection point of
sg(s) when g(s) is positive and increasing, a weaker than negative convexity when
g(s) is positive and decreasing, and a weaker than negative convexity for f(s). These
conditions can be written as

& :e<é <1, 9&)=1,9(%)=0; ¢(s)(&—5) >0, e<s<1, s#&, (2.4)
o e <o <&, [s9(s)]iy, =0, [s9(s)]" (0 — 8) >0, € <5 <&, s#m; (2:5)

[sg'(s)] <0, & <s<1; (2.6)
{@}/ < 0, s> 0. (27)

Remarks.

(I) Condition (2.4) on the prey-growth function requires that only one maximum
point &, exists in (0, 1) (where the function is positive). Then, the function g(s)
is normalized so that g(&) = 1, in order to have r, as the maximum specific
growth rate. This means that there is an optimal population size corresponding
to a maximum rate of growth r,: for value smaller than &, the individual could
be very few and too sparse, while for greater values the competition for resources
becomes evident.

(II) The expression in conditions (2.5) and (2.6) can be written as

[s9(s)]" = é [°9'(s)]" = 24/ (5) + 59" (s), [sg'(s)] = g'(s) + 59" (s).

Thus, for {§, < s < 1, namely when g(s) is positive and decreasing, condition
(2.6) is stronger than (2.5). Moreover, these conditions allow the function sg(s)
to have an inflection point in (e, &), which is fundamental for the description of
the Allee effect. Then, they could be considered as the minimal assumptions on
the growth function to describe a strong Allee effect.

(ITT) Conditions (2.6) and (2.7) are weaker than ¢”’(s) < 0 and f”(s) < 0, re-
spectively. In fact, when ¢'(s) < 0, as it is in the interval (&, 1], we have that
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g"(s) < 0= [s¢'(s)]" < 0. Furthermore, it can be proved that conditions (2.3)
and (2.7) implies that the function f does not have any inflection point, and f
has negative concavity. This excludes for instance the Holling-type IIT trophic
function. Since the argument of this function is px/(1 + hy), this means that for
small prey densities or large number of predators, either the case in which the
predator has an alternative source of food or the prey has a number of shelters
inaccessible to the predator are excluded [13].

The required properties (2.2)-(2.7) are fulfilled for instance by the following model
functions, widely used in literature (see references in [25]):

Prey growth: g(s) = go(s —e)(1 —s), (2.8)
9(s) = g0 (seXp (15_8) - 1>, (2.9)
Trophic Functions: f(s) = 1 j_ o (2.10)
f(s) =1—exp(—s), (2.11)

where g is such that g(&) = 1 (namely, gy = 4/(1—¢)? in (2.8) and gy = [y exp((1—
€0)/&)—1]"in (2.9), with & = —(1—¢)/log €). The function (2.8) is the Gilpin model
[42], (2.9) is from [25], (2.10) is the Holling-type II trophic function [55] and (2.11)
is the Ivlev model |58, 86]. It is worth noticing that, choosing the expression (2.10)
for the trophic function f leads to the Beddington-DeAngelis functional response:

p(pe N e
L+hy) 14+pr+hy

2.2 Attractive invariant set

We are interested in positive solutions to (2.1). It is possible to show that all solutions
initiating in RS are bounded and eventually enter an attracting set, that it is shown
in Figure 2.1.

Theorem 2.1. Under the assumptions (2.2) and (2.3) the closed set

Q:{(x,y)eRiw 0§x§1,0§m+g§1+r—x}
c m

is positively invariant, and for all initial states E = (7,9) € RY the trajectory
(x(t),y(t)) eventually enters into {2 as t — +00.
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1+4+r,/m

re/m

Fig. 2.1. Positively invariant and attractive set for system (2.1).

Proof. The proof is a straightforward application of the comparison theorem for
ODE’s and makes use of suitable bounds for the right hand side of (2.1) [38].

First, we have that the axes are trajectories, then they can not be crossed; this
ensures that the solutions starting from positive initial conditions remain positive. In
particular, if we choose an initial conditions on the y-axis, the first equation of (2.1)
reduces to £ = 0 and the second to y = —my; then, the y-axis is a trajectory pointing
towards the origin. Analogously, if we choose an initial condition on the z-axis, the
second equation of (2.1) reduces to y = 0 and the first to & = r,xg(x); then, the
positive z-axis is an union of three trajectories, separated by three stationary states
r=0 z=¢ =1

Consider now (x(t),y(t)) solution of (2.1) with initial condition z(0) = xy > 0
and y(0) = yo > 0. Due to the positivity of y and assumption (2.3), we have that

T =ryxg(x) —byf (1 iﬁw) < ryzg(x).

We can consider the reduced system
{f = r,Z9(T) (2.12)

for which Z(¢) = 1 is a stationary solution. Therefore, if 0 < 7y < 1 then 0 < Z(¢) < 1.
Thanks to the comparison theorem for ODE’s applied to system (2.12) and
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& =ryxg(x) —byf (1 _I;xhy)
.CL'(O) = .f'o,

(2.13)

with 0 < z(t) < Zo < 1 and where y is thought as a positive parameter; it follows
that 0 < z(t) < 1if 0 < zp < 1.
Consider now initial data (zo,yo) such that

Yo

T
I0+_§1+_7
C m

and a linear combinations of the differential equations of (2.1) for which we have
i+ = ryxg(r) — m? £ mz = z(ryg(z) +m) —m (x + Q) :
c c c

Because 0 < x < 1 and 0 < g(x) < 1, we have

y
c

—|—m<x+%) :x(rxg(x)—km)gm(%—kl).

T+
Putting z = x + y/c (then zg = xo + yo/c), we obtain that

z‘+mz§m<r—$+1)
m

which can be multiplied by e”™ and integrated from 0 to 7; we obtain

T T‘z T
/ 2+ mze™dt < m (— + 1) / e™dt
0 m 0

T d : Ts Td
—(ze™)dt < (£ +1 — (™) dt.
/0 A _(m+ >/O A

Then we have (substituting 7 with ¢)

ZSZOG_mt+<T—x+1> (1—e™)y=¢™ [ZO—<T—I+1>]+(T—x+1> < (r—x—|—1>.
m m

or equivalently

Therefore, we have that

ogz(t):x(tn%’f)g(%ﬂ)

which conclude the proof of the positively invariance of 2.



2.3 Non-coexistence equilibria and their stability properties 43

We want to prove that (2 is also an attractive set. Let now choose initial data
0:Y0) € R3 — £2. Looking at(2.12), we observe that < 0 when z > 1; then we fix
0) = Zo > 1, so its solution decreases and then has a limit. Necessarily, because
Z =1 is a stationary solution of (2.12), we have

ag

Applying the comparison theorem for ODE’s to systems (2.12) and (2.13) with 79 >

zo > 1 we have
lim z(t) = lim z(t) = 1.

t—+00 t—-+o0

Analogously, thanks to the comparison theorem for ODFE’s applied to systems

(

:i:+g=—m<af+g>+mx<£+1>
c (0) c m
\ C
and ) . -
f+g=—m<f+y>+mx<—+l>
c 7(0) c/
55(0)+y—_i~0+@
\ c
with B
o+ 2> a0+ 2> (L),
C m
we obtain that
t y(0
im () + 29 = m s+ 29 - (= +1)
t—+o0 C t——+o0 C m

2.3 Non-coexistence equilibria and their stability
properties

The existence and stability analysis of the non-negative equilibrium states E =
(Teqs Yeq) for the system (2.1) is performed assuming the parameters h and p as
bifurcation parameters, while the remaining parameters are fixed.
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For any h > 0 and p > 0, the system admits as equilibrium states the null state
Ey = (0,0) and, under the assumptions (2.2) on g(+), two non-coexistence states:

E. = (¢,0), E, = (1,0).

Let 7, be the maximum specific growth rate of the predator. From (2.1) and (2.3)
we have that

ry=cb—m=chb(l —a), with a= @b (2.14)
c

If r, <0, ie a>1, then y/(t) <0 for any =, y > 0. Thus, coexistence equilibrium
states cannot exist. y(¢) is always decreasing and, as t — 400, it can be easily seen
that (x(t),y(t)) converges to either Fy or E;, depending on the initial conditions. In
the following, we will assume 7, > 0, i.e.

a< 1. (2.15)
In this case, the following implication holds
r,>0 = dpy=f"(a)>0, (2.16)

and pg turns out to be a critical value of p for the existence and stability of the
equilibrium states associated with (2.1). It depends only on the ratio a: pg = po(a),

and we have
@>0 po(0) =0, lim py(a) =
T . Do , limpo a) = 400.
According to the Hartman-Grobman Theorem [80], the local stability properties of
the equilibrium states F,, « = 0, ¢, 1, are determined by the analysis of the eigenvalues

of the Jacobian matrix associated with system (2.1)

reg(r) + rexg’ (x) —bp uf'(pv)  —bf(pv) + bph uv f'(pv)
J(z,y) =
cbp uf'(pv) cbf(pv) — m — cbph uv f'(pv)
where
U= y v = *
1+ hy’ 1+ hy’
and evaluated in E,. We obtain
r29(0) 0 rzg'(€)  —bf(pe)
J(0,0) = , J(€,0) = ,
0 —-m 0 cbf(pe) —m
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Thanks to (2.2), the matrix J(0,0) has two negative eigenvalues independent of the
values of the parameters h and p. From (2.4), it follows that ¢'(¢) > 0 and ¢/(1) < 0,
so that J(e,0) and J(1,0) have a positive and a negative eigenvalue respectively;
assuming that r, > 0 so that (2.16) holds, we have that

cbf(pe) —m >0 <= p>%,

chf(p) —m >0 <= p>po.

Thus, the classification of the non-coexistence equilibrium states is the following:

Ey is a locally stable node for any p > 0;

E. is always unstable: it is a saddle for p < pg/e (with unstable manifold W, (Ee)
lying on the z-axis), and an unstable node for p > pg/e;

E, is a locally stable node for p < pg, and a saddle for p > po (with stable manifold
W (El) lying on the z-axis).

It is worth noticing that the eigenvalues, and then the stability properties of the
non-coexistence states, turn out to be independent of h. Moreover, it follows that
the stability properties of Ejy and E, are independent of p, while those of E; depend
on p.

2.4 Coexistence equilibria

Coexistence equilibrium states F.(h,p) = (z.(h,p),y«(h,p)) are found as the solu-

tions of
p
ryxg(z) — by f <1 n hy) =0
0

pr .
be(1+hy> e

such as the intersections of the nullclines of system (2.1), written as

_ pr \ _
v=smg) £ ({25 ) = (217

where
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It is worth noticing that the first nullcline in (2.17) is a humped curve in the phase
plane, which is independent of parameters h and p. Under the assumption (2.15) and
the definition (2.16) of py, we have that the second nullcline in (2.17) is the straight
line
Lo + hy,

Po
whose position and slope depend on both parameters h and p. Substituting y from

the first equation in (2.17), we obtain the equation for x

P 1
— =¢(x,h) .= — 4+ hBg(z). (2.18)
Po z

We are interested in solutions to (2.18) z.(h,p) € (¢, 1), in order to have y.(h,p) > 0.
In fact, from the assumption (2.2), g(x) > 0 only in (e, 1) and this implies that p > p.
In the following we will assume hA > 0. The case h = 0 has been studied in detail in

125].

2.4.1 Shape of ¢(x, h)

The shape of ¢(z, h), and consequently the number of solutions to (2.18) in (e, 1),
strongly depends on the parameter h. We have

% - % [—1+ h(z)], with ¥(z) = B¢ (z), (2.19)
and P
a_i — By(z) >0, z€ (). (2.20)

From the assumption (2.4), ¢'(z) < 0, and then d¢/0z < 0, for x € (&, 1). Thus,
¢(z, h) may be non-monotonic, with respect to x, only when z € (¢,&) and h # 0.
The points where d¢/dx = 0 are solutions of the equation

W) ==, h>0. (2.21)

We have ¢(€) > 0, (&) = 0, and, from the assumption (2.5), ¢(z) has only one
maximum 1) for x € (¢,&). According to the shape of ¢(x) (Figure 2.2) in (e, &),
it follows that there are two solutions for equation (2.21) when ¢(e) < 1/h < (o),
and one solution when 1/h < 1 (¢€). Let n; be the unique point in the range (g, &)
such that (1) = ¢(€). Let us define

ho
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¥ (no) = 1/hol | ]

Ble) = 1/my ik !

0 € : :
. "o m &o

Fig. 2.2. Shape of the function ¢ (z).

and denote with & (h) and & (h) the two possible solutions to equation (2.21) (& (h)
exists only for hg < h < hy, & (h) for b > hg). In Table 2.1 we summarize the results
about the number of solutions to (2.21). From (2.21) it follows also that the two

A number of solutions position on
to d¢/0x =0 the x axis
0<h<ho 0
h = ho 1 €2(ho) =m0 = &1(ho)
ho < h < 1 2 € <&(h) <mo <&i(h) <m
h=h 2 e=&(h1) <no <&(h1) =m
h > hi 1 m < &(h) <&

Table 2.1. Number of solutions &;(h) to equation (2.21), and their positions on the z axis, for different
ranges of h.

functions & (h) and & (h) are monotonic

d d
%>O hZho, §<0 hOShShl

and, moreover, lim & (h) = &. Let
h——o00

b0 = ¢(10, ho), ¢j(h) = o(&;(h),h), j=1,2.
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From the expression of 0¢/0x and ¥ (z) given in (2.19), we have that &(h) is a local
minimum and &;(h) is a local maximum of ¢(z, h). Since &(h) < & (h), it follows
that

pa(h) < ¢1(h).

96 00\
% > 0, (@)xg = O,

J

(%) (%)
dh \oh),_. \ox),. dh

it follows that ¢;(h) are monotonic: d¢;/dh > 0. Moreover,

Since

from

1 <go= % + Bhog(no) = ¢1(ho) = ¢2(ho) < %7 $1(h1) > ga(h1) = %,

and

61(h) > d(Eo h), du(h) = d(Eosh) = Bl + glo as B +oo.

Lastly, ¢1(h) may be greater or less than 1/e for hy < h < hy. Let h. be the
unique solution to the equation ¢;(h) = 1/e. Now we are able to plot the qualitative
shape of ¢(z,h) for z € (¢,1) and different ranges of h (Figure 2.3). This figure is
representative of the qualitative behaviours of ¢(z, h) (defined in (2.18)) with g(z)
satisfying the properties (2.2), (2.4), (2.5) and (2.6). The function ¢(z,h), strictly
increasing in h, when 0 < h < hy (Figure 2.3(a)) is strictly decreasing in x; when
ho < h < hy (Figures 2.3(b), 2.3(c)), it shows a local minimum for x between € and
no and a local maximum for x between 7y and 1; finally, when h > hy (Figure 2.3(d)),
¢(z, h) has only a local maximum.

2.4.2 Solutions to ¢(x, h) = p/po

Taking into account the results of the previous subsection, we can determine the
ranges of p/py for which we have solutions to (2.18), with = € (¢, 1), in the various
intervals of the parameter h in which ¢(z, h) shows different trends versus = (Figure
2.3). For 0 < h < hy we have one solution to (2.18). For hg < h < hy we may
have from one to three solutions; in Figure 2.4 we illustrate the positions of the local
minimum and maximum of ¢(z, h) with respect to 1/e, which determine the regions
in the parameter space (h,p) of existence of the solutions to (2.18). In detail, for
0 < h < hy we have only one solution to (2.18) independent of the value of p, as it
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1r- 10
0 € o 1 0 € o 1
x x
(a) 0<h<ho (b) ho < h < he
h>h
1/5 \\\\\\\\\\\\\\\\\ “H-w-”H-m--‘H-m'-w-ﬂ"?\’ """"""""""""""""""
h€ < h< hl
TP RSO TPROTTORPTPTORPIOTE SPPTOOOSS
0 € o 1 0 c m o« 1
x
(c) he <h < hi (d) h > Iy

Fig. 2.3. Trend of ¢(z,h) for z € (¢,1) and different values of h. The arrows indicate the direction of
increasing h.

can be seen in Figure 2.4(a) related to the scenario sketched in Figure 2.3(a). Figure
2.4(b) represents the scenario for hg < h < h. sketched in Figure 2.3(b), where
for increasing p from py to po/€, p # podi, @ = 1,2, we can have one, three, one
equilibria. Figure 2.4(c) represents instead the situation for h. < h < h; sketched
in Figure 2.3(c), where for increasing p from pg to po¢1, p # pods, we can have
one, three, two equilibria. For h > h; we may have one or two solutions to (2.18)
depending on the value of p/py compared to 1/e, as it can be seen in Figure 2.4(d)
related to the scenario sketched in Figure 2.3(d). The results are collected in the
following Table 2.2 and shown in Figure 2.6.

In the parameter space (h,p) (Figure 2.6) the curves p = poo1(h), h € (ho, he),
and p = pop2(h), h € (ho,h1), are stationary bifurcation curves. For h € (hg, hq)
and increasing p from py, when p = popo(h) the states E,, and E,3 appear, but
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: : 1/e — :
1/e ; 1 N~—
: 2 S
¢(z,h)
1
|
1 1 ;p/p()
T R
(a) 0<h<ho (b) ho < h < he
l?bel — o)
b2 S 5
1/e
¢(z,h)
A
\
1  P/Po 1 _p)Apo
N T R B
(c) he <h<hi (d) h > Iy

Fig. 2.4. Solutions to ¢(z,h) = p/po for = € (¢, 1).

they do not collide with E,;. Otherwise, when p = py¢;(h) the states E,; and E,o
collide and disappear, but do not collide with E,3. On these curves the determinant
of the Jacobian matrix J(E,;(h,p)) associated with (2.1) is zero when evaluated at
the colliding equilibria (it will be shown in Section 2.5). This behaviour is typical of
a saddle-node bifurcation. In addition, the two bifurcation curves p = po¢1(h) and
p = poPa(h) intersect at the critical point By = (hg,podo), the unique one in the
parameter space where the three equilibrium states coincide. At this point, the two
bifurcation curves share a common tangent, since z,; = 1, j = 1,2,3 and, from
(2.20), 0¢1/Oh = Opa/Oh = Bg(no); then By is a mathematical cusp in the (h,p)
plane. Moreover, we notice that at point By we have, from (2.19),

8¢ o?

£(l’*j, hg) =0 and a%f(aj*j, hO) =0.
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h / number of position on
P/po solutions to ¢ = p/po the x axis
0<h<hy 1<p/po<1/e 1 €<z <1
1 < p/po < ¢o 1 o < Ty1 <1
h = ho p/Po = ¢o 1 N0 = Tx1l = T2 = T3
$o < p/po < 1/e 1 €< Ty1 = Tx3 < Mo
1<p/po < 2 1 LH<za<l1
p/po = ¢2 2 Tx3 — Tx2 — 52 < £1 < Tx1
ho < h < he ¢2 < p/po < ¢1 3 E< T3 << T2<E <1 <1
p/p0:¢1 2 $*3<§2<ZL‘*2:$*1:€1
$1 <p/po < 1/e 1 €< Tuz < &2
1<p/po < 2 1 L <z <1
p/po = @2 2 Tx3 = Tx2 — 52 < fl < Tx1
he <h <hi ¢2<p/po<l/e 3 E< T3 <& < Tr2< & <1 <1
1/e <p/po < 1 2 €2 <Tuz <& <Ti1 <1
p/Po = 1 1 Tez = Ts1 = &1
1<p/p0§1/6 1 €1<$*1<1
h > h1 1/e < p/po < 1 2 e<zi2<& <zi1 <1
p/Po = $1 1 Ty2 = Tx1 = &1

Table 2.2. Ranges of p/po for the existence of solutions z.; = z.;(h,p) € (¢,1) to equation (2.18), their
number, and their positions on the x axis, depending on h; ¢; = ¢;(h), & = &;(h).

All these results indicate the presence of a cusp singularity, according to Whitney’s
theory [12], for the equilibrium surface implicitly defined by p = po¢(x, h) and shown
in Figure 2.5 in the three dimensional space (h,p,z). The projection on the (h,p)
plane of such surface can be seen if Figure 2.6, while the level sets in the (x,p)
plane for fixed h can be deduced from Figure 2.3, or equivalently from Figure 2.7. In
Appendix B more detail about the detected cusp bifurcation point are reported.

In the (h,p) plane the lines

p p 1 p :
_:17 _:ga _:¢j(h)7j:172

are boundary lines of existence regions (Figure 2.6) for the coexistence equilibrium

states E*](hvp) = (aj*]<hap)ay*](hap))
For x.; # & (h), & (h), from equation (2.18) it follows that

Or.; oo\ " Or.; [ 06\
oh - 59(1‘*]) (%) ) ap - p(]a_x .-

T x5 T j
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Fig. 2.5. View of the equilibrium surface p = pod(z, h) in the (h,p, z) space; the level sets of such surface
in the (z,p) plane for fixed h can be deduced from Figure 2.3.

Since (0¢/0z) is negative for x = z,;, x.3 and positive for © = z,9, we have the
following monotonicity properties for z,;:

8ZE* i 3@ i 8x*2 (‘3@2
J J

<0, =13 <0
oh op - )T on ap

The bifurcation process is described in detail in the bifurcation diagrams (Figure
2.7), where z,; are reported versus p for different values of h, corresponding to the
four different ranges of h of Figure 2.3. With reference also to Figure 2.6, we can
see in detail in Figure 2.7 how the equilibrium states collide and disappear. In all
subplots transcritical bifurcation points, marked with BP, are located on the lines
p = po and p = po/e of Figure 2.6; saddle-node bifurcation points (LP) lie on the
curves p = podi (k) and p = pod(h).

The coexistence equilibrium states, when they exist, lie on the curve y =
pxg(x), = € (1), in the phase space. Obviously, their number and their posi-
tion depend on the parameters h and p, and their behaviour is determined by the

> 0, > 0.
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trends of z,;(h,p), j =1,2,3, versus h and p.

Remark.

(IV) On the boundary line h = hg, p € (po®o,po/€) (Figure 2.6) the determinant of
J(E.1(h,p)) is positive (see Section 2.5), and therefore it is not a local bifurcation
line. On this line, the trend of z,; versus p is reported in Figure 2.7(a) and shows
an inflection point with vertical tangent at p = podo. When pody < p < po/e, we
have that

lim E.3(h,p) = lim E.(h,p),

h—hg h—hy
namely the equilibria swap names; this line has been introduced in order to allow
a smooth transition of the equilibrium F,s, instead of an abrupt change from F,3
to E,q, on the bifurcation line p = py¢1(h) (see Figure 2.7(b)).

¥
T T "

p = pod1(h) e
* E*17E*2
B \",/
po/e |\ ,'.’ T
o N\
s p = poa(h)
Podot (el -
By
E*l *27E*3
b E*l
Do
| | |
0 ho h. hy

h

Fig. 2.6. Existence regions of coexistence equilibrium states in the (h, p) plane, displayed in grey; a different
shade denotes a different number of equilibria lying in the region.
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1 1
&1t
Txeq
Txeq
&t
€ €
0 0 Po Podz Pob pé/e P
(b) ho < h < he
1 1
&uf
Txeq N "51*
*xeq
&l
¢ €
0 po Poda » p(;/eg;0¢1 0 po » pb/e Pod1
(c) he <h<hi (d) h > =y

Fig. 2.7. Qualitatively trend of x.; versus p for different values of h. BP: transcritical bifurcation, LP:
saddle-node bifurcation.

2.5 Stability properties of coexistence equilibrium states

We want now study the stability properties of the coexistence equilibrium states
found in the previous Section. Let E.(h,p) = (x«(h,p),y.(h,p)) be a generic coex-
istence equilibrium state. We recall that x.(h,p) and y.(h,p) satisfy the relations
(2.17), that are

_ pr. _ pr. \ _ _m T

with x, = z.(h,p). We define

po = p(po), 0 < po <1,
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where u(s) = sf'(s)/f(s) (its properties are discussed in appendix A). From the
expression of the Jacobian matrix displayed in Section 2.3, we can simplify the entries
of the Jacobian matrix evaluated at E,(h,p):

DY« DTy
E, h)) = x * b ' «)—b ,
Ju(Eu(p, h)) = rag(a.) + rav.g'(2.) 1+hy*f <1+hy*)

pof/(Po) f(po)

f(po) .
= 1.9(2.) + 1229 (@) — Topog(zs)

DT PTsYx / DT
E.(p, = =
Ji2(Ei(p, h)) bf(1+hy*) +bh(1+hy*)2f (1+hy*>

pz.  pof'(po) f(po)

AL
B juun
Ty Do

= —— +ryhpo—g(z.
3 Ho D ()

= rpg(x.) + 1.9 (1) — by

= —bf(po) + bhy

PYx ' PLx
E.(p.h)) = cb
s =2 (5

pof/(po) f(po)
f(po) .
= 130G (Ty)

P PTyYs i
E* ) = - o
Jo2(Eu(p: 1)) be(1+hy*> " Cbh1+hy*f (1+hy*>

pof’'(po) f(po)

f(po) pu.
Po

= —rpCfio— g (7).
p

= cby,

= —cby.po

Then, the Jacobian matrix associated with E,(h,p) is

(1 = po)g(ws) + 2.9’ (2) —1/8 + pog(x.)hpo /p

J(E*(p, h)) =Tz C,UOQ(I*> —cMOg(l'*)hpo/p
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We want study the sign of the trace and the determinant of this matrix, which are
functions of h, p, z,, denoted by

T(h,p,z.) =tr J(E.(h,p)), D(h,p,x,)=detJ(E(h,p)).

By direct computation, and taking into account (2.18) and (2.19) at the equilibrium,

written in the form .
W) = o (o= 22).

p B, P

we obtain
T(h,p,x.) =1y (A(h, p)g(z.) + 29" (24)) (2.22)

where »

Alh,p) =1— po — cuohgo,
and

1
D(h,p,z,) = —r2cuog(x,) [h%g(:c*) + h%x*g’(:c*) - E]

1
= —ric Ty Po [— + hx,q (. }
1109 )p o g ()

_ Tamyiopog(2.) 214 BBt ()] =  Temyiopog (24) T (@) '
DT« p 8ZE r=x

Since (0¢/0x) =y, > 0, it follows that det J(F.2(h,p)) < 0 for h and p not belonging
to the bifurcation curves of Figure 2.6; thus, F.(h,p) is a saddle point. Otherwise,
for j = 1,3, since (0¢/07)r=s,; <0, it follows that det J(E.;(h,p)) > 0, for h and p
not belonging to bifurcation curves; thus, E,;(h,p), j = 1, 3, is locally asymptotically
stable if and only if T'(h, p, x.;) < 0. We want now to study the sign of the trace of
the Jacobian matrix evaluated at E.i(h,p) and E.s(h,p).

Looking at the formula (2.22) since we know that ¢ < x, <1 and g(x,) > 0, we
are interested in determine the sign of A(h,p) and ¢'(z,).

As regards the equilibrium E,;(h,p), an important role for its stability properties
is played by the two implications

Alh,p) <0 = pﬁ < yh; (2.23)
0

ralhp) > & — L < o(co.h) = Bh+ -, (2.24)
Do o
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where "
0
- (2.25)
Two scenarios emerge, depending on the intersection of the two straight lines
P P 1
Po Po €o
in the (h,p) plane; the intersection occurs when 8 < ~, i.e. when
Mo
T, < Tg:i= . 2.26
— (2.26)

As regards the equilibrium FE,3(h,p), since we know that it exists in the range
ho < h < hy, and that 0 < x,3 < & < 1y < & which implies ¢'(z.3) > 0, we have
that only the implication (2.23) is important for its stability properties.

In the next subsections we study the sign of the trace of Jacobian matrices. We
write here the expressions of the derivatives of T'(h, p, x,) used in the following:

oT Po or pOh
= o) <0, =P () > 0, 2.2
g = e g(z.) <0 op T g(zs) >0 (2.27)
or / / /
o reAg' (z4) + (2.9'(x4)) (2.28)

2.5.1 State F,: the case of r, > 1g

Under the assumption r, > ry, or equivalently S > -, we have that in the (h,p)
plane

1
ﬁh+€—>7h Vh > 0,
0

so that the two lines p/py = fh + 1/& and p/py = vh do not intersect. We refer to
Figure 2.8 to illustrate the results of this case. We are able to prove that there exists
a Hopf bifurcation curve p = pi(h) on which tr J(E,(h,pi(h)) = 0; this curve is
monotonically increasing and

pomax{1l,vh} < p1(h) < po (Bh + 5—10) )
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Theorem 2.2. Assume (2.2)-(2.7) and r, > ro. Then, for any h > 0,
1
Ipi(h) . po max{l, yh} < pi(h) < po (ﬁh—l— g_o) :
such that

T(hapl(h)ax*l(plah)) = O? T(hap7 $*1(h7p)) < Oforp € [pOapl(h))a

and T'(h,p,xx(h,p)) > 0 in the existence region of E. of the (h,p) plane where
p > pi(h):

0<h<hg, pi(h) <p< % and ho < h, pi(h) <p < pod1(h).

Moreover,
dp
— > 0.
dh
Proof. From the implications (2.23) and (2.24) it follows that in the region |1 | of the
(h,p) plane (Figure 2.8)
h >

Y — —

==
S
S

we have
A<0 and g > &), ¢'(za) <0,

which imply T'(h, p, z.1) < 0. Consider now the region |2 | (Figure 2.8)
P 1
max{1l,vh} < — < fh+ — < ¢1(h).
Do €o

On the boundaries we have that

T(h,p,x«) <0 for P max{1,vh},
Po

where either p = pg, 2.1 (h,po) =1 or p = peyh, & < x.(h, peyh) < 1, and

T(h,po (ﬁh—l—l),&)) >0 for £:b’h—i-i.
€o Po &o

From the implications (2.23), (2.24) we have

A>0 and 2,4 > &, ¢ () <0, (2.9 (z4)) <0.
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Taking into account (2.27), (2.28), (2.23), (2.24) and the monotonicity property of
T4 (0x41/0p < 0), we have that

o dr 9T = T xa

<0 —_—= > 0.
’ dp 8p+8x*1 Op

613*1

It follows that T'(h, p, x4 ), considered as a function of p for fixed h > 0, is negative
for p/py = max{1,~vh}, is increasing with p for max{1,vh} < p/po < Bh + 1/ and
positive for p/pyg = fh+1/&y. Thus, there is just one zero of T'(h, p, 1), denoted by
p1(h), for pomax{l,vh} < p < po(Bh + 1/&).
Moreover, in the existence region |3 | (Figure 2.8) of E,; of the (h,p) plane where
p > p1(h) we have
A>0 and g <&, ¢ (xa) >0,

which imply T'(h, p, z.1) > 0.
Finally, the monotonicity property of p;(h) follows from 97 /0h < 0.

O

For all the considered functions g(-) and f(-) in (2.8)-(2.11) and the parameter
values specified in appendix A, p;(h) turns out to be very close to Sh + 1/&,. The
existence region of E,(h,p) in the (h,p) plane is divided in three subregions (Figure
2.8): the white regions and , where FE,;(h,p) is locally stable, and the grey
region , where it is unstable.

Let A(h,p,2.1) = T?(h,p,xe1) — 4D(h,p, x.1). For fixed h > 0, at p = p;(h) we
have

T(hapl(h>7$*1(hvp1(h)>) =0, A(hapl(h)vx*l(hvpl(h))) <0,

so that the Jacobian matrix has a simple pair of pure imaginary eigenvalues. More-
over, dT'/dp > 0 for max{1l,vh} < p/py < Bh + 1/&. Thus, p = pi(h) is a Hopf
bifurcation curve for the equilibrium E,;(h,p) (the dotted one in Figure 2.8), and
limit cycles emerge for p in a neighbourhood of p;(h). The stability of the limit
cycles can be determined by the sign of the first Lyapunov coefficient associated
with the system (2.1) ([48] p. 152, formula (3.4.11); [66] p. 178, formula (5.62)) once
the model functions are fixed. The dependence of this coefficient on the parameters
h and p is very intricate, and a theoretical analysis is a substantial undertaking.
The sign was then determined numerically (and also checked with the specific soft-
ware MATCONT [34]) for special systems characterized by different prey growth and
trophic functions, and the set of bioecological parameters given in appendix A; also
the side of the Hopf bifurcation curve on which the limit cycles exist has been found
numerically. The results will be illustrated in the next section.
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P ;po¢1(h)

p=po(Bh+1/%)

L B )
T(p, h, x*l) > 0\4 \‘(3"

po/6

PoPo

w/a  [2] n

Po

0 1/’y h() h1
h

Fig. 2.8. Local stability and instability regions in the (h,p) plane of the coexistence equilibrium state
E.1(h,p) in the case ry > ro. In grey the region in which T'(h, p, z+1) > 0.

2.5.2 State F,;:thecase of rp, < 7rg

The situation is somewhat more involved than in the previous case. We refer to
Figure 2.9 to illustrate the results of this case. Under the assumption r, < rg, or
equivalently 5 < 7, we have that in the (h, p) plane the line p/py = vh intersects the
line p/py = Bh + 1/& and the curve p = py¢1(h) at points R and S, respectively.
Let hg (independent of p) and hg (dependent on p) be the h-coordinates of the
intersection points R and S; we have

S 1 (p
" S G—B) &bl — 1) ’w—¢1(m)- (2.29)

Also in this case, we can prove that there exists a Hopf bifurcation curve p = p;(h)
for h < hgr which is monotonically increasing (Figure 2.9). Theorem 2.2 can be
reformulated as follows.

Theorem 2.3. Assume (2.2)-(2.7) and r, < ro. Then,

(i) for 0 < h < hg, 3pi1(h): po max{l, vh} < pi(h) < po (ﬁh—i— l) )

o
such that
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T(hvpl(h)vx*l(plv h)) =0,
T(hapu x*l(hap)) < OfOT'p € [p07p1<h))7 h Z 0
T(h‘vpa 'x*l(h,p)) > OfO?"O S h S h,o’ pl(h) <p< % and

ho < h < hg, pi(h) <p < pop1(h).

Moreover,
dp
— > 0.
dh

(ii) A further region with positive trace is

hr < h < hg, 7h<p£<¢1(h),
0

where hg is the unique solution to the equation vh = ¢1(h).

The proof of Theorem 2.3 is omitted because it follows the lines of the proof of the
previous Theorem 2.2.

In general, the stability properties of E.;(h,p) cannot be established in the sub-
region of existence (marked with dark grey in Figure 2.9(b)) defined by

1
h>hp  Bh+— < pﬂ < min{yh, ¢1(h)}. (2.30)
0 0

Indeed, in this region the implications (2.23) and (2.24) do not hold and we have
no information about the sign of T'(h, p, z.1). It is possible nevertheless to check the
sign of the trace T'(h,p,z.1) along the curve p = poo1(h) and it turns out that for
h slightly above hg T'(h, p, z.1) > 0 and limy, o0 T'(h, p, 241) = 72(1 — p0) (1 — /).
Such value is negative only when r, < rg and then, thanks to the monotonicity
properties (2.27), there exists a unique value hpy wherein T'(hpr, p, €. ) = 0. These
facts reveal the presence of a Bogdanov-Takens point, intersection of a saddle-node,
a Hopf and a separatrix homoclinic loop curve, that will be discussed in the next
section. Also in this case, the stability of the limit cycles has been numerically studied
and the results will be discussed in the next section.

2.5.3 State E,s
As regards the equilibrium E,3(h, p), we know that it exists when

1
ho < h <hy, da(h) <L <=2,

DPo €
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1170/6
Po®ol  T(p,h, 21)>0 B J
p=po(Bh+1/&) p =povh
p
T(p, h, x*l) <0
/&
p = pi(h)
Y4
0 1/’)/ ho hrhs hy
h
(a)
p = pop1(h)
p

p=po(Bh+1/&)

T(p, ha -73*1) < O

Fig. 2.9. Local stability and instability regions in the (h,p) plane of the coexistence equilibrium state
E.i(h,p) in the case r; < ro. Light grey denotes regions in which T'(p, h, 2+1) > 0; dark grey marks regions
in which the stability properties of F.; cannot be analytically determined. Figure (b) is an enlargement of
the dashed rectangular region of Figure (a).
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and that 0 < .3 < & < n9 < & which implies ¢'(z.3) > 0. It follows that only the
implication (2.23) is important for its stability properties.

Then, from the existence conditions of E.3(p, h) and implication (2.23) it follows
that for hg < h < h; we have

1
max {¢o(h), Yh} < p£ < - = T(p, h,43) > 0.
0

The situation for E,s is illustrated in Figure 2.10. Let 2, = 1/(ve) be the intersection
point between the straight lines p = py/e and p = pyyh.
If
ill > hl, i.e. E < Eg/<€),
Ty
then FE.3(p,h) is unconditionally unstable (Figure 2.10(a)). For instance, this case
holds for a Holling-type II trophic function, a Gilpin model for g(s) and parameters
as in A with r, > ro.
If . .
hy < hy, i.e. - > Eg/(E),
Ty
then, in general, the stability properties of E.3(h,p) cannot be established in the
region defined by

~ 1
hy < h < hy, o(h) < L gmin{vh,—},
Do €

where hjy is the unique solution to the equation yh = ¢,(h) (dark grey region in
Figure 2.10(b)). Indeed, in this region the implication (2.23) does not hold and we
have no information about the sign of T'(h,p, z.3).

The stability properties of all equilibrium states are summarized in Table 2.3.
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T(h,p,x.3) >0 .

Po/6

PoPo |

Do

po/6
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DPo

0 hO ]~'L1 iLQ h hl

(b) iLl < hy

Fig. 2.10. Instability regions in the (h,p) plane of the coexistence equilibrium state E.s(h,p).



0<h<ho ho <h < hi h > hy

Ey stable node p > 0
E. saddle 0 < p < po/e, unst. node p > po/e
By stable node 0 < p < po, saddle p > po
- stable po < p < p1(h)
Bui(h,p) stable po < p < p1(h) = unst. p1(h) < p < podi(h)
B see Table 23(0) . B+ 1/ < < ol
E.z(h,p) # saddle pog2(h) < p < pod1(h) saddle po/e < p < poo1(h)
E.s(h,p) 3 unst. max{po¢2(h), povh} < p < po/e, ho <h < ha 4
n.d. pog2(h) < p < min{poyh,po/e}, ha <h < h
(a)
ho < h < hgr hr < h < hg hs < h < hi
E.i(h,p) stable po < p < p1(h) stable po < p < po(Bh + 1/&) stable po < p < po(Bh + 1/&o)
(rz < 1o, ho < h < h1) unst. p1(h) < p < pop1(h) n.d. po(Bh+1/&) < p < poyh n.d. po(Bh + 1/&) < p < pog1(h)

unst. poyh < p < podi(h)

(b)

Table 2.3. (a) Summary of stability properties of equilibrium states (n.d.=not determinable, unst.=unstable); (b) details on stability of
E.i(h,p) for ho < h < h1 and r; < 7o.
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Numerical study

In the previous Chapter we have investigated the dynamical behaviours of a predator-
prey system, when the model functions describing the biological processes occurring
in the considered trophic chain are not specified by analytical expressions, but by
some characteristic properties determining their shapes. We have shown that this is
feasible for the existence and stability analysis of the equilibrium states of the sys-
tem. Unfortunately, the stability analysis of limit cycles cannot be easily performed
following this general approach, and the model functions have to be specified to go
further in the qualitative analysis.

In this Chapter results of numerical simulations, obtained for some concrete re-
alization of the model functions, are presented to illustrate the behaviours of the
system. Such results confirm analytical predictions and throw light on some aspects
of the dynamics of the system.

3.1 Behaviours of the system

Here we focus on some peculiar behaviours obtained by using the model functions
(2.8)-(2.11), and the parameter values specified in appendix A. Such behaviours are
of course in agreement with the analytical results obtained in the previous Chapter.
Once the model functions are fixed, we can also numerically investigate the limit
cycles arising from FE,; by Hopf bifurcation. The main features of the bifurcation
structure will be shown in the following diagrams, which are only qualitative be-
cause the real bifurcation curves, simulated here by using model functions (2.8) and
(2.10) and parameter values as in A, are almost indistinguishable from one another.
Therefore, some of the phenomena described below can be viewed only with a very
fine resolution. Anyhow, we obtain qualitatively the same scenarios with different
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combinations of model functions (2.8)-(2.11). Further information on the bifurca-
tion structure close to critical values of the bifurcation parameters detected in the
following analysis (such as number of bifurcating limit cycles, higher codimension
points, ... ) could be obtained case by case with specific model functions and it will
be matter of a future work.

e When 0 < i < hy, in all tested cases, independently of the value of r,, the nu-
merical results showed the existence of a critical value h such that:

— for any fixed 0 < h < iz, stable limit cycles emerge for p slightly above the
Hopf value p;(h) and disappear by global bifurcation with the heteroclinic cy-
cle involving equilibria E, and F; at a further critical value pa(h) > py(h) (see
Figure 3.1 and 3.2(a)); in this range of h the system behaves qualitatively as
the system with h = 0 25, Figure 7];

— when h > h, repelling limit cycles emerge for p slightly below the Hopf value
p1(h). We have numerical evidence of the existence of a further critical value
he such that for h < h < he (Figure 3.1) the repelling limit cycles disappear
by saddle-node bifurcation with a stable limit cycle on the curve p = p3(h),
and stable limit cycles then disappear by global bifurcation involving the het-
eroclinic cycle between equilibria E. and E; (Figure 3.2(b) and 3.2(c)) on the
curve p = pa(h) (Figure 3.1). The curve of heteroclinic cycles p = py(h) inter-
sects p = p3(h) for h = h¢, while it crosses the Hopf curve p = py(h) for a
value h € (ﬁ, he). For he < h < hg, the repelling limit cycles disappear instead
by global bifurcation with the heteroclinic cycle involving E. and F; (Figure
3.2(d)) on the curve p = pa(h) < pi(h).

The Hopf bifurcation is thus supercritical for h < h, and subcritical for h > h; the
curve p = p3(h) of saddle-node bifurcation of limit cycles emanates from the point
(ﬁ,pl(ﬁ)). It is possible to detect, by using the continuation software MATCONT
[34], that the Hopf bifurcation curve has a Generalized Hopf (GH) codimension-
two point at h = h. A deeper investigation of the bifurcation occurring at h = h¢,
where p = pa(h) and p = p3(h) intersect each other, could be performed case by
case following [6], with specific model functions, and would allow to determine
how many cycles bifurcate in this region of the parameter space and what is their
stability; this analysis will be matter of future studies.
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e When hg < h < hy, again whatever r,, we have that the coexistence region of the

equilibria E,;, E., F.3 (dark grey region in Figure 2.6) is crossed by the Hopf
bifurcation curve p = p;(h) (see Figure 3.1). Again, the Hopf bifurcation curve
generates unstable limit cycles for p slightly below the Hopf value p;(h); such
cycles disappear by global bifurcation on the curve p = po(h), which can occur
either with the heteroclinic cycle connecting £, and E; or with a homoclinic cycle
with the saddle point E,s. In detail, let Ay be the abscissa of the intersection
of the curves p = po(h) and p = pogpa(h) (Figure 3.1); then, the heteroclinic
cycle occurs for h < hy and the homoclinic cycle for A > hy. The transition from
having heteroclinic to homoclinic orbits turns out to be caused by the formation at
h = hy of a heteroclinic cycle connecting the just appeared equilibrium E,s = F,3
and FEj. This leads to the interaction of the limit cycles with the equilibrium FE,,
and then to their disappearance by global bifurcation with a homoclinic cycle
through FE,,, instead of by a heteroclinic cycle connecting F, and E;. The point
h = hy seems to be a codimension-three or even higher bifurcation point. Anyway,
a deeper analysis aiming at detecting all possible non equivalent phase portraits
around this point cannot be carried out in general and it will be matter of future
investigations with specific model functions.
Some examples of the peculiar dynamics obtained for different p and hg < h < hy
are reported in the phase portraits in Figure 3.3. We selected cases in which all
coexistence equilibria are present and we focused on bistability occurring in the
system. In Figure 3.3(a) (where p < py(h)) the trajectories tend to Ey or E, de-
pending on the initial conditions. In Figure 3.3(b) (where pa(h) < p < pi(h)) an
unstable limit cycle separates the basins of attraction of the stable equilibria F,;
and Ej. Lastly, in Figure 3.3(c) (where p > py(h)) all the coexistence equilibria
are unstable and the system evolves towards global extinction.

e For h > hy and r, > rg we have proved in Theorem 2.2 that the Hopf bifurcation
curve p = p1(h) is always below the stationary bifurcation curve p = po¢1(h)
(Figure 2.8). The numerical investigation shows that unstable limit cycles arise
below the curve p = p;(h) and disappear by global bifurcation with a homoclinic
cycle through the saddle point E, on the curve p = py(h) < p1(h) (Figure 3.2(e)).
For h > h; and r, < rg, we cannot state in general the mutual positions of the
curves p = p1(h), p = poo1(h). Moreover, the stability properties of F,; cannot
be determined in general in the region defined in (2.30) (dark grey region in
Figure 2.9(b)). We have numerically detected Hopf bifurcation values p;(h) for
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E, also when h is above the estimated threshold hp (see Figure 3.4). Again,
unstable limit cycles arise below the curve p = p;(h) and disappear by global
bifurcation with the homoclinic cycle through E,s on the curve p = pa(h) < p1(h).
The Hopf bifurcation curve p = p;(h) lies below the line p = po(Sh + 1/&,) for
h < hg, intersects it for h = hgp at point R (where yh = Sh + 1/&)) and stays
definitely above for h > hg. Since the sign of the trace T'(h,p,x.;) along the
curve p = po¢1(h) changes from positive to negative, as pointed out in Subsection
2.5.2, there exists the critical value hpr > hy at which the Hopf curve p = py(h)
intersects the curve p = pooy(h). Also the global bifurcation curve p = po(h),
which involves the homoclinic cycle through the saddle point F,,, passes through
this intersection and then we obtain a codimension-two point in the (h,p) plane
in which D(hpr,ppr, ) = 0 and T'(hpr,ppr, 1) = 0, that turns out to be a
Bogdanov-Takens (BT) bifurcation point. It is characterized by the typical phase
diagram of Figure 3.5; this type of bifurcation has been detected by other authors
in similar models [5, 87, 37, 40].

Po/€

Po

0 h he Iy he hy hy
h

Fig. 3.1. Qualitative representation of local and global bifurcation curves for the equilibrium FE,; and limit
cycles; in grey the regions of the (h, p) plane in which stable or unstable limit cycles exist. GH: Generalized
Hopf point.
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Concluding remarks

When modeling predator-prey systems, the properties of the prey growth function
g(+) depend on the introduction of intraspecific competition among the prey, and on
the assumption of either the absence or the presence of a weak/strong Allee effect.
On the other hand, the trophic function f(-) may be assumed either concave or S-
shaped and it can be prey-dependent, ratio-dependent or predator-prey dependent.
Moreover, only some of their qualitative properties are known. Thus, these functions
should not be specified by any analytical expression, but only by general properties
dictated by bioecological considerations; moreover, they should satisfy some technical
assumptions to make the analysis tractable.

The assumptions made on the model functions limit the number of equilibrium
points, and allow to perform a sufficiently general existence, stability and bifurcation
analysis of the equilibrium states. This is the main difference with respect to the
investigation of the dynamics in generalized models carried on by others authors
[47, 63], who assume that at least one steady state exists (without hypothesis on
the general functions) and then perform the local asymptotic stability analysis of
the steady state under consideration. On the contrary, in this work assumptions on
the prey growth function and on the functional response are required, in order to
take into account proper biological properties. Moreover, these assumptions limit
the number of equilibrium states admitted by the system, and the stability and
bifurcation analysis is studied for each equilibrium state.

However, this approach leads to some restrictions in the analysis of the dynam-
ics. Let us look at the assumptions (2.2)-(2.7) on g and f. These conditions imply
relationships between f(s), f'(s) and g(s), ¢'(s), ¢"(s). At any rate, when a Hopf
bifurcation is detected, the stability properties of the limit cycles cannot be in gen-
eral established from the sign of the first Lyapunov number, because it depends on
the first, second and third derivatives of the right hand side of (2.1), evaluated at
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the equilibrium point. In the very recent paper by Adamson and Morozov [3] it is
pointed out that “the use of two different functions belonging to the same class can
result in qualitatively different dynamical behaviour in the model and a different
type of bifurcation. In the literature, the conventional way to avoid such ambiguity
is to narrow the class of unknown functions”, and they conclude that this approach
may lead to cumbersome expressions, biologically meaningful. We observe that some
uncertainties could be removed by carrying out many numerical simulations with
different model functions.

In our approach, the use of different functions belonging to the same class leads to
some common behaviours, for instance in connection with the number of equilibria
and their stability properties. However, some peculiar dynamics, such as the phase
diagram close to the Bogdanov-Takens bifurcation point in the case of r, < rg,
can be found only with specific functions in the class. Adamson and Morozov [3]
analyse in detail this crucial problem and show that where the model functions are
not specified by analytical expressions, the bifurcations can be described only with
a certain probability.

We wish to point out that slightly different formulations of the model equations,
together with rescaling of state variables and parameters and the use of different
bifurcation parameters in the stability analysis, make the comparison between the
various scenarios a hard work. In any event, behaviours of predator-prey systems
of type (2.1) characterized by different model functions g(-) and f(-) analysed in
the literature [13, 98, 37, 5, 40, 107, 79, 87, 25|, deserve some attention. Under the
assumption of a strong Allee effect, the functions implemented in the aforementioned
literature, and combined in different ways in system (2.1), are (2.8)-(2.11).

In the case of a prey-dependent trophic function, realized by setting h = 0in (2.1),
comparisons of models characterized by combinations of (2.8)-(2.9) and (2.10)-(2.11)
have been reported in [25]. The existence and stability analysis of the equilibrium
states had been performed by taking p and the ratio & = m/(cb) as bifurcation pa-
rameters. All the considered models admit the same equilibrium states, and show the
same qualitative behaviours regarding the local stability properties, the occurrence
of a heteroclinic cycle and the consequent global bifurcation. Obviously, the stability
ranges may be very different, with the same values of the bioecological parameters
re, b, m, c.

Also the model in the recent paper [107], with an Allee effect of rational type
g(s) = go(s —€)(1 — s)/(eo + s) with g > 0 (called double Allee effect) and linear
trophic function f(s) = s (Lotka-Volterra interaction) undergoes a heteroclinic loop
bifurcation, and moreover subcritical and supercritical Hopf bifurcation.
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In all the visited models with Allee effect and prey-dependent trophic function
only one possible coexistence state it has been observed, which may undergo several
stability changes. For instance, assuming ¢, in the double Allee effect as bifurcation
parameter, the coexistence equilibrium state can switch from stable to unstable and
then back again to stable [108, 107].

The ratio-dependent trophic function expressed in terms of the ratio z/(z + y),
which is singular in the origin, has been recently introduced in models with Allee ef-
fect of quadratic type (Gilpin model (2.8)) in [87, 40, 5], and of rational type (double
Allee effect) in [37]. In all these models only two coexistence states may be found,
and one is always a saddle point. In the different parameter spaces considered by
these authors, a Bogdanov-Takens bifurcation point of codimension-two has been
detected and it is considered “as an organising centre of the global dynamics” [5].
Although these models have the same structure, the analysis and the numerical sim-
ulations performed in [87, 40] show and suggest the absence of stable limit cycles,
while in [5] “for a fixed set of parameters, the following may happen: the extinction
of both populations, coexistence for determined population sizes, or the oscillation
of both population”. The same results are obtained in [37]. A possible explanation is
the following: in [5, 37| a parameter introduced in the prey growth function, associ-
ated with e in our formulation, is used as bifurcation parameter, and varied in the
numerical simulations, while it is maintained fixed in [87]. Furthermore, in [5, 37]
more global phenomena are described: heteroclinic loop and bifurcation of limit cy-
cles. The results obtained in [108, 107, 5, 37] suggest that the use of parameters
introduced in the prey growth function as a bifurcation parameter put in evidence
phenomena which are not detected by performing the analysis with other bifurcation
parameters.

In our analysis, we fixed all the dimensional bioecological rates r,, b, m, de-
termining the time scale of the dynamics and the conversion factor ¢ from prey to
predator biomass, which are multiplicative factors in equation (2.1). Moreover, also
the Allee threshold ¢ is maintained fixed. The parameters h and p appearing in the
argument of the trophic function, which describes the predator-prey interaction, have
been chosen as bifurcation parameters. In our analytical study, we found that the
system admits at most three coexistence equilibria E,;, E,s, F,3 depending on the
values of parameters h and p, as in Table 2.2. The coexistence equilibrium FE,,, when
exists, is always a saddle point. The equilibrium F,3 is always unstable when the
straight line p = poyh does not intersect its existence region in the (h, p) plane.

The study of the stability properties of F,; in the (h, p) plane is more intricate. We
found a Hopf bifurcation curve p = p;(h), and limit cycles emerge, stable or unstable
depending on the value of h, and disappear by global bifurcation, involving the
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heteroclinic cycle between the non coexistence equilibria F., E; or the homoclinic
cycle through the coexistence equilibrium FE,,, respectively. Furthermore, we have
also numerically detected a region in the (h, p) plane where stable and unstable limit
cycles coexist and disappear by saddle-node bifurcation of cycles. Finally, we proved
the existence of a Bogdanov-Takens bifurcation point for r, < ro. We pointed out
that, in some regions of the parameter space, the model presents multiple attractors.
Moreover, the extinction of both populations is always possible, since the global
extinction Fjy is always locally asymptotically stable and globally stable for some
parameter values.

It is worth noticing that, from a mathematical viewpoint the system admits dif-
ferent phase portraits depending on the parameter values, but this not necessarily
implies a significant difference in the biological interpretation of the results. For in-
stance, the difference between a stable steady state and a small stable limit cycle
around the same (but unstable) steady state is of minor importance, even though the
mathematical study asserts that the dynamics in these two cases are not equivalent.

A last brief remark concerns the maximal specific production rates r, and r,. A
critical value rg, defined in (2.26), of r, was found. It depends on the bioecological
parameters b, m, ¢ and on the type of the trophic function. The behaviour of the
system shows different features depending on the sign of the difference r, — ry. This
fact is independent of either the presence or the absence of an Allee effect in the
model equations (see Subsections 2.5.1, 2.5.2 and [25]). It is worthwhile noting that
the difference in the system behaviour due to the sign of r, —ry becomes very marked
when a trophic function singular in the origin is used [22]. Furthermore, it can be
observed (see A) that with a Holling-type II trophic function we have ry = r,, while
with an Ivlev type 79 > r, with the same bioecological parameters m, ¢, b. Thus, if
ry < Ty, then r, < 7o, with a Holling-type II trophic function. Contrarily, with the
Ivlev trophic function, when r, > r, we might have either r, < ry or r, > 19. We
recall that, in general, in a food web the time needed for reproduction and growth
of the individuals of a population is increasing with the trophic level [67, 22]. At any
event, in some predator-prey systems, such as some acarine systems, any situation
may OcCCur.

Summarizing, the general approach to predator-prey systems used in this work,
in which the mathematical formulation of model functions is unspecified except for
some generic qualitative properties, has put in evidence the overall complexity of
the bifurcation structure of the model, according also to recent works [4, 2, 3]. Local
(stationary and Hopf) bifurcations have been determined analytically in this general
framework; also the presence of the Bogdanov-Takens and the cusp codimension-two
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bifurcation points is independent of the particular expression of the model functions.
The next step consists in performing an analogous investigation for nonlocal and
codimension-two bifurcations, such as the Generalized Hopf and the bifurcations
of cycles, admitted by this general model; it will be a lot more challenging, and
hopefully could give additional elements to try to explain phenomena still unclear in
real ecosystems.






Appendix

A Details on some parameters

(i) Let
sf'(s)
5)=——, s>0. 4.1
) = 575 (4.1)
From properties (2.3) and (2.7) it follows that
pO) =1 0<p(s) <1 lim p(s)=0. (12)

The first two properties of p(s) are easily verified. To prove the limit in (4.2), let

us consider the identity
S S !
/ Mda = / Mda, (4.3)
w w Jfla)

where so > 0 is fixed, and s > so. From (4.3) we have that there exists a(s),
sp < a(s) < s, such that

.oy _ Log f(s)/f(s0)
p(as) = L), (1.4)

From (4.4), taking into account (2.3), it follows that
lim w(a(s)) =0, lim Op (als)) = lim () = plals)) =0, (4.5)

s—+00 s—+oo  Js s—+oo s logs/sg

which imply the limit in (4.2). However, from properties (2.3) we are not able to
show the monotonicity condition p/(s) < 0, which holds for the functions f(s)
generally used in the applications.
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(ii) The dynamical behaviours of predator-prey systems may be different depending

on the sign of the difference r, — ro and r, — r,, where ry is given in (2.26) and
r, in (2.14) [22, 67, 70]. With respect to this issue, we point out that with a
Holling-type II trophic function the parameters py and ug are given by

«
1—a’

Do = to =1 —«a,

so that
m(l — «)
rg = ————= =Ty.
o

Otherwise, with an Ivlev trophic function we obtain
—(1—a)ln(l —a)

Po n(l—a), po - ,

so that
—aln(l — «a)

Wat (1—-a)ln(l —a)

ro = > Ty.

(iii) As a basic set of bioecological parameters to be used in numerical simulations,

we have taken the values from Buffoni et al. [23], reported in the following table:

Parameter 17, b m ¢ €
(d™1) (d1) (a7
Value 0.11 0.88 0.19 0.390.2

These data have been estimated in [24]. They refer to an acarine system, surveyed
in biological control field experiments: the phytophagous mite Tetranychus urticae
and its biological control agent, the predator mite Phytoseiulus persimilis [24].

We wish to point out that, by using this choice of parameters, some rela-
tions, characterizing the ecological system, are satisfied. The inequality (2.15)
a =m/(cb) = 0.55 < 1 is fulfilled, and then non trivial dynamics can be found.
The maximum growth rate r, of the prey is less than the one of the predator:

7, =011d ' <r,=cb—m=015d".

With a Holling-type II trophic function we have that ry = r,. It follows that in
the (h,p) plane the two straight lines p/po = vh and p/py = Bh + 1/&; intersect.
We have taken r, = 0.16 d~! in some numerical experiments to simulate the case
Ty > Ty
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B The cusp bifurcation point

In Section 2.4.2 of Chapter 2, we found a cusp bifurcation point in By in the (h, p)-
plane regarding the coexistence equilibrium states. Here, we want to verify the con-
ditions for a cusp bifurcation point.

First of all, we have to reduce the 2-dimensional system (2.1) on the center man-
ifold, and then verify the conditions for a cusp bifurcation point (0.1) and (0.2).
However, we can consider the following ODE

. 1 D
&= F(x,h,p) = - + hfBg(x) — p_o

Its equilibrium points are the z—coordinates of the coexistence equilibria of (2.1),
while the y—coordinates can be found thanks to

ys = Pr.g(z.).

Moreover, its equilibrium surface is the same of the general system (2.1).

e We have that F(no, ho,po@o) = 0.
e We want to prove that F,(no, ho, po®o) = 0.

Fo =~ +hfg(z) = - (~1+ hpa’g'(x)
1
- L),
F(no, ho, po®o) = % (=1 + hop(no)) = 0.
0

e We want to prove that F,.(no, ho, po®o) = 0.

2 1

2 1
Fyu (0, ho, po®o) = —E(—l + hot (o)) + Fholb/(no) =0.
0 0

e We want to prove that F,..(no, ho, po®o) # 0.
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Fxm(ﬁo, ho,p(@o) =

1

Foow = 2 (<1 + hb(x)) — %hzb’(x) + ghy(z).

Slo e

4 1
(=1 + hoo(no)) — —5hot’ (m0) + —5hot)" (n0)
Mo Mo

1
= _hOQ//I(UO) < Oa
Mo

since ¥ has only one maximum in 7.
e We want to prove that (F,Fy, — F,Fyun) (10, ho, po®o) # 0.

Fh :/Bg(x>a
F,, =0,
1
F,=——,
Dbo
Fu, = Bq'(2).

1
(Fthp - Fprh)(n()y hOvang) = BQI(WO)p_O > 0.

Thus, the conditions are satisfied.

C List of main symbols

time (d)

ratio between prey biomass and maximum of prey population size
ratio between predator biomass and maximum of prey population size
maximum specific rate of prey growth (d!)

maximum specific rate of prey consumption (d~')

specific rate of predator mortality (d!)

conversion efficiency (from prey to predator biomass)

ratio between minimum and maximum of prey population size
adimensional function specifying the type of prey growth

adimensional functional response of predator to prey abundance

predation efficiency
measure of the predator interference during the predation process

m/cb



C List of main symbols

reC/m

cb—m (d71)

f~He)

sf'(s)/f(s)

#(po)

cpo/ (1 = po)

mpo/(1— po)  (d71)

1 — po — cpohpo/p

1/2 + hBg(x)

Bty (x)

unique solution of ¢'(z) =0
Bh+1/&

unique solution of ¥/(x) =0

1/1p(no)

1/1(¢)

unique solution of ¢;(h) = 1/e

unique solution of ¥ (x) = 1/hy in the range (19, &)
solutions of i (z) = 1/h, & (h) > & (h)
o (105 ho)

cusp point (hg, pogo)

(& (h),h), j=1,2

Hopf bifurcation value for p

global bifurcation value for p

1/(&(y — B)), unique solution to vh = fh + 1/&,

unique solution of ¢;(h) = vh
unique solution of py(h) = pop2(h)
unique solution of py(h) = pop1(h)
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Part 11

About reaction-diffusion predator-prey
systems involving the Holling-type II and
the Beddington-DeAngelis functional
responses






5

Introduction

This Part! focuses on the study of two predator-prey models with diffusion that
justify, in a suitable limit, two classical types of functional responses in the reaction
part and present a cross-diffusion term in the predator equation. We also look for
conditions on the parameters values which lead to Turing instability.

Complex functional responses are quite usual in predator-prey models |1, 14, 29,
55, 58|. For example, the Holling-type II functional response [55| is based on the
idea that predators will catch a limited amount of prey in the case when prey are
abundant. Denoting with N := N(¢) the prey biomass and with P := P(t) the
predator biomass, this type of functional response leads to the following system of
two ODEs:

. bNP
(5.1)
cbN P
= — uP
1+ kN PP

with ro, b, ¢, k, p > 0; the function g describes the prey growth and can be either
linear, that is g(N) = N, or involve a logistic part, so that g(N) = (1 — nN)N with
n > 0 [13]. Note that when g(N) = N and k = 0, one recovers the Lotka-Volterra
predator-prey model.

If one also wishes to take into account the competition between predators when
they try to catch prey, one can use the slightly more complex Beddington-DeAngelis
functional response [14, 29|

1 Most of the contents of this Part will be included in the paper in preparation: F. Conforto, L. Desvillettes,
C. Soresina, About reaction-diffusion systems involving the Holling-type II and the Beddington-DeAngelis
functional responses for predator-prey models.
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B bN P
14+ kN +hP’

B cbN P
1+ kN +hP

N = TOQ(N)
(5.2)
— pb,

with ro, b, ¢, k, p > 0 and also h > 0.

An important point in the sequel will be the observation that predator-prey
reaction-diffusion models with the Beddington-DeAngelis functional response in the
reaction part are known to produce patterns (coming out of a Turing instability) when
diffusion terms with suitable rates (denoted by dy, dp) are added to the reaction
terms [105, 51|. In this case the densities N, P also depends on space coordinates,
and the system writes

bN P
N —dyA,N =rog(N) — ———————
at dN x 7/'Og< ) 1+kN+hP7
(5.3)
cbN P
OF = dedP =N e 1P

On the opposite, no Turing-patterns are known to appear in the case of a reaction-
diffusion predator-prey model with a Holling-type II functional response and stan-
dard diffusion terms [10] (except when richer dynamics are considered, for example
when one adds quadratic intra-predator interaction or fighting term |71, 69], or even
a density-dependent predator mortality [69]; the case of non-Turing patterns, that
means dy = dp, is studied in [81, 82, 72]).

An interesting modeling issue consists in finding a simple and somewhat real-
istic “microscopic model” (in terms of time scales) which in some limit leads, at
least formally, to systems (5.1) or (5.2). Such a microscopic model was designed by
Metz and Diekmann [74] for the Holling-type IT functional response, and by Geritz
and Gyllenberg [41]|, Huisman and De Boer [56], for the Beddington-DeAngelis one.
Metz and Diekmann proposed a system of three ODEs, in which the predators are
divided in two classes, searching and handling predators, while the interaction be-
tween predators and prey is treated in a quite simple way (a Lotka-Volterra terms
are considered). Predators which are searching for prey become handling with a rate
proportional to the number of prey and come back to the searching state with a
constant rate. Only handling predators contribute to the reproduction and give rise
to a searching predator, while the mortality rate (in absence of prey) is constant and
equal for the two classes. The searching-handling switch is supposed to happen on a
much faster scale than the reproduction and mortality processes. The corresponding
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parameter in the system of ODEs is therefore called 1/¢, and the system writes (for
some 7o, a, ¥, I', p, € > 0)

N® =1roN® —aN°p,

ps = — (=alN“pg +pj,) + I'pj, — 5, (5.4)

1
g
b 1 g _E ~ £ £
b= (aN°p; — Apjf,) — ppy.-

It is shown that in the formal limit ¢ — 0, N®* — N and p$ + pj, — P where N, P
satisfy (5.1) (with b=, k=«a/7, ¢ =1/, and g(N) = N) |74].

The same procedure was applied later by Geritz and Gyllenberg [41]: they divided
not only the predator population into searchers and handlers, but also structured
the prey population into two classes, the class of active prey (typically foraging)
and prone to predation, and the class of those prey individuals who have found a
refuge and cannot be caught by predators. In this way, they derived the Beddington-
DeAngelis functional response in terms of mechanisms at the individual level avoiding
the usual interference between predators. Also Huisman and De Boer [56], starting
from a different four-dimensional model, use a reaction schemes and quasi-steady-
state assumptions, obtaining a system of two ordinary differential equations; however,
they had to simplify a complicated quadratic expression with a Padé approximation
to recover the standard formula of the Beddington-DeAngelis functional response. In
both cases, two different time scales are exploited.

In this Part we are interested in the introduction of diffusion processes in the
asymptotic problem (5.4). Denoting by d;, da, d3 the diffusion rates of prey, searching
predators and handling predators respectively (and taking into account a possible
logistic term in the evolution of preys), we obtain the following reaction-diffusion
system:

OyN® — dy AN =1y (1 —nN®) N® — aNpS,

1 jng £ £ (1
O — dpApp = = (—aN°pS + 7 pj,) + I'pj, — pps, (5.5)

™

1 N
owp;, — A3 Aypy, = B (aN°pS — v p;,) — upj,-

Note that we systematically expect the diffusion rate ds of handling predators to be
smaller than the the one of searching predators dy. The formal limit of this system
when £ — 0 is the set of two cross reaction-diffusion equations
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yaN
N — di AN = 1—-—nN)N — .
t 1 7“0( n ) aN + 7
(5.6)
doy + dzaN aN
P —A, | ——————P|)|=I"——P — uP,
t ( aN +7 ) aNt75" "

in which the reaction terms are identical (up to the change of name of the constant
parameters) to those of (5.1), but in which the diffusion term relative to predators
is much more complicated than a constant times Laplacian of P (terms like dA, P
will systematically be called linear diffusive terms in the sequel, while cross diffusion
will refer to terms like A,(f(N, P)P), where f is a smooth non-constant functions
of N, P, as in the second equation of (5.6)). In Subsection 6.3, we state a rigorous
theorem showing that convergence of solutions to system (5.5) towards solutions to
system (5.6) indeed holds when suitable functional spaces are introduced.

The same procedure can be applied in the case of Beddington-DeAngelis-like func-
tional response, (that is, systems of ODEs close to (5.2)). First, we introduce a sys-
tem of three ODEs modeling the interaction between preys, handling and searching
predators as in (5.5), but in which we also take into account the competition among
predators when they look for prey. This is done thanks to the introduction of the
denominator 1+ £ P, for some £ > 0, in the interaction term between predators and
prey. The system writes then as follows:

. NE (3
NE = ro(1 = pN°)N* — ==L
1+ &p5
b 1 @Napi XA £ £
Ps =7 (—1 e +7ph) + 1'pj, — ppss (5.7)
1 [ aN®p;
€ CR-o-R (S
Pr = - <1+§p§ WP}L) UDp-

Its formal limit when € — 0 is then a system close to (5.2), and also obtained in [56]
starting from a more complex system of four ODEs.

A reaction-diffusion system when d;, d,, ds are still diffusive rates for prey, search-
ing and handling predators, writes
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NE £
ON® — di AN =719 (1 —nN®) N° — 1a+ g;’
£ £ 1 aNspi X AE £ £
Opy — doAyp; = z ( Tty + ’th> + I'py, — 1, (5.8)
] .1/ aNpE . )

We present in Section 6.3 a rigorous result of convergence of the solutions of this
system towards the solution of a reaction-cross diffusion system where the reaction
part is close to (5.2). This system writes

ON 2aNP
TN QAN =1 (1= N)N — A _ @ _ S—
Y+ aN +FEP + /(7 + aN — §EP)? + 4% P

ot
opr 2aNP

— — A, (f(N,P)P)=T — uP,
ot (A, P)P) Y4 aN +7EP + /(7 + aN — FEP)? + 45%P
(5.9)
where
o
(N, P) = dy- - e )
F+aN = FEP + /(7 + aN — 5EP)? + 43%¢P
2aN
+d

3+ aN + 5P + /(3 +aN = 3eP) + 477¢P

The proof of those theorems are based on estimates coming out of two classes
of methods. On one hand, we use the duality lemmas devised for reaction-diffusion
systems by M. Pierre and D. Schmitt [83]. More precisely, we use a version of those
lemmas allowing to recover LP regularity for p > 2 for the solutions of such systems
[27, 21]. On the other hand, we also use entropy-like functionals which are strongly
reminiscent of those used in works in which microscopic models for the Shigesada-
Kawasaki-Teramoto system [89] are studied [33].

These proofs can also be compared to recent results in which cross reaction-
diffusion systems are obtained as limits of standard reaction-diffusion systems with
more equations, in the context of chemistry or biology |77, 59, 28, 17, 18, 52, 53, 54,
85].

As already mentioned, Beddington-DeAngelis-like functional response is partic-
ularly interesting since it is known that predator-dependent functional responses
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lead to patterns when linear-diffusion terms are added to the reaction part, like for
example in the following system

N 20N P
a——dlAmN:ro(l—nN)N—i~ _ e _ .
ot 7+ aN +3EP + /(7 + aN — 5EP)? + 472EP
9P _ pAp=1- ; 2088 — —uP.
ot Y+ aN +FEP + /(7 + aN — FEP)? + 4726P

(5.10)

However, if one consider that the Beddington-DeAngelis-like functional response is
coming out of an asymptotics when e — 0 of (5.8), one should rather study the pos-
sible appearance of patterns starting from a system with cross diffusion terms (5.9).
Note that for Holling-type II functional response, no patterns seem to appear, even
with the cross diffusion model (5.6), under the (biologically reasonable) assumption
ds < ds.

In Chapter 7, we study the Turing instability regions associated to system (5.9)
and (5.10). In order to do so, we first perform an adimensionalization, which enables
to keep only a small number of parameters in the equations.

Then we make explicit the condition on the parameters which lead to the existence
of an homogeneous coexistence equilibrium for (5.9) and (5.10). We also perform a
stability analysis of this equilibrium (when it exists) at the ODEs level. Thus, we
show that the Turing instability region (in terms of parameters) is nonempty, as
expected, for both systems (5.9) and (5.10), and finally, we compare the size of these
regions. The main point is the fact that the Turing instability region associated to
system (5.9) is always strictly included in the Turing instability region of system
(5.10).

As a consequence, the use of reaction-diffusion systems for predator-prey inter-
actions of Beddington-DeAngelis-like in which standard diffusion is simply added to
the reaction terms [35] may lead to an overestimation of the possibility of appear-
ance of patterns (in the case when the Beddington-DeAngelis functional response is
a consequence of the interactions between searching and handling predators).

It is worth to mention that in many instances, the introduction of cross-diffusion
terms instead of standard (linear) diffusion terms leads exactly to the opposite result,
that is, the increase of the set of parameter values in which patterns develop |96, 57|.
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A justification of classical functional responses

In this chapter, we consider a predator-prey system of three reaction-diffusion equa-
tions, incorporating the dynamics of handling and searching predators, and show that
its solutions converge, when a small parameter tends to 0, towards the solutions of a
reaction-cross diffusion predator-prey system involving a cross-diffusion term and a
Holling-type 1T or a Beddington-DeAngelis-like functional response. With respect to
the systems presented in the Introduction, we systematically use in the sequel (ex-
cept than for Section 6.3) the parameter k := 1/n in order to stick to the traditional
concept of carrying capacity. This means of course that we work only in the case
when 7 > 0, which corresponds to a logistic prey growth.

6.1 The derivation of the Holling-type Il functional
response

We consider a reaction-diffusion predator-prey model in which we distinguish two
types of predators, those searching for prey and those busy handling a prey caught
earlier, while the interaction between predators and prey is treated in a quite simple
way (a Lotka-Volterra type interaction is considered). We suppose that the predation
process happens in a region 2 C RY, (N = 1,2,3), assumed to be smooth (C?),
bounded and connected, where the individuals are moving. We denote with n® :=
n®(z,t) > 0 the density of prey, with p := ps(z,t) > 0 and p§ = pp(z,t) > 0
the density of searching and handling predators, respectively (where t € R,z € {2).
We assume that each species has its own diffusion velocity and diffuse within a non-
reactive background (suppose to be at rest). We shall also assume that individuals are
confined in the region 2, so that the flux of density of each species at the boundary
012 is zero. This gives the homogeneous Neumann boundary conditions, no flux of
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density of each species at the boundary:

where 7(x) is the exterior unit normal vector to 9f2 at point x.

Predators which are searching for preys become handling with a rate proportional
to the number of preys and come back to the searching state with a constant rate.
Only handling predators contribute to the reproduction and give rise to a searching
predator, while the mortality rate is constant and equal for the two classes. The
searching-handling switch is supposed to happen on a much faster scale than the
reproduction and mortality processes, and than there are far less predators than
prey. The corresponding parameter in the system of ODEs is therefore called 1/¢,
and the system writes (for some rg, o, 7, I', i, € > 0, dy, do, d3)

NE
6tN€ —dlAajNg :ToNa (1 — ?) —OéNapi (61&)
£ > 1 g _E ~ & > £
oS — dyAup’ = g( — aN°p; + 7p;,) + I'pf, — s, (6.1b)
£ £ 1 E_E ~ & £
oy, — dsAupjy, = g(aN ps — A05) — Uk, (6.1c)

together with initial conditions and homogeneous Neumann boundary conditions.
In Section 6.3 we will rigorously prove that in the limit when ¢ — 0, the solution
N¢, pS, pj of this system converges in a suitable topology towards N > 0, p, >
0, pp, > 0 such that

aNp;
ph=——.
Y

We now wish to write the limiting system
N
ON — di AN = rgN (1 — E) — aNp;

O¢(ps + pn) — Ay (daps + dspr) = I'pr, — 11(ps + pn),

in terms of the density of the prey N and totality of predators P := p, + pp, only;
the equation for the totality of predators is obtained adding (6.1b) and (6.1c). At
a formal level, we expect when ¢ — 0 to obtain aNps; = ypy, that is, rewritten in
terms of P,

yP AN P

ps:m> ph:OéN—‘F:Y’
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and N 4 N
« S S « S
Pi=p,+pp=p,+ e = W T3P
Y Y
Then, the limiting system can be written with N, P as unknowns
N yaN P
ON — di AN =N (1— =) — T2
k alN + 75 62)
6.2
dz:)/ -+ ngéN I'aNP
OP—-A,|————P )| =——— — uP.
t ( aN +7 ) aN+75 "

This system still satisfy Neumann boundary conditions and is associated with the
initial conditions N(0,2) = Ni(x), P(0,2) = psin(x) + Phin(z). We want to note
that the limiting system presents a Holling-type II trophic function in the reaction
part: in this sense, we have derived this type of functional response by a time-scale
argument from a more complicated model. This fact is already known in the context
of predator-prey models described by ordinary differential equation [74]. Moreover,
the limiting system presents a cross-diffusion in the predator equation (the diffusion
rate depends on the prey biomass), while the prey diffusion is still linear. This means
that the diffusion term relative to predators is much more complicated than a con-
stant times Laplacian of P (linear diffusive term), which can be simply added to the
reaction part [35|. In particular, the diffusion term obtained by the time-scale argu-
ment depends on both the diffusion coefficient of searching and handling predators
ds and ds. In this case, we can write the the cross-diffusion term as

doy + dzaN
A(FNOP). () = FTEOEE

9

which is a monotonically decreasing function with f(0) = ds and f(N) — d3 when
N — +o00. We also note that if there is no prey, no handling predators are present
and the diffusion coefficient reduces to a constant one equal to the diffusion coefficient
of searching predators. On the contrary, when there is a huge prey abundance, we
expect that handling predators are more numerous than searching predators and the
diffusion coefficient again reduces to a constant equal to the diffusion coefficient of
handling predators. With respect to the linear case (which can be obtain with a
constant f), the cross-diffusion term reduces the predator diffusion when the prey
density increases.

6.1.1 Adimensionalization

In order to simplify the notations and to keep only meaningful parameters, we now
propose an adimensionalization procedure, using the new variables T, n, p instead
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of t, N, P in the following way:

t=060T, N=Xn, P=IIp.
After simplifications, the system (6.2) becomes

n allEnp
B k)X "Tar

)

on
8_T - dl@Agcn == 7’0@ <]_

—n+1
7
P P
op dy0 + dgéafn O%np
»_, o —er A o
r P P
or OéTTL +1 OéTn +1
Y Y

Choosing ©, X, II in such a way that all© =1, aX/5 =1, re© = 1, we end up
with the system

on _ d,OAn = (1 i ) np

aT SIS

dp dy0 + d3On np

— A | == =OI — .
or ( n+1 p) © n+1 Onp

We set Dy := d10, Dy :=dyO, D3 :=d30, v:=k/X, ¢ =61, m = Ou. Then, we
end up with

atn—Dlen:n<1—E>— np

v 14+n

50 A Dy+Dsn \  cnp . (6:3)
tp T 1+n _1+n p'

6.2 The derivation of the Beddington-DeAngelis-like
functional response

As in the previous section, we introduce a system of three ODEs modeling the in-
teraction between prey, handling and searching predators, but in which we also take
into account the competition among predators when they look for prey. This is done
thanks to the introduction of the denominator 1 + £p$, for some & > 0, in the inter-
action term between predators and prey [13]. The system becomes
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ON¢® N¢ aNeps
AN = 1) e .
a7 ro( k ) 1+ &ps
ops 1 aNeps
S dy At == — s c 't — 5’
BT YAV 8 c ( 1+ ¢pe +7ph> + 1Py, — up;s
op;, 1 alNeps
—d Am e _ | _ s e\ €
o 342D . ( 1+ ép + Py, D
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(6.4a)

(6.4D)

(6.4c)

In Section 6.3 we will rigorously prove that in the limit when ¢ — 0, the solution
N¢, p5, p; of this system converges in a suitable topology towards N > 0, ps >

0, pr > 0 such that

1 aNp;
bPn = = )
71+ Eps
and 1 aNps (14 pa)ps + aN
(67 S + S S+a S
Pi=pstpn=ps+ = bs _ 7 ~pp p‘
F1+&ps (1 +£ps)
We now wish to write the limiting system
N aNp;
ON — dy AN = 1—— | N-—
t 122 7n()( ]’C) 1"‘5]75’

0i(ps + pn) — Az(dops + dspr) = I'py — p(pr + ps),

(6.5)

(6.6)

in terms of N and P only, where the second equation is obtained adding (6.4b) and
(6.4c). We notice that p, satisfies a second degree equation (when P is given):

YEp: + (7 + aN — 36P)p, — P = 0.
Then, we consider only the positive root of this equation:

 —A+VA  23P
27€ A+VA

Ps
where we have denoted
A:=7+aN — FEP, A= A* + 47%¢P.
Note that A > 0 since P > 0. Denoting by

B:=4+aN + 7P,
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we also obtain from (6.5) the formula

B 20N P
P B VA

where A can be computed in terms of B:
A =A%+ 45%€P = (§ + aN — EP)? + 45%P
=5*+ (aN)* + (JEP)* + 27aN — 27%¢P — 2aNAEP + 45°¢P
= 3% + (aN)? + (3EP)? + 29aN + 252¢P + 2aNFEP — 4aNFEP
= (7 + aN +5¢P)* — daNFEP = B? — 4aNFEP.

Then the limiting system can be written with N, P as unknowns

ON N 24N P
IN AN = (1) Ny
o TO( k) "B+ VA
(6.9)
oP 25 P 2aNP ) 24N P
A (d— g2t p =Y p
ot (2A+VA "B VA Brva !

remembering the definition of A, B and A in (6.7) and (6.8). The limiting system
presents a cross-diffusion term in the predator equation (the diffusion rate depends
on the prey biomass), and a trophic function close to the Beddington-DeAngelis one.

This system still satisfy Neumann boundary conditions and is associated with the
initial conditions N(0,x) = Ny, (z), P(0,2) = psin(z) + prin(x). We note that the
limiting system presents a functional response close to the Beddington-DeAngelis in
the reaction part: in this sense, we have derived this type of functional response by
a time-scale argument from a more complicated model. This type of functional re-
sponse was derived also by Huisman et al. [56] in the context of ordinary differential
equations, starting from a system of four ODEs by a quasi-steady-state approxima-
tion. With their approach, also the logistic growth and the predator turnover terms
still depend on this complex expression. Thereafter, they have simplified this com-
plicated quadratic expression with a Padé approximation and they recovered the
standard formula of the Beddington-DeAngelis functional response.

Moreover we can also note that, as in the previous Section where we have derived
the Holling-type II functional response, the limiting system presents a cross-diffusion
term in the predator equation (the diffusion rate depends on the prey biomass),
while the prey diffusion is still linear. This means that the diffusion term relative to
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predators is much more complicated than a constant times Laplacian of P (linear
diffusive term), which can be simply added to the reaction part [35]. In particular,
the diffusion term obtained by the time-scale argument depends on both the diffusion
coefficient of searching and handling predators d, and ds. Otherwise, here the cross
diffusion term depends also on P: we can write the the cross-diffusion term as

2P _, , 2aNP
A+VA By VA

remembering that A := A(N, P). As in the previous case, we have that f(0, P) = dy
and f(N, P) — d3 when N — +o0.

A, (f(N,P)P),  f(N,P)=d

6.2.1 Adimensionalization

In order to simplify the notations and to keep only meaningful parameters, we now
propose an adimensionalization procedure, using the new variables T, n, p instead
of t, N, P in the following way:

t=0T, N=2Xn, P=IIp.
After simplifications, the system (6.9) becomes

on n ) 25yallOnp
n JR—

— —d1OA N =100 |1 — —— _
e ( Kz)" T BVA

op ( 29p 200X np ) 2'aXOnp

P _A(0—"_ 4,0 _ — u6p,
aT arva By va) T Byva P

or

where

A+VA=7+aXn —3Ip+ /(3 + aXn + FEIp)? — 450 S Tnp,
B+VA=5+aSn+30p+ /(7 + aXn + 3EIIp)? — 45aE X Tnp.

Choosing @, X', II in such a way that 2al10 =1, X =1, 41l = 1, we end up
with the system

on n Anp
= 4,60Am = 1——— - —
d1OAn = 1ry® ( 5/ ) n —,

Ip 29p 2np ) IyX&np
LA (do—L + 4,0 = — 1Op,

VA "By va
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where now

A+VA=5+n—p+/(F+n+p)—dnp,
B+VA=4+n+p++/(7+n+p)?—dnp.

We set Dy := d10, Dy := dy©, D3 := d30, r = 10O, v := k/X. Furthermore, we
denote again n by N, p by P, ¥ by v, and ' := I'3X¢, p:= p©. We end up with

a—N—DleN:r(l—E)N NP

oT v _B_|_\/Z’
(6.10)
OP 2vP 2NP ) I'NP
— A, [ Dy—"—=+D = — uP,
oT <2A+\/Z *B+va) B+va "
where now
A=y+N-P, B=y+N+P, A=(y+N+P)>—4NP. (6.11)

Rationalizing the denominators, we can obtain an equivalent expression, which
will be useful for the stability analysis of equilibrium states of the non diffusive part:

a—N—DleN:r(l—E)N—z(B—\/BQ—LLNP),
oT v 4

oP D2 D3
o7 4 <7(\/Z—A)+7(B—\/Z)) =

|~

(B VBT Z 4NP) — uP,
(6.12)
where A, B and A are defined by (6.11).

6.3 Rigorous results of convergence

We consider in this section the family (when £ > 0) of systems described in (5.8),
that is:

aN°p;

ON® — dyA,N° =1y (1 —nN®) N¢ — Tre (6.13a)
£ (> 1 O[Nspi ~oAE (> £
Ops — daAyp = Z ( Tl ep + wh) + I'py, — 1, (6.13Db)
£ (=1 ]' O{Nspi X aAE £
Opy, — d3Aupy, = —g< T Trep + vph) — [P, (6.13c)
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together with homogeneous Neumann boundary conditions

where n > 0 and & > 0.

When both 7 and £ are equal to zero, the reaction part of the system (6.13a)-
(6.13¢) reduces to (5.4). In this subsection, we assume that n > 0 (that is, we treat
simultaneously cases with or without logistic effects for the preys). We however treat
separately the case when & = 0 (leading to Holling-type IT functional response) and
the case when £ > 0 (leading to Beddington-DeAngelis-like functional response).

We want to rigorously prove that in the limit when € — 0, the solution N¢, pS, pj
of this system converges in a suitable topology towards N > 0, ps > 0, p, > 0. The
main results are based on the notion of very-weak solutions (see Appendix A).

The following theorem refers to the case £ = 0.

Theorem 6.3.1 Let 2 be a smooth domain of R¢ (for some dimension d € N—{0}),
dy,ds,d3 > 0 be diffusion rates, ro, o, 7,1, > 0 and n > 0 be parameters, and
Nin, = Nin(x) > 0, prin = Phin() > 0, Dsin = Dsin(x) > 0 be nonnegative initial
data respectively in L>°(82), L*(£2), and L*(02).

Then for each ¢ > 0, there exists a unique global classical (for t > 0) solution
(N¢, p5, p5) of system (6.13a)-(6.13c) with & = 0, satisfying homogeneous Neumann
boundary conditions (and with the initial data defined above).

Moreover, when ¢ — 0, one can extract from N¢ a subsequence which is bounded
in L>=([0,T] x £2) for all T > 0, and converges a.e. towards a function N > 0 lying
in L>([0,T] x £2). One can extract from pS a subsequence which converges weakly in
L*9([0, T) x 2) towards a function p, > 0 lying in L**([0, T x 2) for all T > 0 and
some 6 > 0. Finally, one can extract from pj, a subsequence which converges towards
a function p, > 0 belonging to L*T°([0,T] x £2) weakly in L**°([0,T] x §2) for all
T >0 and some § > 0.

Moreover, N, ps and py, are very-weak solutions of the cross-diffusion system

N — di AN =ro(1 —=nN)N — aNp;, (6.14)
Oy (ps + pn) — Axldaps + dspr) = I'py — p(pr + ps), (6.15)
aNps = App, (6.16)

with homogeneous Neumann boundary conditions
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and with initial data N(0,2) = Niyp(x) and (ps + pr)(0,2) = psin(x) + Phin(x). This
system can be rewritten in the simpler form (with P = py, + ps)

yaN

N — dyA,N = 1ro(1 —nN)N — —P,

t 1 7o( nN) aN + 7
dz’:;/—l-ngéN aN
P — A, ————F—FP | =T — — uP,
t ( aN +75 ) oN+7 F

with Neumann boundary conditions n(z) - V,N = 0, n(x)-V,P = 0, and with
initial data N(0,z) = Ny, (z) and P(0,x) = psin(x) + Dhin(x).

Finally, N lies in WY20([0, T); L*T9(2)) N L2°([0, T); W22+°(82)) for all T > 0
and some § > 0 (and P lies in L*>*°([0,T] x £2])).

The conclusion of this theorem can be somewhat extended in the case of low
dimension (and strictly positive initial data). We can in fact show the following
proposition.

Proposition 6.3.1 Under the same assumptions as in Theorem 6.3.1, and under the
extra assumptions that the dimension is d =1 or d = 2, and that inf ess N;,(x) > 0,
the sequences p; and pS converge a.e. towards p, and ps. Moreover, the quantities
PhyDs (and P) lie in L'([0, T); WH1(82)) for all T > 0.

We now turn to the case when £ # 0:

Theorem 6.3.2 Let 2 be a smooth domain of R (for some dimension d € N—{0} ),
dy, dy, d3 > 0 be diffusion rates, ro,,&,7, [0 > 0 and n > 0 be parameters, and
Nin == Nin(x) > 0, Phin = Prin(z) > 0, Dsin = Dsin(x) > 0 be nonnegative
initial data respectively in L>=(82), L*(2), and L*(£2). We assume moreover that
inf essN;,(x) > 0.

Then for each ¢ > 0, there exists a unique global classical (for t > 0) solution
(N¢, 15, p5) of system (6.13a) -(6.13¢) satisfying homogeneous Neumann boundary
conditions (and with the initial data defined above).

Moreover, when ¢ — 0, one can extract from N¢ a subsequence which is bounded
in L([0,T] x £2) for all T > 0 and converges a.e. towards a function N > 0 lying in
L>([0,T] x £2), from pS a subsequence which converges (strongly) in L**([0,T] x £2)
towards a function p, > 0 lying in L**([0,T] x £2) for all T > 0 and some 6 > 0, and
from p5 a subsequence which converges (strongly) towards a function py, > 0 lying in
L¥9([0,T) x £2) in L*+°([0,T] x §2) for all T > 0 and some § > 0.

Moreover, N, ps and p;, are very-weak solutions of the cross diffusion system
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ON — dy AN =10 (1 — nN) N — fﬁvé’;s, (6.17)
04 (ps + pn) — Asxldaps + dspn) = I'pn — p1(pn + ps), (6.18)
Sl S, (6.19)
with homogeneous Neumann boundary conditions
() VoN =0, i(x) Veps =0, a(z)-  Vup, =0,
and with initial data N(0,2) = Niyp(x) and (ps + pr)(0,2) = Ds.in(x) + Dhin(x).

Finally, N lies in WP([0,T7; LP( )) and LP([0,T); W??(£2)) for all T > 0 and
all p € [1, 400, pp lies in L*([0,T); H*(£2)), and ps lies in L*([0,T]; WH1(02)).

We denote from now on by Cr > 0 a constant which may depend on 7', the
parameters, and the initial data of the considered systems.

6.3.1 Proof of Theorem. 6.3.1

We consider system (6.13a)-(6.13c) with £ = 0.
The existence of global in time solutions (for which N¢, pS, pj are nonnegative)
for a given € > 0 to this system, is classical [31].

The r.h.s. of equation (6.13a) is bounded above by ro/N. Then, for each T > 0,
there exists Cr > 0 such that

sup || N¥||ze(jo,11x2) < O,
e>0

thanks to the maximum principle (or comparison principle); in fact Cp can be
bounded above by || Ny, ||r~e™?. As a consequence, there exists N € L>([0,T] x £2)
and a subsequence (still denoted by N°¢) such that N — N in L>([0,T] x §2) weak
x topology.

Adding the equations for pj and p%, we end up with
O P — A (A°P®) = I'p;, — uP* < I'P, (6.20)
with
dapj, + dsp§
Pj + D5
Then, thanks to a duality lemma (cf. [32] and the older reference [84]) we see that

P =p,+p;, A=
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sup || P 2 (jo,rx2) < Ot
e>0

A refined version of the same lemma (cf. for example [27] or [21]) yields in fact the
better estimate

Sup [[P¥]| 2vs 0,115 2) < Crrs
e>

for some o > 0.

As a consequence, there exist p,,p, € L2°([0,T] x £2) and subsequences (still
denoted by pf, pf) such that p — p,, p5 — pp, in L2+°([0,T] x £2) weak topology (for
some > 0).

Observing that 9;N¢ — d; A, N¢ is bounded in L2+°([0,T] x §2) for all T > 0 and
some 0 > 0, we get thanks to the maximal regularity estimates for the heat kernel

sup H@NEHLHL;([O’T}XQ) S CT,
e>0

SUP |[Oz,a; N¥|| L2+ (0.11x2) < O
e>0

As a consequence, we see that the sequence N°¢ is strongly compact in L2([0, 7] x
(2), so that (up to an extra extraction) N¢ converges a.e. towards N. We also see
that N lies in W12+9([0, T1; L2°(92)) N L¥9([0, T); W29 (12)).

Using the bound in L*9 of pS, we end up with the convergence N°pS — Np, in
L*9([0,T] x £2) weak (for all T' > 0 and some § > 0).

Passing to the limit in the equations (6.13a) and (6.20) in the sense of distri-
butions, we end up with the equations (6.14) and (6.15). More precisely, passing
to the limit in the very-weak formulation of equations (6.13a) and (6.20), we get
the very-weak formulation of the above system together with the homogeneous Neu-
mann boundary condition on N and P, and the initial data for N and P (that is
P(0,2) = pasn(2) + Prin()).

Observing that
P — NP = e(0 — daAepl) — £(pf, — 15),

and passing to the limit in the sense of distributions in this statement, we get identity
(6.16), which concludes the proof of Theorem. 6.3.1.

O
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6.3.2 Proof of Proposition 6.3.1

We compute, for ¢ €]0, 1], the time derivative of a suitable nonnegative quantity:
«Q €

d / ()™ (p5) T
dt q+1 0

— £ & I (3 £ — £
oy / (55) Vi 2 — dag (;) / (V)1 (91 V5

qg+1

(s (0)) (o))

-

- u/ {(pi)q“ + <%N€)q(p§)q“] +T (%)q/(1\75)‘1(172)%i

N /

-~

L (2) [aomev @+ dau
o)
_ ?QM (%)q/(pi)QH(Ns)q2|VxN€\2. (6.21)

14¢

J/

-~

We observe that the terms , , , , are all nonpositive. Remembering that

N¢ is bounded in L>, and that p, p5 are bounded in L?*° for some § > 0, we see
that

/0 /(]\f‘a)q(pi)qp}fZ < Cr (for all ¢ €]0,1]).

Remembering then that 9,N¢ + dy A, N¢ is bounded in L**° for some § > 0, we see
that

T
/ /|p§|q+1|8t]\f‘5 + do A, N°| < Cr  when ¢ €]0, 1] is small enough.
0

As a consequence, integrating (6.21) on [0, T'], we see that (for ¢ €]0, 1] small enough)
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[ (7= temves) (6 - (@mnr) <cre o2

T
| [ waie <o,
0 2
T
| v 9. < o
0 0

[V N°|?
(IVe)?
> 19(1 —nN®) — apf > (—nro — ap)Cr,

Observing that

1
— (0 — d1A,)N® + dy

(8t - dle) In N® = Ne

we see that since p¢ is bounded in L2*([0, T'] x £2) for some § > 0, in dimension d = 1
or d = 2, we obtain that N¢ is bounded below (by a strictly positive constant). Indeed,
we recall that (9, —dyA,) ™! acts as a convolution with a function lying in L3~¢ (when
d = 1) or L*¢ (when d = 2) for any € > 0, so that thanks to Young’s inequality
and the assumption that the initial datum N¢ is essentially strictly positive, In N¢ is
bounded below (by a strictly positive constant). As a consequence, still for ¢ €]0, 1]

small enough,
T
| [ wrvaie <o
0 Jo

Then, Cauchy-Schwarz inequality ensures that

T
(/ /lempi,u) / /pshq 1,552 / /pshl P (623)
0

Using (6.20), we see that 9;P° is bounded in L?([0,T]; H=%(£2)), so that thanks
to Aubin’s lemma [76], P° converges a.e. to P. Since p; — N°p5 — 0 a.e. (up to
extraction of a subsequence) because of (6.22), and N¢ converges a.e. to N, we see

that pj converges a.e. to pp, and pS converges a.e. to p,. Finally, (6.23) implies that
P, Ps € LY([0,T), WH1(02)) for all T > 0.

O

6.3.3 Proof of Theorem. 6.3.2

As in Theorem 6.3.1, existence of solutions (for which N, pS, p5 are nonnegative)
for a given ¢ is classical [31].
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As in Theorem. 6.3.1 again, for each T > 0, there exists C'r > 0 such that

sup || V|| e (jo,11x2) < O,
e>0

(and as a consequence, there exists N € L*([0,7] x §2) and a subsequence, still
denoted by N¢, such that N — N in L*>°([0,7T] x {2) weak %) and such that

Sup [[P2|| L2+ jo,r1x2) < O,
e>

for some 6 > 0 (and as a consequence, there exist py,p, € L**([0,T] x §2) and
subsequences, still denoted by pg, p, such that pZ — p,, p5 — pp, in L2T9([0,T] x 2)
weak for some § > 0).

Now observing that the r.h.s. of (6.17) is bounded in L*°([0,7] x §2) (this held
only in L*™([0,T] x £2) for some § > 0 in Theorem 6.3.1), the maximal regularity
estimates for the heat kernel yield the bounds

Sulg |ON?|| Lo (jo,11x0) < Cr, (6.24)
>

Sulg ||8xixjN€||LP([O,T]><Q) < CT7 (625)
e>

for all p € [1,40o0[, 4,5 = 1,..,d, so that the sequence N¢ is strongly compact in
LP([0,T] x £2) for all p € [1,4+o00], and N¢ converges a.e. towards N.

We now compute the derivative of a suitable nonnegative quantity:

1d

53 [ |2+ veoon),

with () = 2/&(x — In(1 + &x)/€) (so that ¢/(x) = 2x/(1 + &x), and " (z) =
2/(1 + &x)?). We obtain

5 [ |2 v -
0} £ (4 w p 1 € / £ £
/gphﬁtph'i_/ (2 ) +§/N V' (p5) 0w
Y . . L. aNp; c V(pg c
/aph <d3Axph - - (VPh - m) - Mph) + / %@N

1 alN®p
NEe__Ls s Am§+_ ~0E s . §+Fa
/ 1+ &% ( P s(”ph 1+§p§) e ph)
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;)V/ £ () 1 > E QNepi 5/ £
= d3a/phﬂzph - (71711— ) — p—= /(Ph)2

e 1+ &ps
dy
- £)A, N¢ 1—nN°)N® — =
+ 5 /@D(ps) +o /@b(ps)( n /@D Ps) ngs
2 N=(ps) NP,
+d/N6—SAI§— 0] +F sPh (6,26
e e ET

The boxed terms, integrating by parts and using the boundary conditions, can be
rewritten as

;5/ (4 £ ;5/ (1
dBa/phAl‘ph = _d3a/’VPh|2
pE
d NE S x V E
2/ 1+ &ps Py = / Ps ( 1+£ps)

D P
= —d VpEV | —=2— | N° —d VpEVNE ——
2/ Ps (1+£pi> 2/ PV T g

d d
- —g [ v -2 / VU TN

/ VR PV ()N + / BT A, N?

Thus, (6.26) can be rewritten as

1 aNepE\> 7 5
- ~0E S —d— V 12 __ L £\2
- (vph 1+£p§) \304/‘ ph'/ fia/(ph)l

d " (1 £ 1 £ (S &€
=5 [ NUeRIER 4 g [ o) 0N + AN

€ (1nE)2 15
_M/N(ps) L [N

L+ép; ) 1T+épg

-~

(6]
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The terms , , , and @ are nonpositive. Then remembering that 0 < ¢ (z) <

22 /€, p° and p5 are bounded in L2+ for some § > 0, N¢ is bounded in L>, and finally
0;Ne, A,N¢ are bounded in L? for all p < 400, we see that terms and , once
integrated on [0, 7], are bounded (by some constant Cp > 0). As a consequence, we
end up with the estimates

[ f (28 <
/O/Qme;\?gOT, (6.28)

T
| [ 5wk <cr (6.29)
0 2

We see that (with Cp := o+ ronsup.q ||[N|| L ((0,11x2))
(0, — d1A,)N® > —CpN*,
so that (denoting by inf the essential infima in the formula below)

inf N°(t,x) >e T inf N°(0,).

e>0,xe(? e>0,x€(?

As a consequence, thanks to (6.29),

/ / W) Va2 < Cp.

Then, the Cauchy-Schwarz inequality ensures that

(/OT/Q\VIPZ\)zg (/OT/Qw”(pi)pri\Q) (/ / 14 £pF) )<CT (6.30)

Using (6.20), we see that 9;P° is bounded in L?([0,T]; H~%(§2)), so that thanks to
estimates (6.28), (6.30) and Aubin’s lemma [76], P® converges a.e. to P. Note that
Ap5, — aNeps/(1+&ps) — 0 a.e. (up to extraction of a subsequence) thanks to (6.27),
and that N°® converges a.e. to N. Then

alN*epS _ . aNp:
=Ds + :
1+ &ps 1+ &ps

P — (ﬁpi

converges a.e. towards yP. Observing that
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- alN*®p . alNpS o
7p§+—)—<wi+ )‘S—NE—N,
‘( T+ & T )| SN

£
s ~

1+&ps

Using the continuity and the strict monotonicity of y — 4y + aNy/(1 + £y) for all
N > 0, we see that pS converges a.e. towards a nonnegative function denoted by
ps- Then, pj also converges a.e. towards a nonnegative function denoted by p,. As a
consequence, they also converge in L** strong when § > 0 is small enough. Finally,
it is clear that

we see that

Yps +

alNps
1+ &ps’

pston=2"P, App=

so that (6.19) holds.

We now pass to the limit in equation (6.13a) and (6.20) in the sense of distributions
(more precisely, in the sense of very-weak solutions, which include the Neumann
boundary conditions and the initial data N(0,2) = N;,(z) and (ps + pp)(0,2) =
Ds.in(T) + Prin(2)), so that (6.17) and (6.18) hold.

Finally, thanks to (6.24) and (6.25), we see that N lies in LP([0,T], W??(§2)) N
Whr(]0, T[, LP(£2)) for all p €]1,4+o00], and thanks to (6.28) and (6.30), we see that
ps and py, respectively belong to L'([0, 7], W (£2)) and L?([0,T], H'(£2)).

0
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The Turing Instability analysis

In this Chapter, we study the Turing instability regions associated to system (6.3) and
(6.10). We make explicit the condition on the parameters which lead to the existence
of an homogeneous coexistence equilibrium and perform a stability analysis of this
equilibrium (when it exists) at the ODEs level. Thus, we study Turing instability
for both cross-diffusion systems and compare the results with respect to the case in
which a linear diffusion term is simply added to the predator equation, instead of
the cross-diffusion term.

7.1 The Holling-type Il

In this Section we want to study the Turing instability of the cross-diffusion system
with the Holling-type Il functional response. We are also interested in the study of
the associated linear-diffusion system, that is when linear-diffusion terms are simply
added to the reaction part.

7.1.1 Homogeneous equilibrium states

First, we look for the homogeneous equilibrium states (that is the ODEs system of
the reaction part of (6.3)):

. n np
n:n<1__>_l+n
v
(7.1)
) cnp
= — mp.
b 14+n b

From the first equation, if p = 0, we obtain n = 0 or N = v, corresponding to the
total extinction Ey(0,0) and the non-coexistence E)(v,0) equilibria. Otherwise, we
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look for a coexistence equilibrium F,(n., p.) (by coexistence equilibrium, we mean
that n,, p. > 0). From the second equation, we get

m N\ Ny + 1
Ny = ) p*:n*<1——> )
c—m v Ny
with existence conditions on the parameters
m
c—m >0, v > .
c—m

Now we study the stability properties of these equilibrium states. We denote by
Jij, 1,7 = 1,2 the elements of the Jacobian matrix of the system:

o9, 4 2 __ P
"Ton T v (1+n)?
0 n
Jip = —1 = —
2 8pn 1+n’
0 cp
J- N
21 a 1+n7
0 . c
oy = o p =t

dp :1—|—n_m

Evaluating the Jacobian matrix in the equilibrium states, we obtain:

Ty
R R YRS S §
0 *
1+ n,
and we have that
Cp+ m
—m<0 & V< .
14 n, c—m

Then the equilibrium Ej is unstable (more precisely a saddle point); the equilibrium
Ej is locally asymptotically stable (more precisely a node) when FE, does not exist,
and the equilibrium F; is unstable (more precisely a saddle point) otherwise.

The elements of the Jacobian matrix evaluated at the equilibrium F, are
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v c c
* U

CP+
Joy = >0,
A 4,

CPy
J5y = —m =0.
2 14,

Then, we have that the determinant of the Jacobian matrix is positive and the trace
has the same sign of Jj;. In particular,

m
<v <2 ,

11 >0 &
cC—m cC—m

thus F, exists stable (and unstable for greater values of v).

7.1.2 Turing Instability analysis

We look now to the reaction-diffusion system with parameter values for which the
coexistence equilibrium is stable. If we consider linear-diffusion terms, the system
writes

8tn—D1Axn:n<1—E> _
v 14+n

cnp

O — DAp = 1+n

— mp,

where D is a constant diffusion coefficient of predators, D # D;; in this case it is
known that Turing instability can not appear [10]. In fact,

* ‘]ikl - D1k2 Jikz
My = ( J  —Dk?)
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and it is easy to verify that tr M; < 0 and det M > 0V k.
Now we study the cross-diffusion system (6.3); the linearization of the diffusion
terms around FE, gives the matrix

D, 0
(Dg — D2) D2 + Dgn* )
(14+n*)2"" 1+ n*

which has positive diagonal elements. The non-zero off-diagonal element is the cross-
diffusion coefficient of predators in the linearized system. We note that it tends to
zero when p, — 0, because in this case there can be no flux of predators. The sign of
non-zero off-diagonal element is prescribed by the values of the diffusion coefficients
of searching and handling predators. In particular, we can assume that D3 < D,
which means that searching predators are more diffusive than handling predators
(biologically reasonable). With this assumption, D3 — Dy < 0; hence, the cross-
diffusion coefficient is negative. This implies that the flux of predators is directed
toward increasing values of the concentration of preys. The characteristic matrix
(k € R is the wavenumber) has the form

Ji — Dik? J1
My = . (D3 — Ds)ps . _D2 + Dsn, 12
2 (14 n*)2 1+ n*

Thus, tr M < 0 and det M; > 0, Vk. We can conclude that no Turing insta-
bility appears also in the cross-diffusion system, under the (biologically reasonable)
assumption D3 < Ds.

The introduction of cross-diffusion terms, derived by a time-scale argument pre-
sented in the previous Chapter, instead of standard (linear) diffusion terms does not
lead to the increase of the set of parameter values in which patterns develop; this is
exactly the opposite result obtained in [96, 57| with an another type of cross-diffusion.

7.2 The Beddington-DeAngelis

In this Section we want to study the Turing instability of the cross-diffusion system
with the Beddington-DeAngelis-like functional response. We are also interested in the
study of the associated linear-diffusion system, that is when linear-diffusion terms
are simply added to the reaction part. First of all, we look for the equilibrium states
of the ODEs system and then we perform the Turing instability analysis in both
cases, and we compare the results.
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7.2.1 Homogeneous equilibrium states

In this subsection, we look for the equilibrium states of the ODEs system (that is
the reaction part of the whole system (6.10) or equivalently (6.12)):

v B+VA
. I'NP
pP=—"""_ _,p
B+VA
where A, B and A are defined in (6.11).

(7.2)

From the first equation, if P = 0, we obtain N = 0 or N = v, corresponding to
the total extinction Ey(0,0) and the non-coexistence Fi(v,0) equilibria.

Otherwise, we look for a coexistence equilibrium E, (N, P,) (by coexistence equi-
librium, we mean that N,, P, > 0). From the second equation, we get the identity

I'N,

—pu=20 7.3
Y+ N+ Po+ /(v + N. + P.)?2 — 4N, P, (7.3)
from which, rationalizing the denominator, we can obtain
Ap
V/(y+ N, + P,)2 — 4N, P, =7+ N+ P ——=P. (7.4)

From (7.3), we can also get an expression of P, in terms of N,. In fact, we have

I'N, — u(y + N, + P,) = u/(7y + N, + P,)2 — 4N, P..
We see therefore that the coexistence equilibrium can exist only if
I'N, — pu(y+ N.+ P,) > 0, (7.5)

and then taking the square of both terms we end up with

p_ I' (I' = 2u)N, —2yp FN I'y
o (D=2p) 2wt T =2

Substituting (7.6) in (7.5), we see that (7.5) is equivalent to

r—2
5 MN*+7M(

- _“2M> > 0. (7.7)
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Since we are looking for equilibria with N, > 0. we see that (7.5) or (7.7) can also
be rewritten as

I' =2 > 0. (7.8)
Substituting the expression (7.4) in the equation N = 0 from the first equation of
(7.2) written as

Ner(1-X\N_2(B-VA
(1-3) v - va

v 4
we obtain N
* Y
1-— N, — —P, =0, 7.9
(- ) w- 2 (79)
from which we have another expression of P, in terms of NN,
r N,
P.=—r (1 — ) N,. (7.10)
Y v

Substituting the expression (7.6) in (7.9), we obtain a second order equation in the

unknown N,:
2

r v y
N2 (r=2)N. - —0. 7.11
U oY (7.11)
We see that, thanks to (7.8),
Ay = (7~—1)2+4Z LA (7.12)
N 2 vI —2pu ’ '

so that equation (7.11) has one and only one strictly positive solution given by

N*zi(r—%Jr\/A_N). (7.13)

2r

Then, the condition P, > 0 is equivalent to

r I'y
20 I'—2pu

>0 & 0< N, <v, (7.14)

depending on the chosen expression for P,. This condition can be rewritten as
2
I'—2pu>——, (7.15)
v

by substituting (7.13) in the last term of (7.14). Note that this last necessary condi-
tion for the existence of the coexistence equilibrium FE, implies condition (7.8). We
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now briefly explain why condition (7.15) is sufficient (and thus both necessary and
sufficient) for the existence of E,. Indeed, (7.15) can be rewritten as

\/AN<7’+%,

so that NV, (computed from formula (7.13) and (7.12)) is such that 0 < N, < v.
Remembering that this last condition is equivalent to P, > 0 (when P, is given by
(7.10) for example), we see that both N, and P, defined in this way are strictly
positive. One can easily check that they satisfy N =0, P =0 in (7.2).

Now we study the stability properties of these equilibrium states. We denote by
Ji iy 1,j = 1,2 the elements of the Jacobian matrix of the system (7.2):

0 . 2 N-—-P
:]11:—.]\[27‘——7’]\7—z 1-— ’}/—F s
ON v 4 VG + N+ P)?—4NP

o N4 P
e [ kA ,
or 1\ / +NtPE_4aNP

o . T Y+N-P
Jor = P == [1- ,
ON- 4 VO + N+ P2 —4NP
o . I y—N+P
= P = (1 -
¢ oop ‘4< ¢thV+PV—4NP> :

Evaluating the Jacobian matrix in the equilibrium states, we obtain:

r 0 —r *
J(Ey) = J(Ey) =
(Eo) {0 _Ny (E1) [0 J22(E1)]’
I'v 271
Jyp(B) = ———— —u>0 = ' —2u > ——.
2(E) 2(y+v) K a v

Then the equilibrium Ej is unstable (more precisely a saddle point); the equilibrium
E is locally asymptotically stable (more precisely a node) when E, does not exist,
and the equilibrium F; is unstable (more precisely a saddle point) otherwise.

The case of E, is more intricate. First, we compute the quantities

>0 (7.16)

4p I'—2p 2y
=Y+ N+ P, — =P, = N, +
@ 7 r 21 I'=2p
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and, thank to (7.6) and (7.16),

P, T 1 2unI’
Q. I'—2u (I = 2p)* N, +4p>y )
Thanks to (7.4) and (7.6), we obtain (remembering the definition of Ay in (7.12))

explicit expressions for the elements of the Jacobian matrix evaluated at the equilib-
rium F,, denoted by J:

2 I —2u) P,
T = Ju(B) = (1 - ;N*) -2 P

of Q.

2 I —2u)? 2

Qi I'—2p | dvpPy
py* T v
— 20)* N, + 4p*y .
i2 7= ol (7 TN, + P)?_4N.P,
2
gl 7
= (=2uP, + I'N, — T <o,

no T VO I N. T PE 4N,
1

QQ*

(I' — 2u)P, > 0,

. + N, + P.)? —4N,P, — (v + N, + P,) + 2N,
T e (B = —ps (YO ) 0 )
4 V(Y + N. + P.)? — 4N.P.

r 21
’”2@9*( T )

1 4
9 N,+P.—Ep )+ 1N, —ouP,
2@( ’“‘(7+ T >+ 8 )

1
- 2Q.
1
T 20,

8 2
<<—2m + (I = 2p)N.) — 4pPs + %P*)

20 8u? 7
I —2)P, — 4uP, + =P, ) = — ' —24)P, < 0.
( ( 1) ph+ ) FQ*( )P, <0
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Note that the sign of Jj; is not prescribed, while we are able to determine the
sign of the others elements (J;, < 0, J35; > 0, J5, < 0). However, we can prove that

(this holds whatever is the sign of Jj;). In fact, substituting in the expression of
det J(FE,) the formulas for J., i,j = 1,2, we have

4,57
N, I —2u)? 4 r
detJ:L 1——=)N,|r MNE—F—MN*—?/A +_fy
Q? v 2uy v 2
and substituting (7.13) in the linear term inside the brackets, we obtain
r N, (I" —2p)? g
det J = 1— N, |r————N; +2u/ A —(["—2 0.
‘ QZ( V) [r oy vyl H| >

On the contrary, the sign of the trace of the Jacobian matrix evaluated at E, is not
prescribed. When J;; < 0, we have

trJ:Jf1+J;2<O7

so that E, is locally asymptotically stable. When J;; > 0, the trace can be nonpositive
or nonnegative. We have numerical evidence that both cases can hold, for different
values of the parameters of the model.

7.2.2 Turing Instability with linear diffusion terms

We consider the reaction-diffusion system in which linear-diffusion terms are simply
added to the reaction part of (6.10) (for given Dy, Dp > 0)

N N NP
a——DlAIN:r<1——)N 7

ot v B VA
(7.17)
oP NP
o ppAPp =T P
or " Brva !

where A, B and A are defined in (6.11), and sets of parameter values such that
tr J(E,) < 0 (remember that such parameters indeed exist).

For any wawenumber k € R, the characteristic matrix evaluated at the equilibrium
E, is defined by
_ [T Dk TG

M Sy - Dpk?]
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and has a negative trace. In fact,
tr M = Jf, — Dik*> + J5, — Dpk® = tr J — D1k* — Dok < 0.
Its determinant is
det M = det J — (DpJ;, + D1J3)k* + D1 Dpk?,
so that a necessary condition for the Turing instability is
Dy J55 + DpJi; > 0.

If Jj; < 0, remembering that J3, < 0, we see that DpJj; + D1J3, < 0. In this case,
the system does not show any Turing instability.

On the opposite, if Ji; > 0, for any k£ # 0, we can select Dp large enough so that
det J — DpJ;i k* < 0. Then, when D; > 0 is small enough, det M < 0 and Turing
instability appears.

7.2.3 Turing Instability with cross-diffusion

If we now consider system (6.10) or the equivalent form (6.12), that is

8—N—D1AIN=r(1—E)N—1(B—\/B2—4NP>,
oT v 4

g_];_ax(%(\/z—AH%(B—JZ)) = (B~ VB ANP) - P,

where A, B and A are defined by (6.11). Therefore, the characteristic matrix has
the form , )
Ji — Jhp kT — Jhok
S
Jo1 = Jaoi k™ I3y — Jagk

where k € R is the wavenumber, and the terms J,;;, 4,7 = 1,2 are obtained thanks
to a linearization of the diffusion terms around FE,. They are given by the following
explicit formulas:
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Jay = D1 >0,
Jle =0,
Dy — D: N, — P, — VA, Dy —DsI'—2
a0 = e s (0 ) = ’ MP*, (7.18)
2 VA, Q. I
A4z 9 VA, 2 VA,
D, (I'=2u)\ | D3 2uy
= P—— . 1
Q*(+ T +Q*F—2u>0 (7.19)

We notice that only the sign of J%,, depends on Dy, D3. Due to the biological meaning
of these parameters, we recall that we systematically assume that Dy > Ds, since
searching predators are expected to be “more diffusive” than handling predators.
With this assumption, J}4, < 0.

We still consider sets of parameter values such that tr J(E,) < 0. Then the
characteristic matrix M has negative trace, because

tr M = Jf, — Dik* + J5y — Jhook® = tv J —D1k* — Jhon k* < 0.
~~ ~~
- +
Its determinant is
* Tk * Tk * Tk * 4
det M = M_<J11JA22 + I3 JAn — Jia Ao K + (D1Jhg) K,
+ +
so that a necessary condition for the Turing instability is
Ji1J 202 + Ja2J a1 — Ji2aar > 0. (7.20)
If Jf, <0, we have
i Jhos+ I3 T — Jia Ja0,
N N
so that condition (7.20) does not hold and, as in the case of linear diffusion, the
system does not show Turing instability. On the opposite, if J;; > 0, we have
i Jhos+ I3 T — Jia Jan,
N N N N
+ o+ -+ - -

so that for any k # 0, we can select Dy large enough and D3 ~ Dj so that det J —
(51T ke — JioTho1)k? < 0. Then, when D; > 0 is small enough, det M < 0 and
Turing instability can appear.
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7.2.4 Turing instability regions: linear vs cross diffusion

We recall that the derivation of equations (6.10) (using the mechanistic approach and
the “microscopic” model ) produces a cross diffusion term in the predator equation,
whereas the prey diffusion rate is still a constant. We recall, for reader’s convenience,
the considered equations

a—N—DlAIN:r<1—E)N—ﬂ,
B+VA

oT v
(7.21)
OP I'NP
— — A, (f(P,N)P) = ———— — uP,
5T (f(P,N)P) 5rva "
where
A=y+N-P, B=y+N+P, A=(y+N+P)>?—4NP,

2 2N

f(P,N):=Dy—="L 4+ D (7.22)

"A+vA B VA

We want to compare three natural strategies to model the diffusion in systems of
ODEs modeling the predator-prey interactions.

1. First, we take the reaction part of (7.21) and we add diffusion terms in such a
way that Dy is a constant rate for predators. This means that we exactly take
the diffusion coefficient of searching predators for all predators appearing in the
limiting model.

2. Secondly, we take the reaction part of (7.21) and we add diffusion terms in such
a way that Dp = f(Pi, N.), where f is defined in (7.22), is a constant rate of
diffusion in the equation for predators. This means that we now take into account
the difference (in term of diffusivity) among searching and handling predators,
since both diffusion rates Dy and D3 are present in equation (7.22).

3. We finally consider the diffusion model (7.21), coming out of the derivation by
singular perturbation of a microscopic system, as explained in Section 6.2.

Note first that, thanks to (7.6), it is possible to obtain a simple expression for Dp.
Indeed
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27y 2N,
Dp = f(P.,N,) =D +D
p=f( ) QA*—i— A 3B*+ A
N,
N, — —P, N,+ P, — —=P,
v+ Ia v+ Nyt Ia
g N,
=D +D
27 241y ’ LIy o v 2w
T —2u T T T o T T—2u
20 21
=Dy (1—— D3—. 7.23
2( F)+ 3 ( )

We note therefore that Dp is a convex combination of the diffusion coeflicients
Dy, D5 corresponding to searching and handling predators. Furthermore, assuming
that D3 < D, (remember that from the modeling point of view, handling predators
have a lower diffusion rate than searching predators), we have

2,u Q/L DQ—Dg
Dp=Dy|1—- =L Dis— =Dy — —=—292/, < Ds.
P 2( F)+ 3 2 T jz 2

The characteristic matrices of the cases that we consider are finally given by

1. Linear diffusion with Ds:

Ji, — Dik? Jj
My, =" N E (7.24)
J5; I3y — Dok
2. Linear diffusion with Dp defined in (7.23)
Ji, — D1 k? J5
Mpp=|" 2o (7.25)
Jor Ja — Dpk
3. Cross diffusion: )
Ji, — Dhk J7.
MC - [ *11 *1 2 7% 12* 2] ) (726)
J31 = Jank* J3p — Jhgok

with J%,;, Jhy defined in (7.18) and (7.19).

We first want to compare the Turing instability regions of cases in which we have
linear diffusion terms, corresponding to constant diffusion coefficients Dy and Dp for
predators, namely the range for &% that gives det M < 0. The characteristic matrices
are (7.24) and (7.25), where one should remember that Dy > Dp (because of the
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modeling assumption). Considering the generic matrix of a linear diffusion depending

on the parameter D > 0:

MEY=1" 0 g, - e

we can study the Turing instability region with respect to D by computing

det M (D) = (J§, — D1k?) (J3, — DK*) — JiyJ5; =
= DDk* — (D1 J5, + DJ3)) k* + det J.

The interesting case (Turing instability appearance) is obtained under the necessary

condition D J3, + DJJ; > 0, that is

D>D =2
Ji

where D is a threshold. The solutions to the equation det M (D) = 0, which give
boundaries of the Turing instability region (when this region exists), can be written

as

SOZLQ = 2D1D

The solutions exist if the discriminant in (7.27) is nonnegative, that is
(DyJ3y + DJ;)? — 4D Ddet J > 0,
which leads to an inequality in D:
(J11D)? = 2D:1(J51 I35 — 2J35J3,) D + (D1 J3,)* = 0.
The associated equation has a nonnegative discriminant, that is
(D1(Jy T35 = 2J75030))" = (D1J}y J5)* = —4DY 55 det I, > 0,

and the equation admits two real roots

*2
Jll

[\/det Tp + \/—J;‘Q(J;l]2 >0,

Dy =

i

(D13, + DJ3y) &\ (D1 T3y + DJ3y)* = AD.D(Jiy Jgy — Jipliy)

(7.27)
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which are both nonnegative.
It is also possible to prove that Dy < D < Dy. In fact, it can be easily seen that
Dy > D is equivalent to

V=T 3 det J > —det J,

while D; < D is equivalent to

V=TT det J > det J

So these conditions are always satisfied. Then the values of D which lead to Turing
instability are D > 152 (because when D<D< 152, the quantities sol; 5 are not real
and for D < D, no Turing instability can appear).

We now can perform a qualitative study of the behaviour of the roots sol; 2(D),
when we vary the parameter D > Ds. In particular, using from (7.27), we see that

soly5(D) >0 VYD > D,.
Moreover, again from formula (7.27), it can be easily seen that

. R D1 J5, + Dy J3
soly1(Dsy) = soly(Ds) = - > 0,
1(D2) 2(Ds) 2D D,

and also that 7
Dgrfwsolg(D) = Dli > soly(Ds),

and
lim soly(D) = 0.

D—+o0

Furthermore, taking the derivative of (7.27) with respect to D, we obtain

J3 Ji J3 detJ
o (E8)(8) ot
——s0ly(D) = — =2 4 ;

oD 2D% 2 2
(% 3o + Jﬁ) — 421 detJ

and

2
(% T3y + Jﬁ) — 421 et — (% S5 + J;)

—sol1 (D) = ~5p? -
(% T3y + J{‘l) — 421 detd
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detdJ
_ ; .
D2\/(% J3y + Jfl) — 421 detd
so that
0 0
8—Dsol1(D) <0 0_DSOl2(D) > 0.

This means that the value of sol; is strictly decreasing with respect to D, while sols
is strictly increasing.

Then, we see that the Turing instability region grows when D increases (beyond
152). Because of this, choosing a diffusion rate based only on the behaviour of search-
ing predators could lead to inaccurate conclusions about the possibility of pattern
formation.

We now wish to compare the Turing instability regions in the case of linear diffu-
sion with constant diffusion rate Dp as defined in (7.23), which has the characteristic
matrix

Ji — D k? J1

)

and the case of cross diffusion, that is when the characteristic matrix is

i — Dik? 12 ]

MC - [ * * 2 T * 2
J21 - JA21k ‘]22 - JA22k

We observe that

det My p = D\Dpk* — (DpJi, + Dy J3,) k* + det J,
det Mo = Dy Jhook* — (Jhoodiy + DiJsy — JiyJ oy ) K2 + det J,

and the Turing instability regions can be estimated thanks to the study of those
determinants. Both are second order polynomials in k? with positive leading coeffi-
cients; furthermore, for k = 0, we see that det M p = det Mo = det J. We want
to compare the leading coefficients Ay, Ac on one hand, and the coefficients of k2,
namely By, Bc, on the other hand. Those coefficients are defined in this way:

AL = Dle, BL = Dp(]ikl -+ D1J;2,
Ac = D1J 99, Be = JhgeJiy + Didoy — Jid -
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Substituting the expressions of Dp given in (7.23) and J%,, in (7.19) (in terms of Dy
and D3) in Ap, Ac, Br, Be, we see that

2u 20
A =Dy |Dy |1 — — Ds—
L 1[2( F)+ 3F}’

_ v, P 2 2y
te=pi[pi(g+ g (1)) + Pt e

24 2p ) . .
By, = [DQ (1 - ?> + DgT] Ji1 + D1J5,,

_ v, B 2p 2y . o o D2— D3 21
Bc_{DQ(Q*+Q*<1 F))+D3Q*(F_2M>}J11+D1J22+J12 o, 1—=% ) P

We first look at Ap and Ag, coefficients of the leading term of the determinants.
Both A; and A¢ are convex combinations of Dy and Ds, since

and

v B 2 2py 1 2 2y
(@+Q*O F))+@ﬂrom @*P+g<1 F)*@—%J
1 [F — 2,uN 2y } Q.

"ol Tl e !

We now compare the coefficients of Dy and D3 in the convex combinations; for Do,

we get
v B 24 24 2y
— 1-— >1—-— & N,> ,
(Q*+Q*( F)) r -2y

and for Ds3, we get

2 2y 2y
—>—— & N, ,
r Q*(F o 2:”) g I — 2;”

which holds thanks to (7.14). As a consequence, we are able to prove that Dp < J},,.
Indeed:

2 20 v o, P 21 2y
Dy(1—-"5 ) +D3"= <Dy | = — Dy——— 1 .
2( F) + 3F 2 (Q* + Q* F _'_ 3Q*(F—2,u)

We now prove that By > Bc. In fact, we can write
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2 o, .
B = Dz—(D2—D3)? Ji1 + DiJs,,
2y Dy — Ds 21
Bo=|Dy—(Dy—D3)—————\|J}y + D1 Jsy + J,———= 1 — — | P..
c { 2 — (Ds 3)Q*(F—2,u)] 11 T Pidag + Jip 0. ( T

Starting from these expressions, we see that By, > B¢ if and only if

{%— (D2 — Dz)%ﬂ} Ji + Didsy >

2 Dy —D 2
i s D] s B 1,22 2 (1 )

Then we can divide this formula by the common strictly positive factor Dy, — D3 and
multiply both sides by (),. We obtain

2| 1
{_M?} JQx >
241y (Ds—13) 24
—(D — | S+ Je———— | 1 — = | PG4,
and using the expressions of J}; and Ji,, we end up with

I v 2I
241y 2 I'—2u 7
- 1-2N) Q. — r|-2LLp.
T =210 [ ( 7 )Q "or Q.

We can expand the product in the r.h.s.; we obtain

20 2 I'—2pu 2y 2
- 1— =N, | Q. — P, ————r|1—-—=N, .
Elr(ov)e—tgrte] - (1

Now we can divide both sides by 2u, bring all terms in the L.h.s., and get:

Y Qs 2r v I —2p
- ~IN )+ 2P 0.
[F—Zu F}(T v )+F o

Using formula (7.16) giving Q. in terms of N,, and eliminating the common factor
I', we obtain
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I'—2p 2r I'—2pu
— N, — —N P, > 0.
{7 24 1( ) Tar

Using now the expression of P, in terms of N, in formula (7.6), we obtain

[ _F—Q,MN] <T—2—TN) F/—%ﬁz(F—Qu)N*—QWL
T o )T T (T

Using finally the expression of N, in formula (7.13) (only in the second N, in the
equation above), we end up with the inequality

I'—2

> 0.

which is equivalent to

PRI AN

and can be reduced to

Q’MN] M 7Z>0

—\/AN[Y— _QHN*] > 0,

24

/

which is always true, since P, > 0.

Finally, we see that the determinants of the characteristic matrices with linear
and cross diffusion, respectively

det M p = Ark* — Bok®> +detJ, and det Mg = Ack* — Bok? + det J,

are such that Ac > Ay and By > B¢. Looking at the Turing instability regions, that
are regions in which the determinant of the characteristic matrix is strictly negative,
we see that three cases naturally appear:

1. there are no regions of negative determinant for both linear and cross diffusion
(Figure 7.1(a)), then no Turing-patterns appear in both systems;

2. the linear diffusion case has a Turing instability region, but the determinant of the
cross diffusion case is positive for all k (Figure 7.1(b)), so that the cross diffusion
case does not lead to Turing instability;

3. both cases lead to nonempty Turing instability regions (Figure 7.1(c)). It can be
proved that
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VB? —4A;det J N /B — 4Ac det J
2AL 2A¢c ’
which means that the Turing instability region for the cross diffusion case is
strictly included in the Turing instability region of the linear diffusion case.

In all cases, we see that the cross-diffusion model leads to a possibility of obtaining
nontrivial patterns which is less likely than in the linear diffusion model. Therefore,
the use of a model in which standard diffusion terms are directly added to the reaction
part may lead to an overestimation of the set of the parameters for which patterns
appear, with respect to the cross-diffusion model.
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det(ME)

det(M})

det J,

k2

det J,

TIR,

det J,

TIR,

(c)

Fig. 7.1. Turing Instability regions for linear-diffusion and cross-diffusion cases. (a) There are no regions
of negative determinant for both linear and cross-diffusion, so that in both cases Turing instability can
not appear. (b) The linear-diffusion case has a Turing instability region (T'IRr), but the determinant
of the cross-diffusion case is positive for all k, so that the cross-diffusion case does not lead to Turing
instability. (c) Both cases lead to nonempty Turing instability regions, but the Turing instability region for
the cross-diffusion (T'IRc) case is strictly included in the Turing instability region of the linear-diffusion
case (T'IRyL).
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Concluding remarks

This Part focuses on the study of two “microscopic” (in terms of time scales) predator-
prey models with diffusion that justify, in a suitable limit, two classical types of
functional responses in the reaction part and present a cross-diffusion term. We have
also presented rigorous result of convergence of the solutions of these system towards
the solution of the reaction-cross diffusion system.

In detail, two trophic levels are considered, prey and predators which are further
divided into searching predators and handling predators. The former are predators
active in the predation process, the latter are resting individuals. Then, we start
from a system of three partial differential equations, with a standard linear diffusion
in terms of Laplacian, and with a Lotka-Volterra reaction term. Through a quasi
steady-state approximation we end up with a system of two PDEs with prey and
total predator densities as unknowns, in which a Holling-type II functional response
appears together with a cross-diffusion term in the predator equation. This means
that the diffusion term relative to predators is much more complicated than a con-
stant times Laplacian of P (linear diffusive term), which can be simply added to the
reaction part [35]. In particular, the diffusion term obtained by the time-scale argu-
ment depends on the prey biomass and on both the diffusion coefficient of searching
and handling predators d, and dsz. Looking at its expression, the cross-diffusion term
reduces the predator diffusion when the prey density increases.

Then we modify the starting model inserting a competition among predators.
With this change we end up after a quasi steady-state approximation with a system
of two PDEs for prey and total predator densities, characterized by a Beddington-
DeAngelis-like functional response and a cross-diffusion term in the predator equa-
tion.

We note that the limiting system presents a functional response close to the
Beddington-DeAngelis in the reaction part: in this sense, we have derived this type



136 8 Concluding remarks

of functional response by a time-scale argument from a more complicated model.
This type of functional response was derived also by Huisman et al. [56] in the con-
text of ordinary differential equations, starting from a system of four ODEs by a
quasi-steady-state approximation. With their approach, also the logistic growth and
the predator turnover terms still depend on this complex expression. Thereafter, they
have simplified this complicated quadratic expression with a Padé approximation and
they recover the standard formula of the Beddington-DeAngelis functional response.

Also in this case, the limiting system presents a cross-diffusion in the predator
equation, which depends on both the diffusion coefficients of searching and handling
predators ds and d3, while the prey diffusion is still linear.

The Turing instability analysis of the derived models is studied in Chapter 7. For
the first one, it is known that predator-prey models with a prey-dependent trophic
function in the reaction part and (standard) linear-diffusion can not give rise to
Turing instability [10]. Even with the cross-diffusion model, no patterns seem to
appear under a (biologically reasonable) assumption on the diffusion coefficients.
For the second system, in which the functional response is a Beddington-DeAngelis-
like, we look for conditions on the parameter values which lead to Turing instability
and we compare these Turing instability regions with the ones obtained when the
cross-diffusion term is substituted by a linear diffusion. The main point is the fact
that the Turing instability region associated to the cross-diffusion system is always
strictly included in the Turing instability region of the linear-diffusion system. As a
consequence, the use of reaction-diffusion systems for predator-prey interactions of
Beddington-DeAngelis type in which standard diffusion is simply added to the reac-
tion terms may lead to an overestimation of the possibility of appearance of patterns
(in the case when the Beddington-DeAngelis functional response is a consequence of
the interactions between searching and handling predators).

It is worth to mention that in many instances, the introduction of cross-diffusion
terms instead of (standard) linear-diffusion terms leads exactly to the opposite result,
that is, the increase of the set of parameter values in which patterns develop [96,
57, 39]. Our study leads then to a rather interesting conclusion: pattern formation
originating from Turing instability is counteracted by the cross-diffusion term derived
by the QSSA, even though the existing literature seems to suggest that cross-diffusion
enhances pattern formation. This raises the question of the sub-classification of cross-
diffusion with respect to their properties of enhancing diffusion-driven instability,
which could be useful and interesting at this point. Indeed, our approach provides
a mechanistic derivation of the cross-diffusion term but often models are based on
phenomenological assumptions and then a priori knowledge about the effects can be
useful. This issue needs a carefully revision of the literature on this topic. As a first
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attempt, the expression on which the Laplacian acts is the key of this difference. The
cross-diffusion term, provided by a mechanistic derivation, reduces in a certain sense
the diffusion coefficient of predators. However, looking at the Lotka-Volterra model
studied in [39], a different type of cross-diffusion is considered, which increases the
diffusion of prey and predators. The authors proved that this type of cross-diffusion
enhances the Turing instability.

It is worth noting that in the quoted model, a similar cross-diffusion term is
considered also in the prey equation. With our approach it is possible to obtain a
predator-prey reaction-cross diffusion with a cross-diffusion also in the prey equa-
tion, using the mechanistic derivation proposed by Geritz and Gyllenberg [41] in the
context of ordinary differential equations. In detail, in addition to the division of the
predator population into searchers and handlers, the prey population is divided in
active prey (typically foraging and prone to predation) and invulnerable prey (in-
dividuals who have found a refuge); then, two different time scales are exploited to
reduce the four-dimensional system to a system of two equations with cross-diffusion
terms and a Beddington-DeAngelis functional response. The study of the influence of
this new cross-diffusion term could be useful to perform the suggested classification,
and it is planned as future work.






Appendix

A Very-weak formulation

We clarify here the notion of very weak solutions and how the boundary conditions are
reflected by the choice of test functions. For this purpose, we consider the following
system in the strong formulation:

N yaN P ,
N —dy AN = f(N,P) :=rN (I—E) _ZN—F’V in RT x 2 (8.1)
I'aNP
P — N = P) = — uP m RT 2
P = A (N)P) = g(N. P) i= “xm= — b, inREx 2 (82)
V.N-n,,=0, V,P-n,, =0, nR"xd2 (8.3)
N(0,:) = Nin, P(0,:) = Py,,  in £2. (8.4)

where N = N(t,z) > 0, P = P(t,z) > 0 are the unknowns, the variable (t,z) €
Rt x £2, with 2 a bounded domain of R? (d = 1,2,3), the function u(N) in the
second equation is

dg’? + dsCVN
 aN+7

n = n(z) stands for the outward normal at point = of the boundary 02, N;, and
P, are nonnegative initial data, and the remaining terms are nonnegative constant
parameters.

)

n(N) :

Remark. Homogeneous Neumann boundary conditions in the flux formulation are
equivalent to (8.3); in detail
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{vxjv Ny = 0, {va Ny = 0,
&
VP -np, =0, Ve (W(N)P) -ny,, = 0.

Indeed
Vy (N(N)P) Moo = [va:u(N> + /L(N)VIP] LIPS

= [PU(N)VeN + p(N)Vo Pl -y,
= P/ (N)VyN -nj,, + (N)V,P - n,,.

Suppose N, P smooth. In order to obtain the very-weak formulation of the system
(8.1)-(8.4), we consider ¢, 9 test functions such that

e (o, 1 are smooth: ¢, ¥ € C4([0, +o0) x £2).
We are considering functions that are C? in [0, +00) x 2 (up to the boundary)
and with a compact support (zero for ¢ — +00).

e o, 1 satisfy homogeneous Neumann boundary conditions:

VIQO Ngo = 0, VI@D Ngo = 0. (8.5)

We multiply each equation for a test function and we integrate. For the equation
(8.1) we obtain

/OOO/Q(atN—dleN)gp:/OOO/QﬂN’p)% ‘o

Integrating by pats the L.h.s and remembering that ¢ has a compact support, we
have

/ /atN dyAyN) / /Natw / ©(0, )Ny,
dl/ /anszN—dl/ / YV,.N -n, Y.
0 2 0 o

The last term vanishes due to the homogeneous Neumann boundary conditions; we
integrate by parts the third term:

/ / VooV, N = — / / NAyp + / NV,p-n,
0 (4 0 (4 0 o

where the second term again vanishes due to the properties of the test functions. We
obtain the very weak formulation of the first equation:
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—/OOO/QN&:QO—/Q(p(O,-)Nm—d1/OOO/QNAa:<P:/OOO/Qf<N7P)SO7 V.

Analogously for the second equation (8.2), we have

/OOO/Q(@P—AZ(M(N)P)W_/OOO/QQ(N,PW, v

Integrating by parts the l.h.s and remembering that v has a compact support, we
have

/OOO [ @0r = A / | pow - / (0
/ | TP - / BT )

The last term vanishes due to the homogeneous Neumann boundary conditions; we
integrate by parts the third term:

/OOO/QVIWI(M( / / N)PA ¢+/ /ém NYPVob-n, Y,

where the second term again vanishes due to the properties of the test functions. We
obtain the very-weak formulation of the second equation:

oo [ooma- [ [aopan [T [ v

Then, the very-weak formulation of system (8.1)-(8.4) is

—/OO/Natgp—/go No—dl/ /NAM //fNP (8.6)
//Patw | vt po_// N)PAY = // (N, P)o  (87)

Vo, 1 € Ca([0,400) X 2),Vup - nj,, =0, Vb -ny,, =0. (8.8)

Now, we want to prove the coherence of the very-weak formulation.
First, we keep ¢, 1 € C4(]0,4+00) x §2). We consider the system (8.6)-(8.8) and
we integrate backward by parts. We get, for all test functions ¢, ¥

| [an-aane= [" [ fo.pp
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| [ar-awpye= [ [ avpu. veo

Standard theorem of distributions leads to the system in the strong formulation
(8.1)-(8.2). Now we try to get the initial data (8.4) out of the very weak formulation.
We keep ¢, ¢ € CZ(]0,+00) x 2).From (8.6), that is

_/OOO/QN@@_/QSO((),.)NM_dl/OOO/QNAxgo:/OOO/Qf(MP)%

integrating backward by parts the first and the third terms, we have

—/ /Natsozf /soatm/N(o,-)so(o?-),
0 2 0 2 (]
/Q/N&W:/ /w&W7
0 2 0 (9}
we obtain

—/OOO/QN@QD—/Q(N(O,-)—Nm)QO(O,-)—d1/OOO/QNAxS0:/OOO/Qf(NaP)SO-

But N satisfies the equation (8.1) of the strong formulation, that leads to

/Oo /Q (0N — dy AN — (N, P)) g =0,
0
then we have

| 0 - Na)p0.) =0, v

We want to prove that the last equation is this equivalent to N(0,-) = N,.
If & € C(12) being given, I define p(t,r) = &(x)x(t), where y € C*(R) such that

,0<t<1
X)) =qh),l<t<?2
0,t>2,

with A is a suitable smooth function which makes x € C*(R) (h/(1) = h'(2) = 0).
Then ¢ € C%([0, +00) x £2) and (0,) = @. This implies that

Vo € C2(12) / (N(0,-) = Nip)® = 0,
[0}
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then N(O, ) = Nzn

This procedure can be applied also for the equation (8.6), in order to recover
P(0,) = Py,.

And now we try to get the Neumann boundary conditions out of the very weak
formulation. We keep test functions

@, € C&(]0, +00) x 2), Vop - nj,, =0, Votb-ny,, = 0.

This implies that ¢(0,-) = 0, ¥(0, ) = 0. With this choice, the very weak formulation

" e s [ [
//PW // N)PA) = // (N, Py

Integrating by part, the first equation:

/ /OtN90+d1/ /Vszx(p_dl/ viw-nz/ /f(N,P)SO
0 02 0 (0] 0 on 0 (9]

The third term in the lLh.s. vanishes due to the properties of the test functions;
integrating the second term by parts, we have

/ /&Ncp—dl/ /¢A$N+d1/ / LpVxN-n:/ /f(N,P)gp
0o Je 0o Jo 0o Joo 0o Je

which can be rewritten as

/ / (@N—dleN—f(N?P))go—i—dl/ / ©V,N -n =0,
o Jo 0o Jon

and since N is a strong solution, we obtain

/ / ©V,N-n=0, VY. (8.9)
o Joo

We want to recover that V,N -n = 0.
We consider the simple case 2 =R x R} and (x1,x2) € £2. Then 02 =R x {0}
and n = (0,£1). Equation (8.9) becomes

/ / (t, 21,0 (t r1,0)dxrid; =0, V.



144 8 Concluding remarks

We want to prove that, if @(¢,z;) being given, &(¢t,r1) € C3(]0,+00) x R), there
exists p € C2(]0,+00) x R x R}) such that

0
&(t, 1) = p(t, x1,0), a—gp(t,xl,O) =0.

X2

We define ¢(t, 1, z5) := P(t, z1)x(22), where xy € C*°(R) such that

1,0<z <1
X(x2) = € h(x),1 < 29 < 2
0,1132 2 2,

with h is a suitable smooth function (as in the previous case). Then,

0
2 (t w1, ) = Dt, 21)X (22)

s
so that 9
a_;;i“’ 21,0) = &(t, 21)¥'(0) = 0
and

o(t,z1,0) = &(t,21)x(0) = D(t, z1).

This implies that
ON
al'g a

These arguments can be generalized to a generic domain {2.

0.
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