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Crystal structures can take a number of forms and their relationship with the physics of a solid 

lends itself to an even greater number of interpretations. Ferroelectricity, for example, can be 

predicted to occur in certain symmetries, but sometimes it can be hidden in the response to an 

electric field, in a peculiar electron- or nuclear-spin resonance, in the unfolding of a phase 

transition, or else. In any of these cases, the emergence of ferroelectricity is intimately related 

to subtle changes in the atomic positions with respect to a high-symmetry parent structure. As 

is the case with many other physical properties, this often implies that the crystal structure is 

disordered locally (as opposed to on average or long-range), but the magnitude and the time- 

and length-scales of disorder can vary dramatically between different materials.  

This work combines multiple X-ray and neutron powder diffraction techniques to try to capture 

the most of the structural complexity hidden in the bulk of materials. First, reciprocal-space 

analysis by the Rietveld method allowed drawing the crystallographic phase diagram of a novel 

perovskite solid solution, praseodymium-doped strontium titanate (SPTO). SPTO is a 

perovskite that combines a centrosymmetric antiferrodistortive (AFD) structure and a large, 

diffuse dielectric response at room temperature, prompting the question of whether AFD and 

ferroelectric (FE) distortions coexist in the material. Subsequently, the Pair Distribution 

Function (PDF) of SPTO, representing the instantaneous spatial arrangement of the atoms in 

the material, was analysed using multiple approaches. X-ray PDF was fitted with structural 

models obtained by evaluating possible polar and rotational distortions of the cubic perovskite 

phase. The most accurate, a tetragonal structure derived from the long-range phase, showed a 

huge AFD distortion that could also be consistent with a local FE mode. To get a better insight 

into the local structure, neutron PDF data were collected and modelled by i) fitting the distorted 

tetragonal model over successive ranges in real space (‘box-car’ refinements) and ii) atomistic 

simulations using the Reverse Monte Carlo (RMC) method. This led to a model in which FE 



distortion caused by Pr-doping at the perovskite A-site spreads to the AFD framework of 

octahedra, resulting in distorted coordination of both A and B cations. 

Neutron PDF data of undoped strontium titanate was also used in the development of another 

approach to PDF modelling, in which structural models representing a unique soft-mode 

distortion are evaluated statistically against the experimental neutron PDF. This symmetry-

adapted approach evidenced that four soft modes among those suggested by theoretical phonon 

dispersion are active distortions in SrTiO3, and have signatures in the local structure determined 

experimentally. This approach is aimed at obtaining an unbiased local structural model of 

strontium titanate, in that symmetry lowerings are inferred directly from the amplitudes of the 

individual soft modes refined against the PDF instead of assessing the goodness of fit of an 

arbitrarily chosen model. 

Whereas all these methods focused on a length scale of 10 Å (1 nm), the last approach to PDF 

modelling presented in this work studies the coherence length of lower-symmetry nanometric 

domains in a solid solution by evaluating structural parameters up to 600 Å (60 nm). Instead 

of titanates, though, this study involved yttrium-doped ceria: thanks to the extremely high 

structural coherence of crystalline ceria and owing to the high angular resolution of the 

instrument used, the data collected lend themselves very well to analysing the PDF well beyond 

the short range. The aim of this approach is to obtain a structural model for every slice of real 

space analysed, in order to describe in terms of order parameters how the local structure 

coalesces into the average crystallographic phase. 





The perovskite structure is adopted by many solids of general formula ABX3 and consists of a 

cubic close-packed array of cations of type A and twelve coordinated anions of type X, with 

layers stacking along the <111> direction. Cations of type B are six-coordinated by anions and 

occupy one quarter of the octahedral holes. Alternatively, the same structure can be visualized 

as a framework of corner-sharing BX6 octahedra, with A cations occupying the 12-coordinated 

interstices (shaped as cuboctahedra). The A and B sites of the perovskite structure can 

accommodate a wide range of cations of varying size and charge. Consequently, there are 

astonishingly many perovskites; these include ternary oxides, fluorides, cyanides, halides, and 

sulfides of alkaline, alkaline-earth, and transition metals and rare-earths, mixed-occupancy 

double perovskites (AA’BB’X6), and also metal-organic perovskites, like, for instance, 

(CH3NH3)PbX3, in which the A site is populated by methylammonium molecules and X can 

be a iodide or a chloride (Clearfield, 1963; Peschel et al., 2000; Hoenle et al., 1988; De Jongh 

& Miedema, 1974). Only a handful of naturally occurring elements in the periodic table are not 

observed in atomic perovskite compounds: boron, beryllium, phosphorus, and all noble gases 

- though boron may be found as borohydride anion. Despite many feasible combinations of 

cations at the perovskite A and B sites, a guiding principle for structural stability for a given 

composition is expressed by the Goldschmidt tolerance factor τ (Goldschmidt, 1926): 

𝜏 =
𝑟𝐴 + 𝑟𝑋

√2(𝑟𝐵 + 𝑟𝑋)
 

Here rA, rB and rX represent the ionic radii of the ions in the perovskite. Ionic radii are available 

as published by Shannon (1976) or can be obtained from bond-valence calculations (Brese & 

O’Keeffe, 1991; Lufaso and Woodward, 2001). The definition of τ follows from bond distance 

considerations in an ideally close-packed structure: the cell edge is two B-X bond distances 

long; the length of one face diagonal is two A-X bond distances, but it also equals the length 

of one edge times √2. Thus, τ measures the fit of the A cation into the cuboctahedral site for a 

given BO6 framework: tolerance factors lower than 1 result from A cations smaller than the 

cuboctahedral interstice and, therefore, undercoordinated; values of τ greater than 1 correspond 

to a large A or a small B cation and may give rise to cation off-centering (Megaw, 1968; Zhong 

and Vanderbilt, 1995). Values of τ between 1.07 and 0.78 have been observed for perovskites 

(Woodward, 1997b). Already at τ≈1, the structure tends to hexagonal polytypes, while near the 

lower limit the FeTiO3 (ilmenite) type structure becomes favourable. 

With the exception of Chapter 6, the main theme of this work is the structure of strontium 

titanate (SrTiO3). Figure 1.1 shows its primitive cubic cell (space group Pm-3m, Z=1), as close 

to ideality as a perovskite can be (τ ~1.0). The A cation sits in the centre of the cube delimited 

by eight Ti atoms at the corners; in the setting used throughout this work, the six-coordinated 



Ti atom is placed in the origin of the unit cell (0, 0, 0). Both the Sr and Ti sites (1b and 1a in 

Wyckoff notation) are one-fold special positions, i.e. they lie on the highest-symmetry elements 

of the space group. O atoms lie in lower-symmetry special positions with multiplicity 3 (3d); 

therefore, three positions in the unit cell are independent by symmetry.  

 

Unlike many perovskite oxides, whose crystallographic structures deviate from simple cubic 

already at room temperature, the cubic structure of SrTiO3 (τ ~1.0) persists down to 105 K 

temperature; below 105 K, the structure of SrTiO3 is described by the centrosymmetric 

tetragonal space group I4/mcm (Z=4). As reported in Table 1.1, listing cell parameters and 

atomic positions for the two phases of SrTiO3, there are two distinct O sites in the I4/mcm 

structure. An important distinction must be made between the axial O atoms of the octahedron 

(O1), i.e. those bonded to Ti along the c-axis, and equatorial O atoms (O2), i.e. whose bonds 

to Ti are parallel to the <110> direction and its equivalents. The O2 atom has no four-fold 

symmetry and its x coordinate is the only positional degree of freedom in tetragonal SrTiO3. 

 

 Cubic - Pm-3m (#221) Tetragonal - I4/mcm (#140) 

 Z = 1; a = b = c = 3.9053 Å Z = 4; a = b = 5.5110 Å; c = 7.7960 Å 

 Wyckoff Symmetry x y z Wyckoff Symmetry x y z 

Sr 1b m-3m 0.5 0.5 0.5 4b -42m 0 0.5 0.25 

Ti 1a m-3m 0 0 0 4c 4/m . . 0 0 0 

O1 3d 4/m m . m 0 0 0.5 4a 422 0 0 0.25 

O2 -- -- -- -- -- 8h m.2 m x (~0.25) x+0.5 0 



 

The phase transition from cubic to tetragonal structure in SrTiO3 involves the doubling of the 

cell along the c-axis, while the tetragonal cell parameters a and b are taken as face diagonals 

of the parent cubic cell. A compact way to write the group-subgroup relation is the 

transformation matrix P, which relates the lattice parameters of the space groups I4/mcm and 

Pm-3m:  

(𝑎′, 𝑏′, 𝑐′)𝐼4|𝑚𝑐𝑚 = 𝑃(𝑎, 𝑏, 𝑐)𝑃𝑚−3𝑚 

𝑃 = (
1 1 0
−1 1 0
0 0 2

) 

 

with no origin shift between the two groups. It can be demonstrated that the doubling of the 

unit cell along c is implied by the periodicity of the distortion correlating the supergroup Pm-

3m and its subgroup I4/mcm. As shown in Figure 1.3, the displacement of the atom O2 causes 

the rigid rotation (‘tilting’) of TiO6 octahedra about the c-axis, corresponding to the <001> 

direction. Conservation of the connectivity between corner-sharing octahedra requires that 



neighbouring octahedra along the directions <100> and <010> (i.e. perpendicular to the 

rotation axis) rotate in opposite sense; along the rotation axis, successive octahedra are also 

tilted out of phase, so that a rotation by +5° (or -5°) is repeated every second octahedron along 

the c-axis. This precise tilt pattern determines the periodicity of the framework of tilted 

octahedra that defines uniquely the I4/mcm space group. Since this is one of the 23 fundamental 

tilt systems identified by Glazer (1972; 1975), tilt classification is presented in some detail in 

the next paragraph. 

 

 

ϕ ° 

Figure 1.3 also evidences that octahedral rotations leave the coordination environment of B 

cations unchanged while that of A cations is strongly distorted. This reflects not only that the 

more electronegative B atom forms B-X bonds stronger than A-X interactions, but also that 

octahedral tilt is linked to the undercoordination of A cations - as can be predicted for tolerance 

factor values lower than 1. Since the A cation is smaller than the cuboctahedral site provided 

by an ideal cubic packing, the framework of octahedra distorts so as to improve the anion 

coordination around the A cation, i.e. by shortening some A-O distances and lengthening some 

others. For instance, in the case of the tilt determining the I4/mcm symmetry, axial O atoms are 

fixed while two parallel planes of equatorial O atoms above and below the A atom are displaced 

as a result of octahedral rotations. While B-O distances are left unchanged, the 12 once-

identical A-O distances split into four short, four long, and four intermediate distances; this 

results in a lower anion coordination or, in terms of bond-valence sum, an increase in the 



average bond valence1. The four medium A-O distances alone determine a square-planar 

coordination of the A cation, while the four closest distances define a distorted tetrahedron with 

A-O distances and angles strongly dependent on tilt angle (Woodward, 1997b). 

The relatively simple tilt pattern in the I4/mcm symmetry already reveals a considerable 

rearrangement in the coordination environment of the A cation. Tilting of the octahedra is in 

fact an important factor determining the long-range structure of perovskites. It was shown, 

most notably by Megaw (1967, 1973), that the distortion of a lower-symmetry perovskite 

(‘hettotype’) with respect to the ideal structure (‘aristotype’) can be broken down into three 

distinct contributions: cation displacements within the octahedra, distortion of the octahedra, 

and  tilting of the octahedra. Cation displacements can be either ferroelectric (in-phase) or 

antiferroelectric (out of phase) and, like distortions of the octahedra, originate from electronic 

instabilities of the B cation (Woodward, 1997). Notable examples include the ferroelectric 

displacement of Ti and Nb in BaTiO3 and KNbO3, respectively (Shirane, 1957, 1954; Megaw, 

1967) and octahedral distortions driven by the Jahn-Teller effect in KCuF3 (Okazaki and 

Suemune, 1961). The effect of octahedral tilt is, however, predominant in the phase transitions 

of many perovskites, including SrTiO3. But while octahedral tilt can be expected from basic 

geometrical considerations when synthesizing a perovskite compound, it is harder to predict 

what the exact A-site environment is going to be and, in turn, what tilt pattern this will generate. 

This paragraph explains why the tilt pattern shown in Figure 1.3 implies the I4/mcm symmetry 

in SrTiO3 and, more generally, which features of octahedral tilting influence space group 

symmetry. The relationship between long-range symmetry and pattern of octahedral rotations 

in perovskite compounds was first defined by Glazer and Megaw (1972) and subsequently 

systematized by Glazer (1972). This was later re-examined by Woodward (1997, 1997b) and 

by Howard and Stokes (1998), and it also served as a tool for predicting crystal structures of 

perovskite compounds with rigid-octahedra frameworks (Lufaso & Woodward, 2001; Barnes 

et al., 2006). 

Glazer’s classification is based on the decomposition of octahedral tilting into three 

components along the [100], [010], [001] pseudocubic axes. The amplitude of the component 

tilts along these axes are indicated, respectively, as a, b, c, for the general case in which three 

tilts are unequal; otherwise, letters are repeated if two tilts have the same amplitude. Each 

symbol has a superscript indicating the relative direction of tilting of neighbouring octahedra 

                                                 
1 Though outside the scope of this work, the bond-valence method and its application to tilted-octahedra systems 

are discussed in great length by Barnes et al., (2006), Brown (1981, 1992), Lufaso & Woodward (2001), O’Keeffe 

(1989). 



along an axis: i) “0”, if the octahedra are not tilted; ii) “-“, if the tilt angles have opposite sign; 

iii) “+”, if the tilt angles have the same sign. The tilt systems allowed in Glazer’s classification, 

including zero tilt (Pm-3m), are 23, each denoting a different space group. This follows from a 

geometrical evidence common to all tilt systems, which is exemplified by Figure 1.4. Tilting 

of the octahedra decreases the bond distances between octahedron centres perpendicular to the 

tilt axis (this will return with a vengeance in Chapter 3 in the evolution of the cell parameters 

of SrTiO3, both undoped and doped with Pr). Since the distance between two B cations 

corresponds to a pseudo-cubic cell parameter, an increase in tilt angle along one specified 

direction (say, [001]) must be accompanied by cell shrinking in both perpendicular directions 

([100], [010]). The extent of shrinking of each pseudocubic cell parameter is thus determined 

by the amplitude of tilt along that direction. The same tilt angle for two axes, for example, 

results in the corresponding cell parameters being equal; more generally, this shows how the 

crystal system of the compound (but not, at least directly, the actual value of the cell parameter) 

is related to the tilt pattern. 

 

An important consequence of the sense of rotation along an axis is that a 0 or + relation implies 

the existence of a mirror plane perpendicular to that axis (Glazer, 1972). Accordingly, a0a0c- 

and a0a0c+ tilts require two mutually perpendicular mirror planes normal to a and b; this, 

combined with the two equal axis lengths due to a0 tilts, describes tetragonal space groups 

(namely, I4/mcm and P4/mbm in the revised list by Woodward, 1997). Similarly, orthogonal 

axes can be inferred for the two-tilt systems a0b+c+ and a0b+b+, where the latter is also tetragonal 

by virtue of the equal tils along [010] and [001]. Two out-of-phase tilt components 

(- superscript), instead, require that the corresponding pseudo-cubic axes be inclined relative 

to each other (the demonstration can be found in Glazer, 1972), giving rise to monoclinic and 

rhombohedral space groups for two- and three-tilt systems.  

It is now clear why the one-tilt, anti-phase tilt system of SrTiO3, named a0a0c-, invokes the 

space group symmetry I4/mcm. Importantly, all this can be identified by powder diffraction 

measurements. In fact, not only the repeat period of two octahedra determines the doubling of 

the unit cell along the corresponding directions of tilting (Figure 1.4), but also results in 



different sets of superlattice reflections for different tilt systems, as rationalized by Glazer in 

his second paper2 (1975). The most powerful consequence is that the Bragg reflections related 

to (+) tilts change completely from those arising from (-) tilts and, as discussed further in 

section 1.3, this relates to their origin at different critical points of the reciprocal space, thus, 

in different structural modes.  

On top of this latter conclusion, Howard and Stokes (1998) re-examined the correspondence 

between tilt system and space group symmetry based on group-subgroup analysis. They found 

that only 15 of the  23 structures originally found by Glazer are uniquely generated by 

octahedral tilting (they are shown in Figure 1.5). Namely, they considered only the tilt systems 

attainable as linear combinations of six basic component tilts originating from the mixing of 

the three possible (+) one-tilt systems with the three analogous (-) tilts, or, in terms of 

representations, the 6-dimensional sum of the irreducible representations (irrep) M3+ and R4+ 

(Miller and Love, 1967). 

 

Every possible phase transition between these 15 space group symmetries can be seen as the 

condensation of the 6-dimensional order parameter corresponding to one linear combination 

thus obtained. The main point here is that each subgroup of Pm-3m is defined by a subspace of 

the 6-dimensional order parameter space. Therefore, it can be shown that the representation of 

the I4/mcm space group is one-dimensional since it is obtained by a single component-tilt of 

the R4+ irrep; if this one-dimensional order parameter was directed along two or three axes, 

the resulting space groups would be Imma and R-3c (shown experimentally by inelastic neutron 

scattering, e.g. by Shirane and Yamada, 1969). The notation introduced by Howard and Stokes 

allows one to visualize at once dimensionality and direction of the order parameter; for these 

                                                 
2 Note that the original attribution of space group (F4/mmc) and supercell (2×2×2) to the a0a0c- tilt pattern of 

SrTiO3 made by Glazer in these papers (1972, 1975) was later rectified by Woodward (1997). 



three space groups, respectively, the order parameters are (00000c), (0000bb), and (000aaa). 

This will be used again in the symmetry decomposition of SrTiO3 presented in Chapter 5. 

The diversity of physical properties in perovskites owes in many cases to two kinds of 

distortions from the cubic aristotype: octahedral tilts, which we just covered, and polar 

displacements of cations, which we cover below. In the previous section, octahedral tilting was 

considered only in terms of geometric distortion. Now it is convenient to think of structural 

distortions in terms of frequency of soft modes. Any kind of distortion is driven by the lattice 

instability with respect to certain soft modes associated with the centre point (Γ) or to boundary 

points (M, R, X) of the cubic Brillouin zone (Figure 1.6). It is useful to recall that a soft mode 

is a normal vibrational mode whose frequency tends to zero (i.e. it becomes unstable) as a phase 

transition is approached, and whose eigenvector contains both the atomic displacements 

relative to the lattice sites involved and the periodicity of the distortion through the lattice.  

 

Γ

Above a phase transition, for example, a soft mode corresponds to the lowest-frequency phonon  

with the same symmetry. Vibrations slow down on cooling until the phonon frequency drops 

to zero. At this point, conventionally taken as the phase transition temperature (TC), the atomic 

displacements prescribed by the eigenvector of the frozen mode become static. Below TC, the 

frequency of lattice vibrations increases again, but the phonon now represents vibrations 

around the atomic positions of the lower-symmetry phase (Fleury, 1976). If the same transition 

is observed from the low-temperature side, the evolution of the structural distortion from static 

to dynamic is gauged by the amplitude of an order parameter going continuously to zero (for 



example, octahedral tilt angle or ferroelectric displacement of a cation). Although there may 

be a discontinuity in the order parameter near TC (partial first-order character), the existence of 

a temperature dependence of the order parameter for T<TC implies an overall second-order 

character of the phase transition.  

 

Having defined the general case for a second-order phase transition, we can describe in greater 

detail the possible distortions of the Pm-3m cubic perovskite. To introduce the irreducible 

representations of the distortions we use the notation introduced by Howard and Stokes (1998) 

and group-subgroup relations obtained using the program ISODISTORT (Campbell et al., 

2006). A basic phonon dispersion curve for SrTiO3 is shown in Figure 1.7. The two soft 

phonons transform like the R4+ and Γ4- irreducible representations. While the former phonon, 

a non-polar zone-boundary mode, has negative frequencies and is therefore static at zero 

temperature (hence the I4/mcm low-temperature structure of SrTiO3), the latter, zone-centre 

mode never condenses into a long-range phase, so there is no matching phase transition. Low-

frequency modes are also observed at the points M and X, namely, M3+ (64 cm-1) and X5- 

(103 cm-1). 

 

Ferroelectric (FE) displacements are associated with Γ-point phonon modes with wavevector 

(0,0,0): this implies that the displacement is repeated in every successive unit cell, and that the 

number of atoms in the unit cell is not changed by the would-be transition; hence, the unitary 

propagation period. The simplest displacive FE phase transition attainable in the cubic 



perovskite involves the Γ4- soft mode with a one-dimensional order parameter3 directed along 

one, two, or three pseudo-cubic axes [(a,0,0), (a,a,0), (a,a,a)]. This gives rise to the polar space 

groups P4mm, Amm2, and R3m, respectively, with atom displacements allowed along the 

[100], [110], or [111] directions with respect to parent the cubic cell. Figure 1.8 shows an 

example of FE displacement represented by the order parameter (a,a,a). Other phase transitions 

are possible within the Γ4- irrep, through two-dimensional order parameters (leading to the 

monoclinic Pm, Cm), or breaking all symmetry through a three-dimensional set of 

displacements (P1).  

 

                                                 
3 A single magnitude of atom displacement indicated by the same letter for every component direction, in analogy 

with the tilt order parameters (paragraph 1.2.2). In this notation, a three-dimensional order parameter is (a,b,c). 



The soft-mode distortion mediated by the R4+ irrep (Figure 1.8) corresponds to the octahedral 

tilt system a0a0c-, which was discussed in great length in the previous section. This is the mode 

responsible for the phase transition in SrTiO3 at 105 K and normally referred to as 

‘antiferrodistortive’ (AFD) (Zhong and Vanderbilt, 1995). Note that the cell doubling brought 

about by octahedral tilt is also expressed by the wavevector (½,½,½). The low-frequency M3+ 

mode, which does not condense at any temperature in SrTiO3, plays an important role in 

compounds with Pnma symmetry, the most recurring space group in perovskites. As shown in 

the M3+ panel of Figure 1.8, the octahedral tilts in two successive layers along the c-axis are 

in phase, described by the tilt system is a0a0c+ as opposed to a0a0c-. The last panel in Figure 

1.8 shows the antiferroelectric (AFE) displacement of Sr atoms along a direction parallel to the 

cubic [110]. This mode belonging to the X5+ irrep is also important in the interplay between 

lattice instabilities in orthorhombic perovskites (see below). 

The relationship between AFD and FE modes in perovskites has long been studied. The 

observation that AFD instability is not present in FE perovskites (e.g. BaTiO3, KNbO3) holds 

true in many cases, leading to the conclusion that the two types of instabilities compete with 

each other. This can be also expected by considering the opposite tendencies of 

undercoordinated and oversized A cations, respectively, toward octahedral tilting and cation 

off-centering (see section 1.2). Zhong and Vanderbilt (1995) showed by Monte-Carlo 

calculations that AFD and FE instabilities coexist in a very large number of perovskite 

compounds, and that in many cases - including SrTiO3 - an AFD phase transition should be 

followed by a FE transition at lower temperature. By artificially switching the amplitudes of 

the soft FE and AFD modes in SrTiO3, however, they demonstrated that the AFD and FE 

instabilities actually suppress each other. Namely, their results show that, in absence of the 

rival interaction, each mode would soften in milder conditions than experimentally observed: 

the AFD phase transition would occur at a higher temperature (about 130 K), while a FE phase 

transition, forbidden4 in SrTiO3, would be observed below 70 K. This picture was recently 

revisited by Aschauer and Spaldin (2014), who used density functional theory (DFT) to 

compute the energy gain due to a FE as a function of the amplitude of the AFD mode. The 

                                                 
4 As to the FE phase transition in SrTiO3, it was briefly mentioned that the zone-centre Γ mode softens but never 

condenses in SrTiO3, resulting in the ‘quantum paraelectric’ definition (Müller & Burkard, 1979). The softening 

of the FE modes results in a huge increase of the dielectric permittivity (still consistent with a Curie-Weiss 

behaviour) on cooling. But while a divergence and, consequently, a FE phase transition would be expected at 

T=37 K, the dielectric permittivity stabilizes and remains constant down to the lowest accessible temperatures 

(Müller et al., 1991). This critical point (Tq=37 K) represents an anomaly in the continuous soft-mode behaviour, 

as first revealed by Müller et al. (1968) by EPR measurements and by Riste et al. (1971) by inelastic neutron 

scattering. The ‘anomalous’ regime below Tq is characterized by perturbations of the atomic positions called 

quantum fluctuations, which are of the same order of magnitude as the potential FE displacements. This practically 

suppresses the FE transition by preventing the weak Γ phonon from condensing (Müller & Burkard, 1979; 

Courtens et al., 1993). Residual ferroelectricity, however, was reported by many authors to show up as electric 

field-dependent response (Hegenbarth, 1964; Grupp & Goldman, 1999), nano-sized FE clusters (Hemberger et 

al., 1996; Blinc et al., 2005), and order-disorder component of the AFD phase transition (Bruce et al., 1979; Zalar 

et al., 2005; Bussmann-Holder et al., 2007). 



latter was represented by octahedral tilting about the c-axis (tilt system a0a0c-) and by different 

types of lattice strain; the FE mode considered was an (a,0,0) displacement of any atom. For 

small octahedral rotations (0°<ϕ<5°), they confirmed that AFD and FE modes are competitive; 

namely, that the small energy gain (-0.5 meV) due to Ti displacement at ϕ=0° decreases linearly 

with tilt angle, as the charge transfer from anti-bonding Ti-O orbitals opposes Ti off-centering. 

After a threshold tilt angle (ϕ<5.7°), however, this trend is reversed: the energy change on 

displacing Ti off-centre becomes negative again and the two instability now cooperate. 

Interestingly, in their calculations a large octahedral tilt optimizes the coordination of both A 

and B cations, as Sr displacement changes sign in the cooperative regime. In addition, the 

cooperative model only works in the presence of a considerable strain that increases the 

tetragonality of the cell (increasing c/a ratio). 

 

 

A different picture emerged from the work by Benedek and Fennie (2013), who analysed by 

DFT the case of the lower-symmetry Pnma perovskites. This structure befits particularly the 

study of the AFD/FE interplay, since it results from the superposition of two tilt modes 

(transforming like the irreps M3+ and R4+) while the zone-centre instability (seen for cubic 



perovskites) is absent. This is shown in their survey of perovskites with Pnma and Pm-3m 

ground states (Figure 3 in their paper), which shows that only in the latter a decrease of the 

tolerance factor enhances the FE instability; in Pnma, conversely, the frequency of the FE mode 

is always positive, even in the case of severely underbonded A cations. It was demonstrated 

that in none of the Pnma perovskites simulated the combined tilts (a0a0c+, a-a-c0) are 

responsible for suppressing the FE mode. Instead, antiferroelectric displacements of the A 

cations (the X5+ mode in Figure 1.8), allowed by the Pnma symmetry, always contribute to 

optimize the A-O coordination, making the FE displacement of A cations redundant and 

unfavourable; hence, the positive frequency of the FE mode.  

 

These few examples already showed how the coexistence of FE and AFD instabilities can have 

very different outcomes depending on subtle properties of the space group symmetry. Having 

shown that the ground state of cubic SrTiO3 is relatively close to a ferroelectric state, it is 

interesting to review a few examples in which chemical doping was used to alter the AFD state, 

and, in some cases, achieve ferroelectricity. Since the main part of this work concerns the 

substitution of Sr with Pr at the A-site, this paragraph outlines the properties of a few solid 

solutions with formula Sr1-xAxTiO3. 

Ba can replaces Sr at any concentration (0<x<1) and, since Ba2+ has a larger ionic radius than 

Sr2+ (1.61 Å vs 1.44 Å), the tolerance factor of Ba-doped SrTiO3 is always slightly above 1.0. 

Expectedly, the long-range structure exhibits successive pseudo first-order phase transitions 

driven by the Γ4- instability, in analogy with pure BaTiO3, and no sign of tilting instability for 

any Ba concentration larger than x=0.200. Dielectric permittivity spectra also show 

increasingly sharp peaks as Ba concentration increases, albeit smeared by the mixed character 

of the phase transition (Lemanov et al., 1996). The structure on the other side of the phase 

diagram (x<0.200) is described by the I4/mcm space group up to x=0.094 (Menoret et al., 2002), 

with octahedral tilt angles around ϕ=2.0° (at T=2 K) and a critical temperature (TC~100 K) very 

close to those in SrTiO3; coherently, dielectric permittivity peaks first become very broad 

(down to x=0.040) and then switch to a sloping Curie-Weiss behaviour similar to that of SrTiO3 

(Lemanov et al., 1996). Spontaneous polarization, setting in at x=0.094 and increasing linearly 

for higher Ba concentrations, is largest in the <111> direction (Menoret et al., 2002); this 



matches the rhombohedral-like distribution of off-centre Ti displacements observed in the local 

structure by Levin et al. (2014) in samples with 20% and 50% Ba at the A-site. 

 

Tin induces a FE state close to that of PbTiO3. Contrary to Ba2+, the Sn2+ ion is smaller than its 

cuboctahedral hole and does not favour an off-centering of the B cation. But the 

stereochemically-active pair of 5s electrons makes Sn-doped SrTiO3 polarizable due to A-site 

off-centering. In fact, it shows a maximum of dielectric permittivity for concentrations as low 

as x=0.020 (Suzuki et al., 2012). The temperature of the dielectric peak varies with the 

frequency of the applied electric field, but only for x smaller than 0.050; any further Sn 

concentration induces proper ferroelectricity in SrTiO3. In this regime, a FE phase transition is 

observed on cooling, from Pm-3m to P4mm (TC~200 K for x=0.100, Suzuki et al., 2012). 

Scanning-transmission electron microscopy and pair-distribution function (PDF) analysis from 

neutron diffraction agree on the off-centering of the Sn2+ cation at the A-site (Laurita et al., 

2015). While substitution of Sn at the B-site does, in fact, happen (Wang et al., 2016), only the 

A-site off-centering contributes to local and long-range dipolar interactions. More important, 

local dipolar interactions are active even in the cubic long-range phase. In particular, Laurita 

et al. (2015) proposed that Sn is displaced along the <110> pseudo-cubic direction (consistent 

with an Amm2 phase) at temperatures as high as 400 K. Approaching the FE phase transition, 

the short-range interatomic distances become consistent with the long-range P4mm symmetry.  

 

Doping SrTiO3 by Ca2+ stabilizes FE modes already in modest amounts (x=0.002): sharp 

dielectric permittivity peaks are observed around x=0.016, whereby the system is a ‘quantum 

ferroelectric’ (Bednorz & Müller, 1984), then broader features appear in the dielectric spectra 

at higher Ca concentrations (0.016≤ x≤ 0.120). It is interesting to note that the low-

temperature structure - the same AFD I4/mcm phase of undoped SrTiO3 - persists down to the 

lowest accessible temperature; the small polar displacements of Ca2+ along <001>, despite not 

inducing a FE transition, are believed to form short-range ordered polar clusters (Geneste et 

al., 2008) responsible for the dielectric pemitivity response. Finally, ferroelectricity is 

suppressed for x>0.12, where successive transitions from cubic Pm-3m to AFD I4/mcm and to 

the Pbnm denote an antiferroelectric state governed by the superposition of R4+ and M3+ 

modes coupled with antiphase A-site displacements (Ranjan et al., 2000), close to the model 

proposed by Benedek and Fennie (2013) for orthorhombic non-FE perovskites. 

 



Doping SrTiO3 with praseodymium invokes none of the conditions leading to ferroelectricity 

in the previous examples: Pr3+ possesses no stereochemically active lone electron pair and, 

contrary to Ba2+, its small ionic radius (1.18 Å, from Shannon, 1976) shifts the tolerance factor 

to well below 1. In addition, none of the other zone-boundary modes active in Ca-doped SrTiO3 

appears to play an important role in Pr-doped SrTiO3 (Ranjan et al., 2008; Garg et al., 2009). 

Nonetheless, Pr-doped SrTiO3 (SPTO) shows remarkable dielectric permittivity peaks at 

T~500 K as well as dielectric polarization loops (Duran 2005, 2008) (panel A in Figure 1.10). 

Early works on SPTO (x=0.050) by Duran et al. (2005, 2008) claimed that the sharp dielectric 

permittivity peaks and the specific heat anomalies they detected in a narrow range of 

temperatures could be indicative of a FE phase transition. They also found X-ray powder 

diffraction (XRPD) patterns compatible with the polar tetragonal P4mm space group, in 

analogy with the FE BaTiO3. Shortly afterwards, another group proposed the centrosymmetric 

AFD structure (space group I4/mcm) as the low-temperature structure of SPTO, based on high-

quality XRPD and neutron powder diffraction (NPD) data (Ranjan et al., 2008; Garg et al., 

2009). Besides ruling out a normal paraelectric-ferroelectric transition on cooling, these authors 

pointed out that the dependence of the dielectric peaks on the frequency of the applied electric 

field demonstrated the diffuse character of the FE phenomena (panel B in Figure 1.10). In 

addition, the observation of electrostrictive strain in a lightly-doped sample (x=0.050) 

prompted them to describe the dielectric phenomena in terms of dielectric relaxations. 

 

But the decrease in tolerance factor is not the only player. Pr enters the SPTO solid solution 

mainly as the trivalent Pr3+ and exclusively replaces Sr2+ at the A site (Sluchinskaya et al, 

2012a, 2012b) and, therefore, questions arise as to the mechanism of charge compensation. 

Since perovskites tend not to accommodate interstitial oxygen atoms, possible pathways 

include charge transfer to the B site (i.e. Ti4+/Ti3+ mixed valency), as in self-compensating La-



doped SrTiO3 (Moos & Hardtl, 1997; Balachandran & Eror, 1982) or some form of vacancy 

formation at the A site. 
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Properties in materials are often the result of internal competing forces. Their mechanism 

usually owes to a precise arrangement of atoms not necessarily captured by the average, long-

range order of the material. Examples of disorder in crystalline materials include the 

incomplete softening of the zone-centre mode in SrTiO3 and the dipolar clusters deemed 

responsible for low-temperature ferroelectric states (see section 2.4). How exactly does an 

average model fail? Consider, for instance, a phase in which sites have fractional or mixed 

occupancy: these are, by definition, not described by an average model, since each individual 

site is either vacant or occupied - by either atom X or Y. Although in reciprocal-space analysis 

the mismatch may disappear into a large thermal parameter and still allow a good fit to the 

data, the structure description is incomplete: vacancies or either type of atom are in this model 

assumed to be statistically distributed, but also clustered or arranged in an orderly pattern. 

Deviations from the long-range structure are the result of structural inhomogeneity on a shorter 

length scale. This is why the description of the average, long-range structure and that of the 

environment in the first few Å or nanometres around each atom are perfectly complementary 

approaches emphasizing different structural features. In practice, local structure can be studied 

in a few ways. X-ray absorption spectroscopy (XAS) is a technique extremely sensitive to the 

arrangement of nearest-neighbour species around a single type of atom and, as such, it contains 

no information on short-range order beyond the first couple of shells. Scanning-tunnelling 

microscopy and atomic-force microscopy yield information with sub-nanometre spatial 

resolution but cannot probe the bulk structure. Transmission-electron microscopy is bulk-

probing, but the limited amount of matter sampled (tens of nanometres) may not be 

representative of the whole material. Atomic pair distribution function (PDF) analysis is a 

diffraction method that probes the bulk structure and give robust information, potentially, up 

to several tens of nanometres. In its normal implementation, the PDF is not element-sensitive, 

so it represents the distribution of all interatomic distances in the solid. 

Atomic distribution functions are obtained through ‘total’ scattering measurements. This 

means recording the scattered intensity at all possible changes in energy and momentum of the 

incident radiation - in other words, measuring elastic and inelastic (coherent) over the widest 

possible range of scattering vector (Q, see Appendix to this Chapter). Of the total scattered 

intensity, the elastic part makes up the Bragg component, used for determining the long-range 

structure, e.g. by Rietveld analysis. Bragg peaks rest on a low, oscillating background that 

comprises diffuse scattering, both the elastic and the inelastic parts; the former contains 

information on the static local structure, while the latter part arises from local structural 



dynamics. Total scattering is thus named after the unresolved sum of the intensities of the three 

contributions. 

 

This paragraph presents the relationship between the scattered intensity measured and the 

atomic PDF functions defined below and used throughout this work. This simple derivation is 

loosely based on the equations by Hannon et al. (1990) and the thorough treatment reported in 

the user’s guide of the Gudrun program (Soper, 2012). Excellent accounts can be also found in 

the books by Thorpe and Billinge (1998) and by Egami and Billinge (2003). The PDF 

formalisms used below are taken from the paper by Keen (2001) and referenced in the manual 

of the RMCProfile software (Tucker et al., 2012). The notation presented here is used 

consistently throughout this work and references are made where needed to the equivalent 

functions defined by Keen. The scattering vector Q is defined in the next section. 

The radiation scattered from an ensemble of atoms situated at positions R1, R2, ..., RN is given 

by:  

𝐴(𝑸) =∑𝑏𝑗 exp(𝑖𝑸 ∙ 𝑅𝑗) .

𝑁

𝑗

 

where bj is either a dimensionless number corresponding to either the isotope-averaged, 

coherent neutron scattering length or the Q-dependent X-ray atomic form factor. A(Q) 

corresponds to the Fourier transform of the atomic positions and its relationship to the quantity 

actually measured in a scattering experiment, I(Q), is: 

𝐼(𝑸) =
1

𝑁
|𝐴(𝑸)|2 = 

=
1

𝑁
∑𝑏𝑗
𝑗,𝑘

𝑏𝑘 exp[𝑖𝑸 ∙ (𝑹𝑗 − 𝑹𝑘)]. 

The sum over all atoms can be divided into: i) a ‘self’ term (j=k), the correlation of every atom 

with itself; ii) a ‘distinct’ term, the correlations between distinct atoms (i.e. not necessarily 

different atom types). If the scattering material is composed of multiple elements (α,β), I(Q) 

can be expressed in terms of partial correlation functions as: 

𝐼(𝑄) =∑𝑐𝛼
𝛼

𝑏𝛼
2 + ∑ (2 − 𝛿𝛼𝛽)

𝛼,𝛽>𝛼

𝑐𝛼𝑏𝛼𝑐𝛽𝑏𝛽𝑆𝛼𝛽(𝑸), 



where the first part contains the ‘self’ terms (i.e. pairs of same atom types). Each term is 

weighted by the respective scattering lengths and the use of the Kronecker delta only allows 

unique atom pairs. For N atom types in the material, there are N(N+N)/2 partial structure factors 

Sαβ(Q), each defined as: 

𝑆𝛼𝛽(𝑸) = 𝜌∫𝑔𝛼𝛽(𝒓) exp(𝑖𝑸 ∙ 𝒓𝛼𝛽) 𝑑𝒓. 

with 𝜌 the atomic number density (i.e. number of atoms per unit volume). Sαβ(Q) corresponds 

to the Fourier transform of the partial PDF gαβ(r). For an ideal powder, i.e. one in which 

crystallites are oriented in any possible direction (Ω) with equal probability and are numerous 

enough to cover all relative orientations of Q and r (in polar coordinates, Q ∙ rαβ = Q ∙ rαβ cosθ), 

the orientationally averaged scattering function is obtained as: 

〈exp⁡(𝑖𝑸 ∙ 𝒓𝛼𝛽)〉Ω =
1

4𝜋
∫ 𝑑𝜗

2𝜋

0
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𝜋

0
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=
1

2
∫ exp(𝑖𝑄𝑟𝛼𝛽 cos 𝜃) 𝑑𝜃

+1

−1

= 

=
sin(𝑄𝑟𝛼𝛽)

𝑄𝑟𝛼𝛽
. 

Notice that the orientationally averaged Q and r are now taken as the respective magnitudes. 

So, for an isotropic system, I(Q) can be finally rewritten as: 

〈𝐼(𝑸)〉Ω = 𝐼(𝑄) = 

= ∑𝑐𝛼
𝛼

𝑏𝛼
2 + ∑ (2 − 𝛿𝛼𝛽)

𝛼,𝛽>𝛼
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sin(𝑄𝑟𝛼𝛽)
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∞

0

]. 

 

In the second term, the delta-function in reciprocal space δ(Q) represents a constant scattering 

level in real space, depending only on the scattering lengths (form factors in the case of X-rays) 

in the sample. Fluctuations about the constant scattering level are given by the integral term, 

which contains all the ‘distinct’ interatomic correlations at a distance r.  



If all atom types are considered, this quantity represents the fluctuation of the local atomic 

density with respect to the mean density, averaged over all the atoms in the material. After 

summation over all the atom types, the integral in the second term is equivalent to F(Q)1.  

𝐹(𝑄) = ∫ 4𝜋𝜌𝑟2⁡𝑔(𝑟)⁡
sin(𝑄𝑟𝛼𝛽)

𝑄𝑟𝛼𝛽
⁡𝑑𝑟

∞

0

 

Coherently, the sum of all the gαβ(r) in the previous equation corresponds to the g(r) PDF2: 

𝑔(𝑟) = ∑𝑐𝛼𝑏𝛼𝑐𝛽𝑏𝛽(𝑔𝛼𝛽(𝑟) − 1)

𝑖,𝑗

, 

where the partial gαβ(r), which oscillates between 0 and 1, is subtracted by 1 to yield the limiting 

values: 

𝑔(𝑟 → 0) = −(∑𝑐𝑖𝑏𝑖
𝑖

)

2

; ⁡𝑔(𝑟 → ∞) = 0 

This is the function used in the Reverse Monte Carlo refinements presented in the second part 

of Chapter 4. It is related to the experimental intensity, I(Q), by the Fourier transform of the 

F(Q) term defined above: 

𝑔(𝑟) =
1

(2𝜋)3𝜌
∫ 4𝜋𝑄2⁡𝐹(𝑄)⁡

sin(𝑄𝑟)

𝑄𝑟
⁡𝑑𝑄

∞

0

 

The alternative function G(r) changes from g(r) in that it is scaled by r and, whenever used in 

this work, it is called G(r)3. It is the PDF function used as standard by the programs PDFFit 

(Proffen and Billinge, 1999) and PDFGui (Farrow et al., 2007). Its relationship to g(r) is given 

by: 

𝐺(𝑟) = 𝑔(𝑟)
4𝜋𝜌⁡𝑟

(∑ 𝑐𝑖𝑏𝑖𝑖 )2
 

It will be apparent that the limiting values of G(r) are: 

𝐺(𝑟 → 0) = −4𝜋𝜌𝑟; ⁡𝐺(𝑟 → ∞) = 0, 

giving G(r) its characteristic slope at low-r, whose agreement with the expected slope is usually 

a loose indication that data were normalised properly. Similarly, the first, flat segment of the 

                                                 
1 This is the same function referenced as F(Q) in Keen’s paper. 
2 This is the function called G(r) in Equations 10 and 15 in Keen’s paper. 
3 This is the function called GPDF(r) in Equations 43 and 44 in Keen’s paper. It is equivalent to the D(r) defined 

ibid. divided by the squared sum of the molar fraction-weighted scattering lengths, (∑ 𝑐𝑖𝑏𝑖𝑖 )2. Thus, using D(r) 

in PDFGUI is perfectly acceptable, but expect an overall scale factor approximately (∑ 𝑐𝑖𝑏𝑖𝑖 )2. 



g(r) should be level with its low-r limit. Finally, Figure 2.1 shows the functions F(Q), G(r), 

and g(r) obtained from neutron total scattering of SrTiO3. 

 

 

Assuming that the reader is familiar with the basics of crystallography (Warren, 1969; Stout & 

Jensen, 1989; Giacovazzo, 2002), only the concepts specific to total scattering experiments are 

recalled in this section. 

Typical measurement geometry is transmission. An incident beam of photons (neutrons) of 

wavelength λ and wavevector k (|k| = k = 2π/λ) is scattered by a powder sample at an angle 2θ. 

The wavevector of the scattered photons (neutrons) is k’ which, in the case of elastic scattering, 

has the same magnitude k as the incident wave. The scattering vector is given by Q = k - k’ and 

its modulus, following from Bragg’s law, is given by |Q| = Q = 2ksinθ = 4πsinθ/λ. Since the 

scattering from a powder is isotropic - ideally - we are only concerned with its magnitude Q. 



The definition of g(r) given in paragraph 2.1.2 assumes that F(Q) is integrated over an infinite 

range of Q. The largest value of Q accessible in a diffraction experiment, Qmax=4πsinθ/λ, is 

limited by the X-ray or neutron wavelength λ and by the maximum 2θ angle attainable. The 

termination error of the Fourier transform - the Gibbs phenomenon - results in oscillations of 

definite wavelength throughout the g(r) that can be seen most clearly in the inter-peak regions 

at low-r. As demonstrated by Toby and Egami (1992), integrating over a finite range of Q is 

also equivalent to multiplying the integrand, F(Q), by a step function [Z(Q)=1 for Q≤Qmax; 

Z(Q)=0 for Q>Qmax]. After taking the Fourier-transform, this product translates into the 

convolution of g(r) with a broadening function with the form sin(Qmax Δr)/Δr. This broadening 

adds to that caused by thermal motion, but it can be reduced to a negligible fraction of thermal 

broadening using a large enough value of Qmax. The threshold value, demonstrated Toby and 

Egami (1992) for a handful of reference materials, can be found when Qmax is larger than the 

average Debye-Waller factor by the ratio shown in panel A of Figure 2.2. 

 

Another way to think of the effect of Qmax on g(r) broadening is through the spatial resolution 

Δr/r ≈ 2π/Qmax. It becomes apparent why a Cu-Kα X-ray wavelength or cold neutrons are not 

suited to measure data for PDF analysis and why this usually requires high-energy radiation 

like that available at synchrotron and neutron sources. This is further evidenced by panel B of 

Figure 2.3 (picture from Coduri, 2012). The black curve is the X-ray G(r) of a CeO2 reference 

calculated using Qmax=8 Å-1, the value one can obtain with a Cu-anode lab diffractometer; also 

shown are the G(r) curves attainable with a Mo or Ag anode (19 Å-1), with a typical synchrotron 

measurement (28 Å-1), and a very high Qmax as a reference (50 Å-1). 



In the light of broadening and termination error, one might decide to use the highest Qmax 

available. However, the choice of Qmax must also consider the decreasing signal-over-noise 

ratio as the 2θ range is extended. Especially in the case of X-rays, because of the decay of the 

coherent intensity with 2θ, including high-Q data introduces noise in the experimental 

functions. The Q value at which Bragg peaks are no longer visible may be a loose indication 

of the ideal Qmax for a given material: truncating too early complicates data normalisation as 

the true scattering level is hidden under overlapping peaks; going too far introduces a large 

incoherent contribution to the high-Q data. Assuming a sensible choice of Qmax is made, another 

way to rid the data of noise is to increase counting statistics. The weight of random uncertainties 

of data points - their estimated standard deviation - is reduced by √N times by taking N 

independent observations. This is shown in practice in Figure 2.4. Each row represents the 

scattering functions and G(r) calculated on X-ray data obtained after half the counting time of 

the row above. Contrary to the low-Q region of F(Q), where signal-to-noise ratio is higher, the 

high-Q region is dramatically affected by reducing counting statistics. The G(r) curves shown 

in the right column demonstrate that noise at high-Q has the largest influence on spurious 

oscillation at low-r in real space. 

 



The last effect presented in this paragraph is the damping of PDF peak intensities. This has 

different meanings for g(r) and G(r). Since g(r) tends to the average scattering level of the 

material at high-r, the amplitude of its oscillations falls off like 1/r; the amplitude of oscillations 

is constant, instead, in G(r), which therefore represents directly the structural coherence of a 

sample. The effect of a higher coherence length appears evident, for instance, by comparing 

the X-ray G(r) of crystalline CeO2 (panel A in Figure 2.4) to those of nanoparticle samples 

shown in panel D of Figure 2.5. While CeO2 has relatively intense peaks at 600-1000 Å, the 

G(r) curves of iron nanoparticles (Orlando et al., 2015) become featureless at a characteristic 

coherence length despite the positive effect, as it will be now explained, of a high Q-resolution. 

 

Δ

There is another important contribution to intensity falloff not related to the sample. The limited 

Q-resolution of the measurement, which depends largely on the sample-detector distance and 

the type of detector used, results in greatly different intensity damping. Figure 2.4, for instance, 

shows (panels A-C) the G(r) of crystalline CeO2 measured with a high-resolution setup (A); an 

intermediate resolution setup, with an area detector positioned at a large distance from the 

sample (B); a low-resolution, high-throughput setup, with an area detector positioned close to 

the sample (C). While the intensity falloff can be reproduced quite easily in the case of constant 

ΔQ/Q (Egami and Billinge, 2003), the same correction is trickier for multiple detector banks 

as in the case of time-of-flight instruments (Tucker et al., 2001). 



Finally, an outline of the corrections needed to obtain a reliable I(Q) for the calculation of the 

PDF from the raw intensity. A successful correction should put the measured intensity on an 

absolute scale (barns or electrons per atom per unit of solid angle): not only this helps relating 

measurements from different sources, but correct coordination numbers can be calculated from 

PDF peak areas, too. Measured intensity is divided by the incident flux (measured by a beam 

monitor) and by the solid angle covered by the detector. In the case of neutron scattering, 

measuring a rod of vanadium, a purely incoherent scatterer, yields the accurate spectrum of the 

neutron source. The sample is normally contained in some vessel: for X-rays this is often a 

capillary made of polyimide, borosilicate glass, or fused silica (quartz glass); for neutrons, this 

usually means a cylindrical vanadium can. In more complicated cases, there might be a device 

for heating/cooling, a pressure cell, a cell for electric or magnetic fields, etc. The contribution 

of anything but the sample should be measured and subtracted from the total measured 

intensity. This can also involve the background from the empty instrument (more often with 

neutrons), whose signal should contribute equally to the intensity of the sample and of the 

empty container. 

Correction for absorption is usually painless for both X-ray and neutron scattering. It is 

calculated from the geometry of the specimen and the absorption coefficients of the atoms 

involved (plus the possible contribution of any object intercepting the beam). However, 

artefacts can be introduced in the case of fluorescence emission by atoms close to their X-ray 

absorption edge or when nuclear resonance causes very high neutron capture at a certain 

wavelength. Besides minimising the absorption coefficient, the choice of wavelength (or of 

wavelength range, in the case of TOF) must account for all these effects. Multiple scattering is 

related to absorption, since it contributes to total attenuation of the scattered beam (Soper, 

2012). Multiple scattering occurs when the beam is scattered twice or more before it leaves the 

sample. Double scattering is, however, the most intense component and is usually what 

corrections cater for. For X-rays a correction was proposed by Dwiggins and Park (1971); for 

neutrons by Soper and Egelstaff (1980). 

The effect of inelastic, incoherent (Compton) scattering from recoiling electrons can be large 

when using high energy X-rays, particularly at high-Q, where its cross-section increases over 

the vanishing coherent cross-section. Correction for Compton scattering can be avoided using 

analyser crystals between sample and detector, excluding the wavelengths of inelastically 

scattered photons. In the case of neutrons, the effect of inelasticity does not affect the ‘distinct’ 

part of I(Q) [i.e. the part containing F(Q) and, thus, the Fourier transform of the PDF] so much 

as it affects self-scattering (Soper, 2009). The correction used today borrows much from the 

treatment by Placzek (1952). 

 



Total scattering experiments have become common relatively recently thanks to the higher 

availability of high-energy, high-flux radiation at large facilities. As evidenced in paragraph 

2.2.1, total scattering measurements need to maximise both counting statistics and 2θ range 

compared with a conventional scattering experiment. For X-rays, synchrotrons meet these 

demands brilliantly. Diffraction beamlines situated on undulators provide a high-flux, 

collimated beam of highly monochromatic, coherent photons of any arbitrary energy4 in the 

range 10-100 keV. Thus, PDF-quality data [i.e. a pattern with Qmax(=4πsinθ/λ) more than 30 

Å-1 and high signal-over-noise ratio] of a crystalline powder can be collected in just few 

minutes. 

The experimental setup needed for total scattering measurement is better illustrated referring 

to a well-endowed beamline such as ID22 at ESRF (Fitch, 2004). Though not primarily a PDF 

beamline, its high-resolution setup makes it possible to extend PDF analysis to the nanometre 

range (1-50 nm), as demonstrated in Chapter 6. White X-ray beam from the undulators is 

initially collimated by a curved mirror, which reduces its vertical divergence. The collimated 

white beam is monochromated by a silicon double-crystal, cooled to liquid-nitrogen 

temperature to withstand the intense photon flux; thus, selecting a wavelength means collecting 

the beam scattered at a certain angle to the 111 Bragg reflection of Si. Beam size is then 

adjusted between 0.5×0.1 and 1.5×1.5 mm2 using water-cooled slits. The beam is scattered 

from the sample, generally a spinning capillary, towards nine scintillator detectors mounted 

offset on the 2θ circle of the diffractometer and each preceded by a Ge-111 analyser crystal. 

The use of analyser crystals (combined with high vertical collimation) results in high 

reproducibility of peak positions and an extremely narrow instrumental resolution function, 

whose effect on the intensity of PDF peaks is explained in paragraph 2.2.1. Finally, total 

scattering data can be collected in a wide range of temperature as the capillary can be 

heated/cooled from room temperature using a cryostat (5 K≤T≤290 K), a cold nitrogen stream 

(80 K≤T≤370 K), a hot air blower (300 K ≤T≤1100 K), or a mirror furnace (T ≤1700 K). 

Unlike constant-wavelength X-ray and neutron diffraction, the time-of-flight (TOF) technique 

uses a white beam of neutrons impinging on the sample at a fixed angle. The TOF technique is 

used at spallation neutron sources to maximise counting statistics, since the time-averaged flux 

is lower than that of a reactor source (1013 neutrons cm-2 s-1 compared with 1015 neutrons cm-2 

                                                 
4 In practice there are preferred energy points corresponding to maxima of undulator emission. Excellent accounts 

of synchrotron physics can be found in the books by Baruchel (1993) and by Als-Nielsen & McMorrow (2011) 



s-1). On the other hand, spallation neutrons are emitted in very intense pulses (~1019 neutrons 

cm-2 s-1), so high counting statistics is recovered by collecting the polychromatic beam for 

many of such high-flux pulses (Kisi & Howard, 2012).  

Spallation neutrons are produced by bombarding a tungsten or uranium target with high-energy 

(GeV) protons. Every collision liberates ~30 high-energy neutrons, which need to be slowed 

down by a moderator medium, usually hydrogen, water or methane so as to exploit the large 

incoherent, inelastic scattering cross-section of hydrogen. Neutrons leave the moderator with 

energies peaking at the temperature of the moderator (E=T×k1, with k1=0.0861734 eV/K) while 

their energy spectrum consists of a Maxwellian thermal distribution and a continuous tail of 

energies corresponding to undermoderated5, hot (epithermal) neutrons. This tail comprises 

short wavelengths (down to 0.05 Å), allowing measurements in Q-ranges considerably wider 

(up to 100 Å-1) than attainable with a constant-wavelength diffractometer. Every wavelength 

in the spectrum is identified by the time taken by the neutron to travel from source to detector. 

This happens because high-energy, short-wavelength neutrons move faster than longer-

wavelength neutrons, resulting in a time spread of the neutron bunch. It becomes apparent that 

wavelengths can be better resolved by making the flight path longer.  

Scattered neutrons are detected by arrays of scintillator detectors covering all possible 2θ and 

arranged in banks to cover the largest possible solid angle. At the GEM diffractometer at the 

ISIS spallation source (Hannon, 2005), for instance, detectors are positioned in the range 

1.2°≤2θ≤171.4° and cover an area in excess of 7 m2, considerably larger than the area of a 

conventional 2-D X-ray detector. Since the wavelength and, thus, the scattering vector (Q) of 

every neutron detected is known from the scattering angle of the detector and the time of 

arrival, the whole range of Q is measured by multiple detectors. Detectors situated at different 

2θ have different count rates as a function of Q depending on the portion of solid angle they 

cover, so they contribute differently to the crucial high-Q part of the data. Finally, an implicit 

advantage of having detectors in a wide 2θ range is a high tolerance to complex sample 

environments. This allows using a wide array of cooling and heating devices, pressure cells or 

gas-flow systems. 

 

 

 

                                                 
5 Undermoderation, i.e. release of neutrons that have not reached thermal equilibrium with the moderator, is 

deliberate and is the method used to avoid overlap of pulses, which would reduce peak flux and destroy the time-

resolution of TOF acquisition. 



Extracting structural information from PDF data can follow a method analogous to Rietveld 

analysis. This is the approach implemented in the programs PDFFit and PDFGui (Proffen & 

Billinge, 1999; Farrow et al., 2007). A calculated PDF is computed from a structural model 

and compared to the experimental PDF. The refinable parameters of the structural model are 

varied to optimize the agreement between the calculated and experimental functions by means 

of a least-squares minimization. In general, this method assesses the validity of the model 

proposed by the user. This is estimated by the profile fit residual 

𝑅𝑝 = [
∑𝑤𝑖(𝐺𝑖

𝑒𝑥𝑝 − 𝐺𝑖
𝑐𝑎𝑙𝑐)2

∑𝑤𝑖(𝐺𝑖
𝑒𝑥𝑝)2

]

1
2

 

where Gi
exp and Gi

calc are the i-th point of the experimental G(r) and of the calculated G(r), 

respectively, and wi is the weight of each point Gi
exp (normally the uncertainty on its value). 

The routine for calculating PDF from a structural model is described in detail by Egami and 

Billinge (2003). Suffice to say here that, for a model with N atoms, interatomic distances are 

calculated recursively between each of the N atom and all the neighbours within a cutoff 

distance of choice; intensity builds up by adding a count for every neighbour; the final function 

must then be normalized by the scattering lengths of the atom types involved and by the total 

number of atoms. This can be written as: 

𝑅(𝑟) =
1

𝑁
∑

𝑏𝛼𝑏𝛽
〈𝑏〉2

𝛿 (𝑟 − (𝑟𝛼 − 𝑟𝛽)) .

𝛼𝛽

 

The core step of this method is choosing a model with sensible parameters to be refined. In the 

simplest case, this can be a single phase with refinable lattice parameters and few atomic 

positions; in some cases, such as short-range order, a multiphase model with refinable phase 

fraction (see Chapter 6) or a supercell of the crystallographic unit cell. For crystalline solids, a 

more systematic approach can be refining directly soft-mode amplitudes as obtained from a 

symmetry decomposition of the parent structure of the compound studied. The latter approach 

is presented in Chapter 5.  

The agreement between experimental and calculated PDF is aided by parametrisation of the 

instrumental effects influencing as-collected data (thus, in reciprocal space). The programs 

mentioned use explicit corrections for Qmax and for Q-resolution (Qiu et al., 2004). In practice, 

these are catered for by a dampening function applied to the G(r) and by an r-dependent 

broadening of the G(r). Instrumental parameters are not usually refined together with the free 

parameters of the structural model; instead, they should be refined prior to the analysis using a 



reference compound, so that sample-related broadenings are absent and the refined quantities 

only reflect systematic effects. 

 

One of the most popular implementations of the RMC method is called RMCProfile (Tucker 

et al., 2007); another one, focused on diffuse scattering, is called DISCUS (Proffen & Neder, 

1997). Contrary to the model-fitting method just presented, the Reverse Monte-Carlo (RMC) 

method continuously shapes a structural model by applying random shifts to the atoms. The 

model, usually referred to as atomic configuration, is a box of arbitrary size and with periodic 

boundaries. Independent of what the initial model is based on (the actual crystallographic 

phase, a supergroup structure, or random arrangement), no symmetry constraint is applied in 

the configuration. Consequently, atoms in (initially) equivalent sites need not be found in 

symmetry-related positions after the first move, i.e. the configuration is practically a P1 unit 

cell. The only, straightforward requirements are the correct atomic number density and 

interatomic distances complying with both the hard-sphere repulsion potential and the 

fundamental atom connectivity. A sound choice for disordered crystalline materials is usually 

a multiple of the long-range unit cell, since this both maintains the basic polyhedral 

connectivity and can accommodate any possible local distortion.  

During the RMC refinement, atoms are moved at random by shifts in any direction (usually up 

to 0.05 Å). Every N moves the PDF is calculated for the trial configuration and compared to 

the experimental PDF. The agreement between calculated and experimental functions is used 

to assess the quality of the model and drive the atomic configuration towards the minimum fit 

residual. For an arbitrary function F fitted by RMC, the agreement, Χ2, is calculated as (Tucker 

et al., 2002): 

𝑋𝐹
2 =

∑ [𝐹𝑗
𝑐𝑎𝑙𝑐−𝐹𝑗

𝑒𝑥𝑝
]
2

𝑗

𝜎𝐹
2 .  

Random atom moves are accepted if they improve the goodness of fit (i.e. lower the value of 

X2), but also if they reduce it, within a tolerance reflecting the weight attributed to the dataset 

being fitted. An advantage over least-squares minimization, this allows avoiding local minima 

in analogy with simulated annealing, with the purely formal difference that the ‘energy’ 

function to minimize is fit residual. 

Since the RMC refinement is set to search the absolute minimum and it does so with no explicit 

symmetry bias, it will be apparent that i) a distortion with respect to the starting model is always 

relatable to the data; ii) the RMC model should fit the experimental function better than a model 

conjured up by the user. Also, since the P1 configuration is defined by independent atoms 



rather than by sites related by symmetry, vacant sites and mixed-occupancy sites are treated 

naturally, i.e. different species sit in different individual positions. The last advantage with 

respect to either reciprocal-space analysis or model fitting to PDF is that the model generated 

by RMC can optimize the fit to either PDF, F(Q), or Bragg peaks, or any combination. This 

case, however, requires accurate weighting of the different datasets, which can prove tricky. 

On the one hand, weighting should reflect data quality, i.e. the uncertainty in each dataset; on 

the other hand, bad weighting can bias the final configuration towards only one aspect of the 

data. The main downside is that the experimental data may not be unambiguously consistent 

with a single model - there can be, in fact, a host of well-fitting solutions, particularly, in highly 

disordered materials. Anyway, the capability of generating unbiased, unconstrained models 

makes the RMC method extremely general, as shown, for instance, by the solution of bond-

valence (Norberg et al., 2009) and spin ordering (Timm et al., 2016) problems. 
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The results presented here were published in Physical Review B: Checchia, S., Allieta, M., 

Coduri, M., Brunelli, M., & Scavini, M. (2016). Relaxor ferroeletric behavior in Sr1-xPrxTiO3: 

Cooperation between polar and antiferrodistortive instabilities. Physical Review B, 94(10), 

104201)  

This chapter is about the determination of long-range symmetry in Sr1-xPrxTiO3 (SPTO), in 

the temperature range 90-650 K and in the Pr concentration range 0-15%. It should be self-

explanatory why knowing the crystallographic phase at any point of the 

temperature/composition phase diagram is important. But a high accuracy in doing so is 

particularly important in the case of SPTO, as it sets the reference structure against which all 

the findings from the local probes will be discussed in the following chapter.  

The structural information on SPTO available in the literature is limited and sometimes 

contradictory. For the 0.020 ≤ x ≤ 0.075 range, Durán and co-workers (Durán et al, 2005; 

Durán et al, 2008) reported a cubic structure at room temperature; for x=0.150, their 

laboratory XRPD data suggested a polar P4mm symmetry, the same exhibited by the 

ferroelectric BaTiO3. A polar space group was consistent with their observation of peaks in 

both dielectric permittivity and specific heat between 450 K and 500 K, which they attributed 

to a normal ferroelectric-paraelectric phase transition. But this interpretation was rejected by 

Ranjan and co-workers (Ranjan et al, 2008; Garg et al, 2009), who determined for x ≥ 0.05 a 

centrosymmetric tetragonal phase (space group I4/mcm) at room temperature analogous to 

that of undoped SrTiO3. While their finding was substantiated by using both high-resolution 

synchrotron X-ray diffraction and neutron diffraction, the lack of temperature-resolved 

XRPD data did not allow a thorough comparison with the antiferrodistortive (AFD) phase of 

SrTiO3 in terms of the order parameters and, in turn, of the active instabilities.  

In the following, it is showed that the room-temperature structure of SPTO is tetragonal 

(space group I4/mcm) for x ≥ 0.100, whereas the samples with x < 0.100 are cubic at room 

temperature and undergo a phase transition to I4/mcm in the range 175 ≤ T ≤ 270 K. The 

hitherto undetected structural phase transitions from I4/mcm to Pm-3m for the 0.020 ≤ x ≤ 

0.150 compositions are found to occur at higher temperature as x is increased. Only for 

x=0.150, thus, the phase transition temperature (TC) agrees with the temperature of the 

dielectric permittivity peak observed by Durán et al.. At any composition, the temperature 

dependence of the tilt angle of the TiO6 octahedra is consistent with a second order phase 

transition, in analogy with the phase transition in the undoped SrTiO3. Neutron powder 

diffraction data are in good agreement with the magnitude of the AFD at 90 K, proving the 

high sensitivity of our XRPD data to the tilt of TiO6 octahedra. In addition, refinements on 



neutron diffraction data reveal an interesting trend in the oxygen anisotropic displacement 

parameters (ADPs). 

Sr1-xPrxTiO3 samples with x = 0, 0.020, 0.035, 0.050, 0.063, 0.075, 0,100, 0.125, 0.150 were 

prepared by a solid-state reaction using TiO2 (Sigma-Aldrich 99.8%), SrCO3 (Sigma-Aldrich 

99.9%), Pr6O11 (Sigma-Aldrich 99.9%). Stoichiometric mixtures of as-received reagents were 

uniaxially pressed into discs and fired in Pt crucibles for 4h at T = 1400 K, 4h at T = 1550 K, 

and finally 4 h at T = 1650 K until single-phase samples were obtained. Every stage of the 

reaction was carried out in static air atmosphere. Between each sintering stage, the disks were 

finely ground together and pressed into discs again. 

Synchrotron X-ray powder diffraction (XRPD) measurements were carried out at the ID22 

beamline of the ESRF (described in 3.1.1). High resolution diffraction patterns of all the 

samples were collected between 90 K and 650 K using incident photon beam with 

wavelength λ=0.31994 Å. 1 mm-diameter quartz capillaries were packed with finely ground 

SPTO powders and spun during measurement. XRPD patterns were collected following two 

routines: a) fixed temperature at 90 K and 295 K, and 10 temperatures in the range 300 ≤ T ≤ 

650 K for the samples with x = 0.020, 0.035, 0.050, 0.075 (6 temperature points were 

acquired for SrTiO3). In this case, two scans 0° ≤ 2θ ≤ 60°  (Qmax=19 Å-1) at a scan rate of 

2°/min were summed; b) a single 0° ≤ 2θ ≤ 40° scan (Qmax=13 Å-1) at a 4°/min scan rate 

while heating the sample at 1 K/min. 

Neutron powder diffraction measurements were carried out at the GEM diffractometer at ISIS 

(described in 3.1.2) on 8 g of the samples with x=0, 0.035, 0.075, 0.150. Each sample was 

contained in a cylindrical vanadium can (0.8 mm diameter, 50 mm height) and measured for 

6 h at 90, 295, 450, and 600 K temperature. The scattering of instrument background, sample 

container, and V/Nb rod was also measured and used for data correction. 

Rietveld analysis was performed through the GSAS program and its graphical interface 

EXPGUI (Larson and von Dreele, 2000; Toby, 2001). The background was subtracted using 

shifted Chebyshev polynomials. For X-ray data, the diffraction peak profiles were fitted with 

a Thompson-Cox-Hastings pseudo-Voigt function (Thompson et al., 1997) corrected for peak 

asymmetry (Finger et al., 1994); the absorption correction for the Debye-Scherrer geometry 

was applied through the empirical Lobanov formula (Lobanov and Alte da Veiga, 1998); the 

anomalous scattering parameters, f' and f'', used are those reported by Brennan and Cowan 

(1992). In the case of neutrons, the patterns were corrected for absorption during reduction of 

the raw data using the Mantid software available at GEM; peak shape was reproduced by the 



TOF profile function 2 (see 3.1.2); the structural model was refined against four TOF 

patterns, namely, those from detector banks 2, 3, 4, 5 (Qmax=13 Å-1). In the last refinement 

cycles all the parameters were refined: cell parameters, one atomic position, thermal 

displacement parameters (anisotropic thermal parameters were used with neutron data), four 

to eight background parameters, diffractometer zero, overall scale factor, and four profile 

parameters. 

The XRPD patterns at 90 K of all the SPTO samples are best fitted by a tetragonal phase with 

I4/mcm symmetry. The unit cell adopted in the tetragonal phase is a √2 ap × √2 ap × 2 ap 

supercell of the parent cubic cell (Figure 3.1), where ap is the cubic cell parameter (ap ~ 

3.90 Å).  

 

 

On heating, every SPTO sample undergoes a structural transition from the tetragonal I4/mcm 

phase to the Pm-3m cubic perovskite phase, depending on Pr concentration, at a temperature 

175 ≤ TC ≤ 470 K.  

Figures 3.2 and 3.3 show sections of selected XRPD patterns that detail the structural 

evolution on cooling under TC. At temperatures below TC, the (200) peak of the cubic 

perovskite is split into two components of relative intensity 1:2 (Figure 3.2); the low-d and 

high-d components are indexed, respectively, as (220) and (004) in the tetragonal phase. As 

the temperature is lowered, the cell volume is reduced largely as a result of striction along the 

direction of a, while the c-axis has a near-zero dependence on temperature (panels A and C in 

Figure 3.4). The result is a continuous increase in tetragonality on cooling for each sample 

(Figure 3.4, panel D). But as the pseudo-cubic cell parameters, cp and ap, drift increasingly 

apart with Pr concentration, there is also a remarkable increase in  tetragonality caused by 



Sr/Pr substitution (note the shift to the curves in Figure 3.4 panel D). It must be noted that for 

x<0.050 tetragonality is tiny and not resolved even with the formidable Q-resolution of ID22. 

Shown in Figure 3.3, a set of superstructure reflections is visible under TC in the patterns of 

every SPTO sample. Because these peaks arise by condensation of the out-of-phase tilt of 

TiO6 octahedra along the <001> direction, they make the difference between the 

centrosymmetric I4/mcm and the non-centrosymmetric P4mm phase. The continuous increase 

in the intensity of superstructure peaks, as the temperature is lowered, reflects the increasing 

tilt angle of the octahedra. 

 

As confirmed by symmetry analysis by the ISODISTORT program (Campbell et al., 2006), 

tilt angle and tetragonality are, respectively, the primary and secondary order parameters of 

the structural phase transition in SPTO, in analogy with the AFD transition in undoped 

SrTiO3. The amplitude of tetragonal strain is readily calculated from the phase parameters as 

η=cp/ap-1, where ap and cp are the pseudo-cubic cell parameters showed in Figure 3.4. The 

octahedral tilt angle is calculated as 



𝜙 = atan⁡(1 − 4𝑥𝑂(8ℎ)) 

with xO(8h) the x coordinate of the oxygen atom in the 8h Wyckoff site (x, x+1/2, 0), the only 

positional degree of freedom in the I4/mcm structure. 

 

η

The Sr/Pr substitution at the perovskite A-site has a huge effect on the magnitude of both 

tetragonality and tilt angle (panel D in Figure 3.4 and Figure 3.5, respectively): because of the 

increase in TC obtained by doping, at 100 K the tilt angle varies between 2.1° and 5.2° 

depending on x while undoped SrTiO3 is very close to the tetragonal-cubic phase transition. 

Not only, however, the octahedral rotations are frozen at a higher temperature, but the tilt 

angles of the doped samples are considerably larger than the maximum tilt angle allowed in 

undoped SrTiO3 (~2°). The same trend holds for tetragonal strain, as the maximum value of 

η for x=0.15 is four times as large as the value of η at 5 K for undoped SrTiO3.  



The temperature dependence of the primary order parameter of the AFD phase transition, ϕ, 

is compared with a pure displacive second-order behaviour and fitted by the mean-field 

equation  

𝜙(𝑇) = ⁡𝜙(0)×(1 −
𝑇

𝑇𝐶
)
𝛽

 

where ϕ(0) is the extrapolated tilt angle at zero temperature and β the critical exponent. A 

critical exponent set to β=0.50 returns the best fits to all the ϕ vs T curves (Figure 3.5), 

evidencing no deviations from a pure second-order transition. 

 

β

 

Because the primary distortion involved in the AFD phase transition is purely oxygen-related, 

the reciprocal-space analysis of neutron powder diffraction data of a small but representative 

part of the samples and the temperatures (see 3.2) measured by XRPD is reported, in order to 

confirm the results just presented. As one can infer from the coherent neutron scattering 

lengths and molar fractions in SPTO, oxygen is the stronger neutron scatterer in all these 

samples (tables of the neutron scattering lengths relevant to this work are reported in the 



Appendix to chapter 4). In Figure 3.6 the accuracy of the order parameters returned by the 

Rietveld analysis of XRPD data is assessed by comparing them to the respective values 

obtained by Rietveld analysis of NPD data. While for x=0.150 the agreement is excellent 

throughout the 90-600 K temperature range (Figure 3.6, panels B and D), both ϕ and η are 

slightly underestimated by XRPD for x=0.075, 0.035, and pure SrTiO3 (Figure 3.6, panels a 

and c). The tilt angle discrepancy for x=0.075 is about 0.5° (12.5%), but it becomes almost 1° 

(100%) for SrTiO3. Nonetheless, the sheer increase in both tilt and tetragonality obtained by 

Pr-doping is confirmed by the NPD data, especially since the XRPD and NPD values for 

x=0.150 are remarkably close. 

 

 

The refined phases at 90 K of the four samples analysed are reported in Table 3.1. Note that 



not only the values of the isotropic thermal parameters (U) of the cations increase linearly 

with x, but the U33 component of the anisotropic ADP of the oxygens in the 8h site increases 

much faster than the other two, U11 and U12. At the same time, the thermal ellipsoids of the 

oxygens in the 4a site (0,0,1/4) have a much larger component in the xy plane than they have 

along z. This behaviour, though, does not seem to depend on Pr concentration. Figure 3.7 

shows the tetragonal unit cell corresponding to the refined phase of x=0.150 at 90 K. 

Atom Wyckoff x y z Uiso×102 (Å2) U11×102 (Å2) U33×102 (Å2) U12×102 (Å2) 

SrTiO3 a=5.5140(1) Å, c=7.8069(3) Å wRp=3.85%, R(F2)=4.80% 

Sr 4b 0 0.5 0.25 0.297(9) -- -- -- 

Ti 4c 0 0 0 0.254(9) -- -- -- 

O1 4a 0 0 0.25 -- 0.82(1) 0.21(1)  

O2 8h 0.2437(1) 0.7437(1) 0 -- 0.34(5) 0.50(7) 0.15(6) 

x=0.035 a=5.5121(1) Å, c=7.8105(2) Å wRp = 3.51%, R(F2) = 3.72% 

Sr/Pr 4b 0 0.5 0.25 0.351(9) -- -- -- 

Ti 4c 0 0 0 0.29(1) -- -- -- 

O1 4a 0 0 0.25 -- 0.70(5) 0.18(8)  

O2 8h 0.2358(1) 0.7358(1) 0.25 -- 0.46(2) 0.80(6) 0.04(4) 

x=0.075 a=5.5061(1) Å, c=7.8111(1) Å wRp = 3.08%, R(F2) = 4.63% 

Sr/Pr 4b 0 0.5 0.25 0.41(1) -- -- -- 

Ti 4c 0 0 0 0.336(8) -- -- -- 

O1 4a 0 0 0.25 -- 0.68(3) 0.04(5)  

O2 8h 0.2316(1) 0.7316(1) 0.25 -- 0.48(1) 0.79(4) 0.09(3) 

x=0.150 a= 5.5031(1) Å, c = 7.8131(1) Å wRp = 3.40%, R(F2) = 6.11% 

Sr/Pr 4b 0 0.5 0.25 0.47(1) -- -- -- 

Ti 4c 0 0 0 0.40(1) -- -- -- 

O1 4a 0 0 0.25 -- 0.86(3) 0.05(5)  

O2 8h 0.2280(3) 0.7280(3) 0.25 -- 0.51(1) 1.08(4) 0.19(3) 



 

 

 

 

 



Having characterised the long-range structure of SPTO as purely AFD and centrosymmetric, 

the focus here is on the structural response in the temperature range around TM=500 K, where 

TM is the temperature of the dielectric peak observed for SPTO (Duran et al., 2005). In order 

to stay clear of the condensed AFD mode and highlight only the structural distortion related 

to the relaxor FE character, only the cubic phase of x ≤ 0.075 samples is considered (see 

phase diagram in Figure 3.8). The data considered here are the fixed-temperature, high-Qmax, 

high-counting time XRPD patterns collected between 300 K and 650 K, as described in 3.2.  

Figure 3.9 shows the variation of the lattice parameter for the x=0.035 sample in the 

temperature range well into the cubic regime. By cooling down from T=650 K, the 

temperature evolution of the a cell parameter follows a Debye-like linear contraction until it 

reaches a critical temperature; by further cooling, an anomalous dilatation results in a 

different a vs T slope. All the samples in the 0.020 ≤ x ≤ 0.063 range exhibit a similar 

departure from the expected linear thermal contraction, which, in absence of applied electric 

field, can be attributed to spontaneous electrostrictive strain (Burns and Dacol, 1983; Cross, 

1987). Thus, TB denotes the critical Burns temperatures observed for these samples. 

 

√

 

For the x=0.020, 0.035 samples, the critical Burns temperatures are higher than the 

temperature of dielectric relaxation (TM). Plotting all the TB critical temperatures obtained in 

the T-x phase diagram of SPTO (Figure 3.8) evidences a distinct phase regime within the 

cubic region. Electrostrictive strain is evaluated as aobserved–aexpected = QP2: aobserved is the 



observed lattice parameter; aexpected is the lattice parameter obtained by linear fitting the data 

points above TB; P is the local polarization; Q is a constant factor. Thus, the anomalous 

temperature evolution of the cubic lattice parameter below TB translates in all the samples 

into a steep rise of Q’=√(QP2), a quantity linearly dependent on polarization (panel B in 

Figure 3.9).  

In the samples with x= 0.020 and x=0.035, electrostrictive strain sets in at a higher TB than in 

x= 0.050 and x=0.063. Only for Pr concentrations up to x=0.035, thus, TB is consistent with 

the temperature of the dielectric anomaly, TM, (see Fig.3.8); as previously proposed by 

Ranjan et al. (Ranjan et al., 2008), electrostrictive strain is a likely indication of the 

emergence of dipole moment through the formation of local FE ordering. Differently, the 

decrease in TB for x=0.050 and x=0.063, and so the absence of any electrostrictive effect at 

x=0.075, strongly suggests a drop in spontaneous polarization. One can tentatively ascribe 

this polarization drop to the stronger long-range AFD instability setting in above x=0.075, 

which counters the FE zone-centre instability, in this case, in terms of inhibited local order 

and, in turn, absence of electrostrictive strain. With no electrostrictive strain detectable for 

x≥0.075, there is no unifying, composition-independent evidence of a FE state in SPTO. 

 

The low-temperature structure of SPTO determined here for every x agrees with the one 

proposed by Garg et al. (Garg et al., 2009) on highly doped SPTO at room temperature. Thus, 

their finding was extended to all Pr concentrations, noting that only the samples with x≥0.100 

are tetragonal at room temperature, and that the phase transition occurs at temperatures 175 K 

≤ T ≤ 270 K  for Pr concentrations in the range 0.020 ≤ x ≤ 0.075. Therefore, a long-range FE 

transition in the range 90 K ≤ T ≤ 650 K, as proposed by Duran et al., can be excluded. 

Although the centrosymmetric I4/mcm phase and the corresponding polar phase obtained by 

mixing with a Γ mode (space group I4cm) cannot be ultimately told apart using XRPD, there 

are several reasons why the phase transition reported here is decoupled from the dielectric 

permittivity anomalies in SPTO. First, the dielectric permittivity anomalies are observed at 

TM≈500 K almost independent of composition, but TM never matches our measured TC other 

than for x=0.150. Second, the order parameters (ϕ, η) and the critical temperature (TC) of the 

AFD phase transition are amplified by increasing Pr concentration, but a stronger AFD 

instability is expected to suppress a long-range structural FE transition (Zhong and 

Vanderbilt, 1995). Third, all the samples with x≤0.075 are cubic at TM, and in some of them 

(0.020≤x≤0.0625) electrostrictive strain seems to be the structural response actually related to 



the freezing of local electric dipoles. 

The tetragonal phase of SPTO also matches the AFD structure exhibited by SrTiO3 under 105 

K, and by EuTiO3 under 215 K (Allieta et al., 2012; Goian et al., 2012). The I4/mcm space 

group is simply obtained by condensing the tilt of the TiO6 octahedra along the c-axis, a tilt 

pattern expressed with a0a0c- in the Glazer notation (Glazer, 1972). As the tolerance factor in 

SPTO decreases with x (t~0.98 at 15% doping), in the light of the smaller ionic radius of Pr3+ 

with respect to Sr2+ (1.19 Å and 1.44 Å), one might have expected Pr to induce one effect 

between a more complex, lower-symmetry tilt pattern, a ferroelectric distortion, or, more 

simply, a larger distortion of the existing SrTiO3 structure. In fact, an A cation smaller than 

Sr in SrTiO3 is underbonded (tolerance factor smaller than 1), so its anion coordination could 

be optimized primarily through octahedral rotations, but also through FE distortions  

(Woodward, 1997; Benedek and Fennie, 2013). Having ruled out a long-range FE structure in 

SPTO, a change from the a0a0c- tilt pattern can also be proved incompatible with these XRPD 

data. 

The distortion associated to the R4+ irrep of the cubic Pm-3m space group present in all these 

perovskites defines the subgroups I4/mcm, Imma, and R-3c, if a single tilt amplitude is 

considered and allowing tilt components to be directed along one, two, or all three axes, 

respectively (Howard and Stokes, 1998). From the peak intensities in the powder diffraction 

patterns it was possible to select I4/mcm between the three types of distortion, thus, also to 

rule out further symmetry reductions associated with the R4+ irreducible representation 

(C2/m, C2/c, and P-1). High-quality XRPD data also helped ruling out other possible long-

range distortions involving the opposite-sign tilt pattern (a0a0c+) invoked by the M3+ irrep 

(Howard and Stokes, 1998). A distortion generated by its superposition to R4+, for instance, 

is observed in Sr1-xCaxTiO3, another relaxor FE at small dopant concentrations (<5%) 

(Ranjan et al., 2000).  

Therefore, the effect of Pr doping on the long-range structure is to increase the temperature at 

which the R4+ mode condenses into the tetragonal structure, and to increase the amplitude of 

the distortion well over that observed in undoped SrTiO3, as demonstrated by the increase in 

the order parameters ϕ and η as a function of x. Ultimately, in view of the increase in the 

cation ADPs with doping, and of the trend in the oxygen ADPs revealed by neutron 

diffraction, further insights on the SPTO structure can only be obtained through local 

structural probes like Raman spectroscopy and Pair Distribution Function. 
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In this chapter, we look at local structural features by means of the Pair Distribution Function 

approach (PDF), whose basics have been covered in Chapter 2. In view of the long-range 

centrosymmetric structure determined in Chapter 3, the present PDF analysis is used to disclose 

atomic displacements with no long-range coherence, which do not show up in reciprocal-space 

patterns except being hinted at by the trend of atomic displacement parameters. Cation 

displacements with respect to the centre of the respective oxygen coordination cages would 

explain the emergence of electric dipoles, which would, in turn, shed light on the microscopic 

mechanism by which Sr1-xPrxTiO3 (SPTO) develops relaxor ferroelectricity. 

Although ABO3 perovskites are probably the most studied class of materials, many structural 

aspects of their phase transitions and their local disorder have been cleared up only very 

recently thanks to PDF. In BaTiO3, for instance, the local off-center displacements of Ti atoms 

along <111> directions were reconciled with the structural phase transitions by a recent neutron 

PDF approach based on symmetry decomposition (Senn et al., 2016). PDF was key to 

determining the split chemical environment of Sr and Ba in the local structure of Sr-doped 

BaTiO3 (Levin et al., 2014). Cation ordering and local atomic displacements in the BiScO3-

PbTiO3 solid solution were mapped out of neutron PDF by a reverse Monte Carlo study (Datta 

et al., 2016). By an analogous approach, short-range order showed up in Ca(Zr,Ti)O3 

(Krayzman and Levin, 2007). Cation ordering and correlated displacements were studied by 

reverse Monte Carlo in Bi(Ti, Fe, Mg)O3 (Chong et al., 2012), another Pb-free ferroelectric. 

PDF also help elucidating the effect on ferroelectricity of the stereochemically-active Pb2+ 

located in the A-site of SrTiO3 (Laurita et al., 2015). 

In analogy to these cases (and countless more) local structure is used to explain the emergence 

of the relaxor behaviour in SPTO upon Pr/Sr substitution. In particular, the aim of the analysis 

presented in this chapter is to pin down as accurately as possible the structural mechanism 

breaking centrosymmetry in doped SrTiO3. The highly symmetric structure of SPTO is an 

advantage in some respects, for instance, because many of the first PDF peaks are well apart, 

but challenging in some others, since certain atom pairs systematically overlap (see Figure 4.1). 

What follows presents the results of two different approaches to PDF analysis. The basic reason 

for using the two methods is that two sets of data at our disposal, X-ray PDF (XPDF) and 

neutron PDF (NPDF), highlight different features of the local structure of SPTO. Since XPDF 

is more sensitive to the chemical environment of metal atoms (see form factors in Figure 4.2), 

we first look for macroscopic cation displacements or, in general, local breakings of the long-

range symmetry. This is done by testing the agreement of structural models generated by 

applying either the zone-centre, ferroelectric (FE) instability (i.e. cation off-centering) or by 

the zone-boundary, antiferrodistortive (AFD) instability (i.e. octahedral tilt) to the cubic 



perovskite structure; consequently, the structural parameters of the target phase are refined 

against the experimental PDF by least-squares cycles until reaching optimum agreement. The 

Reverse Monte-Carlo (RMC) method, here applied to neutron PDF, takes the opposite 

approach: experimental PDF is used to generate a model – by moving atoms randomly and 

accepting changes based on the agreement between calculated and experimental PDF. The 

RMC method is a natural choice to fit neutron PDF in the case of SPTO: because of the large 

scattering cross-section of oxygen (Figure 4.1) and the systematically overlapping interatomic 

distances in the perovskite structure (see Figure 4.2), only an unconstrained refinement is able 

to evidence complex distortions originating from multiple atoms, such as those involving the 

superposition of FE and AFD modes. 
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In addition, it can be helpful to compare structural observations with insights from Raman 

spectroscopy; since relaxor ferroelectrics such as SrTiO3 and KTaO3, both in the undoped and 

in the doped state, have been the subject of myriad studies, their dynamics are well understood 

and serve as reference for the current analysis. Raman scattering in perovskite ferroelectrics 

originates from the modulation of the oxygen electronic polarizability by optical vibrational 

modes (Vugmeister et al., 1995): the observation of some of these Raman modes of Pr-doped 

samples can be related to fluctuations of the space- and time-dependent polarization in the 

crystal lattice; the dependence of mode intensity and linewidth on composition gives a 

qualitative, yet useful, picture of how off-centered impurities in the SrTiO3 lattice induce the 

dipolar state inferred from dielectric permittivity measurements. 

Though it remains hard to reconstruct a definitive distorted unit cell even after the most likely 

distortions active in SPTO have been identified, it is showed that the combination of different 

datasets and methods is a powerful approach to model disorder in a perovskite with mixed site 

occupation, even more so when disorder involves small atomic displacements of both cations 

and oxygen atoms. 

X-ray PDF (XPDF) data were collected on selected powder samples of SPTO prepared by 

solid-state synthesis as described in Section 3.2. The Pr concentrations of the samples probed 

by XPDF were x=0, 0.020, 0.050, 0.075, 0.100, 0.125, 0.150. Synchrotron X-ray powder 

diffraction measurements were carried out at the ID22 beamline of the ESRF (described in 

3.1.1). The data used in this PDF analysis were collected at T=90 K and T=295 K using incident 

X-ray wavelength λ=0.16102 Å (Qmax=28 Å-1) on a 2D detector (Perkin Elmer XRD 1611CP3) 

with 100×100 μm2 pixel size. Wavelength, sample-detector distance (379.3 mm), and 

azimuthal integration parameters were all calibrated with a CeO2 reference sample that was 

sintered for 4 hours at 1400 °C. The detector mask was created with the program FIT2D 

(Hammersley, 1998); calibration and azimuthal integration were all done using the program 

pyFAI (Ashiotis et al., 2015).  The integrated Q-space data were corrected for background, 

absorption, and Compton scattering and then Fourier-transformed to G(r) using the program 

PDFgetX2 (Qiu et al., 2004). G(r) is invoked according to the formalism explained in Chapter 

2 and based on the definition by Keen (Keen, 2001). Local structural models were created and 

refined against the experimental G(r) using the program PDFGui (Farrow et al., 2007). The 

degrees of freedom of the models (cell parameters, atomic positions, thermal displacement 

parameters, correlated displacement factor, and overall scale) and instrumental parameters 

(damping and broadening of the PDF) are optimized in least-squares refinement against the 



G(r) and the agreement is assessed by the fit residual (Rp), defined as: 

𝑅𝑝 = [
∑ 𝑤𝑖(𝐺𝑖

𝑒𝑥𝑝 − 𝐺𝑖
𝑐𝑎𝑙𝑐)2

∑ 𝑤𝑖(𝐺𝑖
𝑒𝑥𝑝)2

]
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where Gi
exp and Gi

calc are the i-th point of the experimental G(r) and of the calculated G(r), 

respectively, and wi is the weight of each point Gi
exp (normally the uncertainty on its value). 

Raman measurements were performed on a Renishaw RA 100 Raman analyser at the Swiss–

Norwegian Beam Lines (SNBL) at ESRF. Spectra were collected at T = 295 K on the samples 

with x = 0, 0.020, 0.050, 0.075, 0.100, 0.125, 0.150, using a 532 nm (green) excitation 

wavelength at 2 mW in backscattering mode. Exposure time was 40 s for all the samples. 

The experimental G(r) curves at 90 K and 295 K of the SrTiO3 and SPTO samples are reported 

in Figure 4.3. 

 

 

The feature most sensitive to the Sr/Pr substitution is the second peak, centered at r=2.75 Å 

and corresponding to nearest-neighbour (NN) Pr/Sr-O distances and O-O distances; at both 90 

K and 295 K, peak width increases considerably for x=0.020 and x=0.050, and for x≥0.075 two 



components are clearly visible. This peak has two types of contributors: six O-O NNs 

belonging to the same octahedron and twelve (Pr,Sr)-O NN within the same cuboctahedron 

(see Figure 4.2). Because in X-ray PDF the contribution of O-O pairs is small compared with 

that of (Pr,Sr)-O distances (called A-O hereafter), the x-dependent broadening of this peak must 

be ascribed to changes in geometry of the AO12 cuboctahedra. When the local symmetry is 

undistorted cubic, there are 12 identical A-O distances, which give a sharp, single G(r) peak 

(Figure 4.2, panel A blue curve); differently, a tetragonal arrangement as in the long-range 

structure of SPTO makes the A-O distances split into three subshells, each one comprising 4 

atoms (Figure 4.2, panel B blue curve): the low-r and high-r components, involving the 

equatorial O atoms in TiO6 octahedra, stray from their initial position to an extent proportional 

to tilt angle; the mid-r component, which corresponds to the in-plane A-O distances, should be 

affected only by displacements of the A atom, or by disordered positions of the axial octahedral 

oxygens. While in the G(r) of undoped SrTiO3 at 90 K the A-O peak is symmetric and fully 

consistent with a 4+4+4 splitting, the asymmetric peak visible in every doped sample – most 

clearly for x=0.150 at 90 K – should contain information about a different distortion. 

To test the possibility that the peak asymmetry is related to polar displacements of A-site 

cations, simple polar distortions were applied to the cubic structure, i.e. those directly obtained 

from Pm-3m by switching on a single Γ4- displacement mode, to fit the G(r) in the short-range. 

The space groups tested are P4mm, Amm2, and R-3m, respectively, generated by atomic 

displacements along the directions <100>, <110>, and <111> of the cubic phase. In addition, 

because off-centering at the A-site must also affect the A-Ti peak at r=3.20 Å and the A-A 

peak at r=3.80 Å (assuming no correlation between displacements), these fits straddle the range 

2.3 Å < r < 4.2 Å. All P4mm, Amm2, and R-3m models fit these three peaks accurately, as 

shown in Figure 4.4 (panels A-C) for the fit for x=0.150 at 90 K. In each case, the broad 

distribution of A-O distances could be reproduced properly – and kept consistent with the 

relatively narrow A-Ti and A-A peaks – only by appyling equivalent displacements of both A 

and Ti. By contrast, all three polar models fail to reproduce the G(r) if the fit is extended to the 

range 1 Å < r < 7 Å (Figure 4.4, panels D-F): in particular, none of P4mm and R-3m is able to 

fit the sharp Ti-O peak at r=1.95 Å, while Amm2 gives a poor fit mostly in the range 5<r<7 Å. 

It must be noted that the first G(r) peak, corresponding to NN Ti-O distances, shows a modest 

broadening with increasing x, and overall remains a single, symmetric peak. This suggests two 

things: first, TiO6 octahedra remain relatively rigid and, second, the displacement of Ti inside 

the octahedron does not play a major role, if at all, in the x-dependent increase in the Ti ADP 

observed in Rietveld refinements (see the refined phases in Chapter 3). The inset in Figure 4.3 

depicts the expected shape of the Ti-O G(r) peak under the centrosymmetric and non-

centrosymmetric models considered here. It is immediately clear how the Ti displacement 

triggered in the polar models P4mm, Amm2, and R-3m spreads the distribution of Ti-O 



distances, while the rigid octahedral tilt in I4/mcm has no effect on it.  

 

 

On the other hand, G(r) fits in the range 1≤r≤7 Å indicate that a tetragonal I4/mcm symmetry, 

obtained by condensing one R4+ tilt mode, is the single-distortion model most consistent with 

the experimental G(r) of every sample at both T=90 K and T=295 K (panels D and H in Figure 

4.4). Not only I4/mcm accounts for a symmetric Ti-O peak and gives a low, r-independent fit 

residual, but it also has the lowest number of parameters among the models tested (8 

parameters; namely, two cell parameters, three thermal displacement parameters, one atomic 

position, overall scale, and a quadratic correlation coefficient). To this point, it must be noted 

that other sensible models might be those generated by the superposition of Γ- and R-point 

instabilities in Pm-3m, i.e. I4cm, Ima2, or Cm. These models, however, increase considerably 

the number of refinable parameters (they have 5, 5, and 9 atomic degrees of freedom, 

respectively) but fail to improve fit quality with respect to I4/mcm. Similarly, 

overparametrisation of the least-squares fit prevents one from testing models generated by 

superposition of different tilt patterns, with the added difficulty that the distortion is only 

related to oxygen atoms, so it contributes very weakly to the overall XPDF. 



Having shown that the tetragonal I4/mcm phase is the most sensible model among those tested 

for the XPDF, we apply it to all compositions at both 90 K and 295 K and discuss the evolution 

of the tetragonal phase with both temperature and composition in terms of the local order 

parameters: local tilt angle, ϕloc, and local tetragonality, ηloc. Figure 4.5 shows all the G(r) fits 

up to 10 Å, also reporting the respective residual curves under each fitted curve.  

The fits of the SrTiO3 and SPTO G(r) at 90 K return values of ϕloc systematically larger than 

the respective values obtained by Rietveld refinement using the same I4/mcm structure (panels 

A and B in Figure 4.6). The gap between the long-range and the local tilt angles widens with 

Pr concentration, with ϕloc exceeding 8° in the case of x=0.150. While local octahedral tilt can 

be expected in both SrTiO3 and SPTO at T=90 K since every sample has a tetragonal long-

range structure, less expectedly, the fits at 295 K return non-zero values of ϕloc for every doped 

sample, regardless of  the cubic long-range structure in the samples with 0.020 ≤x≤0.075. In 

analogy with the fits of the 90 K G(r), samples with a long-range tetragonal structure at 295 K 

(x≥0.100) also show enhanced octahedral tilt on the local scale. Most important, the amplitude 

of local octahedral tilt does not change between 90 K and 295 K except for undoped SrTiO3, 

whose local structure can be unambiguously interpreted as cubic; this suggests that locally the 

R4+ instability is active regardless of whether the mode is condensed on the long-range. 

Local tetragonality follows a similar trend (panels C and D in Figure 4.6). The order parameter 

of local tetragonality is calculated from the tetragonal cell parameters as ηloc=c/a-1, where both 

c and a are reduced to the parent Pm-3m unit cell. Although the values of ηloc show a marked 

step after x=0.075, the overall increase in long-range tetragonality with x mirrors the trend of 

long-range tilt angle. Similarly to what already observed for ϕloc, the values of ηloc at T=90 K 

and T=295 K are very close, suggesting that also the strain mode coupled to the R4+ tilt mode, 

on the local scale, is independent of the long-range phase transition. 
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To gain a better understanding of the instabilities at play in the local structure, Raman spectra 

of selected samples were measured at T=295 K. The spectrum of SrTiO3 (Figure 4.7) consists 

mainly of two second-order broad bands centered at about 300 cm-1 and 700 cm-1. 

Both bands originate from the overlap of different combination modes allowed by the cubic 

symmetry (Bianchi et al., 1994). As Pr enters the solid solution, the breakdown of the cubic 

symmetry selection rules gives rise to distinct first-order modes that gradually appear in the 

spectra of doped samples.  
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The main first-order modes are labelled in accordance with previous works (Ranjan et al., 2007; 

Bianchi et al., 1994), as shown in Figure 4.7 (panel A) for x=0.150: (a) 145 cm-1, (b) 175 cm-

1, (c) 445 cm-1, (d) 540 cm-1, and (e) 795 cm-1. The two peaks at 145 cm-1 and at 445 cm-1 arise 

from the structural modes Eg and B1g, whereas the bands at 175 cm-1, at 540 cm-1, and at 795 

cm-1 were attributed to the optical TO2, TO4 and LO4 modes, respectively. As a further 

confirmation of the antiferrodistortive phase determined in Chapter 3, note that the absence of 

the TO3 mode excludes a structural ferroelectric state in any of these samples (Toulouse et al., 

1992). In the following, the focus is on the compositional dependence of the first-order Raman 

modes, namely, the structural Eg, B1g and the polar TO2 and TO4 based on the spectra reported 

in Figure 4.7 (panel B). 

Both the Eg and B1g structural modes are clearly visible for x≥0.100, and also appear in x=0.075 

as weak modulations at 145 cm-1 and 445 cm-1. These two modes (labelled with a and c in 

Figure 4.7, panel A) correspond to the freezing of the triply degenerate soft phonon at the R 

point of the Brillouin zone, so they are expected to mirror the cubic-tetragonal phase transition 

of SrTiO3 and SPTO. Coherently, they are found only in the samples that at 295 K are 

tetragonal or, like x=0.075, close to the phase transition. Turning our attention to the TO2, TO4 

polar modes, it must be remembered that three types of zone-centre modes are allowed in the 

Pm-3m cubic structure: the Last mode, the Slater mode, and the Axe mode (sketched in the 

inset of Figure 4.7). While the frequency of the Slater mode (TO1) is out of the reach of the 

spectrometer used, the mode labelled as TO2 is the Last mode, which represents the counter-

oscillation of A cations and BO6 octahedra; the higher-frequency TO4 is the Axe mode, 

corresponding to the stretching of the BO6 octahedra toward one of the axial oxygen atoms 

(Bianchi et al., 1994, Goian et al., 2009).  

As can be seen from the spectra in Figure 4.7 (panel B), every sample except undoped SrTiO3 

features the bands relative to the TO2 and TO4 polar modes; this indicates that the zone-center 

polar instabilities are switched on already at the lowest Pr concentration. The intensity and the 

asymmetry of the TO2 line, both increasing with Pr concentration, can be interpreted, 

respectively, as the measure of the mean-square polarization in the lattice and its 

inhomogeneous, fluctuating distribution (Toulouse et al., 1992; DiAntonio et al., 1993). In 

addition, the shape of the TO2 line is qualitatively consistent with a polar mode coherence 

length substantially shorter than the theoretical critical coherence length related to a structural 

FE transition. All these results suggest that Pr could be involved in the emergence of local polar 

phenomena.  

When randomly-substituted ions are off-centered in their sites in a highly polarizable lattice, 

they form dynamic, randomly-relaxing dipoles that produce a domain state with space- and 

time-varying polarizability; in absence of a long-range FE transitions. this behaviour, together 



with the emergence of the TO2 and TO4 polar modes, was observed in known relaxor 

ferroelectrics like Li- and Nb-doped KTaO3 and Ca-doped SrTiO3 and linked to the relaxational 

frequencies of polar nanoregions (Toulouse et al., 1992; DiAntonio et al., 1993; Bianchi et al., 

1995; Toulouse et al., 1994; Vugmeister et al., 1995). In our case, the mode frequencies vary 

only weakly with composition, but the intensity trends are quite revealing. In particular, the 

TO2 intensity increases smoothly with x and then levels off when x ≥ 0.100 (Figure 4.7 panel 

C). Most important, if the polar TO2 intensity and the AFD loc extracted from XPDF fits are 

normalized to unity and plotted together, it is immediately clear that the two parameters have 

the same dependence on composition (Figure 4.7 panel C).  

How to interpret this? The TO2 intensity can be seen as a gauge of the polar distortion 

associated with polar nanoregions, and the local tilt angle (ϕloc) as its structural equivalent. In 

the model proposed by Toulouse and co-workers for doped KTaO3 (DiAntonio et al., 1993; 

Toulouse et al., 1994; Vugmeister et al., 1995), assuming a slow relaxation of the impurity-

induced dipoles, the intensity of TO2 is a measure of the autocorrelation (<P2>) of the spatially- 

and temporally fluctuating polarization (Bianchi et al., 1995; Toulouse et al., 1994). Similarly, 

the PDF represents the autocorrelation function of the real space, depending on the fluctuations 

from the average electron density given by local structural disorder, which is largely enhanced 

by doping. Thus, the correlation between a purely FE order parameter and a purely AFD order 

parameter implies that local structural deviations quantified by the local AFD increase can 

actually originate from fluctuations in local polarization, signalled by the emergence of the 

TO2, TO4 Raman modes.  

As shown in Chapter 3, SPTO retains inversion symmetry through the cubic/tetragonal 

transition, accompanied by an increasing AFD character in the long-range phase. This agrees 

very well with the first-principles calculations by Zhong and Vanderbilt, predicting that a 

strong AFD distortion practically suppresses FE distortions (Zhong and Vanderbilt, 1995). 

Moreover, within the accuracy of the XPDF study, a centrosymmetric, AFD phase is the model 

most consistent with the local structure of every Pr-doped sample both at T=90 K and T=300 

K. In few cases, this holds true even when samples are cubic on the long-range.  

The absence of a polar structural order seems to conflict with the observation of dielectric 

permittivity peaks by Duran et al. (Duran et al., 2005) and of the polar Raman modes discussed 

in section 4.2.3. But the coexistence of these conflicting phenomena can be reconciled with 

theory by considering the combined effect of tetragonality and tilting angle, which largely 

characterizes the structure of SPTO both locally and long-range, and which Aschauer and 

Spaldin recently studied by DFT (Aschauer and Spaldin, 2014). In particular, they found a 

theoretical equilibrium tilt angle (ϕeq=5.7°) below which the suppression of the FE 



displacement of Ti by octahedral rotations is energetically favourable: because of charge 

transfer between Ti-O σ* and Sr-O σ* bonds, which decreases the anti-bonding orbital overlap, 

the Ti-O bonds are stronger and, consequently, less polarizable. This is an unfavourable 

condition for ferroelectricity. But if octahedra are tilted by an angle larger than ϕeq, the 

increased tetragonality coupled to octahedral tilt in the AFD model makes the FE displacement 

energetically favourable again: in order to offset the loss of Ti-O π-bonding along the c-axis 

caused by large tilting, the FE displacement of Ti is allowed to rise at a favourable energy cost, 

as shown by the blue curve in Figure 4.8 (taken from Aschauer and Spaldin, 2014).  

 

 

 

Our experimental results match this scenario. First, the two local order parameters ϕloc and ηloc 

are coupled, as they show very similar trends with composition at both temperatures. All values 

of  ϕloc are greater than the critical ϕeq in the whole range of composition (panels A and B in 

Figure 4.6) and local tetragonality always increases with respect to long-range (panels C and 

D in Figure 4.6). Second, the presence of zone-centre modes is demonstrated locally by the 

appearance of the TO2 and TO4 Raman peaks already at the minimum Pr concentration; the 

correlation between the TO2 intensity and the local octahedral tilt angle at T=295 K supports 

the coexistence of FE and AFD instabilities in SPTO. The short correlation length of the polar 

nanoregions evidenced by Raman - and implied by the local scale of the PDF - means that they 

are also compatible with a centrosymmetric long-range structure. 

Despite the good agreement between the results of independent probes, this picture needs 

confirmation. In the following section direct evidence is sought of the coexistence of tilting 



and polar distortions by taking advantage of the higher sensitivity of neutron PDF to the 

scattering by oxygen atoms. In fact, the main contributor to the refined value of tilt angle is the 

broad A-O peak centered at r=2.75 Å; the weight of successive A-O and O-O peaks in the total 

G(r) is low and their intensities are considerably more smeared by applying octahedral rotations 

(Figure 4.2). As anticipated by the asymmetry of the first A-O peak, it is not unreasonable that 

the local tilt angle actually encompasses different local phenomena, affecting the same A-O 

and O-O distances, to which these G(r) curves are not very sensitive. Although a large 

octahedral tilt reproduces decently the broad distribution around r=2.75 Å, this simple 

tetragonal model may not be the ultimate description of the SPTO local structure. 

Ultimately, XPDF shows that macroscopic cation displacements do not play a large part in 

reducing the local symmetry of SPTO at any T or x, as a centrosymmetric model is still 

reasonably consistent with the G(r). On the other hand, XPDF tells relatively little about the 

disorder affecting the oxygen sublattice. In the following, neutron diffraction is used in order 

to break down the large, all-encompassing octahedral tilt into different contributions, seeking 

direct evidence of the cooperation between zone-center and zone-boundary distortions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Neutron powder diffraction measurements were carried out at the GEM diffractometer at the 

ISIS spallation source (Hannon, 2005) on 8 g aliquots of the SPTO samples with x=0.035, 

0.075, 0.150, and SrTiO3 (x=0). Each sample was contained in a cylindrical vanadium can (7.6 

mm inner diameter, 0.2 mm wall thickness, 50 mm height) and measured for 6 h at 90 K 

temperature. The scattering of instrument background, empty vanadium can, and V/Nb 

(95%/5%) rod was also measured and used for data correction. Size of the incident beam was 

15×40 mm (width×height); the range of neutron wavelength used was 0.15 Å ≤ λ ≤ 3.0 Å. Data 

from seven detector banks were corrected, merged and Fourier-transformed to obtain the pair 

distribution function (PDF) using the GudrunN program (Soper, 2012). The neutron PDF 

(NPDF), here expressed by the g(r) function as defined by Keen (Keen, 2001), was obtained 

using a range of Q between 0.7 and 40.0 Å−1. PDF analysis is first carried out by the model-

fitting method implemented by the program PDFGui (Farrow et al., 2007); a briefing on the 

method is found in section 4.2.1. Reverse Monte-Carlo refinements are carried out using the 

RMCProfile code (Tucker et al., 2007) following the method described in section 4.3.2; 

analysis of the solutions makes use of the Python program outlined in section 4.3.3. Peak fitting 

was done using the program Fityk (Wojdyr, 2010). 

The Reverse Monte-Carlo method to fit total scattering data, here incarnated by the 

RMCProfile code (Tucker et al., 2007), was used to generate symmetry-unbiased, atomistic 

configurations based on the fit to the total scattering functions. Differently from the previous 

section, here the aim is to keep the PDF analysis as independent as possible of models related 

to the symmetry reduction from cubic and, thus, to show how RMC refinements can supply a 

plausible picture of the distortions in SPTO using only composition and bond-distance 

windows as constraints. 

The type of PDF function used in the fits is g(r) (defined in Chapter 2). g(r) is not scaled by r, 

unlike the G(r) function used for XPDF analysis, so that the low-r part has the highest weight. 

In the following section, this choice is justified by carrying out PDF fits over different ranges 

in real space and tracking the departure from the simple I4/mcm model determined in the 

previous section. The fit range of the g(r) is up to 16 Å, as defined by the longest vector in the 

supercell of choice, which is a 6×6×4 supercell of the tetragonal I4/mcm unit cell (a=b=33 Å, 

c=31 Å). As usual, Ti is placed in the lattice origin and all initial atomic positions are set to the 

undistorted cubic symmetry (i.e. no initial tilt angle was assumed).  



Because of the relatively low Pr concentration in the SPTO samples, the neutron scattering 

cross-sections of the atom pairs involving Pr are lower than any other atom-pair cross-section. 

Still, Pr gives a reasonable contribution to NPDF for x=0.150 (the case of x=0.150 is shown in 

Figure 4.2) and in this case, therefore, it was possible to account explicitly for Pr as a separate 

atom; this permits to readily distinguish the refined positions of Pr atoms from those of Sr 

atoms, and to simulate the distribution of Pr atoms in the supercell by using the atom swap 

function in RMCProfile (Hui et al., 2007). When distinct Sr and Pr sites are not applicable, 

instead, the RMC simulations use a ‘grey’ atom obtained as the sum of the scattering lengths 

of Sr and Pr weighted by the respective molar fractions. All the neutron scattering lengths 

relevant to this work are listed in the tables in the Appendix to this chapter. 

Distance windows (DW) define the lower and upper limits for all nearest-neighbour (NN) 

interatomic distances in the supercell and are specified in the RMC input file. Narrow DWs are 

used in the early stages of the refinement in order to preserve the expected polyhedral 

connections; the window limits are then relaxed, for instance, set to slightly exceed the visible 

limits of the PDF peak, so that minimization of the g(r) fit outweighs the initial guess for the 

rest of the refinement. Table 4.1 lists all the DW constraints used in this analysis. 

 A-A A-Ti A-O Ti-Ti Ti-O O-O 

SrTiO3 3.73 4.13 3.18 3.60 2.53 3.07 3.73 4.13 1.80 2.16 2.53 3.07 

x=0.035 3.73 4.12 3.18 3.60 2.51 3.10 3.73 4.12 1.79 2.16 2.51 3.10 

x=0.075 3.72 4.12 3.18 3.60 2.42 3.18 3.72 4.12 1.78 2.16 2.42 3.18 

x=0.150 3.71 4.12 3.18 3.60 2.40 3.18 3.72 4.12 1.78 2.16 2.40 3.18 

 

The choice of not setting hard constraints to the atom moves also led us to exclude the fit of 

reciprocal-space data after a few initial attempts. The agreement of the final configuration with 

reciprocal-space data is evaluated a posteriori by running zero refinement cycles while reading 

all the g(r), F(Q), and Bragg datasets. The maximum move applied to an atom is set to 0.05 Å 

for every element. Though the average move is smaller than this, setting a lower limit can be 

useful in the case of atoms forming pairs that contribute weakly to the overall scattering cross-

section and that, consequently, are prone to very large shifts and to incorporating experimental 

noise. 

For each of the four PDFs at 90 K analysed here 36 independent RMC simulations were run, 

each starting from an undistorted 6×6×4 supercell; the final configurations for each sample are 

then merged to obtain an ‘effective’ supercell consisting of 18×18×16 tetragonal unit cells. The 

merged supercell for each sample thus contains 576×36=20736 Sr/Pr atoms, 20736 Ti atoms, 



and 1728×36=62208 O atoms.  

Increasing statistics by using a large number of atoms in the analysis is critical to extracting 

tidy information on disorder. It must be reminded that RMCProfile has no explicit treatment of 

the effect of termination error, defined by Qmax (i.e. convolution of the PDF with a broadening 

function, which gives the minimum peak width at any distance) and of thermal motion (i.e. 

broadening dependent on which atom contributes to the peak) on the PDF. This implies that 

the linewidth of every peak calculated by RMCProfile is solely due to the underlying 

distribution of interatomic distances in the supercell. This has two main consequences on the 

final configurations: i) the effect of termination error due to finite Qmax is accommodated to by 

having slightly more disorder in the supercell than is expected, acting like a broadening 

function1, and ii) the distribution of the atomic positions for each atom type partly contains a 

normal distribution of atomic positions that reproduces the PDF broadening due to thermal 

motion. Consequently, each of the 36 snapshots contains a different arrangement of thermally 

displaced atoms (it can be safely assumed that normally distributed displacements are random 

and not repeated identically in every independent refinement), whose contribution to the final 

structural model can be reduced by running multiple independent refinements (36 in this case). 

Whereas thermal fluctuations tend to average out to a uniform background in the merged 

configuration, physically meaningful atomic displacements are expected to show up 

consistently in all snapshots, concentrating the atoms in their best-fit positions. 

This paragraph explains the method used to analyse the result of the RMC refinements to 

NPDF. The routines described were all written in Python 2.7 using the standard libraries 

NumPy, SciPy, Matplotlib, and Seaborn. 

The first step in the analysis of RMC configurations is reading through the list of atoms that 

constitutes the output of RMCProfile; at the same time, the program reads the list of atoms of 

an undistorted supercell with same size, so that two parallel arrays of atomic positions stored 

in memory containing the final and the initial atomic coordinates. Next, periodic boundary 

conditions are applied by appending to the existing lists of coordinates the atoms contained in 

the outermost subcells, with coordinates and subcell indexes shifted by one supercell unit2. A 

third array of atoms is produced for supercell visualization with VESTA or analogous 

                                                 
1 Toby and Egami (1992) showed that PDF broadening due to termination error is almost negligible compared 

with the broadening due to thermal motion if Qmax is high enough. For Qmax=40 Å-1, as in this case, this holds true 

for any Debye-Waller factor larger than, for instance, the zero-temperature limit of aluminium (B=0.28 Å2). In 

view of the thermal parameters found previously (see Chapter 3), the effect of limited Qmax on our refinement 

solutions is expected to be extremely small. 
2 The original numbering of the subcells given by RMCProfile is maintained. If the original supercell had subcell 

indexes (0, 1, 2) in a given direction, the expanded supercell will have subcells (-1, 0, 1, 2, 3). 



programs, whereby all atomic positions are converted from fractional coordinates to cartesian. 

Loading the supercell is done in turn for every RMC configuration found for a given sample. 

The program runs an outer loop over all these configurations (in this case that should be 36 

times) and for each of them runs the main polyhedra reconstruction routine. The latter is a loop 

running over all the cations of the specified type (Ti or Sr or Pr) and, for each individual atom, 

it runs a nested loop over all oxygen atoms, including those created by expanding the supercell 

boundaries. A flowchart is shown in the Appendix to this Chapter. 

In the loop over the oxygen atoms, the script accepts as O atoms coordinated to the current 

cation only those located at a suitable bond distance from the metal atom position (M) and 

whose projections (Δx, Δy, and Δz) on the cartesian axes fall within certain limits dictated by 

polyhedral geometry and specified in the script. The accepted O atoms are then stored in a list 

and labelled according to their position relative to the atom M: in octahedra, for example, O1-

O4 are the equatorial O atoms numbered counter-clockwise (as seen down the <001> direction) 

starting from the atom situated in -Δx,-Δy, Δz with respect to M (the sign is given by Δx=xoxygen-

xcation and Δz must be close to zero); O5 and O6 are the axial O atoms situated above and below 

the cation, respectively. Analogous numbering is used for O atoms in cuboctahedra. Once the 

coordinates of the metal atom (M=(xM,yM,zM)) and of the O atoms that make up the polyhedron 

are known, the cation displacement (ΔP) from the centroid of the coordinated oxygens3 

[<O>=(<x>,<y>,<z>), brackets denoting the average over all O atoms in the polyhedron] is 

simply calculated as ΔP=M-<O>. Likewise, the displacement of the sole oxygen centroid can 

be calculated as ΔO=<O>-C, where C denotes the centroid of the initial positions of the O 

atoms read from the array of initial positions. Since C is also the initial position of the cation, 

the absolute cation displacement can be calculated as ΔM=M-C. 

As mentioned in the previous section, the atomic positions in a RMC configuration have to 

account for the thermal broadening of the PDF by accepting ‘extra’ random displacements 

around their mean position. The exact atomic positions change between different snapshots and 

thus coalesce into a broad distribution. But since the aim of moving atoms in a RMC supercell 

is primarily to fit the features of the experimental PDF related to structural disorder, the refined 

atomic positions must reflect a given distortion, e.g. atom off-centering or octahedral tilt. In 

view of the large number of atoms used and of the broad distribution of their positions, it is not 

practical to visualize all the individual atoms from multiple merged configurations. Instead, if 

atoms are displaced consistently between different snapshots in response to a distortion 

signalled by the PDF, the sensible information can be found in the density of these positions. 

This is visualized by plotting the occurrence of atoms in two dimensions on a fixed range of 

                                                 
3 The position <O> after the refinement is not the same as the initial cation position; the latter is, instead, the same 

thing as the centroid of the O atoms before the refinement, so they are given the same symbol (C).  



distances from an origin of choice (e.g. the centroid of O atoms or the initial position of the 

atom) and grouping the occurrences in gaussian bins (‘kernels’) to obtain their probability 

density function. This work is focused on finding the position of the cations with respect to the 

centre of the coordination polyhedron (ΔP); thus, each density plot represents the three-

dimensional density of cation positions (20736 values of ΔP) projected on the slice of a given 

polyhedron centered on the position of the centroid <O> of the O atoms. Plots represent real-

space slices spanning from -0.15 < r < +0.15 Å from the centre of the plot (<O>, marked with 

crosshairs). As sketched in Figure 4.9, the values of ΔP are projected on the plane and plotted 

so that the x and y directions in real-space match the x and y axes of the plot; the centroid of 

the anions lies in the plane and at the centre of the crosshair. To obtain the probability density 

function, the distribution of ΔP is binned using gaussian kernels with a bandwidth generally 

corresponding to the bin size of the PDF dataset4 (0.02 Å) using the kernel density estimator 

function of the Seaborn Python package. The values of probability density (from 0 to 1) are 

colour-coded so that one end of the colour scale indicates where the displaced atoms (ΔP) are 

most concentrated, and the other end of the scale indicates where displaced atoms are found 

the least frequently. 

 

 

From the position and the orientation relative to the cation of each oxygen atom constituting 

                                                 
4 Kernel width can also be optimized by the Python function used for kernel density estimation, but this tends to 

oversmooth distributions, making close peaks undistinguishable. Because all distributions of positions returned 

by RMCProfile are spread differently, optimum smoothing of KDE was actually obtained using a factor 

proportional to the standard deviation of each distribution. Anyway, to facilitate comparisons, the same bandwidth 

was used for all the distributions shown in section 5.3.5. 



the polyhedron, the program also calculates a few geometric parameters: volume (by dividing 

the overall volume in tetrahedrons), tilt angle, the bond distribution index defined by Baur 

(Baur, 1974), and the displacement of the Axe-type octahedral distortion (see Figure 4.7). Tilt 

angle is calculated as the angle between the a or b axis of the supercell and the line 

perpendicular to the plane fitted through four points: the two axial O atoms of the octahedron 

and the two midpoints of the equatorial O-O bonds along the axis considered. The Baur 

distortion index (D) is simply obtained as: 

𝐷 =
1

𝑁 
∑

|𝑑𝑜𝑏𝑠 − 〈𝑑〉|

〈𝑑〉𝑁
 

where dobs is the experimental interatomic distance, <d> the average bond distance, and N the 

number of bonds considered. 

The g(r) of the four samples measured at 90 K are compared in Figure 4.10. It must be reminded 

that at 90 K all four samples have a tetragonal long-range structure, and that analysis of XPDF 

suggests a large local octahedral tilt angle, albeit varying slowly with x.  

 

 



The effect of increasing Pr concentration of NPDF is immediately evident on the peaks at r=3.8, 

4.9, 6.1, and 7.2 Å, all arising from overlapping O-O and A-O distances. With respect to XPDF, 

where disorder in the A-O correlations shows up mostly in the peak at r=2.75 Å, and where O-

O correlations only give weak signals, in NPDF the information related to oxygen atoms is 

dominant (Figure 4.2). This allows reliable comparisons between the peaks related to the 

different chemical environments over a wide range of r. It must be noted, for instance, that the 

negative A-Ti peak at r=3.2 Å is practically unaffected by changes in composition; we also 

confirm the observation in XPDF of narrow distributions of Ti-O distances up to x=0.150; by 

contrast, all the peaks involving A-O and O-O pairs are broadened as x is increased (compare 

Figure 4.10 to Figure 4.2). While this can be partly ascribed to a larger amplitude of the a0a0c-

-type octahedral tilt generated by the AFD structure of SPTO (see Chapter 3 and paragraph 4.2 

above), many of the broad g(r) features arise from distances between octahedra that lie in 

different planes along the c-axis and are thus uncorrelated by tilt (Vanderbilt and Zhong, 1998); 

this might carry useful information about other kinds of distortion. Unfortunately, the 

systematic overlapping of A-O/O-O and of A-A/O-O distances in the perovskite structure 

discourages directly fitting peaks and analysing their widths. Thus, preliminary insights on the 

disorder in the A and O sublattices are sought, once again, by model-fitting.  

G(r) fits are carried out over successive ranges of r (‘box-car’ refinement (Coduri et al., 2013)) 

using the I4/mcm model with the same refinable parameters specified in the previous 

paragraph. The plots and the selected values shown in Figure 4.11 evidence that the good G(r) 

fit obtained for x=0.150 in the shortest range (1-6 Å) is conditional on the use of a large 

correlation factor of atomic displacements (the δ2 parameter in PDFGui); by contrast, not 

accounting for correlated displacements in the case of SrTiO3 affects only slightly the fit quality 

(panels A-D). Shown in panel I, the weight of correlated motion increases gradually with the 

Pr concentration, as evidenced by both the x-dependence of δ2 and the spread between the 

residuals (Rp) of the fits in which δ2 is switched on and off. This result reminds of the 

discrepancy observed in the XPDF curves between the relatively sharp Ti-O, A-Ti peaks and 

the broad, bivariate A-O distribution at r=2.75 Å (see discussion in 4.2.2); particularly, a larger 

δ2 parameter imposes narrower Ti-O and A-Ti peaks in order for them to be consistent with the 

broad features generated by disordered AO12 cuboctahedra. It must be also noted that the worse 

agreement between the I4/mcm and the experimental G(r) as x is increased (the relevant fit 

residuals Rp are plotted in panel I of Figure 4.11). The departure from the I4/mcm model, 

however, seems to be dependent on r: beyond r=6 Å, the G(r) fit residuals of the four samples 

first get closer and then converge in the 12-18 Å range (Rp values are shown in panel J and 

plots for x=0.150 and SrTiO3 in panels E-H of Figure 4.11).  
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All indications from PDF analysis so far point to the following picture:  

i) disorder increases with Pr concentration in the doped samples, evidenced by worse fits to 

G(r) by the long-range I4/mcm structure in the range up to 6 Å;  

ii) local distortions are substantial in the first 10 Å, then average out to the long-range structure, 



as suggested by similar agreement with I4/mcm of all four samples in the range 12<r<18 Å;  

iii) disorder affects mostly the coordination environment of the mixed-occupancy A-site; this 

appears as a large octahedral tilt in the local I4/mcm model best fitting the XPDF or, more 

generally, as the larger width of the peaks containing A-O and O-O distances. 

RMC modelling of neutron PDF is meant to expand on this picture by providing a detailed 

atomistic configuration for each of the four samples. The distribution of the positions of each 

atom type are evaluated with respect to the unperturbed initial position and with respect to the 

centroid of the coordination polyhedron. Polyhedral geometry is also evaluated as described in 

the previous section. In view of the larger influence of disorder on the short-range (r<10 Å) 

inferred from box-car refinements of the G(r), all the RMC refinements of the NPDF are carried 

out on the g(r), in which the interatomic distances within the first few Ångstroms have the 

largest weight.  

Once all the RMC refinements are run, and provide the respective configurations, the next step 

is extracting structural information. The program used to analyse the RMC configurations is 

outlined in section 4.3.3. First, we look at octahedral tilt angle, which showed the largest effect 

on the XPDF curves. Contrary to what observed in the previous section, the average octahedral 

tilt angles obtained by fitting the 90 K neutron data fall in the range 1.5° < ϕ < 5.5°. As shown 

by Figure 4.12, this is in very good agreement with the tilt angle obtained by reciprocal-space 

analysis of the same neutron diffraction data. It must be reminded that the tilt angle in the case 

of RMC refinements is calculated for each of the 20736 octahedra available, yielding a 

distribution of values rather than a single refined value as in model-fitting; the values plotted 

in Figure 4.12 are therefore the mean values of each distribution.  

 

 



It must be pointed out that octahedral tilt angle is calculated here as the rotation, with respect 

to the a and b axes, of the plane passing through i) the axial oxygen atoms and ii) the midpoints 

of the two pairs of equatorial atoms; the tilt angle thus calculated is independent of most 

possible distortions of the octahedron, so it should be reasonably close to the value obtained if 

the a0a0c--type tilt were isolated as the only active distortion5. While octahedral tilt can be 

investigated in depth by the RMC method, the other order parameter of the AFD structure, 

tetragonality, is practically suppressed by the fact that the lattice parameters in the RMC 

simulations are fixed. Another contraindication to searching for elongated subcells is that the 

atom moves are generated with equal probability along any of the three orthogonal directions.  

Anyway, having reconstructed the octahedra, the displacement of Ti with respect to the centre 

of the octahedron can be examined. As explained in section 4.3.3, knowing the positions of the 

O atoms and of Ti allows one to calculate the displacement of every single Ti atom (ΔTi<O>) in 

the merged configuration from the centroid of the O atoms (<O>). Figure 4.13 shows the 

density plots of ΔTi<O> between -0.15 Å and +0.15 Å from the centre of the octahedron. 

 

Δ

 

In undoped SrTiO3, the highest density of Ti atoms is found at the centre of the coordinated O 

atoms. As Pr concentration is increased between x=0.035 and x=0.150, two effects become 

clear: i) a gradual increase in the mean displacement of the uniform distribution, in agreement 

with the increase in the isotropic thermal displacement found by Rietveld analysis; ii) a gradual 

split of the maximum probability density toward the <111> symmetry-equivalent directions. 

In particular, the maximum probability to find Ti atoms is still in the centre of the octahedron 

                                                 
5 The method used to calculate tilt is actually a tradeoff between accuracy and practicality. A sounder, 

optimization-based approach to polyhedral geometry is implemented in the GASP program available with 

RMCProfile (Wells et al., 2004). The way GASP works, though, is incompatible with the aim of the program used 

in this work, that is, carrying out simultaneously reconstruction of polyhedra and calculation of their geometric 

parameters so that they can be used for any arbitrary multiple (or portion) of RMC configurations. The tilt angles 

reported in this section are compared to the values returned by GASP in the Appendix to this Chapter. 



for x=0.035, albeit spread over a wider range; for x=0.075, maximum probability is split 

between the centre of the octahedron and sites displaced along the <111> directions; finally, 

for x=0.150, the density is highest in the off-centre sites. The density peaks in Figure 4.13 

evidence that the maximum off-centering of Ti attainable for x=0.150 does not exceed 

ΔTi<O>=0.025 Å.  

When the refined structure includes the average A cation at the A-site, an off-centering of 

similar amplitude (ΔA<O>=0.025 Å) develops gradually between SrTiO3 and x=0.150; Figure 

4.14 shows the peak of the probability density drifting away from the centre of the 

cuboctahedron for x=0.075 and x=0.150.  

 

ΔA<O>

 

In spite of the off-centering of both cations for x=0.150, which should make A-Ti distances 

more scattered, the most evident change in the partial g(r) of the A-Ti pair between SrTiO3 and 

x=0.150 is a shift by 0.04 Å toward low-r of the nearest-neighbour peak (panel B in Figure 

4.14), which was expected in the light of the smaller ionic radius of Pr3+ (1.19 Å) compared 

with Sr2+ (1.44 Å). As shown in panel A of Figure 4.14, the first peak of the partial gTi(r) is 

well fitted by a single Gaussian peak in every case except x=0.150. The worse fit in the latter 

is only partly explained by the truncation on the low-r limit; in fact, it should be ascribed to the 

low-r subpeak related to Pr-Ti correlations, whose intensity becomes considerable only at 

x=0.150. Peak width of the first A-Ti peak is insensitive to Pr concentration after the initial 

increase between SrTiO3 and x=0.035 (width increases by 0.005 Å), suggesting that the peak 

comprises two unresolved contributions from Sr-Ti and Pr-Ti pairs, and that a change in Pr 

concentration results in a change in their relative intensity.  

Though not completely resolved, a double A-Ti peak points to the coexistence of two different 

coordination environments for Pr and Sr. In order to understand whether and how this is related 

to the gradual increase in cation off-centering with a higher Pr concentration, to the correlated 



displacement observed in box-car NPDF refinements, and to the increase in tilt angle observed 

in XPDF, we try to separate the contribution of Pr to the total g(r) from that of Sr and re-

examine the local structure of SPTO in the light of the different distortions in the chemical 

environments of Sr and Pr. This is done by running a set of RMC refinements on the NPDF of 

x=0.150 including explicitly different Sr and Pr atoms at the A-site. Eventually, the plausibility 

of the solution returned by RMC will be checked against the structural arguments exposed 

previously. 

 

To start with, we show the isolated contributions of Pr and Sr to the A-Ti part of the total NPDF 

of x=0.150. After extracting the partial g(r) of Sr-Ti and Pr-Ti, the eight peaks contained in the 

0-16 Å fit range are fitted with Gaussian functions; an example of fitted peaks is shown in the 

panel on the right of Figure 4.16 and the peak parameters are shown in the left panel. The Pr-

Ti peaks are positioned consistently at a lower r-distance than the corresponding Sr-Ti peaks 

(Δr=0.015 Å on average), but are also broader than the Sr-Ti peaks by approximately 0.010 Å 

throughout the 0<r<16 Å range. The broader, rigidly shifted distribution of Pr-Ti distances 

suggests that Pr is more likely than Sr to be found out of its initial position; consequently, Pr 

could contribute more than Sr to the small displacement of the average A-site cations (shown 

in Figure 4.14) despite its smaller scattering length.  

 



 

 

Next, the off-centering of Pr inside its coordination cuboctahedron is directly inspected by 

analysing the nearest-neighbour Pr-O correlations for x=0.150. Since off-centering could result 

from both a polar displacement of Pr and a rearrangement of the surrounding O atoms, the 

distortion is decomposed into its oxygen- and cation-related subparts. Figure 4.17 shows the 

density plots of the displacements ΔPr<O>, ΔO, and ΔM calculated from the final merged 

configuration using distinct Pr and Sr sites. For a refresher of the definitions of ΔPr<O>, ΔO, 

and ΔM, refer to section 4.3.3. 

Panel A of Figure 4.17 shows a striking difference with the plots of ΔTi<O> and ΔSr<O> shown 

in Figures 4.13 and 4.14: the centroid of the anions is a low-density site and, instead, Pr appears 

to spend most of its time off-centre according to two different patterns. One comprises the sites 

along the <111> direction located at ΔPr<O> =0.06 Å from the centre. Another one is an eight-

site (orthorhombic-like) distribution, whose circular, smeared shape strongly suggests a 

superposition of rotational and displacement distortions.  

This ΔPr<O> distribution is broken into the subparts shown in panels B and C, corresponding 

to, respectively, the refined positions of the centroid of the cuboctahedron (ΔO) and the refined 

positions of the Pr atom alone (ΔM), both calculated with respect to the initial centre of the 

cuboctahedron. From the ΔO distribution shown in panel B, the superposition is evident 

between a large eight-site, orthorhombic-like distortion of the PrO12 cuboctahedron, and a 

smaller, more diffuse pattern; though smeared, the latter shows four distinct peaks (ΔO=0.02 



Å), denoting a tetragonal-like distortion6. The distribution of ΔM shown in panel C, instead, 

reveals strong evidence only of the tetragonal-like distortion, with peaks at a distance 

ΔM=0.020 Å from the initial position. Still visible, but largely less likely to contain Pr atoms, 

are the sites along the <100> directions corresponding to a larger tetragonal distortion 

(ΔM=0.06 Å). 

 

ΔPrO
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Looking back at the distribution of off-centerings ΔPr<O> in panel A, qualitative arguments can 

be made about the interplay between the distortion acting on O atoms and the one acting on the 

Pr atom. The two small, tetragonal-like distortions seem to combine positively7, as can be 

evinced from a few features in the plots. First, the ΔPr<O> peaks situated along the <100> 

equivalent directions in the smaller distribution can be seen as the sum of collinear 

displacements of both <O> and Pr, since the combination of the respective displacement 

amplitudes is in good agreement with the position of the ΔPr<O> peaks. Second, the ΔPr<O> 

peaks along the diagonal in the same distribution are compatible with the combination of two 

displacements of <O> and Pr rotated 90° relative to each other. Third, the absence of a peak at 

the centre of the ΔPr<O> distribution excludes antiphase displacements of <O> and Pr, as they 

would cancel each other out and increase density at the centre. As to the apparent eight-site ΔO 

distribution, it could be the result of two different four-site distributions rotated by 45° relative 

to each other (see below). The four main ΔPr<O> peaks along the diagonal (at about 0.06 Å 

from the centre) largely reflect the ΔO peaks appearing in a similar position, although the latter 

                                                 
6 A discussion based on analogous plots for BaTiO3 can be found in Senn et al., 2016. 
7 It must be reminded that a displacement of the centroid of O atoms, ΔO, in the +x+y sector appears as a cation 

off-centering, ΔPr, in the -x-y sector. When talking about collinear displacements, thus, one must consider the 

inverse of ΔO, that is, the peak that ΔO generates in the ΔPr plot. 



are slightly further off the centre (about 0.07 Å). In this case, thus, the ΔPr<O> peaks can be 

tentatively attributed to a negative combination of <O> and Pr displacements. 

Looking further back to Figure 4.13, showing the modest off-centering of the average A-site 

cation, one notable difference with the case of Pr is that average A cations are not depleted 

from the centroid of the anions, which is instead a relatively high-probability site. More 

important, the absolute shifts of the average A-site cations with respect to their starting position 

(ΔM) do reflect the analogous displacement of Pr from its initial centre, but they do not match 

the off-centering of Pr inside the distorted cuboctahedron. The difference, therefore, lies in the 

smaller distortion affecting the average oxygen cage of AO12 cuboctahedra; conversely, when 

the environment of Pr atoms is simulated separately from that of Sr, one obtains the 

orthorhombic distortion cuboctahedron reported in Figure 4.17, panel B.  

The last supposition is confirmed by the results of RMC refinements on x=0.150. As shown in 

Figure 4.18, the positions of the centroids of the anions around average A-site cations - i.e. 

85% Sr and 15% Pr - and of those around Sr only are largely concentrated in the centre of the 

plot, i.e. very likely to retain their initial position (panels A and B, respectively). Interestingly, 

in both cases minor off-centre ΔO peaks hint to a distortion similar to that acting on the PrO12 

cuboctahedra, making the high-density area roughly square-shaped. The small off-centering of 

the respective cation positions, however, confirms that neither of these distortions significantly 

breaks the symmetry of the AO12 cuboctahedron. A more regular SrO12 cuboctahedron can be 

also inferred by comparing the partial g(r) of Sr-O and Pr-O distances (panel C in Figure 4.18). 

Sr-O distances appears as a sum of three subshells, in which the middle one is shifted closer to 

the low-r subpeak with respect to an undistorted I4/mcm model (see Figure 4.2). The Pr-O 

partial g(r), instead, appears as a broad distribution very different from the I4/mcm model. 
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The last part of this analysis shows how the larger distortion of the PrO12 cuboctahedra extends 

to the neighbouring TiO6 octahedra, finally relating the off-centering of Pr and the increase in 

both octahedral tilt angle and Ti off-centering evidenced earlier in this chapter.  

Figure 4.19 summarizes the findings on the coordination environments of Sr and Pr extended 

to neighbouring octahedra. To keep the analysis consistent between Sr and Pr, the respective 

sets of RMC configurations were sampled equally by randomly picking the same number of 

cations (30), thus ensuring that the solutions for Sr and Pr have the same statistical weight. 

Next, the polyhedral-reconstruction function (explained in 4.3.3) was adapted to recognizing 

the eight Ti atoms around each Sr or Pr atom picked; finally, the eight TiO6 octahedra 

surrounding each Sr/Pr atom were reconstructed as usual. Sets of 300 Sr-Ti or Pr-Ti clusters 

(30 clusters×10 configurations for each atom type) were extracted several times to check the 

reproducibility of the result. 

Panels A and B show typical arrangements of TiO6 octahedra around Sr atoms and Pr atoms, 

respectively. The more asymmetric distortion of the octahedra surrounding Pr is demonstrated 

by stretched and compressed Ti-O bonds, as well as a considerable displacement of axial O 

atoms from their initial position. Though no particular distortion appears to dominate, the Ti-

O bond distances around Sr are distorted almost as much, as measured by Baur’s dispersity 

(d=0.0310 and 0.0318, respectively, for Sr and Pr). A model accommodating the displacements 

around Pr is drawn schematically in panel C, showing a single layer of octahedra for simplicity. 

All four octahedra are rotated by a large tilt around the c-axis (i.e. about the viewing direction), 

in accordance with the main AFD distortion mode (a0a0c--type tilt). But the octahedra also 

appear to be tilted about a second axis perpendicular to c, as highlighted by axial O atoms 

moving closer to the underbonded Pr atom (marked with purple arrows). Because of the rigidity 

of TiO6 octahedra, this displacement also implies that two equatorial O atoms drift away from 

Pr along the <11-1> direction (marked with orange arrows); but since octahedra are not 

completely rigid, they distort in order to accommodate to the undercoordination of Pr. This 

keeps the other two equatorial O atoms close to their initial position and, thus, closer to the 

coordinated Pr atom (red arrows). Splitting the distribution of Pr-O distances into three groups 

of four (as implied by I4/mcm symmetry), the centroids of the low-r and high-r subshells are 

positioned farther apart than the corresponding centroids of the Sr-O distribution (panel D). In 

the I4/mcm structure, a broader A-O distribution translates into an increase in octahedral tilt 

angle, just as was observed in the XPDF analysis in section 4.2. Most important, the combined 

bending and tilting of the octahedra around Pr result in relative positions of the O atoms directly 

bonded to Pr that are still consistent with a large tilt of the type a0a0c- (see how the structures 

in Figure 4.5 and Figure 4.19 compare). This could explain why the highly distorted I4/mcm 

structure proposed by model-fitting the PDF is a good approximation of more complex models 

of disorder, such as that suggested by these RMC refinements. 



 



Two further points must be made about octahedral tilt. First, as reported in panel E, the tilt 

angle of the octahedra around Pr atoms is actually larger than for Sr atoms, even when only the 

a0a0c--type tilt is considered (as explained at the beginning of 4.3.5, the tilt angle is calculated 

so as to be a virtually independent estimate of the a0a0c- tilt amplitude). Thus, regardless of the 

octahedral distortion, the presence of Pr atoms really enhances the amplitude of the AFD mode 

in the short-range; namely, the mean of the tilt distributions is 4.45° and 5.77°, respectively, in 

the case of Sr and Pr. Second, the octahedral distortion around Pr atoms enhances the 

correlation between the tilting of neighbouring octahedra along the c-axis. This is apparent by 

comparing the purely AFD structure in Figure 4.5 to the increasingly distorted structures shown 

in panels A and B of Figure 4.19. In the purely AFD structure (obtained by fitting the PDF of 

x=0.150 at 90 K with a I4/mcm model) the tilt of octahedra situated in different layers along c 

is out-of-phase; this anti-correlation is largely reduced in the case of octahedra around Sr atoms 

(Figure 4.19.a); finally, tilt is almost completely in-phase between two adjacent layers in the 

case of the distorted octahedra around Pr atoms. 

As to A-Ti distances, interpretation is less straightforward. The refinements suggest that the 

motion of both Pr and Sr is only partly coupled with the small off-centering of Ti (shown in 

Figure 4.13). This is apparent in the density plots of ΔPr<Ti> and ΔSr<Ti> displacements reported 

in Figure 4.20. Unlike the points plotted in Figures 4.13, 4.14, and 4.17, here the displacement 

of the central A cation (either Pr or Sr) is calculated with respect to the centroid of the eight 

neighbouring Ti atoms (<Ti>). The distribution of ΔPr<Ti> (panel A) has a peak in the centre of 

the cluster accompanied by weaker peaks situated along the <111> equivalent directions; the 

ΔSr<Ti> plot (panel B) shows similar off-centre peaks, mirroring the distribution of ΔTi<O> 

shown in Figure 4.13 (x=0.150), but also a broad high-density area around the centre. While 

the central peak in the overall square ΔPr<Ti> distribution points to a correlation between the 

motions of Pr and Ti atoms, the more uniform distribution of ΔSr<Ti> suggests that Sr positions 

were more likely to vary independent of Ti atoms during the RMC refinements. 
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Before commenting on the host of results presented, the goodness of the RMC approach used 

should be demonstrated on the basis of fit quality. The agreement between experimental data 

and the structural model provided by the RMC method is compared to the agreement attainable 

using direct model-fitting (as implemented in PDFGui). In Figure 4.21 the fits to the g(r) 

carried out by RMCProfile are plotted (after conversion to the G(r) function) in the left column; 

the fits to the G(r) using a I4/mcm model are shown on the right. Least-squares refinements 

were carried out in the same fit range as the RMC fits ( 0<r<16 Å) by letting all structural 

parameters vary until convergence. Structural parameters returned by both fitting methods are 

reported in Table 4.2. 

The RMC method returns a closer fit to the experimental NPDF than PDFGui in the case of 

the samples x=0.075 and x=0.150, while the agreement between data and model is comparable 

between the two methods for the two remaining samples, undoped SrTiO3 and x=0.035 (see Rp 

values in Table 4.2). The dependence of fit quality on composition can be explained 

instinctively with a departure from an AFD structural order, at least locally, of the two samples 

with the highest Pr concentration. A worse fit by the I4/mcm symmetry for Pr concentration 

x≥0.075 and, particularly, in the shortest range (r<6 Å) has been demonstrated through boxcar 

refinements in section 4.3.4. What the fitted I4/mcm model fails to capture is the correct width 

of the first two A-O+O-O peaks, situated around r=2.75 Å and r=4.80 Å (Figure 4.21). On the 

other hand, the RMC fits do not show any particular misfit, and the sine wave-like shape of the 

residual curves should be understood as termination ripples in the PDF not being reproduced 

by the function calculated by RMCProfile rather than shortcomings of the model. Nonetheless, 

calculated tilt angles are in good agreement between the two methods, probably as a result of 

reliable information from O-O peaks in the intermediate range (5-10 Å).  

But even as I4/mcm fits decently the experimental PDF, the systematic superposition of 

distances in the perovskite structure in principle makes the fit to each G(r) ambiguous. In 

addition, treating the occupation of a lattice site by two cations with different size and charge 

as an average can be a working approximation in many cases, but it makes one overlook the 

PDF local structural information in some others. This is the main motivation to use an 

unconstrained fitting procedure such as RMC. There is another shortcoming of fitting the whole 

0-16 Å range with a single AFD model: the phase parameters have to adapt to a local structure 

that can vary sharply with r, becoming, as a result, less a quantitative measure of structural 

distortions than they are in limited ranges. See for instance the inconsistency of cell parameters 

and, thus, tetragonality values for the model-fitting method in Table 4.2.  

Besides an overall closer fit to NPDF, the unconstrained model returned by RMC refinements 

accounts for coexistence of polar phenomena in an essentially AFD phase in SPTO.  



 



 SrTiO3 x=0.035 x=0.075 x=0.150 

 RMC PDFGui RMC PDFGui RMC PDFGui RMC PDFGui 

a (Å) 5.5140 5.4939 5.5121 5.4963 5.5061 5.5017 5.5031 5.5022 

c (Å) 7.8069 7.8496 7.8105 7.8425 7.8111 7.8149 7.8131 7.8057 

ϕ (deg) 2.27 1.31 3.32 3.38 4.23 4.39 5.08 5.27 

η 0.11 1.03 0.20 0.89 0.31 0.44 0.39 0.31 

Rp (%) 7.3 7.1 8.6 8.3 7.2 8.5 8.3 9.2 

 

The overall structure of all four sample features tilted TiO6 octahedra and small cation 

displacements. While the motion of A and B cations in undoped SrTiO3 and in the lightly doped 

x=0.035 sample appears mostly uniform, static disorder emerges clearly in the atomic 

configurations of the samples with x=0.075 and x=0.150. 

Local tilt angle, extracted so as to reflect the amplitude of the R4+ tilt mode without 

interference from other distortions, matches remarkably well with the long-range tilt angle 

obtained by Rietveld refinements on the same data in reciprocal space. The only exception is 

the overestimation in the case of SrTiO3, probably the consequence of instrumental-related 

broadening that was unaccounted for. 

The remainder of the RMC analysis focuses on the highest-doped sample, x=0.150, partly 

because it showed appreciable cation off-centering and partly for its high Pr concentration, the 

only one allowing the refinement of Pr atoms as distinct species. The interatomic distances of 

pairs involving Pr are systematically broader than their equivalents with only Sr. This is effect 

is barely noticeable for Pr-Ti distances but hefty in the case of nearest-neighbour Pr-O 

distances. In particular, the average PrO12 cuboctahedron appears distorted by different modes 

acting simultaneously on the oxygen atoms, as evidenced by plotting all the positions taken by 

the centroids of the oxygen cage. The overall effect is that of an orthorhombic-like distortion 

that combines with a small <100> displacement of Pr to yield off-centerings directed along the 

<111> set of directions. 

The distortion of the cuboctahedral environment of Pr necessarily propagates to the 

neighbouring TiO6 octahedra, with which they share one face. These octahedra appear as more 

tilted according to the AFD mode, but also distorted in such a way that axial O atoms move 

closer to the shifted Pr atom. Future work will try to disclose whether octahedra distort as the 

result of multiple tilt modes or, instead, under the action of a proper ferroelectric mode. The 

most notable (and closest) example of multiple-irrep distortion is Ca-doped SrTiO3, whose 



ground state is presented by several authors as the coexistence of R- and M-point tilt 

instabilities and an intrinsic antiferroelectric motion of A cations (Ranjan et al., 2000; Benedek 

and Fennie, 2013). The resulting orthorhombic structure (space group Pnma) is shared with a 

host of other triple perovskites, but only rarely results in spontaneous ferroelectricity. Like in 

Ca-doped SrTiO3, in SPTO ferroelectric and relaxor states may emerge at varying dopant 

concentration as the result of changes in the relative strength of competing local interactions 

(Ranjan et al., 2000).  

In SPTO, in particular, the octahedral distortion observed around Pr atoms drives the Ti atoms 

off-centre - by forcing octahedra to tilt while being distorted - an effect more prominent as Pr 

concentration increases. Although it could not be proved quantitavely, the compositional 

dependence of Ti off-centering (Figure 4.13) matches qualitatively the local increase in the 

AFD order parameters (tilt angle and tetragonality) evidenced by X-ray PDF analysis. The 

same increase in local order parameters did not show up in neutron PDF: in fact, tetragonality 

was not allowed to vary in RMC refinements (since cell parameters were fixed) and local tilt 

angles replicated the long-range tilt angles almost exactly. But as the local increase in 

octahedral tilt and tetragonality is suppressed, polar atom displacements show up. This supports 

the picture of interdependence of large AFD distortion and FE instability, as first proposed by 

Aschauer and Spaldin (2014) and then experimentally observed as the correlation between 

polar Raman modes and local structural distortion at varying compositions.  

The RMC analysis suggests that the composition-driven distortion in SPTO must be related to 

the increasing concentration of locally distorted clusters that form around Pr atoms. The 

relatively small off-centerings of A and Ti cations do, in fact, reflect the contribution of polar 

displacements originating from the rearrangement around off-centered Pr atoms of PrO12 

cuboctahedra and of their neighbouring TiO6 octahedra. The coordination environment of Sr, 

by contrast, shows no such distortion and is rather consistent with a pure AFD local structural 

order; thus, the contribution of these undistorted octahedra and cuboctahedra to the density 

plots of Ti and A is to place a large number of atoms in the centre of the distribution. To this 

point, future work will be aimed at producing partial density plots, in order to limit the analysis 

of the off-centering, for instance, only to distorted clusters around Pr. 

Finally, a note on interlayer correlations of disorder. It was noted that the small enhancement 

of AFD-type octahedral tilting around Pr atoms was accompanied by a change in the interlayer 

correlation of octahedral tilting. The out-of-phase arrangement of tilts along the c-axis seen in 

a purely AFD structure (Figure 4.5) seems to change to an almost in-phase behaviour (Figure 

4.19) in the distorted arrangement around Pr atoms. Zhong and Vanderbilt (1998) proposed 

correlation functions of both AFD and FE modes in strontium titanates, concluding that 

perfectly rigid octahedra need not be correlated along c, but only in the ab plane; conversely, 



FE interactions are only weakly correlated along a and b, but those along c are strongly 

interdependent. The (purely qualitative) observation of a degree of correlation between 

interlayer octahedral tilts can be a hint to the mixing of AFD and FE instabilities in the local 

structure of SPTO. 
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Neutron scattering lengths are reported in 10-14 m (= 10 fm) units. The values in Table 4.A.1 

were used to calculate the pair coefficients reported in Table 4.A.2, which were used in the 

RMCProfile input file to account for an average atom at a certain site. The sum at the bottom 

of Table 4.A.2 is the scale of the g(r) function according to the definition in Keen, 2001. 

 SrTiO3 x=0.035 x=0.075 x=0.150 

Average A 0.7020 0.6934 0.6837 0.6654 

Sr 0.7020 0.7020 0.7020 0.7020 

Pr 0.4580 0.4580 0.4580 0.4580 

Ti -0.3438 -0.3438 -0.3438 -0.3438 

O 0.5803 0.5803 0.5803 0.5803 

bAcA 0.1404 0.1387 0.1367 0.1331 

bSrcSr 0.1404 0.1355 0.1299 0.1194 

bPrcPr 0 0.00318 0.00684 0.01368 

bTicTi -0.06876 -0.06876 -0.06876 -0.06876 

bOcO 0.34818 0.34818 0.34818 0.34818 

i-j SrTiO3 x=0.035 x=0.075 x=0.150 

A-A 0.01971 0.01923 0.01869 0.01771 

A-Ti -0.00965 -0.00953 -0.00940 -0.00915 

A-O 0.04888 0.04829 0.04761 0.04633 

Sr-Sr 0.01971 0.01837 0.01688 0.01427 

Sr-Pr 0 0.00043 0.00089 0.00163 

Sr-Ti -0.00965 -0.00932 -0.00893 -0.00821 

Sr-O 0.04888 0.04719 0.04524 0.04159 

Pr-Pr 0 0.00001 0.00005 0.00019 

Pr-Ti 0 -0.00022 -0.00047 -0.00094 

Pr-O 0 0.00111 0.00238 0.00476 

Ti-Ti 0.00473 0.00473 0.00473 0.00473 

Ti-O -0.02394 -0.02394 -0.02394 -0.02394 

O-O 0.12123 0.12123 0.12123 0.12123 

∑ 𝑏𝑖𝑏𝑗𝑐𝑖𝑐𝑗

𝑖,𝑗

 0.176249 0.174828 0.173189 0.170156 



Figure 4.A.1 shows the distribution of the tilt angles calculated by the Python program 

described above superposed to the distribution of the tilt angles in the same RMC configuration 

calculated using the program GASP. Since the GASP version used (v. 1.5) is not designed for 

using merged RMC configurations, the comparison is drawn on one of the 36 RMC 

configurations available for each dataset. 

 

 



 





This chapter describes the analysis of neutron pair distribution function (PDF) in terms of soft 

phonon modes, here applied to the study of local symmetry in strontium titanate. The method 

used was already applied to BaTiO3 by Senn and co-workers (2016), who demonstrated that 

polar off-centering of Ti atoms along <111> directions is maintained locally across all long-

range phase transitions. As reported by some authors, the antiferrodistortive long-range 

symmetry of SrTiO3 could be broken locally by dynamic polar clusters left behind by the 

incomplete freezing of the zone-centre soft mode (Hemberger et al., 1996; Blinc et al., 2005). 

Accordingly, some suggested that Ti could be off-centered also in SrTiO3 (Uwe et al., 1989; 

Choi et al., 2009). From 16O/18O isotope substitution and computational studies, it was 

proposed that the long-range phase transition at 105 K, normally seen as purely displacive, 

contains an order-disorder component (Bruce et al., 1979; Zalar et al., 2005; Bussmann-Holder 

et al., 2007). Experimental work and first-principles calculations for SrTiO3 agree that the 

system is unstable to both the antiferrodistortive R4+ and the polar Γ4- modes but that the 

absence of a ferroelectric (FE) transition is probably related to the effect of zone-centre modes 

being confined to short length-scales and, possibly, being dynamic. Exhaustive PDF analysis 

of SrTiO3 as a function of temperature can help understanding the contribution of local zone-

centre and zone-boundary instabilities to the average structure of SrTiO3. It is therefore crucial 

to approach PDF analysis in terms of the separate contributions of different soft modes.  

Besides the mentioned R- and Γ-point modes, there are two further low-frequency modes in 

SrTiO3, belonging to the irreducible representations (irreps) M3+ and X5+. However, they are 

energetically less favourable and seem to play no role in the long-range phase transition of 

SrTiO3. Note that these irrep labels are specific to the setting with Ti in the origin. For reasons 

explained below, the work presented in this chapter uses the setting with Sr in the origin, in 

which the four lowest-frequency modes are labelled Γ4- (unchanged), R5-, M1+, and X5-. To 

get all possible symmetry-breaking modes (reported in Table 5.1), full symmetry 

decomposition of the Pm-3m symmetry to the P1 space group was obtained using the program 

Isodistort (Campbell et al., 2006). Modes transforming as the same irrep are further divided 

into symmetry-adapted distortion modes. The amplitude of any of these modes is related to the 

order parameter of the phase transition from Pm-3m to the corresponding subgroup. With 

reference to the notation by Howard and Stokes (1998) introduced in paragraph 2.2.2, the 

modes consist of 120 degrees of freedom of atomic positions, i.e. different sets of directions 

and amplitudes of displacement indicated with letters from a to f . Each degree of freedom can 

be seen as one dimension of a global 120-dimensional parameter space or, more conveniently, 

of a n-dimensional space defined by the n allowed directions of the order parameter of the 



mode it belongs to. As shown by Table 5.1, most of the modes are three-dimensional, but some 

zone-boundary modes are six-dimensional (X5+, X5-, M5+, M5-) and modes belonging to the 

irreps R2- and R3- irreps allow only one and two components, respectively.  

Γ R 

Γ4- (Γ4-) 

Sr (a,b,c) T1u 

Ti (a,b,c) T1u 

O (a,b,c) A2u 

O (a,b,c) Eu 

R2- (R1+) O (a,0,0) A2u 

R3- (R3+) O (a,b,0) A2u 

R4- (R5+) 
Sr (a,b,c) T1u 

O (a,b,c) Eu 

R5+ (R4-) Ti (a,b,c) T1u 

Γ5- (Γ4-) O (a,b,c) Eu R5- (R4+) O (a,b,c) Eu 

M X 

M1+ (M3+) O (a,b,c) Eu X1+ (X3-) 
Ti (a,b,c) T1u 

O (a,b,c) Eu 

M2+ (M4+) O (a,b,c) Eu X2+ (X4-) O (a,b,c) Eu 

M2- (M3-) 
Ti (a,b,c) T1u 

O (a,b,c) A2u 
X3- (X1+) 

Sr (a,b,c) T1u 

O (a,b,c) A2u 

M3+ (M1+) O (a,b,c) A2u 

X5+ (X5-) 

Ti (a,b,c,d,e,f) T1u 

O (a,b,c,d,e,f) A2u 

O (a,b,c,d,e,f) Eu 

M3- (M2-) Sr (a,b,c) T1u 

M4+ (M2+) O (a,b,c) A2u 

M5+ (M5+) O (a,b,c,d,e,f) Eu 

M5- (M5-) 

Sr (a,b,c,d,e,f) T1u 

Ti (a,b,c,d,e,f) T1u 

O (a,b,c,d,e,f) Eu 

X5- (X5+) 
Sr (a,b,c,d,e,f) T1u 

O (a,b,c,d,e,f) Eu 

 

 

Chapter 4 presented two different approaches to modelling the Pair distribution function (PDF) 

of Pr-doped SrTiO3. On the one hand, the Reverse Monte Carlo method returns unbiased 

structural models containing any possible distortion of the initial structure. Not only do these 

models often represent the best fit to the experimental data attainable, but they also can be 

dissected in order to identify active soft modes and evaluate their energy (Goodwin et al., 2004, 

2005; Cliffe et al., 2010). On the other hand, model-fitting with PDFFit/PDFGui is a more 

direct approach to get quantitative structural parameters. It is normally used to evaluate the 

agreement between a model conjured up by the user and the experimental PDF, not unlike a 

Rietveld refinement (Proffen and Billinge, 1999; Farrow et al., 2007). Within a model defined 



by a unit cell and a space group, some atomic positions are free to vary, and the corresponding 

atomic displacement should directly relate to the amplitude of a certain displacement mode in 

the parent structure. In fact, any symmetry-adapted mode listed in Table 5.1 is related to a 

phase transition from Pm-3m to one of its subgroups (Kerman et al., 2012). Therefore, fitting 

a model to the PDF can be seen as a particular case of measuring the amplitude of symmetry-

adapted displacement modes. In the light of all this, the symmetry-adapted PDF refinements 

explained in the next section were planned specifically to evaluate the amplitude of all 

displacement modes in turn and without the bias imposed by a space group. 

 

In symmetry-adapted PDF refinements, structural models representing a single set of 

distortions are fitted in turn to the PDF in independent PDFFit refinements. Each set of 

distortions is formed by the symmetry-adapted modes that belong to the same irrep (e.g. X1+). 

Every model is a unit cell consisting of a 2×2×2 supercell of the cubic SrTiO3 structure and 

with P1 symmetry, so that the atomic positions are not related to each other by symmetry 

operations other than those invoked by the mode being tested. From a Rietveld perspective, 

this means having 8 Sr atoms, 8 Ti atoms, and 24 O atoms, each in a general x,y,z position, 

giving rise to 120 potentially refinable atomic coordinates. All atomic coordinates are kept 

fixed except those specific to each mode, which are controlled by the same refinable 

parameters. As a result, each model contains as many refinable parameters as are the degrees 

of freedom (a,b,c) of the modes belonging to the irrep. It must be noted that the 2×2×2 supercell 

size can accommodate the cell doubling brought about by any of the modes considered. The 

crucial step of this method is translating the 120 degrees of freedom of the Pm-3m structure 

into atom position constraints in the language of PDFFit. This is done using a Python 2.7 script, 

which is also used to set up and launch PDFFit refinements. It was necessary, however, to keep 

a single mode fixed. Namely, the atom situated in the cell origin need not be displaced. In view 

of the relevance of the zone-centre displacement of Ti to the local structure of SrTiO3 structure, 

we decided not to keep Ti atoms fixed, but to change setting. By placing Sr in the origin, the 

mode Γ4- Sr (a,b,c) T1u, must be switched off in every refinement.  

PDF refinements were run on 11 neutron total scattering datasets collected on SrTiO3 powders 

at temperatures 5, 50, 75, 90, 105, 150, 200, 250, 300, 450, 600 K. Four datasets (90, 300, 450, 

and 600 K) were collected at the GEM diffactometer at the ISIS spallation source as described 

in Chapter 4. The remaining datasets were collected at GEM a few years earlier by Hui and co-

workers and were first published in a RMC analysis of SrTiO3 (Hui et al., 2005). Changes in 

instrumental resolution were taken account of by the parametrisation available in PDFFit 



(Proffen & Billinge, 1999; see also Chapter 2). In addition to symmetry-adapted positional 

constraints defined above, other parameters refined were the lattice parameter a, the quadratic 

correlation factor of motion at low-r δ2 (also described in Chapter 4), and three isotropic 

thermal parameters, USr, UTi, UO. As customary for PDFFit/PDFGui refinements the PDF 

function fitted was the G(r), defined in Chapter 2. Initial parameter values were obtained by 

running few cycles refining only lattice and thermal parameters. In the case of temperatures at 

which the long-range symmetry of SrTiO3 is tetragonal (T≤105 K), the c/a ratio was refined as 

well in the initial cycle, then kept fixed during the main refinement campaign. To make 

symmetry-adapted refinements statistically sound and unbiased with respect to the initial 

parameter guess, the least-squares cycle was run 500 times for each temperature-dataset, 

applying random shifts to the refinable parameters between each iteration. Fit quality was 

calculated by the residual of fit, Rp, defined in Chapters 2, 3, and 6.  

All refined values and fit residuals were saved in comma-separated files and read by another 

Python script designed to i) merge the atomic-coordinate columns related to each mode; ii) 

normalise atomic coordinates to the amplitude of the corresponding mode; iii) calculate a 

weighted mode amplitude, the Boltzmann Weighted Mean Amplitude (BWMA) (Senn et al., 

2016), calculated as BWMA = A*exp[(Rp-global-Rp)/σ]. Here, A stands for the sum of the mode 

amplitudes calculated from refined atomic coordinates; the exponential term weights refined 

amplitudes according to their goodness of fit (Rp) relative to the lowest fit residual (Rp-global) for 

the same temperature-dataset; the additional weighting factor σ (usually 0.001) is adjusted so 

that refinements that give poor fits or returning small refined amplitudes give arbitrary small 

contributions to the BWMA value. The amplitudes of three-dimensional modes are calculated 

by merging the columns corresponding to the a, b, c dimensions of the order parameter, while 

six-dimensional modes are arbitrarily split into two three-dimensional modes. The use of 

arbitrary three-dimensional basis sets is acceptable in view of the interchangeability of the 

displacements along the three orthogonal axes of the model cubic structure. Further tweaks to 

the method can include a more refined weighting system, specifying a cutoff fit residual, or 

limiting the number of observations. Since they have not been studied yet, they are not 

discussed here. However, one can get an overview of a 500-refinements cycle through 

diagnostic plots like those in Figure 5.1 before deciding any change to the amplitudes 

calculation.  

Diagnostic plots of the 500-cycle PDF refinements show in practice how this approach 

discriminates between active and inactive modes. The top panel in Figure 5.1 shows the result 

for the R5- modes for the 50 K dataset, which gives the highest BWMA of R5- in the 

temperature series; the bottom panel shows the result of R5- at 450 K, where BWMA of R5- 

is zero, i.e. local octahedral tilt is absent. In Figure 5.2 the corresponding G(r) fits are plotted, 

and the fit residuals are Rp=4.4% and 5.2%, respectively, for 50 K and 450 K. Although best-



fits are excellent at both temperatures, only the 50 K refinement denotes an active R5- mode. 

At 50 K virtually all refinements fall in the lowest-residual bin of the histogram, while at 450 

K nearly half refinements have Rp=11% or more (out of the bounds of the plot). Additionally, 

scatter plots evidence that mode amplitudes tend to be smaller in the best fits at 450 K, while 

most refinements at 50 K converge to a single amplitude (corresponding, approximately, to a 

tilt angle of 2.75°, not far from the value calculated by Reverse Monte Carlo for the 90 K data, 

shown in Chapter 4). 

 

 



Symmetry-adapted refinements were carried out for all temperature-datasets between 5 K and 

600 K, highlighting the modes active in the local structure of SrTiO3 in this range of 

temperature. Figure 5.3 shows the temperature dependence of all BWMA values of symmetry-

adapted modes. The first panel shows Γ-point modes, for which, remarkably, all allowed 

branches of the Γ4- mode are active (note that Sr displacement is turned off), and Figure 5.4 

plots the best G(r) fits attained with Γ4- at four selected temperatures. Although signatures of 

zone-centre modes are not a common feature in diffraction data of SrTiO3, their persistence 

across the phase transition at 105 K and the increase in amplitude at higher temperature agree 

with the dynamic, order-disorder character proposed by Blinc (2005) and by Bussmann-Holder 

(2007). Further support comes from scatter plots of the order parameter direction for the Γ4- 

Ti(T1u) branch, plotted in Figure 5.5. The eight-site distribution along the equivalent <111> 

directions points to a rhombohedral distortion like the model by Zalar et al. (2005) and the 

refined positions follow this pattern neatly at 600 K and 300 K. Below the cubic-tetragonal 

phase transition, however, each site splits into three distinct sites about the cubic threefold axis 

at 90 K, which become additionally inclined with respect to <111> at 5 K. An analogous pattern 

is exhibited by the order parameter of the branch Γ4- O(Eu) at the same temperatures. The 

distribution of directions about <111> can be seen as a monoclinic distortion of a local 

rhombohedral symmetry (i.e. increasing <110> components of displacement): this has been 

observed in piezolectric Na0.5Bi0.5TiO3 at 10 K (Keeble et al., 2013) as ‘bifurcated’ 

polarization, but a local monoclinic symmetry might also arise by overlap with a rotational 

mode like R5- (Campbell et al., 2006). In these refinements, however, only single-irrep modes 



are tested - under the harmonic approximation. This has roots also in the impracticality of 

combining multiple modes in a least-squares refinement, as it would overparametrise the fit, 

leading to unstable refinements and parameter correlation.  

 

 



Γ

Γ



The second panel (in clockwise order) in Figure 5.3 shows R-point modes. They all have zero 

amplitude throughout the 5-600 K range, with the exception of the soft mode R5- O(Eu). This 

is the mode responsible for the long-range phase transition and it shows up consistently in every 

G(r) up to 105 K. The intensity trend and, especially, the definitive vanishing at 105 K 

demonstrate that the long-range octahedral tilting is not affected by either local structure or 

dynamics. The next panel shows X-point modes, among which only two branches of the six-

dimensional X5+ have considerable amplitude. Again, the favoured distortion involves the 

modes O(Eu) and Ti(T1u) but not the O(A2u) branch. Interestingly, the BWMA amplitudes of 

these X5+ modes become non-zero only above T=105 K, when the long-range structure is no 

longer unstable to the R5- tilt mode. The zone-centre modes, by contrast, are active across the 

phase transition, and above 105 K coexists with a different zone-boundary mode, the 

antiferroelectric X5+. In analogy with X5+, the six-dimensional modes M5- O(Eu) and M5- 

Ti(T1u) are the preferred distortions at the M-point. The apparent spike at 300 K and the abrupt 

increase in BWMA at 600 K, however, cast doubts on the physical significance of the M5- 

instability. According to the phonon structure shown in Chapter 1, M5- has a slightly higher 

energy than the more favourable M4+ (103 cm-1 vs 64 cm-1). But, more important, one of the 

M5- components belongs to the same branch of the phonon dispersion curve as modes of the 

X5+, R5-, and Γ4- irreps.  

Symmetry-adapted PDF refinements evidenced which of the modes listed in Table 5.1 are 

active at which temperature, and, particularly, they were sensitive to four soft modes indicated 

independently by DFT calculations. Although the sensible modes have been pinned down, their 

description is redundant. In fact, BWMA values contain the average over three dimensions of 

the order parameter associated with each mode. This means assuming the most general case - 

leading to P1 symmetry and indicated with the vector (a,b,c) [or (a,b,c,d,e,f) for 6-D] - in which 

all three (or six) degrees of freedom contribute with different amplitudes to the mode. To 

understand which particular order parameter direction dictates the local symmetry, we obtain 

the weight of the single degrees of freedoms on the mode amplitudes by eigenvector analysis. 

This is done by calculating the covariance matrix of every parameter matrix consisting of 500 

rows by n columns, with n the number of degrees of freedom to be evaluated (i.e. the dimension 

of the order parameter) and 500 the number of independent observations (refinements). The 

covariance matrix of the n×500 is an n×n square matrix whose eigenvectors represent the 

favoured directions of the order parameter and the corresponding eigenvalues the scales of 

these directions. Put more simply, the order parameter is expressed through the covariance 

matrix as a linear combination of its component directions (i.e the eigenvectors). 



The simplest case to apply eigenvector analysis is for extracting the actual dimension of the 

R5- O(Eu) order parameter. The 3×500 matrix was built using the same refined values used for 

BWMA calculation and the covariance matrix was calculated. The eigenvectors associated 

with the largest eigenvalues at each temperature are shown in Figure 5.6. It should be 

immediately clear that a single value in the eigenvector dominates the R5- mode, meaning that 

one degree of freedom contributes to mode amplitude much more than the other two. With the 

exception of a partial degeneracy at the phase transition (105 K) and one at 300 K, the real 

order parameter of the R5- mode is thus always (a,0,0), which corresponds to the transition to 

the I4/mcm space group. It must be reminded that i) the a,b,c components can be exchanged 

due to the equivalence of the orthogonal cubic axes; ii) negative and positive values are also 

interchangeable, since a negative tilt must be followed by a positive tilt in the successive 

octahedra according to the a0a0c- tilt system. Therefore, this analysis identified without any 

prior bias the octahedral tilt mode in SrTiO3 only using local structure analysis.  

 

 

The other case shown here is the decomposition of the three six-dimensional branches of the 

X5+ irrep [Ti(T1u), O(A2u), O(Eu)]. For each temperature, the full 18×500 matrix was reduced 

to its covariance matrix and the 18 eigenvectors were plotted together sorted by the respective 

eigenvalues in descending order. Four selected temperatures (5, 90, 300, and 600 K) are shown 

in Figure 5.7. At 300 K and 600 K, the 12 largest eigenvectors are clearly different from the 

last 6. The 12 largest eigenvectors contain large cross-terms for the branches Ti(T1u) and O(Eu) 

and only near-zero values for O(A2u); the last 6 eigenvectors, conversely, show that when the 



O(A2u) branch contributes to the amplitude of the X5+ mode, this is the only active branch. At 

temperatures under the phase transition (90 K, 5 K), at which X5+ does not seem to be active, 

the same correlations are still present but are extremely weak, as the eigenvectors are visibly 

more random.  

 

 

 

 



Eigenvector analysis, thus, confirms that the X5+ irrep is mainly driven by the Ti(T1u) and 

O(Eu) modes, but also that the amplitude of the O(A2u) branch does not correlate with the other 

two. As to the dimensionality of the mode, Figure 5.8 shows the table of the eigenvectors 

associated with the largest eigenvalues at every temperature. It can be seen that the mode starts 

as two-dimensional [(0,0,a,0,0,0 | 0,0,a,0,0,0) and permutations] at low-temperature, then it 

splits into four large active compoonents. Some weak values of the eigenvector suggest some 

degree of degeneracy owing, perhaps, to parameter correlation in the least-squares refinements 

since 18 positional parameters were being refined together. 

 

The unbiased analysis of neutron PDF by symmetry-adapted refinements gave information on 

the precise modes active in SrTiO3 in the range of temperature 5-600 K. Although the study is 

still in progress and the results presented here are not conclusive, some interesting features 

were highlighted: 

i) the local structure of SrTiO3 from diffraction is compatible with a dynamic, zone-centre polar 

distortion; this takes the form of rhombohedrally-displaced Ti atoms, possibly combined with 

octahedral tilt or another Γ mode.  



ii) this approach to PDF modelling has good sensitivity to the lowest-frequency modes 

predicted by phonon dispersion curves calculated by DFT. Modes belonging to the irreps Γ4-, 

R5-, X5+, and M5- were identified as the only active by their refined amplitude, BWMA. 

iii) analysis of the eigenvectors of the refined parameters showed without prior bias that the 

rotational mode in SrTiO3  has a single active component corresponding to the I4/mcm 

symmetry. 

The final aim of this work will be to refine a model containing only the active components of 

the active soft modes, which would give a quantitative measure of atom displacements and tilt 

angle. The soft mode amplitudes thus obtained can be used to calculate the corresponding 

phonon energies to be compared to those calculated by DFT. A method for obtaining phonon 

energies from neutron total scattering data was proposed by Goodwin et al (2004, 2005). 

Finally, it must be remarked that determining dynamical quantities by PDF requires measuring 

the inelastic, coherent component of total scattering. This can be achieved with a number of 

instrumental setups for both X-ray and neutron scattering, but not, for instance, when energy-

discriminating analyzer crystals are used before the detector, since they cut the inelastically 

scattered photons. 
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The results presented here were published in Powder Diffraction: Checchia, S., Scavini, M., 

Allieta, M., Brunelli, M., Ferrero, C., & Coduri, M. (2015). Size and spatial correlation of defective 

domains in yttrium-doped CeO2. Powder Diffraction, 30(S1), S119-S126. 

Cerium oxide is a compound widely investigated for its capability of forming solid solutions in 

the whole composition range with oxides of rare earths, transition metals (Minervini et al., 1999; 

Foschini et al., 2001), and group III cations (Park et al., 2000; Gregori et al., 2011). Donor-doped 

cerium oxides are often formed by substituting Ce4+ with trivalent cations from rare-earth 

sesquioxides in order to introduce oxygen vacancies according to the equilibrium equation (1): 

1

2
 𝑀2𝑂3

𝐶𝑒𝑂2
→  𝑀𝐶𝑒

′ +
1

2
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3

2
𝑂𝑂            (1) 

Oxide-ion vacancies provide doped cerium oxides with an ionic conductivity as high as that of 

yttria-stabilised-zirconia, while electronic conductivity is kept remarkably low. This made doped 

ceria a prospective electrolyte layer for intermediate-temperature (800-1000 K) solid-oxide fuel 

cells. Because the mechanism of ionic conductivity in oxygen-deficient ceria is the diffusion of 

oxygen vacancies, conductivity has an inverse dependence on the activation energy needed for 

vacany migration. Thus, understanding the chemical environment around the oxygen vacancies is 

paramount to control the ionic conductivity in doped ceria. In one limiting case, two compensating 

defects cluster together, oxygen vacancies are trapped in the sites next to the trivalent dopant 

cations (Goodenough, 2003); the ensuing high activation energy barrier for vacancy diffusion is 

predict to suppress ionic conductivity. In the opposite scenario, oxygen vacancies are not 

associated with the dopant atom, but scattered randomly in the lattice; consequently, the activation 

barrier for migration would be low, promoting ionic conductivity.  

There is no definitive agreement in the literature on how and even if the defects in doped ceria are 

aggregated in space. Conclusions are mainly biased by the experimental techniques used to 

investigate the defect structure. Bulk probes like EXAFS and solid-state NMR (Yamazaki et al., 

2000; Kim and Stebbins, 2007) suggest the formation of 𝑀𝐶𝑒
′ − 𝑉𝑂

.. −𝑀𝐶𝑒
′  trimers; such 

techniques, however, are dominated by the contribution of nearest-neighbour correlations. 

Conversely, electron microscopy probes like TEM, SAED and EELS (Ou et al., 2006) suggest 

defect clustering up to a few nanometres; in this case, however, the limited region probed may not 

be representative of the whole material. Partial confirmation of the clustering model came from 



 

PDF studies of ceria doped with Gd (Scavini et al., 2012), Y (Coduri et al., 2013a; Coduri et al., 

2012a) and other rare earths (Coduri et al., 2012b), also under fuel cell operating conditions 

(Coduri et al., 2013b). The key findings of these analyses cited above can be summarized as 

follows: i) the first coordination spheres in doped ceria samples can be pictured as the coexistence 

of dopant-rich and Ce-rich ‘droplets’, i.e. sub-nanometre regions with a distorted fluorite (CeO2) 

or C-type (M2O3, with M the dopant atom) structure. The relative amount of the two types of 

droplets mirrors the overall stoichiometry (Coduri et al., 2012a, Coduri et al., 2012b, Scavini et 

al., 2012, Coduri et al., 2013b). ii) at intermediate dopant concentrations (0.25≤μ<0.50), the 

dopant-rich droplets spatially average out to C-type (dopant oxide-like) ‘domains’, the size of 

which spans some hundreds of Ångstroms (Coduri et al., 2013a). iii) C-type domains grow in size 

with increasing dopant concentration, and connect through antiphase domain boundaries (APDB). 

The intensity of APDBs, which appear in the reciprocal space patterns as the selective line 

broadening of superstructure reflections (Coduri et al., 2013b), fades away with increasing dopant 

concentration. 

The advantage of the PDF analysis over EXAFS demonstrated by the works cited above lies in 

that the PDF information can span several hundreds of Ångstroms in real space, provided the 

instrumental Q-resolution is very high (ΔQ/Q~10-4). In this work, the robustness of the PDF 

information at , we addressed specifically the spatial correlation of defects by reviewing a few 

structural models by which one can describe the distribution of  defects in Y-doped cerium oxide. 

These five structural models are compared on the basis of their ability to fit to the experimental 

PDF curves for different dopant concentrations in successive ranges of interatomic distances, up 

to a maximum of 400 Å.  

Powdered samples of Y-doped ceria, Ce1-µYµO2-µ/2, were prepared according to the Pechini sol-

gel method (Pechini, 1967), using Ce(NO3)3 and Y(NO3)3 (99% and 99.8%, Sigma-Aldrich) in due 

proportions. The precursor powders from the hydrothermal synthesis were uniaxially pressed with 

a 7 t load to 2 mm-thick pellets, and sintered at 1173 K for 144 h with intermediate grindings. The 

nominal compositions are μ=0, 0.250, 0.313, 0.344, 0.438, 0.500. 



 

XRPD patterns were collected at the ID22 beamline (formerly ID31) of the ESRF, Grenoble. 

Isothermal measurements were carried out by setting T=90 K. The X-ray wavelength was 

λ1=0.35413(3) Å, and data were collected up to Qmax=29.4 Å-1. The sample with µ=0.500 was 

measured in a separate experiment, using a wavelength λ2=0.3099(2) Å, reaching Qmax=28.0 Å-1. 

The scattering by the empty capillary was measured and subtracted from the total diffracted 

intensity prior to obtaining the PDF data. 

The XRPD data were fitted using both the Rietveld method via the GSAS program (Larson and 

von Dreele, 2000) and its graphic interface EXPGUI (Toby, 2001), and the Whole Powder Pattern 

Modelling (WPPM) approach as implemented by the PM2K code (Leoni et al., 2006). G(r) curves 

were obtained through the PDFGetX2 program (Qiu et al., 2004), and modelled with the PDFgui 

program (Farrow et al., 2007). The PDF function used is the G(r) defined in chapter 2 based on 

the work by Keen (2001). The r-dependent fits to the G(r) curves were obtained through ‘box-car’ 

refinements: selected structural parameters were iteratively refined throughout 20 Å wide boxes 

covering a range up to 500 Å, depending on model and sample. Thus, the variable r in the plots 

stands for the centroid of the ‘box-car’ refinement range. The agreement between model and 

experimental data is measured by the fit residual (Rp): 

𝑅𝑝 = [
∑𝑤𝑖(𝐺𝑖

𝑒𝑥𝑝 − 𝐺𝑖
𝑐𝑎𝑙𝑐)2

∑𝑤𝑖(𝐺𝑖
𝑒𝑥𝑝)2

]

1
2

 

where Gi
exp and Gi

calc are the i-th point of the experimental G(r) and of the calculated G(r), 

respectively, and wi is the weight of each point Gi
exp (normally the uncertainty on its value). 

The fluorite structure of CeO2 is described by the space group Fm-3m (225). In the CeO2 cell, Ce4+ 

occupies the (0,0,0) position and has 8 coordinated O2- located in (1/4,1/4,1/4). The C-type 

structure of Y2O3, space group Ia-3 (206), can be seen as a 222 fluorite supercell whose origin 

is shifted by 1/4,1/4,1/4. In each octant, Y3+ occupies the 6-fold coordinated 8b and 24d sites, O2- 

is in the 48e site, and two 16c sites are vacant. Table 6.1 reports atom coordinates and Wyckoff 

positions of the pertinent phases.  



 

 Fluorite Fluorite with C-type setting C-type 

M1 4a, 0,0,0 8b, 1/4,1/4,1/4 8b, 1/4,1/4,1/4 

O1 8c, 1/4,1/4,1/4 48e, 3/8,1/8,3/8 48e, x,y,z 

M2  24d, 0,0,1/4 24d, x,0,1/4 

O2  16c, 3/8,3/8,3/8 (16c, x,x,x) 

 

Hereafter, the C-type setting is applied to the fluorite structure, so that all sites are unambiguously 

referred to for any composition. We take the fractional x coordinate of the M2 site (hereafter 

x(M2)) as the reference parameter to discuss our data, as it is the only degree of freedom of the 

cationic substructure: when x(M2)=0, the cation arrangement is the same as in fluorite, while it 

takes negative values in C-type.  

Table 6.2 outlines the results from Rietveld refinements of the XRPD patterns. All of the CYO 

samples were single-phase, and the average structure is Fm-3m fluorite for µ≤0.250 and Ia-3 C-

type for µ>0.250. The cell parameter decreases with increasing yttrium concentration owing to the 

lower coordination and smaller ionic radius of Y3+ with respect to Ce4+ (Shannon and Prewitt, 

1969; Coduri et al., 2012b). 

µ 0.250 0.3125 0.3438 0.4375 0.500 

phase F C C C C 

a (Å) 10.8064(9) 10.7917(9) 10.7853(9) 10.7738(9) 10.759(7) 

x(M2) 0 -0.0027(1) -0.00449(9) -0.01159(3) -0.01497(4) 

Umean (Å
2) 0.00713(2) 0.0104(4) 0.0115(5) 0.0137(8) 0.0133(8) 

Rwp (Rietveld) 0.0509 0.0795 0.0863 0.0652 0.0703 

APDB probability  0.12(2) 0.080(4) 0.006(3) 0.0025(3) 

Rwp (WPPM)  0.0879 0.0899 0.0619 0.0698 



 

As shown in Figure 6.1, O2 oxygen vacancies (16c) and Ce/Y substitutional defects cause the x 

coordinate of the C-type M2 cation to take intermediate values between those corresponding to the 

end members of the solid solution, that is x(M2)=0 for CeO2, and x(M2)~(-0.032) for Y2O3. Such 

values are consistent with the distribution of M2 cations in two different chemical environments: 

i) the centre of 8 equidistant occupied oxygen sites (CeO2-like cuboids, panel A in Figure 6.1), and 

ii) an offset position due to two vacant O2 sites (Y2O3-like cuboids, panel C inFigure 6.1).  

 

 

 

The C-type structure of the samples with µ=0.313, μ=0.344, and μ=0.438 is largely distorted with 

respect to reference Y2O3. The atomic mean square displacement (msd) peaks at μ=0.438 (see 

Table 6.2). Since measurements were performed at 90 K, the trend in the msd parameters is due to 

static disorder only.  

Also recalled in Table 6.2 are the results of the WPPM best fits to XRPD patterns of the µ=0.313, 

0.344, 0.438 samples, obtained using PM2K. Accurate fit of the superstructure peaks were attained 

only by accounting for antiphase domains with dopant-like structure. Ordering of defects starting 

at non-equivalent sites could have yielded unmerged domains splicing at APDBs. A similar 



 

mechanism was proposed for the Cu3Au alloy (Scardi and Leoni, 2005). A possible relationship 

between the APDB probability and the spatial extent of such domains prompted us to employ PDF 

analysis in order to measure the domain correlation distance.  

The effect of composition on the cation environment is witnessed by the metal-metal (MM) nearest 

neighbour distances in Figure 6.2. At the lowest dopant concentration already, the single MM 

distance of CeO2 (panel A in Figure 6.2) splits into a shorter (MMa ~ 3.75 Å) and a longer distance 

(MMb ~ 4.10 Å). The G(r) of all the samples was fitted in the range between 1.5 and 5 Å. With 

reference to μ=0.250, μ=0.344, and μ=0.500 samples, Figure 6.2 (panels B-D) shows the G(r) in 

the 3<r<5 Å range as fitted by fluorite (μ=0.250) and C-type (μ=0.344 and μ=0.500) long range 

models. As to the μ=0.250 sample, a fluorite phase could not reproduce the MMb peak. In fact, the 

MMb interatomic distance tallies with an atom pair involving the C-type M2 site (see Y2O3 in 

Figure 6.2, panel H). However, in the G(r) of the μ=0.344 and μ=0.500 samples, the MMb peak is 

equally mismatched when a C-type phase is fitted into it. 

Either single phase fitted poorly the G(r) in this range, as neither of them could be adapted to fit 

G(r) peaks originating from the other phase. A reasonable solution was provided by a two-phase 

model, which considers the first atomic coordination shells as a combination of the fluorite and C-

type chemical environments (Scavini et al., 2012, Coduri et al., 2012b). The fit by the two-phase 

model of the G(r) curves is depicted in Figure 6.2 (panels E-G) together with the partial 

contributions from the fluorite and C-type phases. An overview of the refined parameters is given 

in Table 6.3 (see ‘relaxed two-phase’). The change in the relative intensity and position of the 

MMa and MMb peaks upon increasing μ, i.e. the lesser occurrence of pairs involving Ce replaced 

by Y-M pairs is accounted for not only by the phase scale-factor parameters, but also by x(M2). 

At µ=0.250 already, the value of x(M2) refined by the two-phase model is close to that in Y2O3 

despite the fluorite average structure of this sample.   

This limited spatial extent over which C-type and fluorite interatomic distances are described by 

the two-phase model was defined as ‘droplet’ (Scavini et al., 2012a, Coduri et al., 2013a). As a 

result of both the tiny coherence length and random orientation, droplets average out to zero in the 

reciprocal space and do not constitute a secondary phase in the XRPD patterns. Thus, using a two-

phase model for describing the first few atomic distances is consistent with the observation in the 

diffraction patterns that every CYO sample is single-phase. 
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To find out how the dopant-like atomic environment relaxes out of the first coordination shell, C-

type and fluorite contributions must be probed further in the r space for each sample. High quality 

PDF data were needed to apply different models to the experimental G(r) on a wide r range. Figure 

6.3 reports the G(r) up to 600 Å for the µ=0.250, µ=0.313, µ=0.344, µ=0.438, µ=0.500 samples. 

The slow falloff of the G(r) amplitude owes to the narrow instrumental resolution function of the 

ID31 diffractometer. Noise in the PDF data was minimized by increasing counting statistic thanks 

to: i) long collection time, especially in the high-Q range, ii) low temperature of the experiment 

(90 K), which reduced thermal motion. 
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Signal-to-noise ratio and peak resolution in the G(r) were satisfactory even at 400 Å. For instance, 

we could detect a shift in position, shape, and width of the two peaks of the doublet at ~397 Å 

depicted in Figure 6.3. The traces of this doublet upon increasing µ match the shortening of the 

interatomic distances and the increase in the DW factor at µ=0.438 worked out in reciprocal space. 

In the following paragraphs, structural parameters refined against G(r) in successive 20 Å ranges 

(box-car refinements) are discussed through their trends as a function of r. A list of the refined 

parameters for the models introduced is given in Table 6.3.  

Since it provided the best solution on the local scale, the two-phase model was tested on further 

interatomic distances. This was done in two different ways: i) by keeping the positional degrees 

of freedom (cell parameters and x(M2)) fixed, as in the local scale (r<5 Å) refinement - referred 

to as ‘unrelaxed two-phase’; ii) by refining the positional degrees of freedom - referred to as 

‘relaxed two-phase’. Hereafter we will call the refined scale-factor of the C-type phase as ‘C-

fraction’. 

Panel A in Figure 6.4 shows the unrelaxed two-phase model fitted against the G(r) of the μ=0.250 

sample in the 5<r<15 Å range. It can be noted from the misshapen peaks and the high fit residual 

that such model becomes unreliable as soon as the fluorite and C-type distances are not resolved. 

Actually, for r>10 Å, the G(r) vectors span over the length of a droplet, and thereby they cannot 

be decomposed into the distinct contributions from two different coordination environments. By 



 

letting also phase cell parameters and x(M2) be refined, the fit quality improved significantly 

(panel B in Figure 6.4), hence, the r-dependent structure refinement was carried up to hundreds of 

Å out using the relaxed model.  

The trends of x(M2) and of C-fraction as a function of r obtained using the relaxed two-phase 

model are plotted in Figure 6.5 (panels A,B). The cell parameters of the two phases correlate 

strongly when refined. Notably, C-fraction for the μ=0.250 sample vanishes just over 100 Å, while 

the corresponding x(M2) value becomes unphysically negative. A similar observation can be made 

for the μ=0.344 sample. In particular, in this case, the C-fraction cut-off is shifted to a higher r 

value (~210 Å), but it is poorly determined as its value declines to zero very slowly. Unlike this 

trend, in the sample μ=0.313, x(M2) goes neatly to zero while C-fraction is almost constant with 

r. Despite the large fluctuation in the values due to high parameter correlation, this trend suggests 

a structural evolution from C-type to fluorite with increasing r in the samples μ=0.250, µ=0.313, 

µ=0.344. Indeed, the vanishing of either the C-fraction or x(M2) supports the only presence of the 

fluorite phase at high r. On the other hand, the μ=0.438 sample shows no fluorite character even 

at 500 Å. Bearing in mind that both the x(M2) and C-fraction parameters express the deviation 

from the fluorite structure, and that the two parameters exhibit a major negative correlation, we 

derived a C-type-to-fluorite order parameter by multiplying x(M2) by C-fraction through the 

whole refinement range. The x(M2)×C-fraction parameter, plotted in Figure 6.5 (panel C), 

becomes zero at r~120 Å, r~110 Å, and r~200 Å, respectively, for μ=0.250, µ=0.313, and µ=0.344. 

As expected, at µ=0.438, the x(M2)×C-fraction parameter does not approach zero at any distance. 
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In the refinements against the relaxed two-phase model, the C-type cell parameter converged to a 

value twice the fluorite cell parameter. Therefore, a meaningful description of the structure could 

be achieved using a single C-type model (Figure 6.4, panel C), thereby cutting the correlation 

between fluorite and C-type structural parameters. In the C-type model, site occupancy factors of 

Ce and Y atoms mirror the sample composition, and the 16c site is filled accordingly. As a result, 



 

the x(M2) parameter returned by the refinement was averaged over the two unalike positions of 

Ce and Y in their chemical environment, thus including the relative weights of the fluorite and 

C-type phases. While this was not satisfying on the local scale, it afforded a good fit at the 

nanometre scale.  

Lower fit residual was achieved as compared to the relaxed two-phase model. The cell parameters 

evolve negligibly along r in all of the samples, and closely resemble the respective values from 

Rietveld refinements: a~10.807, a~10.787, a~10.780, and a~10.769 Å for µ=0.250, µ=0.313, 

µ=0.344, and µ=0.438. No correlations involving x(M2) were found and, therefore, the C-type 

domain size could be accurately estimated by only using the r-dependence of x(M2).  

The trends of x(M2) vs r yielded by the C-type model are plotted in panel D of Figure 6.5. For 

µ=0.250, µ=0.313, and µ=0.344, x(M2) averages out to zero at r~120 Å, r~140 Å, and r~180 Å, 

respectively. On the contrary, µ=0.438, x(M2) slopes in the range -0.014<x(M2)<-0.010 but does 

not become zero within a range of 500 Å. This result points out that the C-type phase virtually 

achieves long-range coherence at µ=0.438, whereas the same ordering is confined in 100-200 Å-

sized domains at lower dopant concentrations. As can be noticed in Figure 6.5 (panel D), the value 

of x(M2) within the domain gets more negative the higher the Y concentration in the sample. With 

increasing μ, fewer fluorite-like interatomic distances in the G(r) curve must be fitted by the C-

type phase. Accordingly, the refined x(M2) parameter resembles more closely the value of x(M2) 

in Y2O3.  

A possible improvement of the fitting model could be achieved by using a C-type phase along with 

anisotropic displacement parameters. Strong anisotropic static disorder is indeed typical of doped 

ceria compounds (Scavini et al., 2012, Coduri et al., 2013b). Panel D in Figure 6.4 shows the G(r) 

fit by this model in the 5<r<15 Å range for the µ=0.250 composition. Lower fit residual with 

respect to the previous C-type model (i.e. isotropic C-type) was attained using anisotropic thermal 

factors (i.e. anisotropic C-type). The refined cell parameter matched the value obtained by the 

isotropic C-type model for any composition and r range.  

For the µ=0.344 and µ=0.438 samples, the r-dependence of x(M2) parameter followed almost the 

same trend yielded by the isotropic model. Conversely, for the µ=0.250 and µ=0.313 samples a 

lower x(M2) cut-off resulted (~40 Å) which totally disagrees with isotropic model results. This 

discrepancy is explained by the strong correlation between the x(M2) position and the U11 

parameter, which made this model inconsistent. By using the anisotropic C-type, the uncertainties 

on x(M2) were greater by an order of magnitude than those found using the isotropic C-type. For 

these reasons, we retained the isotropic C-type as the reference model for estimating domain size. 



 

By inspecting the refined C-type phase of the samples µ=0.250, µ=0.313, µ=0.344, it must be 

pointed out that the uncertainty on x(M2) increased considerably as x(M2) approaches zero. Such 

an increase suggests that the G(r) might be fitted more accurately in the r range encompassing the 

domain boundary and further in r. Thus, a simple fluorite structural model was fitted against the 

G(r) up to 400 Å, so that the refined C-type and fluorite phases could be compared throughout r.  
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The difference, ∆Rw[=Rw(C-type)- Rw(fluorite)], between the residual of fit by C-type and that 

by fluorite is plotted in Figure 6.6 for the four compositions µ=0.250, µ=0.313, µ=0.344, and 

µ=0.438. The ∆Rw difference is negative in the samples µ=0.250, µ=0.313, µ=0.344 within the 

respective domain size, indicating the better agreement of the C-type model with the observed 

G(r). The two fit residuals cancel each other out approximately at the domain boundary, then, ∆Rw 

oscillates around zero in the further range of r, at which the refined phases virtually equate to each 

other. In fact, when a C-type phase was fitted against G(r) in a r range outside the C-type domain, 

x(M2) equalled 0 within the uncertainty. In the µ=0.438 sample, the fit residuals never cross in the 

whole range of r, reflecting the trend of x(M2) versus r. 



 

Finally, the respective best fits in the range of interatomic distances between 390 and 410 Å are 

displayed in Figure 6.7 for all the samples. Although the absolute G(r) intensity is decreased with 

respect to the local scale due to the instrumental contribution (see Figure 6.3), no noteworthy fit 

residual was observed. The randomly distributed difference curve accounts for some noise, at a 

minimum, though, thanks to the high counting statistics. The good quality of the fit further supports 

the goodness of our approach. 
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PDF analysis of Ce1-µYµO2-µ/2 samples with µ=0.250, µ=0.313, µ=0.344 and µ=0.438 composition 

was carried out. Several models conceiving the structural relationship between fluorite (CeO2-like) 

and C-type (Y2O3-like) phases were evaluated through box-car refinements: i) a two-phase model 

(i.e. coexisting Y2O3-like and CeO2-like phases), in which cell parameters and the x(M2) cation 

coordinate were either fixed or free to refine. ii) a single C-type phase, refining either isotropic or 

anisotropic displacement parameters. iii) a single fluorite phase.    

The model best describing the G(r) curves up to high r, attaining both accurate fits and meaningful 

structural parameters, is a simple C-type phase with isotropic displacement parameters. 

Nanometre-sized dopant domains were determined as the range in real space in which the C-type 

phase best fitted the experimental G(r). Gradual transformation of C-type into fluorite was 

observed with increasing r in the µ=0.250, µ=0.313, µ=0.344 samples. Different models, however, 

generally agree in the estimate of the C-type domain sizes, that is, nearly 100-140 Å for µ=0.250 

and µ=0.313, ~180-200 Å for µ=0.344, and in excess of 500 Å for µ=0.438.  
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Pr-doped strontium titanate (SPTO) is a perovskite with a high-symmetry ground state and a 

large mismatch between the Sr/Pr ionic radii, and, thus, a model system to study the relation 

between locally broken symmetry and microscopic polarization. This has been studied 

predominantly by one technique, powder diffraction, albeit in multiple, complementary ways. 

Thanks to exceptional counting statistics and angular resolution of synchrotron data, Rietveld 

analysis revealed tiny distortions in SPTO with respect to undoped strontium titanate, which 

allowed drawing an accurate phase diagram. While the crystallographic phase of SPTO is 

increasingly antiferrodistortive (AFD), rotational at higher Pr concentrations, analysis of the 

pair distribution function (PDF) showed a large local AFD distortion that could be seen as the 

effect of a ferroelectric (FE) mode meddling in the local structure.  

The high sensitivity of neutron scattering to oxygen nuclei added insight into a distortion 

tangled with the motion of oxygen atoms; this is why selected SPTO samples were measured 

using spallation neutron radiation. In a robust approach, the same neutron data were analysed 

in reciprocal space and in real space, respectively, for Rietveld and PDF analysis. While the 

former confirmed the AFD long-range phase seen in X-ray data, PDF modelling by Reverse 

Monte Carlo simulations revealed disordered regions around Pr atoms compatible with 

microscopic polarization, since orthorhombically distorted PrO12 polyhedra force the 

surrounding octahedra to rotate out of axis. 

The last two chapters introduced two further approaches to PDF analysis. The first one involves 

a symmetry decomposition of the cubic perovskite structure of SrTiO3, yielding 120 possible 

positional degrees of freedom that were used as atomic positional parameters of a P1 supercell, 

refined against the neutron PDF of undoped SrTiO3 and converted to amplitudes of soft modes. 

These parameters were grouped by the symmetry of the corresponding distortion (i.e. 

irreducible representation) and refined in turn, evidencing the highest-likelihood static and 

dynamic modes in the local structure of SrTiO3. The second and last one concerns the spatial 

extent of dopant-rich domains in CeO2. Crystalline CeO2 is known to have a cubic fluorite 

phase with extremely high spatial coherence. Yttrium introduced as a dopant has a tendency to 

cluster into lower-symmetry ‘droplets’, signalled by the displacement of a set of cations and 

which, remarkably, show up in the PDF of the doped compounds even at distances beyond 100 

Å. Structure refinements to high-Q-resolution and high-r-resolution X-ray PDF allowed 

finding the range of interatomic distances at which dopant-rich droplets dissolve into the CeO2-

like fluorite matrix.  

۞ 



Model fitting, as carried out by the PDFFit/PDFGui code, is the most direct method to test the 

agreement between model and data and to get structural parameters. The user normally has a 

set of likely models that should be tried; prior knowledge of the material is generally useful. A 

strength of this method is the parametrisation of the basic instrumental contributions to the 

PDF. It is customary to analyse a standard material before the actual samples in order to get 

the right parameters for intensity damping and peak broadening. Provided that the phase(s) 

fitting the PDF is (are) good enough, the immediacy of small-box models makes it easy to 

obtain octahedral tilts, atom displacements, or thermal motions for a set of temperatures and 

compositions. On the other hand, it is impractical to refine complex models, like a fully 

parametrised monoclinic phase or more than two phases but the simplest. A successful 

refinement owes much to the way the least-squares problem is set up. Parameters with a similar 

effect on the calculated PDF can be fatally correlated; and parameters with little weight (e.g. 

O atoms in X-ray PDF or very small atom displacements) can stray from reasonable values. 

By contrast, Reverse Monte Carlo (RMC) is capable of handling any kind of distortion and is 

completely unbiased by symmetry assumptions. The large-box models used have no internal 

symmetry, so that atomic positions are not correlated by anything but features in the data. 

Moves to the atoms are random and thus able to accommodate any blip or asymmetry related 

to structure distortion. Besides PDF, the the method as implemented in the RMCProfile code 

is able to model the total scattering function, F(Q), and Bragg peaks. Therefore, the RMC 

configurations are likely to give the best possible fit to the data and are potentially sensitive to 

any distortion in the material. High sensitivity can be also a problem: in the case of 

experimental noise (termination ripples, low count rates, etc), some atom positions will try to 

accommodate the spurious signal as well as the meaningful part of the data. Since there is no 

explicit correction for instrumental sources of error, the calculated function is based solely on 

the positions of the atoms in the large box. Thus, the final model inevitably reflects some 

problems with the data. Additionally, being a very general (thus powerful) method, RMC has 

no ad-hoc procedures. This means that some necessary ‘soft’ constraints, like first-neighbour 

distance windows and the weights of different function datasets, must be adjusted by trial and 

error. 

Symmetry-adapted refinements, based on the PDFFit least-squares engine, try to get the best 

of both worlds. Refinement is pseudo-random, in that the starting model has no symmetry and 

is repeated an arbitrary number of cycles with random starting values, but it also gives 

quantitative results, since it contains a single distortion related to a precise symmetry mode. It 

also uses the instrument parametrisation of PDFFit. The high level of abstraction of this 

method, however, could lead the user to overlook data quality when interpreting the solution. 
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