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Abstract 

The transition to flowering marks a key adaptive developmental switch in plants which impacts 

on their survival and fitness. Different signaling pathways control the floral transition, 

conveying both endogenous and environmental cues. These cues are often relayed and/or 

modulated by different hormones, which might confer additional developmental flexibility to 

the floral process in the face of varying conditions. Among the different hormonal pathways, 

the phytohormone gibberellic acid (GA) plays a dominant role. GA is connected with the other 

floral pathways through the GA-regulated DELLA proteins, acting as versatile interacting 

modules for different signaling proteins. In this review, I will highlight the role of DELLAs as 

spatial and temporal modulators of different consolidated floral pathways. Next, building on 

recent data, I will provide an update on some emerging themes connecting other hormone 

signaling cascades to flowering time control. I will finally provide examples for some 

established as well as potential cross-regulatory mechanisms between hormonal pathways 

mediated by the DELLA proteins. 

Highlights 

The gibberellic acid-regulated DELLA proteins connect multiple hormonal signals with floral 

pathways to activate reproductive development. 

Keywords 

Flowering Time, Hormone Signaling, DELLA proteins, Transcriptional Regulation, Protein-

Protein Interaction
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1 Introduction

2 When to flower is a key decision for plants, affecting the adaptability of species to any given 

3 environment. The floral transition marks a change in the shoot apical meristem (SAM), the 

4 growing tip of the shoot; the SAM generates rosette leaves separated by short internodes during 

5 the vegetative phase (V), and switches to produce flowers, fruits and seeds after the floral 

6 transition. Besides producing all lateral structures, the SAM generates the portion of stem 

7 which separates consecutive lateral structures (internodes). In addition, the SAM perpetuates 

8 itself, thus keeping its own identity, by maintaining a pool of undifferentiated stem cells (Huala 

9 and Sussex, 1993; Sussex, 1989). The switch to flowering occurs when the (vegetative) SAM 

10 receives appropriate signals (Bernier et al., 1993) and in Arabidopsis it precedes bolting (i.e. 

11 the elongation of the uppermost internodes of the stem). After the floral transition, the SAM 

12 enters the inflorescence phase (I) when flowers appear at the flanks of the SAM instead of 

13 leaves (Figure 1). This alters the above-ground architecture of the plant (Coen and Nugent, 

14 1994), and different mutants affected in the switch between the V and I developmental phases 

15 can be precisely identified and compared based on the number of vegetative leaves. Late-

16 flowering and early-flowering mutants produce a greater and fewer number of vegetative 

17 leaves compared with wild-type plants, respectively (Koornneef et al., 1991). 

18

19 Physiological and genetic studies of different flowering time mutants have led to the definition 

20 of four major flowering pathways in Arabidopsis (Martínez-Zapater et al., 1994). The 

21 photoperiodic and the vernalization pathways convey light and temperature information 

22 (Amasino, 2010; Andrés and Coupland, 2012; Bäurle and Dean, 2006; Kobayashi and Weigel, 

23 2007). In contrast, the autonomous and the gibberellic acid (GA) pathways largely relay 

24 endogenous cues (Mutasa-Göttgens and Hedden, 2009; Simpson, 2004). During the past 15 

25 years this genetic and physiological framework has been increasingly elaborated to include the 
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26 plant age and ambient temperature pathways (Huijser and Schmid, 2011; Samach and Wigge, 

27 2005). Additionally, it is now becoming apparent that in natural environments plants are able 

28 to recognize an even wider array of environmental information that, once integrated, give rise 

29 to developmental decisions (Brachi et al., 2012; Burghardt et al., 2016; Kenney et al., 2014; 

30 Kooyers, 2015; McKay et al., 2003). Because extreme environmental conditions ultimately 

31 challenge plant survival, the ability to modulate the flowering process plays an important role 

32 in the adaptation to different environments (Kazan and Lyons, 2016; Takeno, 2016). 

33

34 Plant hormones constitute a major signaling network that relay external or internal variations 

35 and translate these into plant developmental responses (Santner et al., 2009; Wolters et al., 

36 2009). It is thus not surprising that modulation of hormone signaling also contributes to the 

37 extraordinary plasticity of the flowering process. While GA is probably the best studied 

38 hormone in flowering, other hormones including abscisic acid (ABA), jasmonate (JA), salicylic 

39 Acid (SA), brassinosteroids (BRs), cytokinin (CKs), ethylene (ET) and nitric oxide (NO) have 

40 been reported to play a role in regulating the flowering network (Davis, 2009; Kazan and 

41 Lyons, 2016). Furthermore, in addition to these well-established phytohormones, several 

42 diffusible molecules including sugars and other metabolites regulate flowering (Mattioli et al., 

43 2008; Wahl et al., 2013). The role of sugar has been recently reviewed and will therefore not 

44 further discussed here (Bolouri Moghaddam and Van den Ende, 2013).

45

46 Our increasing knowledge of the different genetic components underlying hormone signaling 

47 allows us to better understand how these hormones affect flowering time. Interestingly, 

48 different hormones signaling cascades often converge to refine the expression of key floral 

49 genes under specific conditions. This observation emphasizes the importance of treating the 

50 various flowering pathways as part of an integrated structure, rather than the sum of insulated 
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51 modules. In this review I discuss recent advances in the role of different hormone signaling 

52 pathways in the regulation of the floral transition, emphasizing their mode of integration with 

53 known floral genes. Although my discussion will be limited to Arabidopsis, it is likely that 

54 similar circuitries might exist in other species, including crops. 

55

56 The Floral network of Arabidopsis

57 Here I provide an overview of the basic structure of the different floral pathways, emphasizing 

58 the role of the photoperiodic pathway for its tight connection with different hormonal signals. 

59 I invite the reader to refer to recent exhaustive reviews to gain further details on each of these 

60 signaling modules. 

61

62 The photoperiodic pathway

63 It has been long recognized that the length of the day (known as photoperiod) is a crucial 

64 environmental factor that controls flowering (Mozley and Thomas, 1995). The perception of 

65 the photoperiod occurs in the leaves and triggers the production of one or more mobile, graft-

66 transmissible substances (florigens) which ultimately promote flowering at the shoot apex 

67 (Evans, 1971). The study of Arabidopsis mutants impaired in photoperiod perception has 

68 provided information about the molecular components required for proper photoperiod 

69 perception and signaling through the production of the florigenic substance (Andrés and 

70 Coupland, 2012; Golembeski and Imaizumi, 2015; Kobayashi and Weigel, 2007). As a 

71 facultative long day plant, Arabidopsis flowers much earlier under long days (LDs, typical of 

72 spring/summer) compared to short days (SDs, typical of autumn/winter). Mutants of constans 

73 (co), gigantea (gi), and flowering locus t (ft) flower late under LDs conditions but display little 

74 or no flowering defects under SDs (Fowler et al., 1999; Huq et al., 2000; Kardailsky et al., 

75 1999; Kobayashi et al., 1999; Koornneef et al., 1998; Putterill et al., 1995). The molecular 
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76 study of these mutants allowed for the identification of the mobile protein FLOWERING 

77 LOCUS T (FT) and its paralogue TWIN SISTER OF FT (TSF) as the main constituents of the 

78 florigen substance (Corbesier et al., 2007). The CO and GI proteins are required for the correct 

79 perception of photoperiod and the transcriptional activation of the florigen genes. CO encodes 

80 a zinc finger transcriptional regulator expressed in the phloem companion cells of the leaves 

81 (An et al., 2004; Putterill et al., 1995; Takada and Goto, 2003). The transcriptional activation 

82 of CO is daily regulated, with CO transcript levels being low in the morning and reaching a 

83 maximum in the night (Suarez-Lopez et al., 2001). GI is largely responsible to confer such 

84 daily fluctuations of CO transcripts. GI interacts with LIGHT OXYGEN VOLTAGE (LOV) 

85 domain-containing FLAVIN-BINDING, KELCH REPEAT F-BOX 1 (FKF1) blue light 

86 photoreceptor. Blue light stimulates the formation of the GI–FKF1 complex which targets a 

87 class of CO transcriptional repressors, the CYCLING DOF FACTORs (CDFs), for degradation 

88 in a specific temporal window in LDs (Fornara et al., 2009; Imaizumi et al., 2005; Sawa et al., 

89 2007; Song et al., 2014). Following degradation of the CDF repressors, a poorly characterized 

90 series of events lead to the transcriptional activation of CO. Among the positive regulators of 

91 CO is FLOWERING BHLH (FBH1) and related group of bHLH transcription factors (Ito et al., 

92 2012). 

93

94 CO protein is specifically stabilized under LDs when the peak of CO mRNA peaks in the light 

95 phase at the end of the day (Suarez-Lopez et al., 2001). Several types of photoreceptors act at 

96 different parts of the day to control CO abundance. Ultimately, a peak of CO abundance occurs 

97 in coincidence with dusk under LDs (Jang et al., 2008; Lazaro et al., 2015; Liu et al., 2008; 

98 Song et al., 2012b; Valverde et al., 2004; Zuo et al., 2011). Photoperiod-stimulated CO is able 

99 to induce early flowering by activating FT and TSF in the phloem companion cells (Adrian et 

100 al., 2010; An et al., 2004; Jang et al., 2009; Michaels Scott D et al., 2005; A. Yamaguchi et al., 
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101 2005; Yoo et al., 2005). In addition to CO, the transcriptional regulation of FT involves a 

102 complex interplay between different classes of transcription factors and three-dimensional 

103 chromatin conformations (Abe et al., 2015; Bratzel and Turck, 2015; Cao et al., 2014; 

104 Golembeski and Imaizumi, 2015; Liu et al., 2014). This complexity probably reflects the 

105 integrative role of FT, conveying a vast array of signaling pathways in addition to photoperiod 

106 (Pin and Nilsson, 2012). FT protein acts as a florigenic signal by moving long distance to the 

107 SAM through a regulated transport system (Corbesier et al., 2007; Jaeger and Wigge, 2007; 

108 Liu et al., 2012; Mathieu et al., 2007; Notaguchi et al., 2008). In the SAM, FT forms a complex 

109 with the bZIP transcription factors FLOWERING LOCUS D (FD) and FD PARALOGUE 

110 (FDP) to activate another set of genes that trigger a floral fate in lateral primordia (Abe et al., 

111 2005; Jaeger et al., 2013; Wigge et al., 2005).

112

113 The vernalization and the autonomous pathways

114 Both the autonomous and vernalization pathways activate flowering indirectly, by inducing 

115 and maintaining a state of epigenetic silencing at the FLOWERING LOCUS C (FLC) locus 

116 (Boss et al., 2004; Henderson et al., 2003; Kim et al., 2009; Michaels and Amasino, 1999). 

117 FLC encodes a MADS domain protein that represses key floral activators in the leaf and in the 

118 SAM (Searle et al., 2006). Arabidopsis accessions that have high FLC levels flower extremely 

119 late, unless they experience vernalization (i.e. a period of growth under cold conditions) 

120 (Shindo et al., 2006). In response to cold exposure, FLC expression is reduced as a result of 

121 epigenetic silencing occurring at the FLC locus (Amasino, 2004; Bastow et al., 2004; Sheldon 

122 et al., 2000; Sung and Amasino, 2004). On return to warm conditions the silencing is 

123 maintained epigenetically so that plants are ready to respond to flowering inductive cues. 

124 Mutations in the autonomous pathway cause a delay in flowering irrespective of the 

125 photoperiod, so that these mutants flower late under any day length condition (Koornneef et 
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126 al., 1998). Moreover, the late-flowering phenotype of autonomous pathway mutants can be 

127 reverted by vernalization (Simpson, 2004). Unlike the photoperiodic pathway, the autonomous 

128 pathway does not form a sequential cascade of events, but is rather composed of genetically 

129 separable modules (Koornneef et al., 1998; Michaels and Amasino, 2001; Simpson et al., 

130 1999). Each of these modules is involved in the negative regulation of FLC. 

131

132 Integration of flowering pathways in the SAM

133 The FT-FD activator complex reprograms different transcriptional networks in the SAM 

134 required for the specification of floral primordia. Here, another level of integration between 

135 various floral pathway occurs through the MADS domain family genes SUPPRESSOR OF 

136 OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) both early targets of 

137 the FT–FD complex (Abe et al., 2005; Borner et al., 2000; Jang et al., 2009; Lee et al., 2000; 

138 Melzer et al., 2008; Moon et al., 2003; Samach et al., 2000; Searle et al., 2006; Wang et al., 

139 2009; Wigge et al., 2005; Yamaguchi et al., 2009). These genes products contribute to the 

140 amplification of the FT-FD signal and activate the floral meristem identity genes. While the 

141 precise site of migration of FT in the SAM is still unknown, only the cells located in the 

142 peripheral zone of the SAM are able to acquire a floral fate, marked by the upregulation of the 

143 floral meristem identity gene LEAFY (LFY) and APETALA1 (AP1) (Hempel et al., 1997; 2000; 

144 Schultz and Haughn, 1993; Weigel et al., 1992). The central portion of the SAM is not 

145 competent to activate a floral gene expression program due to the presence of the FT 

146 homologue TERMINAL FLOWER 1 gene product, which antagonizes FT function (Bradley et 

147 al., 1997; Conti and Bradley, 2007; Hanano and Goto, 2011; Jaeger et al., 2013; Ratcliffe et 

148 al., 1999). 

149

150 Hormonal regulation of the floral transition
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151 Recent molecular studies delineate a more precise role for some hormones in the floral 

152 transition, and define their modes of interaction with known floral pathways. In broad terms 

153 these studies indicate that several hormonal signals affect flowering at two sites, the leaf and 

154 the SAM. Secondly, different hormones appear to co-ordinately converge on the transcriptional 

155 activation of a small number of floral integrator genes. Thirdly, while different hormonal 

156 pathways participate in the floral process (Davis, 2009; Kazan and Lyons, 2016; Mutasa-

157 Göttgens and Hedden, 2009), the role of GA is probably the most dominant. Fourthly, the GA-

158 signaling proteins DELLAs act as hubs for hormonal cross-regulation upstream of individual 

159 floral integrators. 

160 GA is an important regulator of flowering of Arabidopsis 

161 GA signaling constitutes one of the four major floral pathways initially identified in 

162 Arabidopsis. The GA signaling cascade is activated by bioactive gibberellins (GAs). GAs 

163 derive from a common diterpene precursor, whose structure is sequentially elaborated by a 

164 complex array of oxidative enzymes (Hedden and Kamiya, 1997; Yamaguchi, 2008). The 

165 cellular homeostasis of GAs is maintained by regulation of the GA20-oxidase (GA20OX) and 

166 GA3-oxidase (GA3OX) genes, that catalyze the final steps of GAs biosynthesis, and the GA2-

167 oxidases (GA2OX), which contribute to GAs inactivation and turnover. Mutants impaired in 

168 GA biosynthesis (e.g. ga1, defective in the early steps of GAs production) are moderately late 

169 flowering under LDs but do not flower under SD conditions (Wilson et al., 1992). These 

170 phenotypic observations indicate an absolute requirement for GAs when the photoperiodic 

171 pathway is not active. They also suggest that GAs production is largely dispensable under LDs, 

172 presumably as a result of the activation of the photoperiodic pathway and consequent 

173 mobilization of FT in the apex. 

174



10

175 Molecular studies coupled with a more precise knowledge of individual components of GA 

176 signaling have greatly helped elucidate the mode of action of GAs in the presence or absence 

177 of activated photoperiodic signaling (Galvão et al., 2012; Hou et al., 2014; Porri et al., 2012; 

178 Yu et al., 2012). GA signaling is largely mediated by a class of nuclear proteins, globally 

179 referred to as DELLA, which act as negative regulators of GA signaling (Harberd, 2003). There 

180 are five DELLA genes in Arabidopsis, with both specific and redundant functions (Daviere and 

181 Achard, 2013). All these DELLA proteins are regulated at the post-translational level by 

182 varying levels of GAs, which trigger their degradation through the ubiquitin-proteasome 

183 system. The proteolytic cascade initiates when GAs bind to the soluble receptor GID1 

184 (Griffiths et al., 2006; Murase et al., 2008; Shimada et al., 2008; Ueguchi-Tanaka et al., 2005; 

185 2007). GAs promote a conformational change in GID1 that increases its affinity for DELLA 

186 proteins, via direct binding to the DELLA domain (Feng et al., 2008; Griffiths et al., 2006; 

187 Hirano et al., 2010; Wang et al., 2009; Willige et al., 2007). This interaction stimulates the 

188 binding of the E3 Ubiquitin ligase SLEEPY1 (SLY1) to DELLA, which activates its 

189 degradation (Dill et al., 2004; Silverstone et al., 1998; 2001). In line with a role for GA 

190 signaling in flowering, mutants affected in GA perception (gid1), DELLA ubiquitination (sly1), 

191 or mutants carrying a dominant, non-degradable form of the DELLA protein GAI (GA-

192 INSENSITIVE, gai) display similar flowering phenotypes to the aforementioned ga1 

193 biosynthetic mutants (Galvão et al., 2012; Griffiths et al., 2006; Mozley and Thomas, 1995; 

194 Porri et al., 2012; Willige et al., 2007). In contrast, mutants carrying loss-of function alleles in 

195 the DELLA genes, display an early flowering phenotypes (Galvão et al., 2012)

196

197 Using transgenic approaches, it was possible to locate two major sites of GA action in 

198 flowering: the leaf and the SAM. These studies took advantage of available promoters active 

199 in the SAM or in the leaf, to locally impair either the accumulation of GAs or its signaling. The 
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200 mis-expression of the GA catabolic enzyme GA2OX7 in the leaf (via the SUC2 promoter, active 

201 in the phloem companion cells) or in the SAM (via the KNAT1 promoter) causes a general 

202 delay in flowering under LDs. However, under SDs, only the SAM-specific depletion of GAs 

203 causes a non-flowering phenotype, reminiscent of the phenotype of ga1 mutants (Porri et al., 

204 2012). Similar phenotypes arise by mis-expressing a non-degradable, constitutively active 

205 form of DELLA (∆DELLA) in the SAM or in the leaf (Galvão et al., 2012; Yu et al., 2012). 

206 Several important conclusions can be drawn from these experiments. First, they support a role 

207 for GAs in the SAM which is crucial for flowering under SD conditions, but less so under LDs. 

208 Secondly, they demonstrate that DELLA degradation must occur to activate flowering. Thirdly, 

209 under LDs, GA accumulation in the leaf can promote flowering, in the same cells where the 

210 production of FT occurs. I will now illustrate how GAs activate gene expression and flowering 

211 by controlling DELLA accumulation starting with the role of GAs in the leaf (Figure 2).

212

213 GA signals modulate the expression of the florigen genes in the leaf

214 Under LDs GAs promote the transcriptional activation of FT. Supporting this role, reduced 

215 levels of FT transcript are observed in GA-depleted lines or plants with impaired GA signaling, 

216 whereas increased FT levels are observed when GAs are applied exogenously or in mutants 

217 with activated GA signaling (Galvão et al., 2012; Hisamatsu and King, 2008; Hou et al., 2014; 

218 Porri et al., 2012; Yu et al., 2012). In contrast, foliar applications of GAs cannot activate FT 

219 transcriptionally in wild-type plants under SDs or in mutants of co under LDs (Hisamatsu and 

220 King, 2008; Wang et al., 2016). Thus, one critical question is to identify the GA-sensitive 

221 component(s) which regulate the expression of FT under LDs. 

222

223 Recent reports describe multiple mechanisms through which GAs can regulate the expression 

224 of FT, all occurring downstream of the transcriptional activation of CO (Galvão et al., 2012; 
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225 Hou et al., 2014; Porri et al., 2012; Yu et al., 2012). One such mechanism relies on the DELLA-

226 dependent down-regulation of the microRNA172 (miR172), which negatively regulates the 

227 APETALA2 (AP2)-like genes SCHLAFMUTZE (SMZ), SCHNARCHZAPFEN (SNZ), TARGET 

228 OF EAT1, 2 and 3 (TOE1,2 and 3), via translational inhibition (Aukerman and Sakai, 2003; 

229 Chen, 2004; Mathieu et al., 2009). The AP2-like proteins in turn negatively regulate the 

230 transcriptional activation of the florigen genes (as well as other floral integrators in the SAM) 

231 (Mathieu et al., 2009). The GA and the miR172 pathways are interconnected through the 

232 DELLA and the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) 

233 transcriptional regulators (Yu et al., 2012). The SPLs are positive regulators of miR172 and a 

234 particular SPL gene (SPL3) product also directly binds to and activates FT (Kim et al., 2012). 

235 DELLAs bind to SPL proteins and prevent their trans-activation function on target genes (Yu 

236 et al., 2012). As a result of this, when a constitutively active ∆DELLA allele is expressed under 

237 the SUC2 promoter the accumulation of the miR172 is significantly reduced (Yu et al., 2012), 

238 which leads to reduced accumulation of FT transcript. Supporting the physiological 

239 significance of this mechanism, the overexpression of miR172 can rescue the late flowering of 

240 SUC2:∆DELLA plants, suggesting that one role of DELLA is to enhance the transcriptional 

241 repression of FT via interfering with SPL-miR172 regulation. 

242

243 Besides indirectly activating a repressor of FT, DELLA also impairs the function of CO, the 

244 key transcriptional activator of FT. DELLA binds to the CO, CO-like, TOC1 (CCT) domain 

245 of CO, responsible for its interaction with the DNA (Tiwari et al., 2010; Xu et al., 2016). 

246 Consequently, either the depletion of GAs or an increase in DELLA levels result in reduced 

247 transcript accumulations of FT and TSF at dusk, coincidently with the stabilization of CO (Porri 

248 et al., 2012; Wang et al., 2016). In vitro assays also indicate that DELLA prevents the 

249 interaction between CO and the NF-Y subunit B, which is required for the CO-mediated 
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250 activation of FT in vivo (Kumimoto et al., 2008; Tiwari et al., 2010). The function of the 

251 CO/NF-Y complex has been proposed to maintain a specific chromatin conformation at the FT 

252 locus, which favors its transcriptional activation (Cao et al., 2014). Therefore, by sequestering 

253 CO, DELLA prevents the formation of a transcriptionally active chromatin conformation at the 

254 FT locus (Wang et al., 2016) (Figure 2). Interestingly, since also DELLA interact with the NF-

255 Y subunits B and C a more elaborated mechanism emerges whereby DELLA obstruct the 

256 formation of the NF-Y/CO complex by sequestering its different molecular components (Hou 

257 et al., 2014). 

258

259 DELLA proteins are able to physically interact with a variety of transcriptional regulators. In 

260 many cases such interactions lead to the inhibition of the DNA-binding capacity of these 

261 transcription factors (TF) (Davière and Achard, 2016). Amongst the DELLA-regulated TFs is 

262 PHYTOCHROME INTERACTING FACTOR 4 (PIF4), which binds to the promoter of FT 

263 and contributes to its activation under warm ambient temperature in cooperation with CO 

264 (Fernández et al., 2016; Kumar et al., 2012). Following interaction with DELLA proteins, PIF4 

265 can no longer bind to DNA (de Lucas et al., 2008; Feng et al., 2008) (Figure 2). Therefore, 

266 GAs may broadly impact on how plants sense variations in temperature (which translates into 

267 changes in flowering time) through modulating the interaction between DELLA and PIF4 or 

268 other PIF-like TFs (Galvão et al., 2015) (Figure 3). 

269

270 In addition to sequestering TFs, DELLA can affect transcriptional events through other 

271 mechanisms (Davière and Achard, 2016). For example, a recent report extends the 

272 sequestration model to show that DELLA also triggers degradation of its bound proteins (Li et 

273 al., 2016). Although this mechanism does not seem to apply to the regulation of CO (Wang et 

274 al., 2016; Xu et al., 2016), it does affect other FT regulators like the PIFs. In other cases, 
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275 DELLA proteins guide transcriptional repressors at specific genomic locations, including the 

276 FT locus. A class of four RING domain-containing proteins referred to as BOTRYTIS 

277 SUSCEPTIBLE1 INTERACTORs (BOIs) interact with DELLAs and act as repressors of 

278 flowering time (Park et al., 2013). With respect to the floral transition, the BOI genes are 

279 largely epistatic to DELLA suggesting that the activity of BOI is required for DELLA function. 

280 BOI and the DELLA protein REPRESSOR OF GA (RGA) are enriched at similar positions of 

281 the FT promoter, and the binding of BOI to these promoter regions is DELLA-dependent 

282 (Nguyen et al., 2015).  Besides directly interacting with DELLA, BOI also interacts also with 

283 CO via its CCT domain, which probably interferes with the DNA binding activity of CO 

284 (Nguyen et al., 2015). Thus, one possibility is that DELLA, in addition to impeding CO access 

285 to the DNA, further obstructs the formation of the CO/NF-Y complex by recruiting BOI in 

286 chromatin positions normally occupied by CO. In a similar fashion, DELLA proteins bind to 

287 and recruit FLC to the FT (and SOC1) promoters, thus contributing to transcriptional repression 

288 (Li et al., 2016) (Figure 3).

289

290 Because of this huge diversity of DELLA- coordinated protein complexes that regulate FT, one 

291 would expect that GA production and/or signaling are temporally and spatially aligned with 

292 the expression of FT. From a spatial point of view, the accumulation of GA3OX2 (catalyzing 

293 the last step of the GA biosynthetic pathway) is found in the vasculature of leaves, closely 

294 resembling the domain of FT expression (Mitchum et al., 2006). The expression of this gene is 

295 directly repressed by the functionally redundant TEMPRANILLO (TEM) 1 and 2  

296 transcriptional regulators, which are also direct negative regulators of FT (Castillejo and Pelaz, 

297 2008). TEM1 and 2 are diurnally regulated, peaking at dusk, in coincidence with FT expression 

298 (Osnato et al., 2012). Therefore, the TEMs antagonize CO in two ways; by direct repression at 

299 the FT promoter, and by preventing the over-accumulation of GAs in the vasculature in 
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300 coincidence with CO stabilization. Conversely, the MYB-type transcription factor 

301 ASYMMETRIC LEAVES 1 (AS1) antagonizes TEM function in the phloem companion cells at 

302 two levels. Not only is AS1 a positive regulator of FT expression, but it also promotes the 

303 activation of GA20OX1, which contributes to GA accumulation (Song et al., 2012a). Thus, in 

304 the phloem companion cells, different transcriptional regulators coordinate GA accumulation 

305 and FT expression by directing transcriptional events at the promoters of the GA metabolic 

306 genes and FT. 

307

308 From a temporal perspective, the pattern of accumulation of the DELLA protein RGA shows 

309 diurnal variations, with low DELLA proteins occurring at dusk (Wang et al., 2016). Such 

310 rhythmicity in DELLA accumulation may also derive from circadian regulation of the GA 

311 receptors GID1A and B (Arana et al., 2011). Thus, the timing of accumulation of CO protein 

312 broadly coincides with the GA-sensitive temporal window characterized by reduced DELLA 

313 levels. Furthermore, since the accumulation of GAs depends on various environmental 

314 conditions, GA signaling also relays external information onto FT regulation (Achard et al., 

315 2006; Hisamatsu and King, 2008; Magome et al., 2008). In summary, GA signaling and 

316 production provide temporal, environmental and spatial information that, superimposed on 

317 activated photoperiod signaling, modulate the transcriptional activation of FT. 

318

319 GAs promote flowering in the SAM

320 The SAM is the other important site of GA action in flowering (Figure 2 and 3). In support of 

321 this conclusion, foliar applications of GAs cannot reactivate FT expression under SDs, yet they 

322 activate flowering of wild-type, co and, ft tsf mutant plants - albeit to a lesser extent compared 

323 with the wild type (Hisamatsu and King, 2008; Jang et al., 2009; Porri et al., 2012; Song et al., 

324 2012a). In the light of the previously-described mis-expression studies, these data suggest that 
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325 an excess of GAs in the leaf under non inductive conditions can trigger flowering in the SAM, 

326 independent of the florigen genes. This can be due to transport of GAs from the leaf to the 

327 SAM or thorough activation of an FT-independent route to flowering (Eriksson et al., 2006). 

328 Although the precise dynamics of GA distribution within plants are still poorly understood, it 

329 is well known that GAs are actively transported from sites of synthesis to sites of action (Ragni 

330 et al., 2011; Regnault et al., 2015; Tal et al., 2016). If we consider flowering under continuous 

331 SDs, the levels of GA4 (a bioactive and abundant GA isoform in Arabidopsis), increase 

332 dramatically in the shoot in coincidence with the floral transition. However, such an increase 

333 in GA4 is not preceded by the transcriptional upregulation of the GA biosynthetic genes at the 

334 apex, suggesting that the pool of GA4 originates from sources outside of the SAM itself 

335 (Eriksson et al., 2006). A critical regulator of GA homeostasis under SDs is the basic helix-

336 loop-helix transcription factor NO FLOWERING IN SHORT DAY (NFL). nfl mutants display 

337 altered levels of GA metabolic and catabolic genes (reduced and increased, respectively), 

338 which is reflected in a broad perturbation of GA levels in the shoot apex. Intriguingly, unlike 

339 GA deficient mutants, nfl mutant plants do not display observable flowering defects under LDs, 

340 pointing to a photoperiod-dependent mechanism of regulation of NFL and its targets (Sharma 

341 et al., 2016).

342

343 Under LDs elevated expression of the GA metabolic gene GA20OX2 can be observed in the 

344 rib region of the SAM in coincidence with the floral transition (Andrés et al., 2014). This 

345 pattern of GA20OX2 accumulation requires the mobilization of FT in the SAM. Here, FT 

346 promotes the expression of GA20OX2, through the downregulation of SHORT VEGETATIVE 

347 PHASE (SVP), a floral repressor. Therefore, under LDs, one role of the systemic FT signal is 

348 to stimulate the production of GAs in the shoot which facilitates the floral transition. GAs also 

349 contribute to maintain their own production through feed-forward regulation that leads to the 
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350 downregulation of SVP (Li et al., 2008). SVP is a central regulatory hub for several GA-related 

351 metabolic genes. This emerges from genome-wide studies employing chromatin immuno-

352 precipitation followed by DNA sequencing (ChIPseq). Besides repressing GA20OX2 (albeit 

353 indirectly), SVP regulates the expression of a network of GA metabolic and catabolic genes in 

354 association with FLC (Mateos et al., 2015). Among the major direct targets of the FLC/SVP 

355 complex are different GA2OX genes, which are GA catabolic enzymes. FLC/SVP also 

356 negatively regulates TEM1 and positively regulates TEM2, encoding repressors of GA3OX1 

357 and 2. Thus, the SVP/FLC complex regulates the GA homeostasis in the SAM (and probably 

358 in other tissues) by activating different sets of GA metabolic enzymes. 

359

360 Modulation of GAs levels in the SAM - either through import or de novo local biosynthesis – 

361 affects the accumulation of DELLAs which orchestrate different pathways that collectively 

362 contribute to the switch to flowering. GAs, through a DELLA-dependent mechanism, activate 

363 the expression of microRNA159 (miR159), which targets MYB33 (also referred to as GAMYB), 

364 a direct activator of the floral meristem identity gene LEAFY (Achard et al., 2004; Blazquez et 

365 al., 1998; Blazquez and Weigel, 2000; Gocal et al., 2001). GAs also positively regulate the 

366 expression of an important integrator of flowering in the SAM, the MADS box genes SOC1, 

367 independent of the miR159/MYB33 pathway (Achard et al., 2004; Moon et al., 2003). SOC1 is 

368 also an important activator of LFY (Lee et al., 2000; Lee and Lee, 2010). Thus, GAs positively 

369 regulate LFY expression through SOC1, and at the same time, through an auto regulatory 

370 feedback loop, reducing LFY accumulation through the activation of miR159. There is a 

371 complex genetic interaction between GAs and SOC1. SOC1 acts downstream of the GA 

372 pathway (Hou et al., 2014; Moon et al., 2003; Richter et al., 2013). However, SOC1 levels are 

373 also positively regulated by the SPL factors, which are in turn negatively regulated by DELLA 

374 (Yu et al., 2012). On the other hand SOC1 activates the expression of several SPLs in the SAM 
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375 during the floral transition under LDs, which may provide an auto-regulatory feed-back loop 

376 (Jung et al., 2012; Torti et al., 2012). 

377

378 In addition to GAs, under non-inductive SD conditions flowering is promoted by the age 

379 pathway, driven by microRNA156 (miR156), which targets the SPL transcriptional regulators. 

380 The miR156-SPL module is evolutionarily conserved and active under all photoperiodic 

381 conditions (Huijser and Schmid, 2011; Wang, 2014). Its activation depends on an age-

382 dependent decrease in miR156 levels which results in an increase in SPL accumulation. SPLs 

383 have different targets in the leaf and in the SAM, including miR172 (targeting AP2-like floral 

384 repressors, previously discussed), several MADS box genes (e.g. SOC1, AP1 and FUL), and 

385 LFY (Wang et al., 2009; Wu et al., 2009; Yamaguchi et al., 2009). The gradual decrease of 

386 miR156 is required to enable GA-dependent responses. Plant over-expressing miR156 (and 

387 therefore with reduced SPL accumulation) are extremely late flowering under SDs and this 

388 phenotype can only be marginally corrected by exogenous GA applications (Hyun et al., 2016; 

389 Yu et al., 2012). Thus, degradation of DELLA (as a result of GA applications) is insufficient 

390 to activate flowering in the absence of SPLs, suggesting a genetic interaction between DELLA 

391 and the SPLs. There is no evidence that the SPLs negatively affect GA accumulation in the 

392 SAM, or promote DELLA stabilization that may account for the late flowering of miR156 (Yu 

393 et al., 2012). In contrast, DELLA affects the function of SPLs at two levels, transcriptional and 

394 post-transcriptional. At the transcriptional level, DELLA impairs the transcriptional activation 

395 of different SPL genes at the shoot apex (Galvão et al., 2012; Porri et al., 2012). The role of 

396 DELLA in negatively regulating the SPL genes is antagonized by the chromatin remodeler 

397 PICKLE  (PKL) protein which acts as a global positive regulator of GA transcriptional 

398 responses (Park et al., 2017). DELLA opposes PKL function by direct binding, thus providing 

399 a molecular link between histone modifications at GA regulated transcriptional responses 
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400 (Zhang et al., 2014). At the post-transcriptional level, as previously described, DELLA proteins 

401 physically interact with the SPLs and prevent their transactivation activity (Hyun et al., 2016; 

402 Yu et al., 2012). Several lines of evidence support the physiological relevance of the DELLA-

403 SPL interaction in the shoot. First SPLs and DELLA regulate the floral transition in an opposite 

404 manner by acting on common downstream targets, including FUL and SOC1 (Hyun et al., 

405 2016; Yu et al., 2012). Second, the expression of a GA resistant ∆DELLA form can suppress 

406 the early flowering phenotype conferred by a constitutively active allele of SPL9 (i.e. resistant 

407 to the miR156-dependent degradation) (Yu et al., 2012). Thus, in the SAM, DELLA impairs 

408 the activation of floral genes by interfering with the function of the SPLs (Figure 2 and 3). 

409

410 The phenotypic consequences of the SPLs-DELLA interaction are most evident under SDs, 

411 although they also contribute to flowering under LDs (Hyun et al., 2016; Schwab et al., 2005; 

412 Xu et al., 2016; Yu et al., 2012). Recent data indicate that the SPL15 is the key target of DELLA 

413 under SDs, since mutants of spl15 show an extreme late flowering phenotype under SDs, 

414 similar to GA deficient mutants (Hyun et al., 2016). However, other observations indicate that 

415 the role of SPL15 in flowering under SDs is not unique, and highly redundant with other SPLs 

416 (Xu et al., 2016). FUL, an important floral integrator is among the direct targets of SPL15 in 

417 the SAM. Interestingly, DELLA is enriched at nucleotide positions occupied by SPL15 at the 

418 FUL promoter, and such enrichment is SPL15 - dependent. This suggests that SPL15 tethers 

419 DELLA to specific DNA sites and at these positions DELLA impairs the ability of SPL15 to 

420 activate transcription. In the presence of GAs, SOC1 proteins cooperatively interact with 

421 SPL15 to induce FUL expression, and that of other genes that orchestrate flowering in the SAM 

422 (Figure 2). There appears to be a division of labor between SPL15 and SOC1 at the FUL 

423 promoter whereby each of these protein is responsible to independently recruit additional 

424 chromatin remodeling protein complexes to activate gene expression (Hyun et al., 2016). In a 
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425 similar fashion, the SPL15/SOC1 module directly activates the expression of miR172 at the 

426 shoot apex. As previously discussed, miR172 targets the AP2-like floral repressors. The key 

427 role of GAs is thus to remove the DELLA-imposed block on the SPL factors which promotes 

428 reproductive competence to the SAM (Hyun et al., 2016). Noticeably, when bound to SPL9, 

429 DELLA activates transcription at the AP1 promoter in the floral meristem (Yamaguchi et al., 

430 2014). Therefore, depending on the DELLA-SPL species and the regulatory DNA context, 

431 GAs exert different effects on the expression of the floral meristem identity genes. 

432

433 Connections between GA and other hormonal pathways

434 A general theme emerging from the study of DELLA proteins is that GAs regulate flowering 

435 indirectly, often playing a permissive role on other signaling cascades, including hormones. 

436 Such an interplay between DELLA and various hormonal pathways is very well described 

437 especially during the control of cell growth and differentiation (Davière and Achard, 2016). In 

438 the context of the regulation of flowering time, the molecular targets responsible for the cross-

439 talk between the GA/DELLA module and hormones jasmonate (JA), brassinosteroids (BR) and 

440 ethylene (ET) are just beginning to emerge. For other hormones (namely abscisic acid, ABA, 

441 citokinins, CK, nitric oxide, NO and salicylic acid, SA), which participate in the control of the 

442 floral transition, there are still little indications as to their molecular link with the DELLAs. 

443 With this in mind, I will describe recent advances on the role of different hormonal pathways 

444 in flowering, highlighting their possible connection with GAs (Figure 3). 

445

446 JA and the transition to flowering 

447 JA is a fatty acid-derived molecule that orchestrates different plant-environment responses 

448 (mostly related to pathogen defense), as well as endogenous developmental processes (Browse, 

449 2009; Stintzi and Browse, 2000). Central to JA signaling are the JASMONATE-ZIM domain 
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450 (JAZ) family of transcriptional repressors that are targeted by the F-box protein 

451 CORONATINE-INSENSITIVE PROTEIN 1 (COI1) for degradation (Chini et al., 2007; 

452 Thines et al., 2007). JA acts as a molecular glue that brings these two proteins in contact. The 

453 function of JAZ proteins is to prevent the activity of TFs, including the bHLH-containing 

454 MYC2 protein, that orchestrate JA responses. Thus, by removing JAZ proteins, JA initiates the 

455 transcriptional reprogramming of the cell and the activation (de repression) of JA responses. 

456 Mutants of coi1 are early flowering under both LDs and SDs, indicating that COI1-dependent 

457 signaling pathway delays flowering of Arabidopsis (Robson et al., 2010; Zhai et al., 2015). The 

458 genetic manipulation of JAZ signaling by overexpression of a non-degradable form of JAZ 

459 also leads to early flowering, supporting the role of the canonical JA signaling cascade in 

460 flowering (Zhai et al., 2015). Genetic and molecular data indicate that JAZ proteins positively 

461 regulate the expression of FT. The mechanism involved appears to be indirect, as a subset of 

462 JAZ proteins can interact with the AP2-like floral repressors TOE1 and 2, binding to the AP2 

463 domain responsible for their interaction with the DNA (Zhai et al., 2015). Thus, one role of JA 

464 may be to modulate the accessibility of TOE1 and 2 proteins to the FT promoter, through 

465 degradation of JAZ repressors. JAZ proteins also link JA signaling to GAs (Hou et al., 2010). 

466 DELLAs interact with JAZs and reduce their inhibitory function on their key target MYC2. 

467 Although myc2 mutants do not display flowering defects, it would be expected that, as a result 

468 of the sequestration of JAZ, DELLAs indirectly enhance the activity of TOE1 and 2. In 

469 addition, by down regulating miR172, DELLA also promotes the accumulation of TOE1 and 

470 2 (Yu et al., 2012). Thus, as discussed earlier, the degradation of DELLA by GAs disengages 

471 multiple layers of repression at the FT promoter (Figure 3). While the expression of several JA 

472 biosynthetic enzymes largely coincide with the site of accumulation of the FT transcript, no 

473 flowering phenotype is observed in mutants with disrupted expression of the JA biosynthetic 

474 gene ALLENE OXIDASE SYNTHESIS (AOS) (Chauvin et al., 2016; Zhai et al., 2015). It is 
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475 therefore unclear what signal stimulates the COI1-JAZ module to repress flowering, and 

476 whether is related to JA or other fatty acid-derived molecules. 

477

478 BRs and the floral transition

479 Mutants affected in BR biosynthesis or signaling are late flowering, suggesting a positive role 

480 for BRs in floral activation (Domagalska et al., 2007; Li et al., 2010). Interestingly, the late 

481 flowering phenotype of BRs defective mutants is dramatically enhanced in Arabidopsis 

482 backgrounds characterized by elevated expression of FLC (e.g. the autonomous pathway 

483 mutants). FLC levels are strongly increased in these double mutant plants, which could be 

484 related to increased levels of histone H3 acetylation at the FLC locus (which marks actively 

485 transcribed chromatin). These molecular studies indicate a role for BRs in maintaining a 

486 silenced epigenetic state at the promoter of FLC, thus contributing to its downregulation 

487 (Domagalska et al., 2007). The study of the GAs - BRs crosstalk provides additional clues 

488 about the mode of BR-induced flowering. First of all, GAs and BRs act synergistically in 

489 flowering, since augmenting endogenous BRs levels strongly enhances the early flowering 

490 phenotype conferred by the overexpression of GA20OX1, a rate limiting GA biosynthetic gene 

491 (Domagalska et al., 2010). GA applications also rescue the late flowering phenotype of BRs-

492 insensitive mutants, indicating that at least some aspects of the BRs-dependent activation of 

493 flowering are dependent on GA availability (Unterholzner et al., 2015). Molecular studies have 

494 shown that DELLA negatively regulates BRs signaling through sequestering 

495 BRASSINAZOLE RESISTANT 1 (BZR1) (and related proteins), a class of bZIP transcription 

496 factors mediating BRs signaling (Bai et al., 2012; Gallego-Bartolomé et al., 2012; Li et al., 

497 2012). BRs promote BZR1 activity in two ways; by phosphorylation and, indirectly, by 

498 stimulating GA production, through the transcriptional activation of GA biosynthetic genes 

499 (Unterholzner et al., 2015). Once released from DELLA, BR-activated BZR1 binds to DNA to 
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500 elicit BR-dependent responses. Precisely how BZR1 activates the flowering process is still 

501 poorly understood. Some indications arise from the finding that the BZR1-related protein 

502 BRI1-EMS-SUPRESSOR 1 (BES1) can recruit two JmjN/C domain-containing proteins, 

503 EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), to 

504 regulate target gene expression (Yu et al., 2008). ELF6 and REF6 regulate histone 

505 modifications and control flowering time at different levels; ELF6 is a repressor of FT whereas 

506 REF6 acts as a repressor of FLC (Jeong et al., 2009; Noh et al., 2004). While the link between 

507 BRs and FT regulation awaits confirmation, the BZR1/BES factors may control gene 

508 expression by guiding chromatin remodeling complexes at specific loci (Figure 3). 

509

510 ABA and the floral transition

511 The phytohormone ABA is generally regarded as drought stress- related hormone, coordinating 

512 several adaptive responses as a result of water deprivation (Shinozaki and Yamaguchi-

513 Shinozaki, 2007). However, ABA clearly plays important roles in development, even in the 

514 absence of stress (Barrero et al., 2005; Liu et al., 2016). Three signaling components constitute 

515 the core ABA signaling pathway; these are the PYRABACTIN RESISTANCE (PYR)/ 

516 REGULATORY COMPONENT OF ABA RECEPTOR (RCAR), the PROTEIN 

517 PHOSPHATASE 2Cs (PP2Cs), and SNF1-RELATED PROTEIN KINASE 2s (SnRK2s) 

518 (Cutler et al., 2010). ABA is recognized by the PYR/PYL/RCAR receptor proteins. Binding of 

519 ABA stimulates the interaction of PYR/PYL/RCARs with group A PP2C protein phosphatases 

520 and consequent release of the SnRK2 protein kinases. In this model the PP2Cs and the SnRK2s 

521 act as negative and positive regulators of ABA signaling, respectively (Ma et al., 2009; Park et 

522 al., 2009). SnRK2s subsequently activate different substrates, including a complex network of 

523 TFs to coordinate ABA responses (Furihata et al., 2006; Umezawa et al., 2013; Wang et al., 

524 2013; Yoshida et al., 2014). 
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525

526 The contribution of ABA signaling in the floral transition is still controversial, as both positive 

527 and negative roles of ABA have been reported (Conti et al., 2014a; Domagalska et al., 2010). 

528 ABA is emerging as a positive regulator of flowering under LDs, via activation of FT and TSF 

529 genes under LDs (Riboni et al., 2013; 2016). In support of this idea, mutants of ABA1 or ABA2, 

530 defective in different enzymatic steps in ABA production, are late flowering under LDs, but 

531 present no flowering defects under SDs (Riboni et al., 2016; 2013). The phloem companion 

532 cells are the source of ABA production, overlapping with site of FT transcriptional activation 

533 (Kuromori et al., 2014). Other indications point to a role for ABA in controlling FT activation 

534 via an interaction with the photoperiodic pathway. The genetic manipulation of the ABA 

535 signaling cascade causes changes in FT accumulation at dusk, when FT levels increase in 

536 response to light-stabilized CO protein (Riboni et al., 2016). From a temporal perspective, 

537 ABA production is subject to a circadian regulation, with a peak occurring in the middle of the 

538 day in a 12 h photoperiod (Lee et al., 2006). The ABA responsive genes follow different 

539 patterns of diel accumulation, not necessarily coinciding with the peak of ABA accumulation 

540 (Covington et al., 2008; Seung et al., 2012). Therefore, the effects of ABA signaling extend 

541 beyond the peak of ABA accumulation to activate the florigen genes. 

542

543 Mutants deficient in ABA production do not display diminished CO transcript accumulation 

544 suggesting that ABA affects FT expression mainly downstream of the transcriptional activation 

545 of CO (Riboni et al., 2016; 2014). Other reports based on the study of ABA signaling mutants 

546 also support a positive role for ABA in flowering, upstream of the transcriptional activation of 

547 CO (Koops et al., 2011; Riboni et al., 2016; Yoshida et al., 2014). This discrepancy could be 

548 due to the fact even severe ABA biosynthetic mutants still produce detectable amounts of ABA 

549 (20-30% compared with the wild type), which might be sufficient to drive transcriptional 
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550 events upstream of CO (Léon-Kloosterziel et al., 1996). ABA signaling may thus promote the 

551 transcriptional activation of CO as well as its function. Some molecular details about the 

552 underlying mechanisms are beginning to emerge. Prime candidates involved in the ABA-

553 mediated transcriptional activation of CO are a class of bZIP transcriptional regulators 

554 collectively known as ABRE-binding (AREB) proteins or ABRE-binding factors (ABFs) 

555 (Choi et al., 2000; Uno et al., 2000). ABA activates the ABFs transcriptionally and post-

556 transcriptionally, via phosphorylation (Fujii et al., 2007; Fujita et al., 2009; Wang et al., 2013). 

557 Mutants of areb2 abf3 abf1 are late flowering compared with the wild type, supporting a role 

558 for these bZIP factors in the floral network (Yoshida et al., 2014). The transcript levels of CO 

559 are reduced in the areb1 areb2 abf3 abf1 mutants, which may account for their late flowering. 

560 This could depend on reduced accumulation of the FLOWERING BHLH 3 (FBH3) 

561 transcription factors, an upstream regulator of CO, in areb areb2 abf3 abf1 mutants compared 

562 with the wild-type (Ito et al., 2012; Yoshida et al., 2014). However, adding further complexity 

563 to this model, similarly reduced levels of FBH3 and CO are observed in mutants deficient in 

564 ABA-dependent phosphorylation, which display an extreme early flowering phenotype (Wang 

565 et al., 2013; Yoshida et al., 2014). Thus, the precise role of the ABFs upstream of CO warrants 

566 further investigation. 

567

568 ABA signaling also affects CO protein function or signaling (Riboni et al., 2016). Genetic and 

569 physiological data indicate that both GI and CO are required to mediate ABA-dependent 

570 signals upstream of FT under conditions that favor ABA accumulation. Although the 

571 underlying mechanism has no yet been elucidated, one can speculate that both GI and ABA 

572 may synergistically activate an additional component which is necessary to enhance the 

573 function of CO (Riboni et al., 2016). One potential ABA-dependent modulator of CO activity 

574 has been described, but its connection with GI and/or distribution in adult leaves is unknown. 



26

575 The ABA-related transcription factor ABSCISIC ACID-INSENSITIVE 3 (ABI3) acts as a 

576 negative regulator of the floral transition, and may affect the accumulation of the florigen genes 

577 by impairing the function of CO through binding to its CCT domain (Kurup et al., 2001; Zhang 

578 et al., 2009). It is expected that once bound to ABI3, CO is no longer available for binding to 

579 DNA (Tiwari et al., 2010). ABA negatively regulates ABI3 by triggering its ubiquitination and 

580 subsequent proteasome-dependent degradation (Zhang et al., 2009). These data suggest that 

581 ABA might facilitate FT upregulation by CO, in part through ABI3 degradation. In summary, 

582 these observations support a role for ABA upstream of the florigen genes, and that ABA can 

583 have both transcriptional and post-transcriptional effects. Interestingly, the role of ABA in the 

584 leaf is parallel and/or synergic to GAs but it is unknown whether these two hormones converge 

585 to regulate a common component during the activation of FT.

586

587 Since ABA levels are usually related to variations in water availability, the different 

588 mechanisms discussed above further underlie the remarkable plasticity of FT expression under 

589 different environmental conditions. On the other hand, ABA is also involved in regulating 

590 flowering downstream of FT, but in a negative manner. Under non-inductive photoperiodic 

591 conditions, mutants with activated or impaired ABA signaling display late and early flowering 

592 phenotypes, respectively (Chandler et al., 2000; Riboni et al., 2016; 2013; Wang et al., 2013). 

593 These phenotypes may probably derive from a distinct mode of action of ABA in the SAM. 

594 Genetic evidences indicate that the negative role of ABA in flowering is exerted through SOC1 

595 (Riboni et al., 2016). Recent works offer some molecular insights into this negative role of 

596 ABA in flowering by showing that ABA directly activates FLC through the bZIP 

597 transcriptional factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) and the AP2/ERF domain-

598 containing transcription factor ABSCISIC ACID-INSENSITIVE 4 (ABI4) (Shu et al., 2016; 

599 Wang et al., 2013). Thus, by activating FLC ABA might cause reduction in SOC1 levels, 
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600 causing a delay the floral transition. Because ABI5 does not appear to contribute to flowering 

601 under SDs (Shu et al., 2016; Wang et al., 2013), ABI4 and perhaps other ABA-related 

602 mechanisms might be responsible for the regulation of FLC and SOC1 under these conditions 

603 (Shu et al., 2016; Wang et al., 2013). There are clearly other routes of ABA regulation on 

604 SOC1, as in some cases ABA promotes SOC1 by inducing nuclear re-localization of the OXS2-

605 type Zinc Finger transcription factors (Blanvillain et al., 2011). Furthermore, because SOC1 is 

606 also positively targeted by GAs, ABA and GAs appear to have opposing roles in flowering, by 

607 differentially regulating SOC1 expression and/or signaling. Recent reports describe a 

608 regulatory mechanism between ABA and GA in the context of seed germination. DELLA 

609 proteins form a protein complex with ABI3 and ABI5 which binds the promoter and activates 

610 the transcription of target genes (Lim et al., 2013). It is unknown whether this circuitry also 

611 operates in other tissues (e.g. the SAM), and contributes to the regulation of SOC1 through the 

612 activation of FLC. It is also unknown whether other ABA-related bZIP might be involved 

613 (Figure 3). A comprehensive understanding of the spatial and temporal interplay between the 

614 positive and negative roles of ABA in flowering is still lacking. Delineating a more precise 

615 pattern of ABA accumulation (and its related signaling components) in the SAM is an 

616 important goal if we are to understand the role of ABA in flowering and its interaction with 

617 other hormones. 

618

619 Ethylene and flowering 

620 In addition to ABA, other hormonal pathways enable plants to adapt their life-cycle 

621 appropriately with fluctuating environmental conditions. One such example is ethylene, which 

622 acts as floral repressor in Arabidopsis and is highly induced by salt stress, which delays 

623 flowering (Achard et al., 2006). Application of ethylene or mutant plants with constitutively-

624 activated ethylene signaling are late flowering under LDs and, most dramatically, under SDs 
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625 (Achard et al., 2007). The ETHYLENE INSENSITIVE 3 (EIN3) and EIN3-like (EIL) 

626 transcription factors mediate ethylene transcriptional responses. These proteins are normally 

627 subject to continuous degradation by the ubiquitin/proteasome system, unless the ethylene 

628 signaling cascade is activated (Guo and Ecker, 2003; Potuschak et al., 2003). Consistent with 

629 the negative role of ethylene being dependent on EIN3 function, mutants that confer EIN3 

630 stabilization delay the floral initiation in SDs. Furthermore, EIN3 accumulation delays 

631 flowering by activating the ETHYLENE RESPONSE 1 (ERF1) -related genes, belonging to the 

632 APETALA2 (AP2)/ethylene responsive element binding proteins family. The negative role of 

633 ethylene in flowering (through the EIN3- ERF1 axis) is broadly attributed to reduced bioactive 

634 GA levels, causing enhanced accumulation of DELLAs (Achard et al., 2007; Vriezen et al., 

635 2004). Consistent with the idea that ethylene delays flowering by promoting the stabilization 

636 of DELLA, the late flowering of constitutive ethylene response mutants can be partly rescued 

637 by loss-of-function mutations in genes encoding the DELLAs (Achard et al., 2007). 

638 Interestingly, DELLA proteins inhibit ethylene signaling by binding EIN3 and various ERFs 

639 to prevent their binding to the DNA (An et al., 2012; Marín-de la Rosa et al., 2014). These 

640 physical interactions may confer an auto regulatory feedback mechanism to avoid over-

641 accumulation of DELLA under adverse stress conditions.

642

643 The role of NO, SA and CKs in flowering 

644 The role of NO, SA, and CKs in flowering is well documented but knowledge about their mode 

645 of integration with the floral network is currently very limited. Pathogen and stress-related 

646 hormones NO and SA have contrasting effects on flowering, with NO repressing flowering, 

647 and SA activating it (He et al., 2004; Martínez et al., 2004). NO exerts its negative role on 

648 flowering by targeting multiple floral mechanisms, impairing the activation of CO and at the 

649 same promoting FLC accumulation (He et al., 2004). In contrast, the levels of FT are increased 
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650 following SA application, which is indicative of an integration of SA-dependent signals in the 

651 photoperiodic pathway. Genetic data indicate that to activate flowering, SA requires GI 

652 function but not CO under LDs. An additional component required for the SA-dependent 

653 activation of FT is the PATHOGEN AND CIRCADIAN CONTROLLED 1 (PCC1) gene 

654 (Segarra et al., 2010). Physiological and molecular data place the function of PCC1 

655 downstream of GI and in parallel with CO in the cascade of events leading to FT activation. 

656 SA also activates flowering under SDs, but very little is known about its target (Martínez et al., 

657 2004; Villajuana-Bonequi et al., 2014). 

658

659 The application of CKs under SDs promotes flowering through the activation of TSF but not 

660 FT. Besides TSF also the FD and SOC1 functions are required to for the CKs-mediated 

661 flowering (D'Aloia et al., 2011). Thus, a possible model emerges whereby CKs stimulates TSF 

662 expression, independent of CO or GI. Following its translocation in the SAM TSF binds to FD 

663 to induce a floral reprogram, possibly through activation of SOC1. Cytokinin responses are 

664 mediated by type-B ARABIDOPSIS RESPONSE REGULATOR (ARR) factors (Sakai et al., 

665 2001). These proteins can bind to DELLA, but unlike the previous examples this interaction 

666 causes the re-localization of DELLAs to the target promoters, which leads to the activation of 

667 target genes (Marín-de la Rosa et al., 2015). Whether DELLAs participate as transcriptional 

668 co-activators in the CKs-mediated flowering is an interesting future question.

669

670 Concluding remarks

671 There is an extensive cross-talk amongst different hormonal pathways to modulate growth and 

672 differentiation processes, which might confer increased developmental flexibility to plants in 

673 an ever-changing environment (Depuydt and Hardtke, 2011). The evidence reviewed here also 

674 point to a general contribution of hormonal signals to modulate flowering. Hormonal signaling 
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675 cascades affect the transcription of floral integrators, acting in the leaf or in the SAM (Figure 

676 3). However, gaps remain in our understanding of the regulatory logic of different hormonal 

677 pathways, their precise distribution in the different cell types and their temporal dynamics in 

678 flowering time. With respect to the regulation of flowering time, the role of DELLA as 

679 modulator of the photoperiodic and age pathway is now well-established. The available data 

680 also point to cross-regulatory mechanisms between hormonal pathways often mediated by 

681 DELLA proteins which act as keystones for the assembly of diverse protein complexes. In this 

682 sense, DELLA may help bridge together hormonal and floral signals upon floral integrators 

683 (Figure 3). Adding further complexity to this integrative role for DELLAs, recent reports 

684 describe multiple post-translational modifications (PTMs) which confer different binding 

685 properties to DELLA proteins (Conti et al., 2014b; Zentella et al., 2016; 2017). Two related 

686 proteins, SPINDLY (SPY) and SECRET AGENT (SEC), regulate DELLA in an opposite 

687 manner, by competing for the attachment of monofucose and O-GlcNAc monosaccharide 

688 moieties, respectively (Zentella et al., 2017; 2016). These modifications alter the binding 

689 affinity between RGA and its interacting transcription factors PIF4 and BZR1 and possibly 

690 many others. Since the flowering phenotype of spy and sec mutants is opposite (early and late 

691 flowering, respectively) variations in the PTMs state of DELLA may similarly alter DELLA 

692 protein-protein interaction networks required for the regulation of flowering time (Jacobsen 

693 and Olszewski, 1993; Zentella et al., 2016). More work is needed to resolve the dynamics of 

694 these PTMs, their interdependence and/or whether they affect different pools of DELLA 

695 proteins. Nevertheless, PTMs clearly add a new dimension to GA signalling beyond the 

696 DELLA degradation-dependent mode of regulation.

697
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Figure Legends

Figure 1 The floral transition occurs at the shoot apical meristem (SAM)

Graphical representation of the developmental switch occurring in Arabidopsis between the 

vegetative (V) and inflorescence (I) phases. During the V phase the SAM produces primordia 

which undergo a leaf fate (L, light green). After the floral transition, the SAM generates 

primordia that attain a floral identity (F, purple). Note that the number of vegetative leaves 

(composing the rosette) is generally directly related to flowering time (i.e. the duration of the 

switch between the V and I phases). 

Figure 2 Cycles of DELLA sequestration and degradation modulate transcriptional events in 

the leaf and in the SAM

Cartoon summarizing the role of DELLA in the control of flowering time at two sites of the 

plant, the leaf and the SAM. In the leaf, DELLA prevent positive regulators of FT including 

CO and PIF4 from binding to DNA. In the shoot, DELLA prevents SPLs factors from 

activating the transcription of floral integrators like FUL. In both cases GAs trigger DELLA 

degradation and subsequent release of the transcriptional regulator.  

Figure 3 Hormonal regulation of the floral integrators and integrative roles of DELLA in the 

floral network. 
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Summary of the hormonal regulatory mechanisms operating upstream of floral integrators in 

the leaf and  the SAM. Individual hormones can have positive (green), negative (red) or both 

(red and green) roles on the transcriptional activation of floral genes FT, TSF and SOC1 in the 

leaf or in the SAM. FLC is also regulated by different hormones and negatively regulates floral 

integrators. DELLA proteins are connected to different floral and hormonal pathways as 

illustrated below in more details. DELLA is connected with the Age (by down regulating 

miR172, dotted green arrow), Ambient temperature (Amb. Temp.,via PIF4), Photoperiodic 

(Phot., via CO and BOI) and Vernalization pathways (Vern.,via FLC) in the leaf or in the SAM. 

Potential relation with the JA (via the JAZ) and BRs (via BZR) are also shown, although it is 

not clear whether JA itself acts as a flowering-inhibitory molecule, and how BZR1 activates 

FT. DELLA interacts with the ET pathway whereby EIN3 indirectly promotes DELLA 

accumulation (dotted green arrow), whereas DELLA directly inhibits EIN3 function (solid red 

line). Note that other hormones converge to regulate the photoperiodic pathways through 

regulating CO action or accumulation with (see text.). Symbols (+ or -) indicate the positive or 

negative contribution of the indicated transcriptional regulators to gene expression. DELLA is 

connected to the age pathway in the SAM (through regulation of the SPLs-miR172 module), 

and, indirectly with the ethylene pathway. It is assumed that in the SAM, ABA antagonizes 

GAs by downregulating SOC1 expression or signaling. This could be indirect, through the 

transcriptional activation of FLC (dotted green arrow) which in turn interacts with DELLA. 

BRs in turn negatively regulate FLC (dotted red line), whereas CKs might promote SOC1 

expression through an unknown mechanism.
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