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Sommario 

Introduzione: Il carcinoma ovarico di istotipo sieroso ad alto grado (HGSOC) rappresenta il più letale tra i 
tumori ginecologici, principalmente poiché viene spesso diagnosticato in fase avanzata di malattia e poiché  
dopo un’iniziale risposta alla prima linea di trattamento, si assiste all’insorgenza di recidive di malattia 
resistenti alle terapie convenzionali. La mancanza di marcatori diagnostici e prognostici affidabili, oltre che di 
terapie efficaci, rappresenta il principale ostacolo nella gestione clinica delle pazienti affette da HGSOC. Di 
recente è stata individuata una nuova classe di RNA non codificanti (ncRNA), comprendente i microRNA 
(miRNA) e i long non-coding RNA (LncRNA), con funzione di regolazione dell’espressione genica e con un 
importante ruolo nella biologia tumorale. In particolare, i ncRNA appaiono coinvolti nella progressione 
tumorale e nello sviluppo di chemioresistenza; ciò suggerisce un loro possibile ruolo come potenziali 
biomarcatori diagnostici, prognostici e predittivi di risposta al trattamento. Le condizioni ipossiche all’interno 
del microambiente tumorale, favorendone la neovascolarizzazione, rappresentano un evento essenziale che 
contribuisce allo sviluppo di un fenotipo più aggressivo dell’HGSOC. Recentemente, è stato identificato un 
gruppo di miRNA, nominati miRNA regolati dall’ipossia (HRM), che rappresentano degli elementi chiave in 
risposta alle condizioni ipossiche, essendo coinvolti nella regolazione di meccanismi che conferiscono una 
maggiore aggressività tumorale. La complessità dei processi coinvolti nella risposta all’ipossia nell’HGSOC 
non è stata ancora del tutto compresa. In questo contesto, la scoperta di biomarcatori utili dal punto di vista 
clinico per la selezione di pazienti affette da tumori caratterizzati da una spiccata ipossia, potrebbe favorire 
l’applicazione di trattamenti personalizzati. 

Scopi dello studio: Il mio progetto di dottorato è finalizzato allo studio di firme molecolari trascrizionali e 
post-trascrizionali caratterizzanti l’HGSOC, a livello sierico e tissutale. Nello specifico, la ricerca si è 
focalizzata sui seguenti punti: i) lo studio di miRNA circolanti, quali potenziali biomarcatori per la diagnosi 
precoce dell’HGSOC; ii) l’analisi dei profili di espressione di mRNA, miRNA e lncRNA dell’HGSOC e di 
tessuti sani di controllo; iii) la valutazione dell’espressione dei miRNA legati all’ipossia, nell’HGSOC e nei 
tessuti sani di controllo.  

Metodi: A partire da due coorti indipendenti, sono stati raccolti 168 sieri di pazienti affette da HGSOC e 65 
sieri appartenenti a donatori sani, che sono stati a loro volta stratificati in un training set, per l’individuazione 
di miRNA differenzialmente espressi tra le due popolazioni, e in un validation set, per la validazione dei dati. 
Prima dell’estrazione dell’RNA, ai campioni di siero sono stati aggiunti dieci oligonucleotidi sintetici ad RNA 
(RNA virali/C.Elegans) per consentire una normalizzazione accurata dei risultati. I profili di espressione dei 
miRNA sono stati ottenuti mediante tecnologia Agilent Microarray. Per la normalizzazione dei dati derivanti 
dall’analisi dei microarray è stato utilizzato un innovativo approccio statistico, basato sulla combinazione dei 
livelli degli oligo RNA sintetici e dei miRNA endogeni maggiormenti stabili all’interno del nostro sistema 
sperimentale. La validazione della firma molecolare nel training e nel validation set è stata ottenuta prima 
mediante PCR quantitativa (RT-qPCR) e successivamente confermata mediante una quantificazione 
assoluta, ottenuta con sistema droplet digital PCR (ddPCR).  
Inoltre, sono state raccolte 99 biopsie tumorali di HGSOC da pazienti a stadio III-IV di malattia, 76 delle quali 
appaiate ai campioni di siero. Essendo l’istogenesi di questa patologia ancora oggetto di dibattito, sono stati 
raccolti anche 30 campioni di epitelio ovarico sano e di epitelio di superficie tubarico, come controllo. I profili 
di espressione genica e dei miRNA sono stati ottenuti mediante tecnologia Agilent Microarray. I livelli di 
espressione dei miRNA, risultati differenzialmente espressi, sono stati associati alle variabili cliniche, quali la 
sopravvivenza globale (OS) e la sopravvivenza libera da progressione di malattia (PFS). Infine, un 
sottogruppo composto da 14 pazienti chemio-resistenti, 14 pazienti chemio-sensibili e 10 tessuti sani sono 
stati sequenziati allo scopo di individuare nuovi trascritti codificanti e non codificanti specifici dell’HGSOC. 
 
Risultati: Dall’analisi microarray 97 miRNA sono risultati significativamente differenzialmente espressi, tra i 
sieri di pazienti affette da HGSOC e i sieri di donatori sani (92 up-regolati e 5 down-regolati). Tra questi 
miRNA, i seguenti miR-1246, miR-595, miR-574-5p, miR-483-3p, miR-4290, miR-2278, miR-32, miR-4281 e 
miR-3148, che mostravano la più alta espressione media e il maggiore fold change misurati nel confronto tra 
i pazienti e i donatori sani, sono stati selezionati per ulteriori validazioni. In particolare, miR-1246, miR-595 e 
miR-2278 si sono confermati maggiormente espressi nel siero delle pazienti affette da HGSOC rispetto ai 
donatori sani, mediante PCR quantitativa (tutti i p-values<0.03), sia nel training che nel validation set. 
L’analisi della curva ROC (Receiver Operating Characteristic) ha mostrato miR-1246 come il miglior 
biomarcatore diagnostico, con una sensibilità dell’ 87%, una specificità del 77% ed un’accuratezza dell’ 84%. 
La quantificazione assoluta dei livelli circolanti del miR-1246, ottenuta mediante ddPCR, ha confermato il 
suo potenziale come biomarcatore diagnostico dell’HGSOC. 
L’analisi microarray dei profili tissutali dei miRNA ha rivelato un totale di 265 miRNA significativamente 
disregolati nei campioni di HGSOC rispetto ai tessuti sani (123 up-regolati e 142 down-regolati). Un gruppo 
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di 9 miRNA (miR-199b-5p, miR-423-5p miR-455-3p, miR-22-3p, miR-199a-3p, miR-15b-5p, miR-140-5p, 
miR-1246 e miR-320c) è emerso associato alla risposta al trattamento chemioterapico a base di platino e 
alla prognosi. In particolare, tra i campioni tumorali la up-regolazione del miR-1246 è risultata 
significativamente associata alla resistenza al platino e ad un breve OS e PFS (p-values<0.05). Le curve di 
sopravvivenza Kaplan Meier, basate sui livelli di espressione del miR-1246 misurati in RT-qPCR, hanno 
mostrato una significativa riduzione dell’OS e del PFS nei pazienti presentanti elevati livelli del miR-1246, 
rispetto ai soggetti con bassi livelli di espressione (p-value<0.001, HR=2.57; p-value=0.024, HR=1.68; 
rispettivamente). L’analisi multivariata ha confermato l’over-espressione del miR-1246 come fattore 
prognostico indipendente associato ad una riduzione dell’ OS e del PFS. Inoltre, i livelli del miR-1246 hanno 
mostrato una down-regolazione nei campioni di HGSOC rispetto ai campioni di HOSE (p-value<0.0001), ma 
sono risultati invariati rispetto ai campioni di epitelio tubarico, sia nelle analisi ottenute mediante microarray, 
che mediante RT-qPCR. Questo risultato rispecchia il trend di espressione globale dei miRNA emerso 
dall’analisi delle componenti principali (PCA), sui dati di microarray.  
Successivamente, ci siamo focalizzati sull’analisi di 16 miRNA appartenenti al gruppo dei miRNA regolati 
dall’ipossia, selezionati dopo un’ approfondita analisi della letteratura che mostrava il loro coinvolgimento in 
altri tipi di tumori solidi. Tra questi, il miR-210 e il cluster miR-27a-3p/23a-3p/24-3p si sono confermati, 
mediante RT-qPCR, significativamente up-regolati nei campioni di HGSOC rispetto ai tessuti normali (tutti i 
p-values≤0.002). L’ over-espressione del miR-23a-3p si è inoltre validata nel gruppo delle pazienti resistenti 
rispetto alle pazienti sensibili al trattamento chemioterapico a base di platino (p-value=0.03). Riguardo alla 
sopravvivenza, mediante analisi univariata, l’up-regolazione del miR-23a-3p è risultata associata ad una 
significativa riduzione del PFS (p-value=0.009, HR=1.8), ma non con una riduzione dell’OS. L’analisi 
multivariata ha inoltre confermato l’over-espressione del miR-23a-3p, come marcatore prognostico 
indipendente associato ad un breve PFS (p-value=0.01, HR=1.78). 
Infine, le analisi preliminari riguardanti il sequenziamento del trascrittoma ci hanno permesso di identificare 
1371 trascritti differenzialmente espressi tra campioni platino resistenti e platino sensibili. Tra loro, 125 
trascritti mostrano un completo appaiamento con trascritti noti, 686 sono potenziali nuove isoforme o 
mostrano una generica sovrapposizione con trascritti noti. Le rimanenti 560 sequenze, se validate, possono 
rappresentare nuovi trascritti intergenici o mostranti un appaiamento a livello esonico con sequenze di 
riferimento. 
 
Conclusioni: Questo studio mostra, per la prima volta, il miR-1246 come un potenziale biomarcatore sierico 
per la diagnosi dell’HGSOC, confermato da tre tecnologie (microarray, RT-qPCR and ddPCR) e validato in 
due coorti di pazienti indipendenti.  
L’analisi high-throughput ha individuato la maggior parte dei geni e dei miRNA disregolati nelle biopsie di  
HGSOC rispetto al tessuto sano di controllo. In particolare, i nostri risultati indicano un potenziale ruolo del 
miR-1246 come oncogene nella regolazione dei meccanismi responsabili della resistenza ai chemioterapici 
e come fattore prognostico di sopravvivenza delle pazienti affette da HGSOC.  
Le analisi riguardanti i miRNA associati all’ipossia suggeriscono un importante ruolo dei miRNA nella 
risposta alle condizioni ipossiche, che si verificano all’interno delle masse di HGSOC. In particolare, l’over-
espressione del miR-23a-3p  nel gruppo delle pazienti resistenti al platino evidenzia l’importanza dell’ipossia 
nell’insorgenza dei meccanismi di chemio-resistenza. Inoltre, l’over-espressione del miR-23a-3p potrebbe 
rappresentare un marcatore prognostico indipendente nelle pazienti affette da questa neoplasia. 
Infine, i risultati emersi dall’analisi preliminare dei dati riguardanti il sequenziamento del trascrittoma 
suggeriscono un marcato ruolo dei trascritti non-codificanti nei meccanismi di resistenza al platino 
nell’HGSOC. Gli eventuali trascritti validati verranno integrati con i profili di espressione dei geni e dei 
miRNA, precedentemente  ottenuti, con l’obiettivo di identificare circuiti tumorali associati con la risposta al 
trattamento ed alla prognosi, e per meglio comprendere i meccanismi molecolari che caratterizzano la 
progressione e l’adattamento dell’HGSOC al microambiente ipossico. 
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Abstract 

Introduction: High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic malignancy, 
mainly because the disease is frequently diagnosed at an advanced stage and is characterized by the early 
onset of chemoresistant recurrences. The lack of reliable diagnostic and prognostic markers, together with 
the lack of effective therapies, are the major obstacles to the clinical management of patients with HGSOC. 
A new class of non-coding RNAs (ncRNAs), such as microRNA (miRNAs) and long non-coding RNAs 
(LncRNAs), with a function of gene expression regulation, have been discovered to play an important role in 
human cancers. Increasing evidences suggest that ncRNAs are involved in cancer progression and 
development of chemoresistance, and support their role as potential diagnostic, predictive and prognostic 
biomarkers. The hypoxic condition within the tumor microenvironment, improving the tumor 
neovascularization, represents an essential event contributing to the development of a more aggressive 
HGSOC phenotype. Recently, a group of miRNAs, termed hypoxia regulated-miRNAs (HRMs), have been 
identified as key elements in response to hypoxia, regulating important mechanisms involved in tumor 
progression. The complexity of hypoxia molecular mechanisms has not been fully elucidated yet in HGSOC, 
therefore there is an urgent need to discover novel biomarkers clinically useful to select patients with hypoxic 
tumor, that may benefit of tailored treatments. 

Aims of the study: My PhD project aims at elucidating transcriptional and post-transcriptional signatures 
characterizing HGSOC, both at the serum and tissue levels. In detail, the research effort includes: i) the 
investigation of circulating miRNAs as novel potential biomarkers for HGSOC detection; ii) the analysis of 
mRNA, miRNA and lncRNA expression profiles of HGSOC and normal tissues; iii) the evaluation of hypoxia-
regulated miRNA expression in HGSOC and normal tissues. 

Methods: Sera from 168 HGSOC stage III-IV patients and 65 healthy donors were gathered together from 
two independent collections and stratified into a training set, for miRNA marker identification, and a validation 
set, for data validation. Nine synthetic viral/C.Elegans spike-in oligos were added to serum samples before 
RNA extraction, to allow accurate normalization. miRNA expression profiles were obtained using Agilent 
Microarray Technologies®. An innovative statistical approach for microarray data normalization, based on the 
contribute of spike-in oligos and the most invariant miRNAs, was developed to identify, in the training set, 
differentially expressed miRNAs. Signature validation in both the training and validation sets was performed 
by Real Time quantitative PCR (RT-qPCR) and confirmed by droplet digital PCR (ddPCR). 
A total of 99 tumor biopsies were collected from HGSOC stage III-IV patients, partially matched with the 
serum sample cohort (n=76). Thirty normal tissues were obtained from normal ovary (HOSE) and luminal 
fallopian tube surface epithelia, both representing the normal counterpart for HGSOC, whose histogenesis is 
still a matter of debate. Gene and miRNA expression profiles were obtained using Agilent Microarray 
Technologies®. miRNA expression levels were correlated with patient outcomes, as overall survival (OS) and 
progression-free survival (PFS). Additionally, a subgroup of 14 chemo-resistant and 14 chemo-sensitive 
HGSOC patients, together with 10 normal tissues were deep sequenced for the discovery of novel HGSOC 
specific coding and non-coding transcripts. 
 
Results: A panel of 97 miRNAs emerged significantly differentially expressed (92 up-regulated and five 
down-regulated) between sera of HGSOC patients and healthy donors by microarray analysis. Among them, 
the following miRNAs, i.e., miR-1246, miR-595, miR-574-5p, miR-483-3p, miR-4290, miR-2278, miR-32, 
miR-4281, and miR-3148, exhibiting both the highest average expression and log fold change measured in 
patients compared to healthy donors, were selected for further validation. miR-1246, miR-595 and miR-2278 
were confirmed as significantly over-expressed in serum of HGSOC patients compared to controls by RT-
qPCR (all p-values<0.03), in both the training and validation sets. Receiver Operating Characteristic (ROC) 
curve analysis revealed miR-1246 as the best diagnostic biomarker, with a sensitivity of 87%, a specificity of 
77% and an accuracy of 84%. The absolute quantification of circulating miR-1246 by ddPCR confirmed its 
potential as diagnostic biomarker in HGSOC.  
Microarray analysis of tissue miRNA profiling revealed a total of 265 miRNAs significantly dysregulated (123 
up-regulated and 142 down-regulated) in HGSOC compared to normal tissues. A group of nine miRNAs (i.e., 
miR-199b-5p, miR-423-5p miR-455-3p, miR-22-3p, miR-199a-3p, miR-15b-5p, miR-140-5p, miR-1246, and 
miR-320c) were associated with platinum response and prognosis. In particular, among tumor samples, miR-
1246 up-regulation was consistently associated with platinum-resistance, poor OS and poor PFS (p-
values<0.05). Kaplan-Meier survival curves, according to miR-1246 expression levels obtained by RT-qPCR, 
showed that OS and PFS decreased in patients with high miR-1246 expression compared to those with low 
miR-1246 expression (p-value<0.001, HR=2.57; p-value=0.024, HR=1.68; respectively). In addition, 
multivariate analysis revealed miR-1246 over-expression as an independent prognostic factor for poor OS 
and PFS (p-value=0.002, HR=2.31; p-value<0.05, HR=1.59; respectively). 
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Interestingly, compared to normal tissues, both with microarray and RT-qPCR techniques, miR-1246 showed 
a down-regulation compared to HOSEs (p-value<0.0001), but we did not detect a significantly differential 
expression compared to fallopian tubes. This result mirrors the global miRNA expression trend revealed by 
principal component analysis (PCA) on microarray data.  
Subsequently, we focused our analysis on a group of 16 miRNAs belonging to the group of hypoxia-
regulated miRNAs (HRMs) emerged from literature as relevant in other solid tumors. Among them, we 
confirmed miR-210 and miR-27a-3p/23a-3p/24-3p cluster as significantly up-regulated in HGSOC vs normal 
tissues by RT-qPCR (all p-values≤0.002). More interestingly, we validated the significant over-expression of 
miR-23a-3p in the group of patients resistant to platinum-based chemotherapy compared to platinum-
sensitive patients (p-value=0.03). In addition, in univariate survival analysis miR-23a-3p over-expression 
showed a significant correlation with decreased progression-free survival (p-value=0.009, HR=1.8), but not 
with overall survival variable. Importantly, miR-23a-3p over-expression has emerged as an independent 
prognostic marker for shortened progression-free survival in multivariate Cox regression analysis (p-
value=0.01, HR=1.78). 
Finally, the preliminary analysis of the transcriptome sequencing allowed us to identify 1371 transcripts 
differentially expressed between platinum-resistant and platinum-sensitive samples. Among them, 125 
transcripts showed a complete match of intron chain with known transcripts, 686 were potentially novel 
isoforms or showed a generic overlap with known transcripts. The remaining 560 sequences, if validated, 
could be novel intergenic transcripts or transcripts with an exonic overlap with reference ones.  

Conclusions: This study demonstrates, for the first time, miR-1246 as a potential diagnostic serum 
biomarker in HGSOC, as assessed by three independent technologies (microarray, RT-qPCR and ddPCR) 
and validated in two independent cohorts of patients.  
Moreover, high-throughput analysis reveals most of the gene and miRNA dysregulated in HGSOC biopsies 
compared to the normal counterpart. In particular, our findings indicate, for the first time, that miR-1246 over-
expression correlates with a platinum-resistant HGSOC phenotype and may constitute a novel prognostic 
factor for HGSOC patients.  
Furthermore, our results regarding HRMs suggest an important role of miRNAs in response to hypoxic 
conditions within HGSOC. Particularly, the miR-23a-3p over-expression in the group of platinum-resistance 
patients may contribute to explain the importance of hypoxia in HGSOC mechanism of drug resistance and 
could represent an independent prognostic marker for HGSOC patients. 
Lastly, preliminary data emerged from transcriptome analyses, suggesting a prominent non-coding role in 
HGSOC platinum resistance, will be integrated with gene and miRNA expression profiles previously 
obtained, with the aim to identify tumor circuits associated with response to treatment and prognosis, as well 
as to better elucidate the molecular mechanisms characterizing HGSOC progression and adaptation to 
hypoxic tumor microenvironment.  
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1. INTRODUCTION 

1.1 High-Grade Serous Epithelial Ovarian Cancer 

1.1.1 Background 
Ovarian cancer is the fifth leading cause of cancer death among women worldwide and the most 

lethal gynaecological malignancy. In the United States there are around 22,000 new cases of 

ovarian cancer diagnosed each year and more than 14,000 cancer-related deaths [Siegel RL et al. 

2016]. The majority of ovarian cancers are of epithelial origin, whereas fewer ovarian cancers 

develop from other cell types, such as sex-cord stromal, germ cell, or mixed cell-type tumors [Kalir 

T et al. 2013]. Currently, based on histopathology, immunohistochemistry and molecular genetic 

alterations, epithelial ovarian cancers (EOCs) are classified into five main subtypes: high-grade 

serous (70%), endometrioid (10%), clear cell (10%), mucinous (3%) and low-grade serous (<5%) 

[Prat J 2012]. Although traditionally referred to as a single entity, these EOC histotypes are 

essentially distinct diseases, as indicated by their differences in epidemiological and genetic risk 

factors, precursor lesions, patterns of spread, molecular events during oncogenesis, response to 

chemotherapy and prognosis. 

 
1.1.2 Clinicopathological features  
The most common histological EOC, the high-grade serous ovarian carcinoma (HGSOC), is 

generally diagnosed late (stage III-IV), when multiple synchronous tumor lesions are localized to 

the ovary, as well as in other anatomical sites within the peritoneum cavity. HGSOC develops 

rapidly, and is highly aggressive. The five-year survival rate for stage III-IV HGSOC is less than 

30%, as patients, despite an aggressive surgery and initial response to platinum agents, become 

progressively resistant and die from incurable disease. This neoplasm accounts for 90% of the 

deaths from ovarian cancer [Kurman RJ et al. 2016]. 

 

1.1.3 Morphological and immunohistochemical features 
Histologically, HGSOC is characterized by a heterogeneous architecture, composed by a solid 

mass of cells, including nested, papillary (micropapillary or macropapillary), glandular (slit-like or 

round spaces) and cribriform cells. Necrosis and multinucleate cells are often observed. Commonly 

psammoma bodies are present [Ramalingam P 2016]. It also exhibits moderate to marked nuclear 

atypia and a mitotic activity greater than 12/10 high-power microscopic fields (HPFs) [Malpica A et 

al. 2004]. Most HGSOCs show an intense immunoreactivity for p53, MIB1, WT1, bcl-2, c-kit, Her-2 

neu, estrogen receptor (ER), HLA-G and p16 [O'Neill CJ et al. 2005]. In particular, p53 

immunohistochemistry expression can exhibit two different patterns: the usual and the most 

commonly observed is characterized by strong diffuse nuclear staining in approximately 60% of 

cells or greater. This pattern correlates with a missense mutation. The other pattern is the 

complete absence of staining, which correlates with a nonsense mutation, resulting in a truncated 
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protein that is not detected by the p53 antibody [Yemelyanova A et al. 2011]. HGSOC also shows 

a high proliferation index, as indicated by an increased nuclear expression of Ki-67 [Prat J 2012] 

 

1.1.4 Molecular features 
Currently, our understanding of ovarian carcinogenesis and its role in tumor classification is mainly 

based on morphological features, but the importance of molecular classification is becoming 

increasingly evident. In recent years, the advent of next-generation sequencing and genome-wide 

analysis has greatly facilitated attempts to better characterize HGSOC molecular genetic profile 

and to discover novel HGSOC-associated genes. Recent studies have shown that HGSOCs are 

characterized by high genomic structural variations. They harbor frequent DNA amplifications and 

deletions, including heterozygous and homozygous loss and gene breakage [Kuo KT et al. 2009; 

Cancer Genome Atlas Research Network 2011], that make this cancer an extreme example of a 

chromosomally unstable (C-class) malignancy [Ciriello G et al. 2013]. In HGSOC, with the 

exception of TP53, which is inactivated in more than 95% of cases, somatic point mutations in 

other driver genes occur very infrequently. Importantly, there is a frequent inactivation (by 

germline, somatic and epigenetic mutations) of the BRCA1/2 genes involved in the DNA damage 

repair pathway. BRCA1 and BRCA2 are fundamental components of the homologous 

recombination DNA repair machinery, that is required to resolve DNA double-strand breaks (DSB) 

[Walsh T et al. 2010] . Initially, BRCA1 and BRCA2 gene mutations were observed in hereditary 

forms of HGSOC disease, that represent approximately 10%-15%, then sporadic forms (90%) 

were identified. Women with germline mutations in BRCA1 or BRCA2 have an increased risk 

(30%-70%) of developing HGSOC ovarian cancer by the age of 70. The sporadic forms of 

HGSOC, that harbor somatic mutation in BRCA1/2 suppressor genes, are defined BRCAness, to 

describe their genetic features and molecular behavior similar to HGSOC hereditary forms carrying 

germline mutations [Rigakos G and Razis E 2012]. As reported by Venkitaraman et al, the early 

loss of p53 function observed in sporadic form of cancers could create a permissive environment 

for the loss of BRCA1 or BRCA2 function [Venkitaraman AR 2002]. These studies suggest that 

loss of TP53 and BRCA inactivation are crucial initial steps of HGSOC carcinogenesis, followed by 

chromosomal instability, DNA copy number change, and segregation into molecular subtypes, as 

reported in the model schematically represented in Figure 1.1 [Bowtell DD 2010]. Among 

homozygous deletions, loci containing Rb1, CDKN2A/B, CSMD1, DOCK4, PTEN, and NF1 are 

most common [Vang R et al. 2009]. Additionally, HGSOC is characterized by high level of DNA 

copy number gains or losses, which include CCNE1 (cyclin E1), NOTCH3, AKT2, RSF1, and 

PIK3CA [Nakayama K et al. 2007]. In 2011, the Cancer Genome Atlas (TCGA) consortium 

performed a large-scale, multiplatform genomic profiling study to comprehensively characterize 

genomic and epigenetic abnormalities of HGSOC [Cancer Genome Atlas Research Network 2011]. 

A total of 489 clinically-annotated, stage II-IV, HGSOC tumor samples were analyzed for mRNA 

and microRNA expression, DNA copy number and DNA promoter methylation. Whole-exome DNA 
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sequencing was performed on 316 of these tumor samples. Missense or nonsense mutations in 

TP53 have been reported in more than 96% of HGSOC cases analyzed. BRCA1 and BRCA2 were 

found mutated in 22% of tumors, harboring a combination of germline and somatic mutations. 

Important focal DNA copy number alterations and promoter methylations were also detected in a 

total of 168 genes. The known tumor suppressor genes PTEN, RB1, and NF1 were in regions of 

homozygous deletions and were among the significantly mutated genes. Amplification of CCNE1 

was another frequent finding. NOTCH3 and FOXM1 signaling were also identified to be involved in 

HGSOC development [Cancer Genome Atlas Research Network 2011]. 

On the basis of gene expression cluster analysis of TCGA dataset, four robust transcriptional 

subtypes of HGSOC have been delineated and validated by gene expression profiling: 

Immunoreactive, Differentiated, Proliferative and Mesenchymal [Cancer Genome Atlas Research 

Network 2011; Tothill RW et al. 2008; Konecny GE et al. 2014]. These molecular subtypes were 

associated with distinct clinical outcomes and microenvironmental features. Surprisingly, however, 

not statistically significant difference in survival times among TCGA subtypes, in the 489 HGSOC 

patients analyzed, was observed. These molecular subtypes have not yet been integrated into the 

clinical setting.  

 

 

  
Figure 1.1: Schematic model of genetic events involved in the initiation and progression of high-

grade serous ovarian cancer. 
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1.1.5 Histogenesis 
Although HGSOC has been hypothesized to arise from the ovarian surface epithelium (OSE) or 

cortical inclusion cysts, multiple studies in the past three decades failed to identify a reliable 

precursor lesion of this disease. In the last decade, a growing body of evidence suggests that the 

majority of ovarian HGSOCs could develop from the epithelium of the fimbrial end of the fallopian 

tube. The initial evidence implicating the fimbrial epithelium has been described in women who had 

BRCA germline mutations and underwent prophylactic bilateral salpingo-oophorectomy. 

Pathologists, using the Sectioning and Extensively Examining the Fimbria (SEE-FIM) protocol, a 

new method of fallopian tube sampling, identified foci of small in situ serous tubal intraepithelial 

carcinoma (STIC) [Piek JM et al. 2001; Medeiros F et al. 2006; Crum CP et al. 2007]. Surprisingly, 

similar lesions were not detected in the ovaries of the same women. Even more, epidemiological 

studies showed that women who underwent prophylactic salpingectomy displayed a significantly 

decreased risk of HGSOC, compared with women that conserved fallopian tubes, further 

supporting the tubal origin of HGSOC [Ohman AW et al. 2014; Cherry C et al. 2013]. Additionally, 

another important evidence supporting the proposal that STIC could be the most likely HGSOC 

precursor was the identification of identical TP53 mutations, indicating a clonal relationship 

between the two malignancies [Kuhn E et al. 2012]. Further studies revealed the presence of STIC 

within the fallopian tubes, systematically examined, not only in those patients carrying BRCA1/2 

germline mutation, but also in 50% to 60% of patients with sporadic HGSOC [Przybycin CG et al. 

2010; Kindelberger DW et al. 2007]. In the percentage of women in which a STIC lesion was not 

identified, it has been hypothesized that a possible mechanism of HGSOC origin could be the 

implantation of the malignant cells from fimbrial tubal epithelium into the ovary (endosalpingiosis) 

or mesothelial surface invaginations (inclusion cysts). Then, they develop into a tumor mass that 

gives the impression that the tumor originated in the ovary (Figure 1.2) [Kurman RJ and Shih IeM 

2010]. 

On the other hand, in 2013, a group of researchers identified in a mouse model the presence of a 

stem cell niche of the ovarian surface epithelium (OSE). Those cells were localized in a 

transitional/junction area between OSE, mesothelium and tubal (oviductal) epithelium, at the hilum 

region of the mouse ovary. Those stem cell niches confined in that specific area may explained the 

susceptibility of transitional zones to malignant transformation and have important implications in 

HGSOC pathogenesis [Flesken-Nikitin A et al. 2013]. More recently, Kim et al have demonstrated, 

in mutant mice harboring TP53 mutation and underwent fallopian tube removal, that HGSOC 

developed from surface ovarian epithelium, leading to widespread metastases into the peritoneal 

cavity. They concluded that, despite ovarian epithelium cells intrinsically have less tumorigenic 

potential compared to fimbrial tubal epithelium cells, they can be an independent source of 

HGSOC [Kim J et al. 2015]. This evidence could clarify the origin of a subset of HGSOCs with no 

apparent STIC precursor lesions or involvement of fallopian tube. Therefore, at present, the 
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reliable site of origin of HGSOC is still debated. More experimental evidences are necessary to 

better elucidate the relative contribution of ovarian and fallopian sites to the genesis of HGSOC.  

 
 

 
Figure 1.2: Fallopian tube and ovarian surface epithelial hypotheses on origin of HGSOC. 

 

1.1.6 Diagnosis and screening 
Approximately 70% of HGSOC are diagnosed at advanced-stage, when the neoplasm has 

extensively spread throughout the peritoneal space, generating multiple metastasis by 

dissemination into the peritoneum (stage III) and to distant organs (stage IV). The often 

asymptomatic nature of HGSOC primary lesions and the dramatically rapid spread of this 

malignancy out of the pelvis make early-stage detection a highly rare event. At the moment, serum 

CA-125, in combination with ultrasound, is the most common used biomarker for HGSOC 

diagnosis. Since CA-125 is associated with a high false-positive rate among benign gynaecologic 

conditions, such as endometriosis, that mainly affects pre-menopausal women, its use is mainly 

reserved for EOC diagnosis in post-menopausal cases. However, in the current clinical setting, 

CA-125 is used as a serum biomarker in the differential diagnosis between EOC and benign pelvic 

masses also in pre-menopause women, despite its relatively low specificity. Furthermore, CA-125 

shows low sensitivity in identifying patients with early-stage EOC disease, being increased in only 
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50% of patients with stage I [Bandiera E et al. 2011]. In the last years, several investigations 

reported human epididymis protein 4 (HE4) as one of the most promising diagnostic serum marker 

for EOC, especially in combination with CA-125 [Drapkin R et al. 2005]. Based on these 

encouraging results, Moore et al. have developed the Risk of Ovarian Malignancy Algorithm 

(ROMA), a scoring system based on the dual marker combination of HE4 and CA-125, together 

with menopausal status, which showed an effective performance for the detection of EOC [Moore 

RG et al. 2009]. Accordingly, nowadays, ROMA is becoming more and more widespread in clinical 

practice for discrimination of benign masses from EOC. 

Over the past two decades, clinical screening trials, aimed at improving early-stage detection 

strategies of HGSOC, have failed to provide survival benefit. For instance, recent data from the 

Prostate, Lung, Colorectal and Ovarian (PLCO) trial, a large multicenter prospective study, 

demonstrated that, despite intensive annual screening for nearly 35,000 women with CA-125 and 

transvaginal ultrasound, 70% of the women presented with advanced stage disease, which was no 

different from unscreened populations [Buys SS et al. 2011]. Another recently published UK 

collaborative trial of ovarian cancer (UKCTOCS), analyzed more than 200,000 postmenopausal 

women for the predictive role of CA-125 alone or in combination with ultrasound scan. Results 

showed a modest reduction in mortality, by an estimated 20% after up of 14 years, with almost 

50% of ovarian cancer detected by multimodal screening or ultrasound alone [Jacobs IJ et al. 

2016]. Although additional analysis are expected to clarify better some points of the study, the 

modest reduction in mortality mirrors the limited sensitivity and specificity of currently known 

predictors of disease, like pelvic examination, CA-125 levels and transvaginal ultrasound, which 

finally impact on the ability to improve early disease detection. On the basis of current results, that 

have not shown any decrease in morbidity and mortality, widespread screening, using the 

aforementioned diagnostic methods, is not yet justified. To make a substantial impact on reducing 

the rate of mortality, the goal in screening should be the early detection of low-volume advanced 

stage, rather than early stage detection, with the use of highly sensitive and specific biomarkers 

expressed early in ovarian carcinogenesis [Menon U et al. 2009]. However, at present, the most 

effective strategy to reduce the mortality in HGSOC patients is the complete surgical removal of 

the ovaries and fallopian tubes in women who carry germline BRCA1/ BRCA2 mutations or with a 

strong family history of breast and/or ovarian cancer, as demonstrated by meta-analysis studies 

[Domchek SM et al. 2010; Rebbeck TR et al. 2009]. Moreover, as most hereditary HGSOC are 

thought to derive from fallopian tubes, based on the current understanding of HGSOC 

carcinogenesis, only salpingectomy is recommended in young BRCA1/BRCA2-mutant carriers to 

avoid the effects of early menopause [Kwon JS et al. 2013]. In this scenario, the advances in 

genome wide analyses could improve the discovery of new genetic abnormalities associated with 

HGSOC onset and then promote the identification of women with an increased genetic risk of 

developing HGSOC. 
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1.1.7 Standard management   
Considering that most HGSOCs are widespread throughout the abdomen at presentation, their 

frontline treatment consists of surgical tumor debulking, which typically includes a combination of 

peritoneal washing, hysterectomy, bilateral salpingo-oophorectomy, omentectectomy, lymph nodal 

and peritoneal biopsies, removing as much of tumor as possible. The main goals of HGSOC 

surgery are first to stage the tumor, defining how far it has spread from the ovaries, and secondly 

to perform an optimal-debulking achieving minimal residual tumor (RT< 1 cm). After surgery, the 

chemotherapy with a combination of platinum compounds and taxanes represent the gold standard 

first-line treatment for patients with HGSOC [McGuire WP et al. 1996; Piccart MJ et al. 2000]. 

Neoadjuvant chemotherapy with interval debulking surgery is another option for patients that 

present unresectable disease or medical comorbidities, and for whom primary surgery is not 

considered feasible. However, there are no strong evidences supporting that neoadjuvant 

chemotherapy before debulking surgery is a superior strategy in term of overall survival (OS) and 

progression-free survival (PFS) [Gultekin M et al. 2008]. Despite radical surgery and initial high 

response to first-line chemotherapy, patients frequently experience relapse, with disease that 

acquires increasing resistance to platinum agent at each recurrence. Recurrent ovarian cancer is 

classified as platinum resistant, defined as relapsing within 6 months, or platinum sensitive, defined 

as relapsing more than 6 months after completing initial platinum-based chemotherapy [Chien J et 

al. 2013]. Patients with platinum resistant disease are typically treated with other agents, such as 

pegylated liposomal doxorubicin (PLD), topotecan, gemcitabine, weekly paclitaxel, trabectidin or 

can be enrolled in clinical trials. Platinum-based therapy was introduced in clinical practice in the 

late 1970s, and subsequently, it was combined with taxanes. Over the past 40 years, only little 

improvements has been achieved in developing novel high-efficient compounds, with acceptable 

side effects. Thus, novel therapies are urgently required to improve outcomes of patients with 

HGSOC. Among the most promising targets identified in ovarian cancer, a leading role belongs to 

angiogenesis molecules. In recent years, several phase II studies have demonstrated the 

acceptable toxicity profile and therapeutic activity of Bevacizumab (BV), a monoclonal recombinant 

antibody that binds VEGF-A, in the treatment of relapsed ovarian cancer [Ellis LM and Hicklin DJ 

2008; Raspollini MR et al. 2005]. In 2011, two phase III trials, GOG-02188 and International 

Collaboration on Ovarian Neoplasms (ICON) 7, reported that the addition of bevacizumab to the 

combination of carboplatin and paclitaxel, followed by maintenance therapy significantly improved 

progression-free survival (PFS) (GOG-0218, HR: 0.72, p-value<0.001; ICON7, HR: 0.81, p-

value<0.004) [Burger RA et al. 2011; Perren TJ et al. 2011]. These results led the European 

Medicines Agency (EMA) to the approval of Bevacizumab in combination with carboplatin and 

paclitaxel as first-line treatment in EOC.  
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1.1.8 Novel treatment strategies 

Currently, novel agents are under investigation in HGSOC medical treatment. In particular, recent 

genome-wide studies have partially elucidated the mechanisms underlying chemoresistance, and 

the novel genetic mutations identified can be used as molecular targets for new selective 

pharmacological agents [Cancer Genome Atlas Research Network 2011; George J et al. 2013; 

Patch AM et al. 2015]. Different chemotherapeutic agents, such as platinum compounds, liposomal 

doxorubicin and trabectedin, are observed to have higher response rates in patients with BRCA 

mutation or with BRCAness phenotype [Yang D et al. 2011]. In this setting, also PARP inhibitors 

have been studied. PARPs, poly (ADP-ribose) polymerases (PARP), are a family of multifunctional 

enzymes that play an important role in the repair of DNA single-strand breaks. PARP inhibitors 

block the enzymatic activity of PARP by attaching to the enzyme’s active center and competing 

with its natural substrate [Rouleau M et al. 2010; Do K and Cehn AP 2012]. The inhibition of 

PARPs causes the accumulation of DNA single-strand breaks, leading to DNA double-strand 

breaks. Normal cells are able to repair this damage by homologous recombination but, in BRCA1/2 

mutation carriers, these lesions are not repaired, resulting in cell cycle arrest and cell death. The 

first-in-human clinical trial of the PARP inhibitor Olaparib has been conducted in patients with 

BRCA1/2-mutated advanced ovarian, breast and prostate cancers. The results from this phase I 

trial showed that the clinical benefits of Olaparib for BRCA-associated HGSOC was significantly 

greater in platinum-sensitive disease compared to platinum-resistance and refractory disease 

[Fong PC et al. 2009]. Olaparib demonstrated a very acceptable side effect profile when compared 

with conventional chemotherapies. A durable antitumor activity was found in cancer associated 

with the BRCA1 or BRCA2 mutation. These data indicate that using PARP inhibition to target a 

specific DNA-repair pathway has the necessary selectivity profile and a wide therapeutic window 

for BRCA-deficient cells, supporting the clinical relevance of the hypothesis that BRCA mutation-

associated cancers are susceptible to a synthetic lethal therapeutic approach [Ashworth A 2008; 

Kaelin WG 2005]. In the ICEBERG2 study, Audeh et al. provided positive proof of concept of the 

efficacy and tolerability of genetically targeted treatment with Olaparib in BRCA-mutated advanced 

ovarian cancer [Audeh MW et al. 2010]. In 2014, EMA approved Olaparib as monotherapy and, 

currently, it is the best-studied oral PARP inhibitor for maintenance treatment of platinum-sensitive 

recurrent BRCA-mutated (germ line and/or somatic) HGSOC with clinical response to platinum-

based chemotherapy. 

 

1.1.9 Prognostic and predictive factors  
Taking in consideration that the majority of patients with HGSOC presents with stage III-IV, it is 

well recognized that the amount of residual tumor after surgical staging and debulking is the most 

important prognostic factor. From a clinical perspective, advanced stage means more extensive 

disease that is less likely to be optimally debulked, compared to a tumor that is confined to the 

pelvis [Cho KR and Shih IeM 2009; Bristow RE et al. 2002]. In addition, it is important to consider 



9 
 

that the smaller is the residual tumor after surgery, the more effective chemotherapy is likely to be. 

Patients in whom all macroscopic disease can be completely resected (RT=0) have a significantly 

better prognosis [Eisenkop SM et al. 2006]. There is some prognostic stratification based on size of 

residual disease (i.e. RT<1 cm, 1-2 cm, >2 cm) in patients with macroscopic residual disease, but it 

is relatively minor [Hoskins WJ et al. 1994]. It is not clear at this time whether resectability reflects 

an intrinsically more favorable disease type, or whether increased surgical effort leads to better 

outcomes independently of intrinsic tumor characteristics. Actually, it has been showed that tumor 

molecular traits, as preoperative CA-125 and TP53 mutation, could influence the cytoreductibility of 

the tumor. In particular, Eltabbakh et al demonstrated that women affected by HGSOC, 

characterized by strong TP53 mutation, are significantly less likely to achieve complete debulking, 

than patients harboring tumors with moderate expression of p53 [Eltabbakh GH et al. 2004]. This 

evidence support the idea that genomic instability and specific genetic aberrations can lead to a 

more aggressive tumor phenotype, physically more invasive and less resectable. In the last years, 

an increasing number of studies have been focused on the identification of gene signatures able to 

explain and predict the response to therapy in HGSOC [Lloyd KL et al. 2015], but with 

unsatisfactory results. Nowadays, molecular markers of prognosis and response to therapy in 

HGSOC are relatively few and none has entered into routine clinical practice. Whereas, gene 

expression based tools, as MammaPrint and Oncotype DX, used to predict metastases and 

recurrence are already available for other disease, like breast and prostate cancer, respectively 

[Slodkowska EA and Ross JS 2009; Oncotype DX®]. More recently, studies with paired EOC tumor 

samples, collected at primary surgery and at following disease relapse, have provided some of the 

first insights into clonal variations and mechanisms of resistance. [Cooke SL et al. 2010; Stronach 

EA et al. 2011]. Interestingly, Marchini et al, analyzing matched tumor samples collected at first 

and second surgery, observed a low level (2%) of concordance between matched samples in 

terms of mutations in genes involved in key processes of tumor growth and drug resistance 

[Beltrame L et al. 2015]. Moreover, Patch et al, using whole-genome sequencing of tumor and 

germline DNA samples from 92 primary tumors and matched acquired resistant disease, observed 

several molecular events associated with platinum-resistance, including reversions of germline 

BRCA1 or BRCA2 alleles and recurrent promoter fusion associated with overexpression of the 

drug efflux pump MDR1 [Patch AM et al. 2015]. These results strongly support the necessity to 

analyze, at the molecular level, biopsies collected during HGSOC disease progression, to identify 

genomic features involved in drug resistance and to discover new molecular targets for the 

management of relapsed HGSOC patients.  
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1.1.10 Tumor microenvironment: Hypoxia 
Hypoxia is a common feature of tumor microenvironment, albeit with variable incidence and 

severity in different tumor types and within a single tumor. The development of rapidly expanding 

tumor masses, as HGSOCs, require the presence of a vascular network supplying oxygen and 

nutrients essential for their growth, although, when tumor cell proliferation exceed angiogenesis, 

the highly abnormal microvasculature fails to cover the oxygen requirement. As a consequence, 

tumor cells are exposed to an environment chronically deficient in O2 [Terraneo L et al. 2010]. 

Cellular adaptive responses to low oxygen microenvironment are mainly orchestrated by the 

activation of transcription factors called hypoxia-inducible factors (HIFs). Structurally, HIFs are 

heterodimeric proteins comprising an oxygen-regulated HIF-1α or HIF-2α subunit and a 

constitutively expressed HIF-1β subunit. While HIF1β is constitutively expressed, HIF-α levels are 

tightly regulated in response to changes in oxygen tension. In normoxia, HIF-α subunits are 

undetectable due to rapid hydroxylation by the von Hippel Lindau protein (pVHL) and to immediate 

degradation by the ubiquitin-proteasome system. Under hypoxic conditions, however, HIF-α 

proteins are stabilized from degradation for heterodimerization with HIF-1β. Once formed, this 

heterodimer binds to hypoxia response elements (HREs), in the promoter regions of specific 

hypoxia-sensitive genes, and thereby induce downstream transcription [Hashimoto T and 

Shibasaki F 2015]. The persistent exposure of tumor cell to hypoxia, or low oxygen tension, 

induces pro-survival changes in gene expression and in particular the activation of the angiogenic 

process, termed “angiogenic switch”. Angiogenesis, which is the process of developing new 

microvessels from pre-existing ones, is tightly regulated by a balance of pro-angiogenic mediators, 

like vascular endothelial growth factor (VEGF)-A and anti-angiogenic mediators, like angiopoietins 

(Ang1 and 2). HGSOCs express high levels of pro-angiogenic factors that contribute to the 

progression and aggressiveness of the disease [Gómez-Raposo C et al. 2009]. For this reason, 

important effort has gone into discovering novel anti-angiogenic agents in HGSOC, as 

Bevacizumab. As aforementioned, this immunoglobulin G1 monoclonal antibody targeting VEGF-A 

has been approved in clinical practice, in addition to platinum and taxane combination, in the first-

line setting and in maintenance therapy, in patients with advanced stage ovarian cancer. However, 

despite the presumed stability of the tumor endothelium, resistance to anti-VEGF agents has 

rapidly emerged in those patients. It has been hypothesize that the VEGF blockage could intensify 

the oxygen deprivation, leading to an increased hypoxic state in the tumor microenvironment. In 

support to this hypothesis, in-vivo studies have showed that the cleavage of blood vessels could 

further stimulate tumor cells to acquire invasive and metastatic features, showing an extremely 

capability of tumor cells to adapt and survive in hypoxic conditions [Paolicchi E et al. 2016; Choi HJ 

et al. 2015; Sennino B and McDonald DM 2012]. This tumor cell adaption to hypoxia, supported by 

a high genomic instability, is one of the main problem in fighting cancer. Indeed, hypoxia plays an 

active role in tumor progression, and confers increased resistance to standard chemo- and radio-

therapies in cancer cells [Cavazos DA and Brenner AJ 2015]. 



11 
 

1.2 Non-coding RNAs 

1.2.1 Background 
The completion of the Human Genome project revealed that the protein coding genes (around 

20000) cover less than 2% of the entire genome [ENCODE Project Consortium 2007]. This 

suggested that the majority of the genome, of mammals and other complex organisms, that was 

commonly defined ‘junk DNA’, due to its overwhelming burden of transposons, pseudogenes, and 

simple sequence repeats [de Koning AP et al. 2011], is transcribed into non-coding RNAs 

(ncRNAs), many of which are alternatively spliced and/or processed into smaller products. As 

represented in Figure 1.3, at present, ncRNAs are mainly categorized as “housekeeping”, a group 

of ncRNAs constitutively expressed, and regulatory ncRNAs. The first class includes ribosomal 

RNA (rRNA), transfer RNA (tRNA), splicing RNA (sRNA), nucleolar RNA (snoRNA) and small 

nuclear RNA (snRNA). Whereas, the regulatory ncRNA class includes different molecules that 

have crucial roles in the control, at various levels, of gene expression in physiology and 

development, including chromatin architecture/epigenetic memory, transcription, RNA splicing, 

editing, translation and turnover. Currently, regulatory ncRNAs include small ncRNAs (less than 

200 nucleotides), comprising small interfering RNA (siRNA), piwi-interacting RNA (piwiRNA), and 

microRNA (miRNA) [Kim VN et al. 2009]. In addition, more recently, another subtype of regulatory 

ncRNA, endogenous cellular RNAs of more than 200 nucleotides in length, termed long ncRNAs, 

has been included. Long ncRNAs can act in different ways in the cell; for instance, they regulate 

gene expression and influence protein localization [Kung JT et al. 2013; Gutschner T and 

Diederichs S 2012].  

 

                 

Figure 1.3: Non-coding RNAs in mammalian cells. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=ENCODE%20Project%20Consortium%5BCorporate%20Author%5D
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1.2.2 microRNAs 
microRNAs (miRNAs or miRs) are endogenous, small non-coding single-stranded RNAs of ~22 

nucleotides in length, highly conserved in a wide range of species, which function at post-

transcriptional level as negative regulators of gene expression. miRNAs were first described in 

1993, when a small RNA, lin-4, was discovered to negatively regulate LIN-14 levels, a protein 

involved in the developmental timing of the nematode C.Elegans [Lee RC et al. 1993]. However, 

the term ‘microRNA’ was only coined in 2001, when tens of small RNAs with regulatory potential 

were discovered in C.Elegans  [Lee RC and Ambros V 2001]. Since then, hundreds of similar small 

RNAs and number of different mechanisms for translational control by small RNAs in C.Elegans, 

Drosophila and mammals have been discovered. miRNAs play critical regulatory roles in the 

coordination of a wide variety of critical cellular processes like proliferation, differentiation, cell 

cycle regulation, apoptosis, stem cell maintenance, hypoxia and metabolism. miRNA expression is 

highly cell type and tissue specific, and it is present at different developmental stages, suggesting 

their important regulatory functions. Additionally, miRNAs are involved in pathological conditions 

like cardiovascular disease, obesity and cancer [Dalmay T and Edwards DR 2006; Hwang HW and 

Mendell JT 2006].  

To date, approximately 2,000 human hairpin precursor miRNAs, expressing 2,588 mature miRNA 

sequences have been annotated in the miRNA registry (http://www.mirbase.org/, miRBase release 

21, updated 2014), targeting and regulating the majority of coding genes [Kozomara A and 

Griffiths-Jones S 2014]. Typically, both the gene locus and precursor miRNA (pre-miRNA) of a 

miRNA is referred as "mir", while the mature miRNA product is designated "miR". Each miRNA is 

preceded by three letters specific for each species, for humans (Homo sapiens) those letters are 

"hsa" (e.g. hsa-miR-200). miRNAs have been numbered in order of discovery. Multiple miRNAs 

can be evolutionary related, with a nearly identical sequence, thus a letter after the number is used 

to differentiate among multiple members of the same family (e.g. hsa-miR-200a and hsa-miR-

200b). If different genomic loci produce identical miRNAs, additional number is given after the full 

name (e.g. hsa-miR-200-1 and hsa-miR-200-2). Two miRNAs, originating from opposing sides of 

the same double-stranded RNA, are named with a tag indicating from which mature sequence 

comes from (e.g hsa-miR-200a-3p from the 3’ arm and hsa-miR-200a-5p from the 5’ arm) 

(http://www.mirbase.org/). 

 
1.2.3 miRNA biogenesis and mechanisms of action 
miRNA biogenesis in human cells is a complex process comprising multiple steps, as illustrated in 

Figure 1.4. miRNAs can be organized as individual genes in intergenic regions or in genic regions 

(usually in introns or in non-coding exons), or localized as clusters representing miRNA families, 

which are commonly related in sequence and function. miRNAs are mainly transcribed by RNA 

polymerase II (rarely by RNA polymerase III) into long primary miRNA transcripts, either alone or in 

clusters, and folded into typical hairpin structurers of variable size, having a 5’ cap and a 3’ poly-A-
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tail, known as primary miRNAs (pri-miRNAs). Subsequently, these pri-miRNAs are recognized and 

cleaved in the nucleus by the Microprocessor complex, containing RNase III enzyme Drosha ant its 

cofactor RNA binding protein, DiGeorge Syndrome Critical Region 8 (DGCR8), resulting in 

individual stemloop hairpin precursor miRNAs (pre-miRNAs) [Lee Y et al. 2004]. Then, pre-

miRNAs are actively and rapidly exported from the nucleus to the cytoplasm by Exportin 5, a Rna-

GTP dependent nuclear export receptor. In the cytoplasm, pre-miRNAs are further processed by 

another RNase III enzyme, called Dicer, and its RNA binding co-factor TRBP (the human 

immunodeficiency virus transactivating response RNA-binding protein), into a transient 19–24 

nucleotide imperfect miRNA/miRNA* duplexes [Bohnsack MT et al. 2004]. Only one strand of the 

miRNA duplex (mature miRNA) is incorporated into a large protein complex, called RNA-induced 

silencing complex (RISC), containing Argonaute proteins (AGO1-AGO4). Each of the four AGO 

proteins possesses repressive capabilities, but only AGO2 has the potential to cleave target 

sequences due to its RNaseH-like domain [Peters L and Meister G 2007]. The mature miRNA 

leads RISC to cleave mRNA, to induce translational repression or to enhance mRNA degradation, 

depending on the degree of complementarity between the miRNA and its target [Hutvanger G and 

Zamore PD 2002]. The last two processes are more commonly associated with mismatched 

miRNA/target sequences that are the most likely scenario in mammals. Although the most frequent 

site of interaction is the 3’ untranslated region (UTR) of the target mRNA, several miRNAs have 

been described to bind to the open reading frame (ORF) sequences, as well as to the 5’UTR [Lytle 

JR et al. 2007]. This final interaction has been associated with activation, rather than repression. 

miRNAs can also bind directly to proteins, in particular RNA-binding proteins, in a sequence-

dependent manner and prevent these proteins from binding to their RNA targets. These decoy 

activities of miRNAs are RISC-independent [Eiring AM et al. 2010]. miRNAs can also regulate 

gene transcription by binding directly or by modulating methylation patterns at the target gene 

promoter level [Gonzalez S et al. 2008; Kim DH et al. 2008]. 
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      Figure 1.4: microRNA biogenesis and effector pathways.  

 

1.2.4 miRNA involvement in human cancer 
Cancer development and progression, associated with an abnormal alteration in several biologic 

mechanisms, such as, in particular, proliferation and apoptosis, not only lead to a misregulation of 

a plethora of protein-coding genes, but also to a global change in miRNA expression profile. The 

first evidence of miRNA involvement in human cancer disease has emerged from chronic 

lymphocitic leukemia studies. Croce et al identified the tumor suppressor miR-15/miR-16-1 cluster, 

located in a critical region of CLL frequently deleted [Cimmino A et al. 2005]. A couple of years 

later, all the known miRNA genes were mapped and many of them were found in genomic regions 

involved in cancer. In particular, miRNA genes were frequently located in regions showing 

chromosomal alterations, such as amplification or loss of heterozygosity and mutations, or in 
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fragile sites and common breakpoint areas near oncogenes or tumor suppressors genes [Calin GA 

et al. 2004]. In addition to structural genetic alterations, other mechanisms may affect miRNA 

dysregulation in cancer, as histone deacetylase inhibition and promoter hypermethylation. For 

instance, many genomic sequences of miRNA genes were found associated with CpG islands 

[Weber B et al. 2007]. Moreover, mutations in miRNA target site or in miRNA mature sequences 

can occur, inducing imperfect target recognition and inhibition of downstream protein complex 

processes. Deregulation in miRNA expression can be also affected by alteration in the miRNA 

biogenesis machinery. For instance, studies have reported a significant association between loss 

of Dicer and/or Drosha and outcome of patients, in several types of tumor, as lung cancer and 

ovarian carcinoma. Furthermore, miRNA expression profiles can be influenced by changes in the 

tumor microenvironment, such as tumor hypoxia [Kulshreshtha R et al. Mar 2007; Kulshreshtha R 

et al. Jun 2007; Giannakakis A et al. 2008; Kulshreshtha R et al. 2008; Crosby ME et al. 2009;]. On 

the regulation of gene expression, miRNAs may act as oncogenes or tumor suppressors, 

depending on whether they target tumor suppressor genes or oncogenes, respectively. 

Interestingly, the activity of miRNAs is high-context dependent. Indeed, the same miRNA can act 

as an oncogene in one type of cells and as a tumor suppressor in another, suggesting important 

regulatory functions [Croce CM 2009]. Accordingly, oncogene miRNAs are often overexpressed in 

some cancer types, whereas, in other cancers, when they act as tumor suppressor, they are 

commonly down-regulated. For example, miR-221/222 cluster, generally, is up-regulated and acts 

as oncogene targeting some important tumor suppressor genes (PTEN, p27 and p57), increasing 

proliferation of cancer cells in breast, lung and liver cancer. Conversely, the same cluster is down-

regulated in erythroblastic leukemias, where it targets c-KIT oncogene [Garofalo M et al. 2012]. In 

the last years, the advent of high-throughput profiling techniques, as miRNA microarrays and RNA-

Seq (RNA Sequencing), improved the miRNA expression analysis [Creighton CJ et al. 2009; 

Farazi TA et al. 2011]. In particular, It has been revealed a role of miRNAs in tumor progression, 

through targeting mRNAs involved in cell survival, proliferation, differentiation, angiogenesis and 

apoptosis, but specific miRNA pattern profiles have been discovered in different cancer types. 

Moreover, miRNA expression profiles have been correlated with clinical and biological features of 

tumors, including histological type, differentiation, aggressive behavior, prognosis and response to 

therapy. miRNA profiles can distinguish not only between normal and cancerous tissue and identify 

tissues of origin, but they can also discriminate different subtypes of a particular cancer or even 

specific oncogenic abnormalities: miRNAs, for example, are differentially expressed between basal 

and luminal breast cancer subtypes [Sempere LF et al. 2007] and can specifically classify estrogen 

receptor, progesterone receptor and HER2/neu receptor status [Iorio MV et al. 2005]. Even more 

importantly, several groups in recent years have reported how miRNA profiling can predict disease 

outcome or response to therapy [Li X et al. 2010; Caramuta S et al. 2010], for example miR-155 

overexpression and let-7a downregulation, which are able to predict poor disease outcome in lung 

cancers [Yanaihara N et al. 2006]. The evaluation of miRNA expression predicting the response to 



16 
 

specific drugs is another important goal, since it might help for a more accurate selection of 

patients potentially responsive to a specific therapy. For example, high miR-21 expression levels 

were detected to be associated with worse survival and poor response to adjuvant chemotherapy, 

both in colon adenocarcinomas [Schetter AJ et al. 2008] and in pancreatic cancer patients treated 

with gemcitabine [Giovannetti E et al. 2010]. In summary, the potential of miRNA signatures to 

distinguish between tumor and normal tissues, to discriminate between different subgroups of 

tumors and to predict outcome and response to therapy has focused scientists’ attention on these 

small molecules as potential clinical biomarkers, either diagnostic, predictive or prognostic. 

 

1.2.5 miRNAs in ovarian cancer tissues 
In the last years, several studies have demonstrated that several miRNAs are considerably 

dysregulated in advanced stage or high-grade ovarian cancers (OCs), suggesting their important 

roles in malignant transformation and tumor progression. Zhang et al reported that OC is 

characterized by massive miRNA deregulation, mainly due to genetic and epigenetic mechanisms 

[Zhang L et al. 2008]. Deletion occurs in up to 15% of genomic loci harboring miRNAs and 

epigenetic silencing is involved in 30% of down-regulated miRNAs, while mutations in cancer-

associated miRNAs are rare in OC [Katz B et al. 2015]. Actually, despite multiple studies showed 

altered miRNA expression pattern in OC tumor cells compared to normal tissues, there is only a 

little overlap between the results of these studies. These inconsistent data may be explained by 

some different aspects: the source of the samples used (flash frozen tissues, formalin fixed paraffin 

embedded tumors, cell line cultures), the inclusion criteria (histotype, stage, grade), the source of 

the normal tissues (ovarian surface epithelium brushing, ovarian biopsies, cell line cultures), the 

size of the study cohort and technical variables (sample management, RNA extraction protocol and 

platforms used for miRNA analyses). In 2007, Iorio et al published the first report regarding miRNA 

expression in OC compared to normal ovarian tissue. They found a total of 29 miRNAs 

dysregulated between groups. In particular, four miRNAs (miR-141, miR-200a, miR-200b, and 

miR-200c) emerged up-regulated, while 25 were down-regulated, including miR-199, miR-140, 

miR-145, and miR125b1 in cancer samples [Iorio MV et al. 2007]. Later, in 2008, Zhang et al, 

comparing 18 EOC cell lines and four immortalized cell lines derived from OSE, found four 

miRNAs over-expressed in EOC cell lines and 31 miRNAs down-regulated, including the tumor 

suppressor miRNAs let-7d and miR-127 [Zhang L et al. 2008]. These studies showed that miRNA 

expression profiles could distinguish malignant from normal ovarian surface epithelium. Since then, 

several studies have investigated the differences between the miRNA profiles of ovarian surface 

epithelium and OC, and the potential role of miRNAs in OC diagnosis, prognosis and treatment. 

Two of the most frequently identified deregulated miRNAs in OC are the miR-200 and the let-7 

families. The miR-200 family consists of five miRNAs (miR-200a, miR-200b, miR-200c, miR-141 

and miR-429) arranged in two clusters in the human genome. miR-200a, miR-200b and miR-429 

are located on chromosome 1, while miR-200c and miR-141 are on chromosome 12 [Park SM et 



17 
 

al. 2008]. In several studies, the expression of miR-200 family members has been associated with 

survival in EOC patients. In particular, Nam et al, using DNA microarray and northern blot 

analyses, identified 23 miRNAs differentially expressed between 20 serous OC tissues and eight 

normal ovarian tissues. They observed that high expression of miR-200a/b/c, miR-18, miR-93, 

miR-141, and miR-429 and low expression of let-7b and miR-199a significantly correlated with PFS 

and OS [Nam EJ et al. 2008]. Hu et al, in a study including 55 patients with stage III and IV of all 

histologic subtypes, showed a decreasing expression of miR-200a/b/c and miR-429 in patients with 

recurrence compared to recurrence free patients [Hu X et al. 2009]. Moreover, Marchini et al 

demonstrated that loss of miR-200c was associated with poor PFS and OS, in multivariate analysis 

of stage I EOC [Marchini S et al. 2011]. Currently, as emerged from the diverging results in above 

citied studies, the prognostic role of miR-200 family in EOC is not completely elucidated. The miR-

200 family members have been shown to play a critical role in the suppression of epithelial to 

mesenchymal transition (EMT). Park et al observed a positive correlation in the expression of E-

cadherin with the expression of miR-200c in ovarian cancer tissues. Actually, the over-expression 

of miR-200 a/b/c and/or miR-141 seems to down-regulate ZEB1 and ZEB2 levels, and leads to 

higher levels of E-cadherin and an epithelial phenotype [Park SM et al. 2008].  

The let-7 (lethal-7) family includes 13 human homologs tumor suppressor miRNAs located on nine 

different chromosomes. These loci have been identified situated in cancer-associated regions or in 

fragile sites and are typically down-regulated in OC [Dahiya N et al. 2008]. Let-7 suppresses 

multiple ovarian cancer oncogenes, which include KRAS, HRAS, c-Myc and HMGA-2 [Johnson SM 

et al. 2005; Büssing I et al. 2008]. Low expression of the let-7 family has been identified as a 

potential marker for early diagnosis, and associated with a decreased overall survival in several 

studies of OC [Yang N et al. 2008; Nam EJ et al. 2008] 

A number of studies attempted to identify specific miRNA expression profiles according to 

histological subtypes. Particularly, Iorio et al showed that miR-200a and miR-200c were over-

expressed in three types of ovarian cancer: serous, clear cell, and endometrioid. Whereas, miR-

200b and miR-141 were up-regulated in endometrioid and mucinous carcinoma [Iorio MV et al. 

2007]. Calura et al performed a miRNA array analysis of 257 stage I EOC of different  histotypes. 

They found high expression levels of miR-30a-3p and miR-30a-5p in clear cell carcinoma (CCC), 

whereas mucinous carcinoma (MC) expressed high levels of miR-192 and miR-194 [Calura E et al. 

2013]. Moreover, Vilming Elgaaen et al identified 12 miRNAs differently expressed between CCC 

and HGSOC. In particular, miR-509-3-5p, miR-509-5p, miR-509-3p, miR-508-5p, and miR-510 

were the most dysregulated miRNAs between histotypes [Vilming Elgaaen B et al. 2014]. 

Therefore, further investigations on the potential of these miRNAs to classify OC histological 

subtypes are needed.  

The most important milestone of integrated genomic analysis in HGSOC has been recently 

provided by TCGA on a total of 489 HGSOC samples. Cluster analysis on miRNA expression data 

defined three subtypes of HGSOC. Notably, miRNA subtype 1 overlapped the mRNA Proliferative 
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subtype and miRNA subtype 2 overlapped the mRNA Mesenchymal subtype, both above 

mentioned [Cancer Genome Atlas Research Network 2011]. TCGA has offered the foundations for 

many other studies investigating HGSOC prognosis. In particular, Yang et al, using the TCGA 

database, identified a miRNA-regulatory network that defined a robust integrated mesenchymal 

subtype associated with poor overall survival in 459 cases of serous ovarian cancer and 560 cases 

of an independent data cohort. Moreover, these analyses highlighted the central role of a miRNA 

regulatory network, consisting of eight miRNAs (miR-25, miR-29c, miR101, miR-128, miR-141, 

miR-182, miR-200a and miR-506) and predicted to regulate the 89% of targets in the 

mesenchymal subtype of HGSOC [Yang D et al. 2013]. Creighton et al, referring to the catalog of 

TCGA, developed an integrated analysis to improve the in silico miRNA-gene targeting predictions 

and to demonstrate the rich resource of TCGA in identifying miRNA candidates for functional 

targeting in cancer [Creighton CJ et al. 2012]. 

As aforementioned, it has been shown that miRNAs could play a crucial role in response to 

chemotherapy treatment in OC. A total of 27 miRNAs have been associated with responsiveness 

to chemotherapy [Hong L et al. 2013]. Yang et al. found that miR-214, which targets PTEN, is 

frequently expressed in ovarian cancer tissues and that let-7i, which enhances resensitization to 

platinum resistance, is expressed less in the same tissues [Yang N et al. 2008]. Aqeilan et al. 

found that miR-15 and miR-16 cause cellular resistance to many drugs, through targeting the BCL2 

gene [Aqeilan RI et al. 2010]. Leskelä et al showed that the miR-200 family (miR-141, miR-200a, 

miR-200b, miR-200c, and miR-42) is implicated in the response to paclitaxel treatment and 

progression-free survival, via �tubulin III regulation. In particular, miR-200c is significantly 

associated with recurrence of ovarian cancer and miR-429 is associated with progression-free and 

overall survival rates [Leskelä S et al. 2011]. In a study conducted on a total of 198 serous ovarian 

cancer samples, Vecchione et al identified miR-217, miR-484 and miR-618 able to predict the 

chemoresistance of these tumors. They also demonstrated that miR-484 was able to improve 

chemosensitivity through the regulation of angiogenesis, by targeting VEGFR2 [Vecchione A et al. 

2013]. Additionally, a recent study has shown that let-7g selectively affects the sensitivity of a drug 

resistant ovarian cancer cell to taxanes by targeting IMP-1, an RNA binding protein which 

stabilizes MDR-1 (multidrug resistance-1), a membrane protein that pumps drugs into the 

extracellular space. Accordingly, the expression of let-7g resulted in a decrease in MDR-1 protein 

levels and sensitized the cells to taxane treatment [Boyerinas B et al. 2012] 

A novel potential treatment option for ovarian cancer includes supplementation of miRNAs that are 

down-regulated in cancer tissue for recovery of function and inhibition of the function of up-

regulated miRNAs by administration of complementary nucleic acids. Garzon et al showed that the 

effect of up-regulated oncomiR could be suppressed using an antagomir, an oligonucleotide 

complementary to the miRNA administered as an antisense oligonucleotide [Garzon R et al. 2010]. 

Dai et al established a therapy for ovarian cancer based on targeted delivery of miR-29a to cancer 

tissues for the purpose of reexpressing PTEN, a tumor suppressor. The potential antitumor effect 
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of a miR-29a-transfected chimera was apparently based on expression of downstream molecules 

and apoptosis of ovarian cancer cells [Dai F et al. 2012]. Cittelly et al found that recovery of the 

level of miR-200c by transfection, which is known to increase sensitivity to platinum-based 

anticancer drugs, suppressed carcinogenesis and decreased the number of cancer cells. The 

recovery of miR-200c immediately before highly cytotoxic chemotherapy improves the treatment 

response or reduces the effective dose of the anticancer drugs [Cittelly DM et al. 2012]. These 

functional studies suggest that the modulation of miRNA misexpression is an attractive target for 

cancer therapeutics. However, before proceeding with clinical trials, additional analyses and 

validations of the administration of complementary nucleic acids, as miRNA mimics and antisense 

mRNAs, both in-vitro and in-vivo, are necessary to better verify their efficacy. 

 

1.2.6 Circulating miRNAs in cancer 
In the last years, several investigations have discovered that miRNAs can move from tumor tissue 

to blood circulation. Circulating miRNAs are extremely stable and can withstand multiple freeze-

thaw cycles, long period of storage, temperature and pH changes and show resistance to blood 

RNase activity [Chen X et al. 2008]. Indeed, serum and other body fluids are known to contain 

ribonucleases, but the majority of miRNAs are packaged with ribonucleoproteins, as Argonaute2 

proteins, protecting them against enzyme digestion. Furthermore, several studies have identified 

miRNAs complexed with lipoproteins and two types of cell-derived lipid vesicles: exosomes and 

microvesicles. Lipoproteins are complexes that consist of a lipid core surrounded by a shell of 

apolipoproteins that allow the lipids to travel in the bloodstream. Exosomes are small (30-100 nm) 

lipoprotein vesicles, that are released into the extracellular environment when endosomally-derived 

multivesicular bodies fuse with the plasma membrane. Microvesicles are larger than exosomes 

(100nm-1µm) and are released from the plasma membrane of stimulated cells [Etheridge A et al. 

2011]. Lawrie et al detected, for the first time, the presence of serum miRNAs in cancer patients. 

They found that miR-155, miR-210, and miR-21 were higher in serum from patients with diffuse 

large B-cell lymphoma, and high level of miR-21 expression was associated with patients’ relapse 

free survival [Lawrie CH et al. 2008]. Subsequently, serum miRNAs were tested as biomarkers for 

disease monitoring in prostate cancer, and for the early detection both in the lung and colorectal 

carcinomas. Moreover, similar studies have been performed in many types of cancer including 

gastric, breast and ovarian cancer [Zhu C et al. 2014; Shimomura A et al. 2016; Nowak M et al. 

2015]. Currently, miR-test, based on a serum signature of 13 miRNAs, represents one of the most 

promising tool for lung cancer screening in high-risk individuals [Montani F et al. 2015] 

 

1.2.7 Circulating miRNAs in ovarian cancer 
Given the stability of miRNAs in the peripheral blood and tumor-specific miRNA profiling, 

circulatory miRNAs may be superior potential biomarkers for ovarian cancer diagnosis and 

prognosis than tissue miRNAs. In recent years, several circulating miRNAs have been identified as 
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biomarkers with implications in ovarian cancer early detection, association with clinicopathological 

features and prognosis. The differentially expressed miRNAs of each study are summarized in 

Table 1.1. The first study in OC was performed by Taylor et al in 2008, investigating exosomes 

from the peripheral blood circulation of ovarian cancer patients. They found that the eight miRNAs 

over-expressed in serous ovarian cancer tissue (miR-21, miR-141, miR-200a, miR-200b, miR-

200c, miR-203, miR-205 and miR-214) were also elevated in serum-derived exosomes. These 

circulating miRNA levels were also significantly higher compared with those detected in patients 

with benign disease [Taylor DD and Gercel-Taylor C 2008]. In another study, Resnick et al 

empirically selected  21 miRNAs from the OC tissue profile. They identified five miRNA significantly 

over-expressed (miR-21, miR-29a, miR-92, miR-93 and miR-126) and three under-expressed 

(miR-127, miR-155 and miR-99b) in the serum of OC patients compared with controls [Resnick KE 

et al. 2009]. Kan et al confirmed the overexpression of miR-200a, miR-200b and miR-200c in 

serum of serous OC patients, compared to controls. Moreover, a multivariate model combining 

miR-200b and miR-200c was able to discriminate patients with HGSOC from age-matched healthy 

donors [Kan CW et al. 2012] Another study on serous OC was conducted by Chung et al using 

microarray and RT-qPCR. They detected four serum miRNAs (miR-132, miR-26a, let-7b, miR-145) 

significantly down-regulated in OC patients compared to controls, making these miRNAs potential 

candidates for novel diagnostic biomarkers [Chung YW et al. 2013]. Zheng et al performed a study 

on a large cohort of plasma samples of 360 OC patients and 200 healthy controls, grouped into 

screening, training and validation sets. Using TaqMan low-density array, they identified higher miR-

205 and lower let-7f expression in plasma  samples from tumor patients compared to controls. 

Moreover, the two miRNA combination provided a higher diagnostic accuracy for OC, especially in 

patients with stage I disease [Zheng H et al. 2013]. For the first time, Shapira et al conducted a 

study focused on protein-bound miRNA in plasma free of cellular debris, microvesicles or 

exosomes. A total of 19 miRNAs emerged down-regulated, while three were up-regulated in 

serous OC compared to controls. In particular, six miRNAs (miR-106b, miR-126, miR-150, miR-17, 

miR-20a and miR-92a) resulted significantly decreased in OC patients [Shapira I et al. 2014]. 

Recently, Langhe et al, using the Exiqon discovery platform, identified a panel of four miRNAs (let-

7i-5p, miR-122, miR-152-5p and miR-25-3p) significantly down-regulated in cancer patients, 

compared to patients with benign serous cystoadenomas [Langhe R et al. 2015].  Recently, Zuberi 

et al confirmed the members of the miR-200 family overexpressed and associated with tumor 

progression in OC samples [Zuberi M et al. 2015]. Moreover, the same group investigated the 

expression level of miR-199a by RT-qPCR. A significant down-regulation of miR-199a levels has 

emerged in the group of tumor patients compared with matched normal controls and its expression 

were significantly associated with more aggressive clinicopathological features [Zuberi M et al. 

2016]. More recently, serum levels of exosomal miR-373, miR-200a, miR-200b and miR-200c were 

found significantly higher in OC patients than healthy donors, by TaqMan MicroRNA assay. In 

particular, members of miRNA-200 family were able to discriminate between malignant and benign 
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ovarian tumors. Moreover, miR-200b and miR-200c were observed significantly increased in 

advanced stage OC, suggesting a possible involvement in tumor progression [Meng X et al. 2016]. 

The above mentioned studies suggest that circulating miRNAs may be powerful diagnostic and 

prognostic tools in ovarian cancer patients. However, at present, the inconsistent results across 

studies do not support their application as biomarkers in daily clinical ovarian cancer management. 

Studies performed in large well-characterized cohorts and independently validated are urgently 

needed, before any clinical value of circulating miRNAs can be evaluated. 

 

Table 1.1: Studies on circulating miRNAs as potential biomarkers of ovarian cancer 

 

Authors Years Type of 
tissue Histology Control Up-regulated 

miRNAs 
Down-regulated 

miRNAs 
Discovery 
platform 

Taylor et al. 2008 Serum 
exosome Serous Benign 

ovarian tumor 

miR-21,miR-141, 
miR-200a,b,c, 

miR-203, 
miR-205,miR-214 

─ Custom microRNA 
arrays 

Resnick  et al. 2009 Serum EOC Healthy 
control 

miR-21,miR-29a, 
miR-92, miR-93, 

miR-126 

miR-127, miR-155  
miR-99b 

TaqMan array 
RT-qPCR 

Hausler et al. 2010 Whole blood EOC Healthy 
control miR-30c1 

miR-342-3p 
miR-181a 
miR-450-p 

Geniom Biochip 

Kan et al. 2012 Serum HGSC HOSE/healthy 
control miR-200a,b,c ─ TaqMan assays 

Chung et al. 2013 
Serum 

(tissue and 
ascites) 

Serous Healthy 
control ─ 

miR-132 
miR-26a 

let-7b,miR-145 

Microarray 
RT-qPCR 

Zheng et al. 2013 Plasma EOC Healthy 
control miR-205 let-7f 

TaqMan Low-
density array  
 RT-qPCR 

Xu et al. 2013 Serum EOC Healthy 
control miR-21 ─ RT-qPCR 

Hong et al. 2013 Serum EOC Healthy 
control miR-221 ─ RT-qPCR 

Ji et al. 2014 Serum EOC 
Healthy 

control/benign 
ovarian tumors 

miR-22, miR-93 ─ Solexa 
sequencing 

Shapira et al. 2014 Plasma serous 
Healthy 

control/benign 
ovarian tumor 

─ 
miR106a,126,146
a,150,16,17,19b, 
20a,223,24,92a 

TaqMan Open 
Array MicroRNA 

Langhe et al. 2015 Serum serous Benign 
ovarian tumor ─ 

let-7i-5p,miR-122, 
miR-152-5p, 
miR-25-3p 

Exiqon panel 
RT-qPCR 

Gao et al. 2015 Serum EOC/ 
borderline 

Healthy 
control miR-200c,miR-141 ─ RT-qPCR 

Zuberi et al. 2015 Serum EOC Healthy 
control miR-200a,b,c ─ RT-qPCR 

Zuberi et al. 2016 Serum EOC Healthy 
control ─ miR-199a RT-qPCR 

Meng et al. 2016 Serum 
exosomes EOC Healthy 

control 
miR-373, miR-

200a,b,c ─ TaqMan assay 
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1.2.8 miRNA involvement in hypoxic condition 
Over the past few years, the “classic” protein coding hypoxia-regulated genes have been joined by 

specific miRNAs, thus adding a new paradigm of gene expression regulation in an already complex 

process and providing an additional link between tumor-specific stress factor and gene expression 

control. The first evidence of an hypoxic cancer-related miRNA signature was described by 

Kulshreshtha et al. They reported a group of miRNAs that included: miR-21,23a, 23b, 24, 26a, 26b, 

27a, 30b, 93, 103, 106a, 107, 125b, 181a, 181b, 181c, 192, 195, 210 and 213, which were 

consistently expressed in response to low oxygen tension, in breast and colon cancer cell lines. 

[Kulshreshtha R et al. 2007 Mar]. These miRNAs, differently expressed in response to hypoxia, 

have been collectively termed “hypoxia-regulated miRNAs” (HRMs) or later, “hypoxamiRs”. During 

the last years, numerous studies have reported different hypoxic miRNA signatures, comprising 

more than 90 HRMs, in a variety of cellular types and conditions. However, a significant number of 

HRM lists were not consistent across studies. This discrepancy was not surprising and could be 

attributable to a combination of technical variables, as the sensitivity of analysis methods, the 

duration and severity of oxygen deprivation, the cellular types and context. To date, miR-210 

represents a unique HRM consistently reported up-regulated from multiple independent research 

groups, being robustly induced by HIF-1α, in a wide range of cell types in response to hypoxia 

[Chan SY and Loscalzo J 2010]. Furthermore, miR-210 has been identified over-expressed in a 

variety of cancer, including breast, glioblastoma, lung, melanoma, prostate and many others, with 

the exception of ovarian cancer, in which has been reported a frequent gene deletion, by 

Giannakakis et al and Vaksman et al [Giannakakis A et al. 2008; Vaksman O et al. 2011]. In a 

large genome-wide microarray profiling study, conducted by Volinia et al on a total of 540 tumor 

samples (including breast, lung, colon, stomach, prostate carcinomas and pancreatic endocrine 

tumors), a “common signature” of abnormally expressed miRNAs has emerged, compared to 

normal tissues [Volinia S et al. 2006]. In order to identify a possible correlation between the miRNA 

signature expression in solid tumors and in hypoxic condition, Kulshreshtha et al examined the 

pattern of miRNA changes during hypoxia within the same miRNA profile obtained by microarray. 

Notably, most of HRMs resulted overexpressed in at least some of analyzed tumors [Kulshreshtha 

et al. Mar 2007]. This result suggested that hypoxia may contribute to miRNA dysregulation in 

different types of cancer. In cellular adaptation to hypoxia, HRMs can play different roles, targeting 

important gene transcripts implicated in a wide range of processes, as metabolic reprogramming, 

DNA repair, apoptosis and angiogenesis, among many other cellular adaptations to low oxygen 

availability. Many HRMs can play an active role on HIF and promote its expression and/or activity. 

Some of these miRNAs are also direct transcriptional targets of HIF itself during hypoxia, resulting 

in a positive-feedback loops. For example, miR-210 is potently induced by HIF in response to 

hypoxia, and could repress glycerol-3-phosphate dehydrogenase 1-like (GPD1L), which, in turn, 

stabilize HIF1 by reducing hyperhydroxylation [Kelly TJ et al. 2011]. Moreover, the down-

expression of miR-20b, miR-199a, and cluster miR-17-92 in hypoxia conditions, stabilize HIF1, 
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because these HRMs are able to repress the expression of HIF1 through direct targeting. In 

hypoxic endothelial cells, miR-424 is able to stabilize HIF1, suppressing cullin 2 (CUL2), a 

scaffolding protein critical to the assembly of the ubiquitin ligase [Ghosh G et al. 2010]. Many other 

HRMs, that contain hypoxia responsive elements (HREs) in their promoter regions, and thus being 

induced by HIF-dependent manner, also coordinate important adaptive response to hypoxia 

downstream of HIF. For instance, both miR-210 and miR-373, direct transcriptional targets of HIF, 

alter DNA repair responses by decreasing levels of DNA repair proteins, such as RAD52 and 

RAD23B, key members of homology-dependent repair (HDR) and nucleotide excision repair (NER) 

pathways [Crosby ME et al. 2009]. These results describe a role of HRMs in the regulation of DNA 

repair and genetic instability in response to hypoxia in cancer. In the last years, emerging 

evidences showed the activation of HIF-independent pathways in the adaptive cell response to low 

oxygen tension. Particularly, several other transcription factors (TFs), such as p53, NF-kB and 

PU.1 also regulate the transcription of specific miRNA involved in cell cycle arrest, inflammation 

response or reinforcement of HIF stabilization [Cummis EP and Taylor CT 2005]. As mentioned 

above, multiple miRNAs are known or suspected to be involved in various steps of angiogenesis 

response. One of the most important miRNA target of angiogenesis is VEGF. Experimentally, 

using HUVEC cell lines, miR-210 was demonstrated to be able to stimulate the formation of 

capillary-like structure, targeting the receptor tyrosine kinase ligand ephrin-A3 (EFNA3), as well as, 

to increase the VEGF-induced cell migration. Thus, miR-210, the master miRNA of hypoxia, is able 

to enhance VEGF and vascular endothelial growth factor receptor-2 (VEGFR2) expression and 

thereby to promote angiogenesis. The up-regulation of other two miRNAs, miR-20a and miR-20b, 

seems to have direct effect on VEGF levels, but these results need to be further confirmed [Hua Z 

et al. 2006; Lei Z et al. 2009]. Moreover, in breast cancer patients, high levels of miR-210 were 

found associated with VEGF expression, hypoxia and angiogenesis [Foekens JA et al. 2008]. 

Since angiogenesis plays an essential role in tumor development, it is critical to understand the 

role of miRNAs in governing this process during hypoxia. However, despite in recent years 

numerous studies have contributed to better elucidate the mechanisms of action of these HRMs, 

future studies will be essential to verify these functions in vivo. Moreover, since hypoxia has been 

reported to be correlated with chemoresistance, HRMs may potentially become interesting 

biomarkers and therapeutic targets for anticancer therapy. 
 
1.2.9 Long non-coding RNAs 
In the last five years, lncRNA received a widespread attention as a potentially new layer of 

biological regulation. Estimates of the lncRNA gene content in the human genome ranges from 

~7,000 - 23,000 unique lncRNAs, exceeding that of protein-coding genes, ranging from 10,000 to 

20,000 [Gibb EA et al. 2011]. Despite these large numbers, only few lncRNAs have been 

characterized. LncRNAs are poorly conserved and, typically, they are long > 200bp, up to 100kb 

[Cheetham SW et al. 2013]. One of the first evidence of lncRNAs was the discovery of H19 and 
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Xist, responsible for the inactivation of one of the two X chromosome in placental female, through 

DNA methylation. Most recently, the GENCODE annotation group has produced the most 

comprehensive, high quality human lncRNA annotation to date.  

Recent transcriptomic studies in mammals have revealed an abundance of lncRNAs that lie 

interspersed with coding genes in complex ways. According to their genomic organization relative 

to protein-coding transcripts, they can be classified as overlapping transcripts (sense or antisense, 

promoter-/intronic-/3’ UTR-associated), intergenic transcripts (lincRNAs, gene-desert regions), and 

divergent transcripts (sharing same promoter with coding gene, but antisense) [Ponting CP et al. 

2009]. 

 

1.2.10 LncRNA biogenesis and function 
LncRNA transcripts, typically, have mRNA-like characteristics. They are frequently transcribed by 

RNA polymerase II, often are capped and polyadenylated, and show complex alternative splicing, 

but they apparently lack of protein-coding capacity [Cheetham SW et al. 2013]. They do not 

contain open reading frame (ORF) and are able to code for small peptides (<100 amino acids), 

whose biological significance is not completely understood. LncRNAs are an heterogeneous group 

of RNA molecules and, therefore, they are now emerging as widespread regulators of numerous 

cell physiology processes. LncRNAs have been found involved in regulating imprinting, dosage 

compensation, chromatin state, cell cycle regulation, cell-cell signaling, pluripotency, 

retrotransposon silencing, meiotic entry, recombination, telomere length, and many other functions. 

They can act immediately after transcription, both in the nucleus and in the cytoplasm, and can 

regulate gene expression, positively or negatively, at numerous levels by a variety of mechanisms. 

In particular, they can be involved in transcriptional and post-transcriptional regulation, post-

translational regulation of protein activity and organization of protein complexes. LncRNAs are 

biochemically versatile polymers. They are able to interact with sequence-specific nucleic acids, as 

RNA and DNA, and to fold into complex three-dimensional structures able to bind various ligands, 

including small molecules and peptides [Geisler S and Coller J 2013]. In particular, regarding 

interaction with proteins, lncRNAs can serve i) as decoys, precluding the access of regulatory 

proteins to DNA, ii) as scaffold, bringing two or more proteins into discrete complexes, and iii) 

guides, addressing specific protein complexes to proper localization. Moreover, lncRNA transcripts 

may act as cis and trans-acting modulators, influencing the expression of protein-coding genes in 

their immediate genomic neighborhood, or on distantly located genes. In addition, in the cytosol, 

they can act as “miRNA sponge” and sequester miRNAs to inactivate the negative regulation 

against their target genes. Regarding gene expression regulation, one of the most important 

mechanism is the chromatin modification. LncRNAs such as HOTAIR (HOX transcript antisense 

RNA) or Xist (X-inactive-specific transcripts) have been found associated with the proteins of the 

histone-modifying complex, as PRC2 (Polycomb repressive complex 2) and LSD1 (Ly-specific 

demethylase 1), inducing heterochromatin formation in specific genomic loci, and leading to reduce 
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target gene expression. In this way, HOTAIR and other lncRNAs function as scaffolds, coordinating 

the interaction and the localization of different proteins and forming cellular substructures and 

protein complexes [Gutschner T and Diederichs S 2012] . 

 

1.2.11 LncRNAs in cancer 
Several recent studies suggest that lncRNAs may have important roles in disease, most notably in 

oncogenesis. In Table 1.2 the majority of lncRNAs discovered so far and involved in different types 

of cancer are summarized [Gutschner T and Diederichs S 2012]. LncRNAs may, for example, 

confer to cancer cells the ability to evade growth suppression. For instance, the long intergenic 

ncRNA p21 (lincRNA-p21), located in the proximity of the cell cycle regulator gene Cdkn1a, was 

reported as a direct p53 target, in response to DNA damage. In normal cells, lincRNA-p21 

mediates the binding of hnRNP-k (an RNA binding protein) to its genomic targets, which finally 

leads to gene silencing and induction of apoptosis. In cancer, lincRNA-p21 acts as an inhibitor of 

the p53-dependent transcriptional pathway, particularly as a transcriptional repressor on gene 

regulating apoptosis [Huarte M et al. 2010]. Ji et al identified Metastasis-associated Lung 

Adenocarcinoma Transcript 1 (MALAT-1), as a prognostic marker for metastasis and patient 

survival in non-small cell lung cancer (NSCLC). This lncRNA promotes the cell ability to invade and 

form distant metastases. MALAT-1 transcript regulates alternative splicing of pre-mRNAs by 

modulating the levels of active serine/arginine (SR) splicing factors. In particular, it was found to 

affect the transcriptional and post-transcriptional regulation of cytoskeletal and extracellular matrix 

genes [Ji P et al. 2003]. This transcript is highly conserved across species and it is widely 

expressed in many human tissues, and up-regulated in various cancer types, as breast, prostate, 

colon, liver and uterus. Particularly, its overexpression has been linked to an increase in cell 

proliferation and migration, in lung and colorectal cancer cells [Hauptman N and Glavac D 2013].  

More interestingly, lncRNAs have been found implicated in angiogenic process. A natural 

antisense transcript (NAT), complementary to the 3’ untranslated region of the hypoxia inducible 

factor-1α (HIF-1α), called αHIF, negatively regulates the expression of HIF-1α, an important 

regulator of angiogenesis. Overexpression of αHIF triggers HIF1α mRNA decay and HIF1α and 

αHIF constitute a negative feedback loop [Rossignol F et al. 2002]. LncRNA αHIF has been found 

in several cancers and, in particular, its overexpression has been associated with worst prognosis 

in breast cancer [Cayre A et al. 2003]. Regarding, the Cancer Hallmark “resisting cell death”, 

PANDA (p21 associated ncRNA DNA damage activated) limits the expression of pro-apoptotic 

genes, such as FAS and BIK, by acting in trans as a decoy for the transcription factor NF-YA 

[Hung T et al. 2011]. These described lncRNAs are directly implicated in cancer initiation, 

progression and metastasis, and may become important diagnostic markers or therapeutic targets 

in the treatment of cancer. Moreover, many lncRNAs are expressed in a tissue- and cancer-type 

restricted manner and have already shown to be useful as prognostic markers (e.g HOTAIR in 
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breast cancer patients or MALAT-1 in early stage lung adenocarcinoma) [Gupta RA et al. 2010; Ji 

P et al. 2003]. 

 

Table 1.2: LncRNAs involved in cancer mechanisms 

    
 
1.2.12 LncRNAs in HGSOC 
Recently (2013) Akrami et al performed a large-scale genomic analysis of lncRNAs in HGSOC, 

based on TGCA molecular dataset generated on a total of 407 advance stage HGSOC tumor 

biopsies [Akrami R et al. 2013]. To investigate the global copy-number alterations and lncRNA 

expression across samples, they based the analyses on the comprehensive GENCODE lncRNA 

catalog. Analyzing data from deep coverage RNA sequencing and DNA copy-number arrays, they 

identified simultaneous copy-number profiles and expression data for 10,419 lncRNA genes. They 

described global association between DNA copy-number and lncRNA expression, and identified 

lncRNA signatures associated with the four robust subtypes of HGSOC (immunoreactive, 

differentiated, proliferative, and mesenchymal), based on their gene expression profiles. In 

particular, by examining region of focal copy number alteration, they discovered on a subset of 

tumors, an intergenic region, termed AXI region, between the ACBD6 and XPR1 genes, on 

chromosome 1. This region, characterized by focal somatic amplification, lacks of protein-coding 

genes, but contains a single annotated lncRNA gene, called OVAL (ovarian adenocarcinoma 

amplified lncRNA). Moreover, they screened other 16 TGCA cancer types, and, interestingly, they 
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reported OVAL locus focal amplification also in serous endometrial carcinoma, a disease sharing 

several clinical and molecular similarity with HGSOC. 

Although focal amplification of the AXI region was found only in the 3.9% of HGSOC samples 

analyzed, the frequency is comparable to other somatic mutations, such as BRCA1 and BRCA2 

(3.5% and 3.2%, respectively). It has been hypothesized that OVAL may exert its functions 

predominantly at cytoplasm level, and independently from the nearest protein-coding neighbors, 

but further experiments are needed to better understand its role in tumor development. 

More recently, another group of research focused the attention on the analysis of HGSOC 

transcriptome [Barrett CL et al. 2015]. They developed and deeply evaluated a systematic process 

to identify mRNA isoforms with tumor-specific expression in HGSOC. Interestingly, as researchers 

premised in the paper, commonly the mRNA expression is defined tumor-associated, regarding the 

level of expression (up and down-regulated), compared to normal tissue. Notably, they focused the 

study on the selection of “tumor-specific” mRNA isoforms, arisen for example from fusion-

transcripts, the existence of which is unknown. For the discovery of HGSOC-specific isoforms, they 

processed a large amounts of RNA-seq data of 296 HGSOC samples and 1839 normal tissues, 

obtained from TCGA and Genotype-Tissue Expression (GTEx) program, respectively. Applying 

their custom bioinformatic algorithms, they produced a list of 671 mRNA isoforms, rank-prioritized 

by likelihood of being tumor-specific. Initially, these selected isoforms  were measured by RT-

qPCR on pools of four different tumor samples and four different normal RNA samples, to filter out 

isoforms that were not expressed in tumors and/or were expressed in normal tissue. After this 

selection, only 86 isoforms were detected in the tumor pool. Then, the expression of selected 86 

isoforms were measured in an expanded set of individuals, for a total of 12 tumor samples and 18 

normal tissue samples, by RT-qPCR. Finally, a total of 33 tumor-specific or normal-restricted 

isoforms were identified and these isoforms represented 5% of the original 671 selected by RNA-

seq analysis. These isoforms are variants of genes related to oncogenesis, known to maintain the 

malignant state, as the transcription factors FOXM1 and ETV4, and that have a direct role in 

driving aggressive tumor initiating cell behavior, or are necessary for maintaining a stem-cell 

phenotype. Moreover, 15 mRNA isoforms were not expressed in the ovary or fallopian tubes, and 

so they have the tumor specificity required for an early specific detection of ovarian cancers. 

Additionally, 5 mRNA isoforms contain a unique exon that confers upon the protein a unique 

primary structure, as parathyroid hormone receptor 2 gene (PTH2R) and CD9 isoforms, making 

them interesting candidate for specific antibody targeting.  

The systematic processes, that Barrett et al developed for the discovery of tumor-specific mRNA 

isoforms, is readily and  rapidly applicable to any of the 30 or more tumor types for which sufficient 

amounts or RNA-seq data already exist. 
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2. AIMS OF THE STUDY 

High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic malignancy, mainly 

because the disease is frequently diagnosed at an advanced stage and it is characterized by the 

early onset of chemoresistant recurrences. The lack of reliable diagnostic and prognostic markers, 

together with the lack of effective therapies, are the major obstacles to the clinical management of 

patients with HGSOC. A new class of non-coding RNAs (ncRNAs), such as microRNA (miRNA) 

and long non-coding RNA (lncRNA), with a function of gene expression regulation, have been 

discovered to play an important role in human cancers. Increasing evidences suggest that ncRNAs 

are involved in cancer progression and development of chemoresistance, and support their role as 

potential diagnostic, predictive and prognostic biomarkers. The hypoxic condition within the tumor 

microenvironment, improving the tumor neovascularization, represents an essential event  

contributing to the development of a more aggressive HGSOC phenotype. Recently, a group of 

miRNAs, termed hypoxia regulated-miRNAs (HRMs), have been identified as key elements in 

response to hypoxia, regulating important mechanisms involved in tumor progression. The 

complexity of hypoxia molecular mechanisms has not been fully elucidated yet in HGSOC, 

therefore there is an urgent need to discover novel biomarkers clinically useful to select patients 

with hypoxic tumor, that may benefit of tailored treatments. 

Starting from these premises, the study of my PhD project aims at elucidating the transcriptional 

and post-transcriptional signatures that characterize HGSOC, both at the serum and tissue levels.  

In detail, the research effort includes: 

i) The investigation of circulating miRNAs as novel potential biomarkers for HGSOC detection; 

ii) The analysis of mRNA, miRNA and lncRNA expression profiles of HGSOC and normal tissues; 

iii) The evaluation of hypoxia-regulated miRNA expression in HGSOC and normal tissues. 
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3. MATERIALS AND METHODS 

3.1 Patient cohort 

All patients enrolled in the study were diagnosed with high grade serous ovarian carcinoma 

(HGSOC), III-IV FIGO stage and underwent a radical surgical tumor debulking with a complete 

staging procedure, followed by platinum-based chemotherapy. No patients received chemotherapy 

before surgery. Healthy donors included in the study underwent hysterectomy and bilateral 

salpingo-oophorectomy for pelvic organ prolapse or benign pathologies. Patients with a past or 

concomitant history of malignancy were excluded from the study. Clinical and anatomo-pathologic 

patients’ informations were registered and follow-up data were obtained from periodic gynecologic 

and oncological check-ups. All patients were followed from the date of surgery until death or for at 

least two years. Study approval was acquired from the institutional review board, and all patients 

signed an informed consent, according to institutional guidelines. 

 
3.1.1 Serum sample collection  
A retrospective cohort of 233 serum samples was gathered together from two independent Italian 

serum collections and divided into a training set and a validation set. The training set consists of 

serum samples from 110 patients with HGSOC III-IV FIGO stage and 52 age-matched donors, 

proven to be free of any gynecological disease, were collected at the Division of Obstetrics & 

Gynecology, ASST Spedali Civili, University of Brescia (Brescia, Italy), between 2003 and 2013. 

The validation set consisted of an independent cohort of 58 serum specimens belonging to patients 

with HGSOC and 16 serum samples from healthy donors, collected at the Division of Gynecologic 

Oncology, Gemelli Hospital, Catholic University (Rome, Italy), between 2009 and 2013.  

The two independent cohorts included in the study showed similar clinicopathologic characteristic 

distribution and are summarized in Table 3.1. 

To obtain serum samples, 7.5 ml of blood were collected in S-Monovette with clot activator 

(Sarstedt AG & Co., Nümbrecht, Germany) and centrifuged after half an hour at 3000 rpm for 10 

minutes at room temperature. The serum was then aliquoted and stored at -80°C within an hour. 

Free haemoglobin concentration was analyzed using miR-451a and miR-23a-3p expression ratio 

to exclude hemolysed samples from downstream analyses [Langhe R et al. 2015]. In the following 

Figure 3.1, the levels of the ratios across samples are represented. All samples showed a very 

homogeneous level of expression ratio, markedly below level 5, demonstrating the absence of 

hemolysis in our samples.  
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Figure 3.1. log ratio between miR-23a-3p and miR-451a expression across all samples using 

microarray technology. The dashed red line is referred to the level of 5. 
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Table 3.1. Clinicopathological features of HGSOC patients and healthy donors used in serum 

miRNA analysis 

 

 
3.1.2 Tissue sample collection 
A total of 99 snap-frozen HGSOC biopsies were obtained from the Division of Obstetrics & 

Gynecology, ASST Spedali Civili, Univ. of Brescia, between 2003 and 2013. For a total of 76 out of 

99 patients, matched serum and tumor tissue were collected.  

On the basis of chemotherapy status, patients were classified in four groups: 

• Platinum-sensitive patients, relapsing long after chemotherapy (>12 months), that could 

be re-challenged with platinum-chemotherapy, generally obtaining response.  

• Platinum partially-sensitive patients, experiencing relapse within 6-12 months from the 

last round of chemotherapy. They were generally treated again with platinum-

chemotherapy, although a less response rate is observed.  

• Platinum-resistant patients, experiencing relapse within 6 months from the end of 

therapy, were not treatable again with platinum-chemotherapy. This last group also 

includes a small fraction of platinum-refractory patients, who did not respond to 

Clinicopathological 
characteristics 

Training  cohort Validation cohort 

HGSOC 
patients 
(n=110) 

Healthy 
donors 
(n=52) 

HGSOC 
patients 
(n=58) 

Healthy 
donors 
(n=13) 

Median age (range), years 61 (36-85) 61 (38-73) 57 (34-76) 52 (26-67) 

 
Menopausal status 

 

Pre 24 (22%) - 16 (27%) - 
Post 85 (77%) - 41 (71%) - 

Missing 1 (1%) - 1 (2%) - 
 

FIGO Stage 
 

III 78 (71%) - 55 (95%) - 

IV 32 (29%) - 3 (5%) - 
 

Level of CA-125 
(UI/mL) 

 

˃ 943 52 (47.5%) - 29 (50%) - 
< 943 52 (47.5%) - 28 (48%) - 

Missing 6 (5%) - 1 (2%) - 

 
Presence of ascites 

 

Yes 90 (82%) - 31 (54%) - 
No 19 (17%) - 3 (5%) - 

Missing 1 (1%) - 24 (41%) - 
 

Lymphnode 
metastasis 

 
 

Yes 43 (39 %) - 21 (36%) - 

No 21 (19%) - 36 (62%) - 

Missing 46 (42%) - 1 (2%) - 
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platinum-therapy and experienced tumor progression during the course of 

chemotherapy.   

Patients without information about platinum-status represented Missing/Too early group.  

In particular, to define the response to chemotherapy, two endpoints were evaluated. Progression 

free survival (PFS) was considered as the time interval from diagnosis to the first appearance of 

disease progression after treatment and overall survival (OS) was represented as the time interval 

from diagnosis to the date of death due to cancer, or the last observation.  

Neoplastic tissue specimens were sharp-dissected and frozen in liquid nitrogen within 30 minutes 

of debulking surgery. For each sample, a specular hematoxylin-eosin section was reviewed by a 

staff pathologist to check for epithelial purity and only samples containing at least 70% tumor 

epithelial cells were used for the following RNA extraction. 

Normal ovarian and fallopian tube epithelial cells were obtained from a total of 30 age-matched 

patients at the Division of Obstetrics & Gynecology,  ASST Spedali Civili, Univ. of Brescia, between 

2011 to 2013.  

Normal luminal fallopian tube epithelial cells and normal ovarian surface epithelial (HOSE) cells 

were collected by scraping in 1 ml of physiological saline solution immediately after surgery and 

centrifuged at 1000 rpm for 10 minutes. The cell pellet was then resuspended in 200 μl of TRIzol 

Reagent (Life Technologies, Carlsbad, CA, USA) and stored at -80°C. All the normal samples were 

verified to be free of any neoplastic pathology before using for total RNA extraction. 

Patients clinical and pathologic characteristics are described in Table 3.2. 
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Table 3.2. Clinicopathological features of HGSOC patients and healthy donors used in tissue gene 

and miRNA analysis 

Clinicopathological 
characteristics 

HGSOC 
patients 
(n=99) 

Healthy donors 
(n=30) 

HOSEs 
(10 pools from 

15 donors) 

Fallopian Tubes 
(n=15) 

Medianage (range), years 63 (36-85) 52 (43-65) 

 
Menopausal status 

 

Pre 21 (21%) - 

Post 78 (79%) - 

Missing 0 - 

FIGO Stage 
III 73 (74%) - 

IV 26 (26%) - 

Tumor Residual 
TR=0 21 (21%) - 

TR>0 78 (79%) - 

 
Level of CA-125 

(UI/mL) 

≥ 923 46 (46.5%) - 

< 923 47 (47.5%) - 

Missing 6 (6%) - 

 
Presence of ascites 

 

Yes 85 (86%) - 

No 13 (13%) - 

Missing 1(1%) - 

Positive neoplastic 
cytology  

Yes 88 (89%) - 

No 7 (7%) - 

Missing 4 (4%) - 

 
Lymph node metastasis 

 

Yes 37 (37%) - 

No 16 (16%) - 

Missing 46 (47%) - 

Response to platinum-
based therapy 

Resistant 40 (41%) - 

Sensitive 36 (36%) - 
Partially 
sensitive 21 (21%) - 

Missing 2 (2%) - 
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3.2 Total RNA extraction 
Total RNA including miRNAs was extracted from 200 µl of serum using miRNeasy Mini kit (Qiagen, 

Milan Italy). In particular, serum samples were thawed in ice, then 1 ml of QIAzol Lysis Reagent 

(Qiagen) was added to the samples and they were kept at room temperature for 5 minutes. Ten 

synthetic spike-in RNA oligos, without sequence homology to known human miRNAs, were added 

to samples to control for variations during the preparation of total RNA and subsequent steps. RNA 

oligo sequences are displayed in Table 3.3. The spike-in RNA oligos were introduced in serum 

samples as a mixture of 12.5 fmol in a total volume of 2.5 µl. All the last steps of purification were 

performed following the manufacturer’s instructions. RNA was eluted from spin columns in 35 µl of 

nuclease-free water and 15 μl were used for miRNA expression profiling. 

Total RNA from tissue samples (included messenger RNA, microRNA and long non-coding RNA) 

was isolated using TRIZOL reagent (Life Technologies) and further purified using RNeasy 

MiniElute Cleanup kit (Qiagen), with a modified protocol for co-purification of small RNAs according 

to the manufacturer’s instructions. RNA concentration and 260/280 absorbance ratio (A260/280) 

were measured with Infinite M200 spectrophotometer (TECAN). RNA integrity was assessed with 

RNA 6000 Nano LabChip kit using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, 

CA, USA). RNA integrity number (RIN), generated  with Agilent 2100 Expert software, was superior 

to 8 for all RNA samples. Only samples with good RNA yield and no RNA degradation were 

retained for further experiments. RNA samples were diluted at 75 ng/μl and 50 ng/μl for gene 

expression and miRNA expression profiling, respectively. 
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Table 3.3.  Ten synthetic spike-in RNA oligo sequences 

 

Species RNA Oligo Sequence 

Kaposi sarcoma 

associated 

herpesvirus 

kshv-miR-K12-2 5’-rGrUrC rCrGrGrGrUrCrGrArU rCrUrG-3’ 

Human 

Citomegalovirus 
hcmv-miR-UL112 5’-rCrGrG rUrGrArGrArUrCrCrArGrGrC rU-3’ 

Epstein-Barr virus ebv-miR-BART8 5’-rCrGrG rUrUrUrCrCrUrArGrArUrUrGrUrArC rArG-3’ 

C.elegans cel-miR-39-5p 5’-AGCUGAUUUCGUCUUGGUAAUA-3’ 

C.elegans cel-miR-54-5p 5’-AGGAUAUGAGACGACGAGAACA-3’ 

C.elegans cel-miR-238-3p 5’-UUUGUACUCCGAUGCCAUUCAGA-3’ 

Arabidopsis  

thaliana 
ath-miR-160a 5’-UGCCUGGCUCCCUGUAUGCCA-3’ 

Arabidopsis 

thaliana 
ath-miR-171b 5’-UUGAGCCGUGCCAAUAUCACG-3’ 

Arabidopsis  

thaliana 
ath-miR-416 5’-GGUUCGUACGUACACUGUUCA-3’ 

arabidopsis 

thaliana 
ath-miR771 5’-UGAGCCUCUGUGGUAGCCCUCA-3’ 

 
 
3.3 miRNA expression profiling by microarray 
Two independent miRNA microarray profiling evaluations of serum and tissue samples were 

performed. In tissue miRNA arrays, 99 HGSOC tissues, 5 pools of HOSEs obtained from 17 

women and 11 normal luminal fallopian tube epithelia were hybridized. In serum miRNA arrays, 

110 sera from HGSOC patients and 19 sera from healthy controls were evaluated for miRNA 

expression profiling. Briefly, for tissue miRNA profiling, 100 ng of RNA, enriched in miRNA fraction, 

were Cyanine 3-pCp labeled and hybridized on the commercially available G4871A human miRNA 

Microarray, using a miRNA labeling and hybridization kit according to the manufacturer’s 

instructions (Agilent Technologies). For the analysis of circulating miRNAs, we used the 

commercially available G4872A-046064 human miRNA Microarray (Agilent Technologies), 

customized with probes for the detection of specific RNA spike-in oligos. For circulating miRNA 

profile, we hybridized fixed volume of eluted total RNA, derived from fixed serum volumes, for all 

samples tested. The arrays were washed and scanned with a laser confocal scanner (G2565BA, 
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Agilent Technologies) according to the manufacturer’s instructions. miRNA microarrays underwent 

standard post hybridization processing and the intensities of fluorescence were calculated by 

Feature Extraction software version 11 (Agilent Technologies).  

Serum raw microarray data comprised 1361 miRNAs (included Agilent quality controls and spike-in 

oligos). After a filtering step based on Agilent quality controls (see Supplementary Material for 

details), 648 miRNAs (including the 10 spike-in) were retained for further analysis. The distributions 

of the raw expression values are reported in Supplementary Figure S1. Given the small amount of 

miRNAs in serum, normalization of circulating miRNA microarray data is a challenging task. Thus, 

different normalization strategies have been tested and compared. We chose the normalization 

resulting in the more invariant spike-in oligo expression distribution across samples (see 

Supplementary Materials for details). In our data the best normalization resulted to be the cyclic 

lowess [Bolstad BM et al. 2003], in which the 10 spike-in oligos and a set of 10 invariant low 

expressed miRNAs were used as references (Supplementary Figure S1 and S2). Empirical Bayes 

test (as implemented in limma Bioconductor package) has been used to identify differentially 

expressed miRNAs between patients and healthy controls with an FDR<0.05. Hierarchical 

clustering has been performed with Euclidean distance and complete linkage.  

Tissue raw microarray data comprised 2017 microRNAs. A filter has been applied to select those 

miRNAs with reliable expression values across arrays. Specifically, we selected only miRNAs with 

at least 75% of good quality measures (as gIsPosAndSignificant Agilent flag) across samples. After 

these filtering steps, we remained with 363 miRNAs. The small amount of missing values still 

present after the filtering step was imputed with k-nearest neighbourhood method. Classic cyclic 

lowess normalization, as implemented in limmaBioC package, was applied. Empirical Bayes test 

(as implemented in limma R package) has been applied to identify differentially expressed miRNAs 

between HGSOC and normal tissues (data not shown). FDR was set to 0.05. 
The present study was carried out following REMARK guidelines [McShane LM et al. 2005]. 

 
3.4 Gene expression profiling by microarray 
One hundred and fifty nanograms of total RNA from 99 HGSOC, 6 pools of HOSEs obtained from 

19 women and 10 luminal fallopian tube epithelia were Cyanine 3-CTP labeled and hybridized with 

a One-Color Microarray-Based gene expression analysis (Low input quick amp labeling) protocol, 

according to the manufacturer’s instructions (Agilent Technologies). Commercially available 

G4851AB SurePrint G3 Human Gene Expression 8x60K v2 Microarray (Agilent Technologies) was 

used. It consists of 60K features printed in an 8-plex format (8×60 array), and can detect human 

known 27.958 genes/transcripts and 7.419 lncRNAs sourced from different public database. The 

arrays were washed and scanned with a laser confocal scanner (G2565BA, Agilent Technologies) 

according to the manufacturer’s instructions. mRNA microarrays underwent standard post-

hybridization processing and the intensities of fluorescence were calculated by Feature Extraction 

(FE) software version 11 (Agilent Technologies).  



37 
 

Expression matrix was obtained using gProcessedSignal. Matrix gene expression data were 

normalized with quantile [Bolstad BM et al. 2003] and the expression values of the same probes 

(ProbeUID) were averaged. Lines containing more than thirty unavailable (NA) values were 

discarderd. After normalization, identification of differentially expressed genes (DEG) was 

performed using Limma’s Empirical Bayes test [Smyth GK 2004]. Raw p-values were adjusted for 

multiple testing with Benjamini and Hochberg False Discovery Rate [Reiner A et al. 2003]. After 

analysis, genes were deemed statistically significant if their corrected p-value was equal or lower 

than 0.01. 

 
3.5 RNA sequencing 
Among the cohort of 99 HGSOC samples, we selected a total of 28 RNA samples derived from 14 

platinum-based chemotherapy resistant patients and 14 platinum-based chemotherapy sensitive 

patients. This group of 28 total RNA samples, together with 10 control tissues, derived from 3 

HOSEs (pooled from 10 HOSEs of healthy donors) and 7 normal fallopian tubes were deep 

sequenced for the discovery of novel HGSOC specific transcripts.  

The RNA sequencing was performed by Personal Genomics, a Spin-Off of the University of Verona 

operating within the Center of the Functional Genomics of University of Verona. The sequencing 

was carried out on the Illumina HiSeq1000 platform, using the standard sequencing kit TruSeq 

Stranded Total RNA LTwithRibo-Zero TM Gold, generating 2x100 bp paired end lane. 

The high-throughput RNA-seq data alignment was performed using the Spliced Transcripts 

Alignment to a Reference (STAR) software [Dobin A et al. 2013]. STAR software was implemented 

with a strategy, called 2-pass STAR, known to be more reliable for discovery analysis [Engström 

PG et al 2013]. 

 

3.6 Serum samples: cDNA synthesis and RT-qPCR/ddPCR 
RNA from 233 serum samples (training and validation cohorts) was reverse transcribed into cDNA, 

starting from 5 µl of RNA, according to the miScript Reverse Transcription protocol (Qiagen). A 

fixed volume of eluted RNA sample was used as input for RT-qPCR, rather than a fixed quantity of 

input RNA, as previously reported [Kroh EM et al. 2010]. Two microliter of cDNA were used for RT-

qPCR experiments in triplicate using Rotor-Gene Thermal Cycler (Qiagen). Experiments were run 

in triplicate and plates were prepared by automatic liquid handling station on a final volume of 10 µl 

(QiaAgility). As there are no established endogenous miRNAs acting as normalizers for serum 

miRNA relative quantification, RT-qPCR analysis was performed on raw cycle thresholds (Cq). 

The choice of using ddPCR, a recent technique optimized for the absolute quantification of 

circulating nucleic acids, combined with Exiqon chemistry, is based on their reported optimal 

precision, reproducibility and specificity [Mestdagh P et al. 2014]. Experimentally, 3 µl of RNA 

isolated from 168 serum samples (training cohort) were reverse-transcribed in a final reaction 

volume of 20 µl, with 5X reaction buffer and 1 µl of Enzyme Mix, as reagents (miRCURY locked-
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nucleic-acid™ (LNA) Universal RT microRNA PCR system, Exiqon). According to the 

manufacturer’s protocol, a poly-A tail was added to the RNA template and cDNA was synthesized 

using a poly-T primer with a 3’ degenerate anchor and a 5’ universal tag and incubating the 

reaction at 42°C for 60 min, heat-inactivating at 95°C for 5 minutes, then immediately cooling at 

4°C. All cDNA samples were diluted 50-fold with nuclease-free water. Amplification mixture (20 µl) 

containing 10 µl 2X EvaGreensupermix (Bio-Rad), 8 µl diluted cDNA and 1 µl of miRCURY LNA 

PCR primer sets specific for hsa-miR-1246 (ID 205630,Exiqon). An absolute quantification of 

circulating miRNAs was performed with QX200 Droplet Digital PCR System (Bio-Rad). Briefly, 

each EvaGreen amplification mixture (20 µl) was mixed with 70 µl of droplet generator oil and 

loaded into the QX200 droplet generator, thus portioning each sample into 20,000 nanoliter-sized 

droplets. Emulsified samples were then transferred into a 96-well PCR plate to perform PCR to end 

point, using a conventional thermal cycle. The cycling steps were set as follow:  95°C for 5 min, 

(95°C for 30, 58°C for 1 min) x 40 cycles, 4°C for 5 min, 90°C for 5 min and infinite 4°C holding. 

The PCR plate was then loaded into the QX200 droplet reader for sample automated analysis. A 

no template control (no cDNA in PCR) and a negative control for each reverse transcription 

reaction (RT-neg) were included in every assay run for each miRNA. 

 

3.7 Tissue samples: cDNA synthesis and RT-qPCR 
Ten ng of total RNA, extracted from 99 HGSOC tissues and 25 normal tissues, were 

retrotranscribed in cDNA, according to miRCURY LNA™ Universal RT microRNA PCR system 

protocol (Exiqon), as described above. All cDNA templates were stored at -20°C and diluted 80-

fold immediately before being amplified using CFX96 Touch™ Real-Time PCR Detection System 

(Biorad). The PCR reaction (10 µl) consisted of 5 µl PCR Master Mix  (Exiqon), 1 µl sncRNA-

specific forward and reverse primer Mix  (Exiqon) and 4 µl of diluted template cDNA. PCR cycling 

steps were set as follow:  95°C for 10 min, (95°C for 10 sec and  60°C for 1 min, ramp-rate 1.6 

°C/s) x 40 cycles and infinite 4°C holding. Each real-time qPCR amplifications were followed by 

melting curve analysis. Both PCR primers (forward and reverse) are optimized with LNA™, 

resulting in high sensitivity, as well as exceptional specificity, of the assays that allow 

discrimination between closely related microRNA sequences. Assays evaluated in our study meet 

the quality criteria set by Exiqon, with an amplification efficiency over than 85%. All reactions were 

run in triplicate and no template controls (no cDNA in PCR) were included in each assay run for 

each primer set. We included a minus-reverse transcriptase ("-RT") controls in real-time qPCR 

experiments for each sample and each sncRNA. An inter-run calibration sample was used in all 

plates to correct for the technical variance between the different runs and to compare results from 

different plates. Cq determination was performed with CFX Manager Software (Bio-Rad 

Laboratories) using the single threshold mode. 

 
 



39 
 

3.8 Statistical analysis 
miRNA and gene microarray data analysis were described in paragraph 3.3 and 3.4, respectively. 

RNA sequencing analysis were reported in paragraph 3.5. 

A supervised pathway analysis between different groups (platinum-resistant vs platinum-sensitive 

and partially sensitive patients) was performed. “Graphite web” is a novel tool recently developed 

by a group of statisticians of University of Padova (Padova, Italy) for topological-based pathway 

analysis, based on high-throughput gene expression data analyses [Sales G et al. 2013]. It was 

used for pathway analyses and network visualization for gene expression data. It combines 

topological and multivariate pathway analyses with an efficient and interactive system of network 

visualizations, using Clipper method. Clipper is a two-step empirical approach based on Gaussian 

graphical models, which identifies pathways with means or covariance matrices significantly 

different between experimental conditions. It also selects the portions of the pathway, called signal 

paths, which are associated the most with the given phenotype. AlphaMean represents an 

adjusted p-values of CliPPER test on the means of the pathways between groups. 

For miRNA expression experiments, median values were compared using the non-parametric 

Mann-Whitney t-test. Differences were considered statistically significant with a two sided p-value 

less than 0.05. Survival curves were plotted using the Kaplan-Meier method, and differences were 

tested using the log-rank test. For survival analysis two end-points (cancer progression and death 

due to cancer) were used to calculate progression-free survival (PFS) and overall survival (OS), 

respectively. For all two end-points the last date of follow-up was used for censored subjects. 

Survival models were fitted using the Cox proportional hazard regression models. Linear 

discriminant analysis and the receiver-operating-characteristic (ROC) curves were used to 

estimate sensitivity and specificity for each biomarker in the training and validation sets. All 

statistical analyses were performed using the R language. 
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4. RESULTS 

4.1 Circulating miRNA microarray analysis 

4.1.1 Cohort description and study design 
Sera collection was obtained from two independent cohorts of HGSOC patients (total cases, =168) 

and healthy donors (total cases, =65), with comparable distribution of clinic-pathologic 

characteristics as detailed in Table 3.1. The study was organized into two steps, namely 

“discovery” and “evaluation” phase. In the discovery phase, known miRNA species differentially 

expressed between the sera of HGSOC patients (n= 110) and healthy donors (19 out of 52) of the 

training set, were identified first by array technology and further validated by RT-qPCR. In the 

evaluation phase, the expression profile of the candidate circulating miRNAs was examined in an 

external and independent cohort of sera (from now onwards known as validation set) of HGSOC 

patients (n= 58) and healthy donors (n= 13). The median age at diagnosis was 61 and 57 years for 

the training and the validation set, respectively, with the vast majority of women in postmenopausal 

status (77% and 71% for the training and the validation set, respectively). Serum samples were 

withdrawn at diagnosis, before any treatment. All patients were staged according to FIGO 

(Federation International of Gynecology and Obstetrics) guidelines as stage III-IV [Prat J et al. 

2015], with high-grade serous histological type. The median CA125 value at diagnosis was 

943UI/ml. As shown in Table 3.1, the CA125 levels were higher than the above level in the 47% of 

patients of the training set and in the 50% of patients of the validation set. Some patients showed 

presence of ascites (82% training set and 54% validation set, respectively) and lymph node 

metastasis (39% for the training set and 36% for the validation set). miRNA landscape analysis 

was performed on the training set to discover differentially expressed known miRNAs between 

sera of healthy donors and sera of women with diagnosis of HGSOC. The validation set was used 

as a second and independent cohort of sera to support the robustness of our analysis and to 

validate miRNAs found differentially expressed in the training set.  
 
4.1.2 Discovery of candidate diagnostic miRNAs in serum by microarrays 
To identify the entire repertoire of currently known miRNAs expressed exclusively in patients with 

diagnosis of stage III-IV HGSOC, miRNA microarray experiments were performed on 110 sera of 

HGSOC patients and 19 healthy donors, enrolled in the training set. After a comparative analysis, 

we selected, as the best normalization strategy for our data, the cyclic lowess normalization with 

weights on spike-in RNA oligos and low invariant miRNAs (hereafter called CLWsim) (see 

Supplementary Materials for details). CLWsim normalization revealed a total of 97 miRNAs as 

differentially expressed between sera of HGSOC patients and healthy donors (from now on 

referred to as DEM, differentially expressed miRNA). The complete list of 97 DEM with relative log 

expression values in both healthy and ovarian cancer patients is reported in Supplementary Table 

S1. Of these, 92 miRNAs (95%) resulted up-regulated, and five (5%) resulted down-regulated in 
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the sera of patients compared to healthy donors. Similarity across samples was further 

investigated by unsupervised cluster analysis using DEM expression levels. The dendrogram 

depicted in Figure 4.1 shows a clear separation of three groups of patients (called C1, C2 and C3). 

With the exception of seven healthy patients, cluster C2 and C3 are mainly composed by HGSOC 

patients, while cluster C1 is mainly composed of healthy controls. No significant differences have 

been observed regarding the clinical characteristics of the C2 and C3 groups. 

 

 

4.1.3 Validation of candidate circulating miRNAs by RT-qPCR in the training set 

Since above analyses are based on array measures, and therefore obtained within a complex 

mixture of transcripts, orthogonal validation miRNAs by independent techniques, like RT-qPCR, 

need to be performed before any assessment of their clinical relevance. Due to the limits of PCR-

based approaches and the low abundance of miRNA species in the sera of HGSOC patients, 

validation experiments were performed on a selection of DEM according to the following criteria: i) 

highest average expression in both patients and healthy donors; ii) highest log fold change, 

measured in patients compared to healthy donors; iii) lower adjusted p-value. Then only miRNA 

expression with Ct <36 were considered reliable.  

In Table 4.1 the complete panel of the nine DEM selected for independent validation is reported 

(i.e., miR-1246, miR-595, miR-574-5p, miR-483-3p, miR-4290, miR-2278, miR-32, miR-4281, and 

miR-3148). Of these, miR-1246 and miR-574-5p resulted as DEM in matched tissue samples. To 

note, except for miR-4281, all DEM selected for further RT-qPCR validation lies in the intersection 

of the three different normalization approaches (Figure 4.2).   

RT-qPCR were performed on sera of 110 HGSOC patients and 52 healthy donors enrolled in the 

training set. Data reported  in Table 4.2 show the median CT values for miR-1246, miR-4290, miR-

595, and miR-2278 (all p-values ≤0.0002, FC=9, FC=3.2, FC=8.4, FC=3, respectively) as the most 

Figure 4.1: Heat map and cluster analysis, using all the differentially expressed miRNAs. Almost 

all healthy controls are grouped in Cluster C1. 
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significantly up-regulated miRNAs in the serum of HGSOC patients compared to healthy donors in 

the training set. miR-574-5p and miR-483-3p were not confirmed. RT-qPCR Ct values for miR-32-

3p, miR-4281 and miR-3148 resulted above the selected cut-off (i.e., Ct=36) and therefore were 

discarded from downstream validation. 

 

 
Table 4.1: Nine circulating miRNAs selected for RT-qPCR validation, based on microarray results. 

Rank 
from 1 to 97 

miRNAs Adjust ρ-value 
Mean log2expression 

log FC 
HGSOC Control 

1 hsa-miR-483-3p 0.00001 4.45 3.42 1.03 

5 hsa-miR-4290 0.00001 4.06 3.10 0.96 

12 hsa-miR-595 0.0004 5.03 3.54 1.49 

15 hsa-miR-2278 0.0005 4.41 3.19 1.22 

18 hsa-miR-32-3p 0.0008 5.19 3.73 1.46 

24 hsa-miR-3148 0.0008 4.57 3.23 1.34 

50 hsa-miR-1246 0.0077 7.18 6.24 0.94 

64 hsa-miR-574-5p 0.0154 7.27 5.83 1.44 

73 hsa-miR-4281 0.0218 11.37 10.50 0.87 
 

Figure 4.2: Venn diagram of the list of differentially expressed miRNAs between patients and 

controls according to different normalizations. In tables are reported the number of differentially 

expressed miRNAs identified by each normalizations and the rank of the selected miRNAs in 

each list of DEM.  
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Table 4.2: Expression levels of nine selected miRNAs evaluated by RT-qPCR. 

 
 
 
 
 

RT-qPCR 
Training set   Validation set  

Control HGSOC Control HGSOC 

miR-1246 

median (CT) 
[IQR] 

26.4 
[2.13] 

23.44 
[2] 

27.39 
[0.49] 

25.75 
[1.3] 

mean (CT) 
[sd] 

25.83 
[1.33] 

23.41 
[1.6] 

27.56 
[0.62] 

25.82 
[1.15] 

p-value (2-CT) < 0.00001 <0.00001 

miR-574-5p 

median (CT) 
[IQR] 

28.12 
[1.59] 

28.24 
[2.23] 

30.35 
[1.31] 

29.58 
[1.85] 

mean (CT) 
[sd] 

28.16 
[1.38] 

28.32 
[1.66] 

30.67 
[0.97] 

29.6 
[1.24] 

p-value (2-CT) 0.6637 <0.00001 

miR-483-3p 

median (CT) 
[IQR] 

32.41 
[1.17] 

32.77 
[1.57] 

31.87 
[0.8] 

32.12 
[1.17] 

mean (CT) 
[sd] 

32.44 
[0.91] 

32.72 
[1.24] 

31.84 
[0.62] 

32.28 
[1.16] 

p-value (2-CT) 0.9799 0.4145 

miR-4290 

median (CT) 
[IQR] 

33.25 
[1.95] 

32.27 
[2.33] 

30.11 
[0.75] 

31.09 
[1.46] 

mean (CT) 
[sd] 

33.4 
[1.58] 

32.62 
[1.86] 

30.21 
[0.8] 

31.08 
[1.19] 

p-value (2-CT) 0.0002 0.0344 

miR-595 

median (CT) 
[IQR] 

34.29 
[2.01] 

33.23 
[2.55] 

34.44 
[2.03] 

32.87 
[2] 

mean (CT) 
[sd] 

34.37 
[1.76] 

33.17 
[2.39] 

34.13 
[1.28] 

32.85 
[1.76] 

p-value (2-CT) 0.0002 <0.0001 

miR-2278 

median (CT) 
[IQR] 

36.71 
[2.99] 

33.90 
[1.56] 

33,59 
[0,32] 

33,45 
[0,74] 

mean (CT) 
[sd] 

36.44 
[2.21] 

34.06 
[1.61] 

33.58 
[0.36] 

33.39 
[0.52] 

p-value (2-CT) 0.0000 0.0373 

miR-32-3p 

median (CT) 
[IQR] 

35.87 
[1.8] 

37.12 
[1.67] 

38.23 
[1.53] 

36.84 
[2] 

mean (CT) 
[sd] 

36.16 
[1.48] 

37.16 
[1.7] 

38.34 
[2.42] 

37.29 
[1.68] 

p-value (2-CT) - - 

miR-4281 

median (CT) 
[IQR] 

38.79 
[3.15] 

36.68 
[1.67] 

37.43 
[2.4] 

37.57 
[1.81] 

mean (CT) 
[sd] 

38.75 
[1.98] 

36.81 
[1.68] 

37.8 
[1.48] 

37.61 
[1.65] 

p-value (2-CT) - - 

miR-3148 

median (CT) 
[IQR] 

39.43 
[3.29] 

37.75 
[2.45] 

38.31 
[1.64] 

38.2 
[1.38] 

mean (CT) 
[sd] 

39.83 
[2.46] 

37.83 
[2.42] 

37.55 
[2.08] 

38.35 
[1.53] 

p-value (2-CT) - - 
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4.1.4 Independent evaluation of candidate circulating miRNAs in HGSOC patients 
In order to evaluate the expression levels of candidate circulating miRNAs in the sera of HGSOC 

patients, we performed RT-qPCR analysis in a second independent cohort of 58 HGSOC and 13 

healthy donors sera samples. Accordant with the results in the training set, the expression levels of 

miR-1246, miR-595 and miR-2278 displayed a significant over-expression (all p-value ≤0.03, 

FC=5, FC= 4.7, FC=0.42, respectively) in the serum of HGSOC patients compared to healthy 

donors (Table 4.2). Conversely, miR-4290 showed an opposite trend. The boxplots of RT-qPCR Ct 

values of the three candidate biomarkers in both training and validation sets are reported in Figure 

4.3. Furthermore, miR-1246 and miR-595 remained significantly up-regulated in HGSOC patients 

of both training and validation sets, using miR-15b as normalizer (Supplementary Table S2). 

Indeed, miR-15b is one of the most invariant miRNAs in our cohort of serum samples by 

microarrays, in accordance with its previously reported role as a reliable reference for circulating 

miRNA analysis in lung cancer [Bianchi F et al. 2011]. 

 

 

Figure 4.3: Boxplots of the RT-qPCR Ct values showing upregulation of the three candidate 

biomarkers in HGSOC patients compared to controls in both training and validation sets.  
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4.1.5 Evaluation of the diagnostic potential of miRNAs for HGSOC 
To assess the efficiency of above three miRNAs as diagnostic markers for HGSOC detection, we 

performed ROC curve analysis on each miRNA to estimate sensitivity and specificity. Results, 

reported in Figure 4.4 and Table 4.3 on the entire cohort of 168 HGSOC and 65 healthy donors, 

revealed that the three candidate miRNAs were of value in distinguishing HGSOC patients from 

healthy donors. For miR-1246, the sensitivity was 87%, the specificity was 77% and the accuracy 

was 84%, with an AUC of 0.89. For miR-595, the sensitivity was 47%, the specificity was 84% and 

the accuracy was 57%, with an AUC of 0.69. For miR-2278, the sensitivity was 81%, the specificity 

was 66% and the accuracy was 77%, with an AUC of 0.76. These data indicated that miR-1246, 

which showed the greatest ability in differentiating HGSOC patients from controls, could act as a 

suitable biomarker for detecting HGSOC patients. 

 

 

 

Figure 4.4: ROC curves showing the diagnostic performance of each single miRNA markers in the 

training set, in the validation set and the combination both patient’s cohorts. 

 

 
 
 
 
 
 
 
 
 

Training set  Validation set  Combined 
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Table 4.3:  Diagnostic performance of selected miRNA biomarkers in the training set, in the 

validation set and in the combination of both sets. (Sp for specificity, Se for sensitivity, Acc for 

accuracy and Th for threshold). 

ROC Index Training set  Validation set Combined 

miR-1246 

Th 24.95 26.77 0.41 

Sp 0.71 1 0.77 

Se 0.93 0.77 0.87 

Acc 0.86 0.82 0.84 

miR-595 

Th 32.47 32.65 -0.29 

Sp 0.86 1 0.84 

Se 0.44 0.48 0.47 

Acc 0.57 0.58 0.57 

miR-2278 

Th 35.38 33.13 0.26 

Sp 0.69 1 0.66 

Se 0.91 0.31 0.81 

Acc 0.84 0.44 0.77 
 

4.1.6 Absolute quantification of miR-1246 by droplet digital PCR (ddPCR) 
According to the diagnostic accuracy, the statistical significance and the average expression 

difference between cases and controls (see Figure 4.3 and 4.4), miR-1246 was the most promising 

diagnostic serum biomarker. Thus, we decided to validate its expression levels with an additional 

technique, using EvaGreen-based ddPCR technology. The quantification by ddPCR, expressed as 

copies/µl, (Figure 4.5) further confirmed the diagnostic potential of miR-1246 (p<0.0001) in 

discriminating HGSOC patients and healthy donors. 

 

       
Figure 4.5: Boxplot of the absolute quantification of miR-1246 by ddPCR in HGSOC patients 

compared to controls. Results are presented as copies per microliter of the amplification reaction 

mixture. 
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4.2 Global gene and miRNA expression profiling in HGSOC tissue samples 

4.2.1 Cohort description 
Tissue samples enrolled in the study were obtained from 99 HGSOC patients and 30 age-matched 

healthy donors. As described in Table 3.2, the median age at diagnosis was 63 and 58 years, for 

HGSOC patients and healthy donors, respectively, with the 79% of patients in postmenopausal 

status. Tissue samples were collected at the time of surgery, before any treatment. All patients 

were staged according to FIGO guidelines (Federation International of Gynecology and Obstetrics) 

as stage III-IV, with high-grade serous histological type. Women with diagnosis of HGSOC showed 

a median CA125 value >943UI/ml in 46.5%, residual tumor ˃0 in 79%, presence of ascites in 86%, 

positive neoplastic cytology in 89% and lymph node metastasis in 37% of cases. According to 

response to standard treatment, patients were classified as platinum-resistant (n=40, 41%), 

platinum-sensitive (n=36, 36%) and platinum-partially sensitive (n=21, 21%). 
 
4.2.2 Gene expression microarray analysis 
Figure 4.6 showed the heatmap of the 18.626 mRNA values obtained after pre-processing and 

data normalization. On a global scale, a large part of the entire set of genes was similar across 

samples. 

The unsupervised analysis, performed on the entire cohort of 99 HGSOC samples with their 

respective expression arrays, generated no evident clusters using all genes in the platform; this 

analysis did not help to separate patients on the basis of their response to chemotherapy. 

Figure 4.6: Cluster analysis with the whole-matrix of genes. 
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Secondly, we performed a statistical analysis to identify genes differentially expressed among 

patients grouped according to response to platinum-based therapy (see Table 3.2). Platinum-

resistant patients (group 1) were compared with platinum-sensitive (group 2)  and partially 

platinum-sensitive (group 3), but no differentially expressed genes (DEGs) were identified, with a 

FDR (false discovery rate) ≤ 0.05 (Table 4.4). On the other hand, limiting the comparison to 40 

resistant patients versus 35 sensitive patients, HOMER2 was identified as the only significant 

DEG, with a FDR<0.05 (false discovery rate). HOMER2 was able to differentiate the two groups 

and demonstrated a downregulation in the group of resistant patients (Table 4.5). 

  

Table 4.4: List of the first 10 DEGs resulted from the statistical comparison between 40 resistant 

patients and 54 sensitive plus partially sensitive ones. No gene is significantly differentially 

expressed between groups, considering the adjusted p-value. 
 

     

Table 4.5: List of the first 10 DEGs from the statistical comparison between 40 resistant patients 

and 35 sensitive ones. Only the first gene is statistically significant. 
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4.2.3 Pathway analysis 
Applying Graphite and Clipper method, we performed a pathways analysis, comparing group 1 

versus group 2 and 3. A total of 58 pathways differently expressed between groups has emerged. 

The topological pathway analysis compared 40 platinum-resistant patients with a total of 54 

platinum-sensitive plus partially-sensitive patients. In Table 4.6 were reported the first ten pathways 

of the list.  

 

Table 4.6: List of the first ten pathways significantly expressed among groups 

Pathway alphaMean alphaVar 
Amino sugar and nucleotide sugar metabolism               0.02                 0 
Dorso-ventral axis formation  0.04 0.01 
Tryptophanmetabolism 0.01 0.06 
Glioma  0.06 0.03 
Metabolism of xenobiotics by cytochrome P450  0.01 0.08 
Africantrypanosomiasis 0.07 0.03 
ErbBsignalingpathway 0.05 0.06 
RIG-I-like receptor signaling pathway  0.04 0.07 
Prostate cancer 0.07 0.05 
Hedgehogsignalingpathway 0 0.13 
 
4.2.4 Discovery of specific HGSOC tissue miRNAs by microarray 
Microarray analysis revealed 265 DEM (123 up-regulated and 142 down-regulated) in 99 HGSOC 

tissue samples compared to 16 tissues from HOSEs and fallopian tubes (data not shown). 

According to response to platinum-based chemotherapy and prognosis, we identified a total of 9 

DEM (miR-199b-5p, miR-423-5p miR-455-3p, miR-22-3p, miR-199a-3p, miR-15b-5p, miR-140-5p, 

miR-1246 miR-320c) in the group of patients platinum-resistant and partially platinum-sensitive 

compared to platinum-sensitive patients, and significantly associated with survival variables (OS 

and PFS), as reported in Table 4.7. 

 
Table 4.7: A total of 9 DEM associated with platinum-resistance and prognosis  

Tissue miRNAs Log Fold 
Change p-value OS p-value 

(median) 
PFS p-value 

(median) 

hsa-miR-199b-5p 0.847 0.002 0.002 0.001 

hsa-miR-423-5p 0.362 0.001 0.009 0.004 

hsa-miR-455-3p 0.769 0.002 0.005 0.001 

hsa-miR-22-3p 0.616 0.004 0.009 0.018 

hsa-miR-199a-3p 0.667 0.02 0.007 0.003 

hsa-miR-15b-5p -0.319 0.022 0.039 0.0001 

hsa-miR-140-5p 0.297 0.039 0.032 0.003 

hsa-miR-1246 0.482 0.042 0.008 0.017 

hsa-miR-320c 0.32 0.017 0.04 0.032 
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4.2.5 Comparison of miRNA expression between matched serum and tissue samples  
We next questioned whether or not DEM observed in the sera of HGSOC patients could reflect 

those present in the tumor masses. To that end, we compared miRNA expression in those patients 

for whom matched serum and tumor tissue were available. As described in Figure 4.7, ten miRNAs 

shared a differential expression in tissue and serum between cancer patients and normal donors. 

Of these, eight miRNAs showed the same trend of up/down regulation in cases and controls, while 

2 miRNAs display an opposite trend. 

 

              
 

Figure 4.7: Venn diagram of the list of differentially expressed miRNAs between tissue and serum 

samples. After filtering steps, we detected 638 miRNAs in sera and 363 miRNAs in tissues. Of 

these, 214 were in common. Among these 214 miRNAs, we identified 10 miRNAs differentially 

expressed in both sera and tissues, of which 8 with the same trend. 
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4.2.6 Identification and validation of candidate reference for miRNA quantification by RT-
qPCR in HGSOC tissue samples 
Since there is a lack of consensus in the literature regarding the most suitable endogenous control, 

before starting with the experiments for the validation of miRNA expression data, we decided to 

identify and validate the most stable reference sncRNAs (small non-coding RNAs) for 

normalization of miRNA RT-qPCR expression data in HGSOC. 

We selected a panel of seven potential endogenous controls derived from the literature (U6, 

SNORD48, miR-92a-3p, let-7a-5p, SNORD61, SNORD72, SNORD68), suggesting their use for 

normalization of qPCR studies in HGSOC tissue samples. Then, we added to the analysis four 

reference miRNAs, miR-103a-3p, miR-423-3p, miR-191-5p and miR-16-5p, selected and validated 

from Exiqon for normalization of miRNA expression levels in human tissue samples during real-

time PCR. This panel of eleven miRNAs was integrated with additional two miRNAs, miR-26a-5p 

and miR-1249, emerged as the most invariant by microarray analysis, performed on 99 HGSOC 

and 16 normal tissue samples (see paragraph 3.3). Quantitative real-time PCR was performed on 

a portion of the entire cohort of HGSOC (n=75) and on 25 normal tissues (n=25, including ovarian 

and tubal epithelia), to assess the expression pattern of the 13 selected reference sncRNAs. 

Stability of candidate endogenous controls was evaluated by geNorm [Vandesompele J et al. 2002] 

and NormFinder algorithms [Long JS et al. 2000] and validated with an equivalence test (Two-One-

Sided Test approach, TOST) [Wellek S 2003]. 

Combining results from the three different statistical approaches, SNORD48 emerged as stably 

and equivalently expressed between malignant and normal tissues. Among malignant samples, 

considering groups based on residual tumor, miR-191-5p was identified as the most equivalent 

sncRNA (Table 4.8). Based on these results, for the following experiments of miRNA relative 

expression quantification, we decided to use SNORD48 and miR-191-5p, as best reference 

sncRNAs within our cohort of HGSOC compared to normal tissues and within HGSOC tissues, 

respectively.   
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Table 4.8: Log Fold changes in reference sncRNA expression between HGSOC and normal 

control samples, and among patients with no residual tumor versus patients with residual tumor 

(90% confidence intervals,; p-values for linear models; * null hypothesis of no equivalence rejected; 

[εL,εU]=[-0.36,0.36]). 

 HGSOC vs Control RT=0 vs RT>0 

sncRNAs Log FC CI 
90%

 p-value Log FC CI 
90%

 p-value 

miR-16-5p -1.87 -2.36;-1.38 <0.001 -0.16 -0.43;0.11 0.328 

miR-191-5p -0.10 -0.44;0.24 0.625 0.06 -0.23;0.36* 0.725 

miR-423-3p 0.21 -0.18;0.59 0.375 0.60 0.04;1.15 0.087 

let-7a-5p -0.20 -0.59;0.19 0.401 0.48 -0.01;0.98 0.108 

miR-103a-3p -0.15 -0.60;0.31 0.601 0.28 -0.35;0.90 0.465 

miR-92a-3p -1.89 -2.23;-1.55 <0.001 0.40 0.005;0.80 0.096 

SNORD68 -0.23 -0.55;0.09 0.229 0.28 -0.14;0.71 0.274 

SNORD61 0.33 -0.08;0.74 0.190 -0.05 -0.42;0.32 0.828 

SNORD72 1.21 0.80;1.63 <0.001 0.25 -0.25;0.74 0.408 

SNORD48 0.02 -0.28;0.32* 0.924 0.25 -0.14;0.64 0.287 

U6 -0.53 -0.84;-0.23 0.003 0.56 0.06;1.06 0.066 

miR-26a-5p 0.57 0.34;0.80 0.013 -0.10 -0.35;0.14 0.102 

miR-1249 1.33 1.13;1.54 0.000 -0.17 -0.38;0.04 0.154 
 
 

4.2.7 miR-1246 expression validation by RT-qPCR and association with patient survival 
Since the up-regulation of circulating miR-1246 levels in HGSOC patients has been confirmed by 

three different techniques and since miR-1246 up-regulation in HGSOC biopsies was correlated 

with platinum-resistance and worst prognosis by microarray analysis, we focused on the validation 

of its expression in our cohort of tumor and normal tissues (from HOSE and fallopian tubes) by RT-

qPCR. Interestingly, by microarray analysis, miR-1246 expression emerged down-regulated in 

HGSOC tissues compared to normal controls. As represented in Figure 4.8 A, we confirmed the 

down-regulation of miR-1246 expression levels in HGSOC samples compared to HOSE, but we 

did not detect a significantly differential expression compared to fallopian tubes. This result mirrors 

the global miRNA expression trend emerged by microarray where, as revealed by principal 

component analysis (PCA) in Figure 4.9, luminal fallopian tube surface epithelium miRNA profile 

shares a higher similarity with HGSOC miRNA profile, compared to ovarian surface epithelium. 

Moreover, miR-1246 over-expression in HGSOC tissues was significantly associated with 

platinum-resistant compared to platinum-sensitive patients (p-value=0.047) (Figure 4.8), by RT-

qPCR. Kaplan-Meier survival curves showed that OS and PFS decreased in patients with high 

miR-1246 expression compared to those with low miR-1246 expression (p-value<0.001, HR=2.57;  

p-value=0.024, HR=1.68; respectively). In addition, multivariate analysis, considering miR-1246 

expression and residual tumor, revealed miR-1246 over-expression as an independent prognostic 

factor for poor OS and PFS (p-value=0.001, HR=2.42; p-value<0.05, HR=1.59; respectively). 
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Figure 4.8: A miR-1246 expression levels in HGSOC samples compared to normal controls, 

composed by HOSE and fallopian tube by RT-qPCR. B miR-1246 expression levels among 

HGSOC samples: comparison between chemo-resistant vs chemo-sensitive patients.  

p -value<0.0001 

Principal Component Analysis 1 

Figure 4.9: PCA based on the microarray expression levels of the 200 most variable miRNAs 

among 99 HGSOC, 11 fallopian tubes and 5 HOSEs (pooled from 17 healthy donors). 

A B 
p-value =0.047 
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Figure 4.10: Kaplan-Meier survival curves for overall survival (OS) and progression-free survival 

(PFS) according to tissue miR-1246 expression from 99 HGSOC patients. A The OS rate of 

HGSOC patients with high or low miR-1246 expression; B The PFS rate of HGSOC patients with 

high or low miR-1246 expression.  

 
4.2.8 Identification and validation of hypoxia-regulated miRNAs (HRMs) by RT-qPCR 
We focused our analysis on a group of 16 miRNAs (miR-210/24-3p/23a-3p/27a-3p/21-5p/23b-

3p/26b-5p/103a-3p/107/192-5p/93-5p/181b-5p/30b-5p/26a-5p/125b-5p/181a-5p) belonging to the 

group of hypoxia-regulated miRNAs (HRMs), selected from the literature and already emerged as 

relevant in other solid tumors. Most of the HRMs showed a significant differential expression in 

HGSOC compared to normal tissues, by microarray analysis (Table 4.9). Among them, miR-210, 

being the most widely studied miRNA associated with hypoxia and considered a master miRNA of 

the hypoxic response, was selected for further validations. Additionally, we validated miR-23a-3p 

and miR-27a-3p, showing a significant and a borderline significant association with poor overall 

survival, respectively (Table 4.9), and miR-24-3p located on the same miR-23a-3p/27a-3p gene 

cluster. RT-qPCR, using SNORD48 as reliable reference within HGSOC tissue samples and 

controls, confirmed the over-expression of all the four HRMs tested in HGSOC compared to normal 

tissues, as reported in Figure 4.11 (all p-values≤ 0.002). Moreover, we confirmed the significant 

over-expression of miR-23a-3p in the group of patients resistant compared to platinum-sensitive 

patients (p-value=0.03, Figure 4.12). In addition, in univariate survival analysis, miR-23a-3p over-

expression resulted significantly associated with poor PFS (p-value<0.01, HR=1.8), whereas it did 

not show a significant correlation with OS. More interestingly, multivariate Cox regression analysis, 
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revealed miR-23a-3p up-regulation, along with tumor residual, significant correlated with shorter 

PFS (p-value=0.01, HR=1.78).  

 

Table 4.9: HRMs emerged significantly differentially expressed in HGSOC vs normal tissues, by 
microarray analysis. miR-23a-3p and miR-27a-3p showed a borderline (p-value=0.056) and 
significant (p-value=0.036) association with platinum-resistant tumors. 
 

Tissue HRMs 
HGSOC vs Control Resistant vs Sensitive 

Log FC  Aver. 
Expr. p-value Adj. 

p-value Log FC Aver. 
Expr. p-value Adj. 

p-value 

hsa-miR-210 1.377 7.868 0.0001 0.0001 0.037 8.009 0.85 0.907 

hsa-miR-24-3p 1.451 10.244 0.0001 0.0001 -0.006 10.462 0.959 0.959 

hsa-miR-23a-3p 2.076 10.017 0.0001 0.0001 0.361 10.311 0.007 0.056 

hsa-miR-27a-3p 2.795 9.749 0.0001 0.0001 0.435 10.151 0.002 0.036 

hsa-miR-21-5p 2.028 13.02 0.0001 0.0001 0.069 13.246 0.739 0.892 

hsa-miR-23b-3p 1.303 9.344 0.0001 0.0001 -0.161 9.561 0.424 0.679 

hsa-miR-26b-5p -1.449 9.354 0.0001 0.0001 0.104 9.161 0.485 0.706 

hsa-miR-103a-3p -0.826 10.068 0.0001 0.0001 0.13 9.96 0.335 0.67 

hsa-miR-107 -1.319 9.505 0.0001 0.0001 0.069 9.323 0.622 0.829 

hsa-miR-192-5p -1.413 4.851 0.0001 0.0001 -0.067 4.719 0.78 0.892 

hsa-miR-93-5p -1.319 8.625 0.0001 0.0001 -0.232 8.47 0.114 0.305 

hsa-miR-181b-5p 1.249 5.604 0.0001 0.0001 0.146 5.762 0.389 0.679 
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Figure 4.11: Significant over-expression of selected HRMs in 99 HGSOC compared to 25 normal 

tissues. Data are displayed as mean ± SD and are expressed normalized for SNORD48. 

 

                     
Figure 4.12: Significant over-expression of miR-23a-3p in 40 platinum-resistant compared to 36 

platinum-sensitive patients. Data are displayed as mean ± SD and are expressed normalized for 

miR-191-5p. 

p-value=0.03 
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4.2.9 Evaluation of HRMs in cancer stem cell-like (CSC) line 
Starting from a primary ovarian cancer cell line OVA-BS4, established in our laboratory after sterile 

processing of a surgical metastatic high-grade serous tumor biopsy, under selective culture 

conditions, we isolated OVA-BS4 parent cell line formed non-adherent spheres, potentially 

enriched in cells with stem-like properties. This cell line has been extensively characterized in our 

laboratory by molecular and phenotypic characterization, that revealed a stem-like phenotype. 

More interestingly, OVA-BS4 spheres showed resistance to all the traditional anti-cancer agents 

tested (cisplatin, paclitaxel, etoposide, PS341, doxorubicin and trabectedin) compared to the 

parental OVA-BS4 adherent cell line. Starting from these evaluations, we decided to test miR-210, 

miR-23a-3p, miR-24-3p and miR-27a-3p in OVA-BS4 spheres with CSC-like properties, as a 

reliable in-vitro model of chemo-resistance. Three independent biological replicates were tested by 

RT-qPCR, using SNORD48 as miRNA expression normalizer, showing the lowest coefficient of 

variation among samples. In all three cases, mir-210 expression was consistently increased in 

OVA-BS4 spheres compared to OVA-BS4 adherent cell line (Figure 4.13). Although the scanty 

number of samples evaluated did not allow to reach a significant statistical difference between the 

two conditions, a noticeable trend of up-regulation of miR-210 emerged from the comparison 

(p=0.07). On the contrary, the other three HRMs analyzed did not show any evident differential 

expression between conditions. 

 

                 
 

Figure 4.13 Expression of selected HRM miR-210 in OVA-BS4 spheres and in OVA-BS4 parental 

cell line. Data are displayed as mean ± SD of three independent experiments and are normalized 

using SNORD48. 
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4.2.10 Target prediction 
Using TargetScan , we looked at identifying putative mRNA targets of miR-23a-3p, the hypoxia-

related miRNA emerged significantly up-regulated in HGSOC patients and, more interestingly, in 

the group of patients resistant to platinum-based chemotherapy, compared to platinum-sensitive 

patients. An anti-correlation miRNA/mRNA pairs analyses was performed, based on gene and 

miRNA expression levels obtained by microarray. Thousands of genes emerged as potential 

targets of miR-23a-3p (data not shown). In particular, among the gene at the top of the list, 

showing the best value of anti-correlation, we identified APAF-1. This gene, coding for the 

apoptotic protease activating factor-1, plays a crucial role in the regulation of apoptosis, and it has 

been already demonstrated as potential target of miR-23a-3p in other types of solid tumors.  

 

4.3 Discovery of HGSOC specific long non-coding RNAs 
From RNA sequence data analysis, we identified a total of 1371 transcripts, differentially expressed 

between platinum-resistant (n=14) and platinum-sensitive patients (n=14) (data not shown). Only 

125 out of 1371 transcripts (9%) were already known sequences, associated to coding or non-

coding genes. Most of the transcripts detected (n=539, 39%) represented potentially novel 

isoforms of reference transcripts and almost 147 (11%) sequences showed a generic overlap with 

noted transcripts. Moreover, the data analysis identified 139 (10%) unknown, intergenic transcripts 

and 389 (28%) exonic transcripts overlapped with reference sequences on the opposite strand. 

Finally, almost 32 transcripts (3%) were due to read mapping errors. Interestingly, a very small part 

of the collected transcriptional alterations can be ascribed to coding-genes, suggesting a prominent 

non-coding role in HGSOC platinum resistance. Currently, we are validating a panel of ten selected 

transcripts to confirm our method of analysis.  
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5. DISCUSSION 

Circulating miRNA as potential diagnostic markers in HGSOC 

HGSOC represents the most lethal gynecologic malignancy, with survival rate virtually unchanged 

in the past 30 years. HGSOC high mortality reflects its asymptomatic nature, the lack of adequate 

screening test, the low predictive capacity of diagnosis in an early stage and the development of 

resistance to the standard therapies. The possibility to identify the early onset of HGSOC is thus of 

extreme importance for improving patients’ clinical outcome. Studies performed so far have 

confirmed the limits of currently used diagnostic biomarkers, like CA-125, to identify early phases 

of tumor growth and disseminated disease [Jacobs IJ et al 2016; Terry KL et al 2016]. Considering 

the lack of ovarian cancer screening tests able to significantly reduce the mortality of patients, the 

development of novel strategies for early diagnosis, such as the identification of novel biomarkers, 

is one of the possible strategies to pursue.  

Conceptually, there are different steps for a molecule to be selected as a biomarker, along the path 

from the bench to patient’s bedside. Starting from these premises, in the first part of my PhD 

project, we aimed at identifying, in sera of patients, molecular features of tumor biology that could 

represent one step forward in the identification of novel biomarkers for early disease detection. In 

the last years, there has been a growing interest in the potential role of circulating miRNAs as 

diagnostic biomarkers in different types of carcinoma, including ovarian cancer. Indeed, a blood-

based test can be easy accessible, minimally invasive and it could represent a promising screening 

test for early disease detection. In recent years, several circulating miRNAs have been identified as 

biomarkers with implications in ovarian cancer diagnosis. However, there is a lack of consensus in 

the normalization strategy of circulating miRNA levels exists in the literature, mainly due to the 

absence of reliable “reference miRNAs”. Therefore, despite the relative abundance of published 

papers, the vast majority of them reveals a hastily data standardization and a normalization 

performed in a suboptimal way, using reference miRNAs arbitrarily chosen among those most 

commonly published. Moreover, most previously studies analyzed circulating miRNAs belonging to 

patients harbouring all ovarian carcinoma histotypes, while the few investigations focused on 

HGSOC specific miRNAs in serum/plasma are limited by a narrow sample size. Finally, RT-qPCR 

is the most reported technique for studying miRNA expression in biological fluids, while a high-

throughput system is more desirable when reliable markers need to be discovered. In summary, 

many technical challenges in the analysis of circulating miRNAs (i.e., samples storage and 

processing, profiling methods and data normalization) have complicated the comparison of 

independent datasets and delayed their entering into clinical settings.  

To overtake the several issues described above, my study focused into an experimental design 

that displays several improved features compared to other studies, including: i) serum samples 

belonging to patients harbouring HGSOC, the most frequent and aggressive ovarian cancer 

histological type, ii) two cohorts of patients, gathered from independent serum collections, that 

were used to obtain molecular data, reducing biases in statistical analysis, iii) serum from age-
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matched healthy women as normal controls, iv) optimized protocol including collection, handling, 

storage and miRNAs extraction of serum samples, v) haemolysis monitoring of serum samples, vi) 

the use of an innovative and effective statistical approach of microarray data normalization, 

combining synthetic spike-in RNA oligos and the most invariant endogenous miRNAs, vii) the use 

of two RT-qPCR techniques for miRNA validation and, in particular, of Exiqon primer sets with LNA 

technology, which maximizes sensitivity and specificity in detecting miRNA amplicons. According 

to the aforementioned critical issues, we used microarray technology on a total of 110 serum from 

HGSOC patients and 19 healthy volunteers to achieve an efficient selection of the most promising 

miRNAs among the thousands of possible candidates sourced from the miRNome (miRBAse 

version 19). In addition, we developed a novel bioinformatic approach to identify specific circulating 

miRNAs characterizing HGSOC patients. In particular, we chose to apply an innovative approach 

of statistical analysis, using the expression levels of 10 different non-human spike-in oligos, 

combined with a set of most invariant low-expressed endogenous miRNAs, to normalize circulating 

miRNA levels. 

The miRNA profile on the training set initially allowed us to identify 97 miRNAs with different 

expression levels between HGSOC patients and healthy controls. Among miRNAs selected for RT-

qPCR validation, miR-1246, miR-595, miR-4290, miR-2278 confirmed to be significantly up-

regulated in the HGSOC patients group compared to healthy donors. Importantly, the up-regulation 

of miR-1246, miR-595 and miR-2278 was furtherly validated by RT-qPCR in a completely 

independent dataset of serum samples, obtained from 58 HGSOC and 13 healthy donors. 

Moreover, since miR-1246 has emerged as the most reliable biomarker, we performed an absolute 

quantification of circulating miR-1246 copies using ddPCR, validating once more its significantly 

differential expression between the two groups of samples. Notably, we performed ROC curve 

analysis on miR-1246 to estimate its sensitivity and specificity, as diagnostic performance for 

HGSOC detection. Our findings confirmed miR-1246 as the most promising diagnostic biomarker, 

as it was able to accurately classify tumor patients compared to healthy donors, both in the training 

and in the validation cohorts. To the best of our knowledge, miR-1246 has not been associated to 

ovarian cancer previously, neither at the tissue nor at the serum levels. Nevertheless, its 

expression has been largely reported as upregulated in other cancer tissues, such as lung, oral, 

colorectal, esophageal, hepatic, pancreatic and cervical carcinoma [Kim G et al 2016; Liao L et al 

2015; Wang S et al 2016; Fu HL et al 2013; Sun Z et al 2014; Hasegawa S et al 2014; Chen J et al 

2014]. As circulating marker, miR-1246 has been proposed, alone or in combination with others, 

for the detection of multiple myeloma, oesophageal, colon, cervical carcinomas and early stage 

breast cancer [Jones CI et al 2012; Takeshita N et al 2013; Ogata-Kawata H  et al 2014; Chen J et 

al 2013; Shimomura A et al 2016]. Furthermore, high levels of circulating miR-1246 and miR-595 

have been reported associated to active forms of inflammatory bowel disease [Krissansen GW et 

al 2015].  
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Gene and miRNA expression in HGSOC compared to normal tissues  

HGSOC is often an incurable gynecological malignancy. Although the majority of tumors initially 

respond to chemotherapy, most patients succumb to chemoresistant recurrent disease. Despite a 

variety of cytotoxic anti-cancer agents and targeted therapy such as bevacizumab have recently 

emerged, control over the progression of HGSOC remains inadequate. Chemoresistance is the 

principal factor limiting long-term survival in ovarian carcinoma patients. Currently available 

prognostic parameters are not able to adequately predict HGSOC relapse and clinical course. 

Therefore, the need to discover novel accurate outcome-informative markers would be critical to 

select those patients who could benefit from individualized therapies. The lack of reliable 

prognostic markers and the lack of effective therapies for patients with HGSOC in some way 

reflects the incomplete understanding of the molecular basis of its pathogenesis and progression. 

In this context, the recent identification of the regulatory role of non-coding RNAs (ncRNAs) 

extended the spectrum of possible key factors involved in essential biological processes of cancer 

development and progression. Starting from these premises, in the second part of my PhD project, 

we performed a global RNA expression profiling, including coding and ncRNAs, such as miRNAs 

and lncRNAs, in order to better understand the transcriptional and post-transcriptional mechanisms 

characterizing HGSOC. In particular, we have attempted to identify molecular markers to 

adequately predict HGSOC relapse and clinical course. Gene and miRNA expression profiles have 

been reported as associated with overall survival, primary surgical cytoreduction (debulking 

status), and response to platinum therapy in ovarian cancer [Crijns AP et al 2009; Bonome T et al. 

2008; Jazaeri AA et al. 2005; Cancer Genome Atlas Research Network 2011]. Despite those 

encouraging developments, no biomarker for prediction of response to therapy has been clinically 

useful yet. The particular design of my study has been characterized by several features, including: 

i) a wide and well-characterized cohort of snap-frozen tumor tissue samples of high grade serous 

histological type, the most frequent and aggressive ovarian cancer, belonging to a single 

institution, ii) the inclusion of both ovarian surface and fallopian tube epithelia, as source of normal 

control tissues, to better understand the histogenesis of HGSOC, still debated, iii) a stringent 

quality control of isolated total RNA, iv) a genome wide RNA expression analysis, including 

mRNA/miRNA/lncRNA signature, by high-throughput microarray Agilent Technology®, v) the 

careful selection of putative reference sncRNAs, for an accurate quantification of miRNA levels by 

RT-qPCR, vi) the use of optimized Exiqon primer sets with LNA technology, maximizing sensitivity 

and specificity in amplicon detection, vii) the possibility to match tumor biopsies and serum 

samples from the majority of patients enrolled in the study. 

In this study, we performed a comprehensive gene and miRNA expression profiling on a cohort of 

99 advanced-stage HGSOC patients, partially matched with serum samples (n=76) and 16 healthy 

controls, obtained both from normal ovary and luminal fallopian tube surface epithelia. By 

microarray analysis, most of the genes and miRNAs have emerged aberrantly expressed in 

HGSOC tissue samples. After filtering steps, by microarray technology a total of 265 miRNAs (123 
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upregulated and 142 downregulated) have emerged significantly differentially expressed between 

HGSOC and normal tissues. To potentially clarify  the HGSOC precursor, we performed a principal 

component analysis on miRNA expression profile, including all the HGSOC tissues of our cohort 

and the potential neoplasm precursors, obtained both from HOSEs and fallopian tube epithelium 

brushing. The analysis was based on the most variable miRNAs (n=200) among the three different 

types of tissues. Interestingly, this miRNA profile analysis was able to cluster our samples in three 

different and clearly separated groups. More importantly, luminal fallopian tube epithelium miRNA 

profile shared a higher similarity to HGSOC miRNA profile, compared to ovarian surface epithelium 

one. This preliminary result seems to unlock new insights on HGSOC biogenesis, supporting a 

recent novel theory on the origin of this aggressive tumor [Kurman RJ et al. 2010].  

 

Gene, miRNA and lncRNA expression according to response to platinum-based chemotherapy in 

HGSOC 

Within our large and uniform records, we examined the association of gene expression profile with 

chemotherapy status of patients. Using the whole platform of genes examined, unsupervised 

analysis did not generate any cluster able to differentiate patients according to chemotherapy 

status. However, the comparison between the group of platinum-resistant and platinum-sensitive 

patients identified Homer Protein Homolog 2 (HOMER2) as the only differentially expressed gene. 

This gene encodes a member of the homer family of dendritic proteins; members of this family 

regulate group 1 metabotrophic glutamate receptor function. In our cohort of samples, HOMER2 

showed a down-regulation in the group of chemo-resistant patients. This gene is known in the 

literature to cooperate with a class myosin MYO18B and their co-expression enhances the ability 

of MYO18B to suppress the anchorage-independent growth of a human lung cancer cell line [Ajima 

R et al. 2007].  

Based on high-throughput gene expression analysis, we performed a topological-based pathway 

analysis, using Graphite Web, a novel web tool developed by Sales et al [Sales G et al. 2013]. This 

method, combining topological and multivariate pathway analyses, allows identifying significant 

signal transduction paths within significantly altered pathways. Moreover, since a biological 

pathway is not a mere list of genes, but represents the biologic relations between genes, in this 

analysis, each gene can contribute to the statistical significance of the pathway with a final additive 

effect due to its interaction with the other genes within the network. Particularly, the gene set 

analysis on our cohort of HGSOC samples revealed a total of 58 pathways involved in the 

mechanism of platinum-resistance. Among them, we identified Tight junction, Erb signaling, Wnt 

signaling, Cell cycle, Jak/STAT signaling and cell adhesion molecules pathways. Some interesting 

pathways, among the differentially expressed, have been already reported contributing to the onset 

of resistance to therapy and warrant to be further investigated [Anastas JN et al. 2013, Ma J et al. 

2014]. 
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According to response to platinum-based chemotherapy and prognosis, we identified a total of 9 

differently expressed miRNAs (miR-199b-5p, miR-423-5p miR-455-3p, miR-22-3p, miR-199a-3p, 

miR-15b-5p, miR-140-5p, miR-1246, miR-320c) in the group of patients platinum-resistant and 

partially platinum-sensitive compared to platinum-sensitive patients, and significantly associated 

with overall survival and progression free survival. Since the up-regulation of circulating miR-1246 

levels in HGSOC patients has been confirmed by three different techniques (microarray, RT-qPCR 

and ddPCR) and since miR-1246 up-regulation in HGSOC biopsies was associated with platinum-

resistance and worse prognosis by microarray analysis, we focused on the validation of its 

expression in our cohort of tumor and normal tissues by RT-qPCR.  

Currently, there is no literature consensus on the most stably expressed endogenous controls that 

should be used in HGSOC miRNA RT-qPCR studies. Similarly to mRNA expression analysis, the 

choice of reference genes for miRNA RT-qPCR data normalization has a great impact on the study 

outcome, as different normalization strategies can lead to different interpretation of data resulting in 

ambiguous biological conclusions [Calin GA et al. 2006]. As already postulated, miRNA may act “in 

cascade” over several mRNA genes, regulating multiple target within the same pathway, thus small 

changes in miRNA expression could have important consequences for a given cellular function 

[Mestdagh P et al. 2014]. Accordingly, the validation of endogenous normalizers is even more 

critical for miRNA RT-qPCR experiments, considering that relatively small differences in miRNA 

expression may be biologically and clinically significant. Then, before proceeding with miRNA 

expression level validation by RT-qPCR, we identified the most suitable small non coding RNAs 

(sncRNAs) as endogenous controls for miRNA expression normalization in a subset of HGSOC 

samples and normal tissues. Eleven putative reference sncRNAs for normalization (U6, 

SNORD48, miR-92a-3p, let-7a-5p, SNORD61, SNORD72, SNORD68, miR-103a-3p, miR-423-3p, 

miR-191-5p, miR-16-5p) and miR-26a-5p and miR-1249, emerged as the most invariant miRNAs 

by our microarray analysis, were analyzed using a highly specific RT-qPCR. Combining results 

from three different statistical approaches, SNORD48 emerged as stably and equivalently 

expressed between malignant and normal tissues. Among malignant samples, considering groups 

based on residual tumor, miR-191-5p was identified as the most equivalents ncRNA. It was not 

surprising to find miR-26a-5p and miR-1249 not further confirmed as the most invariant miRNAs in 

our cohort of HGSOC and normal tissues, using RT-qPCR. It is well known that hybridization 

platform, such as microarray technology, has a lower sensitivity and specificity compared to 

quantitative PCR (qPCR), that represents the gold standard for single miRNA measurement. For 

all miRNA quantifications performed in this study by RT-qPCR on tissues, we decided to apply the 

Exiqon technology, that quantify miRNA expression in a two-step PCR process of modified RT-

PCR, followed by a qPCR. In particular, starting from total RNA, a universal transcription system 

provided template for all mature miRNAs, overcoming the need for miRNA-specific RT whose 

efficiency can vary among different miRNAs. Both PCR amplification primers were miRNA-specific 

and chemically modified in the ribose mojety of nucleotides to stabilize the conformation of the 
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sugar groups, according to the Exiqon technology. The conformation of locked nucleic acid (LNA) 

oligos resulted in enhanced hybridization properties and increased sensitivity and specificity in 

detection of scnRNAs. Moreover, the RT mechanism allowed the amplification of mature miRNA 

only, without amplification of pre-miRNA whose interaction with oligos is prevented by the 

presence of the loop. The exceptional sensitivity, specificity and accuracy of the Exiqon RT-qPCR 

system have recently been confirmed by Mestdagh and colleagues in the widest peer-reviewed 

investigation of microRNA profiling platforms performed to date [Mestdagh P et al. 2014]. Then, 

based on our results, using SNORD48 as normalizer, we confirmed the downregulation of miR-

1246 expression levels in HGSOC samples compared to HOSEs, by RT-qPCR. Interestingly, we 

did not detect a significantly differential expression between HGSOC compared to fallopian tubes. 

This result mirrors the previously reported global miRNA expression trend emerged by our 

microarray analysis, where luminal fallopian tube surface epithelium miRNA profile appears more 

similar to tumor miRNA profiles compared to ovarian surface epithelium one.  

According to platinum response, miR-1246 showed a significantly increased expression in the 

group of chemoresistant compared to sensitive patients. Importantly, miR-1246 over-expression 

was significantly associated with poor OS and with shorter PFS in HGSOC patients by RT-qPCR. 

Moreover, we showed that miR-1246 over-expression represents an independent prognostic factor 

for OS and PFS in HGSOC patients. This result is in line with the aforementioned studies, where 

miR-1246 overexpression was correlated with poor patient survival in several type of cancers [Liao 

L et al 2015, Hong L et al 2013, Hasegawa S et al 2014]. Moreover, recently, several miR-1246 

target mRNAs and related pathways have been identified and validated. In particular, miR-1246 

has been associated with stemness in non-small cell lung cancer and reported to be involved in 

tumor metastasis by targeting CPEB4 mRNA [Kim G et al. 2016]. This association with cancer 

stem cells (CSCs) has been also described in pancreatic carcinoma, where miR-1246 negatively 

regulates CCNG2 mRNA and promotes resistance to chemotherapy [Hasegawa S et al. 2016]. The 

inhibition of CCNG2 induced by miR-1246 was described also in colorectal cancer, contributing to 

a more aggressive tumor phenotype [Wang S et al. 2016]. In hepatocarcinoma cell lines, miR-1246 

enhanced migration and invasion by down-regulation of CADM1 gene and it is supposed to be 

regulated by p53, leading to suppression of cellular proliferation by targeting NFIB [Sun Z et al. 

2014]. Finally, Chen et al reported that miR-1246 promotes proliferation, invasion and migration 

through the inhibition of its target gene THBS2 in cervical carcinoma [Chen J et al. 2014]. 

In the last part of the study with the aim to discover new coding and non-coding variants of known 

transcripts or totally novel transcripts, associated with the mechanism of resistance, we have 

sequenced the entire transcriptome of HGSOC tumor biopsies belonging to 14 platinum-sensitive 

and 14 platinum-resistant patients. The transcriptome reconstruction of the 28 sequencing 

experiments allowed us to identify 1371 transcripts differentially expressed between pt-resistant 

and pt-sensitive samples. Among them, 125 transcripts showed a complete match of intron chain 

with known transcripts, while 686 were potentially novel isoforms or showed a generic overlap with 
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known transcripts. The remaining, if validated, could be novel intergenic transcripts or transcripts 

with an exonic overlap with reference ones. Interestingly, a very small part of the collected 

transcriptional alterations can be ascribed to coding-genes, suggesting a prominent non-coding 

role in HGSOC platinum resistance. Further validation is necessary to better define the functional 

and predictive/prognostic role of the detected transcriptional alterations.  

 

Comparison of miRNA expression profiles between matched serum and tissue samples 

An important issue addressed in our study deals with the comparison between miRNA expression 

pattern observed in serum and in matched cancer tissues. Our results strengthen that, although 

both the HGSOC serum and tissue samples showed dysregulated global miRNA profile compared 

to normal counterpart, they did not show high correlation to each other. This discrepancy suggests 

the hypothesis that the circulating miRNA profiling is a contribute of tumor-specific and 

inflammation-specific miRNAs, or that miRNA could be released or captured in microvesicles and 

exosomes acting as a novel mechanism of genetic exchange between cells. Our findings are in 

line with previous reports on several solid cancers, where only 7% of the serum and tissue-derived 

signatures displayed excellent concordance in a discovery setting [Jarry J et al. 2014]. 

 

Hypoxia-regulated miRNAs in HGSOC  

Tumor microenvironment, in particular the low O2 tension that improves the tumor 

neovascularization, contributes to the onset of chemoresistance during HGSOC progression. 

Recently, a group of miRNAs, termed hypoxia regulated-miRNAs (HRMs), has been identified as 

key elements in response to hypoxia, regulating mechanisms that confer a more aggressive tumor 

phenotype. The complexity of hypoxia molecular mechanisms has not yet been fully elucidated in 

HGSOC, therefore there is an urgent need to discover novel biomarkers clinically useful to select 

patients with hypoxic tumors that may benefit of tailored treatments. In this context, we focused our 

analysis on a group of 16 miRNAs belonging to the group of HRMs emerged from literature as 

relevant in other solid tumors. Most of the HRMs showed a significant differential expression in 

HGSOC compared to normal tissues by microarray analysis. Among them, miR-210, being the 

most widely studied miRNA associated with hypoxia and considered a master miRNA of the 

hypoxic response, was selected for further validations. Additionally, we validated miR-23a-3p and 

miR-27a-3p, showing a significant and a borderline significant association with poor overall survival 

respectively by microarray analysis, and miR-24-3p located on the same miR-23a-3p/27a-3p gene 

cluster. RT-qPCR confirmed the over-expression of all the four HRMs tested in HGSOC compared 

to normal tissues, suggesting the presence of hypoxia areas within the HGSOC masses. miR-23a-

3p over-expression was confirmed in platinum-resistant patients, highlighting the importance of 

hypoxia in HGSOC mechanism of drug resistance. More interestingly, we demonstrated miR-23a-

3p over-expression as a novel prognostic factor for HGSOC patients, significantly correlated with 

worse PFS. Furthermore, we verified the expression of these four miRNAs in our cancer stem cell-
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like (CSC) line, exhibiting resistance to all the traditional anti-cancer agents tested. Among them, 

miR-210 showed a borderline significant up-regulation in cancer stem cell-like line, compared to 

parental adherent cell line. Therefore, these preliminary results warrant further investigations to 

demonstrate the implication of HRMs and, in particular of miR-210, in chemoresistance 

mechanisms. Previous studies have already investigated the expression and involvement of these 

HRMs in several types of cancer. In particular, miR-27a-3p has been found to promote 

proliferation, migration and invasion in osteosarcoma cells by targeting MAP2K4 [Pan W et al. 

2014]. Moreover, miR-27a-3p has been shown to induce esophageal cancer cell proliferation by 

FBXW7 suppression [Wu XZ et al. 2015]. Interestingly, in a study conducted on neuronal cell, miR-

23a-3p and miR-27a-3p have been shown to alleviate hypoxia-induced neuronal apoptosis, 

suppressing Apaf-1 [Chen Q et al 2014]. Similarly, miR-23a-3p has been found to regulate Apaf-1 

protein activity, in both pancreatic ductal adenocarcinogenesis and colorectal cancer [Liu N et al. 

2015; Yong FL et al. 2014]. In line with these results, our target prediction analysis, using an anti-

correlation microRNA/mRNA pairs, based on gene and miRNA expression profiles obtained by 

microarray analysis on the entire cohort of HGSOC and controls, revealed Apaf-1 at the top of 

mRNA anti-correlated to miR-23a-3p. Apaf-1 (Apoptotic protease activating factor 1) is a 

cytoplasmatic protein that plays a central role in the apoptosis regulatory network. If further 

validated, this result might explain a potential role of miR-23a-3p as oncogene, that contributes via 

Apaf-1 suppression to apoptosis inhibition and, consequently to confer chemoresistance to 

HGSOC cells.  

 

Summary and future perspectives 

In summary, during my PhD study, I mainly focused on the analysis of circulating miRNAs in 

HGSOC patients, as potential diagnostic biomarkers. Particularly, we optimized a reliable protocol 

to extract miRNAs from serum samples and to generate miRNA profiles with microarray 

technology. Our results indicate that there are specific miRNAs significantly differentially expressed 

in HGSOC patients compared to controls. The application of a robust method of statistical 

normalization, based on the use of nine different exogenous spike-in oligos and the most invariant 

endogenous miRNAs, allowed us to identify specific HGSOC circulating miRNAs with potential 

impact as diagnostic biomarkers. In particular, miR-1246 emerged as the most consistently up-

regulated miRNA in the serum of HGSOC patients compared to healthy donors, as assessed by 

three independent technologies (microarray, RT-qPCR and ddPCR) and validated in two 

independent cohorts of patients. To the best of our knowledge, this is the first study demonstrating 

miR-1246 as a potential diagnostic serum biomarker in HGSOC. Prospective studies on larger 

cohort of serum samples are warranted to validate the performance of miR-1246 in HGSOC 

diagnosis. Future perspectives will include, firstly, the analysis of miR1246 in the serum of patients 

with benign serous cystoadenomas, in order to evaluate its diagnostic performance in 

discriminating malignant from benign disease. Secondly, we plan to assess miR-1246 as potential 
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biomarker in monitoring tumor response to treatment, taking advantage of longitudinal serum 

samples, collected during patient follow-up, already present in our biobank.  

In the second part of the study, I focused on the generation of a miRNA/mRNA/lncRNA signature 

characterizing HGSOC tissues, on a wide and well-characterized group of patients, partially 

matched with the serum sample cohort (n=76). As normal counterpart, we have collected sixteen 

controls from normal ovary (HOSE) and luminal fallopian tube surface epithelia, both representing 

the hypothesized origin of HGSOC, whose histogenesis is still a matter of debate. Our preliminary 

results contribute to the recent theory that fallopian tube could represent the most likely HGSOC 

precursor, showing a higher similarity in miRNA profile between HGSOC and luminal fallopian tube 

epithelium, compared to HOSE. 

High-throughput analysis on HGSOC tissues and normal controls generated a huge amount of 

data, still to be examined in detail. So far, by microarray analysis, most of the genes and miRNAs 

have emerged significantly differentially expressed between HGSOC and normal samples. 

The miRNA profile analysis will be integrated with gene and lncRNA expression profiles in order to 

increase the comprehension of the mechanisms involved in HGSOC histogenesis and to 

potentially identify novel predictive and prognostic biomarkers. 

In this regard, our preliminary analysis on miRNA expression profile in platinum-resistant vs 

platinum-sensitive patients revealed the involvement of miR1246 in the mechanism of drug 

response and prognosis. Indeed, its overexpression by microarray, further confirmed by RT-qPCR, 

emerged significantly associated with chemoresistance and worst prognosis in HGSOC patients. 

As a corollary of our main study, since there is a lack in the literature regarding reliable reference 

for relative quantification in miRNA expression studies, we experimentally identified SNORD48 as 

the best reference sncRNA between HGSOC and normal controls. In addition, miR-191-5p has 

emerged as best reference sncRNA among HGSOC tissues. 

Taken together, our results obtained both at the serum and tissue levels have highlighted the 

crucial role of miR-1246 in HGSOC development and chemoresistance. To further strengthen our 

hypothesis, we evaluated miR-1246 expression in an ovarian cancer stem cell-like (CSC) line, a 

model of in-vitro chemo-resistance, established in our laboratory under selective culture conditions. 

Interestingly, we have found a significantly miR-1246 overexpression in CSCs compared to 

parental adherent cell line by RT-qPCR (result not reported in the thesis). These preliminary results 

deserve further investigations, such as the evaluation of the functional role of miR-1246 in 

chemoresistance mechanisms, using in-vitro assays. 

Among miRNAs resulted differentially expressed by microarray analysis, a group of hypoxia-

regulated miRNAs (HRMs) emerged  significantly over-expressed in HGSOC samples compared to 

normal counterpart, suggesting an important implication of miRNAs in response to hypoxic 

condition. Specifically, we have hypothesized the involvement of miR-23a-3p in chemoresistance 

mechanism, through APAF-1 inactivation. Further in-vitro studies are necessary to confirm these 

preliminary results and to explore the numerous mechanisms in which these miRNAs could be 
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involved in drug response. In this context, we planned to firstly evaluate HRM expression in our 

chemoresistance CSC model and in several primary HGSOC cell lines established in our 

laboratory. Secondly, we are going to treat these cell lines with cobalt chloride (CoCl2) in order to 

mimic the hypoxic condition within the tumor, and then to investigate the functional role of HRMs. 

Finally, data emerged from RNA sequencing preliminary analysis revealed a prominent role of non-

coding transcripts in HGSOC platinum resistance mechanisms. Currently, we are validating a 

panel of ten transcripts, to confirm our method of analysis. These data will be integrated with gene 

and miRNA expression profiles previously obtained, with the aim to identify tumor circuits 

associated with response to treatment and prognosis, as well as to better elucidate the molecular 

mechanisms characterizing HGSOC progression and adaptation to hypoxic tumor 

microenvironment. Importantly, the identification of specific HGSOC pathways could lead to the 

individuation of novel molecular target for cancer therapy and for the personalization of treatment 

regimens. For instance, at present, the mutational status of genes involved in the homologous 

recombination (HR) DNA repair, as in particular BRCA1 and BRCA2, both at germline and somatic 

level, is a key determinant of platinum sensitivity in HGSOC patients, and provides a rational basis 

for the use of PARP inhibitors in first line treatment. In this context, we are currently performing 

targeted sequencing of a panel of selected genes involved in HR DNA repair on our cohort of 

HGSOC tissues, in order to better characterize their genomic profile and to correlate it to response 

to treatment and prognosis. 
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6. CONCLUSIONS 

In conclusion, miR-1246 emerged as the most consistently up-regulated miRNA in the serum of 

HGSOC patients compared to healthy donors, as assessed by three independent technologies 

(microarray, RT-qPCR and ddPCR) and validated in two independent cohorts of patients. To the 

best of our knowledge, this is the first report demonstrating miR-1246 as a potential diagnostic 

serum biomarker in HGSOC.  

At tissue level, most of the genes and miRNAs have emerged significantly differentially expressed 

between HGSOC and normal samples, by microarray analysis. Interestingly, luminal fallopian tube 

miRNA expression profile showed a higher similarity to HGSOC miRNA profile, compared to 

HOSE. This result strengthens the recent novel theory that fallopian tube could represent the most 

likely HGSOC precursor. Moreover, our results indicate, for the first time, that miR-1246 over-

expression correlates with a platinum-resistant HGSOC phenotype and may constitute a novel 

independent prognostic factor for HGSOC patients. 

Regarding hypoxia-regulated miRNAs, our findings suggest an important role of miRNAs in 

response to hypoxic conditions within HGSOC masses. In particular, miR-23a-3p over-expression 

in chemoresistance patients may contribute to explain the importance of hypoxia in HGSOC 

mechanism of drug resistance and could represent a novel independent prognostic factor for this 

neoplasm. 

Finally, preliminary analysis of RNA sequencing showed a prominent expression of non-coding 

transcripts in HGSOC platinum resistance mechanisms. These data will be integrated with gene 

and miRNA expression profiles previously obtained, with the aim to identify tumor circuits 

associated with response to treatment and prognosis, as well as to better elucidate the molecular 

mechanisms characterizing HGSOC progression and adaptation to hypoxic tumor 

microenvironment. 

Taken together, these observations strongly support the crucial role that non-coding RNAs play in 

HGSOC development and drug response. In this context, the identification of specific HGSOC 

networks of gene regulation could lead to the individuation of novel molecular targets for cancer 

therapy and to the personalization of treatment regimens.  
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8. SUPPLEMENTARY MATERIALS 

8.1 Serum Microarray Data Analysis: filtering and normalizations 
Serum raw microarray data comprised 1361 miRNAs (included controls and spikes) repeated 40 

times. The expression of these 40 replicates per miRNA have been used as technical replicates 

and quality control. A first filter has been applied to select those miRNAs with reliable expression 

values within arrays. Specifically, within each experiment we selected only miRNAs with at least of 

20% good quality measures among the 40 replicates (using gisPosandSig Agilent flag), otherwise 

they were considered NA (not available). Then, a second filter was applied among arrays. 

Specifically, we selected only miRNAs with at least 75% of good quality measures (not NA) across 

samples. After these filtering steps, we remain with 648 miRNAs (including the 10 spikes). Then 

the miRNA replicates within samples were summarised using the median. The small amount of 

missing values still present after the filtering step was imputed with k-nearest neighbourhood 

method. The distributions of the raw expression values are reported in the first panel of 

Supplementary Figure S1. 

As expected, spikes raw measurements are characterised by high expression and large variability. 

In principle, after normalization we would expect i) that spikes distribution were stable on high 

expression levels across samples and with low variability and ii) that the boxplot of expression 

values of the experiments should be centered in mean. To identify the best normalization 

technique we performed a comparative evaluation using different algorithms: quantile [Bolstad BM 

et al. 2003], variance stabilising normalization (vsn) [Geller SC et al. 2003] and classic cyclic loess 

[Bolstad BM et al. 2003] and custom cyclic lowess in which spike-in controls are used as stabilising 

factors. Specifically, we applied two types of modified loess: i) the first in which the local regression 

parameters are estimated using only spikes genes (CLWs); ii) the second in which the local 

regression parameters are estimated using both spikes and a set of 20 selected invariant low 

expressed genes (CLWsin). Invariant low expressed miRNAs have been selected as miRNAs with 

expression values less than 3 (in log scale) and with the smallest difference in mean between 

cases and controls. Normalised expression distributions with different normalization methods are 

reported in Supplementary Figure S1.  

miRNA serum expression distributions are characterised by a very skew distribution towards small 

values (that is, a distribution with a large number of very small expression values and few number 

of highly expressed values). Thus, the use of only spikes (characterised by large expression 

values) as normalizing factors leads to a bias transformation of the data towards large expression 

values. This bias is evidenced in Supplementary Figure S1 were the lowess normalization using 

only spikes leads to highly heterogeneous boxplots. However, in this context, an appropriate set of 

normalising factors should contain both high and low expressed invariant features. For this reason, 

as well as spikes, we included, in the set of normalizing factors, 20 invariant low expressed 

miRNAs (different number of invariant miRNAs have been used from 10 to 30 but with small 
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differences in performance, data not shown). As shown in Supplementary Figure S1, the 

application of this last strategy leads to the best compromise between stable distribution of spikes 

expression values across samples and centered arrays boxplot. 

Another basic plot to verify the goodness of a normalization is the Relative Log Expression (RLE) 

plot. The RLE plot shows the distribution of the ratio between the expression of a miRNA and the 

median expression of this miRNA across all arrays of the experiment. It is assumed that most 

miRNAs are not changed across the arrays, so it is expected that these ratios are around 0 on a 

log scale. The boxplots presenting the distributions should then be centered near 0 and have 

similar spread. Other behaviour would be a sign of low quality. The RLE plots obtained after each 

normalization were reported in Supplementary Figure S2. As expected by construction classic 

loess, quantile and vsn have more homogeneous RLEs, but a wrong distribution of spikes. 

However, lowess with weight on spikes and low invariant genes has the best compromise between 

a stable distribution of spike expression and homogeneous distribution of RLE plots. Then we 

decide to use this approach as the best in our case.  
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Supplementary Figure S1: Distribution of the raw and normalised expression values with 

highlighted spike-in data. The type of normalization is reported on the right gray bar of each 

panel. 
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Supplementary Figure S2: RLE plots of expression data after normalization. The type of 

normalization is reported on the right gray bar. 
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Supplementary Table S1: List of 97 circulating miRNAs emerged significantly differentially 

expressed between HGSOC patients vs healthy donors by microarray technology (those in bold 

were selected for validation).  

rank microRNA adjust ρ-value 
Mean log2 expression 

log Fold Change 
Control Case 

1 hsa-miR-483-3p 0,0000 3,42 4,45 1,04 

2 hsv2-miR-H6-3p 0,0000 2,50 3,02 0,52 

3 hsa-miR-1290 0,0000 3,60 4,60 1,01 

4 hsa-miR-1224-3p 0,0000 2,61 3,15 0,54 

5 hsa-miR-4290 0,0000 3,10 4,06 0,96 

6 hsa-miR-328 0,0002 3,15 3,76 0,60 

7 hsv1-miR-H1-3p 0,0002 2,71 3,27 0,57 

8 hsa-miR-129-2-3p 0,0002 2,66 3,13 0,47 

9 hsv1-miR-H6-3p 0,0002 3,03 3,92 0,89 

10 hsa-miR-485-3p 0,0003 2,69 3,24 0,55 

11 hsa-miR-4284 0,0004 3,37 4,05 0,67 

12 hsa-miR-595 0,0004 3,54 5,03 1,49 

13 hsa-miR-664a-3p 0,0004 2,57 2,92 0,35 

14 ebv-miR-BART16 0,0004 3,43 4,97 1,54 

15 hsa-miR-2278 0,0005 3,19 4,41 1,22 

16 hcmv-miR-US4 0,0007 3,64 3,11 -0,54 

17 hsa-let-7b-3p 0,0007 2,95 3,69 0,74 

18 hsa-miR-32-3p 0,0008 3,73 5,19 1,46 

19 hsa-miR-3147 0,0008 3,90 3,17 -0,72 

20 hsa-miR-365a-3p 0,0008 3,10 3,69 0,59 

21 hsa-miR-129-1-3p 0,0008 2,65 3,06 0,41 

22 hsv2-miR-H9-3p 0,0008 2,76 3,31 0,55 

23 hsa-miR-4323 0,0008 2,73 3,28 0,55 

24 hsa-miR-3148 0,0008 3,23 4,57 1,34 

25 hsa-miR-615-3p 0,0008 2,50 2,84 0,35 

26 hsa-miR-766-3p 0,0008 3,49 4,07 0,57 

27 hsa-miR-3675-3p 0,0008 2,60 3,10 0,49 

28 hsa-miR-3149 0,0011 3,69 5,14 1,45 

29 hsa-let-7f-1-3p 0,0011 3,18 3,87 0,69 

30 hsa-miR-92b-3p 0,0016 2,49 2,93 0,44 

31 hsa-miR-1825 0,0016 4,18 5,02 0,84 
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32 hsa-miR-211-5p 0,0021 2,67 2,94 0,28 

33 hsa-miR-3613-3p 0,0026 2,59 3,11 0,52 

34 hsa-miR-1180 0,0026 2,75 3,80 1,05 

35 ebv-miR-BART12 0,0026 3,67 4,94 1,27 

36 hsa-miR-1228-5p 0,0032 2,84 3,89 1,05 

37 hsa-miR-4312 0,0039 2,74 3,20 0,46 

38 hsa-miR-634 0,0046 2,68 3,03 0,35 

39 hsa-miR-127-3p 0,0046 2,75 3,38 0,63 

40 hsa-miR-877-3p 0,0046 3,46 4,21 0,75 

41 
hsa-miR-3647-

3p_v17.0 
0,0057 2,75 3,42 0,67 

42 hsa-miR-2277-3p 0,0059 3,11 3,52 0,41 

43 hsa-miR-576-5p 0,0061 2,68 2,90 0,21 

44 hsa-let-7f-2-3p 0,0063 2,57 2,74 0,18 

45 hsa-miR-539-5p 0,0064 2,75 3,44 0,69 

46 hsa-miR-670 0,0065 3,00 4,06 1,06 

47 hsa-miR-609 0,0067 2,58 2,83 0,26 

48 hsa-miR-3676-3p 0,0073 2,82 3,47 0,65 

49 hsa-miR-449c-3p 0,0073 2,53 2,93 0,40 

50 hsa-miR-1246 0,0077 6,24 7,18 0,94 

51 hsa-miR-3180-5p 0,0087 2,59 3,03 0,44 

52 hsa-miR-3679-3p 0,0087 2,90 3,22 0,32 

53 hsa-miR-1539 0,0109 2,82 3,48 0,66 

54 ebv-miR-BART4-5p 0,0111 2,75 3,40 0,66 

55 hsa-miR-2116-3p 0,0117 2,79 3,41 0,62 

56 hsa-miR-613 0,0125 2,41 2,69 0,27 

57 hsa-miR-299-5p 0,0132 2,51 2,77 0,27 

58 hsa-miR-505-3p 0,0135 2,54 2,73 0,19 

59 hsa-miR-337-3p 0,0146 2,71 2,97 0,26 

60 hsa-miR-656 0,0146 2,48 2,71 0,22 

61 hsa-miR-933 0,0146 3,01 3,47 0,47 

62 hsa-miR-18b-3p 0,0150 2,60 2,97 0,38 

63 hsa-miR-4313 0,0151 3,32 4,07 0,75 

64 hsa-miR-574-5p 0,0154 5,83 7,27 1,44 

65 hsa-miR-1237-3p 0,0156 2,75 3,22 0,47 

66 hsa-miR-4310 0,0164 2,85 3,52 0,66 
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67 hsa-miR-23c 0,0164 2,90 3,48 0,59 

68 
ebv-miR-BART10-

3p 
0,0169 2,60 3,27 0,67 

69 hsa-miR-1306-3p 0,0172 2,81 3,60 0,79 

70 hsa-miR-329 0,0176 2,52 2,76 0,24 

71 hsa-miR-425-3p 0,0191 2,96 3,58 0,62 

72 hsv1-miR-H7-3p 0,0191 3,45 3,97 0,51 

73 hsa-miR-4281 0,0218 10,50 11,37 0,87 

74 hsa-miR-181a-5p 0,0218 3,58 3,14 -0,44 

75 hsa-miR-133a 0,0218 2,50 2,76 0,26 

76 
kshv-miR-K12-12-

5p 
0,0218 2,59 2,97 0,39 

77 ebv-miR-BART3-5p 0,0218 2,68 3,23 0,55 

78 
ebv-miR-BART10-

5p 
0,0218 2,57 2,77 0,19 

79 hsa-miR-3907 0,0223 2,76 3,35 0,59 

80 hsa-miR-631 0,0240 2,48 2,72 0,23 

81 hsa-miR-937-3p 0,0247 2,50 2,80 0,30 

82 hsa-miR-320a 0,0247 5,19 4,46 -0,73 

83 hsa-miR-133b 0,0247 2,56 2,77 0,21 

84 hsa-miR-885-5p 0,0271 2,73 3,08 0,35 

85 hsa-miR-106b-5p 0,0271 5,45 4,79 -0,66 

86 kshv-miR-K12-8-5p 0,0299 2,62 2,94 0,32 

87 hsa-miR-1281 0,0323 4,99 5,69 0,70 

88 hsa-miR-297 0,0365 2,56 3,03 0,47 

89 hsa-miR-195-3p 0,0407 2,75 3,50 0,75 

90 hsa-miR-602 0,0414 2,71 3,15 0,44 

91 hsa-miR-454-5p 0,0429 2,66 2,96 0,30 

92 
ebv-miR-BART17-

3p 
0,0469 2,44 2,71 0,26 

93 dmr_31a 0,0476 10,04 10,53 0,49 

94 hsa-miR-191-3p 0,0476 3,36 3,93 0,57 

95 hsa-miR-1972 0,0476 2,67 3,06 0,39 

96 hsa-miR-3650 0,0476 2,52 2,98 0,47 

97 hsa-miR-206 0,0476 2,71 3,55 0,84 
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8.2 miR-15b normalization strategy 
To further validate our data, we identified miR-15b as a putative reference miRNA, resulting to be 

the most invariant in our cohort of samples (Supplementary Figure S3), as well as in others 

reported in the literature [Bianchi F et al. 2011]. Using delta-Ct method and miR-15b as reference, 

we normalized the expression levels of candidate miRNAs across all HGSOC samples and healthy 

controls. As shown in Supplementary Table S2, miR-1246 and miR-595 were also successfully 

validated by this further normalization approach, either in training set or in validation cohort of 

samples. miR-4294 maintained its opposite trend. On the contrary, miR-2278 confirmed its 

differential expression level between HGSOC and controls in the training set (p<0.0001), while not 

in the validation set (p=0.461). Therefore, it was excluded from further validations. 

 

 

Supplementary Figure S3: Boxplot of the miR-15b Ct values for both training and validation sets.  
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Supplementary Table S2:  Expression levels of nine selected miRNA, normalized according to 

miR-15b, evaluated by RT-qPCR in the sera of two independent cohorts of HGSOC and healthy 

donors 

RT-qPCR 
Training set  Validation set  

Control Case Control Case 

miR-1246 

median (ΔCT) 
[IQR] 

0.963 
[0.089] 

0.859 
[0.075] 

 

0.959 
[0.031] 

 

0.907 
[0.058] 

 

mean (ΔCT) 
[sd] 

0.957 
[0.057] 

 

0.868 
[0.066] 

 

0.953 
[0.042] 

 

0.910 
[0.047] 

 

p-value (2-ΔCT) 0.0000 0.0041 

miR-574-5p 

median (ΔCT) 
[IQR] 

1.014 

[0.092] 
 

1.038 

[0.101] 
 

1.072 

[0.045] 
 

1.039 

[0.061] 
 

mean (ΔCT) 
[sd] 

1.022 
[0.064] 

 

1.038 
[0.074] 

 

1.081 
[0.045] 

 

1.039 
[0.054] 

 

p-value (2-ΔCT) 0.1768 0.0068 

miR-483-3p 

median (ΔCT) 
[IQR] 

1.207 

[0.094] 
 

1.222 

[0.112] 
 

1.128 

[0.049] 
 

1.129 

[0.062] 
 

mean (ΔCT) 
[sd] 

1.200 
[0.074] 

 

1.214 
[0.083] 

 

1.124 
[0.051] 

 

1.133 
[0.052] 

 

p-value (2-ΔCT) 0.3256 0.5754 

miR-4290 

median (ΔCT) 
[IQR] 

1.208 

[0.094] 
 

1.186 

[0.108] 
 

1.059 

[0.027] 
 

1.083 

[0.072] 
 

mean (ΔCT) 
[sd] 

1.221 

[0.080] 
 

1.191 

[0.081] 
 

1.055 

[0.042] 
 

1.093 

[0.058] 
 

p-value (2-ΔCT) 0.0270 0.0132 

miR-595 

median (ΔCT) 
[IQR] 

1.267 
[0.118] 

 

1.220 
[0.135] 

 

1.193 
[0.057] 

 

1.148 
[0.094] 

 

mean (ΔCT) 
[sd] 

1.265 

[0.084] 
 

1.227 

[0.107] 
 

1.197 

[0.057] 
 

1.155 

[0.073] 
 

p-value (2-ΔCT) 0.0098 0.0268 
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miR-2278 

median (ΔCT) 
 
 

[IQR] 

1.342 

[0.146] 
 

1 257 

[0.100] 
 

1.170 

[0.043] 
 

1.180 

[0.059] 
 

mean (ΔCT) 
[sd] 

1.354 

[0.114] 
 

1.260 

[0.091] 
 

1.167 

[0.034] 
 

1.176 

[0.047] 
 

p-value (2-ΔCT) 0.0000 0.4605 

miR-32-3p 

median (ΔCT) 
[IQR] 

1.333 
[0.100] 

 

1.357 
[0.100] 

 

1.337 
[0.076] 

 

1.293 
[0.112] 

 

mean (ΔCT) 
[sd] 

1.336 
[0.082] 

 

1.370 
[0.086] 

 

1.360 
[0.112] 

 

1.307 
[0.079] 

 

p-value (2-ΔCT) - - 

miR-4281 

median (ΔCT) 
[IQR] 

1.436 
[0.116] 

 

1.362 
[0.099] 

 

1.328 
[0.102] 

 

1.307 
[0.088] 

 

mean (ΔCT) 
[sd] 

1.433 

[0.094] 
 

1.368 

[0.085] 
 

1.336 

[0.066] 
 

1.319 

[0.072] 
 

p-value (2-ΔCT) - - 

miR-3148 

median (ΔCT) 
[IQR] 

1.443 
[0.174] 

 

1.391 
[0.149] 

 

1.335 
[0.104] 

 

1.343 
[0.081] 

 

mean (ΔCT) 
[sd] 

1.460 

[0.109] 
 

1.382 

[0.117] 
 

1.318 

[0.082] 
 

1.348 

[0.074] 
 

p-value (2-ΔCT) - - 
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