
ar
X

iv
:1

50
5.

03
91

4v
1

 [
st

at
.C

O
]

 1
4

M
ay

 2
01

5

Estimation and Simulation of a COGARCH(p,q) model in

the YUIMA project

Stefano, M. Iacus∗1, Lorenzo Mercuri †2, and Edit Rroji ‡3

1Department of Economics, Management and Quantitative Methods, University of

Milan, CREST Japan Science and Technology Agency,
2Department of Economics Management and Quantitative Methods, University of

Milan, CREST Japan Science and Technology Agency,
3Department of Statistics and Quantitative Methods, University of Milano-Bicocca,

May 18, 2015

Abstract

In this paper we show how to simulate and estimate a COGARCH(p,q) model in the
R package yuima. Several routines for simulation and estimation are available. Indeed for
the generation of a COGARCH(p,q) trajectory, the user can choose between two alternative
schemes. The first is based on the Euler discretization of the stochastic differential equations
that identifies a COGARCH(p,q) model while the second one considers the explicit solution
of the variance process.
Estimation is based on the matching of the empirical with the theoretical autocorrelation
function. In this case three different approaches are implemented: minimization of the mean
square error, minimization of the absolute mean error and the generalized method of moments
where the weighting matrix is continuously updated.
Numerical examples are given in order to explain methods and classes used in the yuima

package.

Contents

1 Introduction 2

2 COGARCH Models driven by a Lévy process 3

3 Simulation of a COGARCH(P,Q) model 7

4 Estimation of a COGARCH(P,Q) model in the yuima package 9

∗Electronic address: stefano.iacus@unimi.it
†Electronic address: lorenzo.mercuri@unimi.it
‡Electronic address: e.rroji@unimib.it

1

http://arxiv.org/abs/1505.03914v1

5 Package R 13
5.1 Classes and Methods for the definition of a COGARCH(P,Q) model 14
5.2 Classes and Methods for the simulation of a COGARCH(P,Q) model 15
5.3 Classes and Methods for the estimation of a COGARCH(P,Q) model 15

6 Numerical results 17
6.1 Simulation and Estimation of a COGARCH(1,1) 17
6.2 COGARCH(p,q) model driven by a Compound Poisson process 22

1 Introduction

The Continuous-Time GARCH(1,1) process has been introduced in [18] as a continuous coun-
terpart of the discrete-time GARCH(1,1) model proposed by [3].
The idea is to develop in continuous time a model that is able to capture some stylized facts
observed in financial time series [10] exploiting only one source of randomness for returns and
for variance dynamics. Indeed, in the Continuous-Time GARCH (COGARCH hereafter), the
stochastic differential equation for variance is driven by the discrete part of the quadratic
variation of the same Lévy process used for modeling returns. The continuous nature of the
COGARCH makes it particularly appealing for discribing the behaviour of high frequency
data [see [13] for an application of method of moments using intraday returns].
The generalization to higher order COGARCH(p,q) processes has been proposed in [5, 9].
Starting from the observation that the variance of a GARCH(p,q) is an ARMA(q, p-1), the
Variance is modeled with a CARMA(q,p-1) process [see [7, 27, 6] and many others] driven by
the discrete part of the quadratic variation of the Lévy process in the returns. Although this
representation is different from the one used by [18] for the COGARCH(1,1) process, this last
can be again retrieved as a special case.
Many authors recently have investigated the COGARCH(1,1) model from a theoretical and
an empirical point of view [see [22, 16, 23, 2] and many others]. Some R codes for estimation
and simulation of a COGARCH(1,1) driven by a Compound Poisson and Variance Gamma are
available in [20]. For the general COGARCH(p,q), the main contribution remain the seminal
works [5] and [9]. The aim of this paper is to describe the simulation and the estimation
schemes in the yuima package [26] for a COGARCH(p,q) model driven by a general Lévy pro-
cess. Based on our knowledge yuima is the first R package available on CRAN that allows the
user to manage a higher order COGARCH(p,q) model. Moreover, the estimation algorithm
gives the option to recover the increments of the underlying noise process and estimates the
Lévy measure parameters. We recall that a similar procedure is available in yuima also for
the CARMA model [?, see]for a complete discussion]IacusMercur2015. The yuima package is
developed within the YUIMA project [8] whose aim is to provide an environment for simulation
and estimation of stochastic differential equations.
The outline of the paper is as following. In Sect. 2 we discuss the main properties of the
COGARCH(p,q) process. In particular we review the condition for existence of a strictly
stationary variance process, its higher moments and the behaviour of the autocorrelation of
the square increments of the COGARCH(p,q) model. In Sect. 3 we analyze two different
simulation schemes. The first is based on the Euler discretization while the second one uses
the solution of the state process in the CARMA(q,p-1) model. Sect. 4 is devoted to the esti-
mation algorithm. In Sect. 5 we show the main classes and corresponding methods in yuima

package and in the Sect. 6 we present some numerical examples about the simulation and the
estimation of a COGARCH(p,q) model

2

2 COGARCH Models driven by a Lévy process

In this section we review the mathematical definition of a COGARCH(p,q) process and its
properties. In particular we focus on the conditions for the existence of a strictly stationary
COGARCH(p,q) process and compute the first four unconditional moments. The existence of
higher order moments plays a central role for the computation of the autocorrelation function
of the squared increments of the COGARCH(p,q) model and consequently the estimation
procedure implemented in the yuima package.
The COGARCH(p,q) process, introduced in [5] as a generalization of the COGARCH(1,1)
model, is defined through the following system of stochastic differential equations:

dGt =
√
VtdLt

Vt = a0 + a⊺Yt−

dYt = AYt−dt+ e (a0 + a⊺Yt−) d [L,L]
d

t

(1)

where q and p are integers such that q ≥ p ≥ 1. The state space process Yt is a vector with q

components:
Yt = [Y1,t, . . . , Yq,t]

⊺
.

The vector a ∈ Rq is defined as:

a = [a1, . . . , ap, ap+1, . . . , aq]
⊺

with ap+1 = · · · = aq = 0. The companion q × q matrix A is

A =

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−bq −bq−1 . . . −b1

.

The vector e ∈ Rq contains zero entries except the last component that is equal to one.
[L,L]d

t
is the discrete part of the quadratic variation of the underlying Lévy process Lt and is

defined as:
[L, L]d

t
:=

∑

0≤s≤t

(∆Ls)
2
. (2)

Remark 1 A COGARCH(p,q) model is constructed starting from the observation that in the
GARCH(p,q) process, its discrete counterpart, the dynamics of the variance is a predictable
ARMA(q, p-1) process driven by the squares of the past increments. In the COGARCH(p,q)
case, the ARMA process leaves the place to a CARMA(q,p-1) model [see [7] for details about
the CARMA(p,q) driven by a Lévy process] and the infinitesimal increments of the COGA-
RCH(p,q) are defined through the differential of the driven Lévy Lt as done in (1).

As observed above the COGARCH(p,q) model generalizes the COGARCH(1,1) process that
has been introduced following different arguments from those for the (p, q) case. However
choosing q = 1 and p = 1 in (1) the COGARCH(1,1) process developed in [18, 13] can be
retrieved through straightforward manipulations and, for obtaining the same parametrization
in Proposition 3.2 of [18], the following equalities are necessary:

ω0 = a0b1, ω1 = a1e
−b1 and η = b1.

Before introducing the conditions for strict stationarity and the existence of unconditional
higher moments, it is worth noting that the state space process Yt can be seen as a Multi-
variate Stochastic Recurrence Equation and the corresponding theory can be applied to the

3

COGARCH(p,q) process [see [5, 9] more details] in order to derive its main features1. In the
case of the Compound Poisson driven noise, the representation through the stochastic differ-
ence equations is direct in the sense that the random coefficients of the state process Yt can
be written explicitly while in the general case, it is always possible to identify a sequence of
Compound Poisson processes that as limit to the choosen driven Lévy process.

In the following, we require that matrix A can be diagonalized, that means:

A = SDS
−1

with

S =

1 . . . 1
λ1 . . . λq

...
...

λ
q−1
1 . . . λq−1

q

, D =

λ1

. . .

λq

(3)

where the λ1, λq, . . . , λq are the eigenvalues of matrix A and are ordered as follows:

ℜ{λ1} ≥ ℜ{λ2} ≥ . . . ≥ ℜ{λq} .

Applying the theory of stochastic recurrence equations, [5] provide A sufficient condition for
the strict stationarity of a COGARCH(p,q) model. We review the result for the stationarity of
the state process Yt. Two fundamental assumptions are the fact that the eigenvalues λ1, . . . , λq

are distinct and the underlying process L must have a non-trivial νL (l) measure. Then, the
process Yt converges in distribution to the random variable Y∞ if exist some r ∈ [1,+∞] such
that:

∫ +∞

−∞

ln
(

1 + ‖S−1ea⊺
S‖rl2

)

dνL (l) ≤ ℜ{λ1} (4)

for some matrix S such that the matrix A is diagonalizable. If we choose as a starting condition

Y0
d
= Y∞ than the process Yt is strictly stationary and consequently the variance Vt is also

a strictly stationary process. Unlikely for the general case, the inequality in (4) gives only a
sufficient condition about the strict stationarity, and it is difficult to verify in practice2. As
shown in [18] and remarked in [5], the condition in (4) is also necessary for the COGARCH(1,1)
case and can be simplified as:

∫ +∞

−∞

ln
(

1 + a1l
2) dνL (l) ≤ b1. (5)

Using again the SRE theory, it is also possible to determine the condition for existence of higher
moments of the state process Yt. In this way it is possible to determine the autocorrelations
of the squared COGARCH increments that are used in the estimation procedure illustrated
in Section 4. As reported in [5], the κ-th order moment of the process Yt exists finite if, for
some r ≥ 1 and S such that the matrix A is diagonalizable, the following conditions hold:

E
(

L
2κ
1

)

< +∞,

∫ +∞

−∞

[

(

1 + ‖S−1ea⊺
S‖r l2

)κ − 1
]

dνL (l) < ℜ{λ1}κ. (6)

1The Stochastic Recurrence Equations theory [4, 17] has been also used to prove the strictly and weakly station-
arity for the GARCH(p,q) model [1]

2In the yuima package a diagnostic for condition (4) is available choosing matrix S as done in (3) and r = 2. We
remark that the process Yt is stationary if the diagnostic gives a positive answer otherwise we can conclude nothing
about the stationarity of the process.

4

As special case of (6), the unconditional stationary mean E (Y∞) = −a0µ (A+ µea⊺)−1 e of
the vector process Yt exists if

E
(

L
2
1

)

< +∞, ‖S−1ea⊺
S‖rµ < ℜ{λ1}

where

µ :=

∫ +∞

−∞

l
2dνL (l) (7)

is the second moment of the Lévy measure νL (l). It is worth noting that the condition (2)
ensures also the strict stationarity since, using ln(1 + x) ≤ x, we have the following sequences
of inequalities:

∫ +∞

−∞

ln
(

1 + ‖S−1ea⊺
S‖rl2

)

dνL (l) ≤ ‖S−1ea⊺
S‖rµ ≤ ℜ{λ1} .

For the stationary covariance matrix [9]

cov (Y∞) =
a2
0b

2
qρ

(bq − µa1)
2 (1−m)

∫ ∞

0

e
Ãtee⊺

e
Ã⊺tdt, (8)

the existence of the second moment of Y∞ in (6) becomes:

E
(

L
4
1

)

< ∞, ‖S−1ea⊺
S‖rρ < 2

(

−ℜ{λ1} − ‖S−1ea⊺
S‖rµ

)

where

ρ :=

∫ +∞

−∞

l
4dνL (l)

is the fourth moment of the Lévy measure νL (l) and

m :=

∫ +∞

0

a⊺
e
Ãtee⊺

e
Ã⊺tadt.

Before introducing the higher moments and the autocorrelations, we recall the conditions for
the nonegativity for a strictly stationary variance process in (1). Indeed, under the assumption
that all the eigenvalues of matrix A are distinct and the relation in (4) holds, the variance
process Vt ≥ a0 > 0 a.s. if:

a⊺
e
Ate ≥ 0, ∀t ≥ 0. (9)

The condition in (9) is costly since we need to check it each time. Nevertheless some useful
controls are available [28].

1. A necessary and sufficient condition to guarantee that a⊺eAte ≥ 0 in the COGARCH(2,2)
case is that the eigenvalues of A are real and a2 ≥ 0 and a1 ≥ −a2λ (A) where λ (A) is
the biggest eigenvalue.

2. Under condition 2 ≤ p ≤ q, that all eigenvalues of A are negative and ordered in an
increasing way λ1 ≥ λ2 ≥, . . . ,≥ λp−1 and γj are the roots of a (z) = 0 ordered as
0 > γ1 ≥ γ2 ≥ . . . ≥ γp−1. Then sufficient condition for (9) is

k
∑

i=1

γi ≤
k
∑

i=1

λi ∀k ∈ {1, . . . , p− 1} .

3. For a COGARCH(1,q) model a sufficient condition that ensures (9) is that all eigenvalues
must be real and negative.

5

Combining the requirement in (4) with that in (9) it is possible to derive the higher moments
and the autocorrelations for a COGARCH(p,q) model. As a first step, we define the returns
of a COGARCH(p,q) process on the interval (t, t+ r] , ∀t ≥ 0 as:

G
(r)
t :=

∫ t+r

t

√
VsdLs. (10)

Let Lt be a symmetric and centered Lévy process such that the fourth moment of the associated
Lévy measure is finite, we define the matrix Ã as:

Ã := A+ µea⊺
.

It is worth noting that the structure of Ã is the same of A except for the last row q where
Ãq, = (−bq + µa1, . . . ,−b1 + µaq). For any t ≥ 0 and for any h ≥ r > 0, the first two moments
of (10) are

E
[(

G
(r)
t

)]

= 0 (11)

and

E

[

(

G
(r)
t

)2
]

=
α0bqr

bq − µa1
E
[

L
2
1

]

. (12)

The computation of the autocovariances and variance for squared returns (10) require the
following quantities defined as:

P0 = 2µ2
[

3Ã−1
(

Ã−1
(

eÃrI
)

− rI
)

− I
]

cov (ǫ∞)

Ph = µ2eÃhÃ−1
(

I − eÃr
)

Ã−1
(

eÃr − I
)

cov (ǫ∞)
, (13)

Q0 = 6µ
[(

rI − Ã−1
(

eÃr − I
))

cov (ǫ∞)− Ã−1
(

Ã−1
(

eÃr − I
)

− rI
)

cov (ǫ∞) Ã⊺

]

e

Qh = µeÃhÃ−1
(

I − e−Ãr
) [(

I − eÃr
)

− Ã−1
(

eÃr − I
)

cov (ǫ∞) Ã⊺

]

e

(14)
and

R = 2r2µ2 + ρ. (15)

The terms Ph and P0 are q × q matrices. Qh and Q0 are q × 1 vectors and the term R is a
scalar. The q × q matrix cov (ǫ∞) is defined as:

cov (ǫ∞) = ρ

∫ ∞

0

e
Ãtee⊺

e
Ã⊺tdt (16)

where µ, ρ and m have been defined before.
Using the q× q matrix Ph and the q× 1 vector Qh the autocovariances of the squared returns
(10) are defined as:

γr (h) := cov
[

(G
(r)
t)2, (G

(r)
t+h)

2
]

=
a2
0b

2
q (a

⊺Pha+ aQh)

(1−m) (bq − µa1)
2 , h ≥ r (17)

while the variance of the process
(

G
(r)
t

)2

is

γr (0) := var

(

(

G
(r)
t

)2
)

=
a2
0b

2
q (a

⊺P0a+ aQ0 +R)

(1−m) (bq − µa1)
2 . (18)

6

Combining the autocovariances in (17) with (12) and (18) we obtain the autocorrelations:

ρr (h) :=
γr (h)

γr (0)
=

(a⊺Pha+ aQh)

(a⊺P0a + aQ0 +R)
. (19)

We conclude this Section with the following remark. As done for the GARCH(p,q) model the

autocovariances of the returns G
(r)
t are all zeros.

3 Simulation of a COGARCH(P,Q) model

In this Section we illustrate the theory behind the simulation routines available in the yuima

package when a COGARCH(p,q) model is considered. The corresponding sample paths are
generated according two different schemes.
The first method, in the Yuima project [8], is based on the Euler-Maruyama [14] discretization
of the system in (1). In this case the algorithm follows these steps:

1. We determine an equally spaced grid from 0 to T composed by N intervals with the same
length ∆t

0, . . . , (n− 1)×∆t, n×∆t, . . . , N ×∆t.

2. We generate the trajectory of the underlying Lévy process Lt sampled on the grid defined
in step 1.

3. Choosing a starting point for the state process Y0 = y0 and G0 = 0, we have

Yn = (I + A∆t)Yn−1 + e (a0 + a⊺
Yn−1)∆ [LL]dn . (20)

The discrete quadratic variation of the Lt process is approximated by

∆ [LL]d
n
= (Ln − Ln−1)

2
. (21)

4. Once the approximated state process Yn is obtained we can generate the trajectory of
Variance and the process Gn according the following equations:

Vn = a0 + a⊺
Yn−1 (22)

and
Gn = Gn−1 +

√
Vn (Ln − Ln−1) . (23)

It is worth noting that, although the discretized version of the state process Yn in (20) can
be seen as a stochastic recurrence equation, the conditions for stationarity and non-negativity
for the variance Vn process are not the same of ones analyzed in the Section 2. In particular it
is possible to determine an example where the discretized variance process Vn assumes negative
values while the true process is non negative with probability one.
In order to clarify deeper this issue we consider a COGARCH(1,1) model driven by a Variance
Gamma Lévy process [see [21, 19] for more details about the VG model]. In this case, the
condition for the non-negativity of the Variance in (9) is ensured if a0 > 0 and a1 > 0 while
the strict stationarity condition in (5) for the COGARCH(1,1) is E[L2] = 1 and a1 − b1 < 0.
The last two requirements guarantee also the existence of the stationary unconditional mean
for the process Vt. We define the model using the yuima function setCogarch. Its usage is
completely explained in the Section 5. The following command line instructs yuima to build
the COGARCH(1,1) model with VG noise:

7

> model1 <- setCogarch(p = 1, q = 1, work = FALSE,

+ measure=list("rngamma(z, 1, sqrt(2), 0, 0)"), measure.type = "code",

+ Cogarch.var = "G", V.var = "v", Latent.var="x", XinExpr=TRUE)

Choosing the following values for the parameters

> param1 <- list(a1 = 0.038, b1 = 301, a0 =0.01, x01 = 0)

the COGARCH(1,1) is stationary and the variance is strictly positive. Nevertheless, if we
simulate the trajectory using the Euler discretization, the value of ∆t can lead to negative
values for the process as shown in the example:

> Terminal1=5

> n1=750

> samp1 <- setSampling(Terminal=Terminal1, n=n1)

> set.seed(123)

> sim1 <- simulate(model1, sampling = samp1, true.parameter = param1,

+ method="euler")

> plot(sim1, main="Sample Path of a VG COGARCH(1,1) model with Euler scheme")

−
0
.2

0
−

0
.1

0
0
.0

0

G

−
0
.0

5
0
.0

0
0
.0

5

v

0 1 2 3 4 5

t

−
2

−
1

0
1

2

x
1

Sample Path of a VG COGARCH(1,1) model with Euler scheme

Looking to the Figure, we observe a divergent and oscillatory behaviour for the simulated
state Yn and the variance Vn processes while, from theoretical point of view, the conditions
for nonnegativity and stationarity for the variance of a COGARCH(1,1) model are satisfied
by the values used for the parameters.
To overcome this problem, we provide an alternative simulation scheme based on the solution
of the process Yn given the starting point Yn−1.

Applying the Ito’s Lemma for semimartingales [25] to the transformation e−AtYt, we have:

e
−A∆t

Yt = Yt−∆t−
∫ t

t−∆t

Ae
−Au

Yu−du+

∫ t

t−∆t

e
−AudYu+

∑

s≤t

[

e
−As (Ys − Ys−)− e

−As (Ys − Ys−)
]

.

We substitute the definition of Yt in (1) and get

e
−At

Yt = Yt−∆t−
∫ t

t−∆t

Ae
−Au

Yu−du+

∫ t

t−∆t

e
−Au

AYu−du+

∫ t

t−∆t

e
−Au

e
(

a0 + a
′
Yu−

)

d [LL]d
u

8

Using the following property for an exponential matrix

Ae
At = A

(

I + At+
1

2
A

2
t
2 +

1

3!
A

3
t
3 + ...

)

=

(

A+ tA
2 +

1

2
t
2
A

3 + t
3 1

3!
A

4 + ...

)

=

(

I + tA+
1

2
t
2
A

2 + t
3 1

3!
A

3 + ...

)

A = e
At
A,

we get

Yt = e
At
Yt−∆t +

∫ t

t−∆t

e
A(t−u)

e
(

a0 + a
′
Yu−

)

d [LL]d
u

(24)

Except for the case where the noise is a Compound Poisson, the simulation scheme follows
the same steps of the Euler-Maruyama discretization where the state space process Yn on the
sample grid is generated according the approximation of the relation in (24):

Yn = e
A∆t

Yn−1 + e
A(∆t)

e
(

a0 + a
′
Yn−1

)

(

[LL]d
n
− [LL]d

n−1

)

(25)

or equivalently:

Yn = a0e
A(∆t)

e∆ [LL]d
n
+ e

A∆t
(

I + ea
′∆[LL]d

n

)

Yn−1. (26)

where ∆ [LL](d)
n

:= [LL]d
n
−[LL]d

n−1 is the increment of the discrete part of quadratic variation.
In the previous example, the sample path is simulated according the recursion in (26) choosing
method = mixed in the simulate function as done below:

> set.seed(123)

> sim2 <- simulate(model1, sampling = samp1, true.parameter = param1,

+ method="mixed")

> plot(sim2, main="Sample Path of a VG COGARCH(1,1) model with mixed scheme")

In the case of the COGARCH(p,q) driven by a Compound Poisson Lévy process, a trajec-
tory can be simulated without any approximation of the solution in (24). Indeed it is possible
to determine the time where the jumps occur3 and then evaluate the corresponding quadratic
variation in an exact way. Once the trajectory of a random time is obtained, the piecewise
constant interpolation is used on the fixed grid, in order to mantain the càdlàg property of
the sample path.

4 Estimation of a COGARCH(P,Q) model in the
yuima package

In this Section we explain the estimation procedure that we propose in the yuima package for
the COGARCH(p,q) model. As done for the CARMA(p,q) model driven by Lévy process [15],
even in this case a three step estimation procedure is proposed that allows the user to obtain
estimated values for the COGARCH(p,q) and the parameters of the Lévy measure.
This procedure is structured as follows:

3In a general Compound Poisson the jump time follow an exponential r.v. with rate λ

9

−
0
.2

5
−

0
.1

5
−

0
.0

5

G

0
.0

1
0
0
0

0
.0

1
0
0
4

0
.0

1
0
0
8

v

0 1 2 3 4 5

t

0
.0

0
0
0

0
.0

0
1
0

0
.0

0
2
0

x
1

Sample Path of a VG COGARCH(1,1) model with mixed scheme

1. Using the moment matching procedure explained below, we estimate the COGARCH(p,q)
parameters a := [a1, . . . , ap], b := [b1, . . . , bq] and the constant term a0 in the Variance
process Vt. In this phase, the estimation is obtained by minimizing some distances be-
tween the empirical and theoretical autocorrelation function.

2. Once the COGARCH(p,q) parameters are available, we recover the increments of the
underlying Lévy process using the methodology describe below.

3. In the third step, we use the increments obtained in the second step and estimate the
Lévy measure parameters by means of maximum likelihood estimation procedure.

Let G0, G1, . . . , Gn, . . . , GT be the observed values of the process subsampled at equally
spaced instants 0, h, 2h, . . . , Nh where the length of each interval is h = T

N
. The time of the

last observation is T and N is the number of observations of the process Gn.
In the following we assume that the underlying Lévy process is symmetric and centered in
zero. Starting from the sample {Gn}Nn=0 we define the COGARCH(p,q) increments of lag one
as:

G
(1)
n := Gn −Gn−1

and the increments of lag r as:
G

(r)
n := Gn −Gn−r (27)

where r ≥ 1 is a natural number and for r = 1 the definition in (4) coincides with (27).

It is worth mentioning that the increments G
(r)
n can be obtained as a time aggregation of

increments of lag one as follows:

G
(r)
n =

n
∑

h=n−r

G
(1)
n (28)

The time aggregation in (28) can be useful during the optimization routine when the values
of increments G(1) are very small in absolute value.

10

Using the sample
{

G
(r)
n

}

n≥r
we compute the empirical second moment

µ̂r :=
1

N − d− r + 1

N−d
∑

n=r

(

G
(r)
n

)2

and empirical autocovariance function γ̂ (h) is defined as:

γ̂r (h) :=
1

N − d− r + 1

N−d
∑

n=r

(

(

G
(r)
n+h

)2

− µ̂r

)

(

(Gr
n)

2 − µ̂r

)

h = 0, 1, . . . , d

where d is the maximum lag considered.
The empirical autocorrelations are:

ρ̂r (h) =
γ̂r (h)

γ̂r (0)
. (29)

We use the theoretical and empirical autocorrelations in order to define the moment conditions
for the estimation procedure. By the introduction of the q+ p vector θ := (a,b) we define the
vector function g (θ) : Rq+p → R

d as follows:

g (θ) := E
[

f
(

G
(r)
n , θ

)]

(30)

where f
(

G
(r)
n ,a,b

)

is a d dimensional real function where the components are defined as:

fh

(

∆G
(r)
n , θ

)

= ρr (h)−

(

(

G
(r)
n+h

)2

− µr

)(

(

G
(r)
n

)2

− µr

)

γr (0)
, h = 1, . . . , d. (31)

In the estimation algorithm, we replace the expectation in (30) with the sample counterpart.
The components of vector ĝ (θ) = [ĝ1 (θ) , . . . , ĝd (θ)]

⊺ are defined as:

ĝh (θ) =
1

N − d− r + 1

N−d
∑

n=r

ρr (h)−

(

(

G
(r)
n+h

)2

− µ̂r

)(

(

G
(r)
n

)2

− µ̂r

)

γ̂r (0)

= ρr (h)− ρ̂r (h) , h = 1, . . . , d.

(32)

The vector θ = (a,b) containing the COGARCH(p,q) parameters are obtained by minimizing
some distances between empirical and theoretical autocorrelations. The optimization problem
is:

min
θ∈Rq+p

d (ρr, ρ̂r)

where the components of vectors ρr and ρ̂r are the theoretical and empirical autocorrelations
defined in (19) and (29) respectively. Function d (x, y) measures the distance between vectors
x and y. In the yuima environment, three distances are available and listed below:

1. the L1 norm

‖ĝ (θ)‖1 =
d
∑

h=1

|ĝh (θ)| . (33)

11

2. the squared of L2 norm

‖ĝ (θ)‖22 =
d
∑

h=1

(ĝh (θ))2 . (34)

3. The quadratic form
‖ĝ (θ)‖2W = ĝ (θ)⊺ Wĝ (θ) (35)

where the positive definite weighting matrix W is choosen to obtain efficient estimators
between those that belong to the class of asymptotically normal estimators.

It is worth noting that the objective function ‖ĝ (θ)‖22 is a special case of the function ‖ĝ (θ)‖2W
where the weighting matrix W coincides with the identity matrix. Both distances are related
with the Generalized Method of Moments (GMM) introduced by [11]. Under some regularity
conditions [24], the GMM estimators are consistent and, for any general positive definite
matrix W, their asymptotic variance-covariance matrix V are:

V =
1

N − d− r + 1
(D⊺WD)−1 D⊺WSWD (D⊺WD)−1

,

The matrix D is defined as:

D = E

∂f
(

G
(r)
n , θ

)

∂θ⊺

 . (36)

While
S = E

[

f
(

G
(r)
n , θ

)

f
(

G
(r)
n , θ

)

⊺
]

. (37)

For the squared L2 norm in (34) matrix V becomes:

V =
1

N − d− r + 1
(D⊺D)−1 D⊺SD (D⊺D)−1 (38)

while for (35), as observed above, the choice of the matrix W is done in order to obtain
efficient estimators in the class of all asymptotically normal estimators. To obtain this result
we prefer to use the Continuously Updated GMM estimator [12]. In this case the matrix W is
determinated simultaneusly with the estimation of the vector parameters θ. Introducing the
function ‖ĝ (θ)‖2

Ŵ
as the sample counterpart of the quadratic form in (35), the minimization

problem becomes:

min
θ∈Rq+p

‖g (θ)‖2
Ŵ

= ĝ (θ)⊺ Ŵ (θ) ĝ (θ)

where function Ŵ (θ) maps from Rp+q to Rd×d and is defined as:

Ŵ (θ) =

(

1

N − r − d+ 1

N−r−d
∑

n=r

f
(

G
(r)
n , θ

)

f
(

G
(r)
n , θ

)

⊺

)−1

. (39)

Observe that Ŵ (θ) is a consistent estimator of matrix S−1 that means:

Ŵ (θ)
P→

N→+∞
S−1 (40)

consequently the asymptotic variance-covariance matrix V in (38) becomes:

V =
1

N − r − d+ 1

(

D⊺S−1D
)−1

(41)

Once the estimates of vector θ are obtained, the user is allowed to retrieve the increments
of the underlying Lévy process according the following procedure. This stage is independent

12

on the nature of the Lévy measure but it is only based on the solution of the state process Yt

and on the approximation of the quadratic variation with the squared increments of the Lévy
driven process.

Starting from the discrete time equally spaced observations G1, G2, . . . , GN∆t, we remark
that the increment ∆Gt := Gt −Gt− can be approximated using the observations {Gn∆t}Nn=0

as follows:
∆Gt ≈ ∆Gn∆t = Gn∆t −G(n−1)∆t (42)

Recalling that Gt =
∑

0≤s≤t

√
Vs (∆Ls), the approximation in (42) becomes:

∆Gt ≈
√
Vn∆t (∆Ln∆t) (43)

where Vn∆t is the value of the variance process at the observation time t = n T
N

and ∆Ln∆t =
Ln∆t − L(n−1)∆t is the discretized Lévy increment from t−∆t to t.
Using the discretization scheme introduced in (25) the process Ynδt is written as:

Ynδt ≈ e
A∆t

Y(n−1)δt + e
A(∆t)

e
(

a0 + a
′
Yt−∆t

)

(

[LL]d
n
− [LL]d(n−1)

)

(44)

since the difference [LL]d
n
− [LL]d(n−1) ≈ (∆Ln∆t)

2 and using the result in (43), the difference
equation (44) can be approximated in terms of the squared increments of COGARCH(p,q)
process and we have:

Yt ≈ eA∆tYt−∆t + eA(∆t)e (a0 + a′Yt−∆t) (∆Lt)
2

= eA∆tYt−∆t + eA(∆t)e (∆Gt)
2
.

(45)

Choosing Y0 equal to the unconditional mean of the process Yt, we are able to retrieve
its sample path according to the recursive equation in (45). The only quantities that we
need to compute are the squared increments of the COGARCH(p,q) process on the grid
{0,∆t, 2∆t, . . . , n∆t . . . , N∆t}. The estimated state process in (45) is also useful for getting
the estimated trajectory of the variance process. Finally note the Lévy increment at a general
time t = n∆t is obtained as:

∆Lnδt =
∆Gnδt√
Vnδt

. (46)

Once the increments of the underlying Lévy are obtained, it is possible to obtain the estimates
for the Lévy measure parameters through the Maximum Likelihood Estimation procedure [we
refere to the yuima documentation [8, 26] for the available Lévy processes].

5 Package R

In this Section we illustrate the main classes and methods in yuima that allow the user to deal
with a COGARCH(p,q) model. The routines implemented are based on the results considered
in Section 3 for simulation and Section 4 for the estimation procedures.
In particular we classify these classes and methods in three groups. The first group contains
the classes and functions that allow the user to define a specific COGARCH(p,q) model in
the yuima framework. The second group is used for the simulation of the sample paths for the
COGARCH(p,q) model and the third is related to the possibility of estimation using simulated
or real data.

13

5.1 Classes and Methods for the definition of a COGARCH(P,Q)
model

The main object for a COGARCH(p,q) process in the yuima environment is an object of
yuima.cogarch-class that contains all the information about a specific COGARCH(p,q) pro-
cess. This class extends the yuima.model-class and it has only one additional slot, called
@info, that contains an object of cogarch.info-class. We refer to the yuima documentation
for a complete description of the slots that constitute the objects of class yuima.model. In
this paper we focus only on the object of class cogarch.info. In particular its structure is
composed by the slots listed below:

• @p is an integer that is the number of moving average coefficients in the Variance process
Vt.

• @q is an integer number that corresponds to the dimension of autoregressive coefficients
in the variance process Vt.

• @ar.par contains a string that is the label for the autoregressive coefficients.

• @ma.par is the Label for the moving average coefficients.

• @loc.par indicates the name of the location coefficient in the process Vt.

• @Cogarch.var string that contains the name of the observed process Gt.

• @V.var is the Label of the Vt process.

• @Latent.var indicates the label of the state process Yt.

• @XinExpr is a logical variable. If the value is FALSE, default value, the starting condition
for the state process Yt is a zero vector. Otherwise the user has to fix the starting
condition as argument true.parameter in the method simulate.

• @measure identifies the Lévy measure of the underlying noise and consequently the dis-
crete part of the quadratic variation that drives the state process.

• @measure.type says if the Lévy measure belongs to the family of Compound Poisson or
is another type of Lévy

The user builds an object of class yuima.cogarch through to the constructor setCogarch:
setCogarch(p, q, ar.par = "b", ma.par = "a", loc.par = "a0", Cogarch.var = "g",

V.var = "v", Latent.var = "y", jump.variable = "z", time.variable = "t", measure

= NULL, measure.type = NULL, XinExpr = FALSE, startCogarch = 0, work = FALSE, ...)

The arguments used in a call of the function setCogarch are illustrated in the following
list:

• p: A non negative integer that is the number of the moving average coefficients in the
variance process.

• q: A non negative integer that indicates the number of the autoregressive coefficients in
the variance process.

• ar.par: A character-string that is the label of the autoregressive coefficients.

• ma.par: A character-string that is the label of the autoregressive coefficients.

• loc.par: A string that indicates the label of the location coefficient in the variance
process.

• Cogarch.var: A character-string that is the label of the observed COGARCH process.

14

• V.var: A character-string that is the label of the latent variance process.

• Latent.var: A character-string that is the label of the latent process in the state space
representation for the variance process.

• jump.variable: Label of the underlying Lévy process .

• time.variable: Label of the time variable.

• measure: Lévy measure of the underlying Lévy process.

• measure.type: Label that indicates whether the underlying noise is a Compound Poisson
process or another Lévy without the diffusion component.

• XinExpr: A logical variable that identifies the starting condition. In particular, the
default value XinExpr = FALSE implies that the starting condition for the state process
is zero. Alternatively XinExpr = TRUE means that the user is allowed to specify as
parameters the starting values for each component of the state variable.

• startCogarch: Initial value for the COGARCH process.

• . . . : Arguments to be passed to setCogarch such as the slots of the yuima.model-class.

5.2 Classes and Methods for the simulation of a COGARCH(P,Q)
model

The simulate is a method for an object of class yuima.model. It is also available for an object
of class yuima.cogarch. The function requires the following inputs:

simulate(object, nsim=1, seed=NULL, xinit, true.parameter, space.discretized

= FALSE, increment.W = NULL, increment.L = NULL, method = "euler", hurst, methodfGn

= "WoodChan", sampling=sampling, subsampling=subsampling, ...)

In this work we focus on the argument method that identifies the type of discretization
scheme for the time when the object belongs to the class of yuima.cogarch. The default
value euler means that the simulation of a sample path is based on the Euler-Maruyama
discretization of the stochastic differential equations. This approach is available for all objects
of class yuima.model. For the COGARCH(p,q) an alternative simulation scheme is available
choosing method = mixed. In this case the generation of trajectories is based on the solution
(24) for the state process. In particular if the underlying noise is a Compound Poisson Lévy
process, the trajectory is built using a two step algorithm. First the jump time is simulated
internally using the Exponential distribution with parameter λ and then the size of jump is
simulated using the random variable specified in the slot yuima.cogarch@model@measure. For
the other Lévy processes, the simulation scheme is based on the discretization of the state
process solution (25) in Section 5.

5.3 Classes and Methods for the estimation of a COGARCH(P,Q)
model

The cogarch.gmm class is a class of the yuima package that contains estimated parameters
obtained by the gmm function.

• @model is an object of of yuima.cogarch-class.

• @objFun is an object of class character that indicates the objective function used in
the minimization problem. L2 refers to the squared of L2 norm in (34), L2CUE for the
quadratic form (35) and the L1 for the L1 norm in (33)

• @call is an object of class language.

15

• @coef is an object of class numeric that contains the estimated parameters.

• @fullcoef is an object of class numeric that contains the estimated and fixed parameters
from the user.

• @vcov is an object of class matrix.

• @min is an object of class numeric.

• @minuslogl is an object of class function.

• @method is an object of class character.

The cogarch.gmm.incr is a class of the yuima package that extends the cogarch.gmm-class
and is filled from the function gmm.

• Incr.Lev is an object of class zoo that contains the estimated increments of the noise
obtained using cogarchNoise.

• modelis an object of yuima.cogarch-class.

• logL.Incr is an object of class numeric that contains the value of the log-likelihood for
the estimated Levy increments.

• objFun is an object of class character that indicates the objective function used in the
minimization problem. The values are the same for the slot @objFun in an object of class
cogarch.gmm.

• call is an object of class language.

• coef is an object of class numeric that contains the estimated parameters.

• fullcoef is an object of class numeric that contains estimated and fixed parameters.

• vcov is an object of class matrix.

• min is an object of class numeric.

• minuslogl is an object of class function.

• method is an object of class character.

The function gmm returns the estimated parameters of a COGARCH(p,q) model. The pa-
rameters are obtained by matching the theoretical with the empirical autocorrelation function.

gmm(yuima, data = NULL, start, method="BFGS", fixed = list(), lower, upper, lag.max

= NULL, equally.spaced = TRUE, Est.Incr = "NoIncr", objFun = "L2")

• yuima is a yuima object or an object of yuima.cogarch-class

• data is an object of class yuima.data-class contains the observations available at uni-
formly spaced instants of time. If data=NULL, the default, the function uses the data in
an object of yuima-class.

• start is a list that contains the starting values for the optimization routine.

• method is a string that indicates one of the methods available in the function optim.

• fixed a list of fixed parameters in the optimization routine.

• lower a named list for specifying lower bounds for parameters.

• upper a named list for specifying upper bounds for parameters.

• lag.max maximum lag for which we calculate the theoretical and empirical acf. Default
is

√
N where N is the number of observations.

16

• equally.spaced Logical variable. If equally.spaced = TRUE, in each unitary interval
we have the some number of observations. If equally.spaced = FALSE, each unitary
interval is composed by different number of observations.

• Est.Incr a string variable. If Est.Incr = "NoIncr", default value, gmm returns an object
of class cogarch.gmm-class that contains the COGARCH parameters. If Est.Incr =

"Incr" or Est.Incr = "IncrPar" the output is an object of class cogarch.gmm.incr-class.
In the first case the object contains the increments of the underlying noise while in the
second case it contains also the estimated parameters of the Lévy measure.

• objFun a string variable that indentifies the objective function in the optimization step.
objFun = "L2", default value, the objective function is a quadratic form where the
weighting matrix is the identity one. objFun = "L2CUE" the weighting matrix is es-
timated using Continuously Updating GMM (L2CUE). objFun = "L1", the objective
function is the mean absolute error. In the last case standard errors for estimators are
not available.

Function gmm uses function cogarchNoise for the estimation of the underlying Lévy in a
COGARCH(p,q) model. This function assumes that the underlying Lévy process is symmetric
and centered in zero.

cogarchNoise(yuima.cogarch, data=NULL, param, mu=1)

The arguments of the cogarchNoise are listed below

• yuima.cogarch is an object of yuima-class or an object of yuima.cogarch-class that
contains all the information about the COGARCH(p,q) model.

• data is an object of class yuima.data-class that contains the observations available at
uniformly spaced instants of time. If data=NULL, the default, the cogarchNoise uses the
data in an object of yuima.data-class.

• param is a list of parameters for the COGARCH(p,q) model.

• mu is a numeric object that contains the value of the second moments of the Lévy measure.

6 Numerical results

In this section we show how to use the yuima package for the simulation and the estimation of a
COGARCH(p,q) model driven by different symmetric Lévy processes. As a first step we focus
on a COGARCH(1,1) model driven by different Lévy processes available on the package. In
particular we consider the cases in which the driven noise are a Compound Poisson with jump
size normally distributed and a Variance Gamma process. In the last part of this section, we
show also that the estimation procedure implemented seems to be adequate even for higher
order COGARCH models. In particular we simulate and then estimate different kind of
COGARCH(p,q) models driven by a Compound Poisson process where the distribution of the
jump size is a normal.

6.1 Simulation and Estimation of a COGARCH(1,1)

The first example is a COGARCH(1,1) model driven by a Compound Poisson process. As a
first step, we choose the set of the model parameters:

> numSeed <- 200

> param.cp <- list(a1 = 0.038, b1 = 0.053, a0 = 0.04/0.053,

+ lambda = 1, eta=0, sig2=1, x01 = 50.33)

17

a1, b1 and a0 are the parameters of the state process Yt. λ is the intensity of the Compound
Poisson process while η and σ2 are the mean and the variance of the jump size. x0,1 is the
starting point of the process Xt, the choosen value is the stationary mean of the state process
and it is used in the simulation algorithm.
In the following command line we define the model using the setCogarch function.

> mod.cp <- setCogarch(p = 1, q = 1, work = FALSE,

+ measure=list(intensity="lambda",df=list("dnorm(z,eta,sig2)")),measure.type = "CP",

+ Cogarch.var = "g", V.var = "v", Latent.var="x",

+ XinExpr=TRUE)

We simulate a sample path of the model using the Euler discretization. We fix ∆t = 1
15

and
the command lines below are used to instruct yuima for the choice of the simulation scheme:

> Term <- 1600

> num <- 24000

> set.seed(numSeed)

> samp.cp <- setSampling(Terminal=Term, n=num)

> sim.cp <- simulate(mod.cp, true.parameter=param.cp,

+ sampling=samp.cp, method="euler")

In the following figure we show the behaviour of the simulated trajectories for the COGA-
RCH(1,1) model Gt, the variance Vt and the state space Xt:

> plot(sim.cp, main = "simulated COGARCH(1,1) model driven by a Compound Poisson process")

−
8
0

−
6
0

−
4
0

−
2
0

0

g

2
3

4
5

v

0 500 1000 1500

t

2
0

4
0

6
0

8
0

1
0
0

x
1

simulated COGARCH(1,1) model driven by a Compound Poisson process

We use the two step algorithm developed in Section 4 for the estimation of the COG-
ARCH(p,q) and the Lévy measure parameters. In the yuima function gmm, we fix objFun

= L2 meaning that the objective function used in the minimization is the mean squared er-
ror. Setting also Est.Incr=IncrPar, the function gmm returns the estimated increments of the
underlying noise.

> res.cp <- gmm(sim.cp, start = param.cp, objFun = "L2", Est.Incr = "IncrPar")

The results can be displayed using the method summary and in the following figure we report
the recovered increments of the underlying noice process.

> summary(res.cp)

Two Stages GMM estimation

Call:

gmm(yuima = sim.cp, start = param.cp, Est.Incr = "IncrPar", objFun = "L2")

18

Coefficients:

Estimate Std. Error

b1 6.783324e-02 0.06862392

a1 3.403071e-02 0.02897625

a0 1.032014e+00 NA

lambda 1.073912e+00 NA

eta 6.818470e-09 NA

sig2 7.837838e-01 NA

Log.objFun L2: -3.491179

Number of increments: 24000

Average of increments: -0.002114

Standard Dev. of increments: 0.256610

-2 log L of increments: 2851.529874

Summary statistics for increments:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.840000 0.000000 0.000000 -0.002114 0.000000 3.686000

> plot(res.cp, main = "Compound Poisson Increment of a COGARCH(1,1) model")

0 500 1000 1500

−
3

−
2

−
1

0
1

2
3

Compound Poisson Increment of a COGARCH(1,1) model

Time

In
c
r.

L

We are able also to generate the original process using the increments stored into the object
res.cp using the simulate function.

> traj.cp<- simulate(res.cp)

> plot(traj.cp, main = "estimated COGARCH(1,1) driven by compound poisson process")

In the next example, we simulate and estimate a COGARCH(1,1) model driven by a
Variance Gamma process. We set the values for the parameters and define the model using
the following command lines:

> param.VG <- list(a1 = 0.038, b1 = 0.053, a0 = 0.04/0.053,

+ lambda = 1, alpha = sqrt(2), beta = 0, mu = 0, x01 = 50.33)

> cog.VG <- setCogarch(p = 1, q = 1, work = FALSE,

+ measure=list("rngamma(z, lambda, alpha, beta, mu)"),

19

−
8
0

−
6
0

−
4
0

−
2
0

0

g

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

v

0 500 1000 1500

t

2
0

4
0

6
0

8
0

1
0
0

x
1

estimated COGARCH(1,1) driven by compound poisson process

+ measure.type = "code", Cogarch.var = "y", V.var = "v",

+ Latent.var = "x", XinExpr = TRUE)

We obtain a trajectory for COGARCH(1,1) with Variance Gamma noise.

> set.seed(numSeed)

> samp.VG <- setSampling(Terminal = Term, n = num)

> sim.VG <- simulate(cog.VG, true.parameter = param.VG,

+ sampling = samp.VG, method = "euler")

> plot(sim.VG, main = "simulated COGARCH(1,1) model driven by a Variance Gamma process")

0
5
0

1
0
0

1
5
0

y

2
3

4
5

v

0 500 1000 1500

t

2
0

4
0

6
0

8
0

1
0
0

1
2
0

x
1

simulated COGARCH(1,1) model driven by a Variance Gamma process

and then we estimate the model parameters:

> res.VG <- gmm(sim.VG, start = param.VG, Est.Incr = "IncrPar")

> summary(res.VG)

Two Stages GMM estimation

Call:

gmm(yuima = sim.VG, start = param.VG, Est.Incr = "IncrPar")

Coefficients:

Estimate Std. Error

b1 0.051449188 0.04168365

a1 0.028791052 0.01810412

a0 1.248576654 NA

lambda 1.049274382 0.09432438

alpha 1.466220182 0.08769087

beta 0.051526860 0.03929050

mu 0.003357025 0.02935151

20

Log.objFun L2: -3.755496

Number of increments: 24000

Average of increments: 0.003635

Standard Dev. of increments: 0.258127

-2 log L of increments: 4291.499302

Summary statistics for increments:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.548000 -0.001729 0.000000 0.003635 0.002092 4.005000

> plot(res.VG, main = "Variance Gamma Increment of a COGARCH(2,1) model")

0 500 1000 1500

−
4

−
2

0
2

4

Variance Gamma Increment of a COGARCH(2,1) model

Time

In
c
r.

L

Even in this case we can obtain the COGARCH(1,1) trajectory using the estimated incre-
ments as follows:

> traj.VG <- simulate(res.VG)

> plot(traj.VG, main="estimated COGARCH(1,1) model driven by Variance Gamma process")

0
5
0

1
0
0

1
5
0

y

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

v

0 500 1000 1500

t

2
0

4
0

6
0

8
0

1
0
0

1
2
0

x
1

estimated COGARCH(1,1) model driven by Variance Gamma process

21

6.2 COGARCH(p,q) model driven by a Compound Poisson
process

We conclude this Section by illustrating an example using COGARCH(p,q) process. In this
way, we show the ability of the yuima package in managing in a complete way these models.
For this reason in the following we consider a COGARCH(2,1) driven by Compound Poisson
Processes where the jump size is normally distributed.
We define the COGARCH(2,1) model in the yuima using the command lines:

> param.cp2 <- list(a0 = 0.5, a1 = 0.1, b1 =1.5, b2 = 0.5,

+ lambda = 1, eta = 0, sig2 = 1, x01 = 2.5, x02 = 0)

> mod.cp2 <- setCogarch(p = 1, q = 2, work = FALSE,

+ measure = list(intensity = "lambda",df = list("dnorm(z,eta,sig2)")),

+ measure.type = "CP", Cogarch.var = "y", V.var = "v",

+ Latent.var = "x", XinExpr = TRUE)

We simulate a trajectory.

> samp.cp2 <- setSampling(Terminal = Term, n = num)

> set.seed(numSeed)

> sim.cp2 <- simulate(mod.cp2, sampling = samp.cp2,

+ true.parameter = param.cp2, method="euler")

> plot(sim.cp2, main = "simulated COGARCH(2,1) model driven by a Compound Poisson process")

−
4
0

−
2
0

0

y

0
.5

0
.7

0
.9

1
.1

v

0
1

2
3

4
5

6

x
1

0 500 1000 1500

t

0
2

4
6

8

x
2

simulated COGARCH(2,1) model driven by a Compound Poisson process

We estimate the model parameters and recover the underlying Lévy noise increments:

> res.cp2 <- gmm(yuima = sim.cp2, start = param.cp2, Est.Incr = "IncrPar")

> summary(res.cp2)

Two Stages GMM estimation

Call:

gmm(yuima = sim.cp2, start = param.cp2, Est.Incr = "IncrPar")

Coefficients:

Estimate Std. Error

b2 0.0569630413 0.20054247

b1 0.9520642366 3.54500502

a1 0.0281299955 0.09775311

a0 0.2956658497 NA

lambda 1.0423762156 NA

22

eta 0.0002425553 NA

sig2 0.8154399532 NA

Log.objFun L2: -3.323979

Number of increments: 24000

Average of increments: -0.001929

Standard Dev. of increments: 0.258830

-2 log L of increments: 2861.417140

Summary statistics for increments:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.054000 0.000000 0.000000 -0.001929 0.000000 3.483000

> plot(res.cp2, main = "Compound Poisson Increment of a COGARCH(2,1) model")

−
4
0

−
2
0

0

y

0
.4

0
.6

0
.8

v

5
1
0

1
5

2
0

x
1

0 500 1000 1500

t

0
2

4
6

8

x
2

estimated COGARCH(2,1) model driven by a Compound Poisson process

The path of the COGARCH(2,1) driven by the estimated increments are reported below:

> traj.cp2 <- simulate(res.cp2)

> plot(traj.cp2, main = "estimated COGARCH(2,1) model driven by a Compound Poisson process")

−
4
0

−
2
0

0

y

0
.4

0
.6

0
.8

v

5
1
0

1
5

2
0

x
1

0 500 1000 1500

t

0
2

4
6

8

x
2

estimated COGARCH(2,1) model driven by a Compound Poisson process

Acknowledgements

The authors would like to thank the CREST Japan Science and Technology Agency.

23

References

[1] B. Basrak, R. A. Davis, and T. Mikosch. A characterization of multivariate regular
variation. The Annals of Applied Probability, 12(3):908–920, 2002.

[2] E. Bibbona and I. Negri. Higher moments and prediction-based estimation for the coga-
rch(1,1) model. Scandinavian Journal of Statistics, pages n/a–n/a, 2015.

[3] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3):307–327, April 1986.

[4] A. Brandt. The stochastic equation yn+1=anyn+bn with stationary coefficients. Ad-
vances in Applied Probability, 18(1):211–220, 1986.

[5] P. Brockwell, E. Chadraa, and A. Lindner. Continuous-time GARCH processes. Annals
of Applied Probability, 16(2):790–826, 2006.

[6] P. J. Brockwell, R. A. Davis, and Y. Yang. Estimation for non-negative lévy-driven
ornstein-uhlenbeck processes. Journal of Applied Probability, 44:987–989, 2007.

[7] P.J. Brockwell. Lévy-driven carma processes. Annals of the Institute of Statistical Math-
ematics, 53(1):113–124, 2001.

[8] A. Brouste, M. Fukasawa, H. Hino, S. M. Iacus, K. Kamatani, Y. Koike, H. Masuda,
R. Nomura, T. Ogihara, Shimuzu Y., M. Uchida, and Yoshida N. The yuima project: A
computational framework for simulation and inference of stochastic differential equations.
Journal of Statistical Software, 57(4):1–51, 2014.

[9] E. Chadraa. Statistical Modelling with COGARCH(P,Q) Processes., 2009. PhD Thesis.

[10] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quan-
titative Finance, 1:223–236, 2001.

[11] L. P. Hansen. Large sample properties of generalized method of moments estimators.
Econometrica, 50(4):1029–1054, 1982.

[12] L. P. Hansen, J. Heaton, and A. Yaron. Finite-sample properties of some alternative gmm
estimators. Journal of Business & Economic Statistics, 14(3):262–280, 1996.

[13] S. Haug, C. Klüppelberg, A. Lindner, and M. Zapp. Method of moment estimation in
the cogarch(1,1) model. Econometrics Journal, 10(2):320–341, 2007.

[14] S. M. Iacus. Simulation and Inference for Stochastic Differential Equations: With R
Examples. Springer, 2008.

[15] S. M. Iacus and L. Mercuri. Implementation of lvy carma model in yuima package.
Computational Statistics, pages 1–31, 2015.

[16] J. Kallsen and B. Vesenmayer. {COGARCH} as a continuous-time limit of garch(1,1).
Stochastic Processes and their Applications, 119(1):74 – 98, 2009.

[17] H. Kesten. Random difference equations and renewal theory for products of random
matrices. Acta Mathematica, 131(1):207–248, 1973.

[18] C. Klüppelberg, A. Lindner, and R. Maller. A continuous-time garch process driven by
a lévy process: Stationarity and second-order behaviour. Journal of Applied Probability,
41(3):601–622, 2004.

[19] A. Loregian, L. Mercuri, and E. Rroji. Approximation of the variance gamma model with
a finite mixture of normals. Statistics & Probability Letters, 82(2):217 – 224, 2012.

[20] Granzer M. Estimation of COGARCH Models with implementation in R., 2013. Master
Thesis.

24

[21] D. B. Madan and E. Seneta. The variance gamma (v.g.) model for share market returns.
The Journal of Business, 63(4):511–24, 1990.

[22] R. A. Maller, G. Müller, and A. Szimayer. Garch modelling in continuous time for
irregularly spaced time series data. Bernoulli, 14(2):519–542, 05 2008.

[23] G. Müller. Mcmc estimation of the cogarch (1, 1) model. Journal of Financial Econo-
metrics, 8(4):481–510, 2010.

[24] Whitney K Newey and Daniel McFadden. Large sample estimation and hypothesis testing.
Handbook of econometrics, 4:2111–2245, 1994.

[25] P. Protter. Stochastic integration and differential equations. Springer, 1990.

[26] YUIMA Project Team. yuima: The YUIMA Project package (stable version), 2013. R
package version 1.0.2.

[27] H. Tomasson. Some computational aspects of gaussian carma modelling. Statistics and
Computing, pages 1–13, 2013.

[28] H. Tsai and K. S. Chan. A note on non-negative continuous time processes. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(4):589–597, 2005.

25

	1 Introduction
	2 COGARCH Models driven by a Lévy process
	3 Simulation of a COGARCH(P,Q) model
	4 Estimation of a COGARCH(P,Q) model in the yuima package
	5 Package R
	5.1 Classes and Methods for the definition of a COGARCH(P,Q) model
	5.2 Classes and Methods for the simulation of a COGARCH(P,Q) model
	5.3 Classes and Methods for the estimation of a COGARCH(P,Q) model

	6 Numerical results
	6.1 Simulation and Estimation of a COGARCH(1,1)
	6.2 COGARCH(p,q) model driven by a Compound Poisson process

