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Introduction 
 

Immune dysfunction in HIV infection 

Impaired T-cell homeostasis in untreated HIV infection and its persistence during 

combination antiretroviral therapy (cART) 

The inexorable depletion of CD4+ T cells observed in untreated HIV-1 infection is mainly due to the 

disruption of homeostatic mechanisms. In particular, contraction of memory (CD45RO+) and naive 

(CD45RA+) T-cells have been described [1, 2] and may be due to continuous antigen presentation 

and immune reactivation; indeed, increased turnover and preferential infection of memory CD4+ T-

cells with their subsequent death result in the recruitment of naıve lymphocytes to the memory pool 

to overcome these defects [3, 4]. The CD8+ T-cell pool also undergoes homeostatic modifications; 

in particular, as described by Paiardini et al., the expansion of effector CD8+ T-cells is associated to 

the loss of CD127 (IL-7Rα) and correlates with markers of disease progression (plasma viremia and 

CD4+ T-cell depletion) as well as with indices of T-cell activation [5]. Indeed, Many CD8+ T-cells 

also lose expression of IL-7Rα and exhibit an activated effector phenotype [6], particularly in naïve 

and memory subsets  [7, 8]. 

In this respect, a seminal paper published by Giorgi et al. demonstrated that the CD8+ T-cell increases 

observed in HIV infection are ascribable to the rise of activated cells, thus putting forward a possible 

key role of this subset in the pathogenesis of HIV disease [9].  

This hypothesis is supported by the observation that the natural hosts of the simian immunodeficiency 

virus (SIV), which fail to develop immunodeficiency and AIDS despite high levels of virus 

replication, have surprisingly low levels of immune activation in the chronic stage of infection [10, 

11]. In accordance with these findings, Giorgi et al. demonstrated how the presence of activated 

CD8+CD38+HLA-DR+ was the major determinant of survival in asymptomatic and advanced HIV-

1 disease [12, 13]. After these first evidences, a large body of experimental evidence generated in 
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both HIV-infected individuals and SIV-infected Rhesus Macaques (RMs) indicates that the 

establishment of a state of chronic, generalized immune activation is a characteristic feature of 

pathogenic HIV/SIV infection that is consistently associated with disease progression [14, 15]. 

Furthermore, in the pre-ART era, also soluble markers of innate immune activation (ie, neopterin, 

beta2- microglobulin, sCD163) as well as other activation markers (CD14+CD16+) were found to be 

strongly predictive of rapid progression to AIDS and death [16, 17]. In the setting of T-cell response 

and activation, co-stimulatory molecule CD28 and the co-inhibitory molecules cytotoxic T 

lymphocyte antigen-4 (CTLA-4; CD152) and programmed death 1 (PD-1; CD279) are particularly 

important for regulating T-cell responses [18]. Recently, PD-1, gained much attention in viral 

immunology as it plays a significant role in establishment of virus-specific CD8+ T-cell exhaustion 

[19, 20] as well as HIV reservoirs  [21]. Interestingly, PD-1-expressing CD8+ T-cells lack the 

expression of the co-stimulatory receptor, CD28, effector functions such as perforin and granzyme-

B secretion/ killing, and express lower levels of CCR7 and CD127, which are important molecules 

for the maintenance of memory T cells [22]. Similarly, recent studies suggest the role of inhibitory 

molecules also in CD4+ T cell dysfunction. Indeed, PD-1, CTLA-4 and TIM-3 are highly elevated 

on HIV-specific CD4+ T cells thus participating to virus-specific CD4+ T-cell impairment [23, 24] 

and have been linked to immune activation, inflammation and decreased production of cytokines [25-

28].  

“T Memory Stem Cells” (Tscm) also represent a novel lymphocyte subset under thorough 

investigation in the setting of HIV infection given their ability to differentiate into more mature T cell 

subset while maintaining their own pool size through homeostatic self-renewal [29]. Tscm cells have 

been defined by the expression of naïve T cell markers such as CD45RA and CCR7, in tandem with 

memory T cell markers including CD95, CD27 and CD62L, among others. Such cells were detected 

within both CD4+ and CD8+ T cell subsets and account for approximately 2-4% of all cells in each 

compartment. Despite the expression of several naive T cell markers, prior studies demonstrated that 

Tscm cells could rapidly execute classical lymphocellular effector functions and secrete a number of 
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different cytokines; so far the presence of CMV, Flu and SIV-specific CD8+ Tscm cells has been 

formally demonstrated, but CD4+ and CD8+ Tscm cells are likely to contribute to cellular immune 

responses against any microbial pathogen that challenges the host; and may also be inducible by 

vaccines or immunogens [30]. Additional properties of Tscm include a long in vivo life span, greater 

proliferative potential than other T cell memory subsets, and preferential homing to secondary 

lymphoid tissues [31, 32]. These cells are particularly affected by HIV infection through CCR5 

expression on their surface and proposed as a site of persistence given their particular biological 

properties including high in vivo longevity, relative quiescence, and marked proliferative potential 

[33-35]; furthermore, the preservation of the CD8+ Tscm subset in the setting of untreated HIV-1 

infection is associated with improved viral control and immunity [36]. 

 

Combination antiretroviral therapy (cART) has dramatically changed the natural course of HIV 

infection by suppressing viral replication and reconstituting CD4+ T-cell numbers with subsequent 

reduction of HIV and AIDS-comorbidities and death [37, 38]. Despite this, increased immune 

activation and inflammation as well as impaired homeostasis persist during cART treatment [39-42]. 

Such defects lead to a senescent immune system [43], which has been linked to the development of 

non-AIDS comorbidities (e.g. osteoporosis [44], atherosclerosis [45], non-AIDS cancers [46], 

neurocognitive decline [47], liver [48] and kidney disease [49]) even under cART treatment [50-54].  

In recent years, a low CD4/CD8 ratio [55], has been proposed as a hallmark of T-cell defects related 

to aging and a predictor of mortality in the general population [56]; indeed, lack of normalization of 

the CD4/CD8 ratio during otherwise effective cART is associated with increased innate and adaptive 

immune activation, an immunosenescent phenotype, and higher risk of morbidity/mortality [57]. 

Also the role of immune exhaustion has been investigated in the setting of cART-treated infection. 

Across two large cohorts of treated individuals, Cockerham et al. found consistent associations 

between viremia, CD8+ and CD4+ T-cell activation and PD-1 confirming the relationship between 

activation and T-cell exhaustion despite cART [58]. Further, Breton et al. have identified PD-1 as a 
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marker of persistent aberrant distribution of memory T-cell subsets in HIV-1 infection despite long 

term cART [59]. In contrast, recent data seem to suggest that long-term therapy appears to preserve 

the frequency of CD4+ [60] and CD8+ Tscm [36] as well as the function of the Tscm HIV-specific 

CD8+ pool [61]. 

Thus, the discovery of Tscm as the stem cell of cellular immune memory may have critical 

implications for understanding reason why HIV-infected subjects do bot normalize immune 

exhaustion parameters, maintaining disrupting T-cell homeostasis despite fully suppressive cART.  

 

The role of the gastrointestinal tract in the pathogenesis of HIV infection 

Structural changes in the gastrointestinal tract during HIV infection 

Damage to the gastrointestinal (GI) tract occurs early and irreversibly in progressive HIV-1 and SIV 

infections and is closely linked to systemic inflammation [62]. In particular, numerous GI structural 

abnormalities have been described in both HIV-1 and SIV infection, such as focal epithelial cell 

degeneration, malabsorption, and crypt hyperplasia [63] as well as massive enterocyte apoptosis, 

decreased expression of tight junction proteins, and increased intestinal permeability [64-66]. The net 

effect of these abnormalities result in focal breaches to gut epithelial barrier with consequent 

systematically inflammation due to increased Microbial Translocation (see below) and dysregulation 

of IL-6 and SOCS-3 gene expression [67, 68]. 

 

Whether cART restores gut structure is controversial. Introduction of therapy was shown to abrogate 

the HIV-induced intestinal barrier defects [69], but recent studies demonstrated persistent impairment 

of the tight junction complex [70-72].  

Taken together, these alterations lead to the presence of bacteria and microbial components in the 

lamina propria of both untreated SIV-infected macaques [73, 74] and HIV-infected individuals [75] 
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as well as passage of gut microbiota and microbial products into the systemic circulation, 

phenomenon defined as microbial translocation [76]. 

 

Microbial translocation, the gastrointestinal microbiota and mucosal immunity during 

HIV infection 

Structural damage to the GI tract as well as mucosal immune balances (see below) promote 

translocation of commensal bacteria locally and systemically [77]. In the setting of HIV infection, 

Brenchley et al. were the first to demonstrate increased levels of circulating lipolysaccharide (LPS), 

marker of microbial translocation, in both chronically HIV-infected subjects and SIV-infected RM, 

which was linked to innate and adaptive immune activation [76]. Many studies confirmed such 

findings  and investigated the possible association of microbial translocation with the clinical outcome 

in HIV infection [78]. In this context, microbial translocation was found to be an independent 

predictor of disease progression and mortality [79, 80] as well as a key promoter of non-AIDS co-

morbidities and viral liver infections [81-83].  

HIV infection also alters the composition of the intestinal microbiota, which is known to contribute 

to the maintenance of gut homeostasis [84, 85]. Indeed, an early study showed significant dysbiosis 

of the faecal biota in untreated HIV-1–infected subjects with a predominance of opportunistic 

pathogens (Pseudomonas aeruginosa and Candida albicans) and low levels of protective bacteria 

(bifidobacteria and lactobacilli) compared to uninfected individuals. This dysbiosis was associated 

with increased faecal calprotectin, finding that is clearly indicative of a significant GI inflammation. 

[86] First data of correlation between gut microbial community and systemic immunological 

abnormalities was found by Ellis et al. who reported that the proportions of Enterobacteriales and 

Bacteroidales were significantly correlated with duodenal CD4+ T-cell depletion and peripheral 

CD8+ T-cell activation, respectively [87], supporting evidence of a direct role of the gut microbiota 

in driving local and systemic immune activation in HIV-infected patients [88-90]. In accordance to 
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these evidences, Perez-Santiago et al. showed that shaping the gut microbiome, especially 

proportions of Lactobacillales, could help preserve immune function during HIV infection [91]. . 

Whether cART can restore dysbiosis occurring during the course of HIV-infection is still a matter of 

debate. In this context, Nowak et al. showed how microbiota alterations are closely associated with 

immune dysfunction in HIV-1 patients, and these changes persist during short-term cART [92].  

During HIV infection the GI tract is also characterized by a marked depletion of CD4+ cells [93-96], 

given the large numbers of target cells that express the HIV CCR5 co-receptor for entry [97, 98]. 

Aside from CD4+ T-cells, however, the GI tract is home to other populations which defend the 

mucosa through the production of cytokines such as IL-17 and IL-22 [99, 100]. Indeed, novel work 

has established a role for IL-17 and IL-22-secreting T cell populations in limiting microbial 

translocation and systemic T-cell activation/inflammation, by showing loss of Th22, a shift away 

from Th22 and Th17 to Treg cells as well as a negative correlation between immune activation and 

Th17/Th22 proportions [101]. In the setting of T-cell populations-producing IL-17 and IL-22, 

Cosgrove et al. have demonstrated an early decrease of CD8+CD161++ tissue-infiltrating 

populations, defined Mucosal Associated Invariant T cells (MAIT), during acute and chronic 

infection [102]. These modifications may impact mucosal defense and could be important in 

susceptibility to specific opportunistic infections in HIV. 

Further, HIV infection impairs T-cell subsets expressing gut-homing markers such as α4β7 (including 

Tscm, [36]), CCR6 and CCR9, both in the peripheral blood and GI mucosa [103-107] which are 

known to regulate the trafficking of immune cells from periphery into the gut. 

 

Whether cART restores gut immune function is still matter of debate. Overall, therapy seemingly 

normalizes the frequencies of mucosal immune subsets if initiated early in the course of infection, 

while their function invariably remains impaired [108-111].  



9 
 

It is thus critical to investigate the underlying mechanism of poor recovery on effective cART, 

focusing on link between microbial translocation, modification of intestinal microbiota and mucosal 

immune homeostasis, possibly contributing to improving HIV prognoses and life expectancy. 
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Study rationale, objective and specific aims 
 

In the era of combination antiretroviral therapy (cART), a remarkable reduction of HIV and AIDS-

comorbidities and death has been described [37, 38]. Nonetheless, immune defects persist during 

treatment [39-41, 112, 113] and may be causally linked to increased morbidity and mortality of HIV-

infected subjects compared to the general population [114-116].  

Microbial translocation and dysbiosis as well as impaired mucosal immunity likely represent 

underlying pathogenic mechanisms of the peripheral immune flaws observed in the course of 

virologically-effective cART [76, 88, 89, 117, 118]. However, a systematic investigation of these 

parameters in a longitudinal cohort of HIV-infected individuals starting cART is currently lacking. 

In this context, the overall objective of our research is to understand the extent by which enduring gut 

abnormalities represent a cause of impaired T-cell homeostasis during combination antiretroviral 

therapy (cART). In particular, we aim to pursue our objective through the following specific aims: 

1) Specific Aim 1: study of the modifications of T-cell homeostasis, microbial translocation, 

gastrointestinal function and faecal microbiota composition in a cohort of HIV-infected, 

antiretroviral-naïve subjects prior to and following 12 months of cART. 

2) Specific Aim 2: study of the contribution of CD4+CD161+CCR6+, CD4+CCR9+α4β7+ 

(“gut-homing phenotype”) and Tscm cells in sustaining peripheral immune defects in HIV-

infected, antiretroviral-naïve subjects prior to and following 12 months of cART 

(immunological substudy). 
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Patients and Methods 
 

Specific Aim 1: Study of the modifications of T-cell homeostasis, microbial 

translocation, gastrointestinal function and faecal microbiota composition in a 

cohort of HIV-infected, antiretroviral-naïve subjects prior to and following 12 

months of cART. 

 

Patients 

HIV-infected, antiretroviral-naïve subjects introducing cART (T0) were consecutively recruited at 

the Clinic of Infectious Diseases and Tropical Medicine, Dept of Health Sciences, ASST Santi Paolo 

e Carlo, University of Milan, Italy following the provision of informed consent. 

Only subjects presenting virological suppression (<40 cp/mL) and active follow-up after 12 months 

of treatment (T12) were included in the study 

The Ethics Committee of our Institution approved the study and participants provided written 

informed consent. 

 

Microbial translocation parameters 

Plasma levels of sCD14 (R&D systems) and EndocAb (Hycult Biotech) were measured by ELISA 

test. Circulating levels of lipopolysaccharide (LPS) were assessed using the LAL test (Lonza), prior 

to 1:150 diluition and preheating at 95°C for 10 minutes. 
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Gastrointestinal functional markers: LAC/MAN fractional excretion ratio and 

Intestinal Fatty Acid Binding Protein (I-FABP) 

The urinary lactulose-mannitol fractional excretion ratio (LAC/MAN) was used to assess small 

intestinal permeability. Patients were asked to fast the night before and to collect their morning urine 

before drinking a sugar probe solution containing 5 g of lactulose and 1 g of mannitol in 

approximately 100mL of water. Urine was collected for 5 hours following administration of the 

double sugar solution and patients did not eat or drink (with the exception of water) until the end of 

the 5-hour collection. The total volume of urine was recorded and an aliquot of 30 mL preserved with 

chlorhexidine (0.236 mg/mL of urine; Sigma Chemical, St Louis, MO, USA) was frozen and stored 

for High Performance Liquid Chromatography (HPLC) analysis of lactulose and mannitol (Dionex 

MA-1 ion exchange column with pulsed amperometric detection on a Dionex Ion Chromatograph 

3000, Thermo Scientific, Sunnyvale, CA). 

Intestinal Fatty Acid Binding Protein (I-FABP) was assessed by ELISA (Hycult Biotech). 

 

Faecal calprotectin quantification and microbial population analysis 

Faeces were collected at T0 and T12, frozen at -20°C and then thawed for genome extraction. Total 

bacterial DNA was extracted from 200 mg of faeces using the PSP Spin Stool DNA Plus kit (Stratec 

Molecular, Berlin, Germany) in accordance with the manufacturer’s instructions. 

Faecal calprotectin was tested by ELISA (PhiCal, Eurospital, Italy). 

Analysis of the microbial population was executed as previously described [70]. Following 

amplification of the V2–V3 region of the 16S ribosomal DNA (rDNA) gene, using primers HDA1-

GC and HDA2, denaturing gradient gel electrophoresis (DGGE) was performed using PhorU system 

(Ingeny, Netherlands) [119]. Banding patterns were analysed (Fingerprinting II software Bio-Rad 

Laboratories, Bio-rad, Italia) using Pearson’s coefficient and UPGMA method to generate 

dendograms; after excision and amplification of the bands through primers HDA1 and HDA2, the 
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final PCR products purified (WizardSVGel,PCR Clean-UpSystem) were analysed with sequencing 

of PrimmBiotech srl (Milan, Italy), bacterial identification was confirmed through a sequence search 

in the GenBank DNA database using the Basic Local Alignment Search Tool algorithm 

(http://www.ncbi.nlm.nih.gov/) and ribosomal RDP database (http://rdp.cme.msu.edu/). The bacterial 

taxa reported in literature with a key-role in inflammation and gut permeability-modification were 

quantified through Real Time PCR using StepOne method (Applied Biosystems, USA); hence we 

selected four genera (Lactobacillus, Roseburia, Bacteroides and Prevotella) and one family 

(Enterobacteriaceae) for statistical analyses. 

 

Flow cytometry surface staining 

Fresh peripheral blood was drawn from all study participants in EDTA-containing tubes and were 

stained for flow cytometry evaluation using the following fluorochrome-labelled antibodies: CD4-

PECy7, CD8-APC, CD127-PE, CD38-FITC, CD45R0-PE, CD45RA-FITC (BD Biosciences, San 

Jose, California, USA). 

The following combinations were used: CD4/CD8/CD45/CD127/CD45RA and 

CD8/CD45/CD45R0/CD38 to assesses naïve (CD45), activated (CD38+), memory activated 

(CD38+CD45R0+) and IL-7Rα+ (CD127+) both in CD4 and CD8 T-cell subsets as described in 

literature [120-122]. 

Briefly, 50 µl of whole blood were stained for 30 min in the dark at 4°C, incubated at dark with 1 mL 

of Lysing Solution 10X Concentrate (BD Biosciences, San Jose, California, USA) for lysing red 

blood cells and then washed twice with 1 ml of PBS.  

Before using, Lysing Solution was diluted 1:10 with distilled water. 

Cells were run on a FACS CANTO 2.6 cytometer (BD Biosciences, San Jose, California, USA) and 

analyzed with FACS Diva 6.1.3 software. Cells were gated first based on side- and forward-scatter 

properties, then for as CD4 and/or CD8 and finally as CD45RA/CD127 or CD45R0/CD38. 

http://www.ncbi.nlm.nih.gov/
http://rdp.cme.msu.edu/
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Statistical analyses 

Statistical analyses were performed with the use of GraphPad Prism 6.0. Wilcoxon test was used for 

statistics. Chi-squared test was used for categorical variables. Correlations were assessed by 

Spearman’s rank coefficient. A p value <0.05 was considered statistically significant. 

 

2) Specific Aim 2: Study of the contribution of CD4+CD161+CCR6+, 

CD4+CCR9+α4β7+ and Tscm cells in sustaining peripheral immune defects in 

HIV-infected antiretroviral-naïve subjects prior to and following 12 months of 

cART (immunological substudy). 

  

Patients 

A subgroup of 28 HIV-infected, antiretroviral-naïve subjects introducing cART (T0) with available 

cryopreserved biological samples were selected from the cohort of patients enrolled in Aim 1. 18 

HIV-uninfected age- and sex-matched individuals were selected as controls. 

The Ethics Committee of our Institution approved the study and participants provided written 

informed consent. 

Human lymphocyte separation 

Fresh peripheral blood was drawn from all study participants in EDA-containing tubes and PBMCs 

were separated by Ficoll-Histopaque technique (Biocoll separating solution, BIOSPA), collected in 

500 uL of R10 medium (composition per 100mL R10: 88mL RPMI, 10mL fetal bovine serum, 1mL 

[100UI/mL] L-glutamine and 1 ml 20 [100UI/mL] penicillin/streptomycin; Euroclone, Italy) and 500 

uL of freezing solution (80% RPMI, Euroclone, Italy, 20% Dimethyl sulfoxide, DMSO, Saint Louis, 

Missouri, USA) and cryopreserved in liquid nitrogen. 
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Flow Cytometry surface staining 

Cryopreserved PBMCs collected at T0 and T12 were rapidly thawed by immersing cryovials in a 37 

°C water bath shaking it gently until only a small ice crystal remained. Cells were then immediately 

transferred into 10 ml of pre-warmed RPMI 1640 medium (+10% FBS and 1% penicillin and 

streptomycin). After centrifuging, cells were suspended in 10 ml of R10, stained with trypan blue dye 

and counted. Then, 1x106 cells were stained with fluorochrome-labeled antibodies for the flow 

cytometric study of lymphocyte surface phenotypes. To check cell viability, cells were stained with 

7-aminoactynomycin D (7-AAD, BD Biosciences, San Jose, California, USA) for 30 min in the dark 

at 4°C. Only samples with cellular viability greater than 70% were used for experiments. 

The following antibodies were used: HLA-DR-FITC, CD38-PE, CCR7-PeCy7, CD45RA-PeCy5, 

PD-1-PE, CD27-PE, CD95-APC, α4β7integrin-APC CCR6-PeCy7, CD161-APC (BD Biosciences, 

San Jose, California, USA), CCR9-FITC (R&D Systems, Minneapolis, MN, USA).  

We evaluated CD4+ and CD8+ activation (HLA-DR+CD38+), maturation (naïve: 

CCR7+CD45RA+; central memory: CCR7+CD45RA-; effector memory: CCR7-CD45RA-; 

terminally differentiated: CCR7-CD45RA+) exhaustion (PD-1+), the frequency of stem cell-like 

memory T cells (Tscm; CCR7+CD45RA+CD27+CD95+) and that of CD4+ T-cells with a “gut 

homing” (CCR9+α4β7+) and a “Th17/Th22” phenotype (CCR6+CD161+). 

Cells were run on a FACS VERSE cytometer (BD Biosciences, San Jose, California, USA) and 

analyzed with FlowJo V10 (FlowJo LLC, Ashland, Oregon, USA). 

 

 

 

 

Statistical analysis 

 
All continuous variables are presented as median and interquartile ranges (25th-75th percentile), 

while categorical data are shown as absolute numbers and percentages. The Mann Whitney U test, 
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Wilcoxon test and Chi squared test were used for the comparison between 2 groups. p values <0.05 

were considered significant. Statistics were performed using GraphPad Prism 6 software. 
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Results 
 

Specific Aim 1: Study of the modifications of T-cell homeostasis, microbial 

translocation, gastrointestinal function and faecal microbiota composition in a 

cohort of HIV-infected, antiretroviral-naïve subjects prior to and following 12 

months of cART. 

 

Patient population  

188 antiretroviral-naïve HIV-infected subjects were consecutively enrolled (T0) and followed for 12 

months after cART introduction (T12). After 12 months, 160 patients presented virological 

suppression (<40 cp/mL) and were included in to the study. Demographic and viro-immunologic 

parameters of study subjects are shown in Table 1. At baseline, median HIV RNA load, CD4+ T-cell 

counts, and CD4+/CD8+ ratio were log10 5.0 cp/mL (IQR 4.6-5.5), 303 cells/ul (IQR: 273-428) and 

0.31 (IQR 0.23-0.41), respectively. Following treatment, all subjects presented viral suppression 

following treatment as per inclusion criteria (log10 HIV RNA: 1.6 cp/mL, IQR 1.6-1.6; p=0.0001), a 

significant recovery in CD4+ T-cell numbers (511 cells/mmc; IQR 507-642; p=0.0001) and increase 

of the CD4+/CD8+ T-cell ratio (0.59, IQR 0.42-0.73; p=0.0001) (Table 1). 

 

Significant increase in CD4+CD127+ and naïve T-cells as well as a reduction in 

CD8+ activated/memory T-cells following cART 

 

We investigated the possible changes in T-cell maturation and activation during the first 12 months 

of cART in a cohort of naive, antiretroviral-naive individuals. 
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We observed a significant increase in expressing-IL-7Rα (CD4+CD127+, T0: 11% IQR: 6-13 vs T12: 

16% IQR: 12-19, p<0.0001; Figure 1A) and naïve CD4+ T-cells (CD4+CD45RA+, T0: 6% IQR: 3-

9 vs T12: 10% IQR: 6-14, p<0.0001; Figure 1B) which paralleled the reduction of activated 

(CD8+CD38+; T0: 12% IQR: 7-18; p=<0.0001; Figure 1C) and memory activated T-cells 

(CD8+CD38+CD45R0+; T0: 4% IQR: 4-11 vs 1% IQR: 0-1; p<0.0001; Figure 1D).  

No differences were observed in terms of naive and central memory CD8+ T-cells (not shown). 

 

Persistent microbial translocation following cART 

In our cohort, no significant modifications in microbial translocation parameters were observed 

Indeed, after 12 months of cART, subjects showed stable levels of LPS (T0: 147,6 pg/ml IQR: 84.60-

231.9, vs T12 138.6 pg/ml IQR: 81.28-280.7; p=0.83; Figure 2A), sCD14 (T0 5.41 ng/ml IQR: 4.16-

7.1 vs T12 5.3 ng/ml IQR: 3.9-7.82; p=0.76; Figure 2B) and EndocAb (T0 48.4 MMU/ml IQR: 24.5-

89.9 vs T12: 44.4 MMU/ml IQR: 23.5-86.4, p=0.82; Figure 2C). 

 

No modifications in intestinal permeability, yet increased damage and reduced 

inflammation following cART 

Intestinal permeability (urinary lactulose-mannitol fractional excretion ratio, LAC/MAN) and 

function (Intestinal Fatty Acid Binding Protein, I-FABP) as well as gut inflammation (faecal 

calprotectin) were measured in our cohort. While no statistical differences in urinary LAC/MAN ratio 

were found (T0: 0.017 IQR: 0.012-0.05 vs T12: 0.026 IQR: 0.021-0.035; p= 0.45; Figure 3A), we 

registered an increase in I-FABP (T0: 586.9 pg/ml IQR: 392,8- 801,2 vs T12: 843,6 IQR: 489,4-1084; 

p=0.0002; Figure 3B) and a decay in faecal calprotectin levels (T0: 67.33 IQR: 26.13-199.1 vs T12: 

28.15 IQR: 15.59-135.7: p=0.0099; Figure 3C). 
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Qualitative analysis of the fecal microbiome revealed an outgrowth of Lactobacillus 

and Bacteroides spp. as well as Proteobacteria following cART 

Given that HIV infection modifies the composition of the gut microbiota with possible effects on gut 

permeability and inflammation, we performed a deep molecular characterization of the faecal 

microbiome in our cohort. In particular, we amplified by DGGE analysis (figure 4) the V2–V3 region 

of the 16S rRNA gene of the following bacteria: Prevotella copri, Faecalibacterium prausnitzii, 

Roseubria intestinalis, Clostridium spp, Flavonifractor plautii, Eubacterium rectale, Bacillus spp, 

Lactobacillus ruogosa, Lactobacillus spp, Acidminococcus intestini, Bacteroides spp, Desulfovibrio 

spp, Phascolarctobacterium succinatutens, Enterococcus faecium, Parabacteroides distasonis.  

Qualitative analysis of these 15 bacterial species belonging to the Firmicutes, Bacteroidetes and 

Proteobcateria phyla did not show significant variations in the course of the study (Table 2). However, 

quantitative analysis of selected genera showed a significant increase in Lactobacillus (Firmicutes) 

(T0: 9.21 genomes/mcg feces IQR: 8.65-9.68 vs T12: 9.69 genomes/mcg feces IQR: 9.37-10.11; 

p<0.0001; Figure 5A) and Bacteroides (Bacteroidetes) (T0: 9.74 genomes/mcg feces IQR: 9.15-10.28 

vs T12: 10.6 genomes/mcg feces IQR: 9.61-11.17; p=0.0006; Figure 5D), yet no modifications of 

Roseburia (Firmicutes) and Prevotella (Bacteroidetes) (Figure 5B, C); a significant increase of the 

Enterobacteriacae family (Proteobacteria) was also observed (T0: 8.26 genomes/mcg feces IQR: 

6.81-9.51 vs T12: 8.95 genomes/mcg feces IQR: 7.44-10.13; p=0.027  Figure 5E).  
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Specific Aim 2: Study of the contribution of CD4+CD161+CCR6+, 

CD4+CCR9+α4β7+ and Tscm cells in sustaining peripheral immune defects in 

HIV-infected antiretroviral-naïve subjects prior to and following 12 months of 

cART (immunological substudy). 

 

Patients 

28 HIV-infected, antiretroviral-naïve subjects introducing cART (T0), were selected from the cohort 

of 160 patients enrolled for Aim 1. 18 HIV-uninfected age- and sex-matched individuals were 

enrolled as controls. 

In line with demographic and viro-immunological findings observed in Aim 1, at baseline median 

HIV RNA load, CD4+ T-cell counts, and CD4+/CD8+ ratio were log10 4.7 cp/mL (IQR 4.2-5.3), 366 

cells/ul (IQR: 273-428) and 0.3 (IQR 0.2-0.4), respectively. Following treatment, all subjects 

presented viral suppression following treatment (log10 HIV RNA: 1.6 cp/mL, IQR 1.6-1.6; p=0.0001), 

a significant recovery in CD4+ T-cell numbers (477 cells/mmc; IQR 269-589; p=0.0001) and increase 

of the CD4+/CD8+ T-cell ratio (0.5, IQR 0.4-0.6; p=0.0001) (Table 3). HIV-uninfected individuals 

presented comparable values in terms of age and sex (age: 33 years, IQR 29-38; p=0.08) (females: 

n=3, 19%; p=0.8) (Table 3).  

 

Decreased T-cell activation yet impaired T-cell maturation despite PD-1 down-

regulation in HIV-infected subjects introducing cART  

We first analysed T-cell immune activation, defined as the co-expression of HLA-DR/CD38 on T-

cells and observed a significant reduction of activated CD4+ (T0: 5.4% IQR: 3.2-9.8; T12: 2.2% IQR: 

1.2-4; p=0.02; Fig.6A) and CD8+ lymphocytes (T0: 6.4% IQR: 3.5-13.9; T12: 2.2% IQR: 1-6.5; 
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p=0.0003; Fig.6B) following cART introduction, reaching levels comparable to those observed in 

uninfected controls (respectively, 2.2% IQR: 0.7-5.6, p=0.7; Fig.6A; and 1.8% IQR: 0.6-3.1, p=0.3; 

Fig. 6B).  

Analysis of T-cell maturation was then evaluated. A significant reduction in CD4+ effector memory 

subsets (CCR7-CD45RA-) was observed in the course of cART (T0: 42.9% IQR: 24.4-51.9; T12: 

31.5% IQR: 19.6-44.3; p=0.01; Fig. 7C), leading to persistent impairment of this subset compared to 

controls (HIV neg; 50.1% IQR: 39.9-63-3; p=0.04 and p=0.002 for comparison at T0 and T12 

respectively; Figure 7C). No major variation in the frequency of the remaining CD4+ and CD8+ T-

cell subsets was observed (Figure 7A,B,D and Figure 8A-D respectively).  

To further characterize T-cell homeostasis in HIV-infected individuals starting cART, we assessed 

the expression of PD-1, a marker of cellular exhaustion. Overall, a hierarchy in PD-1 expression was 

observed, with the highest levels in cART-naïve subjects, followed by those measured in treated 

individuals and uninfected controls (Figure 9-10). Of note, PD-1 expression in the CD4+ effector 

memory subset did not vary significantly in the course of the study and was comparable to that 

registered in HIV-uninfected individuals (Figure 9C), suggesting other mechanisms may be involved 

in the persistent skewing of this pool in the course of treatment.  

  

 

Persistent impairment of Tscm in HIV-infected subjects introducing cART  

We next studied the effects of therapy on the frequency of CD4+ and CD8+ Tscm. We report a 

significant reduction of the CD4+ Tscm subset in HIV-infected subjects during the first 12 months of 

cART (T0: 2.9% IQR: 1.1-9.1; T12: 1.6% IQR: 1.0-2.5; p=0.002; Fig. 11B) and no variations of the 

CD8+ Tscm pool (T0: 1.4% IQR: 0.7-2.5; T12: 1.2% IQR: 0.8-1.9; p=1; Fig. 11C). Overall, HIV 

infection accounted for lower CD4+ and CD8+ Tscm frequencies compared to uninfected controls 

(CD4+ Tscm 5.2% IQR: 3.6-12; see above for HIV+; p=0.04; Fig. 11A; CD8+ Tscm: 3.7% IQR: 2.2-
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6.5; see above for HIV+; p=0.002; Fig. 11C), which were not restored by cART (p=0.001 and p=0.006 

respectively; Fig. 11B, C). 

To explore the existing relationship between Tscm and T-cell maturation subsets, correlation analyses 

were first performed in uninfected controls. Tscm correlated negatively with naïve cells (CD4+: r=-

0.7; p=0.004; Fig. 11C; CD8+: r=-0.7; p=0.006; Fig. 11E) and positively with effector memory cells 

(CD4+: r=0.6; p=0.01; Fig. 11D; CD8+; r=0.6; p=0.01; Fig. 11F). In HIV disease, these correlations 

were lost in the course of untreated infection (Fig. 10G-J) and only the relationship between CD4+ 

naïve and Tscm cells was restored in the course of cART (Fig 10K-N). 

 

Partial modification of CD4+CD161+CCR6+, CD4+CCR9+α4β7+ cell frequencies 

in HIV-infected subjects introducing cART  

Given the role of the GI tract in driving immune activation and other abnormalities in the course of 

both untreated and treated HIV infection, microbial translocation, gut inflammation and the 

composition of the faecal microbiota were investigated in our cohort.  

As observed in Aim 1, no differences were detected in terms of microbial translocation (LPS; p=0.9; 

sCD14; p=0.8; EndocAb; p=0.9;) or gut inflammation parameters (calprotectin; p=0.3) prior to and 

following treatment. Similarly, our data on the composition of the faecal microbiota showed the same 

results reported in Aim 1, i.e. a significant increase in the quantity of Lactobacillus and Bacteroides 

genera (p=0.02 and p=0.04 respectively), no modifications of Roseburia (p=0.2), Prevotella (p=1.0) 

and Enterobacteriacae family (p=0.2). 

Given the capacity of CD4+CCR6+CD161+ to produce IL-17 and IL-22 and their role in maintaining 

mucosal barrier integrity, the frequency of this subset was also analysed. Despite their enrichment in 

the course of cART (T0: 3.8% IQR: 2.6-6.3; T12: 5% IQR: 3.1-7.2; p=0.03; Fig. 12B), Th17/Th22 

subsets maintained significantly lower frequencies compared to HIV-uninfected controls 

(CCR6+CD161+ in HIV-: 8.3% IQR: 5.4-13.1; see above for HIV+; p=0.04; Fig. 12B). Interestingly, 
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this subset correlated positively with CD4+ Tscm prior to cART (r=0.6; p=0.002; Fig. 12C), and not 

during treatment (r=0.2; p=0.4, data not shown). 

CD4+ T-cells with a “gut-homing” (CCR9+ α4β7+) phenotype were also assessed in our study. We 

report a progressive contraction of this subset (T0: 3.4% IQR: 1.7-4.2; T12: 1.7% IQR: 1-3.5; p=0.02; 

Fig. 13B), which maintained significantly lower frequencies compared to HIV-uninfected controls 

(CCR9+ α4β7+ in HIV-: 3.1% IQR: 1.7-6.7; see above for HIV+; p=0.04; Fig. 13B). Considering 

that expression of α4β7 can be sufficient for gut homing of T-cell populations, we analysed the 

frequency of this marker on CD4+ T-cell population, but no statistical differences were observed 

(data not shown). 

A positive correlation was found between T cells with a “gut-homing” phenotype and plasma HIV 

RNA prior to cART introduction (r=0.5; p=0.003; Fig. 13C). In line with this finding, CD4+CCR9+ 

α4β7+ cells also correlated with activated CD4+HLA-DR+CD38+ (r=0.5, p=0.003; Fig 13D) at the 

same time-point; this association was nonetheless lost in the course suppressive treatment (r=0.4; 

p=0.03; Fig. 13E).  
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Discussion 

The overall objective of our research was to understand the extent by which enduring gut 

abnormalities represent a cause of impaired T-cell homeostasis during combination antiretroviral 

therapy (cART). We pursued our objective through two specific aims: 

Specific Aim 1: study of the modifications of T-cell homeostasis, microbial translocation, 

gastrointestinal function and faecal microbiota composition in a cohort of HIV-infected, 

antiretroviral-naïve subjects prior to and following 12 months of cART. 

Specific Aim 2: study of the contribution of CD4+CD161+CCR6+, CD4+CCR9+α4β7+ (“gut-

homing phenotype”) and Tscm cells in sustaining peripheral immune defects in HIV-infected 

antiretroviral-naïve subjects prior to and following 12 months of cART (immunological substudy). 

 

Building on earlier research showing that HIV-infected patients do not recovery proper T-cell 

homeostasis and levels of immune activation comparable to uninfected controls despite cART [123, 

124] and considering the active role played by microbial translocation in supporting immune 

activation/inflammation [74, 76], we aimed to study the effects of 12 months of cART on different 

immune and gut function parameters in a cohort of HIV-infected, antiretroviral-naive subjects. In 

particular, we first conducted a longitudinal study to assess the kinetics of T-cell homeostasis, 

microbial translocation, intestinal inflammation and faecal microbiota composition in subjects 

introducing cART. Our cohort was composed of moderately advanced HIV-infected individuals 

(median CD4 T cell count: 303/uL) who displayed increases of CD4+CD127+ and memory T-cells 

in and a parallel reduction of activated CD8+ lymphocytes, thus suggesting that one year of 

virologically-suppressive cART ameliorates peripheral T-cell homeostasis. Moreover, data on 

intestinal inflammation revealed a reduction of faecal calprotectin, corroborating a positive effect of 

cART in reducing intestinal inflammation. In particular, to our knowledge, this is the first data which 

showed a decrease of this marker in a cohort of treated HIV-infected subjects free from 
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gastrointestinal disease. Indeed, previous studies assessed faecal calprotectin in naïve populations 

[125] [86] and showed that high levels of calprotectin associated with early impairment of  the GI 

tract and clinical progression of HIV infection. 

We then asked if our findings were linked to possible changes of the faecal microbiota with cART-

mediated increases of bacteria known to exert a protective role on the GI tract and systemic immune 

parameters [91]. Qualitative analysis of 15 species belonging to the Firmicutes, Bacteroidetes and 

Proteobcateria phyla did not show significant variations in the course of the study or association with 

parameters of intestinal inflammation/peripheral immune activation. However, quantitative analysis 

of selected species showed a significant increase in Lactobacillus and Bacteroides, together with a 

significant increase of the Enterobacteriacae family, and no modifications of Roseburia and 

Prevotella, pointing to a limited effect of 12 months of cART in changing the composition of the 

faecal microbiota. In line with this finding, we did not observe any significant variation of microbial 

translocation markers in the course of our study. These evidences are in contrast with previous reports 

of reduced microbial translocation following cART [126, 127] and may be due to the immunological 

characteristics of our cohort. as well as the length of follow-up. We cannot rule out that discrepancies 

between our data and previous research may be, in part, because of differences in patients’ 

characteristic, mainly CD4+ T-cell count, which appear to be lower in literature study [127] compared 

to our report. Additionally, another study showed reduced microbial translocation in early treated 

HIV-infected patients [126] and point to time of introducing therapy may be crucial to reduced 

microbial translocation. Thus, it might be hypothesised that longer cART duration might result in a 

most substantial abatement of microbial translocation markers that is not captured at 1-year follow 

up. In this respect, a progressive increase of I-FABP levels, a marker of gut barrier damage, was noted 

in our study and in agreement with previous work by Chevalier et al. [128], may suggest lack of 

mucosal restoration in the first year of cART. This is consistent with the decreased expression of 

genes involved in the regulation of epithelial barrier maintenance reported after 1–2 months in 

primary HIV infection [129], although we cannot exclude that impairment of the mucosal barrier 
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occurred prior to the detection of I-FABP in the peripheral blood. In accordance with this hypothesis, 

comparable levels of the LAC/MAN ratio measuring gut permeability were comparable both before 

and in the course of cART confirming that a longer duration of therapy might be necessary to fully 

restore the structure and function of the gastrointestinal epithelial barrier observed through parameters 

investigated in our study. 

In conclusion, the first aim of our study shows that HIV-infected individuals, after one year of cART, 

despite the amelioration of peripheral immune parameters, feature incomplete restoration of gut 

function which may sustain the passage of microbial components to the systemic circulation. This is 

supported by a general unchanged in microbial translocation parameters and gut barrier markers 

investigated, despite an amelioration in term of gut inflammation. This observation points out 

multiple aspects involved in the control of gut function, putting emphasis on the key role that might 

be played by genes involved in the control of gut functionality. In this respect, further studies should 

investigate molecular pathways which can regulate expression of molecules accounting for gut barrier 

integrity. 

In order to reconcile the above-mentioned findings, we aimed to assess whether a link between 

mucosal cell populations and persistent defects in peripheral T-cell homeostasis exists in the context 

of treated HIV disease. 

We thus conducted an immunological substudy in a group of subjects enrolled in Aim 1 and in age- 

and sex-matched controls. We confirm a reduction of activated CD4+ and CD8+ T-cells following 

treatment, reaching the levels observed in HIV-uninfected individuals, further supporting the positive 

effect of therapy in decrease immune activation described in the literature [39, 42]. The finding of 

similar T-cell activation in HIV-infected individuals and uninfected controls, needs further 

investigation through the expansion of the study sample size to confirm our observation.  

The analyses of T-cell homeostasis overall showed stable maturation phenotypes in the course of 

cART. In contrast however, PD-1 expression showed a significant decline in naïve T-cell subjects, 

pointing to reduced exhaustion of this compartment and possibly implying decreases in the cellular 
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reservoirs in the first 12 months of treatment [21]. An exception to these findings is represented by 

the  progressive decline of CD4+ effector memory cells and a non-significant reduction in PD-1 

expression in this pool, in accordance with previous results from a cross-sectional study [59].  

The reconstitution of the T-cell compartment was further investigated through the kinetics of Tscm. 

While confirming the ability of this subset to transition to memory pools in HIV-infected individuals, 

we show a differential effect of cART in CD4+ and CD8+ Tscm. Indeed, while CD8+ Tscm 

frequencies remained stable over time, thus confirming literature data that prolonged therapy may 

restore this subset [36, 61], we are the first to report a progressive contraction of CD4+ Tscm in the 

course of cART in HIV-infected individuals. This is in contrast to what recently described in the 

animal model [60] and may explain the persistent impairment of the CD4+ Tscm pool given the lack 

of correlation between these two subsets in HIV-infected individuals. Further, the reduction of 

peripheral CD4+ Tscm may be due to their recruitment to the gut, given their expression of the gut-

homing marker α4β7 [36]. In line with this finding, also T-cells with a “gut homing” phenotype 

(CD4+CCR9+β7+) showed a progressive decline in the course of cART, possibly suggesting the 

hypothesis of a positive effect of cART in restoring mucosal immune cells through their migration 

from the periphery as hypothesized by Mavigner and colleagues in their work conducted on long-

term cART experienced individuals [110]. Our different findings respect to Mavigner’s paper could 

reflect an early attempt by the immune system to resolve HIV infection through migration of this 

population in to the gut during first year of infection. On the other hand, CD4+CD161+CCR6+ cells 

showed an increase in the peripheral blood of HIV-infected subjects introducing cART, yet did not 

reach the levels described in uninfected controls, putting forward incomplete immune restoration of 

mucosal immune subsets in the setting of virologically-suppressive therapy. 
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In conclusion, our experiments whose results are summarized in figure 14 revealed: 

1. The amelioration of T-cell homeostasis consisting in the reduction of T-cell activation and 

exhaustion parameters; the analysis of Tscm subsets suggests a differential effect of cART on 

CD4+ and CD8+ populations which needs to be confirmed by longer follow-up and enrolment of 

larger study populations.  

2.  The persistence of microbial translocation and intestinal damage/permeability in the course of 

cART, which may be linked to the impairment of chemokine receptor-expressing T-cells like 

CD4+CD161+CCR6+ and CD4+CCR9+α4β7+. These results require additional experiments to 

confirm their migration from the peripheral blood to the gut as well as their function.  

Many open questions remained unanswered and others are generated by our study. Besides longer 

follow-up and enrolment of larger study populations, study frequency of T-cell populations involved 

in the maintenance of intestinal homeostasis straight to the gut biopsies may be helpful to shed light 

on the recruitment of specific subset to the gut. In this respect, is crucial to investigate molecules 

involved in T-cell recruitment if different tracts of the gut like CCL20, CCL25 and MADCAM-1 to 

clarify reasons underlying unbalanced distribution of T-cell populations investigated in our study 

during cART. Moreover, it would be reasonable to include analyses of gut-homing CD8 populations 

to collect information about these subsets.  

Given the key role of the gut in the establishment and maintenance of HIV reservoir, would be 

interesting assessed the reservoir harbouring in these specific subsets.  

Results of these further studies may identify new target for therapy aimed to blocking these 

chemokine receptors through biological drugs by looking to therapies used for bowel diseases.  
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Tables and Figures 
  



30 
 

Table 1. Clinical characteristics of study patients (Aim 1) 

Parameter at baseline HIV-infected subjects T0 

Sex, F (%) 22 (14%) 

Age, years (IQR) 37 (31-45) 

Risk factors for HIV infection, n (%) 

Heterosexual 

MSM 

IDU 

 

49 (31) 

102 (64) 

9 (6) 

HCV co-infection n (%) 15 (9) 

HBV co-infection 6 (4) 

Antibiotic prophylaxis, n (%) 31 (19) 

Duration of HIV infection, months (IQR) 12 (2-40) 

AIDS diagnosis, n (%) 19 (12) 

First cART regimen n, (%) 

PI-based 

NNRTI-based 

INI-based 

Other 

 

68 (43) 

75 (47) 

8 (5) 

9 (6) 

Parameter in the course of the study HIV-infected subjects T12 

 T0 T12 

HIV RNA log10 cp/ml (IQR) 5.0 (4.6-5.5) 1.6 (1.6-1.6)* 

CD4+ T-cell count, cell/mmc (IQR) 303 (195-377) 511 (507-642)* 

CD4+ T-cell, % (IQR) 19 (14-23) 28 (22-32)* 

CD8+ T-cell count, cell/mmc (IQR) 903 (659-1175) 886 (684-1123) 

CD8+ T-cell, %(IQR) 57 (53-64) 47 (41-53) 

CD4+/CD8+ T-cell ratio (IQR) 0.31 (0.23-0.41) 0.59 (0.42-0.73)* 

 

Antibiotic prophylaxis includes trimetroprim/sulfametoxazole, atovaquone. MSM males having sex 

with men. HCV, Hepatitis C Virus, infection defined as the presence of detectable plasma HCV RNA; 

HBV, Hepatitis B Virus, infection defined as HBsAg positivity; cART, Combination Antiretroviral 

Therapy. NNRTI, Non Nucleoside Transcriptase Inhibitor, PI, Protease Inhibitor. INI, Integrase 

Inhibitor. *indicates p<0.01 for T0 vs T12. 
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Figure 1. T-cell homeostasis in the course of cART 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following therapy, we found a significant increase in CD4+CD127+ and CD4+CD45RA+ (Fig. 1A, 

B) as well as a reduction in activated CD8+CD38+and CD8+CD38+CD45R0+%(Fig. 1C, D). Data 

were analysed by Wilcoxon test. 
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Figure 2. Microbial translocation in the course of cART 

 

 

 

 

We did not observe significant changes in microbial translocation after 12 months of cART (2A-C). 

Data were analysed by Wilcoxon test. LPS, lipopolysaccharide; EndocAb, Endotoxin core 

Antibodies; sCD14, soluble CD14; MMU IgM Median Units.  
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Figure 3. Small intestine permeability, gut damage and inflammation in the 

course of cART 

 

 

 

 

The urinary lactulose-mannitol fractional excretion ratio (LAC/MAN) was used to assess small 

intestine permeability (n=39). No differences were observed between two groups (A). On the 

contrary, we registered higher circulating levels of I-FABP (n=78) after 12 months of cART (B). 

Therapy ameliorates bowel inflammation given reduction in term faecal calprotectin (n=56) (C). 

Data were analysed by Wilcoxon test. LAC/MAN, urinary lactulose-mannitol fractional excretion 

ratio; I-FABP, Intestinal Fatty Acid Binding Protein 
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Table 2. Sequenced DGGE bands and relative species identification 

Nearest species  Presence 

at T0 %  

Phylum Order  Family Nearest species  Presence 

at T12 %  

Bacteroidetes spp. 25 bacteroidetes bacteroidales bacteroidaceae Bacteroidetes spp. 32,5 

Prevotella spp. 90,9 bacteroidetes bacteroidales prevotellaceae Prevotella spp. 80 

Faecalibacterium 

prausntzii 

63,5 firmicutes clostridiales clostridiaceae Faecalibacterium 

prausntzii 

65,5 

Clostridium spp. 71,4 firmicutes clostridiales clostridiaceae Clostridium spp. 75,5 

Roseburia intestinalis 83 firmicutes clostridiales Lachnospiraceae Roseburia intestinalis 87 

Flavonifractor plautii 27,5 firmicutes clostridiales clostridiaceae Flavonifractor plautii 25 

Clostridiales spp. 15 firmicutes clostridiales clostridiaceae Clostridiales spp. 12 

Eubacterium rectale 67,5 firmicutes clostridiales eubacteriaceae Eubacterium rectale 57,5 

Acidaminococcus 

intestini 

10 firmicutes clostridiales veillonaceae Acidaminococcus 

intestini 

7,5 

Phascolarctobacterium 

faecium 

20 firmicutes clostridiales veillonaceae Phascolarctobacterium 

faecium 

10 

Enterococcus faecium 10 firmicutes lactobacillales enterococcacea Enterococcus faecium 5 

Lactobacillus spp. 40 firmicutes lactobacillales lactobacillaceae Lactobacillus spp. 25 

Bacillus spp. 15 firmicutes bacillales bacillaceae Bacillus spp. 0 

Desulfovibrio spp. 22,5 proteobacteria desulfovibrionales desulfovibrionaceae Desulfovibrio spp. 25 

The table reports identified species and their prevalence in stool of 56 patients prior to and following 

12 months of cART obtained by DGGE analyses. 
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Figure 4. Cluster analysis of DGGE profiles of species investigated 
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DDGE profile analysis obtaining by amplification of V2-V3 region of faecal samples from our 

patients indicated by blue arrows. Banding patterns of the 16S ribosomal DNA (rDNA) gene were 

obtained using primers HDA1-GC and HDA2 and analysed using Pearson’s coefficient and UPGMA 

method to generate dendograms. 

 

 

 

 

23   24   25   26  27 28   29  30   31  32   33  34  35   36   37  38  39   40  41  42   43   44   45 



37 
 

Figure 5. Quantification of selected microbial genuses and of the 

Enterobacteriaceae family in the course of cART 

 

 

The study of the faecal microbiota revealed an enrichment of Lactobacillus (A) and Bacteroides (C) 

in the stool of HIV-infected patients after cART yet no changes in terms of Roseburia (B), Prevotella 

(D) and Enterobacteriacae family (E). 
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Table 3. Demographic characteristics and viro-immunological parameters of the 

patients in study (Aim 2)  

Parameter at baseline HIV-infected subjects (n=26), T0 

Sex, F (%) 4 (15%) 

Age, years (IQR) 39 (32-45) 

Risk factors for HIV infection, n (%) 

Heterosexual 

MSM 

IDU 

 

8 (31) 

17 (65) 

1 (4) 

HCV co-infection n (%) 3 (12) 

HBV co-infection 1 (4) 

Co-trimoxazole use, n (%) 3 (12) 

Duration of HIV infection, months (IQR) 16 (4-52) 

AIDS diagnosis, n (%) 2 (7) 

First cART regimen n, (%) 

PI+NRTI 

NNRTI+NRTI 

Other 

 

7 (27) 

14 (54) 

5 (19) 

Parameter in the course of the study HIV-infected subjects (n=26) 

 T0 T12 

HIV RNA log10 cp/ml (IQR) 4.7 (4.2-5.3) 1.6 (1.6-1.6)* 

CD4+ T-cell count, cell/mmc (IQR) 366 (273-428) 477 (269-589)* 

CD4+ T-cell, % (IQR) 18 (15-22) 25 (21-31) 

CD8+ T-cell count, cell/mmc (IQR) 1018 (853-1384) 949 (806-1304) 

CD8+ T-cell, %(IQR) 56 (53-60) 51 (44-58) 

CD4+/CD8+ T-cell ratio (IQR) 0.3 (0.2-0.4) 0.5 (0.4-0.6)* 

Data are presented as median, interquartile range (IQR) for continuous variables; absolute number, 

percentage for categorical variables. MSM: Men having Sex with Men; IDU: Intravenous Drug Use; 

HCV, Hepatitis C Virus, infection defined as the presence of detectable plasma HCV RNA; HBV, 

Hepatitis B Virus, infection defined as HBsAg positivity; AIDS: Acquired Immune Deficiency 

Syndrome; cART Combination of Antiretroviral Therapy; NNRTI, non-nucleoside transcriptase 

inhibitor; NRTI, nucleoside transcriptase inhibitor, PI, protease inhibitor. Data were analyzed Chi-

Squared, Wilcoxon and Mann–Whitney test where appropriate. * indicates p<0.01 for T0 vs T12. 
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Figure 6. CD4+ and CD8+ T-cell activation prior to (T0) and following 12 months 

of cART (T12) 
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A significant decrease in CD4+ (A) and CD8+ (B) T-cell activation, reaching comparable levels to 

those of HIV-uninfected subjects, was observed following 12 months of cART.  
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Figure 7. CD4+ T-cell maturation subsets in HIV-infected subjects prior to (T0) 

and following 12 months of cART (T12) 
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No changes were detected in terms of CD4+ T-cell naïve (A) and terminally differentiated pool 

frequencies (D), yet a progressive increase of CD4+ central memory (B) as well as a reduction of 

effector memory (C) T-cells were registered in the course of cART. 
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Figure 8. CD8+ T-cell maturation subsets in HIV-infected subjects prior to (T0) 

and following 12 months of cART (T12) 
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No modifications were noted in terms CD8+ T-cell maturation parameters after 12 months of cART 

(A-D).  
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Figure 9. PD-1-expression on CD4+ T-cell maturation subsets in HIV-infected 

subjects prior to (T0) and following 12 months of cART (T12) 
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Within the CD4+ subset, a reduction in the expression of PD-1 the naïve (A) and terminally 

differentiated pools (D) was observed in the course of cART. yet only a trend toward lower PD-1-

expressing Effector Memory was noted (D). 
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Figure 10. PD-1-expression on CD8+ T-cell maturation subsets in HIV-infected 

subjects prior to (T0) and following 12 months of cART (T12) 
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We found a progressive normalization of PD-1 expression in CD8+ naïve (A) and effector memory 

T-cells (C) in the course of cART., yet no modifications in term of PD-1 expression in CD8+ central 

memory and terminally differentiated T-cells (B,D).
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Figure 11. Gating strategy, CD4+ and CD8+ Tscm frequencies and their 

correlation with maturation subsets 
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Frequency of CD4+ and CD8+ Tscm was assessed using gating strategy indicated by Ribeiro et al. 

[36] and showed in figure A. Briefly, lymphocyte were gated on the basis of physical parameters 

(FSC,SSC). Within the morphological gate, we getting singlets using FSC-A and FSC-H parameters. 

Then, we gated the CD4+/CD8+ T-cells and within these gates Whitin CD4+ and CD8+ T-cells we 

identified naïve cells (CD45RA+CCR7+) and within this gate we measured % of CD95+CD27+. 

A decrease in CD4+ Tscm was noted in the course of cART (B) and no variation of CD8+ Tscm (C) 

Overall, Tscm cell frequencies persisted at lower levels than controls despite cART (B, C). 
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G. HIV-infected subjects T0
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In uninfected controls, both CD4+ and CD8+ Tscm correlated negatively with naïve T cells (C, E) 

and positively with effector memory T cells (D, F). In cART-naïve subjects no correlation was found 

between Tscm and maturation subsets (G-J). Antiretroviral treatment was able to restore only the link 

between CD4+ Tscm and naïve cells (K-N). T0: cART-naïve subjects; T12: 12 months of treatment. 
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Figure 12. Gating strategy and frequency of CD4+CCR6+CD161+ in HIV-

infected subjects prior to (T0) and following 12 months of cART (T12) 
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Gating strategy for identification of CD4+CCR6+CD161+. The experimental protocol to study this 

type of cells was set up in HIV-uninfected subjects (Fig. 8a). Based on cell dimensions, we 

determined the purity of the population. Lymphocyte were gated on the basis of physical parameters 

(FSC,SSC). Within the morphological gate, we getting singlets using FSC-A and FSC-H parameters. 

Then, we gated the CD4+ T-cells and within this gate we measured the % of CD161+CCR6+ (A). 

CD4+ CCR6+CD161+ maintained lower compared to HIV-uninfected controls, despite their increase 

in the course of cART (B).  

Positive correlation between CD4+ T-cells with CD4+CCR6+CD161+ and Tscm was found in cART-

naïve HIV-infected subject (C). 
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Figure 13. Gating strategy and frequency of CD4+ T-cells with a “gut-homing” 

phenotype and their correlation with immune activation parameters prior to (T0) 

and following cART (T12) 
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Gating strategy for identification of CD4+ T cells with a “gut-homing” phenotype. Give the low 

expression of CCR9, identification of this population required use of MFO during flow cytometry 

staining. Based on cell dimensions, we determined the purity of the population. Lymphocyte were 

gated on the basis of physical parameters (FSC,SSC). Within the morphological gate, we getting 

singlets using FSC-A and FSC-H parameters. Then, we gated the CD4+ T-cells and within this gate 

we measured the % of CCR9+α4β7+. For choose the right position of CCR9 gate, we parallel stain 

the same tube without CCR9 FITC in term to determine the fluorescence due to CCR9 (A). 

CD4+ T cells with a gut-homing phenotype showed a decrease in the course of cART, thus reaching 

lower levels compared to HIV-uninfected controls (B). These cells correlated, at T0, with HIV RNA 

viral load (C) and activated CD4+ T cells (D) but not at T12 (E).  
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Figure 14. Summary of our findings after 12 months of cART  
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Summary of our findings. In figure A are represented some of abnormalities caused by HIV infection, 

particularly regarding T-cell homeostasis and enteropathy. In figure B are summarizes our findings 

after 12 months of cART and which anomalies persist despite cART. 
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