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Abstract. In this thesis, we deal with problems related to nonlocal operators, in particular to the

fractional Laplacian and to some other types of fractional derivatives (the Caputo and the Marchaud
derivatives). We make an extensive introduction to the fractional Laplacian, we present some related

contemporary research results and we add some original material. Indeed, we study the potential

theory of this operator, introduce a new proof of Schauder estimates using the potential theory
approach, we study a fractional elliptic problem in Rn with convex nonlinearities and critical growth

and we present a stickiness property of nonlocal minimal surfaces for small values of the fractional

parameter. Also, we point out that the (nonlocal) character of the fractional Laplacian gives rise to
some surprising nonlocal effects. We prove that other fractional operators have a similar behavior:

in particular, Caputo-stationary functions are dense in the space of smooth functions; moreover, we

introduce an extension operator for Marchaud-stationary functions.
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Introduction

The interest in nonlocal operators has increased in the last decades given their numerous applica-
tions in many branches of physics, engineering, biology and so on. Just to name a few, several models
involving nonlocal operators are being used to describe anomalous diffusion processes, viscoelasticity,
signal processing, geomorphology, materials sciences, fractals, and many others.

Nonlocal operators have the peculiarity of capturing long-range interactions, i.e. events that
happen far away, may that be in time or in space. In our setting, we study some aspects of nonlocal
behavior, introduced by the following integral operators: the fractional Laplacian, the Caputo and
the Marchaud fractional derivatives.

Fractional calculus is a classical argument, studied since the end of the seventeenth century by
many great mathematicians (see [115] for an interesting time-line history). Fractional operators
generalize classical (integer) ones, in the sense that if the order of the fractional operator is given
by the parameter s P p0, 1q, then letting s Ñ 0� one obtains the identity, and letting s Ñ 1�, one
gets the classical (integer order) operator. In the literature, there are several definitions of fractional
operators, like the Riemann-Liouville, the Caputo, the Riesz, the Marchaud fractional derivative,
or the generalization given by the Erdélyi-Kober operator (see [100, 115, 127] for more details on
fractional integrals, derivatives and applications).

The fractional Laplacian well describes nonlocal diffusion phenomena. For instance, we can use it
to describe what happens to a sheet of metal (that has a crystalline configuration), since the behavior
at a given point (for instance, its deformation when an external force is applied) depends on a large
scale on the whole object. On the other hand, if we think of a function depending on time, the Caputo
and the Marchaud derivatives exhibit a “memory effect”, that is they “see past events”, providing a
model in which the state of a system at a given time depends on the past. They describe, hence, a
causal system, also called a non-anticipative system.
We dedicate most of the thesis to the fractional Laplacian. Moreover, we introduce along the way
the two other fractional derivatives (Caputo and Marchaud) and show that their nonlocal character
induces some properties similar to those of the fractional Laplacian.

Starting from the basics of the nonlocal equations and in particular of the fractional Laplace
operator, in this thesis we will discuss in detail some recent developments in some very interesting
topics of research, presenting:


 a problem arising in crystal dislocation (which is related to a classical model introduced by
Peierls and Nabarro),


 a problem arising in phase transitions (which is related to a nonlocal version of the classical
Allen–Cahn equation),


 a nonlocal version of the Schrödinger equation for standing waves (as introduced by Laskin),
and


 the limit interfaces arising in the above nonlocal phase transitions (which turn out to be
nonlocal minimal surfaces, as introduced by Caffarelli, Roquejoffre and Savin).

In particular, we focus our attention on the following original contributions:


 a Schauder estimate for the fractional Laplacian using the potential theory approach,

 a fractional equation in Rn in the convex, critical case,
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 a stickiness phenomenon of nonlocal minimal surfaces, when the fractional parameter is
small.

Moreover, we prove some original results related to the Caputo derivative (see [33]) and the
Marchaud derivative (see [111]). In particular, we state a density property that the Caputo derivative
shares with the fractional Laplacian. Indeed, Caputo-stationary functions are locally dense in the space
of smooth functions (just like s-harmonic functions are).

Furthermore, we introduce the extension operator of the Marchaud derivative. The extension is
a local operator defined in one dimension more, whose trace is the original nonlocal operator itself.
In this way, the nonlocal behavior of the Marchaud derivative can be seen as the effect of local events
that occur in a space with an extra dimension (similarly to the extension operator for the fractional
Laplacian, check [28]). The advantage of working with the extension is that one can overcome the
difficulty induced by the nonlocality, and use tools that are somehow classical. In our case, we prove a
Harnack inequality for Marchaud-stationary functions using the Harnack inequality in the local case.

Overview of the thesis and original results

This thesis gathers some recent research on the fractional Laplacian. Starting from the basics
of the theory for this operator, we will collect examples, recent results and observations, and enrich
the material with some original contributions. Also, we will see that some nonlocal effects registered
by the fractional Laplacian find correspondence for other fractional operators. In this sense, we will
introduce and work with two types of fractional derivative (the Caputo and the Marchaud definitions).
Furthermore, we will present some known recent results on nonlocal minimal surfaces, and discuss in
detail some new results on the behavior of nonlocal minimal surfaces for a small value of the fractional
parameter.

This thesis is organized in seven chapters, each of which focuses on a particular research theme.
We consequently present the content of each chapter.

To start with, in the first chapter, we will give a motivation for the fractional Laplacian, that
originates from probabilistic considerations. For s P p0, 1q and for regular enough functions the
fractional Laplacian is defined as

p�∆qsupxq � Cpn, sq
2

»
Rn

upxq � upx� yq � upx� yq
|y|n�2s

dy, (0.1)

where Cpn, sq is a positive constant. We present here two probabilistic models in which this operator
naturally arises: a random walk that allows long jumps and a payoff model. Indeed, we show that the
fractional heat equation, i.e.

Btu� p�∆qsu � 0,

naturally arises from a probabilistic process in which a particle moves randomly in the space, subject
to a probability that allows long jumps. Using the same probabilistic process and supposing that
exiting the domain for the first time by jumping to an outside point means earning a certain (known)
quantity of money, the payoff function will be s-harmonic in the domain, that is, inside the domain it
will satisfy p�∆qsu � 0.
As a matter of fact, no advanced knowledge of probability theory is assumed from the reader, and the
topic is dealt with at an elementary level.

In Chapter 2, we will recall some basic properties of the fractional Laplacian, discuss some explicit
examples in detail and point out some structural inequalities, that are due to a comparison principle.
At first, we introduce some equivalent representations for the fractional Laplacian, as a principal value
integral (in the sense of Cauchy),

p�∆qsupxq � Cpn, sqP.V.
»
Rn

upxq � upyq
|x� y|n�s dy
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and as a pseudo-differential operator

p�∆qsupxq � F�1
�|ξ|2spupξq� .

We also explicitly compute the constant Cpn, sq that was introduced in definition (0.1).
Fractional Sobolev spaces enjoy quite a number of important functional inequalities. We present here
two important results and give some simple and nice proofs, namely the fractional Sobolev inequality
and the generalized co-area formula.
Moreover, we present an explicit example of an s-harmonic function on the positive half-line, that is,
we prove that

p�∆qspx�qs � 0 on R�,

and an example of a function with constant Laplacian on the ball, that is, we prove that up to
constants

p�∆qsp1� |x|2qs� � 1 in B1.

We also discuss some maximum principles and a Harnack inequality, and present a quite surprising re-
sult, which states that every smooth function can be locally approximated by functions with vanishing
fractional Laplacian (in sharp contrast with the rigidity of the classical harmonic functions).

In analogy to this result on the Laplacian, as an original contribution, we prove that Caputo-
stationary functions are dense in the space of smooth functions. Indeed, the nonlocal character of
the Caputo derivative gives rise to this peculiar behavior: on a bounded interval, say r0, 1s, one can
find a Caputo-stationary function “close enough” to any smooth function, without any geometrical
constraints. This again is surprising, since classical derivatives are rigid in tis sense (for instance, the
functions with null first derivative are constant functions and the functions with null second derivatives
are affine functions).
We notice that this behavior seems to be a typical nonlocal feature, and is shared by solutions of
other nonlocal equations (see for this [66], where the same type of result is proved for solutions of the
fractional heat equation).
In particular, we introduce the Caputo derivative of a (good enough) function u to be

Ds
aupxq � cs

» x
a

u1ptqpx� tq�s dt,

where cs is a positive constant, and prove the following result.

Theorem. Let k P N0 and s P p0, 1q be two arbitrary parameters. Then for any f P Ck�r0, 1s�
and any ε ¡ 0 there exists an initial point a   0 and a function u P C1,s

a such that

Ds
aupxq � 0 in r0,8q

and

}u� f}Ckpr0,1sq   ε.

To prove this theorem, we follow the steps of [62]. The main difficulties are given by the structure of
the Caputo derivative and the lack of symmetry of the exterior conditions. In order to get the result,
we do the following: we reduce the problem to finding a Caputo stationary function close to any
monomial, and this comes to finding a Caputo stationary function with an arbitrarily large number
of derivatives prescribed. By providing the “right” prescribed (exterior) data, we build a sequence
of Caputo-stationary functions that tends uniformly to the function xs�. This allows us to obtain a
Caputo-stationary function with an arbitrarily large number of derivatives prescribed and to conclude
the proof.

In Chapter 3, we introduce the potential theory related to the fractional Laplacian. We underline
here that the fractional Laplacian is closely related to the Riesz kernel, that in our context is the
fundamental solution of the fractional Laplacian. As a matter of fact

p�∆qsΦ � δ0,
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where Φ is the Riesz kernel and δ0 is the Dirac Delta at zero. The convolution operation with this
singular integral kernel (which is also called, in fractional calculus, the Riesz fractional integral) is the
inverse operator (in a distributional sense) of the fractional Laplacian. Indeed, for u P C0,ε

c pRnq we
have that

p�∆qspu � Φqpxq � upxq in Rn,
both pointwise and in a distributional sense. We introduce also the Poisson kernel, that gives an
s-harmonic function inside the ball when the exterior data is known, by convolution with the known
term, that is

p�∆qs
�»

RnzB1

P1py, xqupyq


� 0 in B1,

where u is fixed outside of B1 (and is continuous and integrable at infinity with respect to the weight).
Here, P1py, xq is the Poisson kernel (outside of the ball of radius 1).
When a function is zero outside the ball, the Green function gives the solution of the identity problem
inside the ball, more precisely in B1 we have that

p�∆qs
�»

B1

upyqGpx, yq dy


� upxq,

for u P C0,ε
c pB1q X CpB1q and u � 0 in RnzB1. We also prove a formula for the Green function, that

is more suitable for applications. The main results in this section are inspired from [19, 101, 102],
but the proofs we give are elementary and easy to follow.

Furthermore, using the potential theory, we give an original proof of the Schauder estimates
for a fractional Laplacian equation, using a dyadic ball argument. In particular, we take f to be a
Hölder continuous function in B1 and u solving p�∆qsu � f in B1. Then we prove that on the half
ball, u has the regularity of f increased by 2s. More precisely

Theorem. Let s P p0, 1q, α   1 and f P C0,αpB1q X CpB1q be a given function with modulus of
continuity

ωprq :� sup
|x�y| r

|fpxq � fpyq|.

Let u P L8pRnq X C1pB1q be a pointwise solution of

p�∆qsu � f in B1.

Then for any x, y P B1{2 and denoting δ :� |x� y| we have for s ¤ 1{2 that

|upxq � upyq| ¤ Cn,s

�
δ}u}L8pRnzB1q � δ sup

B1

|f | �
» cδ

0

ωptqt2s�1 dt� δ

» 1

δ

ωptqt2s�2 dt



,

and for s ¡ 1{2 that

|Dupxq �Dupyq| ¤ Cn,s

�
δ}u}L8pRnzB1q � δ sup

B1

|f | �
» cδ

0

ωptqt2s�2 dt� δ

» 1

δ

ωptqt2s�3 dt



,

where Cn,s and c are positive dimensional constants.

In particular, we have for s ¤ 1{2 that u P C0,2s�αpB1{2q as long as α   1�2s and that u is Lipschitz

if α ¡ 1� 2s. For s ¡ 1{2 we have that u P C1,α�2s�1pB1{2q if α ¤ 2� 2s, while for 2� 2s ¤ α   1
the derivative Du is Lipschitz in B1{2.
In order to prove these bounds, we rely on the very nice method used in [149] for the classical
Laplacian, which is based only on the higher order derivative estimates and a dyadic ball argument.

In Chapter 4 we deal with extended problems. It is a quite remarkable fact that in some occasions
nonlocal operators can be equivalently represented as local (though possibly degenerate or singular)
operators in one dimension more. Moreover, as a counterpart, several models arising in a local
framework give rise to nonlocal equations, due to boundary effects. So, to introduce the extension
problem and give a concrete intuition of it, we will present some models in physics that are naturally
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set on an extended space to start with, and we will show their relation with the fractional Laplacian
on a trace space. We will also give a detailed justification of this extension procedure by means of the
Fourier transform.
As a special example of problems arising in physics that produce a nonlocal equation, we consider
a problem related to crystal dislocation, present some mathematical results that have been recently
obtained on this topic, and discuss the relation between these results and the observable phenomena.

We end this chapter by introducing the Marchaud fractional derivative and, as an original
contribution, the extension operator related to it. The Marchaud (left) fractional derivative is
defined (up to constants) for a bounded, locally Hölder continuous function in R, as

Dsfptq :�
» 8

0

fptq � fpt� τq
τs�1

dτ.

This derivative naturally arises when dealing with a family of singular/degenerate parabolic problems
(which, for s � 1{2, reduces to the heat conduction problem) on the positive half-plane, with a positive
space variable and for all times, namely for px, tq P r0,8q � R.
Considering the function ϕ of one variable, formally representing the time variable, our approach relies
on constructing a parabolic local operator by adding an extra variable, say the space variable, on the
positive half-line, and working on the extended plane r0,8q � R. Namely, we prove that

Theorem. Let s P p0, 1q and γ̄ P ps, 1s be fixed. Let ϕ P C γ̄pRq be a bounded function and let
U : r0,8q � RÑ R be a solution of the problem$'''&'''%

BU
Bt px, tq �

1� 2s

x

BU
Bx px, tq �

B2U

Bx2
px, tq, px, tq P p0,8q � R

Up0, tq � ϕptq, t P R
lim

xÑ�8Upx, tq � 0, t P R.

(0.2)

Then U defines the extension operator for ϕ, such that

Dsϕptq � � lim
xÑ0�

csx
�2spUpx, tq � ϕptqq,

where cs is a positive constant.

An interesting application that follows from this extension procedure is a Harnack inequality for
Marchaud-stationary functions in an interval J � R (namely for functions that satisfy Dsϕ � 0 in J).

Theorem. Let s P p0, 1q. There exists a positive constant γ such that, if Dsϕ � 0 in an interval
J � R and ϕ ¥ 0 in R, then

sup
rt0� 3

4 δ,t0� 1
4 δs
ϕ ¤ γ inf

rt0� 3
4 δ,t0�δs

ϕ

for every t0 P R and for every δ ¡ 0 such that rt0 � δ, t0 � δs � J .

This result is obtained from the Harnack inequality for some degenerate parabolic operators by “look-
ing at it” on the trace. Indeed, using the extension operator, it is quite easy to obtain this type of
result.

In Chapter 5, we look at some nonlocal equations related to the fractional Laplacian. We first
discuss a stationary Schrödinger type equation arising in quantum mechanics, given by#

ε2sp�∆qsu� u � up in Ω � Rn

u � 0 in RnzΩ,
in the subcritical case p P p1, 2�s � 1q, where for n ¡ 2s, 2�s :� 2n

n�2s is the critical fractional Sobolev
exponent. We give a sketch of the proof of the existence of a solution that concentrates at interior
points of the domain for sufficiently small values of ε. This concentration phenomena is written
in terms of the ground state solution w (i.e. w solves p�∆qsw � w � wp in Rn). Namely, the first
approximation for the solution is exactly the ground state w, scaled and concentrated at an appropriate
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point of the domain. Moreover, we discuss a connection between the uncertainty principle and a
fractional weighted inequality.

In the last section of this chapter, we prove as an original result, the existence of a positive
solution of the nonlinear and nonlocal elliptic equation in Rn

p�∆qsu � εhuq � u2�s�1 (0.3)

in the convex case 1 ¤ q   2�s � 1, where ε is a small parameter and h is a given bounded, integrable
function. The problem has a variational structure and we prove the existence of a solution by using
the classical Mountain-Pass Theorem. We work here with the harmonic extension of the fractional
Laplacian, which allows us to deal with a weighted degenerate local operator, rather than with a
nonlocal energy. In order to overcome the loss of compactness induced by the critical power we use a
Concentration-Compactness principle. The main result of this section goes as follows.

Theorem. Let ε ¡ 0 be a small parameter, let q P r1, 2�s � 1q and h be such that

h P L1pRnq X L8pRnq and

there exists a ball B � Rn such that inf
B
h ¡ 0.

If n P p2s, 6sq, suppose in addition h ¥ 0.

Then problem (0.3) admits a positive (mountain-pass) solution, provided that n ¡ 2spq�3q
q�1 .

Notice that in our problem the two nonlinearities are convex, and the geometry of the functional
suggests the existence of one solution. In order to prove the existence of a solution we use, roughly
speaking, the following strategy:
(i) we consider the energy functional associated to (0.3) and we prove that it satisfies some compactness
condition (Palais-Smale condition) below a certain energy level,
(ii) we build a sequence of functions with an appropriate geometry (of Mountain Pass type) whose
energy lies below the critical level found in (i), and
(iii) we apply the Mountain Pass Lemma to pass to the limit, getting a solution.
The proof follows the strategy of [60] for the concave-convex (fractional) case, and is based on two
fundamental points: to identify the energy level, and to find the appropriate sequence. We point out
that, in the concave-convex (fractional) problem, the geometry derived from the concave term (the
functional has a minimum of negative energy) helps to prove that the sequence stays below the critical
level. However, here both nonlinearities are convex, and the proof gets more involved.
Thus, the study of (0.3) will first require a finer analysis of the compactness properties of the functional.
More precisely, we will have to improve the estimates of the functional in order to get a slightly higher
critical level. Accordingly, once we have found this new critical level, we perform a more careful
analysis of the energy of the sequence given by the minimizers. We will finally conclude by applying
the Mountain Pass Lemma in the standard way.

Chapter 6 and 7 present topics of contemporary research related to the fractional Laplacian. We
will discuss in particular: some phase transition equations of nonlocal type and their limit interfaces,
which (below a critical threshold of the fractional parameter) are surfaces that minimize a nonlocal
perimeter functional. We will present a De Giorgi conjecture in the fractional setting, which wonders
whether entire, smooth, monotone (in one direction), bounded solutions of the (fractional) Allen-Cahn
equation are one-dimensional. This indeed is the case in the classical framework in dimension at most
3 (and up to 8, with an additional, quite natural assumption, see [128,129]). The dimension 8 seems
to be suggested also by a link with a problem of Bernstein. This problem asks if all minimal graphs
(i.e. surfaces that locally minimize the perimeter and that are graphs in a given direction) in Rn must
be necessarily affine. The link between this Bernstein problem and the conjecture of De Giorgi could
be implied by the fact that minimizers approach minimal surfaces in the limit but of course, much
work is needed to deeply understand the connections between the two problems.
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In Chapter 6 we consider a nonlocal phase transition model, in particular described by the Allen-
Cahn equation

p�∆qsu � u� u3

in a bounded domain Ω � Rn. The Allen-Cahn equation in a nonlocal setting has theoretical interest
and concrete applications. Indeed, the study of long range interactions naturally leads to the analysis
of phase transitions and interfaces of nonlocal type. A fractional analogue of a conjecture of De Giorgi,
that deals with possible one-dimensional symmetry of entire solutions, naturally arises from treating
the fractional Allen-Cahn equation, and is then presented. We give an alternative proof to the De
Giorgi conjecture in R2, using the Dirichlet energy associated to the fractional Allen-Cahn equation.

Chapter 7 deals with nonlocal minimal surfaces, as introduced in [26] in 2010. In particular,
following the approach of De Giorgi (for classical minimal surfaces), we introduce the fractional
perimeter and look for minimizers in bounded open sets with respect to some fixed exterior data.
The boundaries of such (nonlocal minimal) sets are called nonlocal minimal surfaces (and are indeed
pn � 1q-dimensional and smooth almost everywhere). We give some notions on this subject, outline
some nice recent achievements and also present a new result about a stickiness phenomena when the
fractional parameter is small.
The fractional perimeter is defined as

PerspE,Ωq :� LspE X Ω, CEq � LspEzΩ,ΩzEq,
where the interaction LspA,Bq between two disjoint subsets of Rn is

LspA,Bq :�
»
A

»
B

dx dy

|x� y|n�s �
»
Rn

»
Rn

χApxqχBpxq
|x� y|n�s dx dy.

Moreover, taking Ω an open set of Rn, we say that E � Rn is s-minimal in Ω if PerspE,Ωq is finite
and if, for any competitor (that is, for any set F such that EzΩ � F zΩ), we have that

PerspE,Ωq ¤ PerspF,Ωq.
Furthermore, we introduce the s-fractional mean curvature of a set E at a point q P BE (as the
fractional counterpart of the classical mean curvature notion). It is defined as the principal value
integral

IsrEspqq :� P.V.

»
Rn

χCEpyq � χEpyq
|y � q|n�s dy

(for the main properties of the fractional mean curvature, we refer to [2]).
In this Chapter we discuss some very nice known results such as


 s-minimal graphs (i.e., s-minimal sets that are graphs in given direction) in Rn�1 are flat if
no singular cones exist in dimension n (and this is related to a known Bernstein problem),


 minimizers with respect to the exterior data that is a subgraph, is a subgraph also inside
the domain,


 nontrivial minimal cones in dimension two do not exist (which implies, according to the first
point, that s-minimal graphs in R3 are flat).

Also, we discuss some nice examples of boundary regularity and stickiness phenomena.
On the other hand, the asymptotic behavior of nonlocal minimal surfaces as s reaches 0 or 1

is another interesting matter. As s Ñ 1�, one would like to obtain the classical counterpart of the
objects under study. And this is indeed the case, as the following known results show. For a set
E � Rn with C1,γ boundary in BR for some R ¡ 0 and γ P p0, 1q, for almost any r   R and up to
constants one has indeed that

lim
sÑ1�

p1� sqPspE,Brq � P pE,Brq.
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See for the proof [30]. Not only, but also (see Theorem 12 in [2], and [30]) for a set E � Rn with C2

boundary and any x P BE, one has that

lim
sÑ1

p1� sqIsrEspxq � ωn�1HrEspxq,
where H is the classical mean curvature of E at the point x (with the convention that we take H such
that the curvature of the ball is a positive quantity).

As s Ñ 0�, the asymptotic behavior is a bit more involved and some surprising behavior may
arise. This is due to the fact that as s gets smaller, the nonlocal contribution to the perimeter becomes
more and more important, and the local behavior loses influence. Some very nice first results in this
sense were achieved in [57]. There, in order to mathematically encode the behavior at infinity of a
set, the authors introduce the following quantity:

αpEq � lim
sÑ0�

s

»
CB1

χEpyq
|y|n�s dy, (0.4)

(see [57]). The set function αpEq appears naturally when looking at the behavior near s � 0 of
the fractional perimeter (see [57]). So, let Ω be a bounded open set with C1,γ boundary, for some
γ P p0, 1q, and E � Rn be a set with have finite s0-perimeter, for some s0 P p0, 1q. If αpEq exists then

lim
sÑ0�

sPspE,Ωq � αpCEq|E X Ω| � αpEq|CE X Ω|.
On this argument, we introduce in the last section some other original achievements on the be-
havior of s-minimal surfaces for small values of the fractional perimeter. Indeed, there we obtain the
asymptotic behavior of the fractional mean curvature for s Ñ 0�, noticing that the limit takes into
account only the data at infinity. In essence we prove that

Theorem. Let E � Rn and let p P BE be such that BE is C1,γ near p, for some γ P p0, 1s. Then

lim inf
sÑ0�

s IsrEsppq � ωn � 2αpEq
lim sup
sÑ0�

s IsrEsppq � ωn � 2αpEq.

Furthermore, we prove the continuity of the fractional mean curvature in all variables for s P r0, 1s.
As a matter of fact, the s-fractional mean curvature is continuous with respect to C1,α convergence
of sets, for any s P p0, αq and with respect to C2 convergence of sets, for s close to 1. Here, by C1,α

convergence of sets we mean that our sets locally converge in measure and can locally be described as
the supergraphs of functions which converge in C1,α. Indeed, we have the following results:

Theorem. Let Ek
C1,αÝÝÝÑ E in a neighborhood of q P BE. Let qk P BEk be such that qk ÝÑ q and

let s, sk P p0, αq be such that sk
kÑ8ÝÝÝÑ s. Then

lim
kÑ8

Isk rEkspqkq � IsrEspqq.

Let Ek
C2ÝÝÑ E in a neighborhood of q P BE. Let qk P BEk be such that qk ÝÑ q and let sk P p0, 1q

be such that sk
kÑ8ÝÝÝÑ 1. Then

lim
kÑ8

p1� skqIsk rEkspqkq � ωn�1HrEspqq.

Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.
When sÑ 0� we do not need the C1,α convergence of sets, but only the uniform boundedness of

the C1,α norms of the functions defining the boundary of Ek in a neighborhood of the boundary points.
However, we have to require that the measure of the symmetric difference is uniformly bounded. More
precisely:

Proposition. Let E � Rn be such that αpEq exists. Let q P BE be such that

E XQr,hpqq � tpx1, xnq P Rn |x1 P B1
rpq1q, upx1q   xn   h� qnu,
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for some r, h ¡ 0 small enough and u P C1,αpB1
rpq1qq such that upq1q � qn. Let Ek � Rn be such that

|Ek∆E|   C1

for some C1 ¡ 0. Let qk P BEk XBd, for some d ¡ 0, such that

Ek XQr,hpqkq � tpx1, xnq P Rn |x1 P B1
rpq1kq, ukpx1q   xn   h� qk,nu

for some functions uk P C1,αpB1
rpq1kqq such that ukpq1kq � qk,n and

}uk}C1,αpB1
rpq1kqq   C2

for some C2 ¡ 0. Let sk P p0, αq be such that sk
kÑ8ÝÝÝÑ 0. Then

lim
kÑ8

skIsk rEkspqkq � ωn � 2αpEq.

Finally, when s P p0, 1q is small we classify the behavior of s-minimal surfaces, in dependence of
the exterior data at infinity. We prove that when the fractional parameter is small and the exterior
data at infinity occupies (in measure, with respect to the weight) less than half the space, then s-
minimal sets completely stick at the boundary (that is, they are empty inside the domain), or become
“topologically dense” in their domain. Indeed, denoting

αpEq :� lim sup
sÑ0�

s

»
CB1

χEpyq
|y|n�s dy,

we give the next definition.

Definition. Let Ω � Rn be a bounded open set. We say that a set E is δ-dense in Ω for some
fixed δ ¡ 0 if |Bδpxq X E| ¡ 0 for any x P Ω for which Bδpxq �� Ω.

This notion of δ-density is a “topological” notion, rather than a measure theoretic one. With this
definition and denoting

δs � � c
s
, where c :� c

�
E0q � log

3ωn � 4αpE0q
5ωn � 2αpE0q ,

we obtain the following classifications:

Theorem. Let Ω be a bounded and connected open set with C2 boundary. Let E0 � CΩ be such
that

αpE0q   ωn
2
.

Then the following two results hold.
A) There exists s1 � s1pE0,Ωq P p0, 1{2q such that if s   s1 and E is an s-minimal set in Ω with
exterior data E0, then either

pA.1q E X Ω � H or pA.2q E is δs � dense.

B) Either
(B.1) there exists s̃ � s̃pE0,Ωq P p0, 1q such that if E is an s-minimal set in Ω with exterior data E0

and s P p0, s̃q, then
E X Ω � H,

or
(B.2) there exist δk × 0, sk × 0 and a sequence of sets Ek such that each Ek is sk-minimal in Ω with
exterior data E0 and for every k

BEk XBδkpxq � H @ Bδkpxq �� Ω.

An analogue result, that is that s-minimal sets fill the domain or their complementaries become
dense, is obtained when the exterior data occupies in the appropriate sense more than half the space
(so this threshold is optimal). We point out that in this way, when αpE0q � ωn{2 we have a complete
classification of s-minimal sets when s is small.
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Notations


 We consider n P N to be the dimension of the space of reference, that will be Rn. We usually
denote elements in the reference spaces as x P Rn and X P Rn�1.


 We write |E| � LnpEq for the n-dimensional Lebesgue measure of a set E � Rn and Hd for
the d-dimensional Hausdorff measure for any d ¥ 0.


 We denote by CE � RnzE the complementary of any E � Rn.

 We denote the n-dimensional open ball of radius r and center x0 P Rn as

Brpx0q � tx P Rn
�� |x� x0|   ru

and write Br whenever x0 � 0. Also, we use the notation

Sn�1 � BB1

for the pn� 1q-dimensional sphere.

 We define the area of the surface of the pn� 1q-dimensional sphere as the constant

ωn � Hn�1pSn�1q � 2π
n
2

Γpn2 q
,

where Γ is the Gamma function defined in (A.4). The volume of the n-dimensional unit ball
is then

LnpB1q � ωn
n
.


 We denote by SpRnq the Schwartz space of smooth functions rapidly decaying at infinity
(see Section A.1 in the Appendix for the definition and some other details).


 We will use the following notation for the class of Hölder continuous functions. Let α P p0, 1s,
let S � Rn and let v : S ÝÑ Rm. The α-Hölder semi-norm of v in S is defined as

rvsC0,αpS,Rmq :� sup
x�yPS

|vpxq � vpyq|
|x� y|α .

With a slight abuse of notation, we will omit the Rm in the formulas. We also define

}v}C0pSq :� sup
xPS

|vpxq| and }v}C0,αpSq :� }v}C0pSq � rvsC0,αpSq.

Given an open set Ω � Rn, we define the space of uniformly Hölder continuous functions
C0,αpΩ,Rmq as

C0,αpΩ,Rmq :� tv P C0pΩ,Rmq | }v}C0,αpΩq   8u.
Recall that C1pΩq is the space of those functions u : Ω ÝÑ R such that u P C0pΩq X C1pΩq
and such that ∇u can be continuously extended to Ω. For every S � Ω we write

}u}C1,αpSq :� }u}C0pSq � }∇u}C0,αpSq,

and we define
C1,αpΩq :� tu P C1pΩq | }u}C1,αpΩq   8u.

We will usually consider the local versions of the above spaces. Given an open set Ω � Rn,
the space of locally Hölder continuous functions Ck,αpΩq, with k P t0, 1u, is defined as

Ck,αpΩq :� tu P CkpΩq | }u}Ck,αpOq   8 for every O �� Ωu.





CHAPTER 1

A probabilistic motivation for the fractional Laplacian

Abstract. The goal of this chapter is to show that nonlocal operators well describe nonlocal phe-

nomena. We introduce briefly the fractional Laplacian and then we present two probabilistic models

in which such operator naturally arises. Indeed, we show that the fractional heat equation arises
from a probabilistic process in which a particle moves randomly in the space subject to a probability

that allows long jumps. Using the same probabilistic process and supposing that exiting the domain

for the first time by jumping to an outside point means earning a certain (known) quantity of money,
the payoff function will be s-harmonic in the domain. This models are treated in an elementary way,

and little knowledge on probability theory is required from the reader.

We consider a function u : Rn Ñ R (which is supposed1 to be regular enough) and a fractional
parameter s P p0, 1q. Then, the fractional Laplacian of u is given by

p�∆qsupxq � Cpn, sq
2

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s

dy, (1.1)

where Cpn, sq is a dimensional2 constant.
One sees from (1.1) that p�∆qs is an operator of order 2s, namely, it arises from a differential

quotient of order 2s weighted in the whole space.
The probabilistic model under consideration is a random process that allows long jumps (in further

generality, it is known that the fractional Laplacian is an infinitesimal generator of Lèvy processes,
see e.g. [12, 18] for further details). A more detailed mathematical introduction to the fractional
Laplacian is presented in the subsequent Section 2.1.

1.1. The random walk with arbitrarily long jumps

We will show here that the fractional heat equation (i.e. the “typical” equation that drives the
fractional diffusion and that can be written, up to dimensional constants, as Btu � p�∆qsu � 0)
naturally arises from a probabilistic process in which a particle moves randomly in the space subject
to a probability that allows long jumps with a polynomial tail.

For this scope, we introduce a probability distribution on the natural numbers N� :� t1, 2, 3, � � � u
as follows. If I � N�, then the probability of I is defined to be

P pIq :� cs
¸
kPI

1

|k|1�2s
.

The constant cs is taken in order to normalize P to be a probability measure. Namely, we take

cs :�
� ¸
kPN�

1

|k|1�2s

��1

,

1To write (1.1) it is sufficient, for simplicity, to take u in the Schwartz space SpRnq of smooth and rapidly decaying

functions (see (A.1)), or in C2pRnq X L8pRnq.
2The explicit value of Cpn, sq is usually unimportant. Nevertheless, we will compute its value explicitly in formu-

las (2.9) and (2.14). The reason for which it is convenient to divide Cpn, sq by a factor 2 in (1.1) will be clear later on,

in formula (2.3).
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so that we have P pN�q � 1.
Now we consider a particle that moves in Rn according to a probabilistic process. The process

will be discrete both in time and space (in the end, we will formally take the limit when these time
and space steps are small). We denote by τ the discrete time step, and by h the discrete space step.
We will take the scaling τ � h2s and we denote by upx, tq the probability of finding the particle at
the point x at time t.

The particle in Rn is supposed to move according to the following probabilistic law: at each time
step τ , the particle selects randomly both a direction v P BB1, according to the uniform distribution
on BB1, and a natural number k P N�, according to the probability law P , and it moves by a discrete
space step khv. Notice that long jumps are allowed with small probability. Then, if the particle is at
time t at the point x0 and, following the probability law, it picks up a direction v P BB1 and a natural
number k P N�, then the particle at time t� τ will lie at x0 � khv.

Now, the probability upx, t � τq of finding the particle at x at time t � τ is the sum of the
probabilities of finding the particle somewhere else, say at x � khv, for some direction v P BB1 and
some natural number k P N�, times the probability of having selected such a direction and such a
natural number.

Figure 1.1. The random walk with jumps

This translates into

upx, t� τq � cs
|BB1|

¸
kPN�

»
BB1

upx� khv, tq
|k|1�2s

dHn�1pvq.

Notice that the factor cs{|BB1| is a normalizing probability constant, hence we subtract upx, tq and
we obtain

upx, t� τq � upx, tq � cs
|BB1|

¸
kPN�

»
BB1

upx� khv, tq
|k|1�2s

dHn�1pvq � upx, tq

� cs
|BB1|

¸
kPN�

»
BB1

upx� khv, tq � upx, tq
|k|1�2s

dHn�1pvq.

As a matter of fact, by symmetry, we can change v to �v in the integral above, so we find that

upx, t� τq � upx, tq � cs
|BB1|

¸
kPN�

»
BB1

upx� khv, tq � upx, tq
|k|1�2s

dHn�1pvq.



1.2. A PAYOFF MODEL 21

Then we can sum up these two expressions (and divide by 2) and obtain that

upx, t� τq � upx, tq

� cs
2 |BB1|

¸
kPN�

»
BB1

upx� khv, tq � upx� khv, tq � 2upx, tq
|k|1�2s

dHn�1pvq.

Now we divide by τ � h2s, we recognize a Riemann sum, we take a formal limit and we use polar
coordinates, thus obtaining:

Btupx, tq �upx, t� τq � upx, tq
τ

� cs h

2 |BB1|
¸
kPN�

»
BB1

upx� khv, tq � upx� khv, tq � 2upx, tq
|hk|1�2s

dHn�1pvq

� cs
2 |BB1|

» �8

0

»
BB1

upx� rv, tq � upx� rv, tq � 2upx, tq
|r|1�2s

dHn�1pvq dr

� cs
2 |BB1|

»
Rn

upx� y, tq � upx� y, tq � 2upx, tq
|y|n�2s

dy

�� cn,s p�∆qsupx, tq
for a suitable cn,s ¡ 0.

This shows that, at least formally, for small time and space steps, the above probabilistic process
approaches a fractional heat equation.

We observe that processes of this type occur in nature quite often, see in particular the biological
observations in [95], other interesting observations in [124,135,151] and the mathematical discussions
in [87,98,112,114,117].

Roughly speaking, let us say that it is not unreasonable that a predator may decide to use
a nonlocal dispersive strategy to hunt its preys more efficiently (or, equivalently, that the natural
selection may favor some kind of nonlocal diffusion): small fishes will not wait to be eaten by a big
fish once they have seen it, so it may be more convenient for the big fish just to pick up a random
direction, move rapidly in that direction, stop quickly and eat the small fishes there (if any) and then
go on with the hunt. And this “hit-and-run” hunting procedure seems quite related to that described
in Figure 1.1.

1.2. A payoff model

Another probabilistic motivation for the fractional Laplacian arises from a payoff approach. Sup-
pose to move in a domain Ω according to a random walk with jumps as discussed in Section 1.1.
Suppose also that exiting the domain Ω for the first time by jumping to an outside point y P RnzΩ,
means earning u0pyq Monopoly money. A relevant question is, of course, how rich we expect to become
in this way. That is, if we start at a given point x P Ω and we denote by upxq the amount of Monopoly
money that we expect to gain, is there a way to obtain information on u?

The answer is that (in the right scale limit of the random walk with jumps presented in Section 1.1)
the expected payoff u is determined by the equation#

p�∆qsu � 0 in Ω,

u � u0 in RnzΩ. (1.2)

To better explain this, let us fix a point x P Ω. The expected value of the payoff at x is the average of
all the payoffs at the points x̃ from which one can reach x, weighted by the probability of the jumps.
That is, by writing x̃ � x� khv, with v P BB1, k P N� and h ¡ 0, as in the previous Section 1.1, we
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have that the probability of jump is
cs

|BB1| |k|1�2s
. This leads to the formula

upxq � cs
|BB1|

¸
kPN�

»
BB1

upx� khvq
|k|1�2s

dHn�1pvq.

By changing v into �v we obtain

upxq � cs
|BB1|

¸
kPN�

»
BB1

upx� khvq
|k|1�2s

dHn�1pvq

so, by summing up,

2upxq � cs
|BB1|

¸
kPN�

»
BB1

upx� khvq � upx� khvq
|k|1�2s

dHn�1pvq.

Since the total probability is 1, we can subtract 2upxq to both sides and obtain that

0 � cs
|BB1|

¸
kPN�

»
BB1

upx� khvq � upx� khvq � 2upxq
|k|1�2s

dHn�1pvq.

We can now divide by h1�2s and recognize a Riemann sum, which, after passing to the limit as h× 0,
gives 0 � �p�∆qsupxq, that is (1.2).



CHAPTER 2

The fractional Laplacian and the Caputo derivative

Abstract. We introduce here some preliminary notions on the fractional Laplacian and on frac-

tional Sobolev spaces. The definition and equivalent representations for the fractional Laplacian

are introduced and the constant that appears in this definition is explicitly computed. Fractional
Sobolev spaces enjoy quite a number of important functional inequalities. We will present here two

important inequalities which have a simple and nice proof, namely the fractional Sobolev Inequality

and the Generalized Coarea Formula. Moreover, we present an explicit example of an s-harmonic
function on the positive half-line, i.e. p�∆qspx�qs � 0 on R� and an example of a function with

constant Laplacian on the ball. We also discuss some maximum principles and a Harnack inequal-

ity, and present a quite surprising local density property of s-harmonic functions into the space of
smooth functions. In the last section, we prove that Caputo-stationary functions enjoy the same

property, that is they locally approximate any given smooth function.

2.1. The fractional Laplacian

We introduce here the fractional Laplace operator, the fractional Sobolev spaces and give some
useful pieces of notation. We also refer to [55] for further details related to the topic.

Another useful notion for the fractional Laplacian (other than the definition (1.1)) is the one of
principal value, namely we consider the definition

P.V.

»
Rn

upxq � upyq
|x� y|n�2s

dy :� lim
εÑ0

»
RnzBεpxq

upxq � upyq
|x� y|n�2s

dy. (2.1)

Notice indeed that the integrand above is singular when y is in a neighborhood of x, and this singularity
is, in general, not integrable (in the sense of Lebesgue). As a matter of fact, near x we have that upxq�
upyq behaves at the first order like ∇upxq � px� yq, hence the integral above behaves at the first order
like

∇upxq � px� yq
|x� y|n�2s

(2.2)

whose absolute value gives an infinite integral near x (unless either ∇upxq � 0 or s   1{2).
The idea of the definition in (2.1) is that the term in (2.2) averages out in a neighborhood of x

by symmetry, since the term is odd with respect to x, and so it does not contribute to the integral
if we perform it in a symmetrical way. In a sense, the principal value in (2.1) kills the first order
of the function at the numerator, which produces a linear growth, and focuses on the second order
remainders.
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The notation in (2.1) allows us to write (1.1) in the following more compact form:

p�∆qsupxq � Cpn, sq
2

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s

dy

� Cpn, sq
2

lim
εÑ0

»
RnzBε

2upxq � upx� yq � upx� yq
|y|n�2s

dy

� Cpn, sq
2

lim
εÑ0

�»
RnzBε

upxq � upx� yq
|y|n�2s

dy �
»
RnzBε

upxq � upx� yq
|y|n�2s

dy

�

� Cpn, sq
2

lim
εÑ0

�»
RnzBεpxq

upxq � upηq
|x� η|n�2s

dη �
»
RnzBεpxq

upxq � upζq
|x� ζ|n�2s

dζ

�

� Cpn, sq lim
εÑ0

»
RnzBεpxq

upxq � upηq
|x� η|n�2s

dη,

where the changes of variable η :� x� y and ζ :� x� y were used, i.e.

p�∆qsupxq � Cpn, sqP.V.

»
Rn

upxq � upyq
|x� y|n�2s

dy. (2.3)

The simplification above also explains why it was convenient to write (1.1) with the factor 2 di-
viding Cpn, sq. Notice that the expression in (1.1) does not require the P.V. formulation since, for
instance, taking u P L8pRnq and locally C2, using a Taylor expansion of u in B1, one observes that»

Rn

|2upxq � upx� yq � upx� yq|
|y|n�2s

dy

¤ }u}L8pRnq
»
RnzB1

|y|�n�2s dy �
»
B1

|D2upxq||y|2
|y|n�2s

dy

¤ }u}L8pRnq
»
RnzB1

|y|�n�2s dy � }D2u}L8pRnq
»
B1

|y|�n�2s�2 dy,

and the integrals above provide a finite quantity.
As a further remark, definition (2.3) is well posed for u P L1

spRnq and locally C2s�ε, where the
space

L1
spRnq :�

!
u P L1

locpRnq s.t.

»
Rn

|upxq|
1� |x|n�2s

dx   8
)

(2.4)

is endowed naturally with the norm

}u}L1
spRnq :�

»
Rn

|upxq|
1� |x|n�2s

dx.

Moreover, for ε ¡ 0 a small fixed quantity, we write C2s�ε to denote both C0,2s�ε for s   1{2 and
C1,2s�ε�1 for s ¥ 1{2.

Formula (2.3) has also a stimulating analogy with the classical Laplacian. Namely, the classical
Laplacian (up to normalizing constants) is the measure of the infinitesimal displacement of a function
in average (this is the “elastic” property of harmonic functions, whose value at a given point tends to
revert to the average in a ball). Indeed, by canceling the odd contributions, and using that»

Brpxq
|x� y|2 dy �

ņ

k�1

»
Brpxq

pxk � ykq2 dy � n

»
Brpxq

pxi � yiq2 dy,

for any i P t1, . . . , nu,
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we see that

lim
rÑ0

1

r2

�
upxq � 1

|Brpxq|
»
Brpxq

upyq dy
�

� lim
rÑ0

� 1

r2|Brpxq|
»
Brpxq

�
upyq � upxq�dy

� lim
rÑ0

� 1

rn�2 |B1|
»
Brpxq

∇upxq � px� yq � 1

2
D2upxqpx� yq � px� yq

�Op|x� y|3q dy

� lim
rÑ0

� 1

2rn�2 |B1|
ņ

i,j�1

»
Brpxq

B2
i,jupxq pxi � yiqpxj � yjq dy

� lim
rÑ0

� 1

2rn�2 |B1|
ņ

i�1

»
Brpxq

B2
i,iupxq pxi � yiq2 dy

� lim
rÑ0

� 1

2n rn�2 |B1|
ņ

i�1

B2
i,iupxq

»
Brpxq

|x� y|2 dy

� � Cn∆upxq,

(2.5)

for some Cn ¡ 0. In this spirit, when we compare this formula with (2.3), we can think that the
fractional Laplacian corresponds to a weighted average of the function’s oscillation. While the average
in (2.5) is localized in the vicinity of a point x, the one in (2.3) occurs in the whole space (though
it decays at infinity). Also, the spacial homogeneity of the average in (2.5) has an extra factor that
is proportional to the space variables to the power �2, while the corresponding power in the average
in (2.3) is �2s (and this is consistent for sÑ 1).

We use the usual notations for the Fourier and inverse Fourier transform (see Appendix A.1). For
u P SpRnq, the fractional Laplace operator can be expressed in Fourier frequency variables multiplied
by p2π|ξ|q2s, as stated in the following lemma.

Lemma 2.1.1. We have that

p�∆qsupxq � F�1
�p2π|ξ|q2spupξq�. (2.6)

Roughly speaking, formula (2.6) characterizes the fractional Laplace operator in the Fourier space,
by taking the s-power of the multiplier associated to the classical Laplacian operator. Indeed, by using
the inverse Fourier transform, one has that

�∆upxq � �∆pF�1ppuqqpxq � �∆

»
Rn

pupξqe2πix�ξ dξ

�
»
Rn
p2π|ξ|q2pupξqe2πix�ξ dξ � F�1

�p2π|ξ|q2pupξq�,
which gives that the classical Laplacian acts in a Fourier space as a multiplier of p2π|ξ|q2. From this
and Lemma 2.1.1 it also follows that the classical Laplacian is the limit case of the fractional one,
namely for any u P SpRnq

lim
sÑ1

p�∆qsu � �∆u and also lim
sÑ0

p�∆qsu � u.

Let us now prove that indeed the two formulations (1.1) and (2.6) are equivalent.
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Proof of Lemma 2.1.1. Consider identity (1.1) and apply the Fourier transform to obtain

F
�
p�∆qsupxq

	
� Cpn, sq

2

»
Rn

F
�

2upxq � upx� yq � upx� yq
	

|y|n�2s
dy

� Cpn, sq
2

»
Rn

pupξq2� e2πiξ�y � e�2πiξ�y

|y|n�2s
dy

� Cpn, sq pupξq »
Rn

1� cosp2πξ � yq
|y|n�2s

dy.

(2.7)

Now, we use the change of variable z � |ξ|y and get that

Jpξq :�
»
Rn

1� cosp2πξ � yq
|y|n�2s

dy � |ξ|2s
»
Rn

1� cos 2πξ
|ξ| � z

|z|n�2s
dz.

Since J is rotationally invariant, we consider a rotation R that sends e1 � p1, 0, . . . , 0q into ξ{|ξ|, that
is Re1 � ξ{|ξ|, and we call RT its transpose. Then, by using the change of variables ω � RT z we have
that

Jpξq � |ξ|2s
»
Rn

1� cosp2πRe1 � zq
|z|n�2s

dz � |ξ|2s
»
Rn

1� cosp2πRT z � e1q
|RT z|n�2s

dz

� |ξ|2s
»
Rn

1� cosp2πω1q
|ω|n�2s

dω.

Changing variables ω̃ � 2πω (we still write ω as a variable of integration), we obtain that

Jpξq � p2π|ξ|q2s
»
Rn

1� cosω1

|ω|n�2s
dω. (2.8)

Notice that this integral is finite. Indeed, integrating outside the ball B1 we have that»
RnzB1

|1� cosω1|
|ω|n�2s

dω ¤
»
RnzB1

2

|ω|n�2s
  8,

while inside the ball we can use the Taylor expansion of the cosine function and observe that»
B1

|1� cosω1|
|ω|n�2s

dω ¤
»
B1

|ω|2
|ω|n�2s

dω ¤
»
B1

dω

|ω|n�2s�2
  8.

Therefore, by taking

Cpn, sq :�
�»

Rn

1� cosω1

|ω|n�2s
dω


�1

(2.9)

it follows from (2.8) that

Jpξq � p2π|ξ|q2s
Cpn, sq .

By inserting this into (2.7), we obtain that

F
�
p�∆qsupxq

	
� Cpn, sq pupξq Jpξq � p2π|ξ|q2spupξq,

which concludes the proof. �

Notice that the renormalization constant Cpn, sq introduced in (1.1) is now computed in (2.9).

Another approach to the fractional Laplacian comes from the theory of semigroups (or, equiv-
alently from the fractional calculus arising in subordination identities). This technique is classical
(see [152]), but it has also been efficiently used in recent research papers (see for instance [32,50,142]).
Roughly speaking, the main idea underneath the semigroup approach comes from the explicit formulas
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for the Euler’s function (check the Appendix A.2): for any λ ¡ 0, one uses an integration by parts
and the substitution τ � λt to see that

�sΓp�sq � Γp1� sq �
» �8

0

τ�se�τ dτ � �
» �8

0

τ�s
d

dτ
pe�τ � 1q dτ

� � s

» �8

0

τ�s�1pe�τ � 1q dτ � �sλ�s
» �8

0

t�s�1pe�λt � 1q dt,

that is

λs � 1

Γp�sq
» �8

0

t�s�1pe�λt � 1q dt. (2.10)

Then one applies formally this identity to λ :� �∆. Of course, this formal step needs to be justified,
but if things go well one obtains

p�∆qs � 1

Γp�sq
» �8

0

t�s�1pet∆ � 1q dt,

that is (interpreting 1 as the identity operator)

p�∆qsupxq � 1

Γp�sq
» �8

0

t�s�1pet∆upxq � upxqq dt. (2.11)

Formally, if Upx, tq :� et∆upxq, we have that Upx, 0q � upxq and

BtU � B
Bt pe

t∆upxqq � ∆et∆upxq � ∆U,

that is Upx, tq � et∆upxq can be interpreted as the solution of the heat equation with initial datum u.
We indeed point out that these formal computations can be justified:

Lemma 2.1.2. Formula (2.11) holds true. That is, if u P SpRnq and U � Upx, tq is the solution
of the heat equation "BtU � ∆U for t ¡ 0,

U
��
t�0

� u,

then

p�∆qsupxq � 1

Γp�sq
» �8

0

t�s�1pUpx, tq � upxqq dt. (2.12)

Proof. From Theorem 1 on page 47 in [72] we know that U is obtained by Gaussian convolution
with unit mass, i.e.

Upx, tq �
»
Rn
Gpx� y, tqupyq dy �

»
Rn
Gpy, tqupx� yq dy, where

Gpx, tq :� p4πtq�n{2e� |x|2
4t .

(2.13)

As a consequence, using the substitution τ :� |y|2{p4tq,» �8

0

t�s�1pUpx, tq � upxqq dt

�
» �8

0

�»
Rn
t�s�1Gpy, tq �upx� yq � upxq� dy� dt

�
» �8

0

�»
Rn
p4πtq�n{2t�s�1e�|y|

2{p4tq �upx� yq � upxq� dy� dt
�

» �8

0

�»
Rn
τn{2pπ|y|2q�n{2|y|�2sp4τqs�1e�τ

�
upx� yq � upxq� dy� dτ

4τ2

� 22s�1π�n{2
» �8

0

�»
Rn
τ
n
2 �s�1e�τ

upx� yq � upx� yq � 2upxq
|y|n�2s

dy

�
dτ.
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Now we notice that » �8

0

τ
n
2 �s�1e�τ dτ � Γ

�n
2
� s

	
,

so we obtain that » �8

0

t�s�1pUpx, tq � upxqq dt

� 22s�1π�n{2Γ
�n

2
� s

	 »
Rn

upx� yq � upx� yq � 2upxq
|y|n�2s

dy

� � 22s π�n{2 Γ
�
n
2 � s

�
Cpn, sq p�∆qsupxq.

This proves (2.12), by choosing Cpn, sq appropriately. And, as a matter of fact, gives the explicit
value of the constant Cpn, sq as

Cpn, sq � �22s Γ
�
n
2 � s

�
πn{2Γp�sq � 22s sΓ

�
n
2 � s

�
πn{2Γp1� sq , (2.14)

where we have used again that Γp1� sq � �sΓp�sq, for any s P p0, 1q. �

It is worth pointing out that the renormalization constant Cpn, sq introduced in (1.1) has now
been explicitly computed in (2.14). Notice that the choices of Cpn, sq in (2.9) and (2.14) must agree
(since we have computed the fractional Laplacian in two different ways). We give below a direct proof
that the settings in (2.9) and (2.14) are the same, by using Fourier methods and (2.10).

Lemma 2.1.3. For any n P N, n ¥ 1, and s P p0, 1q, we have that»
Rn

1� cosp2πω1q
|ω|n�2s

dω � π
n
2 �2s Γp1� sq
sΓ

�
n
2 � s

� . (2.15)

Equivalently, we have that »
Rn

1� cosω1

|ω|n�2s
dω � π

n
2 Γp1� sq

22ssΓ
�
n
2 � s

� . (2.16)

Proof. Of course, formula (2.15) is equivalent to (2.16) (after the substitution ω̃ :� 2πω).
Strictly speaking, in Lemma 2.1.1 (compare (1.1), (2.6), and (2.9)) we have proved that

1

2

»
Rn

1� cosω1

|ω|n�2s
dω

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s

dy � F�1
�p2π|ξ|q2spupξq�.

(2.17)

Similarly, by means of Lemma 2.1.2 (compare (1.1), (2.12) and (2.14)) we know that

22s�1 sΓ
�
n
2 � s

�
πn{2Γp1� sq

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s

dy

� 1

Γp�sq
» �8

0

t�s�1pUpx, tq � upxqq dt.
(2.18)

Moreover (see (2.13)), we have that Upx, tq :� Gp�, tq � upxq. We recall that the Fourier transform of
a Gaussian is a Gaussian itself, namely

Fpe�π|x|2q � e�π|ξ|
2

,

therefore, for any fixed t ¡ 0, using the substitution y :� x{?4πt,

F Gpξ, tq � 1

p4πtqn{2
»
Rn
e�|x|

2{p4tqe�2πix�ξ dx

�
»
Rn
e�π|y|

2

e�2πiy�p?4πtξq dy � e�4π2t|ξ|2 .
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As a consequence

F
�
Upx, tq � upxq� � F

�
Gp�, tq � upxq � upxq�

� FpGp�, tq � uqpξq � pupξq � �
F Gpξ, tqq � 1

�pupξq
� pe�4π2t|ξ|2 � 1qpupξq.

We multiply by t�s�1 and integrate over t ¡ 0, and we obtain

F
» �8

0

t�s�1
�
Upx, tq � upxq� dt �

» �8

0

t�s�1pe�4π2t|ξ|2 � 1q dt pupξq
� Γp�sq p4π2|ξ|2qs pupξq,

thanks to (2.10) (used here with λ :� 4π2|ξ|2). By taking the inverse Fourier transform, we have» �8

0

t�s�1
�
Upx, tq � upxq� dt � Γp�sq p2πq2sF�1

�|ξ|2s pupξq�.
We insert this information into (2.18) and we get

22s�1 sΓ
�
n
2 � s

�
πn{2Γp1� sq

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s

dy � p2πq2sF�1
�|ξ|2s pupξq�.

Hence, recalling (2.17),

22s�1 sΓ
�
n
2 � s

�
πn{2Γp1� sq

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s

dy

� 1

2

»
Rn

1� cosω1

|ω|n�2s
dω

»
Rn

2upxq � upx� yq � upx� yq
|y|n�2s

dy,

which gives the desired result. �

An alternative proof of Lemma 2.1.3 is given in the subsequent Theorem 3.1.11 in Chapter 3, by
using the potential theory approach. For other approaches to the proof of Lemma 2.1.3 see also the
recent PhD dissertations [78] (and related [79]) and [97].

2.1.1. Fractional Sobolev Inequality and Generalized Coarea Formula. Fractional Sobo-
lev spaces enjoy quite a number of important functional inequalities. It is almost impossible to list here
all the results and the possible applications, therefore we will only present two important inequalities
which have a simple and nice proof, namely the fractional Sobolev Inequality and the Generalized
Coarea Formula.

The fractional Sobolev Inequality can be written as follows:

Theorem 2.1.4. For any s P p0, 1q, p P �1, ns � and u P C8
0 pRnq,

}u}
L

np
n�sp pRnq ¤ C

�»
Rn

»
Rn

|upxq � upyq|p
|x� y|n�sp dx dy


 1
p

, (2.19)

for some C ¡ 0, depending only on n and p.

Proof. We follow here the very nice proof given in [123] (where, in turn, the proof is attributed
to Häım Brezis). We have that

|upxq| ¤ |upxq � upyq| � |upyq|.
For a fixed R (that will be given later on), we integrate over the ball BRpxq and have that

|BRpxq||upxq| ¤
»
BRpxq

|upxq � upyq| dy �
»
BRpxq

|upyq| dy � I1 � I2. (2.20)
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We apply the Hölder inequality for the exponents p and p{pp� 1q in the first integral and obtain that

I1 �
»
BRpxq

|upxq � upyq|
|x� y|n�spp

|x� y|n�spp dy

¤ R
n�sp
p

�»
BRpxq

|upxq � upyq|p
|x� y|n�sp dy

� 1
p
�»

BRpxq
dy

� p�1
p

� CRn�s
�»

Rn

|upxq � upyq|p
|x� y|n�sp dy


 1
p

.

The Hölder inequality for np
n�sp and np

npp�1q�sp gives in the second integral

I2 ¤
�»

BRpxq
|upyq| np

n�sp dy

�n�sp
np

�»
BRpxq

dy

�npp�1q�sp
np

¤ R
npp�1q�sp

p

�»
Rn
|upyq| np

n�sp dy


n�sp
np

.

Dividing by Rn in (2.20) and renaiming the constants, it follows that

|upxq| ¤ CRs

��»
Rn

|upxq � upyq|p
|x� y|n�sp dy


 1
p

�R�n
p

�»
Rn
|upyq| np

n�sp dy


n�sp
np

�
,

where C � Cpn, pq ¡ 0. We take now R such that�»
Rn

|upxq � upyq|p
|x� y|n�sp dy


 1
p

� R�n
p

�»
Rn
|upyq| np

n�sp dy


n�sp
np

and we obtain

|upxq| ¤ C

�»
Rn

|upxq � upyq|p
|x� y|n�sp dy


n�sp
np

�»
Rn
|upyq| np

n�sp dy


 spn�spq
n2

.

Raising to the power np
n�sp and integrating over Rn, we get that

»
Rn
|upxq| np

n�sp dx ¤ C

�� ¼
Rn�Rn

|upxq � upyq|p
|x� y|n�sp dx dy

�
�»
Rn
|upyq| np

n�sp dy


 ps
n

.

After a simplification, we obtain that

�»
Rn
|upxq| np

n�sp dx


n�sp
np

¤ C

�� ¼
Rn�Rn

|upxq � upyq|p
|x� y|n�sp dx dy

�
1
p

.

which is (2.19). This concludes the proof of the Theorem. �

What follows is the Generalized Co-area Formula of [148] (the link with the classical Co-area
Formula will be indeed more evident in terms of the fractional perimeter functional discussed in
Chapter 7).

Theorem 2.1.5. For any s P p0, 1q and any measurable function u : Ω Ñ r0, 1s,
1

2

»
Ω

»
Ω

|upxq � upyq|
|x� y|n�s dx dy �

» 1

0

�»
txPΩ, upxq¡tu

»
tyPΩ, upyq¤tu

dx dy

|x� y|n�s
�
dt.
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Proof. We claim that for any x, y P Ω

|upxq � upyq| �
» 1

0

�
χtu¡tupxqχtu¤tupyq � χtu¤tupxqχtu¡tupyq

	
dt. (2.21)

To prove this, we fix x and y in Ω, and by possibly exchanging them, we can suppose that upxq ¥ upyq.
Then, we define

ϕptq :� χtu¡tupxqχtu¤tupyq � χtu¤tupxqχtu¡tupyq.
By construction

ϕptq �
"

0 if t   upyq and t ¥ upxq,
1 if upyq ¤ t   upxq,

therefore » 1

0

ϕptq dt �
» upxq
upyq

dt � upxq � upyq,

which proves (2.21).
So, multiplying by the singular kernel and integrating (2.21) over Ω� Ω, we obtain that»

Ω

»
Ω

|upxq � upyq|
|x� y|n�s dx dy

�
» 1

0

�»
Ω

»
Ω

χtu¡tupxqχtu¤tupyq � χtu¤tupxqχtu¡tupyq
|x� y|n�s dx dy



dt

�
» 1

0

�»
tu¡tu

»
tu¤tu

dx dy

|x� y|n�s �
»
tu¤tu

»
tu¡tu

dx dy

|x� y|n�s
�
dt

� 2

» 1

0

�»
tu¡tu

»
tu¤tu

dx dy

|x� y|n�s
�
dt,

as desired. �

2.1.2. Maximum Principle and Harnack Inequality. The Harnack Inequality and the Max-
imum Principle for harmonic functions are classical topics in elliptic regularity theory. Namely, in
the classical case, if a non-negative function is harmonic in B1 and r P p0, 1q, then its minimum and
maximum in Br must always be comparable (in particular, the function cannot touch the level zero
in Br).

It is worth pointing out that the fractional counterpart of these facts is, in general, false, as this
next simple result shows (see [99]):

Theorem 2.1.6. There exists a bounded function u which is s-harmonic in B1, non-negative
in B1, but such that inf

B1

u � 0.

Sketch of the proof. The main idea is that we are able to take the datum of u outside B1

in a suitable way as to “bend down” the function inside B1 until it reaches the level zero. Namely,
let M ¥ 0 and we take uM to be the function satisfying$'&'%

p�∆qsuM � 0 in B1,

uM � 1�M in B3zB2,

uM � 1 in Rnz�pB3zB2q YB1

�
.

(2.22)

When M � 0, the function uM is identically 1. When M ¡ 0, we expect uM to bend down, since the
fact that the fractional Laplacian vanishes in B1 forces the second order quotient to vanish in average
(recall (1.1), or the equivalent formulation in (2.3)). Indeed, we claim that there exists M� ¡ 0
such that uM� ¥ 0 in B1 with inf

B1

uM� � 0. Then, the result of Theorem 2.1.6 would be reached by

taking u :� uM� .
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To check the existence of such M�, we show that inf
B1

uM Ñ �8 as M Ñ �8. Indeed, we argue

by contradiction and suppose this cannot happen. Then, for any M ¥ 0, we would have that

inf
B1

uM ¥ �a, (2.23)

for some fixed a P R. We set

vM :� uM �M � 1

M
.

Then, by (2.22), $'&'%
p�∆qsvM � 0 in B1,

vM � 0 in B3zB2,

vM � 1 in Rnz�pB3zB2q YB1

�
.

Also, by (2.23), for any x P B1,

vM pxq ¥ �a�M � 1

M
.

By taking limits, one obtains that vM approaches a function v8 that satisfies$'&'%
p�∆qsv8 � 0 in B1,

v8 � 0 in B3zB2,

v8 � 1 in Rnz�pB3zB2q YB1

�
and, for any x P B1,

v8pxq ¥ 1.

In particular the maximum of v8 is attained at some point x� P B1, with v8px�q ¥ 1. Accordingly,

0 � P.V.

»
Rn

v8px�q � v8pyq
|x� � y|n�2s

dy ¥ P.V.

»
B3zB2

v8px�q � v8pyq
|x� � y|n�2s

dy

¥ P.V.

»
B3zB2

1� 0

|x� � y|n�2s
dy ¡ 0,

which is a contradiction. �

The example provided by Theorem 2.1.6 is not the end of the story concerning the Harnack
Inequality in the fractional setting. On the one hand, Theorem 2.1.6 is just a particular case of
the very dramatic effect that the datum at infinity may have on the fractional Laplacian (a striking
example of this phenomenon will be given in Section 2.1.5). On the other hand, the Harnack Inequality
and the Maximum Principle hold true if, for instance, the sign of the function u is controlled in the
whole of Rn.

We refer to [15, 80, 99, 139] and to the references therein for a detailed introduction to the
fractional Harnack Inequality, and to [53] for general estimates of this type.

Just to point out the validity of a global Maximum Principle, we state in detail the following
simple result:

Theorem 2.1.7. If p�∆qsu ¥ 0 in B1 and u ¥ 0 in RnzB1, then u ¥ 0 in B1.

Proof. Suppose by contradiction that the minimal point x� P B1 satisfies upx�q   0. Then
upx�q is a minimum in Rn (since u is positive outside B1), if y P B2 we have that 2upx�q � upx� �
yq � upx� � yq ¤ 0. On the other hand, in RnzB2 we have that x� � y P RnzB1, hence upx� � yq ¥ 0.
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We thus have

0 ¤
»
Rn

2upx�q � upx� � yq � upx� � yq
|y|n�2s

dy

¤
»
RnzB2

2upx�q � upx� � yq � upx� � yq
|y|n�2s

dy

¤
»
RnzB2

2upx�q
|y|n�2s

dy   0.

This leads to a contradiction. �

Similarly to Theorem 2.1.7, one can prove a Strong Maximum Principle, such as:

Theorem 2.1.8. If p�∆qsu ¥ 0 in B1 and u ¥ 0 in RnzB1, then u ¡ 0 in B1, unless u vanishes
identically.

Proof. We observe that we already know that u ¥ 0 in the whole of Rn, thanks to Theorem 2.1.7.
Hence, if u is not strictly positive, there exists x0 P B1 such that upx0q � 0. This gives that

0 ¤
»
Rn

2upx0q � upx0 � yq � upx0 � yq
|y|n�2s

dy � �
»
Rn

upx0 � yq � upx0 � yq
|y|n�2s

dy.

Now both upx0 � yq and upx0 � yq are non-negative, hence the latter integral is less than or equal to
zero, and so it must vanish identically, proving that u also vanishes identically. �

A simple version of a Harnack-type inequality in the fractional setting can be also obtained as
follows:

Proposition 2.1.9. Assume that p�∆qsu ¥ 0 in B2, with u ¥ 0 in the whole of Rn. Then

up0q ¥ c

»
B1

upxq dx,

for a suitable c ¡ 0.

Proof. Let Γ P C8
0 pB1{2q, with Γpxq P r0, 1s for any x P Rn, and Γp0q � 1. We fix ε ¡ 0, to be

taken arbitrarily small at the end of this proof and set

η :� up0q � ε ¡ 0. (2.24)

We define Γapxq :� 2η Γpxq � a. Notice that if a ¡ 2η, then Γapxq ¤ 2η � a   0 ¤ upxq in the whole
of Rn, hence the set tΓa   u in Rnu is not empty, and we can define

a� :� inf
aPR

tΓa   u in Rnu.
By construction

a� ¤ 2η.

If a   η then Γap0q � 2η � a ¡ η ¡ up0q, therefore

a� ¥ η. (2.25)

Notice that
Γa� ¤ u in the whole of Rn. (2.26)

We claim that
there exists x0 P B1{2 such that Γa�px0q � upx0q. (2.27)

To prove this, we suppose by contradiction that u ¡ Γa� in B1{2, i.e.

µ :� min
B1{2

pu� Γa�q ¡ 0.

Also, if x P RnzB1{2, we have that

upxq � Γa�pxq � upxq � 2η Γpxq � a� � upxq � a� ¥ a� ¥ η,
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thanks to (2.25). As a consequence, for any x P Rn,

upxq � Γa�pxq ¥ mintµ, ηu �: µ� ¡ 0.

So, if we define a7 :� a� � pµ�{2q, we have that a7   a� and

upxq � Γa7pxq � upxq � Γa�pxq �
µ�
2
¥ µ�

2
¡ 0.

This is in contradiction with the definition of a� and so it proves (2.27).
From (2.27) we have that x0 P B1{2, hence p�∆qsupx0q ¥ 0. Also |p�∆qsΓa�pxq| � 2η |p�∆qsΓpxq| ¤

Cη, for any x P Rn, therefore, recalling (2.26) and (2.27),

Cη ¥ p�∆qsΓa�px0q � p�∆qsupx0q

� Cpn, sqP.V.

»
Rn

�
Γa�px0q � Γa�px0 � yq�� �

upx0q � upx0 � yq�
|y|n�2s

dy

� Cpn, sqP.V.

»
Rn

upx0 � yq � Γa�px0 � yq
|y|n�2s

dy

¥ Cpn, sqP.V.

»
B1p�x0q

upx0 � yq � Γa�px0 � yq
|y|n�2s

dy.

Notice now that if y P B1p�x0q, then |y| ¤ |x0| � 1   2, thus we obtain

Cη ¥ Cpn, sq
2n�2s

»
B1p�x0q

�
upx0 � yq � Γa�px0 � yq� dy.

Notice now that Γa�pxq � 2ηΓpxq � a� ¤ η, due to (2.25), therefore we conclude that

Cη ¥ Cpn, sq
2n�2s

�»
B1p�x0q

upx0 � yq dy � η|B1|
�
.

That is, using the change of variable x :� x0�y, recalling (2.24) and renaming the constants, we have

C
�
up0q � ε

� � Cη ¥
»
B1

upxq dx,

hence the desired result follows by sending εÑ 0. �

2.1.3. An s-harmonic function. We provide here an explicit example of a function that is
s-harmonic on the positive line R� :� p0,�8q. Namely, we prove the following result:

Theorem 2.1.10. For any x P R, let wspxq :� xs� � maxtx, 0us. Then

p�∆qswspxq �
"�cs|x|�s if x   0,

0 if x ¡ 0,

for a suitable constant cs ¡ 0.

At a first glance, it may be quite surprising that the function xs� is s-harmonic in p0,�8q, since
such function is not smooth (but only continuous) uniformly up to the boundary, so let us try to give
some heuristic explanations for it.

We try to understand why the function xs� is s-harmonic in, say, the interval p0, 1q when s P p0, 1s.
From the discussion in Section 1.2, we know that the s-harmonic function in p0, 1q that agrees with xs�
outside p0, 1q coincides with the expected value of a payoff, subject to a random walk (the random
walk is classical when s � 1 and it presents jumps when s P p0, 1q). If s � 1 and we start from the
middle of the interval, we have the same probability of being moved randomly to the left and to the
right. This means that we have the same probability of exiting the interval p0, 1q to the right (and
so ending the process at x � 1, which gives 1 as payoff) or to the left (and so ending the process
at x � 0, which gives 0 as payoff). Therefore the expected value starting at x � 1{2 is exactly the
average between 0 and 1, which is 1{2. Similarly, if we start the process at the point x � 1{4, we
have the same probability of reaching the point 0 on the left and the point 1{2 to the right. Since we
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Figure 2.1. An s-harmonic function

know that the payoff at x � 0 is 0 and the expected value of the payoff at x � 1{2 is 1{2, we deduce
in this case that the expected value for the process starting at 1{4 is the average between 0 and 1{2,
that is exactly 1{4. We can repeat this argument over and over, and obtain the (rather obvious) fact
that the linear function is indeed harmonic in the classical sense.

The argument above, which seems either trivial or unnecessarily complicated in the classical case,
can be adapted when s P p0, 1q and it can give a qualitative picture of the corresponding s-harmonic
function. Let us start again the random walk, this time with jumps, at x � 1{2: in presence of jumps,
we have the same probability of reaching the left interval p�8, 0s and the right interval r1,�8q. Now,
the payoff at p�8, 0s is 0, while the payoff at r1,�8q is bigger than 1. This implies that the expected
value at x � 1{2 is the average between 0 and something bigger than 1, which produces a value larger
than 1{2. When repeating this argument over and over, we obtain a concavity property enjoyed by
the s-harmonic functions in this case (the exact values prescribed in r1,�8q are not essential here, it
would be enough that these values were monotone increasing and larger than 1).

Figure 2.2. A payoff model: case s � 1 and s P p0, 1q

In a sense, therefore, this concavity properties and loss of Lipschitz regularity near the minimal
boundary values is typical of nonlocal diffusion and it is due to the possibility of “reaching far away
points”, which may increase the expected payoff.

Now we present a complete, elementary proof of Theorem 2.1.10, starting with some preliminary
computations.
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Lemma 2.1.11. For any s P p0, 1q» 1

0

p1� tqs � p1� tqs � 2

t1�2s
dt�

» �8

1

p1� tqs
t1�2s

dt � 1

s
.

Proof. Fixed ε ¡ 0, we integrate by parts:» 1

ε

p1� tqs � p1� tqs � 2

t1�2s
dt

� � 1

2s

» 1

ε

�
p1� tqs � p1� tqs � 2

� d
dt
t�2s dt

� 1

2s

� p1� εqs � p1� εqs � 2

ε2s
� 2s � 2

�
� 1

2

» 1

ε

p1� tqs�1 � p1� tqs�1

t2s
dt

� 1

2s
rop1q � 2s � 2s � 1

2

�» 1

ε

p1� tqs�1t�2s dt�
» 1

ε

p1� tqs�1t�2s dt



,

(2.28)

with op1q infinitesimal as ε× 0. Moreover, by changing variable t̃ :� t{p1� tq, that is t :� t̃{p1� t̃q,
we have that » 1

ε

p1� tqs�1t�2s dt �
» �8

ε{p1�εq
p1� t̃qs�1t̃�2s dt̃.

Inserting this into (2.28) (and writing t instead of t̃ as variable of integration), we obtain» 1

ε

p1� tqs � p1� tqs � 2

t1�2s
dt

� 1

2s

�
op1q � 2s � 2

�� 1

2

� » 1

ε

p1� tqs�1t�2s dt�
» �8

ε{p1�εq
p1� tqs�1t�2s dt

�
� 1

2s

�
op1q � 2s � 2

�� 1

2

� » ε{p1�εq
ε

p1� tqs�1t�2s dt�
» �8

1

p1� tqs�1t�2s dt

�
.

(2.29)

Now we remark that» ε{p1�εq
ε

p1� tqs�1t�2s dt ¤
» ε{p1�εq
ε

p1� εqs�1ε�2s dt � ε2�2sp1� εq�1p1� εqs�1,

therefore

lim
ε×0

» ε{p1�εq
ε

p1� tqs�1t�2s dt � 0.

So, by passing to the limit in (2.29), we get» 1

0

p1� tqs � p1� tqs � 2

t1�2s
dt � �2s � 2

2s
� 1

2

» �8

1

p1� tqs�1t�2s dt. (2.30)

Now, integrating by parts we see that

1

2

» �8

1

p1� tqs�1t�2s dt � 1

2s

» �8

1

t�2s d

dt
p1� tqs dt

� �2s

2s
�
» �8

1

t�1�2sp1� tqs dt.

By plugging this into (2.30) we obtain that» 1

0

p1� tqs � p1� tqs � 2

t1�2s
dt � �2s � 2

2s
� 2s

2s
�
» �8

1

t�1�2sp1� tqs dt,

which gives the desired result. �

From Lemma 2.1.11 we deduce the following (somehow unexpected) cancellation property.
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Corollary 2.1.12. Let ws be as in the statement of Theorem 2.1.10. Then

p�∆qswsp1q � 0.

Proof. The function t ÞÑ p1� tqs � p1� tqs � 2 is even, therefore» 1

�1

p1� tqs � p1� tqs � 2

|t|1�2s
dt � 2

» 1

0

p1� tqs � p1� tqs � 2

t1�2s
dt.

Moreover, by changing variable t̃ :� �t, we have that» �1

�8

p1� tqs � 2

|t|1�2s
dt �

» �8

1

p1� t̃qs � 2

t̃1�2s
dt̃.

Therefore » �8

�8

wsp1� tq � wsp1� tq � 2wsp1q
|t|1�2s

dt

�
» �1

�8

p1� tqs � 2

|t|1�2s
dt�

» 1

�1

p1� tqs � p1� tqs � 2

|t|1�2s
dt�

» �8

1

p1� tqs � 2

|t|1�2s
dt

�2

» 1

0

p1� tqs � p1� tqs � 2

t1�2s
dt� 2

» �8

1

p1� tqs � 2

t1�2s
dt

�2

�» 1

0

p1� tqs � p1� tqs � 2

t1�2s
dt�

» �8

1

p1� tqs
t1�2s

dt� 2

» �8

1

dt

t1�2s

�
�2

�
1

s
� 2

» �8

1

dt

t1�2s

�
,

where Lemma 2.1.11 was used in the last line. Since» �8

1

dt

t1�2s
� 1

2s
,

we obtain that » �8

�8

wsp1� tq � wsp1� tq � 2wsp1q
|t|1�2s

dt � 0,

that proves the desired claim. �

The counterpart of Corollary 2.1.12 is given by the following simple observation:

Lemma 2.1.13. Let ws be as in the statement of Theorem 2.1.10. Then

�p�∆qswsp�1q ¡ 0.

Proof. We have that

wsp�1� tq � wsp�1� tq � 2wsp�1q � p�1� tqs� � p�1� tqs� ¥ 0

and not identically zero, which implies the desired result. �

We have now all the elements to proceed to the proof of Theorem 2.1.10.

Proof of Theorem 2.1.10. We let σ P t�1,�1u denote the sign of a fixed x P Rzt0u. We
claim that » �8

�8

wspσp1� tqq � wspσp1� tqq � 2wspσq
|t|1�2s

dt

�
» �8

�8

wspσ � tq � wspσ � tq � 2wspσq
|t|1�2s

dt.

(2.31)
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Indeed, the formula above is obvious when x ¡ 0 (i.e. σ � 1), so we suppose x   0 (i.e. σ � �1) and
we change variable τ :� �t, to see that, in this case,» �8

�8

wspσp1� tqq � wspσp1� tqq � 2wspσq
|t|1�2s

dt

�
» �8

�8

wsp�1� tq � wsp�1� tq � 2wspσq
|t|1�2s

dt

�
» �8

�8

wsp�1� τq � wsp�1� τq � 2wspσq
|τ |1�2s

dτ

�
» �8

�8

wspσ � τq � wspσ � τq � 2wspσq
|τ |1�2s

dτ,

thus checking (2.31).
Now we observe that, for any r P R,

wsp|x|rq � p|x|rqs� � |x|srs� � |x|swsprq.
That is

wspxrq � wspσ|x|rq � |x|swspσrq.
So we change variable y � tx and we obtain that» �8

�8

wspx� yq � wspx� yq � 2wspxq
|y|1�2s

dy

�
» �8

�8

wspxp1� tqq � wspxp1� tqq � 2wspxq
|x|2s|t|1�2s

dt

� |x|�s
» �8

�8

wspσp1� tqq � wspσp1� tqq � 2wspσq
|t|1�2s

dt

� |x|�s
» �8

�8

wspσ � tq � wspσ � tq � 2wspσq
|t|1�2s

dt,

where (2.31) was used in the last line. This says that

p�∆qswspxq �
"|x|�s p�∆qswsp�1q if x   0,
|x|�s p�∆qswsp1q if x ¡ 0,

hence the result in Theorem 2.1.10 follows from Corollary 2.1.12 and Lemma 2.1.13. �

2.1.4. A function with constant fractional Laplacian on the ball. In this subsection, we
explicitly compute the fractional Laplacian of the function Upxq � p1� |x|2qs� in B1. We have that

p�∆qsUpxq � Cpn, sqωn
2
βps, 1� sq any x P B1,

where Cpn, sq is given by (2.9) and β is the special Beta function (see Appendix A.2 and references
therein). Just to give an idea of how such computation can be obtained, with small modifications
respect to [69,70] we go through the proof of this result. The reader can find the more general result,
i.e. for Upxq � p1� |x|2qp� for p ¡ �1, in the above mentioned [69,70].

Let us take u : R Ñ R as upxq � p1 � |x|2qs�. We consider the regional fractional Laplacian
restricted to p�1, 1q

Lupxq :� P.V.

» 1

�1

upxq � upyq
|x� y|1�2s

dy

and we compute its value at zero. By symmetry we have that

Lup0q � 2 lim
εÑ0

» 1

ε

1� p1� y2qs
y1�2s

dy.
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Changing the variable ω � y2 and integrating by parts we get that

Lup0q � 2 lim
εÑ0

�» 1

ε

y�1�2s dy �
» 1

ε

p1� y2qsy�1�2s dy



� � 1

s
� lim
εÑ0

�
ε�2s

s
�
» 1

ε2
p1� ωqsω�s�1 dω



� � 1

s
� lim
εÑ0

�
ε�2s � ε�2sp1� ε2qs

s
�
» 1

ε2
ω�sp1� ωqs�1 dω



.

Using the integral representation of the Beta function (see Appendix A.2, formula (A.12)) it yields
that

Lup0q � βp1� s, sq � 1

s
.

For x P B1 we use the change of variables ω � x�y
1�xy . We obtain that

Lupxq � P.V.

» 1

�1

p1� x2qs � p1� y2qs
|x� y|1�2s

dy

� p1� x2q�sP.V.
» 1

�1

p1� ωxq2s�1 � p1� ω2qsp1� ωxq�1

|ω|2s�1
dω

� p1� x2q�sP.V.
�» 1

�1

1� p1� ω2qs
|ω|2s�1

dω �
» 1

�1

p1� ωxq2s�1 � 1

|ω|2s�1
dω

�
» 1

�1

p1� ω2qs
�

1� p1� ωxq�1
	

|ω|2s�1
dω

�
� p1� x2q�s pLup0q � Jpxq � Ipxqq ,

(2.32)

where we have recognized the regional fractional Laplacian and denoted

Jpxq :� P.V.

» 1

�1

p1� ωxq2s�1 � 1

|ω|2s�1
dω and

Ipxq :� P.V.

» 1

�1

1� p1� ωxq�1

|ω|2s�1
p1� ω2qs dω.

In Jpxq we have that

Jpxq � P.V.

�» 1

�1

p1� ωxq2s�1

|ω|2s�1
dω �

» 1

�1

|ω|�1�2s dω



� lim

εÑ0

�» 1

ε

p1� ωxq2s�1 � p1� ωxq2s�1

|ω|2s�1
dω � 2

» 1

ε

ω�1�2s dω



.

With the change of variable t � 1

ω
we get that

Jpxq � 1

s
� lim
εÑ0

�» 1{ε

1

�
pt� xq2s�1 � pt� xq2s�1

�
dt� ε�2s

s



� 1

s
� p1� xq2s � p1� xq2s

2s
� 1

2s
lim
εÑ0

p1� εxq2s � p1� εxq2s � 2

ε2s

� 1

s
� p1� xq2s � p1� xq2s

2s
.

(2.33)

To compute Ipxq, with a Taylor expansion of p1� ωxq�1 at 0 we have that

Ipxq � P.V.

» 1

�1

�°8
k�1pxωqk
|ω|2s�1

p1� ω2qs dω.
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The odd part of the sum vanishes by symmetry, and so

Ipxq � � 2 lim
εÑ0

» 1

ε

°8
k�1pxωq2k
ω2s�1

p1� ω2qs dω

� � 2 lim
εÑ0

8̧

k�1

x2k

» 1

ε

ω2k�2s�1p1� ω2qs dω.

We change the variable t � ω2 and integrate by parts to obtain

Ipxq � � lim
εÑ0

8̧

k�1

x2k

» 1

ε2
tk�s�1p1� tqs dt,

�
8̧

k�1

x2k lim
εÑ0

�
ε2k�2sp1� ε2qs

k � s
� s

k � s

» 1

ε2
tk�sp1� tqs�1 dt

�
.

For k ¥ 1, the limit for ε that goes to zero is null, and using the integral representation of the Beta
function, we have that

Ipxq �
8̧

k�1

x2k �s
k � s

βpk � 1� s, sq.

We use the Pochhammer symbol defined as

pqqk �
#

1 for k � 0,

qpq � 1q � � � pq � k � 1q for k ¡ 0
(2.34)

and with some manipulations, we get

�s
k � s

βpk � 1� s, sq � p�sqΓpk � 1� sqΓpsq
pk � sqΓpk � 1q

� p�sqΓpk � sqΓpsq
k!

� βp1� s, sq p�sqk
k!

.

And so

Ipxq � βp1� s, sq
8̧

k�1

x2k p�sqk
k!

.

By the definition of the hypergeometric function (see Appendix A.2) we obtain

Ipxq � � βp1� s, sq � βp1� s, sq
8̧

k�0

p�sqk x
2k

k!

� βp1� s, sq
�
F
�
� s,

1

2
,

1

2
, x2

	
� 1



.

Now, by (A.17a) in the Appendix, we have that

F
�
� s,

1

2
,

1

2
, x2

	
� p1� x2qs

and therefore

Ipxq � βp1� s, sq
�
p1� x2qs � 1

	
.

Inserting this and (2.33) into (2.32) we obtain

Lupxq � βp1� s, sq � p1� x2q�s p1� xq2s � p1� xq2s
2s

. (2.35)
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We write the fractional Laplacian of u as

p�∆qsupxq
Cp1, sq � Lupxq �

» �1

�8

upxq
|x� y|1�2s

dy �
» 8

1

upxq
|x� y|1�2s

dy

� Lupxq � p1� x2qs
�» �1

�8
|x� y|�1�2s dy �

» 8

1

|x� y|�1�2s dy



� Lupxq � p1� x2qs p1� xq�2s � p1� xq�2s

2s
.

Inserting (2.35) into the computation, we obtain

p�∆qsupxq � Cp1, sqβp1� s, sq. (2.36)

To pass to the n-dimensional case, without loss of generality and up to rotations, we consider x �
p0, 0, . . . , xnq with xn ¥ 0. We change into polar coordinates x� y � th, with h P BB1 and t ¥ 0. We
have that

p�∆qsUpxq
Cpn, sq � P.V.

»
Rn

p1� |x|2qs � p1� |y|2qs
|x� y|n�2s

dy

� 1

2

»
BB1

�
P.V.

»
R

p1� |x|2qs � p1� |x� ht|2qs
|t|1�2s

dt



dHn�1phq.

(2.37)

Changing the variable t � �|x|hn � τ
a|hnx|2 � |x|2 � 1, we notice that

1� |x� ht|2 � p1� τ2qp1� |x|2 � |hnx|2q
and so

P.V.

»
R

p1� |x|2qs � p1� |x� ht|2qs
|t|1�2s

dt

�P.V.
»
R

p1� |x|2qs � p1� τ2qsp|hnx|2 � |x|2 � 1qs���� |x|hn � τ
a|hnx|2 � |x|2 � 1

���1�2s

a
|hnx|2 � |x|2 � 1 dτ

�P.V.
»
R

�
1� |x|2h2

n

|hnx|2 � |x|2 � 1


s
� p1� τ2qs����τ � |x|hna|hnx|2 � |x|2 � 1

����1�2s dτ

�
p�∆qsu

� |x|hna|hnx|2 � |x|2 � 1



Cp1, sq

�βp1� s, sq,
where the last equality follows from identity (2.36). Hence from (2.37) we have that

p�∆qsUpxq � Cpn, sqβp1� s, sqωn
2
.

This concludes the proof of the result.

2.1.5. All functions are locally s-harmonic up to a small error. Here give a sketch of the
proof that s-harmonic functions can locally approximate any given function, without any geometric
constraints (the reader can see the paper [62] for further details and a complete proof). This fact is
rather surprising and it is a purely nonlocal feature, in the sense that it has no classical counterpart.
Indeed, in the classical setting, harmonic functions are quite rigid, for instance they cannot have a
strict local maximum, and therefore cannot approximate a function with a strict local maximum. The
nonlocal picture is, conversely, completely different, as the oscillation of a function “from far” can
make the function locally harmonic, almost independently from its local behavior.
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We want to give here some hints on the proof of this approximation result:

Theorem 2.1.14. Let k P N be fixed. Then for any f P CkpB1q and any ε ¡ 0 there exists R ¡ 0
and u P HspRnq X CspRnq such that#

p�∆qsupxq � 0 in B1

u � 0 in RnzBR
(2.38)

and

}f � u}CkpB1q ¤ ε.

Sketch of the proof. For the sake of convenience, we divide the proof into three steps. Also,
for simplicity, we give the sketch of the proof in the one-dimensional case. See [62] for the entire and
more general proof.
Step 1. Reducing to monomials
Let k P N be fixed. We use first of all the Stone-Weierstrass Theorem and we have that for any ε ¡ 0
and any f P Ck�r0, 1s� there exists a polynomial P such that

}f � P }CkpB1q ¤ ε.

Hence it is enough to prove Theorem 2.1.14 for polynomials. Then, by linearity, it is enough to prove

it for monomials. Indeed, if P pxq �
Ņ

m�0

cmx
m and one finds an s-harmonic function um such that

}um � xm}CkpB1q ¤
ε

|cm|pN � 1q ,

then by taking u :�
Ņ

m�0

cmum we have that

}u� P }CkpB1q ¤
Ņ

m�0

|cm|}um � xm}CkpB1q ¤ ε.

Notice that the function u is still s-harmonic, since the fractional Laplacian is a linear operator.

Step 2. Spanning the derivatives
We prove the existence of an s-harmonic function in B1, vanishing outside a compact set and with
arbitrarily large number of derivatives prescribed. That is, we show that for any m P N there exist
R ¡ r ¡ 0, a point x P R and a function u such that

p�∆qsu � 0 in px� r, x� rq,
u � 0 in Rzpx�R, x�Rq, (2.39)

and
Djupxq � 0 for any j P t0, . . . ,m� 1u,
Dmupxq � 1.

(2.40)

To prove this, we argue by contradiction.
We consider Z to be the set of all pairs pu, xq of s-harmonic functions in a neighborhood of x,

and points x P R satisfying (2.39). To any pair, we associate the vector�
upxq, Dupxq, . . . , Dmupxq� P Rm�1

and take V to be the vector space spanned by this construction, i.e.

V :�
!�
upxq, Dupxq, . . . , Dmupxq�, for pu, xq P Z

)
.

Notice indeed that

V is a linear space. (2.41)
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Indeed, let V1, V2 P V and a1, a2 P R. Then, for any i P t1, 2u, we have that

Vi �
�
uipxiq, Duipxiq, . . . , Dmuipxiq

�
for some pui, xiq P Z,

i.e. ui is s-harmonic in pxi � ri, xi � riq and vanishes outside pxi �Ri, xi �Riq, for some Ri ¥ ri ¡ 0.
We set

u3pxq :� a1u1px� x1q � a2u2px� x2q.
By construction, u3 is s-harmonic in p�r3, r3q, and it vanishes outside p�R3, R3q, with r3 :� mintr1, r2u
and R3 :� maxtR1, R2u, therefore pu3, 0q P Z. Moreover

Dju3pxq � a1D
ju1px� x1q � a2D

ju2px� x2q
and thus

a1V1 � a2V2

� a1

�
u1px1q, Du1px1q, . . . , Dmu1px1q

�� a2

�
u2px2q, Du2px2q, . . . , Dmu2px2q

�
� �

u3p0q, Du3p0q, . . . , Dmu3p0q
�
.

This establishes (2.41).
Now, to complete the proof of Step 2, it is enough to show that

V � Rm�1. (2.42)

Indeed, if (2.42) holds true, then in particular p0, . . . , 0, 1q P V , which is the desired claim in Step 2.
To prove (2.42), we argue by contradiction: if not, by (2.41), we have that V is a proper subspace

of Rm�1 and so it lies in a hyperplane.
Hence there exists a vector c � pc0, . . . , cmq P Rm�1zt0u such that

V �  
ζ P Rm�1

�� c � ζ � 0
(
.

That is, taking a pair pu, xq P Z, we have that¸
j¤m

cjD
jupxq � 0,

i.e. the vector c � pc0, . . . , cmq is orthogonal to any vector
�
upxq, Dupxq, . . . , Dmupxq�. To find a

contradiction, we now choose an appropriate s-harmonic function u and we evaluate it at an appro-
priate point x. As a matter of fact, a good candidate for the s-harmonic function is xs�, as we know
from Theorem 2.1.10: strictly speaking, this function is not allowed here, since it is not compactly
supported, but let us say that one can construct a compactly supported s-harmonic function with the
same behavior near the origin. With this slight caveat set aside, we compute for a (possibly small) x
in p0, 1q:

Djxs � sps� 1q . . . ps� j � 1qxs�j
and multiplying the sum with xm�s (for x � 0) we have that¸

j¤m
cjsps� 1q . . . ps� j � 1qxm�j � 0.

But since s P p0, 1q the product sps � 1q . . . ps � j � 1q never vanishes. Hence the polynomial is
identically null if and only if cj � 0 for any j, and we reach a contradiction. This completes the proof
of the existence of a function u that satisfies (2.39) and (2.40).
Step 3. Rescaling argument and completion of the proof
By Step 2, for any m P N we are able to construct a locally s-harmonic function u such that upxq �
xm �Opxm�1q near the origin (up to a translation). By considering the blow-up

uλpxq � upλxq
λm

� xm � λOpxm�1q
we have that for λ small, uλ is arbitrarily close to the monomial xm. As stated in Step 1, this concludes
the proof of Theorem 2.1.14. �
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It is worth pointing out that the flexibility of s-harmonic functions given by Theorem 2.1.14
may have concrete consequences. For instance, as a byproduct of Theorem 2.1.14, one has that a
biological population with nonlocal dispersive attitudes can better locally adapt to a given distribution
of resources (see e.g. Theorem 1.2 in [112]). Namely, nonlocal biological species may efficiently use
distant resources and they can fit to the resources available nearby by consuming them (almost)
completely, thus making more difficult for a different competing species to come into place.



2.2. DENSITY OF CAPUTO STATIONARY FUNCTIONS IN THE SPACE OF SMOOTH FUNCTIONS 45

2.2. Density of Caputo stationary functions in the space of smooth functions

The Caputo fractional derivative is a so-called nonlocal operator, that models long-range inter-
actions. For instance, if we think of a function depending on time, the Caputo fractional derivative
would represent a memory effect, pointing out that the state of a system at a given time depends
on past events. In other words, the Caputo derivative describes a causal system (also known as a
non-anticipative system).

This nonlocal character of the Caputo derivative gives rise to a peculiar behavior: on a bounded
interval, say r0, 1s, one can find a Caputo-stationary function “close enough” to any smooth function,
without any geometrical constraints. This is a surprising result when one thinks of the rigidity of the
classical derivatives. For instance, the functions with null first derivative are constant functions, the
functions with null second derivatives are affine functions. Such functions cannot approximate locally
any given Ck function, for any fixed k P N0. We remark that this property of Caputo-stationary
functions is in analogy to s-harmonic functions, as proved in Subsection 2.1.5.

Let a P R and s P p0, 1q be two arbitrary parameters. We define the functional space

C1,s
a :�

!
f : RÑ R

�� for any x ¡ a, f P AC�ra, xs� and f 1p�qpx� �q�s P L1
�pa, xq�). (2.43)

We denote here by ACpIq the space of absolutely continuous functions on I and define the Caputo
derivative.

Definition 2.2.1. The Caputo derivative of u P C1,s
a with initial point a P R at the point x ¡ a

is given by

Ds
aupxq :� 1

Γp1� sq
» x
a

u1ptqpx� tq�s dt. (2.44)

With this definition, we have that:

Definition 2.2.2. We say that u P C1,s
a is Caputo-stationary with initial point a P R at the point

x ¡ a if
Ds
aupxq � 0.

Let I be an interval such that a ¤ inf I. We say that u is Caputo-stationary with initial point a in I
if Ds

aupxq � 0 holds for any x P I.

For k P N0, we consider Ck
�r0, 1s� to be the space of the k-times continuous differentiable functions

on r0, 1s, endowed with the Ck-norm

}f}Ckpr0,1sq �
ķ

i�0

sup
xPr0,1s

|f piqpxq|.

The main result that we prove here is that for any fixed k P N0, given any Ck
�r0, 1s� function, there

exists an initial point a   0 and a Caputo-stationary function with initial point a, that in r0, 1s is
arbitrarily close (in the Ck norm) to the given function. More precisely:

Theorem 2.2.3. Let k P N0 and s P p0, 1q be two arbitrary parameters. Then for any f P
Ck

�r0, 1s� and any ε ¡ 0 there exists an initial point a   0 and a function u P C1,s
a such that

Ds
aupxq � 0 in r0,8q

and
}u� f}Ckpr0,1sq   ε.

In the next lines we recall some notions and make some preliminary remarks on the Caputo
derivative.

The reader can see Chapter 7.5 in [150] for the definition of absolutely continuous functions. In
particular, we use the following characterization, given in Theorem 7.29 in [150], that we recall in the
next Theorem.
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Theorem 2.2.4. A function f is absolutely continuous in ra, bs if and only if f 1 exists almost
everywhere in ra, bs, f 1 is integrable on ra, bs and

fpxq � fpaq �
» x
a

f 1ptq dt, a ¤ x ¤ b.

By convention, when we take the Caputo derivative Ds
a of a function, we assume that the function

is “causal”, i.e. that it is constant on p�8, aq. In particular, we take upxq � upaq for any x   a and
this, by the definition (2.44), implies that Ds

aupxq � 0 for x   a.
Moreover, we notice that if, for instance u P C2pRq, then

lim
sÑ0�

Ds
aupxq � upxq � upaq, lim

sÑ1�
Ds
aupxq � u1pxq.

Indeed,

|u1ptqpx� tq�s| ¤ |u1ptq|χra,x�1sptq � |u1ptq|px� tq�1{2χrx�1,xsptq P L1 pra, xsq ,
and using the Dominated Convergence Theorem we get that

lim
sÑ0�

Ds
aupxq � lim

sÑ0�

1

Γp1� sq
» x
a

u1ptqpx� tq�s dt � upxq � upaq.

Also, integrating by parts and using (A.6) we get that

Ds
aupxq �

u1paqpx� aq1�s
Γp2� sq � 1

Γp2� sq
» x
a

u2ptqpx� tq1�s dt.

Since
|u2ptqpx� tq1�s| ¤ |u2ptq|χra,x�1sptqpx� tq � |u2ptq|χrx�1,xsptq P L1 pra, xsq ,

using the Dominated Convergence Theorem we obtain that

lim
sÑ1�

Ds
aupxq � u1pxq.

The proof of Theorem 2.2.3 follows the steps of the sketch of the proof introduced in Subsection
2.1.5 for the fractional Laplacian. Here, we give a complete proof of the statement, taking into
account the structure of the Caputo derivative. As a matter of fact, the main idea of the proof is
(as for the fractional Laplacian) that one can build a Caputo-stationary function in say I � r0, 1s
by choosing a “good” given function as exterior datum. But while the fractional Laplacian takes
into account the entire space and the exterior datum is CI, the Caputo derivative considers only the
left-side complement and this reflects in the lack of symmetry of these exterior conditions. Namely,
the exterior datum is p�8, 0s, adding the convention that events start at a given point, say t0   0
and f is constant before time t0. This structure has to be accounted for when proving Theorem 2.2.3.

We reduce the proof of Theorem 2.2.3 to finding a Caputo-stationary function close to any mono-
mial. For this, we follow Step 1 of the sketch of the proof of Theorem 2.1.14, using the Stone
Weierstrass Theorem and the linearity of the Caputo derivative. In the rest of the section, we proceed
as follows: In Subsection 2.2.1, we obtain a representation formula for u, when Ds

aupxq � 0 in pb,8q
for a given b ¡ a and having prescribed u on p�8, bs. In Subsection 2.2.2, we prove that there exists a
sequence pvjqjPN of Caputo-stationary functions in p0,8q such that, uniformly on bounded subinter-
vals of p0,8q, we have that limjÑ8 vjpxq � κxs, for a suitable constant κ ¡ 0. Then, in Subsection
2.2.3 we prove that there exists a Caputo-stationary function with an arbitrarily large number of
derivatives prescribed. and the last Subsection 2.2.4 deals with the proof of Theorem 2.2.3.

2.2.1. A representation formula. We deduce here a Poisson-like representation formula for
a function u that is Caputo-stationary with initial point a in the interval pb,8q for b ¡ a, and fixed
outside. To do this, we prove that if u P C1,s

a , the two following problems are equivalent

Ds
aupxq � 0 in pb,8q,

» x
b

u1ptqpx� tq�s dt � gpxq in pb,8q,
prescribed data in p�8, bs, prescribed data in p�8, bs.
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Moreover, we present here an interior regularity result.

Figure 2.3. A Caputo-stationary function in pb,8q prescribed on p�8, bs

In this subsection, we fix the arbitrary parameters a, b P R with b ¡ a and s P p0, 1q.
Lemma 2.2.5. Let ϕ P C�p�8, bs�X C1

�ra, bs� such that ϕpxq � ϕpaq in p�8, as. Then u P C1,s
a

satisfies the equation
Ds
aupxq � 0 in pb,8q,
upxq � ϕpxq in p�8, bs

if and only if it satisfies» x
b

u1ptqpx� tq�s dt � �
» b
a

ϕ1ptqpx� tq�s dt in pb,8q,
upxq � ϕpxq in p�8, bs.

The reader can see a qualitative graphic of a function described by Lemma 2.2.5 in Figure 2.3.
An explicit example of such a function is build in Example 2.2.1, in Figure 2.5.

Proof. Since ϕ P C1
�ra, bs� we have for any x ¥ b���� » b

a

ϕ1ptqpx� tq�s dt
���� ¤ sup

tPra,bs
|ϕ1ptq| px� aq1�s � px� bq1�s

1� s
  8.

Hence the map x ÞÑ
» b
a

ϕ1ptqpx� tq�s dt is well defined in rb,8q. Using the definition (2.44) for x ¡ b

we have that

Γp1� sqDs
aupxq �

» x
b

u1ptqpx� tq�s dt�
» b
a

u1ptqpx� tq�s dt

�
» x
b

u1ptqpx� tq�s dt�
» b
a

ϕ1ptqpx� tq�s dt.

It follows that Ds
aupxq � 0 on pb,8q is equivalent to» x

b

u1ptqpx� tq�s dt � �
» b
a

ϕ1ptqpx� tq�s dt in pb,8q.

This concludes the proof of the Lemma. �

In the following Theorem we introduce a representation formula for an integro-differential equa-
tion.
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Theorem 2.2.6. Let g P C1,1�s
b . The problem» x
b

u1ptqpx� tq�s dt � gpxq in pb,8q,
upbq � 0

(2.45)

admits on rb,8q a unique solution u P C1,s
b . Moreover, for any x ¡ b,

upxq � sinπs

π

» x
b

gptqpx� tqs�1 dt. (2.46)

Proof. We prove this theorem by showing that u given in (2.46) is well defined, belongs to the

space C1,s
b and is the unique solution of the problem (2.45).

Since g belongs to C1,1�s
b (recall (2.43)), for any x ¡ b we have that

|upxq| ¤ sinπs

π

» x
b

|gptq|px� tqs�1 dt ¤ cs sup
tPrb,xs

|gptq|px� bqs   8,

where cs is a positive constant. Hence the definition (2.46) is well posed.

We prove that u belongs to C1,s
b . We claim that

g P C1,1�s
b and u as in (2.46) ñ

u P AC�rb,8q� and

u1pyq � sinπs

π

�» y
b

g1pτqpy � τqs�1 dτ � gpbqpy � bqs�1



a.e. in rb,8q.

(2.47)

We fix an arbitrary x ¡ b. According to definition (2.43), we have g P AC�rb, xs� and thanks to
Theorem 2.2.4 it follows that for any t P rb, xs

gptq �
» t
b

g1pτq dτ � gpbq.

And so in (2.46) we have that

π

sinπs
upxq �

» x
b

�» t
b

g1pτq dτ


px� tqs�1 dt� gpbq

» x
b

px� tqs�1 dt. (2.48)

We compute » x
b

px� tqs�1 dt � px� bqs
s

�
» x
b

py � bqs�1 dy. (2.49)

Tonelli theorem applied to the positive measurable function |g1pτq|px� tqs�1 on the domain

Db,x :�  pt, τq �� b ¤ t ¤ x, b ¤ τ ¤ t
(

(2.50)

with the product measure dpt, τq gives¼
Db,x

|g1pτq| px� tqs�1 dpt, τq �
» x
b

|g1pτq|
�» x

τ

px� tqs�1 dt



dτ

� 1

s

» x
b

|g1pτq|px� τqs dτ ¤ px� bqs
s

}g1}L1ppb,xqq,

(2.51)

which is a finite quantity. Hence |g1pτq|px�τqs�1 P L1
�
Db,x, dpt, τq

�
and by Fubini theorem and using

(3.119) it follows that» x
b

�» t
b

g1pτq dτ


px� tqs�1 dt �

» x
b

g1pτq
�» x

τ

px� tqs�1 dt



dτ

�
» x
b

g1pτq
�» x

τ

py � τqs�1 dy



dτ �

» x
b

�» y
b

g1pτqpy � τqs�1 dτ



dy.
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Inserting this and identity (3.119) into (4.62), we obtain that

π

sinπs
upxq �

» x
b

�» y
b

g1pτqpy � τqs�1 dτ � gpbqpy � bqs�1



dy.

Hence u is the integral function of a L1
�pb, xq� function (thanks to (2.51)) and recalling that upbq � 0,

according to Theorem 2.2.4 we have that u P AC�rb, xs�. Moreover, almost everywhere in rb, xs
π

sinπs
u1pyq �

» y
b

g1pτqpy � τqs�1 dτ � gpbqpy � bqs�1.

With this, given the arbitrary choice of x, we have proved the claim (2.47).
We claim now that u1p�qpx� �q�s P L1

�pb, xq�. Using the second identity in (2.47), we obtain that

π

sinπs

» x
b

|u1pyq|px� yq�s dy

¤
» x
b

�» y
b

|g1pτq|py � τqs�1 dτ



px� yq�s dy � |gpbq|

» x
b

py � bqs�1px� yq�sdy.
(2.52)

Tonelli theorem applied to the positive function |g1pτq|py � τqs�1px� yq�s on the domain Db,x given
in (2.50) with the product measure dpy, τq gives¼

Db,x

|g1pτq|py � τqs�1px� yq�s dpy, τq �
» x
b

|g1pτq|
�» x

τ

py � τqs�1px� yq�s dy


dτ.

By using the change of variables t � y � τ

x� τ
, thanks to the definition of the Beta function (A.12) and

identity (A.14) we have that» x
τ

py � τqs�1px� yq�s dy �
» 1

0

ts�1p1� tq�s dt � π

sinπs
. (2.53)

Hence we obtain that¼
Db,x

|g1pτq|py � τqs�1px� yq�s dpy, τq � π

sinπs
}g1}L1ppb,xqq. (2.54)

From this and using again (2.53) with b � τ , we obtain in (2.52) that» x
b

|u1pyq|px� yq�s dy ¤ }g1}L1ppb,xqq � |gpbq|.

Hence u1p�qpx��q�s P L1
�pb, xqq, as claimed. From this and (2.47), recalling definition (2.43) it follows

that u belongs to the space C1,s
b .

We prove now that u is a solution of the problem (2.45). Using the second identity in (2.47) we
have that

π

sinπs

» x
b

u1pyqpx� yq�s dy �
» x
b

�» y
b

g1pτqpy � τqs�1 dτ



px� yq�s dy

� gpbq
» x
b

py � bqs�1px� yq�s dy.
(2.55)

Thanks to (2.54), we have that |g1pτq|py�τqs�1px�yq�s P L1
�
Db,x, dpy, τq

�
. We apply Fubini theorem

and using (2.53) we get that» x
b

�» y
b

g1pτqpy � τqs�1px� yq�s dτ


dy �

» x
b

g1pτq
�» x

τ

py � τqs�1px� yq�s dy


dτ,

� π

sinπs
pgpxq � gpbqq .
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Thanks again to (2.53), in (2.55) it follows that» x
b

u1pyqpx� yq�s dy � gpxq,

therefore u is a solution of the problem (2.45).

The solution is unique. We prove this by taking two different solutions u1, u2 P C1,s
b of the problem

(2.45). Let u :� u1 � u2, then u satisfies» x
b

u1ptqpx� tq�s dt � 0 in pb,8q,
upbq � 0.

We take any y ¡ x, we multiply both terms by the positive quantity py� xqs�1, integrate from b to y
and obtain that » y

b

�» x
b

u1ptqpx� tq�s dt


py � xqs�1 dx � 0. (2.56)

Since u P C1,s
b , we use Tonelli theorem on Db,y (we recall definition (2.50)) and by (2.53) we obtain

that ¼
Db,y

|u1ptq|px� tq�spy � xqs�1 dpx, tq �
» y
b

|u1ptq|
�» y

t

px� tq�spy � xqs�1 dx



dt

� π

sinπs
}u1}L1ppb,yqq,

which is a finite quantity. Fubini theorem then allows us to compute» y
b

�» x
b

u1ptqpx� tq�s dt


py � xqs�1 dx �

» y
b

u1ptq
�» y

t

px� tq�spy � xqs�1 dx



dt

� π

sinπs
upyq.

It follows from (4.2.1) and from the initial condition upbq � 0 that u1pxq � u2pxq on rb,8q. Therefore
u given in (2.46) is the unique solution of the problem (2.45) and this concludes the proof of the
Theorem. �

We introduce an interior regularity result.

Lemma 2.2.7. Let g P C8�rb,8q� and u be defined as in (2.46). Then u P C8�pb,8q�.

Proof. We prove by induction that the next statement, which we call P pnq, holds for any n P N:

u P Cn�pb,8qq
and

upnqpyq � sinπs

π

�» y
b

gpnqpτqpy � τqs�1 dτ �
n�1̧

i�0

c̃s,ig
piqpbqpy � bqs�n�i

�
for any y P pb,8q,

(2.57)

where

c̃s,i �
#
ps� 1q . . . ps� n� i� 2qps� n� i� 1q for i � n� 1

1 for i � n� 1.
(2.58)

We denote by

vpyq :�
» y
b

g1pτqpy � τqs�1 dτ

and from (2.47) we have that almost anywhere in rb,8q
u1pyq � sinπs

π

�
vpyq � gpbqpy � bqs�1

�
. (2.59)
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Since g P C8�rb,8q�, we have in particular that g1 P C1,1�s
b hence from the definition of v and (2.47)

we get that v P AC�rb,8q�. It follows that u1 P C�pb,8q�, since it is a sum of continuous functions.

Therefore u P C1
�pb,8q� and (2.59) holds pointwise in pb,8q. And so P p1q is true.

In order to prove the inductive step, we suppose that P pnq holds and prove P pn� 1q. Let now

vpyq :�
» y
b

gpnqpτqpy � τqs�1 dτ.

From (2.57) we have that for any y P pb,8q

upnqpyq � sinπs

π

�
vpyq �

n�1̧

i�0

c̃s,ig
piqpbqpy � bqs�n�i

�
. (2.60)

Since g P C8�rb,8q�, in particular we have that gpnq P C1,1�s
b , hence from the definition of v and

thanks to (2.47) we get that v P AC�rb,8q� and almost everywhere on rb,8q

v1pyq �
» y
b

gpn�1qpτqpy � τqs�1 dτ � gpnqpbqpy � bqs�1.

Now, also gpn�1q P C1,1�s
b and so, thanks to (2.47), the map

y ÞÑ
» y
b

gpn�1qpτqpy � τqs�1 dτ P AC�rb,8q�. (2.61)

It yields that v P C1
�pb,8q� and so from (2.60) we get that upn�1q P C�pb,8q�. Taking the derivative

of (2.60) we have that pointwise in pb,8q
π

sinπs
upn�1qpyq �

» y
b

gpn�1qpτqpy � τqs�1 dτ � gpnqpbqpy � bqs�1

�
n�1̧

i�0

c̃s,ig
piqpbqps� n� iqpy � bqs�n�i�1

�
» y
b

gpn�1qpτqpy � τqs�1 dτ �
ņ

i�0

c̃s,ig
piqpbqpy � bqs�n�i,

where we have used (2.58) in the last line. Therefore the statement P pn� 1q is true and the proof by
induction is concluded.

It finally yields that u P C8�pb,8q� and this concludes the proof of the Lemma. �

2.2.2. Building a sequence of Caputo-stationary functions. In this subsection we build
a sequence of functions that are Caputo-stationary in p0,8q and that tends uniformly on bounded
subintervals of p0,8q to the function xs. We do this by building a Caputo-stationary function in
p1,8q, that at the point 1� ε is asymptotic to εs and then we use a blow-up argument.

We fix the arbitrary parameter s P p0, 1q. We introduce the first Lemma of this subsection.

Lemma 2.2.8. Let ψ0 P C1
�r0, 1s�X C

�p�8, 1s� be such that

ψ0pxq � ψ0p0q for any x P p�8, 0s,

ψ0pxq � 0 for any x P
�

3

4
, 1

�
,

ψ10pxq   0 for any x P
�
0,

3

4



.

(2.62)

Let ψ P C1,s
0 be the solution of the problem

Ds
0ψpxq � 0 in p1,8q,
ψpxq � ψ0pxq in p�8, 1s. (2.63)
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Then ψ P C8�p1,8q� and if x � 1� ε, we have that

ψp1� εq � κεs �Opεs�1q (2.64)

as εÑ 0, for some κ ¡ 0.

An explicit example of a function described in Lemma 2.2.8 is depicted in Figure 2.6 in Example
2.2.2.

Proof of Lemma 2.2.8. Thanks to Lemma 2.2.5 we have that ψ P C1,s
0 is solution of the prob-

lem (2.63) if and only if» x
1

ψ1ptqpx� tq�s dt � �
» 3{4

0

ψ10ptqpx� tq�s dt in p1,8q,
ψpxq � ψ0pxq in p�8, 1s.

On r1,8q we define the function

gpxq :� �
» 3{4

0

ψ10ptqpx� tq�s dt, (2.65)

hence our problem is now » x
1

ψ1ptqpx� tq�s dt � gpxq in p1,8q,
ψpxq � ψ0pxq in p�8, 1s.

(2.66)

We claim that g P C8�r1,8q�. For that, let F : r1,8q � r0, 3{4s Ñ R be defined as F px, tq :�
ψ10ptqpx� tq�s. Now, for any h ¡ 0 arbitrarily small we have that����F px� h, tq � F px, tq

h

���� ¤ sup
tPr0,3{4s

|ψ10ptq|
���� px� h� tq�s � px� tq�s

h

����.
Since the map r1,8q Q x ÞÑ px� tq�s is differentiable for any t P r0, 3{4s, by the Mean Value Theorem
we have that for θ P p0, hq���� px� h� tq�s � px� tq�s

h

���� ¤ spx� θ � tq�s�1 ¤ spx� tq�s�1.

Then ����F px� h, tq � F px, tq
h

���� ¤ s sup
tPr0,3{4s

|ψ10ptq|px� tq�s�1 P L1
�r0, 3{4s, dt�,

hence by the Dominated Convergence Theorem, we can pass the limit inside the integral and obtain
that

g1pxq � �
» 3{4

0

BxF px, tq dt � s

» 3{4

0

ψ10ptqpx� tq�s�1 dt.

We can now take for any n P N the function Fn : r1,8q�r0, 3{4s Ñ R to be Fnpx, tq :� ψ10ptqpx�tq�s�n
and repeat the above argument. We obtain that g is C8�r1,8q�, as claimed and moreover for any
n P N0 we have that

gpnqpxq � �c̄s,n
» 3{4

0

ψ10ptqpx� tq�s�n dt, (2.67)

where

c̄s,n �
#
p�sqp�s� 1q . . . p�s� n� 1q for n � 0

1 for n � 0.
(2.68)
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Since ψp1q � 0 and g P C8�r1,8q� (hence in particular g P C1,1�s
1 ), thanks to Theorem 2.2.6 we

get that the problem (2.66) admits a unique solution ψ P C1,s
1 given by

ψpxq � sinπs

π

» x
1

gptqpx� tqs�1 dt in p1,8q,
ψpxq � ψ0pxq in p�8, 1s.

(2.69)

Moreover, we claim that ψ P C1,s
0 . Indeed, from Lemma 2.2.7 we get that ψ P C8�p1,8q�. Also

limxÑ1� ψpxq � 0 � ψp1q and so from this and the hypothesis we have that ψ P C8�p1,8q� X
C1

�r0, 1s�X CpRq, hence ψ P AC�r0,8q�. Also for any x ¡ 0» x
0

|ψ1ptqpx� tq�s| dt ¤ cs}ψ1}L8pp0,xqqx1�s   8,

and so the claim follows from definition (2.43). Therefore, ψ P C1,s
0 is the unique solution of problem

(2.66) and from Lemma 2.2.5 it follows that (2.69) is also the unique solution of problem the (2.63).

We prove now the claim (2.64). Let x � 1� ε. Then from (2.69) we have that

π

sinπs
ψp1� εq �

» 1�ε

1

gpτqp1� ε� τqs�1 dτ.

The change of variables z � pτ � 1q{ε gives

π

sinπs
ψp1� εq � εs

» 1

0

gpεz � 1qp1� zqs�1 dz.

Using definition (2.65) we have that

gpεz � 1q � �
» 3{4

0

ψ10ptqpεz � 1� tq�s dt,

hence

π

sinπs
ψp1� εq � �εs

» 1

0

�» 3{4

0

ψ10ptqpεz � 1� tq�s dt
�
p1� zqs�1 dz.

Tonelli theorem on r0, 1s � r0, 3{4s applied to the function |ψ10ptq|pεz � 1� tq�sp1� zqs�1 yields¼
r0,1s�r0,3{4s

|ψ10ptq|pεz � 1� tq�sp1� zqs�1dpt, zq

�
» 3{4

0

|ψ10ptq|
�» 1

0

p1� zqs�1pεz � 1� tq�s dz


dt.

We have that pεz � 1� tq�s ¤ p1� tq�s ¤ 4s, hence» 3{4

0

|ψ10ptq|
�» 1

0

p1� zqs�1pεz � 1� tq�s dz


dt ¤ 4s

» 3{4

0

|ψ10ptq|
�» 1

0

p1� zqs�1 dz



dt

¤ 3 � 4s�1

s
sup

tPr0,3{4s
|ψ10ptq|,

which is finite. Therefore |ψ10ptq|pεz � 1 � tq�sp1 � zqs�1 P L1
�r0, 1s � r0, 3{4s, dpt, zq� and by Fubini

theorem we have that

π

sinπs
ψp1� εq � � εs

» 3{4

0

ψ10ptq
�» 1

0

pεz � 1� tq�sp1� zqs�1 dz



dt

� � εs
» 3{4

0

ψ10ptqIspε, tq dt.
(2.70)
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We consider the function fpzq � pεz�1�tq�s and make a Taylor expansion with a Lagrange reminder
in 0. Namely, one has that there exists c P p0, zq such that

pεz � 1� tq�s �
ņ

i�0

c̄s,i
i!
εip1� tq�s�izi � c̄s,n�1

pn� 1q!ε
n�1pεc� 1� tq�s�n�1zn�1,

where c̄s,i is given in (2.68). Using this, we have that

Ispε, tq �
ņ

i�0

c̄s,i
i!
εip1� tq�s�i

» 1

0

p1� zqs�1zi dz

� c̄s,n�1

pn� 1q!ε
n�1pεc� 1� tq�s�n�1

» 1

0

p1� zqs�1zn�1 dz.

We use the definition (A.12) of the Beta function and continue

Ispε, tq �
ņ

i�0

c̄s,iβpi� 1, sq
i!

εip1� tq�s�i � c̄s,n�1βpn� 2, sq
pn� 1q! εn�1pεc� 1� tq�s�n�1.

In (2.70) we obtain that

π

sinπs
ψp1� εq � � εs

ņ

i�0

c̄s,iβpi� 1, sq
i!

εi
» 3{4

0

ψ10ptqp1� tq�s�i dt

� εs�n�1 c̄s,n�1βpn� 2, sq
pn� 1q!

» 3{4

0

ψ10ptqpεc� 1� tq�s�n�1 dt.

(2.71)

We notice that pεc� 1� tq�s�n�1 ¤ 4s�n�1 and it follows that���� » 3{4

0

ψ10ptqpεc� 1� tq�s�n�1 dt

���� ¤ 3 � 4s�n sup
tPr0,3{4s

|ψ10ptq|,

which is finite. We define then the finite quantities

Cs,ψ0,i :� � c̄s,iβpi� 1, sq
i!

» 3{4

0

ψ10ptqp1� tq�s�i dt

� βpi� 1, sq
i!

gpiqp1q for i � 0, . . . , n

and

Cs,ψ0,n�1 :� � c̄s,n�1βpn� 2, sq
pn� 1q!

» 3{4

0

ψ10ptqpεc� 1� tq�s�n�1 dt

� βpn� 2, sq
pn� 1q! gpn�1qpεc� 1q,

where we have used (2.67).
It follows in (2.71) that

π

sinπs
ψp1� εq �

n�1̧

i�0

Cs,ψ0,iε
s�i.

This gives for εÑ 0 that

ψp1� εq � κεs �Opεs�1q,
where

κ � Cs,ψ,0 � βp1, sqgp1q� � βp1, sq
» 3{4

0

ψ10ptqp1� tq�s dt.
Since �ψ10pxq ¡ 0 in r0, 3{4q by hypothesis (see (2.62)), we have that

�
» 3{4

0

ψ10ptqp1� tq�s dt ¡ 0.
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This implies that κ is strictly positive and it concludes the proof of the Lemma. �

Blowing up the function built in Lemma 2.2.8, we obtain a sequence of Caputo-stationary functions
in p0,8q that on p0,8q tends to the function xs.

Lemma 2.2.9. There exists a sequence pvjqjPN of functions vj P C1,s
�j X C8�p0,8q� such that for

any j P N
Ds
�jvjpxq � 0 in p0,8q,
vjpxq � 0 in

�
� j

4
, 0
� (2.72)

and for any x ¡ 0
lim
jÑ8

vjpxq � κxs, (2.73)

for some κ ¡ 0. Moreover, on any bounded subinterval I � p0,8q the convergence is uniform.

A qualitative example of a sequence described in Lemma 2.2.9 is depicted in Figure 2.4.

Figure 2.4. A sequence of Caputo-stationary functions in p0,8q

Proof. We consider the function ψ solution of the problem (2.63) as introduced in Lemma 2.2.8,
and define for any j P N

vjpxq :� jsψ

�
x

j
� 1



.

Since ψ P C1,s
0 X C8�p1,8q�, then vj P C1,s

�j X C8�p0,8q�. Also, since ψ is solution of the problem

(2.63), we have that

Ds
�jvjpxq �

1

Γp1� sq
» x
�j
v1jptqpx� tq�s dt

� js�1

Γp1� sq
» x
�j
ψ1
� t
j
� 1

	
px� tq�s dt.

We use the change of variables y � t{j � 1 and obtain

Ds
�jvjpxq �

1

Γp1� sq
» x{j�1

0

ψ1pyq
�x
j
� 1� y

	�s
dy � Ds

0ψ
�x
j
� 1

	
.

This implies that Ds
�jvjpxq � 0 (using (2.63)) when x ¡ 0. So, using Lemma 2.2.8 and the definition

in vj , we easily verify that for any j P N the functions vj P C1,s
�j X C8�p0,8q� satisfy

Ds
�jvjpxq � 0 in p0,8q,

vjpxq � 0 in

�
� j

4
, 0

�
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and

vjpxq � jsψ0

�
x

j
� 1



in p�8, 0s,

vjpxq � jsψ0p0q in p�8,�js.
In particular, vj is solution of the problem (2.72) for any j ¥ 1.

Now, using (2.64), for x ¡ 0 and for a large j we have that

vjpxq � jsψ

�
x

j
� 1



� js

�
κ
xs

js
�O

�
xs�1

js�1




� κxs �O

�
xs�1

j



.

By sending j to infinity we obtain that

lim
jÑ8

vjpxq � κxs.

On any bounded subinterval I � p0,8q, we have that

lim
jÑ8

sup
xPI

|vjpxq � κxs| � 0.

It follows also that on any bounded subinterval I � p0,8q the sequence vj is uniformly bounded. This
concludes the proof of the Lemma. �

2.2.3. A Caputo-stationary function with derivatives prescribed. Using Lemma 2.2.9
we prove that there exists a Caputo-stationary function with arbitrarily large number of derivatives
prescribed. More precisely:

Theorem 2.2.10. For any m P N there exist a point p ¡ 0, a constant R ¡ 0 and a function
v P C1,s

�R X C8�p0,8q� such that

Ds
�Rvpxq � 0 in p0,8q,

vpxq � 0 in
�
� R

4
, 0
� (2.74)

and
vplqppq � 0 for any l   m

vpmqppq � 1.
(2.75)

Proof. We consider Z to be the set of the pairs pv, xq of all functions v P C1,s
�R X C8�p0,8q�

satisfying conditions (2.74) for some R ¡ 0, and x P p0,8q. So let

Z :�
!
pv, xq �� x P p0,8q and DR ¡ 0 s.t. v P C1,s

�R X C8�p0,8q�, Ds
�Rv � 0 in p0,8q,

v � 0 in
�
� R

4
, 0
�)
.

We fix m P N. To each pair pv, xq P Z we associate the vector
�
vpxq, v1pxq, . . . , vpmqpxq� P Rm�1

and consider V to be the vector space spanned by this construction. We claim that this vector space
exhausts Rm�1. Suppose by contradiction that this is not so and V lays in a hyperplane. Then there
exists a vector pc0, c1, . . . , cmq P Rm�1zt0u orthogonal to any vector

�
vpxq, v1pxq, . . . , vpmqpxq� with

pv, xq P Z, hence
m̧

i�0

civ
piqpxq � 0.

We notice that for any j ¥ 1 the pairs pvj , xq with vj satisfying problem (2.72) and x P p0,8q belong
to the set Z. It follows that for any j ¥ 1 we have that

m̧

i�0

civ
piq
j pxq � 0. (2.76)



2.2. DENSITY OF CAPUTO STATIONARY FUNCTIONS IN THE SPACE OF SMOOTH FUNCTIONS 57

Let ϕ P C8
c

�p0,8q� be a smooth compactly supported function. Integrating by parts we have
that for every i P N0 »

R
v
piq
j pxqϕpxq dx � p�1qi

»
R
vjpxqϕpiqpxq dx.

Thanks to Lemma 2.2.9, the sequence vj is uniformly convergent to κxs on any bounded subinterval
I � p0,8q, for some κ ¡ 0. By the Dominated Convergence Theorem we have that

lim
jÑ8

»
R
v
piq
j pxqϕpxq dx � p�1qi lim

jÑ8

»
R
vjpxqϕpiqpxq dx � p�1qi

»
R
κxsϕpiqpxq dx.

We integrate by parts one more time and obtain that

p�1qi
»
R
κxsϕpiqpxq dx �

»
R
κpxsqpiqϕpxq dx.

It follows that

lim
jÑ8

»
R
v
piq
j pxqϕpxq dx �

»
R
κpxsqpiqϕpxq dx.

Multiplying by ci and summing up, we obtain that

lim
jÑ8

»
R

m̧

i�0

civ
piq
j pxqϕpxq dx �

»
R

m̧

i�0

ciκpxsqpiqϕpxq dx.

From this and equality (2.76) we finally obtain that

0 �
»
R

m̧

i�0

ciκpxsqpiqϕpxq dx

for any ϕ P C8
c

�p0,8q�. This implies that on p0,8q

0 � κ
m̧

i�0

cipxsqpiq � κ
m̧

i�0

cisps� 1q . . . ps� i� 1qxs�i.

We divide this relation by κ (that is strictly positive), multiply by xm�s and obtain that for any
x P p0,8q

m̧

i�0

cisps� 1q . . . ps� i� 1qxm�i � 0.

We have here a polynomial that vanishes for any positive x. Thanks to the fact the s P p0, 1q the
product sps� 1q . . . ps� i� 1q is never zero, therefore one must have ci � 0 for every i P N0. This is a
contradiction since the vector pc0, . . . , cmq was assumed not null. Hence the vector space V exhausts
Rm�1 and there exists pv, pq P Z such that

�
vppq, v1ppq, . . . , vpmqppq� � p0, 0, . . . , 1q. This concludes

the proof of Theorem 2.2.10. �

2.2.4. Proof of the density result. This subsection is dedicated to the proof of Theorem 2.2.3.

Proof of Theorem 2.2.3. We prove that for any m P N and any monomial qmpxq � xm there
exists a Caputo-stationary function u such that

}u� qm}Ckpr0,1sq   ε.

For an arbitrary m P N, we take for convenience the monomial

qmpxq � xm

m!
.

Also, we consider p,R ¡ 0 and the function v as introduced in Theorem 2.2.10 and we translate and
rescale v. Let δ be a positive quantity (to be taken conveniently small in the sequel) and let u be the
function

upxq :� vpδx� pq
δm

.
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Since v P C1,s
�R X C8�p0,8q� we have that u P C1,s

�p�R
δ

X C8
��

� p

δ
,8

		
and

Γp1� sqDs
�p�R
δ

upxq �
» x
�p�R
δ

u1ptqpx� tq�s dt

� δ1�m
» x
�p�R
δ

v1pδt� pqpx� tq�s dt.

We change the variable y � δt� p and obtain that

Γp1� sqDs
�p�R
δ

upxq � δs�m
» δx�p
�R

v1pyqpδx� p� yq�s dy
� Γp1� sqDs

�Rvpδx� pq.

Let a :� �p�R

δ
. Using the properties (2.74) of v we obtain that

Ds
aupxq � 0 in

�
� p

δ
,8

	
.

With this notation, we have that u P C1,s
a and since �p

δ
  0, that Ds

aupxq � 0 in r0,8q.
Furthermore, from the conditions (2.75) and the definition of u we get that

uplqp0q � δl�mvplqppq � 0 for any l   m

upmqp0q � vpmqppq � 1.

Let for any x ¡ �p{δ
gpxq :� upxq � qmpxq.

We have that
gplqp0q � 0 for any l ¤ m and

gpm�lqpxq � upm�lqpxq for any l ¥ 1.
(2.77)

Moreover for l ¥ 1 we have that upm�lqpxq � δlvpm�lqpδx� pq and it follows that

|gpm�lqpxq| � δl|vpm�lqpδx� pq|.
Hence for x P r0, 1s we have the bound

|gpm�lqpxq| ¤ δl sup
yPrp,p�δs

|vpm�lqpyq| � C̃δl, (2.78)

where C̃ is a positive constant. We consider the derivative of order k of g and take its Taylor expansion
with the Lagrange reminder. Thanks to (2.77), for some c P p0, xq we have that

gpkqpxq �
k�m�1¸

i�maxtk,m�1u
gpiqp0q xi�k

pi� kq! � gpm�k�2qpcq xm�2

pm� 2q! .

Using (2.78) for any x P r0, 1s, eventually renaming the constants we have that

|gpkqpxq| ¤ C
k�2̧

i�maxt1,k�mu
δi,

therefore for k P N0

|gpkqpxq| � |qpkqm pxq � upkqpxq| � Opδq.
If we let δ Ñ 0 we have that upkq approximates q

pkq
m . Finally, for any small εpδq ¡ 0

}u� qm}Ckpr0,1sq   ε

and this concludes the proof of Theorem 2.2.3. �
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We give here some explicit examples related to some Lemmas that were introduced in this section.

Example 2.2.1. To give an example of Lemma 2.2.5, we take a � 0, b � 1, s � 1{2 and the

function ϕpxq � x in r0, 1s and ϕpxq � 0 in p�8, 0q. We built the function u P C1,1{2
0 that satisfies

D
1
2
0 upxq � 0 in p1,8q,
upxq � x in r0, 1s,
upxq � 0 in p�8, 0q.

(2.79)

Let

gpxq :� �
» 1

0

ϕ1ptq?
x� t

dt � �
» 1

0

px� tq 1
2 dt � 2

?
x� 1� 2

?
x.

According to Lemma 2.2.5 and to Theorem 2.2.6, the unique solution of the problem (2.79) is given
by

upxq � up1q � 1

π

» x
1

gptq?
x� t

dt,

and computing, this gives

upxq � 2

π

�
x arcsin

1?
x
�?

x� 1



.

We depict this function in the following Figure 2.5.

Figure 2.5. A Caputo-stationary function in p1,8q prescribed on p�8, 1s

Example 2.2.2. In Lemma 2.2.8, we take a � 0, b � 1, s � 1{2 and the quadratic function

ψ0pxq �

$'''&'''%
16

9

�
x� 3

4


2

in

�
0,

3

4

�
,

0 in

�
3

4
, 1

�
.

So we are looking for a function ψ P C1,1{2
0 that satisfies

D
1
2
0 ψpxq � 0 in p1,8q,
ψpxq � ψ0pxq in p�8, 1s.

(2.80)
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The solution, according again to Lemma 2.2.5 and to Theorem 2.2.6 is given by

ψpxq � 1

π

» x
1

gptqpx� tq� 1
2 dt, where gptq � �

» 3
4

0

ψ10ptqpx� tq� 1
2 dt.

Computing this, we have that

gptq � �16

27

�
8t

3
2 � 9t

1
2 � p4t� 3q 3

2

	
and

27πψpxq � 27π �?
x� 1p�48x� 52q � arcsin

1?
x
p96x2 � 144xq

� arcsin
1?

4x� 3
p96x2 � 144x� 54q.

We depict this function in the following Figure 2.6.

Figure 2.6. A Caputo-stationary function in p1,8q prescribed on p�8, 1s



CHAPTER 3

Potential theory approach to the fractional Laplacian

Abstract. In this chapter, we give a self-contained elementary exposition of the representation

formula for the Green function on the ball. In this exposition, only elementary calculus techniques

will be used, in particular, no probabilistic methods or computer assisted algebraic manipulations are
needed. The main result of the first section in itself is not new (see for instance [19,101]), however we

believe that the exposition is original and easy to follow. In the last section of the Chapter we present

an elementary approach for the proof of the Schauder estimates for the equation p�∆qsupxq � fpxq,
with f having a modulus of continuity ωf . This is based on the Poisson representation formula

and dyadic ball approximation argument. We give the explicit modulus of continuity of u in balls

Brpxq � Rn in terms of ωf .

3.1. Some observations on the Green function on the ball

The Green function for the ball in a fractional Laplace framework naturally arises in the study
of the representation formulas for the fractional Laplace equations. In particular, in analogy to the
classical case of the Laplacian, given an equation with a known forcing term on the ball and vanishing
Dirichlet data outside the ball, the representation formula for the solution is precisely the convolution
of the Green function with the forcing term. As in the classical case, the Green function is introduced
in terms of the Poisson kernel. For this, we will provide both the representation formulas for the
problems #

p�∆qsu � 0 in Br,

u � g in RnzBr
(3.1)

and #
p�∆qsu � g in Br,

u � 0 in RnzBr
(3.2)

in terms of the fractional Poisson kernel and respectively the Green function. Moreover, we will prove
an explicit formula for the Green function on the ball.

Here follow some notations and a few preliminary notions.

Check the Appendix A.1 for a brief introduction to the Fourier transform. We add here that pf is
the Fourier transform of f in a distributional sense, for f that satisfies»

Rn

|fpxq|
1� |x|p dx   8 for some p P N

if for any ϕ P SpRnq we have that»
Rn

pfpxqϕpxq dx � »
Rn
fpxqpϕpxq dx. (3.3)

We remark that the integral notation is used in a formal manner whenever the arguments are not
integrable.

We introduce the notion of distributional solution. Following the approach in [140] (see Definition
2.1.3), we introduce a suitable functional space where distributional solutions can be defined. Let

SspRnq :�
!
f P C8pRnq �� @α P Nn

0 , sup
xPRn

�
1� |x|n�2s

�|Dαfpxq|   �8
)
.

61
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The linear space SspRnq endowed with the family of seminorms

rf sαSspRnq :� sup
xPRn

�
1� |x|n�2s

�|Dαfpxq|

is a locally convex topological space. We denote with S 1spRnq the topological dual of SspRnq.
We notice that if ϕ P SpRnq then p�∆qsϕ P SspRnq, which makes this framework appropriate for

the distributional formulation. In order to prove this, we observe that for any x P RnzB1 the bound

|p�∆qsϕpxq| ¤ cn,s|x|�n�2s (3.4)

follows from the upcoming computation and the fact that ϕ P SpRnq
|p�∆qsϕpxq|

¤
»
B |x|

2

��2ϕpxq � ϕpx� yq � ϕpx� yq��
|y|n�2s

dy � 2

»
RnzB |x|

2

��ϕpxq � ϕpx� yq��
|y|n�2s

dy

¤ cn,s|x|�n�2s

�
sup
zPRn

p1� |z|qn�2|D2ϕpzq| � sup
zPRn

p1� |z|qn|ϕpzq| � }ϕ}L1pRnq



.

Moreover, we observe that, up to constants,

Bxip�∆qsϕpxq � BxiF�1
�
|ξ|2s pϕpξq	pxq � F�1

�
iξi|ξ|2s pϕpξq	pxq

� F�1
�
|ξ|2szBxiϕpξq	pxq � p�∆qsBxiϕpxq.

Hence, by iterating the presented argument, one proves that p�∆qsϕ P SspRnq, which gives the claim.
And so:

Definition 3.1.1. Let f P S 1pRnq, we say that u P S 1spRnq is a distributional solution of

p�∆qsu � f in Rn

if

xu, p�∆qsϕys �
»
Rn
fpxqϕpxq dx for any ϕ P SpRnq, (3.5)

where x�, �ys denotes the duality pairing of S 1spRnq and SspRnq and the latter (formal) integral notation
designates the pairing SpRnq and S 1pRnq.
We use the integral notation in (3.5) in a formal manner whenever the arguments are not integrable.
Notice that the inclusion L1

spRnq � S 1spRnq holds, in particular for any u P L1
spRnq and ψ P SspRnq

we have that ���xu, ψys��� ¤ »
Rn
|upxq| |ψpxq| dx ¤

»
Rn

|upxq|
1� |x|n�2s

p1� |x|n�2sq|ψpxq| dx

¤ rψs0SspRnq}u}L1
spRnq.

(3.6)

We introduce now the four functions Ar, Φ, Pr and G, namely the s-mean kernel, the fundamental
solution, the Poisson kernel and the Green function. The reader can see Section 2.2 in [72] for the
theory in the classical case.

Definition 3.1.2. Let r ¡ 0 be fixed. Then

Arpyq :�
$&%cpn, sq

r2s

p|y|2 � r2qs|y|n y P RnzBr,
0 y P Br,

(3.7)

where cpn, sq ¡ 0.
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Definition 3.1.3. For any x P Rnzt0u

Φpxq :�
$&%apn, sq|x|

�n�2s if n � 2s,

a
�

1,
1

2

	
log |x| if n � 2s,

(3.8)

where apn, sq ¡ 0.

Definition 3.1.4. Let r ¡ 0 be fixed. For any x P Br and any y P RnzBr

Prpy, xq :� cpn, sq
�
r2 � |x|2
|y|2 � r2

�s
1

|x� y|n . (3.9)

The Poisson kernel Pr gives a function which is known outside the ball and s-harmonic inside (i.e., a
solution for the problem (3.1)), by convolution with the known exterior data. Indeed:

Theorem 3.1.5. Let r ¡ 0, g P L1
spRnq X CpRnq and let

ugpxq :�
$&%
»
RnzBr

Prpy, xqgpyq dy if x P Br,
gpxq if x P RnzBr.

(3.10)

Then ug is the unique pointwise continuous solution of the problem (3.1)#
p�∆qsu � 0 in Br,

u � g in RnzBr.
Definition 3.1.6. Let r ¡ 0 be fixed. For any x, z P Br and x � z,

Gpx, zq :� Φpx� zq �
»
RnzBr

Φpz � yqPrpy, xq dy. (3.11)

A formula for the Green function G that is more suitable for applications is introduced in the following
result.

Theorem 3.1.7. Let r ¡ 0 be fixed and let G be the function defined in (3.11). Then if n � 2s

Gpx, zq � κpn, sq|z � x|2s�n
» r0px,zq

0

ts�1

pt� 1qn2 dt, (3.12)

where

r0px, zq � pr2 � |x|2qpr2 � |z|2q
r2|x� z|2 (3.13)

and κpn, sq ¡ 0.
For n � 2s, the following holds

Gpx, zq � κ
�

1,
1

2

	
log

�
r2 � xz �apr2 � x2qpr2 � z2q

r|z � x|


. (3.14)

This result is not new (see [19,101]), however, the proof we provide uses only calculus techniques,
therefore we hope it will be accessible to a wide audience. It makes elementary use of special functions
like the Euler-Gamma function, the Beta and the hypergeometric function, that are introduced in the
Appendix A.2 (see also references therein).

The main property of the Green function is stated in the next theorem, as it gives the solution
of an equation with a known forcing term in a ball and vanishing Dirichlet data outside the ball, by
convolution with the forcing term. While this convolution property in itself may be easily guessed
from the superposition effect induced by the linear character of the equation, the main property that
we point out is that the convolution kernel is explicitly given by the function G.
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Theorem 3.1.8. Let r ¡ 0, h P C0,εpBrq X CpBrq and let

upxq :�
$&%
»
Br

hpyqGpx, yq dy if x P Br,
0 if x P RnzBr.

Then u is the unique pointwise continuous solution of the problem (3.2)#
p�∆qsu � h in Br,

u � 0 in RnzBr.
The proof is classical, and makes use of the properties and representation formulas involving the two
functions Φ and Pr.

We are also interested in the values of the normalization constants that appear in the definitions
of the s-mean kernel (and the Poisson kernel) and of the fundamental solution. We will deal separately
with the two cases n � 2s and n � 2s. We have the following definition:

Definition 3.1.9. The constant apn, sq introduced in definition (3.8) is

apn, sq : � Γpn2 � sq
22sπ

n
2 Γpsq for n � 2s, (3.15)

a
�

1,
1

2

	
: � � 1

π
for n � 2s. (3.16)

The constant cpn, sq introduced in definition (3.7) is

cpn, sq :� Γpn2 q sinπs

π
n
2 �1

. (3.17)

These constants are used for normalization purposes, and we explicitly clarify how their values arise.
However, these values are only needed to compute the constant κpn, sq from Theorem 3.1.7, and have
no role for the rest of our discussion. Indeed, we explicitly compute:

Theorem 3.1.10. The constant κpn, sq introduced in identity (3.12) is

κpn, sq � Γpn2 q
22sπ

n
2 Γ2psq for n � 2s,

κ
�

1,
1

2

	
� 1

π
for n � 2s.

One interesting thing that we want to point out here is related to the two constants Cpn, sq and
cpn, sq. The constant Cpn, sq is given in [55] in the definition of the fractional Laplacian, is consistent
with the Fourier expression of the fractional Laplacian, and was explicitly computed in (2.14). The
constant cpn, sq is introduced in [102] in the definition of the s-mean kernel and the Poisson-kernel,
and is here given in (3.17). It is used to normalize the Poisson kernel (and the s-mean kernel), and
is consistent with the constants used for the fundamental solution and the Green function. Hence,
the two constants are used for different normalization purposes, and they have similar asymptotic
properties. In the following proposition we give another proof of the explicit expression obtained in
(2.14).

Theorem 3.1.11. The constant Cpn, sq is given by

Cpn, sq � 22ssΓ
�
n
2 � s

�
π
n
2 Γp1� sq . (3.18)

This section is structured as follows: in Subsection 3.1.1 we define the s-mean value property
by means of the s-mean kernel and prove that if a function has the s-mean value property then it
is s-harmonic. Subsection 3.1.2 deals with the study of the function Φ as the fundamental solution
of the fractional Laplacian. The fractional Poisson kernel is introduced in Subsection 3.1.3, and the
representation formula for equation (3.1) is obtained. Subsection 3.1.4 focuses on the Green function,
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and there we prove Theorems 3.1.7 and 3.1.8. The computation of the normalization constants
introduced at the beginning of this section is done at the end of Subsection 3.1.4. In Subsection
3.1.5 we recall the point inversion transformations and present some calculus identities that we use in
this section.

Throughout this section, we fix the fractional parameter s P p0, 1q.
3.1.1. The s-mean value property. We give here some properties of the s-mean kernel. The

s-mean value property of the function u is an average property defined by convolution of u with the
s-mean kernel. We recall the definition (2.2.9) of the weighted L1 space.

Definition 3.1.12 (s-mean value property). Let x P Rn. We say that u P L1
spRnq, continuous in

a neighborhood of x, has the s-mean value property at x if, for any r ¡ 0 arbitrarily small,

upxq � Ar � upxq. (3.19)

We say that u has the s-mean value property in Ω � Rn if for any r ¡ 0 arbitrarily small, identity
(3.19) is satisfied at any point x P Ω.

The above definition makes it reasonable to say that Ar plays the role of the s-mean kernel. The
main result that we state here is that if a function has the s-mean value property, then it is s-harmonic
(i.e. it satisfies the classical relation p�∆qsu � 0).

Theorem 3.1.13. Let u P L1
spRnq be C2s�ε in a neighborhood of x P Rn. If u has the s-mean

value property at x, then u is s-harmonic at x.

Proof. The function u has the s-mean value property for any r ¡ 0 arbitrarily small, namely

upxq � Ar � upxq �
»
RnzBr

Arpyqupx� yq dy.

Using identity (3.71) we obtain that

0 � upxq �
»
RnzBr

Arpyqupx� yq dy � cpn, sqr2s

»
RnzBr

upxq � upx� yq
p|y|2 � r2qs|y|n dy,

thus, since r ¡ 0 »
RnzBr

upxq � upx� yq
p|y|2 � r2qs|y|n dy � 0. (3.20)

Hence, in order to obtain p�∆qsupxq � 0 we prove that

lim
rÑ0

»
RnzBr

upxq � upx� yq
|y|n�2s

dy � lim
rÑ0

»
RnzBr

upxq � upx� yq
p|y|2 � r2qs|y|n dy. (3.21)

Let R ¡ r
?

2. We write the integral in (3.20) as»
RnzBr

upxq � upx� yq
p|y|2 � r2qs|y|n dy

�
»
RnzBR

upxq � upx� yq
p|y|2 � r2qs|y|n dy �

»
BRzBr

upxq � upx� yq
p|y|2 � r2qs|y|n dy

� I1pr,Rq � I2pr,Rq.

(3.22)

In I1pr,Rq we see that |y|2
|y|2�r2   2 and obtain

|upxq � upx� yq|
p|y|2 � r2qs|y|n ¤ 2s

|upxq � upx� yq|
|y|n�2s

P L1pRnzBR, dyq,

as u P L1
spRnq. We can use the Dominated Convergence Theorem, send r Ñ 0 and conclude that

lim
rÑ0

I1pr,Rq �
»
RnzBR

upxq � upx� yq
|y|n�2s

dy. (3.23)
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Now, for r   |y|   R and u P C2s�ε (for s   1{2) in a neighborhood of x we have the bound��upxq � upx� yq�� ¤ c|y|2s�ε,
while for s ¥ 1{2 and u P C1,2s�ε�1 we use that

|upxq � upx� yq � y �∇upxq| �
��� » 1

0

y
�
∇upx� tyq �∇upxq� dt���

¤ |y|
» 1

0

���∇upx� tyq �∇upxq
��� dt ¤ cps, εq|y|2s�ε.

Notice that y�∇upxq
p|y|2�r2qs|y|n and y�∇upxq

|y|2s�n are even functions, hence they vanish when integrated on the

symmetrical domain BRzBr. Therefore, by setting

Jpr,Rq :� I2pr,Rq �
»
BRzBr

upxq � upx� yq
|y|2s�n dy (3.24)

we have that

Jpr,Rq �
»
BRzBr

�
upxq�upx�yq�y �∇upxq

p|y|2�r2qs|y|n � upxq�upx�yq�y �∇upxq
|y|2s�n

�
dy

and by passing to polar coordinates and afterwards making the change of variables ρ � rt we get

|Jpr,Rq| ¤ cps, εq
»
BRzBr

|y|2s�ε
�
p|y|2 � r2q�s|y|�n � |y|�n�2s

	
dy

� cpn, s, εq
» R
r

ρε�1

�
ρ2s

pρ2 � r2qs � 1



dρ   cpn, s, εqrε

» R
r

1

tε�1

�
ts

pt� 1qs � 1



dt

since t{pt� 1q ¡ 1. Now for t P p1,?2q we have that» ?
2

1

tε�1

�
ts

pt� 1qs � 1



dt ¤ cpsq

» ?
2

1

�
pt� 1q�s � t�s



dt � c̃psq.

On the other hand, for t ¥ ?
2 �

1� 1

t

	�s
� 1 ¤ s

t

�
1� 1?

2

	�s�1

and we have that

lim
rÑ0

» R
r

?
2

tε�1

�
ts

pt� 1qs � 1



dt ¤

» 8
?

2

tε�1

��
1� 1

t

	�s
� 1

�
dt

¤ cpsq
» 8
?

2

tε�2 dt � c̄ps, εq.

Thus by sending r Ñ 0 we obtain that

lim
rÑ0

Jpr,Rq � 0

and therefore in (3.24)

lim
rÑ0

I2pr,Rq � lim
rÑ0

»
BRzBr

upxq � upx� yq
|y|2s�n dy.

Using this and (3.23) and passing to the limit in (3.22), claim (3.21) follows and hence the conclusion
that p�∆qsupxq � 0. �
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3.1.2. The fundamental solution. We claim that the function Φ plays the role of the fun-
damental solution of the fractional Laplacian, namely the fractional Laplacian of Φ is equal in the
distributional sense to the Dirac Delta function evaluated at zero. The following theorem provides
the motivation for this claim.

Theorem 3.1.14. In the distributional sense (given by definition (3.5))

p�∆qsΦ � δ0.

The computation of the Fourier transform of the fundamental solution is required in order to
prove Theorem 3.1.14.

Proposition 3.1.15. a) For n ¡ 2s, let f P L1pRnq X CpRnq with qf P SspRnq,
b) for n ¤ 2s, let f P L1pRq X CpRq X C1

�p�8, 0q Y p0,�8q� with qf P SspRq such that

|fpxq| ¤ c1|x|2s for x P R

|fpxq| ¤ c2
|x| for |x| ¡ 1

|f 1pxq| ¤ c11|x|2s�1 for 0   |x| ¤ 1

|f 1pxq| ¤ c12
|x| for |x| ¡ 1.

(3.25)

Then in both cases »
Rn

Φpxq qfpxq dx � »
Rn
p2π|x|q�2sfpxq dx.

Proof. We notice that the hypothesis in the proposition assure that both integrals above are
well defined. Indeed, since Φ P L1

spRnq � S 1spRnq the left hand side is finite thanks to (3.6). The right
hand side is also finite since, for n ¡ 2s,»

Rn
|fpxq||x|�2s dx ¤ cn sup

xPB1

|fpxq|
» 1

0

ρn�2s�1 dρ�
»
RnzB1

|fpxq||x|�2s dx

¤ cn sup
xPB1

|fpxq| � }f}L1pRnq

and for n ¤ 2s we have that»
R
|fpxq||x|�2s dx ¤

»
RzB1

|fpxq||x|�2s dx� c1

»
B1

dx

¤ }f}L1pRq � 2c1.

a) For n ¡ 2s we prove that

apn, sq
»
Rn
|x|�n�2s qfpxq dx � »

Rn
p2π|x|q�2sfpxq dx. (3.26)

We use the Fourier transform of the Gaussian distribution as the starting point of the proof. For any
δ ¡ 0 we have that

Fpe�πδ|x|2q � δ�
n
2 e�π

|x|2
δ .

In particular for any f P L1pRnq and qf P SspRnq (which is a subspace of L2pRnq), by Parseval identity
we obtain »

Rn
e�πδ|x|

2 qfpxq dx � »
Rn
δ�

n
2 e�π

|x|2
δ fpxq dx.

We multiply both sides by δ
n
2 �s�1, integrate in δ from 0 to 8. We use the notations

I1 �
» 8

0

�»
Rn
δ
n
2 �s�1e�πδ|x|

2 qfpxq dx� dδ
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and

I2 �
» 8

0

�»
Rn
δ�s�1e�π

|x|2
δ fpxq dx

�
dδ,

having I1 � I2. With the change of variable α � δ|x|2 we obtain that

I1 �
»
Rn
|x|�n�2s qfpxq�» 8

0

α
n
2 �s�1e�πα dα

�
dx.

We set

c1 :�
» 8

0

α
n
2 �s�1e�πα dα, (3.27)

which is a finite quantity since n
2 � s � 1 ¡ �1. On the other hand in I2 we change the variable

α � |x|2{δ and obtain that

I2 �
»
Rn
|x|�2sfpxq

�» 8

0

αs�1e�πα dα

�
dx.

We then set

c2 :�
» 8

0

αs�1e�πα dα, (3.28)

which is finite since s� 1 ¡ �1. As I1 � I2 it yields that

c1
c2p2πq2s

»
Rn
|x|�n�2s qfpxq dx � »

Rn
p2π|x|q�2sfpxq dx.

We take

apn, sq � c1
c2p2πq2s (3.29)

and the claim (3.26) follows. This concludes the proof for n ¡ 2s.
b) For n   2s (hence n � 1 and s ¡ 1{2), let R ¡ 0 be as large as we wish (we will make R go to

8 in sequel). Then»
BR

|x|2s�1 qfpxq dx � » R
0

x2s�1
� qfpxq � qfp�xq	 dx

� 2

» R
0

x2s�1

»
R
fpξq cosp2πξxq dξ dx � 2

»
R
fpξq

�» R
0

x2s�1 cosp2πξxq dx
�
dξ.

We use the change of variables x̄ � 2πx (but still write x as the variable of integration for simplicity),
and let R̄ � 2πR. Then» R

0

x2s�1 cosp2πξxq dx � p2πq�2s

» R̄
0

x2s�1 cospξxq dx.

We have that »
BR

|x|2s�1 qfpxq dx � 21�2s

π2s

»
R
fpξq

�» R̄
0

x2s�1 cospξxq dx
�
dξ.

Integrating by parts and changing the variable |ξ|x � t we get that» R̄
0

x2s�1 cospξxq dx � x2s�1 sinpξxq
ξ

����R̄
0

� p2s� 1q
» R̄

0

x2s�2 sinpξxq
ξ

dx

� R̄2s�1 sinpξR̄q
ξ

� p2s� 1q|ξ|�2s

» R̄|ξ|
0

t2s�2 sin t dt.
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Therefore »
BR

|x|2s�1 qfpxq dx � 21�2s

π2s
R̄2s�1

»
R
fpξq sinpξR̄q

ξ
dξ

� 21�2sp2s� 1q
π2s

»
R
fpξq|ξ|�2s

�» R̄|ξ|
0

t2s�2 sin t dt



dξ.

(3.30)

We claim that

lim
RÑ8

R̄2s�1

»
R
fpξq sinpξR̄q

ξ
dξ � 0. (3.31)

We integrate by parts and obtain that���� » 8

0

fpξq sinpξR̄q
ξ

dξ

���� ¤ |fpξq|
ξ

| cospξR̄q|
R̄

����8
0

� 1

R̄

�» 8

0

| cospξR̄q| |fpξq|
ξ2

dξ

�
» 8

0

| cospξR̄q| |f
1pξq|
ξ

dξ



.

By (3.25), for ξ large we have that

|fpξq|
ξ

| cospξR̄q| ¤ c2
| cospξR̄q|

ξ2
, hence lim

ξÑ8
|fpξq|
ξ

| cospξR̄q|
R̄

� 0.

For ξ small we have that

|fpξq|
ξ

¤ c1ξ
2s�1, hence lim

ξÑ0

|fpξq|
ξ

| cospξR̄q|
R̄

� 0.

Furthermore, by changing the variable t � ξR̄ (and noticing that the constants may change value
from line to line) we have that» 8

0

|fpξq|
ξ2

| cospξR̄q| dξ ¤ c1

» 1

0

ξ2s�2| cospξR̄q| dξ � c2

» 8

1

ξ�3| cospξR̄q| dξ

¤ c1R̄
1�2s

» R̄
0

t2s�2| cos t| dt� c2R̄
2

» 8

R̄

t�3| cos t|dt ¤ c

2

and » 8

0

|f 1pξq|
ξ

| cospξR̄q| dξ ¤ c11

» 1

0

ξ2s�2| cospξR̄q| dξ � c12

» 8

1

ξ�2| cospξR̄q| dξ

¤ c11R̄
1�2s

» R̄
0

t2s�2| cos t| dt� c12R̄
» 8

R̄

t�2| cos t| dt ¤ c

2
.

Hence ���� » 8

0

fpξq sinpξR̄q
ξ

dξ

���� ¤ c

R
,

and in the same way we obtain���� » 0

�8
fpξq sinpξR̄q

ξ
dξ

���� � ���� » 8

0

fp�ξq sinpξR̄q
ξ

dξ

���� ¤ c

R
.

Therefore

lim
RÑ8

R̄2s�1

»
R
fpξq sinpξR̄q

ξ
dξ � 0

and we have proved the claim (3.31). Now we claim that (and this holds also for n � 2s)

lim
RÑ8

»
R
fpξq|ξ|�2s

� » R̄|ξ|
0

t2s�2 sin t dt
	
dξ � � cospπsqΓp2s� 1q

»
R
fpξq|ξ|�2s dξ. (3.32)
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In order to prove this, we estimate the difference���� » 8

0

t2s�2 sin t dt �
» R̄|ξ|

0

t2s�2 sin t dt

���� ¤ ���� » 8

R̄|ξ|
t2s�2 sin t dt

����
¤ |t2s�2 cos t|

����8
R̄|ξ|

� p2s� 2q
» 8

R̄|ξ|
|t|2s�3| cos t| dt ¤ cpR̄|ξ|q2s�2.

We then have that���� »
R
fpξq|ξ|�2s

� » 8

0

t2s�2 sin t dt�
» R̄|ξ|

0

t2s�2 sin t dt
	
dξ

����
¤ cR̄2s�2

»
R
|fpξq||ξ|�2 dξ ¤ cR̄2s�2

�
c1

» 1

0

ξ2s�2 dξ � c2

» 8

1

ξ�3 dξ



� R2s�2c.

Hence we obtain

lim
RÑ8

»
R
fpξq|ξ|�2s

� » R̄|ξ|
0

t2s�2 sin t dt
	
dξ �

»
R
fpξq|ξ|�2s

�» 8

0

t2s�2 sin t dt



dξ

and the claim (3.32) follows from the identity (3.87) at the end of this Section (in Subsection 3.1.5).
By sending R to infinity in (3.30) we finally obtain that»

R
|x|2s�1 qfpxq dx � 21�2s

π2s
p2s� 1q cospπsqΓp2s� 1q

»
R
|ξ|�2sfpξq dξ

� 2 cospπsqΓp2sq
»
R
p2π|ξ|q�2sfpξq dξ.

(3.33)

Therefore taking ap1, sq � p2 cospπsqΓp2sqq�1 we get that

ap1, sq
»
R
|x|2s�1 qfpxq dx � »

R
p2π|x|q�2sfpxq dx,

hence the result for n   2s.
On the other hand, for n � 2s we have that»

BR

log |x| qfpxq dx � 2

»
R
fpξq

�» R
0

log x cosp2πξxq dx
�
dξ.

We change the variable x̄ � 2πx (but still write x as the variable of integration for simplicity) and let
R̄ � 2πR. Then we have that» R

0

log x cosp2πξxq dx �
» R̄

0

�
log x� logp2πq

	
cospξxq dx

2π

� 1

2π

» R̄
0

log x cospξxq dx� logp2πq
2π

sinpξR̄q
ξ

.

We integrate by parts and obtain that» R̄
0

log x cospξxq dx � log R̄
sinpξR̄q

ξ
� 1

|ξ|
» R̄|ξ|

0

sin t

t
dt.

We thus have that»
BR

log |x| qfpxq dx � 1

π
logR

»
R
fpξq sinpξR̄q

ξ
dξ � 1

π

»
R
fpξq|ξ|�1

�» R̄|ξ|
0

sin t

t
dt

�
dξ.

We claim that

lim
RÑ8

logR

»
R
fpξq sinpξR̄q

ξ
dξ � 0. (3.34)
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Indeed we have ���� » 1{R̄

0

fpξq sinpξR̄q
ξ

dξ

���� ¤ » 1{R̄

0

|fpξq|ξR̄
ξ
dξ ¤ c1R̄

» 1{R̄

0

ξ dξ � c1
R̄
.

Moreover integrating by parts���� » 8

1{R̄
fpξq sinpξR̄q

ξ
dξ

���� ¤ |fpξq|
ξ

| cospξR̄q|
R̄

�����
8

1{R̄
� 1

R̄

�» 8

1{R̄

|fpξq|
ξ2

| cospξR̄q| dξ

�
» 8

1{R̄

|f 1pξq|
ξ

| cospξR̄q| dξ
�
.

We have for ξ large that

|fpξq|
ξ

| cospξR̄q|
R̄

¤ c2
R̄

| cospξR̄q|
ξ2

hence

lim
ξÑ8

|fpξq|
ξ

| cospξR̄q|
R̄

� 0.

On the other hand by using the change of variables t � ξR̄» 8

1{R̄

|fpξq|
ξ2

| cospξR̄q| dξ ¤ c1

» 1

1{R̄

| cospξR̄q|
ξ

dξ � c2

» 8

1

| cospξR̄q|
ξ3

dξ

� c1

» R̄
1

| cos t|
t

dt� c2

» 8

R̄

R̄2

t3
| cos t| dt ¤ c̄1 logR� c̄2.

Moreover we have that» 8

1{R̄

|f 1pξq|
ξ

| cospξR̄q| dξ ¤ c11

» 1

1{R̄

| cospξR̄q|
ξ

dξ � c12

» 8

1

| cospξR̄q|
ξ2

dξ

� c11

» R̄
1

| cos t|
t

dt� c12

» 8

R̄

R̄

t2
| cos t| dt ¤ c̄11 logR� c̄12.

Hence

lim
RÑ8

logR

» 8

0

fpξq sinpξR̄q
ξ

dξ � 0

and since the same bounds hold for
³0

�8 fpξq sinpξR̄q
ξ dξ, the claim (3.34) follows. Also, the proof of

claim (3.32) gives that

lim
RÑ8

» 8

0

fpξq|ξ|�1

�» R̄|ξ|
0

sin t

t
dt



dξ �

» 8

0

fpξq|ξ|�1

�» 8

0

sin t

t
dt



dξ

� π

2

» 8

0

fpξq|ξ|�1 dξ.

It follows that »
R

log |x| qfpxq dx � �1

2

»
R
|ξ|�1fpξq dξ,

hence

� 1

π

»
R

log |x| qfpxq dx � »
R
p2π|ξ|q�1fpξq dξ (3.35)

and the result holds for n � 2s. This concludes the proof of the Proposition. �
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Remark 3.1.16. It is now clear that we have chosen apn, sq in Definition 3.1.9 in order to normalize
the Fourier transform of the fundamental solution. Indeed, for n ¡ 2s, we perform the change of
variable πα � t in (3.27) and by the definition of the Gamma function (see (A.4)) we obtain that

c1 � πs�
n
2

» 8

0

t
n
2 �s�1e�t dt � πs�

n
2 Γ

�
n

2
� s



.

Also in (3.28) we change the variable πα � t and get that

c2 � π�s
» 8

0

ts�1e�t dt � π�sΓpsq.

Therefore
c1
c2
� π2s�n

2 Γpn2 � sq
Γpsq , hence by (3.29) apn, sq � Γpn2 � sq

22sπ
n
2 Γpsq .

The value ap1, sq is computed in (3.33). We point out that we can rewrite this value using (A.9) and
(A.7), as follows

ap1, sq � 1

2 cospπsqΓp2sq �
Γp1{2� sq
22s

?
πΓpsq .

Moreover, we observe that identity (3.35) says that

a

�
1,

1

2



� � 1

π
.

By applying this latter Proposition 3.1.15, we prove Theorem 3.1.14.

Proof of Theorem 3.1.14. For any f P SpRnq we have that F�1
�
|ξ|2s pfpξq	 P SspRnq (ac-

cording to definition (2.6) and to (3.4)). Notice that |ξ|2s pfpξq P L1pRnq X CpRnq, since»
Rn
|x|2s| pfpxq| dx ¤ r pf s0,n�2

SpRnq

»
RnzB1

|x|2s�n�2 dx� sup
xPB1

| pfpxq| ¤ cpfq,

where we use the seminorm defined in (A.2). Moreover, for n ¤ 2s we have that

|ξ|2s| pfpξq| ¤ } pf}L8pRq|ξ|2s � c1|ξ|2s for ξ P R,

|ξ|2s| pfpξq| ¤ r pfpξqs0,3SpRq|ξ|2s�3 ¤ c2
|ξ| for |ξ| ¡ 1.

Also for 0 � |ξ| ¤ 1��� d
dξ

�|ξ|2s pfpξq���� ¤ 2s|ξ|2s�1| pfpξq| � |ξ|2s
��� d
dξ

pfpξq���
¤ |ξ|2s�1

�
2s} pf}L8pRq � ���d pfpξq

dξ

���
L8pRq



� c11|ξ|2s�1

and for |ξ| ¡ 1 ��� d
dξ

�|ξ|2s pfpξq���� ¤ 2s|ξ|2s�1| pfpξq| � |ξ|2s
��� d
dξ

pfpξq���
¤ 2sr pf s0,2SpRq|ξ|2s�3 � |ξ|2s�3r pf s1,3SpRq ¤ c12|ξ|�1,

which proves that f satisfies (3.25). From Proposition 3.1.15 it follows that

xΦ, p�∆qsfys �
»
Rn

ΦpxqF�1
�
p2π|ξ|q2s pfpξq	pxq dx

�
»
Rn
p2π|ξ|q�2sp2π|ξ|q2s pfpξq dξ � »

Rn
pfpξq dξ � fp0q.

Therefore in the distributional sense
p�∆qsΦ � δ0. �
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We introduce now the following Lemmata, that will be the main ingredients in the proof of main
result of the subsection.

Lemma 3.1.17. Let f P C8
c pRnq, let ϕ be an arbitrary function such that we have qϕ P SspRnq and

the following hold:
a) for n ¡ 2s, ϕ P L1pRnq X CpRnq,
b) for n ¤ 2s, ϕ P L1pRq X CpRq X C1

�p�8, 0q Y p0,8q�q and

|ϕpxq| ¤ c1|x|2s for x P R

|ϕpxq| ¤ c2
|x| for |x| ¡ 1

|ϕ1pxq| ¤ c11|x|2s�1 for 0   |x| ¤ 1

|ϕ1pxq| ¤ c12
|x| for |x| ¡ 1.

Then in both cases »
Rn
f � Φpxqqϕpxq dx � »

Rn
p2π|x|q�2s qfpxqϕpxq dx. (3.36)

Proof. In order to prove identity (3.36) we notice that by the Fubini-Tonelli theorem we have
that »

Rn
f � Φpxqqϕpxqdx � »

Rn

�»
Rn

Φpyqfpx� yq dy

 qϕpxq dx

�
»
Rn

Φpyq
�»

Rn
fpx� yqqϕpxq dx
 dy.

We denote

f �̄qϕpyq :�
»
Rn
fpx� yqqϕpxq dx � »

Rn
fpxqqϕpx� yq dx

and write »
Rn
f � Φpxqqϕpxqdx � »

Rn
Φpyqf �̄qϕpyq dy. (3.37)

The operation �̄ is well defined for f P C8
c pRnq and qϕ P SspRnq, furthermore it is easy to see that

Fpf �̄qϕqpxq � qfpxqϕpxq.
We notice at first that since ϕ and qϕ are continuous, Fpqϕq � ϕ on Rn. We define

ψpxq :� Fpf �̄qϕqpxq � qfpxqϕpxq (3.38)

and we write (3.37) as »
Rn
f � Φpxqqϕpxqdx � »

Rn
Φpyq qψpyq dy. (3.39)

We check that ψ verifies the hypothesis of Proposition 3.1.15. Since»
Rn
|ψpxq| dx �

»
Rn
| qfpxq||ϕpxq| dx ¤ } qf}L8pRnq}ϕ}L1pRnq,

we have that ψ P L1pRnq. Also, ψ P CpRnq as a product of continuous functions. We claim that
f �̄qϕ P SspRnq. Indeed, suppose supp f � BR for R ¡ 0. We remark that in the next computations
the constants may change from line to line. Then for |x| ¤ 2R we have that

p1� |x|n�2sq|f �̄qϕpxq| ¤ cn,s,R

»
BRpxq

|fpy � xqqϕpyq| dy
¤ cn,s,R}f}L8pBRq}qϕ}L8pB3Rq.
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For |x| ¡ 2R we have that

|x|n�2s|f �̄qϕpxq| ¤ }f}L8pBRqrqϕs0SspRnq|x|n�2s

»
BR

|x� y|�n�2s dy

and we remark that |y| ¤ |x|{2 (otherwise y R supp f). Then we use the bound |x�y| ¥ |x|�|y| ¥ |x|{2
and we have that

|x|n�2s|f �̄qϕpxq| ¤ }f}8rqϕs0SspRnq|x|n�2s

»
BR

|x|�n�2s dy � cn,s,R.

We can iterate the same method to prove that p1�|x|n�2sq|Dαf �̄qϕpxq| is bounded since Dαf �̄qϕpxq �
f �̄Dα qϕpxq and Dα qϕ P SspRnq. For n ¤ 2s we have that

|ψpxq| ¤ | qfpxq||ϕpxq| ¤ } qf}L8pRqc1|x|2s for |x| ¤ 1,

|ψpxq| ¤ | qfpxq||ϕpxq| ¤ } qf}L8pRq c2|x| for |x| ¡ 1.

Moreover, for |x| ¡ 1

|ψ1pxq| ¤ | qfpxq||ϕ1pxq| � ��� d
dx

qfpxqϕpxq���
¤ } qf}L8pRq c12|x| � ��� » fpξqpiξqeixξ dξ���|ϕpxq|
¤ } qf}L8pRq c12|x| � }ξfpξq}L1pRq

c2
|x| ¤

C

|x|
and for |x| ¤ 1, since f P C8

c pRq

|ψ1pxq| ¤ | qfpxq||ϕ1pxq| � ��� d
dx

qfpxq���|ϕpxq|
¤ } qf}L8pRqc11|x|2s�1 � c1|x|2s}ξfpξq}L8pRq|x|�1 � C|x|2s�1.

Hence we can apply Proposition 3.1.15 and taking also into account (3.39) we have that»
Rn
f � Φpxqqϕpxq dx � »

Rn
Φpxq qψpxq dx � »

Rn
p2π|x|q�2sψpxq dx,

and from (3.38) we conclude that»
Rn
f � Φpxqqϕpxq dx � »

Rn
p2π|x|q�2s qfpxqϕpxq dx. �

Also:

Lemma 3.1.18. Let f P CcpRnq, then f � Φ P L1
spRnq.

Proof. To prove that f � Φ P L1
spRnq, we suppose that supp f � BR and we compute»

Rn

|f � Φpxq|
1� |x|n�2s

dx �
»
BR

|fpyq|
�»

Rn

Φpx� yq
1� |x|n�2s

dx



dy

¤ }f}L8pRnq
»
BR

�»
Rn

Φpx� yq
1� |x|n�2s

dx



dy.

We set

cn,s,R :�
»
BR

�»
Rn

Φpx� yq
1� |x|n�2s

dx



dy (3.40)

and prove it is a finite quantity. We take for simplicity R � 1 and remark that the constants in the
next computations may change value from line to line. For n ¡ 2s we have that»

B1

�»
Rn

Φpx� yq
1� |x|n�2s

dx



dy � apn, sq

»
B1

�»
Rn

|x� y|2s�n
1� |x|n�2s

dx



dy.
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For x small we have that»
B1

�»
B2

|x� y|2s�n
1� |x|n�2s

dx



dy ¤

»
B1

�»
B2

|x� y|2s�n dx


dy

¤ cn

»
B1

�» 2�|y|

0

t2s�1 dt



dy � cn,s

» 1

0

p2� tq2stn�1 dt � c̄n,s.

For x large, we use that |x� y| ¥ |x| � |y| and 1� |x|n�2s ¡ |x|n�2s, thus»
B1

�»
RnzB2

|x� y|2s�n
1� |x|n�2s

dx



dy ¤

»
B1

�»
RnzB2

p|x| � |y|q2s�n|x|�n�2s dx



dy

� cn

» 1

0

tn�1

�» 8

2

pρ� tq2s�nρ�n�2sρn�1 dρ



dt ¤ cn

» 8

2

pρ� 1q2s�n�1 dρ � cn,s.

Hence for n ¡ 2s the quantity cn,s,R in (3.40) is finite. Meanwhile, for n   2s for x small the same
bound as for n ¡ 2s holds. For x large, we have that»

B1

�»
RzB2

|x� y|2s�1

1� |x|1�2s
dx



dy ¤

»
B1

�»
RzB2

p|x| � |y|q2s�1|x|�1�2s dx



dy

� c

» 1

0

�» 8

2

pρ� tq2s�1ρ�1�2s dρ



dt � cs.

In the case n � 2s from the triangle inequality we have that»
B1

�»
B2

log |x� y|
1� |x|2 dx



dy ¤ c

» 2

0

logpt� 1q dt � c̃

and »
B1

�»
RzB2

log |x� y|
1� |x|2 dx



dy ¤

» 8

2

logpt� 1qt�2 dt � c̃.

Hence cn,s,R in (3.40) is finite and we have that»
Rn

|f � Φpxqpxq|
1� |x|n�2s

dx ¤ cn,s,R}f}L8pRnq. (3.41)

It follows that f � Φ P L1
spRnq, as stated. �

We introduce moreover the following regularity result.

Lemma 3.1.19. Let s P p0, 1q be fixed. Let f P C0,ε
c pRnq be a given function (for a small ε ¡ 0)

and u be defined as

upxq :�
»
Rn

fpyq
|x� y|n�2s

dy. (3.42)

Then u P C2s�εpRnq.

Proof. Let s   1{2 and ε ¡ 0 be such that 2s� ε   1 and we prove that u P C0,2s�εpRnq. Let
R ¡ 0 be such that supp f � BR. Then taking x1, x2 P Rn and denoting by

δ :� |x1 � x2|
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we have that

|upx1q � upx2q|

¤
»
BRXt|x1�y|¤2δu

|fpyq � fpx1q|
|x1 � y|n�2s

dy �
»
BRXt|x1�y|¤2δu

|fpyq � fpx1q|
|x2 � y|n�2s

dy

�
»
BRzt|x1�y|¤2δu

|fpyq � fpx1q|
���� 1

|x1 � y|n�2s
� 1

|x2 � y|n�2s

���� dy
� |fpx1q|

���� »
BR

�
1

|x1 � y|n�2s
� 1

|x2 � y|n�2s



dy

����
�: I1 � I2 � I3 � I4.

Since f is Hölder continuous, we have that for C ¡ 0

|fpyq � fpx1q| ¤ C|y � x1|ε.
Noticing that in the next computations the constants may change value form line to line, we obtain
that

I1 ¤ C

»
BRXt|x1�y|¤2δu

|x1 � y|�n�2s�ε dy � Cn,sδ
2s�ε,

I2 ¤ C

»
BRXt|x1�y|¤2δu

|x1 � y|ε|x2 � y|�n�2s dy ¤ Cn,sδ
2s�ε

since |x2 � y| ¤ |x2 � x1| � |x1 � y| ¤ 3δ.
In I3 we notice that since |x1 � y| ¥ 2δ we have that |x2 � y| ¥ |x1 � y| � |x1 � x2| ¥ δ. The function
| � �y|2s�n is differentiable in RnzBδpyq, hence at each point on the segment x1x2. Using the Mean
Value Theorem we have that for some x� on the segment x1x2���� 1

|x1 � y|n�2s
� 1

|x2 � y|n�2s

���� ¤ Cn
|x1 � x2|

|x� � y|n�2s�1
� Cnδ

1

|x� � y|n�2s�1
. (3.43)

It follows that

I3 ¤ Cδ

»
BRzt|x1�y|¤2δu

|x1 � y|ε
|x� � y|n�2s�1

dy.

Since |y � x�| ¥ |y � x1| � |x1 � x�| ¥ 1
2 |x1 � y|, recalling that 2s� ε   1 we obtain

I3 ¤ Cn,sδ
2s�ε.

Now for I4, if x1 R BR or x2 R BR (it is enough in this latter case to replace x1 with x2 in the above
computations), then we are done. Else, for x1, x2 P BR, suppose that distpx1, BBRq ¥ distpx2, BBRq
and take p P BBR (hence fppq � 0) such that distpx1, BBrq � |x1 � p|. So

|fpx1q| � |fpx1q � fppq| ¤ C|x1 � p|ε
and we distinguish two cases. When

p1q |x1 � x2| ¥ 1

2
|x1 � p|

we have that »
BR

���� 1

|x1 � y|n�2s
� 1

|x2 � y|n�2s

���� dy
¤

� »
BRXt|x1�y|¤2δu

dy

|x1 � y|n�2s
�
»
BRXt|x1�y|¤2δu

dy

|x2 � y|n�2s

�
»
BRzt|x1�y|¤2δu

���� 1

|x1 � y|n�2s
� 1

|x2 � y|n�2s

���� dy
�

�: J1 � J2 � J3.
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By passing to polar coordinates we have that

J1 ¤ Cn

» 2δ

0

ρ2s�1 dρ � Cn,sδ
2s

and that

J2 ¤ Cn

» 3δ

0

ρ2s�1 dρ � Cn,sδ
2s,

since |x2 � y| ¤ 3δ. For J3, we use (3.43) and get

J3 ¤ Cnδ

»
BRzt|x1�y|¤2δu

1

|x� � y|n�2s�1
dy.

Passing to polar coordinates, since 2s   1, we get that

J3 ¤ Cnδ

» 8

2δ

ρ2s�2 dρ � Cn,sδ
2s.

So we obtain that »
BR

���� 1

|x1 � y|n�2s
� 1

|x2 � y|n�2s

���� dy ¤ Cδ2s, (3.44)

where C � Cpn, sq is a positive constant. Given that |x1 � p|   2|x1 � x2| � 2δ we get that

I4 ¤ C|x1 � p|εδ2s ¤ Cδ2s�ε.

This sets the bound for J4 in the case (1). On the other hand, when

p2q |x1 � x2| ¤ 1

2
|x1 � p|

we use the following bound (see Lemmas 2.1 and 3.5 in [56])���� »
BR

|x1 � y|2s�n � |x2 � y|2s�n dy
���� ¤ |x1 � x2|

maxtdistpx1, BBRq,distpx2, BBRqu1�2s
. (3.45)

Since 2s� ε� 1   0 we get that

I4 ¤ Cδ|x1 � p|2s�1�ε ¤ Cn,sδ
2s�ε.

This concludes the proof of the Lemma for s   1{2. In order to prove the result for s ¥ 1{2 (hence to
prove that u P C1,2s�ε�1), one can use Lemma 4.1 in [90]

Dupxq �
»

Ω

DΦpx� yqfpyq dy �
»

Ω

fpyq
|x� y|n�2s�1

dy,

and iterate the computations of this proof. �

The interested reader can see Theorem 4.6 in [56], where the result given here in Lemma 3.1.19
is proved for u defined as

upxq �
»

Ω

fpyq
|x� y|n�2s

dy,

where Ω is a domain with the s-property (see Definition 3.3 therein). In particular, these domains
are defined such that they satisfy a bound of the type given in (3.45), while the ball is the typical
example of this type.

We state now the main result of this subsection.

Theorem 3.1.20. Let f P C0,ε
c pRnq and let u be defined as

upxq :� Φ � f pxq.
Then u P L1

spRnq X C2s�εpRnq and both in the distributional sense and pointwise

p�∆qsu � f.
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Proof. From Lemma 3.1.18, we have that u P L1
spRnq X C2s�εpRnq. We prove at first the

statement for f P C8
c pRnq.

We notice that for ϕ P SpRnq, the function F�1pp2π|ξq|2s pϕpξqq P SspRnq and p2π|ξq|2s pϕpξq satisfies
the hypothesis of Lemma 3.1.17. Hence, by (3.36)

xu, p�∆qsϕys �
»
Rn
f � ΦpxqF�1

�
p2π|ξ|q2s pϕpξq	pxq dx

�
»
Rn

qfpξqpϕpξq dξ � »
Rn
fpxqϕpxq dx.

The last equality follows since qf P L1pRnq, which is implied by the infinite differentiability of f . We
conclude that u is the distributional solution of

p�∆qsu � f.

We consider now f P C0,ε
c pRnq. We take a sequence of functions pfkqk P C8

c pRnq such that
}fk � f}L8pRnq ÝÑ

kÑ8
0 and we consider uk � Φ � fk. Then we have that for any ϕ P SpRnq

xuk, p�∆qsϕys �
»
Rn
fkpxqϕpxq dx.

By definition of fk

lim
kÑ�8

»
Rn
fkpxqϕpxq dx �

»
Rn
fpxqϕpxq dx,

moreover, using (3.6) and (3.41) we have that

xuk � u, p�∆qsϕys ¤ rp�∆qsϕs0SspRnq}uk � u}L1
spRnq

¤ cn,s,Rrp�∆qsϕs0SspRnq}fk � f}L8pRnq ÝÑ
kÑ8

0.

We thus obtain that for any ϕ P SpRnq

xu, p�∆qsϕys �
»
Rn
fpxqϕpxq dx.

Hence in the distributional sense p�∆qsu � f on Rn for any f P C0,ε
c pRnq.

In order to obtain the pointwise solution, from the continuity of the mapping Rn Q x ÞÑ p�∆qsupxq
(according to Proposition 2.1.7 from [140]), we have that

³
Rnp�∆qsupxqϕpxq dx is well defined. Since

for any ϕ P C8
c pRnq we have that»

Rn
upxqp�∆qsϕpxq dx �

»
Rn
fpxqϕpxq dx,

thanks to Fubini-Tonelli’s Theorem and changing variables we obtain that»
Rn
fpxqϕpxq dx �

»
Rn
upxqp�∆qsϕpxq dx �

»
Rn
p�∆qsupxqϕpxq dx.

Since both f and p�∆qsu are continuous, we conclude that pointwise in Rn

p�∆qsupxq � fpxq. �

As a corollary, we have a representation formula for a C8
c pRnq function.

Corollary 3.1.21. For any f P C8
c pRnq there exists a function ϕ P C8pRnq such that

fpxq � ϕ � Φpxq,
and ϕpxq � Op|x|�n�2sq as |x| Ñ 8.
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Proof. For f P C8
c pRnq, we define ϕ as

ϕpxq :� p�∆qsfpxq.
The bound established in (3.4) gives the asymptotic behavior of ϕ, while it is not hard to see that
ϕ P C8pRnq. Then by using Theorem 3.1.20 we have that pointwise in Rn

ϕ � Φpxq � p�∆qsf � Φpxq � fpxq. �

3.1.3. The Poisson kernel. We claim that Pr plays the role of the fractional Poisson kernel
namely, we prove here Theorem 3.1.5.

Proof of Theorem 3.1.5. We see at first that ug P L1
spRnq. Take R ¡ 2r and x P Br, then by

using (3.73), the inequality |x� y| ¡ |y| � r and for |y| ¡ R the bound

|y|n�2s

p|y|2 � r2qs|x� y|n ¤ 2n�s (3.46)

we have that

|ugpxq| ¤
»
R¡|y|¡r

Prpy, xq|gpyq| dy �
»
|y|¡R

Prpy, xq|gpyq| dy

¤ cpn, sq sup
yPBRzBr

|gpyq| � 2n�scpn, sqpr2 � |x|2qs
»
|y|¡R

|gpyq|
|y|n�2s

dy

¤ cpn, sq sup
yPBRzBr

|gpyq| � 2n�scpn, sqr2s

»
|y|¡R

|gpyq|
|y|n�2s

dy.

Since g P L1
spRnq, the last integral is bounded, and so ug is bounded in Br. It follows that ug P L1

spRnq,
as stated. Moreover, the local C8 regularity of ug in Br follows from the regularity of the Poisson
kernel.

Let us fix x P Br and prove that ug has the s-mean value property in x. If this holds, indeed,
Theorem 3.1.13 implies that p�∆qsupxq � 0, and given the arbitrary choice of x, the same is true in
the whole Br.

We claim that for any ρ such that 0   ρ   r � |x| we have

Aρ � ugpxq � ugpxq. (3.47)

Let at first g be in C8
c pRnq. By Corollary 3.1.21, there exists a function ϕ P C8pRnq such that

gpyq �
»
Rn

Φpz � yqϕpzq dz

and at infinity ϕpzq � Op|z|�n�2sq. For r ¡ 0 fixed, we write g as

gpyq �
»
RnzBr

Φpt� yqϕptq dt�
»
Br

Φpz � yqϕpzq dz. (3.48)

Using identity (3.84) we have that»
Br

Φpz � yqϕpzq dz �
»
Br

�»
RnzBr

Prpt, zqΦpy � tq dt


ϕpzq dz

�
»
RnzBr

Φpy � tq
�»

Br

Prpt, zqϕpzq dz


dt.

Therefore, in (3.48) it follows that

gpyq �
»
RnzBr

Φpy � tqψptq dt, (3.49)
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where ψptq � ϕptq � ³
Br
Prpt, zqϕpzq dz. In particular, using (3.10) and (3.49) we have that

ugpxq �
»
|y|¡r

Prpy, xq
�»

|t|¡r
Φpy � tqψptq dt



dy

�
»
|t|¡r

ψptq
�»

|y|¡r
Prpy, xqΦpy � tq dy



dt �

»
|t|¡r

ψptqΦpx� tq dt

thanks to (3.84). Furthermore, we compute

Aρ � ugpxq �
»
|y|¡ρ

Aρpyq
�»

|t|¡r
ψptqΦpx� y � tq dt



dy

�
»
|t|¡r

ψptq
�»

|y|¡ρ
AρpyqΦpx� y � tq dy



dt.

Having chosen ρ ¤ r � |x| we have that |x� t| ¥ |t| � |x| ¥ ρ and from (3.82) we obtain

Aρ � ugpxq �
»
|t|¡r

ψptqΦpx� tq dt.

Consequently Aρ � ugpxq � ugpxq, thus for g P C8
c pRnq the claim (3.47) is proved.

We now prove the claim (3.47) for any forcing term g P L1
spRnq X CpRnq. In particular, let

ηk P C8
c pRnq be such that ηkpxq P r0, 1s, ηk � 1 in Bk and ηk � 0 in Bk�1. Then gk :� ηkg P C8

c pRnq
and we have that gk ÝÑ

kÑ8
g pointwise in Rn, in norm L1

spRnq and uniformly on compact sets. So, for

any k ¥ 0 the function ugkpxq has the s-mean value property in x. Precisely, for any ρ ¡ 0 small
independent of k, �

Aρ � ugk
�pxq � ugkpxq. (3.50)

We claim that

lim
kÑ8

ugkpxq � ugpxq (3.51)

and that for any ρ ¡ 0 small

lim
kÑ8

�
Aρ � ugk

�pxq � Aρ � ugpxq. (3.52)

Let ε be any arbitrarily small quantity. For k large and R ¡ 2r, we take advantage of (3.46) and
obtain that for x P Br

|ugkpxq � ugpxq| ¤
»
RnzBr

|gkpyq � gpyq|Prpy, xq dy

¤ 2n�scpn, sqpr2 � |x|2qs
»
RnzBR

|gkpyq � gpyq|
|y|n�2s

dy

� sup
yPBRzBr

|gkpyq � gpyq|
»
BRzBr

Prpy, xq dy

¤ cpn, s, rq
»
RnzBR

|gkpyq � gpyq|
|y|n�2s

dy � sup
yPBRzBr

|gkpyq � gpyq| ¤ ε

by the convergence in L1
spRnq norm, the uniform convergence on compact sets of gk to g and integra-

bility in RnzBr of the Poisson kernel (by identity (3.73)). Hence, claim (3.51) is proved. In order to
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prove claim (3.52), we notice that for any ρ ¡ 0 small we have that

|Aρ � ugkpxq �Aρ � ugpxq| ¤
»
|y|¡ρ

Aρpyq|ugkpx� yq � ugpx� yq| dy

¤
»

|y|¡ρ
|x�y|¥r

Aρpyq|gkpx� yq � gpx� yq| dy

�
»
|z|¡r

|gkpzq � gpzq|
»

|y|¡ρ
|x�y| r

AρpyqPrpz, x� yqdy dz

� I1 � I2. (3.53)

Let R ¡ 2ρ. Thanks to the bound (3.46) for |y| ¡ R, the convergence in L1
spRnq norm, the uniform

convergence on compact sets of gk to g and the integrability in RnzBρ of the s-mean kernel (by identity
(3.71)) we have that for k large

I1 � cpn, sqr2s

»
|y|¡ρ

|x�y|¥r

|gkpx� yq � gpx� yq|
p|y|2 � ρ2qs|y|n dy

¤ 2n�scpn, s, rq
»
|y|¡R

|gkpx� yq � gpx� yq|
|y|n�2s

dy

� sup
yPBRzBρ

|gkpx� yq � gpx� yq|
»
R¡|y|¡ρ

Aρpyq dy ¤ ε

2
.

Once more, for R ¡ 2r and |z| ¡ R we use the bound (3.46) and we have that

I2 �
»
|z|¡R

|gkpzq � gpzq|
»

|y|¡ρ
|x�y| r

AρpyqPrpz, x� yqdy dz

�
»
R¡|z|¡r

|gkpzq � gpzq|
»

|y|¡ρ
|x�y| r

AρpyqPrpz, x� yq dy dz

¤ cpn, sq
»
|y|¡ρ
|x�y| r

Aρpyqpr2�|x�y|2qs
»
|z|¡R

|gkpzq�gpzq|
p|z|2�r2qs|z�x�y|n dz dy

� sup
zPBRzBr

|gkpzq � gpzq|
»

|y|¡ρ
|x�y| r

Aρpyq
»
R¡|z|¡r

Prpz, x� yq dz dy

¤ cpn, s, rq
»
|z|¡R

|gkpzq � gpzq|
|z|n�2s

dz � sup
zPBRzBr

|gkpzq � gpzq|

since by identity (3.71) and (3.73)»
|y|¡ρ

|x�y| r
Aρpyq

»
R¡|z|¡r

Prpz, y � xq dz dy ¤ 1.

Therefore again by the convergence in L1
spRnq norm, the uniform convergence on compact sets of gk

we have that I2 ¤ ε

2
. In (3.53) it follows that

lim
kÑ8

�
Aρ � ugk

�pxq � Aρ � ugpxq,

thus the desired result (3.52).
By (3.50), (3.51) and (3.52) we have that

Aρ � ugpxq � lim
kÑ8

Aρ � ugkpxq � lim
kÑ8

ugkpxq � ugpxq,

thus ug has the s-mean value property at x. This concludes the proof of the claim (3.47).
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We now prove the continuity of ug. Of course, ug is continuous in Br and in RnzBr. We need to
check the continuity at the boundary of Br.

Let y0 P BBr and ε ¡ 0 arbitrarily small to be fixed, δε ¡ 0 be such that, if y P Bδεpy0q then
|gpyq � gpy0q|   ε. We fix µ arbitrarily small such that 0   µ   δε

2 , R ¡ 2r, and x P Br X Bµpy0q.
Notice that

r2 � |x|2 � pr � |x|qpr � |x|q   2r|y0 � x|   2rµ.

From (3.73) we have that

|ugpxq � gpy0q| ¤
»
RnzBr

��gpyq � gpy0q
��Prpy, xq dy. (3.54)

For r   |y|   R and |y � y0| ¥ δε we have that |x� y| ¥ δε � µ ¡ δε
2 . Meanwhile, for |y| ¡ R we use

the bound (3.46). We have that»
|y|¡r

|y�y0|¥δε
|gpyq � gpy0q|Prpy, xq dy

¤ cpn, s,Rqµs
�

2n

δnε

»
R¡|y|¡r
|y�y0|¥δε

|gpyq| � |gpy0q|
p|y|2 � r2qs dy � 2n�s

»
|y|¡R

|gpyq| � |gpy0q|
|y|n�2s

dy




¤ cpn, s,Rqµs
�

2n

δnε
cpr,R, s, gq � 2n�s}g}L1

spRnq � c̃pg, s, Rq



� Cpn, s,R, r, g, δεqµs.
From this and the fact that»

|y|¡r
|y�y0| δε

|gpyq � gpy0q|Prpy, xq dy ¤ ε

»
RnzBr

Prpy, xq dy � ε

by (3.73) and the continuity of g, we can pass to the limit in (3.54). Sending first µÑ 0 and afterwards
εÑ 0 we obtain that

lim
xÑy0

�
ugpxq � gpy0q

� � 0,

thus the continuity of ug.
The uniqueness of the solution follows from the Maximum Principle. Indeed, if one takes u1

and u2 two different continuous solutions of the Dirichlet problem, then u � u1 � u2 is a continuous
solution to the problem

p�∆qsupxq � 0, in Br

upxq � 0, in RnzBr.
By Theorem 2.1.8, the solution u is constant, hence null since it is continuous in Rn and vanishing
outside of Br. This concludes the proof of the Theorem. �

3.1.4. The Green function for the ball. The purpose of this subsection is to prove Theo-
rems 3.1.7 and 3.1.8. We also compute the normalization constants needed in the formula of the Green
function on the ball.

We prove now Theorem 3.1.7 in the three cases n ¡ 2s, n   2s and n � 2s separately.

Proof of Theorem 3.1.7 for n ¡ 2s. Let x, z P Br be fixed.
We insert the explicit formula (3.8) into definition (3.11) and obtain that

Gpx, zq � apn, sq�|z � x|2s�n �Apx, zq�, (3.55)

where

Apx, zq :�
»
|y|¡r

Prpy, xq
|y � z|n�2s

dy.
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Inserting also definition (3.9) we have that

Apx, zq � cpn, sq
»
|y|¡r

pr2 � |x|2qs
|y � z|n�2sp|y|2 � r2qs|y � x|n dy.

We use the point inversion transformation that is detailed in the Subsection 3.1.5. Let x� P RnzBr
and y� P Br be the inversion of x, respectively y with center at z, defined by the relation (3.69). With
this transformation, using formulas (3.70a), (3.70b) and (3.70c) we obtain that

Apx, zq � cpn, sq|z � x|2s�n
»
Br

p|x�|2 � r2qs
pr2 � |y�|2qs|x� � y�|n dy

�.

We continue the proof for n ¡ 3. However, the results hold for n ¤ 3 and can be proved with
similar computations. We use hyperspherical coordinates with ρ ¡ 0 and θ, θ1, . . . , θn�3 P r0, πs, θn�2 P
r0, 2πs (see (3.74) in the Subsection 3.1.5 and observations therein). Without loss of generality and up
to rotations, we assume that x� � |x�|en, so we have the identity |x��y�|2 � ρ2�|x�|2�2|x�|ρ cos θ
(see Figure 3.2 in the Subsection 3.1.5 for clarity). With this change of coordinates, we obtain

Apx, zq � cpn, sq|z � x|2s�np|x�|2 � r2qs2π
n�3¹
k�1

» π
0

sink θ dθ» r
0

ρn�1

pr2 � ρ2qs
�» π

0

sinn�2 θ

pρ2 � |x�|2 � 2|x�|ρ cos θqn{2 dθ


dρ.

Let τ :� |x�|
ρ (notice that τ ¡ 1). We have that» π

0

sinn�2 θ

pρ2 � |x�|2 � 2|x�|ρ cos θqn{2 dθ �
1

ρn

» π
0

sinn�2 θ

pτ2 � 1� 2τ cos θqn{2 dθ.

Thanks to identity (3.85) we obtain that» π
0

sinn�2 θ

pρ2 � |x�|2 � 2|x�|ρ cos θqn{2 dθ �
1

ρn
1

τn�2pτ2 � 1q
» π

0

sinn�2 αdα

� 1

|x�|n�2p|x�|2 � ρ2q
» π

0

sinn�2 αdα.

Then, using identity (3.86) and inserting the explicit value of cpn, sq given by (3.17), we arrive at

Apx, zq � sinpπsq
π

|z � x|2s�n
�|x�|2 � r2

�s
|x�|n�2

» r
0

2ρn�1

pr2 � ρ2qsp|x�|2 � ρ2q dρ

� sinpπsq
π

|z � x|2s�n
�|x�|2 � r2

�s
|x�|n�2

Jpx�q,
(3.56)

where

Jpx�q �
» r

0

2ρn�1

pr2 � ρ2qsp|x�|2 � ρ2q dρ.

Now we define the constant

kpn, sq :� 1

2

�» 1

0

τn�2s�1p1� τ2qs�1 dτ


�1

(3.57)

(we compute its explicit value at the end of Subsection 3.1.4). Then we have that

Jpx�q � 2kpn, sq
» r

0

2ρn�1

pr2 � ρ2qsp|x�|2 � ρ2q
�» 1

0

τn�2s�1p1� τ2qs�1 dτ



dρ.
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We perform the change of variables t � τρ and apply the Fubini-Tonelli’s theorem to obtain that

Jpx�q � 2kpn, sq
» r

0

2ρ

pr2 � ρ2qsp|x�|2 � ρ2q
�» ρ

0

tn�2s�1pρ2 � t2qs�1 dt



dρ

� 2kpn, sq
» r

0

tn�2s�1

�» r
t

2ρpρ2 � t2qs�1

pr2 � ρ2qsp|x�|2 � ρ2q dρ


dt.

We change variables ρ2 � t2 � τ and r2 � τ � t2 � ρ to obtain

Jpx�q � 2kpn, sq
» r

0

tn�2s�1

�» r2�t2

0

τs�1

pr2 � τ � t2qsp|x�|2 � τ � t2q dτ


dt

� 2kpn, sq
» r

0

tn�2s�1

�» r2�t2

0

pr2 � t2 � ρqs�1

ρsp|x�|2 � ρ� r2q dρ


dt

� 2kpn, sq
» r

0

tn�2s�1Iptq dt,
where

Iptq �
» r2�t2

0

pr2 � t2 � ρqs�1

ρsp|x�|2 � ρ� r2q dρ.
Using Proposition 3.1.32 for α � r2 � t2 and β � |x�|2 � r2 we have that

Iptq � π

sinpπsq
p|x�|2 � t2qs�1

p|x�|2 � r2qs .

Hence in Jpx�q, with the changes of variables |x�|
t � τ and then τ2 � 1 � t we have that

Jpx�q � 2kpn, sq π

sinpπsq p|x
�|2 � r2q�s

» r
0

tn�2s�1p|x�|2 � t2qs�1 dt.

� 2kpn, sq π

sinpπsq
|x�|n�2

p|x�|2 � r2qs
» 8

|x�|
r

pτ2 � 1qs�1

τn�1
dτ

� kpn, sq π

sinpπsq
|x�|n�2

p|x�|2 � r2qs
» 8

|x�|2�r2
r2

ts�1

pt� 1qn{2 dt.

Using formula (3.70a) and definition (3.13) we have the equalities

|x�|2 � r2

r2
� pr2 � |x|2qpr2 � |z|2q

r2|x� z|2 � r0px, zq.

Therefore inserting Jpx�q into (3.56) it follows that

Apx, zq � kpn, sq|z � x|2s�n
» 8

r0px,zq

ts�1

pt� 1qn{2 dt.

By inserting this into (3.55) we obtain that

Gpx, zq � apn, sq|z � x|2s�n
�

1� kpn, sq
» 8

r0px,zq

ts�1

pt� 1qn{2 dt


.

Now we change the variable t � 1{τ2 � 1 in definition (3.57) and obtain that

kpn, sq
» 8

0

ts�1

pt� 1qn2 dt � 1. (3.58)

It follows that

Gpx, zq � apn, sqkpn, sq|z � x|2s�n
» r0px,zq

0

ts�1

pt� 1qn2 dt.

We set
κpn, sq :� apn, sqkpn, sq (3.59)
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and conclude that

Gpx, zq � κpn, sq|z � x|2s�n
» r0px,zq

0

ts�1

pt� 1qn2 dt.
Hence the desired result in the case n ¡ 2s. �

Proof of Theorem 3.1.7 for n   2s. We consider without loss of generality r � 1 (by rescal-
ing, the statement of the theorem is verified in the more general case). By (3.8) and definition (3.11)
we have that

Gpx, zq � ap1, sq�|z � x|2s�1 �Apx, zq�, (3.60)

where

Apx, zq :�
»
Rzp�1,1q

P1py, xq
|z � y|1�2s

dy.

Using definition (3.9) we have that

Apx, zq � cp1, sq
»
Rzp�1,1q

p1� x2qs
|y � z|1�2spy2 � 1qs|y � x| dy.

We proceed exactly as in the case n ¡ 2s performing the point inversion transformation and we arrive
at

Apx, zq � cp1, sq|z � x|2s�1

» 1

�1

px�2 � 1qs
p1� y�2qs|x� � y�| dy

�,

where |x�| ¡ 1. By symmetry we have that

Apx, zq � cp1, sq|z � x|2s�1px�2 � 1qs|x�|Jpx�q, (3.61)

with

Jpx�q �
» 1

0

2

p1� y�2qspx�2 � y�2q dy
�.

We change the variable y�2 � t and obtain that

Jpx�q �
� 1

x�

	2
» 1

0

t�1{2p1� tq�s
�

1� t

x�2

	�1

dt.

By the integral representation (A.18) of the hypergeometric function, it follows that

Jpx�q �
� 1

x�

	2 Γp 1
2 qΓp1� sq
Γp 3

2 � sq F

�
1,

1

2
,

3

2
� s,

1

x�2



.

We use the linear transformation (A.19d) (notice that
�
1{x��2   1) and obtain that

F

�
1,

1

2
,

3

2
� s,

1

x�2



� Γp 3

2 � sqΓp�sq
Γp 1

2 � sqΓp1� sqF
�

1,
1

2
, s� 1,

x�2 � 1

x�2



�

�
x�2�1

x�2


�sΓp 3
2�sqΓpsq

Γp1qΓp 1
2 q

F

�
1

2
�s, 1�s, 1�s, x

�2 � 1

x�2



.

(3.62)

The first hypergeometric function obtained in the sum (3.62) is transformed according to (A.19c) as

F

�
1,

1

2
, s� 1,

x�2 � 1

x�2



� |x�|F

�
1

2
, s, s� 1, 1� x�2



.

For s�1 ¡ s ¡ 0 and |1�x�2|   1 the convergence conditions are fulfilled for the integral representation
(A.18) of the hypergeometric function. Therefore we may write

F

�
1,

1

2
, s� 1,

x�2 � 1

x�2



� |x�|Γps� 1q

Γpsq
» 1

0

ts�1�
1� px�2 � 1qt�1{2 dt.
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On the other hand, for the second hypergeometric function obtained in identity (3.62), we use trans-
formations (A.19b) and (A.19c) and arrive at

F

�
1

2
� s, 1� s, 1� s,

x�2 � 1

x�2



� x��2s|x�|F

�
1

2
� s, 0, 1� s, 1� x�2



� x��2s|x�|F

�
0,

1

2
, 1� s,

x�2 � 1

x�2



.

We use the Gauss expansion (A.15) with a � 0, b � 1
2 , c � 1 � s and w � x�2�1

x�2 (we notice that

0 ¡ c� a� b ¡ �1 for s ¡ 1{2 and |w|   1, thus the series is convergent). Since a � 0, all the terms
of the series vanish, except for k � 0. Hence we obtain that

F

�
0,

1

2
, 1� s,

x�2 � 1

x�2



� 1

and therefore

F

�
1

2
� s, 1� s, 1� s,

x�2 � 1

x�2



� x��2s|x�|.

Consequently

Jpx�q � 1

|x�|
�

Γp 1
2 qΓp�sqΓps� 1q
Γp 1

2 � sqΓpsq
» 1

0

ts�1�
1� px�2 � 1qt�1{2 dt�

ΓpsqΓp1� sq
px�2 � 1qs



.

We recall that cp1, sq � �
ΓpsqΓp1� sq��1

and we define the constant

kp1, sq :� cp1, sqΓp
1
2 qΓp�sqΓps� 1q
Γp 1

2 � sqΓpsq . (3.63)

We insert Jpx�q into (3.61) and have that

Apx, zq � kp1, sq|z � x|2s�1

» 1

0

px�2 � 1qsts�1�
1� px�2 � 1qt�1{2 dt� |z � x|2s�1.

With the change of variables px�2 � 1qt � τ we obtain that

Apx, zq � kp1, sq|z � x|2s�1

» x�2�1

0

ts�1

pt� 1q 1
2

dt� |z � x|2s�1.

Inserting this into (3.60) and noticing that x�2 � 1 � r0px, zq it follows that

Gpx, zq � �ap1, sqkp1, sq|z � x|2s�1

» r0px,zq
0

ts�1

pt� 1q 1
2

dt.

We call
κp1, sq � �ap1, sqkp1, sq (3.64)

and conclude the proof of Theorem 3.1.7 for n   2s. �

Proof of Theorem 3.1.7 for n � 2s. Without loss of generality, we assume r � 1. We insert
the explicit formulas (3.8) and (3.9) into definition (3.11). Moreover, we use the explicit values of the

constant a
�

1, 1
2

	
from (3.16) and c

�
1, 1

2

	
from (3.17). We obtain that

Gpx, zq � � 1

π
log |x� z| � 1

π2

»
|y|¥1

log |y � z|
d

1� x2

y2 � 1

dy

|x� y| . (3.65)

Let

Apx, zq :�
»
|y|¥1

log |y � z|
d

1� x2

y2 � 1

dy

|x� y| .
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We perform the change of variables v � yx�1
y�x . Since 1 � v2 ¥ 0, we have that |v| ¤ 1. We set

w :� xz�1
z�x and observe that |w| ¥ 1. It follows that

Apx, zq �
»
|v|¤1

�
log

|v � w|
|v � x| � log |z � x|



dv?

1� v2
.

We use identity (3.83) and since |w| ¥ 1 and |x| ¤ 1 we obtain that

Apx, zq � π log
�
|w| � pw2 � 1q1{2

	
� π log |x� z|

� π logp1� zx�
a
p1� x2qp1� z2qq.

Inserting this into (3.65) we obtain that

Gpx, zq � 1

π
log

�
1� zx�ap1� x2qp1� z2q

|x� z|


.

This completes the proof of Theorem 3.1.7 for n � 2s. �

We prove here Theorem 3.1.8, which gives the representation formula for the Poisson equation.

Proof of Theorem 3.1.8. We identify h with its C0,ε
c pRnq extension, namely we consider h̃ P

C0,ε
c pRnq with Br � supp h̃ such that h̃ � h on Br. Then, by definition (3.11) we have that in Br

upxq �
»
Br

hpzqGpx, zq dz

�
»
Br

hpzqΦpz � xqdz �
»
Br

hpzq
�»

RnzBr
Φpy � zqPrpy, xqdy



dz

� h � Φpxq �
»
RnzBr

Prpy, xq
�
h � Φ

�pyq dy.
Let

gpxq :� h � Φpxq for any x P Rn.
From Theorem 3.1.20, we have that g P L1

spRnq X C2s�εpRnq. Let for any x P Rn

upxq � v0pxq � v1pxq,
where v0pxq � gpxq in Rn and

v1pxq �
$&%
»
RnzBr

Prpy, xqgpyq dy if x P Br,
gpxq if x P RnzBr.

Then for x P Br, thanks to Theorems 3.1.20 and 3.1.5

p�∆qsupxq � hpxq � 0 � hpxq,
hence u is solution (3.2). Also, from Theorems 3.1.20 and 3.1.5, it follows that u P CpRnq.

The uniqueness of the solution follows from the simple application of the Maximum Principle for
the fractional Laplacian (see Theorem 2.1.8). �

We compute now the constant κpn, sq in Theorem 3.1.7. For this, we start with the next identity
for kpn, sq given in (3.57), when n ¡ 2s:

kpn, sq � Γpn2 q
Γpn2 � sqΓpsq . (3.66)

Indeed, using definition (3.57) and taking the change of variable τ2 � t we have that

1

kpn, sq � 2

» 1

0

τn�2s�1p1� τ2qs�1 dt �
» 1

0

t
n
2 �s�1p1� tqs�1 dt.
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We use identities (A.12) and (A.13) to obtain that» 1

0

t
n
2 �s�1p1� tqs�1 dt � Γpn2 � sqΓpsq

Γpn2 q
,

which is exactly the result.
We now prove Theorem 3.1.10, namely we compute the constant κpn, sq encountered in the formula

of the Green function G.

Proof of Theorem 3.1.10. For n ¡ 2s, we insert the values of apn, sq from (3.15) and of kpn, sq
from (3.66) into (3.59) and we obtain that

κpn, sq � apn, sqkpn, sq � Γpn2 q
22sπ

n
2 Γ2psq .

For n   2s, we recall definitions (3.63), (3.64) and (3.15), we use identities (A.8), (A.10) and (A.6)
relative to the Gamma function and obtain that

κp1, sq � �ap1, sqkp1, sq � p�sqΓp�sq
22sΓpsq

1

Γp1� sqΓpsq �
1

22sΓ2psq .

On the other hand, we recall that κ
�

1, 1
2

	
� 1

π , as we have seen in the proof of Theorem 3.1.7 for

n � 2s. This concludes the proof of Theorem 3.1.10. �

We prove now Theorem 3.1.11, that gives the value of the constant Cpn, sq introduced in (1.1).

Proof of Theorem 3.1.11. By Lemma 2.1.4 we have that in B1

p�∆qsupxq � Cpn, sqωn
2
Bp1� s, sq.

We use Theorem 3.1.8 and for n � 2s, we obtain that

upxq �
»
B1

Cpn, sqωn
2
Bp1� s, sqGpx, yqdy

� Cpn, sqωn
2
Bp1� s, sqκpn, sq

»
B1

|x� y|2s�n
�» r0px,yq

0

ts�1

pt� 1qn2 dt


dy.

We compute this identity in zero and have that

1 � Cpn, sqωn
2
Bp1� s, sqκpn, sq

»
B1

|y|2s�n
�» 1�|y|2

|y|2

0

ts�1

pt� 1qn2 dt


dy. (3.67)

We compute the double integral, by using Fubini-Tonelli’s theorem»
B1

|y|2s�n
�» 1�|y|2

|y|2

0

ts�1

pt� 1qn2 dt


dy � ωn

» 1

0

ρ2s�1

�» 1�ρ2
ρ2

0

ts�1

pt� 1qn2 dt


dρ

� ωn

» 8

0

ts�1

pt� 1qn2
�» 1?

t�1

0

ρ2s�1 dρ



dt

� ωn
2s

» 8

0

ts�1

pt� 1qn2 �s dt �
ωn
2s
B

�
s,
n

2



.

By inserting this, the value of κpn, sq from Theorem 3.1.10 and the measure of the pn�1q-dimensional
unit sphere ωn � p2πn{2q{Γpn{2q into (3.67) and using (A.13) we obtain that

Cpn, sq � 22ssΓpn2 � sq
π
n
2 Γp1� sq .

For n � 2s we have that p�∆qsupxq � C p1, 1{2qπ. Thanks to Theorem 3.1.8

upxq � C

�
1,

1

2



π

» 1

�1

Gpx, yq dy.
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Using formula (3.14) and computing u at zero, we obtain that

1 � C

�
1,

1

2


» 1

�1

log
1�

a
1� y2

|y| dy � πC

�
1,

1

2



.

Hence C p1, 1{2q � 1{π and this concludes the proof of the Theorem. �

3.1.5. Point inversion transformations and some useful integral identities. The purpose
of this subsection is to recall some basic geometric features of the point inversion, related to the so-
called Kelvin transformation.

Let r ¡ 0 to be fixed.

Definition 3.1.22. Let x0 P Br be a fixed point. The inversion with center x0 is a point trans-
formation that maps an arbitrary point y P Rnztx0u to the point Kx0

pyq such that the points y, x0,
Kx0

pyq lie on one line, x0 separates y and Kx0
pyq and

Kx0
pyq :� x0 � r2 � |x0|2

|y � x0|2
�
y � x0

�
. (3.68)

This is a bijective map from Rnztx0u onto itself. Of course, Kx0

�
Kx0pxq

� � x. When this does
not generate any confusion, we will use the notation y� :� Kx0pyq and x� :� Kx0pxq to denote the
inversion of y and x respectively, with center at x0.

Remark 3.1.23. It is not hard to see, from definition (3.68), that

|y� � x0||y � x0| � r2 � |x0|2. (3.69)

Proposition 3.1.24. Let x0 P Br be a fixed point, and x� and y� be the inversion of x P Rnztx0u
respectively y P Rnztx0u with center at x0. Then:

a) points on the sphere BBr are mapped into points on the same sphere,

b) points outside the sphere BBr are mapped into points inside the sphere,

c)
|y � x0|2

pr2 � |x0|2qpr2 � |y|2q �
1

|y�|2 � r2
, (3.70a)

d)
dy

|y � x0|n �
dy�

|y� � x0|n , (3.70b)

e) |y� � x�| � pr2 � |x0|2q |y � x|
|y � x0||x� x0| . (3.70c)

The Kelvin point inversion transformation is well known (see, for instance, the Appendix in [102])
and elementary geometrical considerations can be used to prove this lemma. We give here a sketch of
the proof.

Sketch of the proof. A simple way to prove claims a) to c) is to consider the first triangle in
Figure 4.4.

We denote b :� |OY | � |y|, b� :� |OY �| � |y�|, α :� |X0Y | � |y�x0| and β :� |X0Y
�| � |y��x0|.

Let OH be the perpendicular from O onto Y Y �. We apply the Pythagorean Theorem in the three
triangles 4OYH, 4OHX0, 4OHY �, add the equation (3.69) and by solving the system, one gets
that

b�2 � βr2 � αr2 � βb2

α
.

From this, claims a) to c) follow after elementary computations.
In order to prove d), without loss of generality, one can consider the point inversion of radius one

with center at zero y� � �y{|y|2 and take its derivative. Since the point inversion transformation is
invariant under rotation, we can assume that y � |y|e1 and the desired result plainly follows.

To prove e), see the Appendix in [102], or consider the second triangle in Figure 4.4. We denote
a :� |X0X| � |x � x0|, b :� |X0Y | � |y � x0|, α :� |XY | � |x � y| and β :� |X�Y �| � |x� � y�|.
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Figure 3.1. Inversion of x, y with center at x0

Let Y H1 and Y �H2 be perpendiculars from Y , respectively Y � onto the segment XX�. By applying
the Pythagorean Theorem in the four triangles 4X0Y H1, 4XYH1, 4X0Y

�H2, 4X�Y �H2, adding
relation (3.69) and using that Y H1 is parallel to Y �H2, one gets after solving the system that

β � pr2 � |x0|2qα
ab

,

which is the desired result. �

We present here a few detailed computations related to the functions Φ, Ar and Pr and some
other useful integral identities.

Lemma 3.1.25. For any r ¡ 0 »
RnzBr

Arpyq dy � 1. (3.71)

Proof. Using (3.7) and passing to polar coordinates we have that»
RnzBr

Arpyq dy � cpn, sq
»
RnzBr

r2s

p|y|2 � r2qs|y|n dy

� cpn, sqωn
» 8

r

r2s

ρpρ2 � r2qs dρ.

We change the variable z � pρ{rq2 � 1 and have that»
RnzBr

Arpyq dy � cpn, sq
2

ωn

» 8

0

1

pz � 1qzs dz. (3.72)

Using (A.14) and the definition (3.17) of cpn, sq, it follows that
³
RnzBr Arpyq dy � 1, as desired. �

Lemma 3.1.26. For any r ¡ 0 and any x P Br»
RnzBr

Prpy, xq dy � 1. (3.73)
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Proof. We make the proof for n ¡ 3. However, the results hold for n ¤ 3. We change variables
using the hyperspherical coordinates with radius ρ ¡ 0 and angles θ, θ1, . . . , θn�3 P r0, πs, θn�2 P r0, 2πs

y1 �ρ sin θ sin θ1 . . . sin θn�3 sin θn�2

y2 �ρ sin θ sin θ1 . . . sin θn�3 cos θn�2

y3 �ρ sin θ sin θ1 . . . cos θn�3

. . .

yn �ρ cos θ.

(3.74)

The Jacobian of the transformation is given by ρn�1 sinn�2 θ sinn�3 θ1 . . . sin θn�3. We only remark
that for n � 3 the usual spherical coordinates can be used y1 � ρ sin θ sin θ1, y2 � ρ sin θ cos θ1 and y3 �
ρ cos θ, while for n � 2 and n � 1 similar computations can be performed.

Without loss of generality and up to rotations, we assume that x � |x|en to obtain the identity
|x�y|2 � ρ2�|x|2�2|x|ρ cos θ (see Figure 3.2 for clarity). With this change of coordinates, we obtain»

RnzBr
Prpy, xq dy

�cpn, sqpr2 � |x|2qs2π
n�3¹
k�1

» π
0

sink θ dθ

» 8

r

» π
0

ρn�1 sinn�2 θ dθ dρ

pρ2 � r2qspρ2 � |x|2 � 2ρ|x| cos θqn{2 .

We do the substitution r̄ � r{|x| and ρ̄ � ρ{|x| but still use r and ρ for simplicity and we remark

Figure 3.2.

that now ρ ¡ 1 and r ¡ 1. We obtain that»
RnzBr

Prpy, xq dy

� cpn, sqpr2 � 1qs2π
n�3¹
k�1

» π
0

sink θ dθ

» 8

r

ρn�1

pρ2 � r2qs
�» π

0

sinn�2 θ dθ

pρ2 � 1� 2ρ cos θqn{2


dρ.

(3.75)

Let

ipρq :�
» π

0

sinn�2 θ

pρ2 � 2ρ cos θ � 1qn{2 dθ.
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We claim that, given that ρ ¡ 1

ipρq � 1

ρn�2pρ2 � 1q
» π

0

sinn�2 θ dθ. (3.76)

To prove this, we use the following change of coordinates

sin θa
ρ2 � 2ρ cos θ � 1

� sinα

ρ
. (3.77)

We have that

dθ �
�

1� cosαa
ρ2 � sin2 α

�
dα. (3.78)

To see this, one takes the derivative of the relation (3.77)

pρ cos θ � 1qpρ� cos θq
pρ2 � 2ρ cos θ � 1q 3

2

dθ � cosα

ρ
dα (3.79)

and obtains with some manipulations of identity (3.77) that

cosα
a
ρ2 � sin2 αa

ρ2 � sin2 α� cosα
� ρpρ cos θ � 1qpρ� cos θq

pρ2 � 2ρ cos θ � 1q 3
2

.

Now by changing variables we obtain that

ipρq �
» π

0

sinn�2 θ

pρ2 � 2ρ cos θ � 1qn{2 dθ

� 1

ρn�2

» π
0

sinn�2 αdα

p
a
ρ2 � sin2 α� cosαq

a
ρ2 � sin2 α

� 1

ρn�2

» π
0

sinn�2 αp
a
ρ2 � sin2 α� cosαq dα

pρ2 � 1q
a
ρ2 � sin2 α

� 1

ρn�2pρ2 � 1q
�» π

0

sinn�2 αdα�
» π

0

sinn�2 α cosαa
ρ2 � sin2 α

dα



.

By symmetry » π
0

sinn�2 α cosαa
ρ2 � sin2 α

dα � 0,

therefore

ipρq � 1

ρn�2pρ2 � 1q
» π

0

sinn�2 αdα.

We substitute this into (3.75) and obtain that»
RnzBr

Prpy, xq dy � cpn, sqpr2 � 1qs2π
n�2¹
k�1

» π
0

sink θ dθ

» 8

r

ρ dρ

pρ2 � r2qspρ2 � 1q .

We claim that

π
n�2¹
k�1

» π
0

sink θdθ � πn{2

Γpn{2q . (3.80)

To prove this, we integrate by parts and obtain that

Ik �
» π

0

sink θ dθ � pk � 1q
» π

0

sink�2 θ dθ � pk � 1q
» π

0

sink θ dθ,

which implies that

Ik � k � 1

k

» π
0

sink�2 θ dθ � k � 1

k
Ik�2.
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Thus we have

Ik �

$'&'%
k � 1

k

k � 3

k � 2
. . .

1

2
I0 if k even,

k � 1

k

k � 3

k � 2
. . .

2

3
I1 if k odd,

with I0 � π and I1 � 2, and the claim (3.80) follows after elementary computations. And so»
RnzBr

Prpy, xq dy � cpn, sqpr2 � 1qs πn{2

Γpn{2q
» 8

r

2ρ

pρ2 � r2qspρ2 � 1q dρ.

We change variable ρ2�r2

r2�1 � z and obtain»
RnzBr

Prpy, xq dy � cpn, sq πn{2

Γpn{2q
» 8

0

1

zs pz � 1q dz.

We use (A.14) and the value of cpn, sq from (3.17) and obtain that»
RnzBr

Prpy, xq dy � 1.

This completes the proof of Lemma 3.1.26. �

Lemma 3.1.27. For any r ¡ 0 and any x P Br
cpn, sq

»
Br

dy

pr2 � |y|2qs|x� y|n�2s
� 1. (3.81)

Proof. Let y� be the inversion of y with center at x (notice that |y�| ¡ r). Then by using
(3.70a) and (3.70b) we obtain that»

Br

dy

pr2 � |y|2qs|x� y|n�2s
�

»
RnzBr

�
r2 � |x|2
|y�|2 � r2

�s
dy�

|x� y�|n .

From identity (3.73) the desired result immediately follows. �

Lemma 3.1.28. For any r ¡ 0 and any x P RnzBr»
RnzBr

ArpyqΦpx� yq dy � Φpxq. (3.82)

Proof. We prove the claim for n � 2s. We insert definitions (3.7) and (3.8) and obtain that»
RnzBr

ArpyqΦpx� yq dy � r2scpn, sqapn, sq
»
RnzBr

1

p|y|2 � r2qs|y|n|x� y|n�2s
dy.

Let x� and y� be the inversion of x, respectively y with center at 0. Using identities (3.69), (3.70a)
(3.70c) and (3.70b) we obtain that»

RnzBr
ArpyqΦpx� yq dy � cpn, sqapn, sq

|x|n�2s

»
Br

dy�

|x� � y�|n�2s
�
r2 � |y�|2�s .

From (3.81) it follows that »
RnzBr

ArpyqΦpx� yq dy � apn, sq
|x|n�2s

,

and thus the desired result.
We now prove the claim for n � 2s, assuming r � 1. We have that»

RnzBr
ArpyqΦpx� yq dy � �1

π2

»
|y|¡1

log |y � x|a
y2 � 1|y|dy.
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We perform the change of variables v � 1
y , with |v| ¤ 1. We set w :� 1

x , hence |w| ¤ 1. Then we have

that »
RnzBr

ArpyqΦpx� yq dy � �1

π2

»
|v|¤1

�
log

|v � w|
|v| � log |x|



dv?

1� v2
.

We use the following result (see [19], page 549)»
|v|¤1

log |v � a| dv?
1� v2

�
#
�π log 2, if |a| ¤ 1

π logp|a| � pa2 � 1q1{2q � π log 2, if |a| ¥ 1.
(3.83)

We thus obtain »
RnzBr

ArpyqΦpx� yq dy � � 1

π
log |x|,

which concludes the proof of the Lemma. �

Lemma 3.1.29. For any r ¡ 0, let x0 P Br be a fixed point. For any x P RnzBr»
RnzBr

Prpy, x0qΦpx� yq dy � Φpx� x0q. (3.84)

Proof. We prove the claim for n � 2s. We have that»
RnzBr

Prpy, x0qΦpx� yq dy � cpn, sqapn, sq
»
RnzBr

pr2 � |x0|2qs|x� y|2s�n dy
p|y|2 � r2qs|y � x0|n .

Let x� and y� be the inversion of x, respectively y with center at x0. From (3.69), (3.70a) (3.70b)
and (3.70c) we have that»

RnzBr
Prpy, x0qΦpx� yq dy

� cpn, sqapn, sq |x� � x0|n�2s

pr2 � |x0|2qn�2s

»
Br

dy�

pr2 � |y�|2qs|y� � x�|n�2s
.

Using (3.81), we obtain that»
RnzBr

Prpy, x0qΦpx� yq dy � apn, sq
|x� x0|n�2s

,

which concludes the proof for n � 2s.
We now prove the claim for n � 2s, assuming r � 1. We have that»

RnzBr
Prpy, x0qΦpx� yq dy � �1

π2

»
|y|¡1

d
1� x0

2

y2 � 1

log |y � x|
|y � x0| dy.

We perform the change of variables v � yx0�1
y�x0

, noticing that |v| ¤ 1. We set w :� xx0�1
x�x0

, hence

|w| ¤ 1. Then we have that»
RnzBr

Prpy, x0qΦpx� yq dy � �1

π2

»
|v|¤1

�
log

|v � w|
|v � x0| � log |x� x0|



dv?

1� v2
.

We use identity (3.83) and obtain»
RnzBr

Prpy, x0qΦpx� yq dy � � 1

π
log |x� x0|,

which concludes the proof. �

We emphasize here two computations that we used in the proof of Lemma 3.1.26, namely identities
(3.76) and (3.80).
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Proposition 3.1.30. For any τ ¡ 1» π
0

sinn�2 θ

pτ2 � 2τ cos θ � 1qn{2 dθ �
1

τn�2pτ2 � 1q
» π

0

sinn�2 αdα. (3.85)

Proposition 3.1.31.

π
n�2¹
k�1

» π
0

sink θ dθ � πn{2

Γpn{2q . (3.86)

In the next Proposition we introduce yet another integral identity.

Proposition 3.1.32. Let α, β P R such that
�� α
α�β

��   1. Then» α
0

pα� xqs�1

xspβ � xq dx �
π

sinpπsq
pα� βqs�1

βs
.

Proof. We change the variable x � αt and obtain that» α
0

pα� xqs�1

xspβ � xq dx �
1

β

» 1

0

t�sp1� tqs�1

�
1� α

β
t


�1

dt.

We use the integral definition (A.18) of the hypergeometric function for a � 1, b � 1 � s, c � 1 and
w � �α

β (since |t|   1, the integral is convergent) and we obtain that» 1

0

t�sp1� tq�s
�

1� α

β
t


�1

dz � ΓpsqΓp1� sq
Γp1q F

�
1, 1� s, 1,�α

β



.

Now we use the linear transformation (A.19c) and compute

F

�
1, 1� s, 1,�α

β



�

�
α� β

β


s�1

F

�
1� s, 0, 1,

α

α� β



.

We use the Gauss expansion in (A.15) and notice that for k ¡ 0, all the terms of the sum vanish. We
are left with only with the term k � 0 and obtain that

F

�
1� s, 0, 1,

α

α� β



� 1.

Furthermore, from (A.14) it follows that» α
0

pα� xqs�1

xspβ � xq dx �
π

sinπs

pα� βqs�1

βs
. �

We explicitly compute here another integral that was used in our computations, namely :

Proposition 3.1.33. For any s P p0, 1{2s we have that» 8

0

t2s�2 sin t dt � � cospπsqΓp2s� 1q. (3.87)

Proof. We have that » 8

0

t2s�2 sin t dt � �Im

» 8

0

t2s�2e�it dt. (3.88)

We consider the closed path Ωρ � B
��r0, ρs � r0, ρs� X Bρp0q

	
. We take the contour integral³

Ωρ
z2s�2e�z dz, and let γρ � BBρp0q X

�r0, ρs � r0, ρs� (the boundary of the quarter of the circle). By

Cauchy’s Theorem, the contour integral is 0 (there are no poles inside Ωρ), therefore» ρ
0

t2s�2e�t dt�
»
γρ

z2s�2e�z dz � i

» ρ
0

pitq2s�2e�it dt � 0.
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Integrating along γρ, by using polar coordinates z � ρeiθ and then the change of variables cos θ � t
we have that ���� »

γρ

z2s�2e�z dz
���� � ���� » π{2

0

ρ2s�1eiθp2s�1qe�ρe
iθ

dθ

���� ¤ ρ2s�1

���� » π{2
0

e�ρ cos θ dθ

����
� ρ2s�1

���� » 1

0

e�ρt?
1� t2

dt

����
¤ ρ2s�1e�ρ{2

���� » 1

1{2
p1� tq�1{2 dt

����� cρ2s�1

���� » 1{2

0

e�ρt dt
����

� cρ2s�1e�ρ{2 � cρ2s�2pe�ρ{2 � 1q.
Hence

lim
ρÑ8

»
γρ

z2s�2e�z dz � 0

and we are left only with the integrals along the real and the imaginary axis, namely» 8

0

t2s�2e�t dt � i2s�1

» 8

0

t2s�2e�it dt.

Here the left hand side returns the Gamma function according to definition (A.4). We compute

i1�2s � �
cospπ{2q � i sinpπ{2q�1�2s � sinpπsq � i cospπsq and in (3.88) we obtain that» 8

0

t2s�2 sin t dt � �Γp2s� 1qIm
�

sinpπsq � i cospπsq
	
� � cospπsqΓp2s� 1q.

This concludes the proof of the Proposition. �
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3.2. Schauder estimates for the fractional Laplacian

In what follows we assume that n ¥ 2 and consider s P p0, 1q to be a fixed quantity. Let f be a
given Hölder continuous function and u solving

p�∆qsu � f in B1. (3.89)

We want to study the regularity of u using a very simple method based on the Poisson representation
formula and dyadic ball approximation argument. For regularity up to the boundary of weak solutions
of the Dirichlet problem, see the very nice paper [125].

More precisely, we prove here that given f P C0,αpB1q X CpB1q, then on the half ball u has the
regularity of f increased by 2s.

Theorem 3.2.1. Let s P p0, 1q, α   1 and f P C0,αpB1qXCpB1q be a given function with modulus
of continuity ωprq :� sup|x�y| r |fpxq � fpyq|. Let u P L8pRnq X C1pB1q be a pointwise solution of

p�∆qsu � f in B1. Then for any x, y P B1{2 and denoting δ :� |x� y| we have that for s ¤ 1{2

|upxq � upyq| ¤ Cn,s

�
δ}u}L8pRnzB1q � δ sup

B1

|f | �
» cδ

0

ωptqt2s�1 dt� δ

» 1

δ

ωptqt2s�2 dt



(3.90)

while for s ¡ 1{2

|Dupxq �Dupyq| ¤ Cn,s

�
δ}u}L8pRnzB1q � δ sup

B1

|f | �
» cδ

0

ωptqt2s�2 dt� δ

» 1

δ

ωptqt2s�3 dt



, (3.91)

where Cn,s and c are positive dimensional constants.

There are other approaches to prove Schauder estimates for the fractional order operators with
more general kernels see [68] and references therein. Here we follow the one proposed by Xu-Jia Wang
in [149] which is based only on the higher order derivative estimates, that we state here in Lemma
3.97 and on a maximum principle, given in Lemma 3.100.

One of the motivations to study (3.89) comes from the active scalars (see [40]). The 2D incom-
pressible Euler equation $&% ωt � v∇ω � 0

v � pB2ψ,�B1ψq
ω � ∆ψ

(3.92)

is one of the well-known active scalar equations. Here v is the velocity, ω the vorticity, ψ the stream
function.

The uniqueness was proved by Yudovich (see [153]) under the condition that ωptq P L8p0, T ;L1pR2qqX
L8p0, T ;L8pR2qq. Observe that by the Biot -Savart law one has that v � k � ω, where

kpxq � xK

2π|x|2 .

Clearly k P LplocpR2q, 1 ¤ p   2 and k P LqpR2q, q ¡ 2 near infinity, implying that one must assume
ω P LpopR2q X LqopR2q, po   2   qo to make sure that v � k � ω is well defined. In particular
po � 1, qo � 8 will do.

A generalization of the 2D Euler equation is the quasigeostrophic active scalar$&%
ωt � v∇ω � 0
v � pB2ψ,�B1ψq
�ω � p�∆q 1

2ψ
(3.93)

or more generally when one takes �ω � p�∆qsψ, 0   s   1. Thus this leads to the study of ks�p∆q�sω
where n � 2 and

kspxq � ∇K Cn,s
|x|n�2σ

.
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We see that the regularity of the stream function can be concluded from that of ω via Schauder
estimates.

3.2.1. Hölder estimates for the Riesz potentials. In the next Lemma, we establish that
given a bounded function with bounded support, its convolution with the function Φ defined in (3.8)
is Hölder continuous.

Lemma 3.2.2. Let s P p0, 1{2q Y p1{2, 1q be fixed. Let Ω � Rn be a bounded set, the function
f P L8pRnq be supported in Ω and u be defined as

upxq :�
»
Rn

fpyq
|x� y|n�2s

dy. (3.94)

Then u P C0,2spRnq for s   1{2 and u P C1,2s�1 for s ¡ 1{2.

The proof of this Lemma takes inspiration from [153], where some bounds are obtained in the
case s � 1{2. Check also Lemma 3.1 in [56] for other considerations.

Proof. Let s   1{2 be fixed. We consider x1, x2 P Rn and denote by δ :� |x1 � x2|. We notice
that in the course of the proof, the constants may change value from line to line. We have that

|upx1q � upx2q| ¤ |f}L8pRnq
»

Ω

���� 1

|x1 � y|n�2s
� 1

|x2 � y|n�2s

���� dy.
Using (3.44) (with Ω instead of BR) we obtain that

|upx1q � upx2q| ¤ }f}L8pRnqCδ2s, (3.95)

where C � Cpn, sq is a positive constant. To prove the bound for s ¡ 1{2, thanks to Lemma 4.1
in [90] we have that

Dupxq �
»

Ω

DΦpx� yqfpyq dy �
»

Ω

fpyq
|x� y|n�2s�1

dy. (3.96)

The proof then follows as for s   1{2, and one gets that

|Dupx1q �Dupx2q| ¤ }f}L8pRnq
»

Ω

���� 1

|x1 � y|n�2s
� 1

|x2 � y|n�2s

���� dy ¤ C}f}L8pRnqδ2s�1,

where C � Cpn, sq is a positive constant. This concludes the proof of the Lemma. �

Remark 3.2.3. On Ω one has the following bounds. For x1, x2 P Ω

|upx1q � upx2q| ¤

$'&'%
C|x1 � x2|

�
1� |x1 � x2|2s�1

	
for s   1{2

C|x1 � x2|
�

1� �� ln |x1 � x2|
��	 for s � 1{2,

and

|Dupx1q �Dupx2q| ¤ C|x1 � x2|
�

1� |x1 � x2|2s�2
	

for s ¡ 1{2,

where C � Cpn, s, f,Ωq is a positive constant depending on n, s the L8 norm of f and the diameter
of Ω.
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3.2.2. Some useful estimates. In this subsection we introduce some useful estimates, using
the representation formulas in Theorems 3.1.20 and 3.1.5. The interested reader can also check [74],
where Cauchy-type estimates for the derivatives of s-harmonic functions are proved using the Riesz
and Poisson kernel.

We fix r ¡ 0.

Lemma 3.2.4. Let u P L8pRnq X CpRnzBrq be such that p�∆qsupxq � 0 for any x in Br. Then
for any α P Nn0

}Dαu}L8pBr{2q ¤ cr�|α|}u}L8pRnzBrq, (3.97)

where c � cpn, s, αq is a positive constant.

Proof. We notice that it is enough to prove (3.97) for r � 1, i.e.

}Dαu}L8pB1{2q ¤ c}u}L8pRnzB1q. (3.98)

Indeed, if (3.98) holds, then by rescaling, namely letting y � rx and vpyq � upxq for x P B1, we have
that Dαupxq � r|α|Dαvpyq. Hence r|α||Dαvpyq| � |Dαupxq| ¤ c}u}L8pRnzB1q � c}v}L8pRnzBrq and one
gets the original estimate for any r.

We use the representation formula given in Theorem 3.1.5. By inserting definition (3.9), we have
that in B1

upxq �
»
RnzB1

upyqP1py, xq dy

� cpn, sq
»
RnzBr

upyq p1� |x|2qs
p|y|2 � 1qs

dy

|x� y|n .

Let x P B1{2. We take the jth derivative of u and have that

Djupxq

� cpn, sq
»
RnzB1

upyqDj

� p1� |x|2qs
p|y|2 � 1qs

1

|x� y|n
�
dy

� cpn, sq
»
RnzBr

upyq
p|y|2 � 1qs

� p�2sxjqp1� |x|2qs�1

|x� y|n � p�nq p1� |x|2qspxj � yjq
|x� y|n�2

�
dy.

Therefore renaming the constants (even from line to line),

|Dupxq| ¤ cn,s

»
RnzB1

|upyq|
p|y|2 � 1qs

� |x|p1� |x|2qs�1

|x� y|n � p1� |x|2qs
|x� y|n�1

�
dy. (3.99)

Given that |x| ¤ 1{2 we have that 3{4 ¤ 1� |x|2 ¤ 1 and |x� y| ¥ |y|{2 and so

|Dupxq| ¤ cn,s}u}L8pRnzB1q

»
RnzB1

�
1

p|y| � 1qs|y|n �
1

p|y| � 1qs|y|n�1

�
dy.

Passing to polar coordinates and renaming the constants, we have that

|Dupxq| ¤ cn,s}u}L8pRnzB1q

�» 8

1

pρ� 1q�sρ�1 dρ�
» 8

1

pρ� 1q�sρ�2 dρ

�
.

Now we compute» 8

1

pρ� 1q�sρ�1 dρ �
» 2

1

pρ� 1q�sρ�1 dρ�
» 8

2

pρ� 1q�sρ�1 dρ ¤ C

and likewise, » 8

1

pρ� 1q�sρ�2 dρ ¤ C.

It follows that
|Dupxq| ¤ cn,s}u}L8pRnzB1q for any x P B1{2.
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By reiterating the computation, we obtain the conclusion for the α derivative. This proves the estimate
(3.98), thus (3.97) by rescaling. �

Lemma 3.2.5. Let f P C0,εpBrq X CpBrq be a given function and u P C1pBrq X L8pRnq be a
pointwise solution of #

p�∆qsu � f in Br,

u � 0 in RnzBr.
Then

}u}L8pBrq ¤ cr2s sup
Br

|f |, (3.100)

where c � cpn, sq is a positive constant. Furthermore, for s ¡ 1{2
}Du}L8pBr{2q ¤ cr2s�1 sup

Br

|f |, (3.101)

where c � cpn, sq is a positive constant.

Proof. We notice that it is enough to prove (3.100) and (3.101) for r � 1, i.e.

}u}L8pB1q ¤ c sup
B1

|f | (3.102)

and
}Du}L8pB1{2q ¤ c sup

B1

|f |. (3.103)

Indeed, by rescaling, we let y � rx and vpyq � upxq we have that p�∆qsvpyq � r�2sp�∆qsupxq, while
rDvpyq � Dupxq and one gets the original estimates for any r.

We take f̃ to be a continuous extension of f , namely let f̃ P C0,ε
c pRnq be such that

f̃ �
#
f in B1

0 in RnzB3{2

and supRn |f̃ | ¤ C supB1
|f |. Let

ũpxq :� f̃ � Φpxq � apn, sq
»
Rn

f̃pyq
|x� y|n�2s

dy. (3.104)

Then ũ P L1
spRnq XC2s�εpRnq (according to Lemmata 3.1.18 and 3.1.19) Thanks to Theorem 3.1.20,

we have that p�∆qsũ � f̃ pointiwse in Rn. Hence, thanks to the definition of f̃ , p�∆qspũ� uq � 0 in
B1. Moreover, ũ� u � ũ in RnzB1 and from Theorem 3.1.5 we have that in B1

pũ� uqpxq �
»
RnzB1

ũpyqP1py, xq dy. (3.105)

We notice at first that by definition (3.104) and passing to polar coordinates, we obtain for any positive
constant c̃ that

}ũ}L8pBc̃q ¤ an,s sup
Rn

|f̃ |
» c̃�3{2

0

ρ2s�1 dρ ¤ cn,s sup
B1

|f |. (3.106)

By renaming constants, we also have that

}ũ� u}L8pB1q ¤
»
B2zB1

|ũpyq|P1py, xq dy �
»
RnzB2

|ũpyq|P1py, xq dy

¤ }ũ}L8pB2q � I

¤ cn,s sup
B1

|f | � I.

(3.107)
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Inserting the definition (3.9) and using for |y| ¥ 2 the bounds |y � x| ¥ |y|{2 and |y|2 � 1 ¥ |y|2{2 we
have that

I ¤ cpn, sq
»
RnzB2

|ũpyq|
p|y|2 � 1qs|x� y|n dy

¤ cn,s

»
RnzB2

|ũpyq|
|y|n�2s

dy.

We estimate the L1
s norm of ũ as follows

}ũ}L1
spRnzB2q �

»
RnzB2

|ũpyq|
|y|n�2s

dy

¤ apn, sq
»
RnzB2

|y|�n�2s

�»
B3{2

|f̃ptq|
|y � t|n�2s

dt

�
dy

¤ apn, sq sup
Rn

|f̃ |
»
B3{2

�»
RnzB2

|y|�n�2s|y � t|2s�n dy
�
dt.

(3.108)

We use that |y � t| ¥ |y|{4 and passing to polar coordinates we get that

}ũ}L1
spRnzB2q ¤ an,s sup

Rn
|f̃ |

» 8

2

ρ�n�1 dρ � an,s sup
B1

|f |. (3.109)

Hence
I ¤ cn,s sup

B1

|f |.

It follows in (3.107) (eventually renaming the constants) that

}ũ� u}L8pB1q ¤ cn,s sup
B1

|f |. (3.110)

By the triangle inequality, we have that

}u}L8pB1q ¤ }ũ}L8pB1q � }ũ� u}L8pB1q.

Hence by using (3.106) and (3.110) we obtain that

}u}L8pB1q ¤ cn,s sup
B1

|f |,

that is the desired estimate (3.102), hence (3.100) after rescaling.
In order to prove (3.103), we take x P B1{2 and obtain by the triangle inequality that

|Dupxq| ¤ |Dpũ� uqpxq| � |Dũpxq|. (3.111)

We notice that in the next computations the constants may change value from line to line. By using
(3.105) and (3.99), for |x| ¤ 1{2 (hence |y � x| ¥ |y|{2) we obtain that

|Dpũ� uqpxq| ¤ cn,s

»
RnzB1

|ũpyq|
p|y|2 � 1qs|y|n dy

� cn,s

»
RnzB1

|ũpyq|
p|y|2 � 1qs|y|n�1

dy

� cn,spI1 � I2q.

(3.112)

We compute by passing to polar coordinates that»
B2zB1

|ũpyq|
p|y|2 � 1qs|y|n dy ¤ cn,s}ũ}L8pB2q ¤ cn,s sup

B1

|f |,

according to (3.106). Moreover, for |y| ¥ 2 we have that |y|2 � 1 ¥ |y|2{2 and so»
RnzB2

|ũpyq|
p|y|2 � 1qs|y|n dy ¤

»
RnzB2

|ũpyq|
|y|2s�n dy ¤ an,s sup

B1

|f |
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thanks to (3.108) and (3.109). Hence

I1 ¤ cn,s sup
B1

|f |.

We split also integral I2 into two and by passing to polar coordinates, we get that»
B2zB1

|ũpyq|
p|y|2 � 1qs|y|n�1

dy ¤ cn,s}ũ}L8pB2q ¤ cn,s sup
B1

|f |

again by (3.106). Also, using definition (3.104) of ũ and for |y| ¥ 2 the fact that |y|2 � 1 ¥ |y|2{2, we
get »

RnzB2

|ũpyq|
p|y|2 � 1q2|y|n�1

dy ¤ apn, sq
»
RnzB2

|y|�n�2s�1

�»
B3{2

|f̃ptq|
|y � t|n�2s

dt

�
dy.

We have that |y � t| ¥ |y|{4 and obtain that»
RnzB2

|ũpyq|
p|y|2 � 1q2|y|n�1

dy ¤ an,s sup
B1

|f |.

It follows that
I2 ¤ cn,s sup

B1

|f |.

Inserting the bounds on I1 and I2 into (3.112), we finally obtain that

|Dpũ� uqpxq| ¤ cn,s sup
B1

|f |. (3.113)

On the other hand, for s ¡ 1{2, using (3.96) we get that

Dũpxq � apn, sq
»
B3{2

f̃pyq
|x� y|n�2s�1

dy

and therefore by passing to polar coordinates

|Dũpxq| ¤ an,s sup
B1

|f |
»
B3{2

|x� y|2s�n�1 dy ¤ an,s sup
B1

|f |
» 2

0

ρ2s�2 dρ

� an,s sup
B1

|f |.

This and (3.113) finally allow us to conclude from (3.111) that

|Dupxq| ¤ c sup
B1

|f |

for any x P B1{2, therefore the bound in (3.103). From this after rescaling, we obtain the estimate in
(3.101). �

3.2.3. A proof of Schauder estimates. In this subsection we give a simple proof of some
Schauder estimates related to the fractional Laplacian, as stated in Theorem 3.2.1. As we see by
substituting in (3.90) and (3.91) that ωprq ¤ Crα, we obtain for s ¤ 1{2

|upxq � upyq| ¤ Cn,sδ

�
}u}L8pRnzB1q � sup

B1

|f | � δα�2s�1

�
,

hence u P C0,2s�αpB1{2q as long as α   1� 2s and Lipschitz if α ¡ 1� 2s. For s ¡ 1{2 we have that

|Dupxq �Dupyq| ¤ Cn,sδ

�
}u}L8pRnzB1q � sup

B1

|f | � δα�2s�2

�
.

Hence if α ¤ 2� 2s then u P C1,α�2s�1pB1{2q while for 2� 2s ¤ α   1 the derivative Du is Lipschitz
in B1{2. The proof takes its inspiration from [149], where a similar result is proved for the classical
case of the Laplacian.
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We prove here the case s ¡ 1{2, noting that for s ¤ 1{2 the proof follows in the same way, using
the lower order estimates.

Proof of Theorem 3.2.1. For k � 1, 2, . . . , we denote by Bk :� Bρkp0q, where ρ � 1{2 and let
uk be a solution of # p�∆qsuk � fp0q in Bk

uk � u in RnzBk.
Then we have that # p�∆qspuk � uq � fp0q � f in Bk

uk � u � 0 in RnzBk.
We remark that in the next computations, the constants may change value from line to line.
Thanks to (3.100), we get that

}uk � u}L8pBkq ¤ cn,sρ
2ks sup

Bk

|fp0q � f |

¤ cn,sρ
2ksωpρkq.

(3.114)

Using (3.101), we obtain that

}Dpuk � uq}L8pBk�1q ¤ cn,sρ
p2s�1qkωpρkq. (3.115)

From here, sending k to infinity, for s ¡ 1{2 it yields that

lim
kÑ8

Dukp0q � Dup0q. (3.116)

Furthermore, $'&'%
p�∆qspuk � uk�1q � 0 in Bk�1

uk � uk�1 � uk � u in BkzBk�1

uk � uk�1 � 0 in RnzBk,
hence from (3.97) we have that

}Dpuk � uk�1q}L8pBk�2q ¤ cn,sρ
�pk�1q sup

BkzBk�1

|uk � u|

and
}D2puk � uk�1q}L8pBk�2q ¤ cn,sρ

�2pk�1q sup
BkzBk�1

|uk � u|.

Using now (3.114), we get that

}Dpuk � uk�1q}L8pBk�2q ¤ cn,sρ
p2s�1qkωpρkq (3.117)

and

}D2puk � uk�1q}L8pBk�2q ¤ cn,sρ
p2s�2qkωpρkq. (3.118)

Let us fix s ¡ 1{2. Then for any given point z near the origin we have that

|Dupzq �Dup0q| ¤ |Dukpzq �Dupzq| � |Dukp0q �Dup0q| � |Dukpzq �Dukp0q|
� A1 �A2 �A3.

(3.119)

For k P N� fixed, we take z such that ρk�2 ¤ |z| ¤ ρk�1. Using (3.115) we get that

A1 ¤ cn,sρ
p2s�1qkωpρkq.

Taking into account (3.116) and using (3.117), we have that

A2 ¤
8̧

j�k
|Dujp0q �Duj�1p0q| ¤ cn,s

8̧

j�k
ρp2s�1qjωpρjq,
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therefore by renaming the constants

A1 �A2 ¤ cn,sρ
p2s�1qkωpρkq � cn,s

8̧

j�k
ρp2s�1qjωpρjq

¤ cn,s

8̧

j�k
ρp2s�1qjωpρjq.

For the positive constant cs � p2s� 1q{ �ρ1�2s � 1
�

and any j � k, k � 1, . . . we have that

ρp2s�1qj � cs

» ρj�1

ρj
t2s�2 dt.

Since ω is a increasing function, we obtain that

ωpρjqρp2s�1qj � cs ωpρjq
» ρj�1

ρj
t2s�2 dt ¤ cs

» ρj�1

ρj
ωptqt2s�2 dt,

hence given that 8|z| ¥ ρk�1

8̧

j�k
ρp2s�1qjωpρjq ¤ cs

8̧

j�k

» ρj�1

ρj
ωptqt2s�2 dt ¤ cs

» ρk�1

0

ωptqt2s�2 dt

¤ cs

» 8|z|

0

ωptqt2s�2 dt.

Therefore,

A1 �A2 ¤ cn,s

» 8|z|

0

ωptqt2s�2 dt. (3.120)

Moreover, for j � 0, 1, . . . , k � 1 we consider hj :� uj�1 � uj and have that

A3 ¤
k�1̧

j�0

|Dhjpzq �Dhjp0q| � |Du0pzq �Du0p0q|.

By the mean value theorem, there exists θ P p0, |z|q such that

|Dhjpzq �Dhjp0q| ¤ |z||D2hjpθq|
and since |z| ¤ ρk�1, thanks to (3.118) we obtain that

|D2hjpθq| ¤ cn,sρ
p2s�2qjωpρjq.

Hence

k�1̧

j�0

|Dhjpzq �Dhjp0q| ¤ cn,s|z|
k�1̧

j�0

ρp2s�2qjωpρjq � cn,s|z|
�

sup
B1

|f | �
k�1̧

j�1

ρp2s�2qjωpρjq
	
.

As previously done, we have that for the positive constant cs � p2�2sq{ �1� ρ2�2s
�

and j � 1, . . . , k�1

ρp2s�2qj � cs

» ρj�1

ρj
t2s�3 dt

and since ω is increasing

ωpρjqρp2s�2qj ¤ cs

» ρj�1

ρj
ωptqt2s�3 dt.
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It follows that
k�1̧

j�1

ρp2s�2qjωpρjq ¤ cs

k�1̧

j�1

» ρj�1

ρj
ωptqt2s�3 dt ¤ cs

» 1

ρk�1

ωptqt2s�3 dt

¤ cs

» 1

|z|
ωptqt2s�3 dt,

since |z| ¤ ρk�1. Therefore,

k�1̧

j�1

|Dhjpzq �Dhjp0q| ¤ cn,s|z|
» 1

|z|
ωptqt2s�3 dt.

Moreover, let
v0pxq :� kn,sfp0qp1� |x|2qs� for x P Rn.

Then using the result in Subsection 2.1.4 (check there also the explicit value of kn,s) we have in B1

that p�∆qsv0pxq � fp0q. Then the function u0 � v0 is s-harmonic in B1, with boundary data u. We
have that

|Du0pzq �Du0p0q| ¤ |z||D2u0pθq| ¤ |z| �|D2pu0 � v0qpθq| � |D2v0pθq|
�
.

Using the estimate in (3.97) we have for θ P p0, |z|q
|D2pu0 � v0qpθq| ¤ cn,s }u}L8pRnzB1q.

Moreover, |D2v0pθq| is bounded. It follows that

|Du0pzq �Du0p0q| ¤ cn,s|z|}u}L8pRnzB1q,

hence

A3 ¤ cn,s|z|
�

sup
B1

|f | � }u}L8pRnzB1q �
» 1

|z|
ωptqt2s�3 dt

�
.

Inserting this and (3.120) into (3.119) we finally obtain that

|Dupzq �Dup0q| ¤ Cn,s

�
|z|

�
}u}L8pRnzB1q � sup

B1

|f |
�
�
» c|z|

0

ωptqt2s�2 dt

� |z|
» 1

|z|
ωptqt2s�3 dt

�
.

From this the conclusion plainly follows. This concludes the proof of the Theorem. �





CHAPTER 4

Extension problems

Abstract. We discuss in this chapter an extension procedure for two integral (nonlocal) operators,

the fractional Laplacian and the Marchaud derivative. We present at first two applications for the

fractional Laplacian: the water wave model and a model related to crystal dislocations, making
clear how the extension problem appears in these models. We then discuss in detail this harmonic

extension problem via the Fourier transform. Furthermore, we prove that the (nonlocal) Marchaud
fractional derivative in R can be obtained from a parabolic extension problem with an extra (positive)

variable as the operator that maps the heat conduction equation to the Neumann condition. Some

properties of the fractional derivative are deduced from those of the local operator. In particular we
prove a Harnack inequality for Marchaud-stationary functions.

We dedicate this chapter to obtaining the fractional Laplacian and the Marchaud derivative
from an extension procedure, as the behavior on the trace of two local operators, defined in an
extra-dimension space. We present at first two applications, the water wave model and the Peierls-
Nabarro model related to crystal dislocations. We show that the extension operator related to the
half-Laplacian arises in the theory of water waves of irrotational, incompressible, inviscid fluids in the
small amplitude, long wave regime. The mathematical framework of crystal dislocation is related to
the Peierls-Nabarro model and in this context we obtain that at a macroscopic level, dislocations tend
to concentrate at single points, following the natural periodicity of the crystal. We then discuss1 in
detail the extension problem via the Fourier transform. We conclude this chapter by discussing the
extension operator related to the Marchaud fractional derivative. As an application of this, we give a
proof of a Harnack inequality for Marchaud-stationary functions.

4.1. The harmonic extension of the fractional Laplacian

The harmonic extension of the fractional Laplacian in the framework considered here is due to Luis
Caffarelli and Luis Silvestre (we refer to [28] for details). We also recall that this extension procedure
was obtained by S. A. Molčanov and E. Ostrovskĭı in [116] by probabilistic methods (roughly speaking
“embedding” a long jump random walk in Rn into a classical random walk in one dimension more,
see Figure 4.1).

The idea of this extension procedure is that the nonlocal operator p�∆qs acting on functions
defined on Rn may be reduced to a local operator, acting on functions defined in the higher-dimensional
half-space Rn�1

� :� Rn � p0,�8q. Indeed, take U : Rn�1
� Ñ R solution to the equation$&%div

�
y1�2s∇Upx, yq

	
� 0 in Rn�1

�

Upx, 0q � upxq in Rn.
(4.1)

1Though we do not develop this approach here, it is worth mentioning that extended problems arise naturally
also from the probabilistic interpretation described in Chapter 1. Roughly speaking, a stochastic process with jumps

in Rn can often be seen as the “trace” of a classical stochastic process in Rn�r0,�8q (i.e., each time that the classical
stochastic process in Rn � r0,�8q hits Rn � t0u it induces a jump process over Rn). Similarly, stochastic process with

jumps may also be seen as classical processes at discrete, random, time steps.

107
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Figure 4.1. The random walk with jumps in Rn can be seen as
a classical random walk in Rn�1

Then up to constants one has that

� lim
yÑ0�

�
y1�2sByUpx, yq

	
� p�∆qsupxq.

4.1.1. Water wave model. Let us consider the half space Rn�1
� � Rn� p0,�8q endowed with

the coordinates x P Rn and y P p0,�8q. We show that the half-Laplacian (namely when s � 1{2q
arises when looking for a harmonic function in Rn�1

� with given data on Rn � ty � 0u. Thus, let us
consider the following local Dirichlet-to-Neumann problem:#

∆U � 0 in Rn�1
� ,

Upx, 0q � upxq for x P Rn.

The function U is the harmonic extension of u, we write U � Eu, and define the operator L as

Lupxq :� �ByUpx, 0q. (4.2)

We claim that

L �
a
�∆x, (4.3)

in other words

L2 � �∆x.

Indeed, by using the fact that EpLuq � �ByU (that can be proved, for instance, by using the Poisson
kernel representation for the solution), we obtain that

L2upxq � L
�
Lu

�pxq
� � ByE

�
Lu

�px, 0q
� � By

�� ByU
�px, 0q

� �ByyU �∆xU �∆xU
�px, 0q

� ∆Upx, 0q �∆upxq
� �∆upxq,

which concludes the proof of (4.3).
One remark in the above calculation lies in the choice of the sign of the square root of the operator.

Namely, if we set L̃upxq :� ByUpx, 0q, the same computation as above would give that L̃2 � �∆. In
a sense, there is no surprise that a quadratic equation offers indeed two possible solutions. But a
natural question is how to choose the “right” one.

There are several reasons to justify the sign convention in (4.2). One reason is given by spectral
theory, that makes the (fractional) Laplacian a negative defined operator. Let us discuss a purely
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geometric justification, in the simpler n � 1-dimensional case. We wonder how the solution of the
problem #

p�∆qsu � 1 in p�1, 1q,
u � 0 in Rzp�1, 1q. (4.4)

should look like in the extended variable y. First of all, by Maximum Principle (recall Theorems 2.1.7
and 2.1.8), we have that u is positive2 when x P p�1, 1q (since this is an s-superharmonic function,
with zero data outside).

Then the harmonic extension U in y ¡ 0 of a function u which is positive in p�1, 1q and vanishes
outside p�1, 1q should have the shape of an elastic membrane over the halfplane R2

� that is constrained
to the graph of u on the trace ty � 0u.

Figure 4.2. The harmonic extension

We give a picture of this function U in Figure 4.2. Notice from the picture that ByUpx, 0q is negative,
for any x P p�1, 1q. Since p�∆qsupxq is positive, we deduce that, to make our picture consistent with
the maximum principle, we need to take the sign of L opposite to that of ByUpx, 0q. This gives a
geometric justification of (4.2), which is only based on maximum principles (and on “how classical
harmonic functions look like”).

We show now that the operator L arises in the theory of water waves of irrotational, incompress-
ible, inviscid fluids in the small amplitude, long wave regime.
Consider a particle moving in the sea, which is, for us, the space Rn � p0, 1q, where the bottom of
the sea is set at level 1 and the surface at level 0 (see Figure 4.3). The velocity of the particle is
v : Rn � p0, 1q Ñ Rn�1 and we write vpx, yq � �

vxpx, yq, vypx, yq
�
, where vx : Rn � p0, 1q Ñ Rn is the

horizontal component and vy : Rn � p0, 1q Ñ R is the vertical component. We are interested in the
vertical velocity of the water at the surface of the sea.
In our model, the water is incompressible, thus div v � 0 in Rn � p0, 1q. Furthermore, on the bottom
of sea (since water cannot penetrate into the sand), the velocity has only a non-null horizontal compo-
nent, hence vypx, 1q � 0. Also, in our model we assume that there are no vortices: at a mathematical
level, this gives that v is irrotational, thus we may write it as the gradient of a function U : Rn�1 Ñ R.
This says that the vertical component of the velocity at the surface of the sea is vypx, 0q � ByUpx, 0q.
We are led to the problem $'&'%

∆U � 0 in Rn�1
� ,

ByUpx, 1q � 0 in Rn,
Upx, 0q � upxq in Rn.

(4.5)

2As a matter of fact, the solution of (4.4) is explicit and it is given by p1 � x2qs, up to dimensional constants

(see Section 2.1.4). See also [70] for a list of functions whose fractional Laplacian can be explicitly computed (unfortu-
nately, differently from the classical cases, explicit computations in the fractional setting are available only for very few

functions).
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Figure 4.3. The water waves model

Let L be, as before, the operator Lupxq :� �ByUpx, 0q. We solve the problem (4.5) by using the
Fourier transform and, up to a normalization factor, we obtain that

Lu � F�1

�
|ξ|e

|ξ| � e�|ξ|

e|ξ| � e�|ξ|
pupξq
.

Notice that for large frequencies ξ, this operator is asymptotic to the square root of the Laplacian:

Lu � F�1

�
|ξ|pupξq
 � ?�∆u.

The operator L in the two-dimensional case has an interesting property, that is in analogy to a
conjecture of De Giorgi (the forthcoming Section 6.2 will give further details about it): more precisely,
one considers entire, bounded, smooth, monotone solutions of the equation Lu � fpuq for given f ,
and proves that the solution only depends on one variable. More precisely:

Theorem 4.1.1. Let f P C1pRq and u be a bounded smooth solution of#
Lu � fpuq in R2,

Bx2u ¡ 0 in R2.

Then there exist a direction ω P S1 and a function u0 : RÑ R such that, for any x P R2,

upxq � u0px � ωq.
See Corollary 2 in [51] for a proof of Theorem 4.1.1 and to Theorem 1 in [51] for a more general

result (in higher dimension).

4.1.2. Crystal dislocation. A crystal is a material whose atoms are displayed in a regular way.
Due to some impurities in the material or to an external stress, some atoms may move from their rest
positions. The system reacts to small modifications by pushing back towards the equilibrium. Never-
theless, slightly larger modifications may lead to plastic deformations. Indeed, if an atom dislocation
is of the order of the periodicity size of the crystal, it can be perfectly compatible with the behavior
of the material at a large scale, and it can lead to a permanent modification.

Suitably superposed atom dislocations may also produce macroscopic deformations of the material,
and the atom dislocations may be moved by a suitable external force, which may be more effective if
it happens to be compatible with the periodic structure of the crystal.

These simple considerations may be framed into a mathematical setting, and they also have
concrete applications in many industrial branches (for instance, in the production of a soda can, in
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order to change the shape of an aluminium sheet, it is reasonable to believe that applying the right
force to it can be simpler and less expensive than melting the metal).

It is also quite popular (see e.g. [104]) to describe the atom dislocation motion in crystals in
analogy with the movement of caterpillar (roughly speaking, it is less expensive for the caterpillar to
produce a defect in the alignment of its body and to dislocate this displacement, rather then rigidly
translating his body on the ground).

The mathematical framework of crystal dislocation presented here is related to the Peierls-Nabarro
model, that is a hybrid model in which a discrete dislocation occurring along a slide line is incorporated
in a continuum medium. The total energy in the Peierls-Nabarro model combines the elastic energy
of the material in reaction to the single dislocations, and the potential energy of the misfit along the
glide plane. The main result is that, at a macroscopic level, dislocations tend to concentrate at single
points, following the natural periodicity of the crystal.

Figure 4.4. Crystal dislocation

To introduce a mathematical framework for crystal dislocation, first, we “slice” the crystal with a
plane. The mathematical setting will be then, by symmetry arguments, the half-plane R2

� � tpx, yq P
R2 s.t. y ¥ 0u and the glide line will be the x-axis. In a crystalline structure, the atoms display
periodically. Namely, the atoms on the x-axis have the preference of occupying integer sites. If atoms
move out of their rest position due to a misfit, the material will have an elastic reaction, trying
to restore the crystalline configuration. The tendency is to move back the atoms to their original
positions, or to recreate, by translations, the natural periodic configuration. This effect may be
modeled by defining v0pxq :� vpx, 0q to be the discrepancy between the position of the atom x and
its rest position. Then, the misfit energy is

Mpv0q :�
»
R
W

�
v0pxq

	
dx, (4.6)

where W is a smooth periodic potential, normalized in such a way that W pu�1q �W puq for any u P R
and 0 � W p0q   W puq for any u P p0, 1q. We also assume that the minimum of W is nondegenerate,
i.e. W 2p0q ¡ 0.

We consider the dislocation function vpx, yq on the half-plane R2
�. The elastic energy of this model

is given by

Epvq :� 1

2

»
R2
�

���∇vpx, yq���2 dx dy. (4.7)

The total energy of the system is therefore

Fpvq :� Epvq �Mpv0q � 1

2

»
R2
�

���∇vpx, yq���2 dx dy � »
R
W

�
vpx, 0q

	
dx. (4.8)
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Namely, the total energy of the system is the superposition of the energy in (4.6), which tends to settle
all the atoms in their rest position (or in another position equivalent to it from the point of view of
the periodic crystal), and the energy in (4.7), which is the elastic energy of the material itself.

Notice that some approximations have been performed in this construction. For instance, the atom
dislocation changes the structure of the crystal itself: to write (4.6), one is making the assumption
that the dislocations of the single atoms do not destroy the periodicity of the crystal at a large scale,
and it is indeed this “permanent” periodic structure that produces the potential W .

Moreover, in (4.7), we are supposing that a “horizontal” atom displacement along the line ty � 0u
causes a horizontal displacement at ty � εu as well. Of course, in real life, if an atom at ty � 0u moves,
say, to the right, an atom at level ty � εu is dragged to the right as well, but also slightly downwards
towards the slip line ty � 0u. Thus, in (4.7) we are neglecting this “vertical” displacement. This
approximation is nevertheless reasonable since, on the one hand, one expects the vertical displacement
to be negligible with respect to the horizontal one and, on the other hand, the vertical periodic
structure of the crystal tends to avoid vertical displacements of the atoms outside the periodicity
range (from the mathematical point of view, we notice that taking into account vertical displacements
would make the dislocation function vectorial, which would produce a system of equations, rather
than one single equation for the system).

Also, the initial assumption of slicing the crystal is based on some degree of simplification, since
this comes to studying dislocation curves in spaces which are “transversal” to the slice plane.

In any case, we will take these (reasonable, after all) simplifying assumptions for granted, we
will study their mathematical consequences and see how the results obtained agree with the physical
experience.

To find the Euler-Lagrange equation associated to (4.8), let us consider a perturbation φ P
C8

0 pR2q, with ϕpxq :� φpx, 0q and let v be a minimizer. Then

d

dε
Fpv � εφq

���
ε�0

� 0,

which gives »
R2
�

∇v �∇φdx dy �
»
R
W 1pv0qϕdx � 0.

Consider at first the case in which suppφ X BR2
� � H, thus ϕ � 0. By the Divergence Theorem we

obtain that »
R2
�

φ∆v dx dy � 0 for any φ P C8
0 pR2q,

thus ∆v � 0 in R2
�. If suppφX BR2

� � H then we have that

0 �
»
R2
�

divpφ∇vq dx dy �
»
R
W 1pv0qϕdx

�
»
BR2

�

φ
Bv
Bν dx�

»
R
W 1pv0qϕdx

� �
»
R
ϕ
Bv
By dx�

»
R
W 1pv0qϕdx

for an arbitrary ϕ P C8
0 pRq therefore

Bv
By px, 0q � W 1pv0pxqq for x P R. Hence the critical points of F

are solutions of the problem$''&''%
∆vpx, yq � 0 for x P R and y ¡ 0,

vpx, 0q � v0pxq for x P R,
Byvpx, 0q �W 1

�
vpx, 0q

	
for x P R
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and up to a normalization constant, recalling (4.2) and (4.3), we have that

�?�∆vpx, 0q �W 1�vpx, 0q�, for any x P R.

The corresponding parabolic evolution equation is Btvpx, 0q � �?�∆vpx, 0q �W 1�vpx, 0q�.
After this discussion, one is lead to consider the more general case of the fractional Laplacian

p�∆qs for any s P p0, 1q (not only the half Laplacian), and the corresponding parabolic equation

Btv � �p�∆qsv �W 1pvq � σ,

where σ is a (small) external stress.
If we take the lattice of size ε and rescale v and σ as

vεpt, xq � v

�
t

ε1�2s
,
x

ε



and σ � ε2sσ

�
t

ε1�2s
,
x

ε



,

then the rescaled function satisfies

Btvε � 1

ε

�� p�∆qsvε � 1

ε2s
W 1pvεq � σ

�
in p0,�8q � R (4.9)

with the initial condition

vεp0, xq � v0
ε pxq for x P R.

To suitably choose the initial condition v0
ε , we introduce the basic layer3 solution u, that is, the unique

solution of the problem #
�p�∆qsupxq �W 1puq in R,
u1 ¡ 0 and up�8q � 0, up0q � 1{2, up�8q � 1.

(4.10)

For the existence of such solution and its main properties see [120] and [23]. Furthermore, the solution
decays polynomially at �8 (see [61] and [58]), namely����upxq �Hpxq � 1

2sW 2p0q
x

|x|1�2s

���� ¤ C

|x|ϑ for any x P Rn, (4.11)

where ϑ ¡ 2s and H is the Heaviside step function

Hpxq �
#

1, x ¥ 0

0, x   0.

We take the initial condition in (4.9) to be the superposition of transitions all occurring with the same
orientation, i.e. we set

vεpx, 0q :� ε2s

W 2p0qσp0, xq �
Ņ

i�1

u

�
x� x0

i

ε



, (4.12)

where x0
1, . . . , x

0
N are N fixed points.

The main result in this setting is that the solution vε approaches, as εÑ 0, the superposition of step
functions. The discontinuities of the limit function occur at some points

�
xiptq

�
i�1,...,N

which move

accordingly to the following4 dynamical system$'&'%
9xi � γ

�
� σpt, xiq �

¸
j�i

xi � xj
2s|xi � xj |2s�1



in p0,�8q,

xip0q � x0
i ,

(4.13)

3As a matter of fact, the solution of (4.10) coincides with the one of a one-dimensional fractional Allen-Cahn

equation, that will be discussed in further detail in the forthcoming Section 6.1.
4 The system of ordinary differential equations in (4.13) has been extensively studied in [83].
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Figure 4.5. The initial datum when εÑ 0

where

γ �
�»

R
pu1q2


�1

. (4.14)

More precisely, the main result obtained here is the following.

Theorem 4.1.2. There exists a unique viscosity solution of$''&''%
Btvε � 1

ε

�
� p�∆qsvε � 1

ε2s
W 1pvεq � σ

	
in p0,�8q � R,

vεp0, xq � ε2s

W 2p0qσp0, xq �
Ņ

i�1

u

�
x� x0

i

ε



for x P R

such that

lim
εÑ0

vεpt, xq �
Ņ

i�1

H
�
x� xiptq

�
, (4.15)

where
�
xiptq

�
i�1,...,N

is solution to (4.13).

We refer to [92] for the case s � 1

2
, to [61] for the case s ¡ 1

2
, and [58] for the case s   1

2
(in

these papers, it is also carefully stated in which sense the limit in (4.15) holds true).
We would like to give now a formal (not rigorous) justification of the ODE system in (4.13) that

drives the motion of the transition layers.

Justification of ODE system (4.13). We assume for simplicity that the external stress σ is
null. We use the notation � to denote the equality up to negligible terms in ε. Also, we denote

uipt, xq :� u

�
x� xiptq

ε



and, with a slight abuse of notation

u1ipt, xq :� u1
�
x� xiptq

ε



.
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By (4.11) we have that the layer solution is approximated by

uipt, xq � H

�
x� xiptq

ε



� ε2s

�
x� xiptq

�
2sW 2p0q��x� xiptq

��1�2s . (4.16)

We use the assumption that the solution vε is well approximated by the sum of N transitions and
write

vεpt, xq �
Ņ

i�1

uipt, xq �
Ņ

i�1

u
�x� xiptq

ε

	
.

For that

Btvεpt, xq � �1

ε

Ņ

i�1

u1ipt, xq 9xiptq

and, since the basic layer solution u is the solution of (4.10), we have that

�p�∆qsvε � �
Ņ

i�1

p�∆qsuipt, xq � 1

ε2s

Ņ

i�1

p�∆qsu
�x� xiptq

ε

	
� 1

ε2s

Ņ

i�1

W 1
�
u
�x� xiptq

ε

	

� 1

ε2s

Ņ

i�1

W 1�uipt, xq�.
Now, returning to the parabolic equation (4.9) we have that

� 1

ε

Ņ

i�1

u1ipt, xq 9xiptq � 1

ε2s�1

� Ņ

i�1

W 1�uipt, xq��W 1
� Ņ

i�1

uipt, xq
	


. (4.17)

Fix an integer k between 1 and N , multiply (4.17) by u1kpt, xq and integrate over R. We obtain

�1

ε

Ņ

i�1

9xiptq
»
R
u1ipt, xqu1kpt, xq dx

� 1

ε2s�1

� Ņ

i�1

»
R
W 1�uipt, xq�u1kpt, xq dx� »

R
W 1

� Ņ

i�1

uipt, xq
	
u1kpt, xq dx



.

(4.18)

We compute the left hand side of (4.18). First, we take the kth term of the sum (i.e. we consider the
case i � k). By using the change of variables

y :� x� xkptq
ε

(4.19)

we have that

�1

ε
9xkptq

»
R
pu1kq2pt, xq dx � � 1

ε
9xkptq

»
R
pu1q2

�
x� xkptq

ε



dx

� � 9xkptq
»
R
pu1q2pyq dy � � 9xkptq

γ
,

(4.20)

where γ is defined by (4.14).
Then, we consider the ith term of the sum on the left hand side of (4.18). By performing again the
substitution (4.19), we see that this term is

�1

ε
9xiptq

»
R
u1ipt, xqu1kpt, xq dx � � 1

ε
9xiptq

»
R
u1
�
x� xiptq

ε



u1
�
x� xkptq

ε



dx

� � 9xiptq
»
R
u1
�
y � xkptq � xiptq

ε



u1pyq dy

� 0,
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where, for the last equivalence we have used that for ε small, u1
�
y � xkptq � xiptq

ε



is asymptotic to

u1p�8q � 0.
We consider the first member on the right hand side of the identity (4.18), and, as before, take

the kth term of the sum. We do the substitution (4.19) and have that

1

ε

»
R
W 1�ukpt, xq�u1kpt, xq dx � »

R
W 1�upyq�u1pyq dy

�W
�
upyq�����8

�8
�W p1q �W p0q � 0

by the periodicity of W . Now we use (4.16), the periodicity of W 1 and we perform a Taylor expansion,
noticing that W 1p0q � 0. We see that

W 1�uipt, xq� �W 1
�
H

�
x� xiptq

ε



� ε2s

�
x� xiptq

�
2sW 2p0q��x� xiptq

��1�2s

�

�W 1
�
� ε2s

�
x� xiptq

�
2sW 2p0q��x� xiptq

��1�2s




� �ε2s�x� xiptq
�

2s
��x� xiptq

��1�2s .

Therefore, the ith term of the sum on the right hand side of the identity (4.18) for i � k, by using the
above approximation and doing one more time the substitution (4.19), for ε small becomes

1

ε

»
R
W 1�uipt, xq�u1kpt, xq dx � � 1

ε

»
R

ε2s
�
x� xiptq

�
2s
��x� xiptq

��1�2su
1
�
x� xkptq

ε



dx

� �
»
R

ε2s
�
εy � xkptq � xiptq

�
2s
��εy � xkptq � xiptq

��1�2su
1pyq dy

� � ε2s
�
xkptq � xiptq

�
2s
��xkptq � xiptq

��1�2s

»
R
u1pyq dy

� � ε2s
�
xkptq � xiptq

�
2s
��xkptq � xiptq

��1�2s .

(4.21)

We also observe that, for ε small, the second member on the right hand side of the identity (4.18), by
using the change of variables (4.19), reads

1

ε

»
R
W 1

� Ņ

i�1

uipt, xq
	
u1kpt, xq dx

� 1

ε

»
R
W 1

�
ukpt, xq �

¸
i�k

uipt, xq
	
u1kpt, xq dx

�
»
R
W 1

�
upyq �

¸
i�k

u
�
y � xkptq � xiptq

ε

	

u1pyq dy.

For ε small, u

�
y � xkptq � xiptq

ε



is asymptotic either to up�8q � 1 for xk ¡ xi, or to up�8q � 0

for xk   xi. By using the periodicity of W , it follows that

1

ε

»
R
W 1

� Ņ

i�1

uipt, xq
	
u1kpt, xq dx �

»
R
W 1

�
upyq

	
u1pyq dy �W p1q �W p0q � 0,
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again by the asymptotic behavior of u. Concluding, by inserting the results (4.20) and (4.21) into
(4.18) we get that

9xkptq
γ

�
¸
i�k

xkptq � xiptq
2s
��xkptq � xiptq

��1�2s ,

which ends the justification of the system (4.13). �

We recall that, till now, in Theorem 4.1.2 we considered the initial data as a superposition of
transitions all occurring with the same orientation (see (4.12)), i.e. the initial dislocation is a monotone
function (all the atoms are initially moved to the right).

Of course, for concrete applications, it is interesting to consider also the case in which the atoms
may dislocate in both directions, i.e. the transitions can occur with different orientations (the atoms
may be initially displaced to the left or to the right of their equilibrium position).

To model the different orientations of the dislocations, we introduce a parameter ξi P t�1, 1u
(roughly speaking ξi � 1 corresponds to a dislocation to the right and ξi � �1 to a dislocation to the
left).

The main result in this case is the following (see [121]):

Theorem 4.1.3. There exists a viscosity solution of$''&''%
Btvε � 1

ε

�
� p�∆qsvε � 1

ε2s
W 1pvεq � σε

	
in p0,�8q � R,

vεp0, xq � ε2s

W 2p0qσp0, xq �
Ņ

i�1

u

�
ξi
x� x0

i

ε



for x P R

such that

lim
εÑ0

vεpt, xq �
Ņ

i�1

H
�
ξi
�
x� xiptq

�	
,

where
�
xiptq

�
i�1,...,N

is solution to$'&'%
9xi � γ

�
� ξiσpt, xiq �

¸
j�i

ξiξj
xi � xj

2s|xi � xj |2s�1



in p0,�8q,

xip0q � x0
i .

(4.22)

We observe that Theorem 4.1.3 reduces to Theorem 4.1.2 when ξ1 � � � � � ξn � 1. In fact, the case
discussed in Theorem 4.1.3 is richer than the one in Theorem 4.1.2, since, in the case of different initial
orientations, collisions can occur, i.e. it may happen that xipTcq � xi�1pTcq for some i P t1, . . . , N�1u
at a collision time Tc.

For instance, in the case N � 2, for ξ1 � 1 and ξ2 � �1 (two initial dislocations with different
orientations) we have that

if σ ¤ 0 then Tc ¤ sθ1�2s
0

p2s� 1qγ ,

if θ0   p2s}σ}8q� 1
2s then Tc ¤ sθ1�2s

0

γp1� 2sθ0}σ}8q ,

where θ0 :� x0
2�x0

1 is the initial distance between the dislocated atoms. That is, if either the external
force has the right sign, or the initial distance is suitably small with respect to the external force,
then the dislocation time is finite, and collisions occur in a finite time (on the other hand, when these
conditions are violated, there are examples in which collisions do not occur).

This and more general cases of collisions, with precise estimates on the collision times, are discussed
in detail in [121].

An interesting feature of the system is that the dislocation function vε does not annihilate at the
collision time. More precisely, in the appropriate scale, we have that vε at the collision time vanishes
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outside the collision points, but it still preserves a non-negligible asymptotic contribution exactly at
the collision points. A formal statement is the following (see [121]):

Theorem 4.1.4. Let N � 2 and assume that a collision occurs. Let xc be the collision point,
namely xc � x1pTcq � x2pTcq. Then

lim
tÑTc

lim
εÑ0

vεpt, xq � 0 for any x � xc, (4.23)

but

lim sup
tÑTc
εÑ0

vεpt, xcq ¥ 1. (4.24)

Formulas (4.23) and (4.24) describe what happens in the crystal at the collision time. On the one
hand, formula (4.23) states that at any point that is not the collision point and at a large scale, the
system relaxes at the collision time. On the other hand, formula (4.24) states that the behavior at the
collision points at the collision time is quite “singular”. Namely, the system does not relax immediately
(in the appropriate scale). As a matter of fact, in related numerical simulations (see e.g. [1]) one may
notice that the dislocation function may persists after collision and, in higher dimensions, further
collisions may change the topology of the dislocation curves.

What happens is that a slightly larger time is needed before the system relaxes exponentially
fast: a detailed description of this relaxation phenomenon is presented in [122]. For instance, in the
case N � 2, the dislocation function decays to zero exponentially fast, slightly after collision, as given
by the following result:

Theorem 4.1.5. Let N � 2, ξ1 � 1, ξ2 � �1, and let vε be the solution given by Theorem 4.1.3,
with σ � 0. Then there exist ε0 ¡ 0, c ¡ 0, Tε ¡ Tc and ρε ¡ 0 satisfying

lim
εÑ0

Tε � Tc

and lim
εÑ0

%ε � 0

such that for any ε   ε0 we have

|vεpt, xq| ¤ %εe
c Tε�t
ε2s�1 , for any x P R and t ¥ Tε. (4.25)

The estimate in (4.25) states, roughly speaking, that at a suitable time Tε (only slightly bigger
than the collision time Tc) the dislocation function gets below a small threshold ρε, and later it decays
exponentially fast (the constant of this exponential becomes large when ε is small).

The reader may compare Theorem 4.1.4 and 4.1.5 and notice that different asymptotics are
considered by the two results. A result similar to Theorem 4.1.5 holds for a larger number of dislocated
atoms. For instance, in the case of three atoms with alternate dislocations, one has that, slightly after
collision, the dislocation function decays exponentially fast to the basic layer solution. More precisely
(see again [122]), we have that:

Theorem 4.1.6. Let N � 3, ξ1 � ξ3 � 1, ξ2 � �1, and let vε be the solution given by Theo-
rem 4.1.3, with σ � 0. Then there exist ε0 ¡ 0, c ¡ 0, T 1

ε , T
2
ε ¡ Tc and ρε ¡ 0 satisfying

lim
εÑ0

T 1
ε � lim

εÑ0
T 2
ε � Tc,

and lim
εÑ0

%ε � 0

and points ȳε and z̄ε satisfying

lim
εÑ0

|z̄ε � ȳε| � 0

such that for any ε   ε0 we have

vεpt, xq ¤ u

�
x� ȳε
ε



� %εe

� cpt�T1
ε q

ε2s�1 , for any x P R and t ¥ T 1
ε , (4.26)
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and

vεpt, xq ¥ u

�
x� z̄ε
ε



� %εe

� cpt�T2
ε q

ε2s�1 , for any x P R and t ¥ T 2
ε , (4.27)

where u is the basic layer solution introduced in (4.10).

Roughly speaking, formulas (4.26) and (4.27) say that for times T 1
ε , T 2

ε just slightly bigger than the
collision time Tc, the dislocation function vε gets trapped between two basic layer solutions (centered
at points ȳε and z̄ε), up to a small error. The error gets eventually to zero, exponentially fast in time,
and the two basic layer solutions which trap vε get closer and closer to each other as ε goes to zero
(that is, the distance between ȳε and z̄ε goes to zero with ε).

We refer once more to [122] for a series of figures describing in details the results of Theorems 4.1.5
and 4.1.6. We observe that the results presented in Theorems 4.1.2, 4.1.3, 4.1.4, 4.1.5 and 4.1.6
describe the crystal at different space and time scale. As a matter of fact, the mathematical study
of a crystal typically goes from an atomic description (such as a classical discrete model presented
by Frenkel-Kontorova and Prandtl-Tomlinson) to a macroscopic scale in which a plastic deformation
occurs.

In the theory discussed here, we join this atomic and macroscopic scales by a series of intermediate
scales, such as a microscopic scale, in which the Peierls-Nabarro model is introduced, a mesoscopic
scale, in which we studied the dynamics of the dislocations (in particular, Theorems 4.1.2 and 4.1.3), in
order to obtain at the end a macroscopic theory leading to the relaxation of the model to a permanent
deformation (as given in Theorems 4.1.5 and 4.1.6 , while Theorem 4.1.4 somehow describes the further
intermediate features between these schematic scalings).

4.1.3. An approach to the extension problem via the Fourier transform. We will discuss
here the extension operator of the fractional Laplacian via the Fourier transform approach (see [28]
and [142] for other approaches and further results and also [84], in which a different extension formula
is obtained in the framework of the Heisenberg groups).

We fix at first a few pieces of notation. We denote points in Rn�1
� :� Rn�p0,�8q as X � px, yq,

with x P Rn and y ¡ 0. When taking gradients in Rn�1
� , we write ∇ � p∇x, Byq, where ∇x is the

gradient in Rn. Also, in Rn�1
� , we will often take the Fourier transform in the variable x only, for

fixed y ¡ 0. We also set

a :� 1� 2s P p�1, 1q.
We will consider the fractional Sobolev space pHspRnq defined as the set of functions u that satisfy

}u}L2pRnq � rpusG   �8,
where

rvsG :�
d»

Rn
|ξ|2s |vpξq|2 dξ.

For any u PW 1,1
loc pp0,�8qq, we consider the functional

Gpuq :�
» �8

0

ta
���uptq��2 � ��u1ptq��2	 dt. (4.28)

By Theorem 4 of [138], we know that the functional G attains its minimum among all the functions u P
W 1,1

loc pp0,�8qq X C0pr0,�8qq with up0q � 1. We call g such minimizer and

C7 :� Gpgq � min
uPW1,1

loc
pp0,�8qqXC0pr0,�8qq

up0q�1

Gpuq. (4.29)

The main result of this subsection is the following.

Theorem 4.1.7. Let u P SpRnq and let

Upx, yq :� F�1
�pupξq gp|ξ|yq	. (4.30)
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Then

div pya∇Uq � 0 (4.31)

for any X � px, yq P Rn�1
� . In addition,

� yaByU
���
ty�0u

� C7p�∆qsu (4.32)

in Rn, both in the sense of distributions and as a pointwise limit.

In order to prove Theorem 4.1.7, we need to make some preliminary computations. At first, let
us recall a few useful properties of the minimizer function g of the operator G introduced in (4.28).

We know from formula (4.5) in [138] that

0 ¤ g ¤ 1, (4.33)

and from formula (2.6) in [138] that

g1 ¤ 0. (4.34)

We also cite formula (4.3) in [138], according to which g is a solution of

g2ptq � at�1g1ptq � gptq (4.35)

for any t ¡ 0, and formula (4.4) in [138], according to which

lim
tÑ0�

tag1ptq � �C7. (4.36)

Now, for any V PW 1,1
loc pRn�1

� q we set

rV sa :�
d»

Rn�1
�

ya|∇V pXq|2 dX.

Notice that rV sa is well defined (possibly infinite) on such space. Also, one can compute rV sa explicitly
in the following interesting case:

Lemma 4.1.8. Let ψ P SpRnq and

Upx, yq :� F�1
�
ψpξq gp|ξ|yq

	
. (4.37)

Then

rU s2a � C7 rψs2G. (4.38)

Proof. By (4.33), for any fixed y ¡ 0, the function ξ ÞÑ ψpξq gp|ξ|yq belongs to L2pRnq, and so
we may consider its (inverse) Fourier transform. This says that the definition of U is well posed.

By the inverse Fourier transform definition (A.1), we have that

∇xUpx, yq � ∇x

»
Rn
ψpξq gp|ξ|yq eix�ξ dξ

�
»
Rn
iξψpξq gp|ξ|yq eix�ξ dξ

� F�1
�
iξψpξqgp|ξ|yq

	
pxq.

Thus, by Plancherel Theorem,»
Rn
|∇xUpx, yq|2 dx �

»
Rn

��ξψpξqgp|ξ|yq��2 dξ.
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Integrating over y ¡ 0, we obtain that»
Rn�1
�

ya|∇xUpXq|2 dX �
»
Rn
|ξ|2��ψpξq��2 �» �8

0

ya
��gp|ξ|yq��2 dy� dξ

�
»
Rn
|ξ|1�a��ψpξq��2 �» �8

0

ta
��gptq��2 dt� dξ

�
» �8

0

ta
��gptq��2 dt � »

Rn
|ξ|2s��ψpξq��2 dξ

� rψs2G
» �8

0

ta
��gptq��2 dt.

(4.39)

Let us now prove that the following identity is well posed

ByUpx, yq � F�1
�
|ξ|ψpξq g1p|ξ|yq

	
. (4.40)

For this, we observe that

|g1ptq| ¤ C7t�a. (4.41)

To check this, we define γptq :� ta |g1ptq|. From (4.34) and (4.35), we obtain that

γ1ptq � � d

dt

�
tag1ptq� � �ta �g2ptq � at�1g1ptq� � �tagptq ¤ 0.

Hence

γptq ¤ lim
τÑ0�

γpτq � lim
τÑ0�

τa|g1pτq| � C7,

where formula (4.36) was used in the last identity, and this establishes (4.41).
From (4.41) we have that |ξ| |ψpξq| |g1p|ξ|yq| ¤ C7y�a |ξ|1�a |ψpξq| P L2pRnq, and so (4.40) follows.
Therefore, by (4.40) and the Plancherel Theorem,»

Rn
|ByUpx, yq|2 dx �

»
Rn
|ξ|2 ��ψpξq��2 ��g1p|ξ|yq��2 dξ.

Integrating over y ¡ 0 we obtain»
Rn�1
�

ya|ByUpx, yq|2 dx �
»
Rn
|ξ|2 ��ψpξq��2 �» �8

0

ya
��g1p|ξ|yq��2 dy� dξ

�
»
Rn
|ξ|1�a ��ψpξq��2 �» �8

0

ta
��g1ptq��2dt� dξ

�
» �8

0

ta
��g1ptq��2dt � »

Rn
|ξ|2s ��ψpξq��2 dξ

� rψs2G
» �8

0

ta
��g1ptq��2dt.

By summing this with (4.39), and recalling (4.29), we obtain the desired result rU s2a � C7 rψs2G. This
concludes the proof of the Lemma. �

Now, given u P L1
locpRnq, we consider the space Xu of all the functions V PW 1,1

loc pRn�1
� q such that,

for any x P Rn, the map y ÞÑ V px, yq is in C0
�r0,�8q�, with V px, 0q � upxq for any x P Rn. Then

the problem of minimizing r � sa over Xu has a somehow explicit solution.

Lemma 4.1.9. Assume that u P SpRnq. Then

min
V PXu

rV s2a � rU s2a � C7 rpus2G, (4.42)

Upx, yq :� F�1
�pupξq gp|ξ|yq	. (4.43)
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Proof. We remark that (4.43) is simply (4.37) with ψ :� pu, and by Lemma 4.1.8 we have that

rU s2a � C7rpus2G.
Furthermore, we claim that

U P Xu. (4.44)

In order to prove this, we first observe that

|gpT q � gptq| ¤ C7 |T 2s � t2s|
2s

. (4.45)

To check this, without loss of generality, we may suppose that T ¥ t ¥ 0. Hence, by (4.34) and (4.41),

|gpT q � gptq| ¤
» T
t

|g1prq| dr ¤ C7

» T
t

r�a dr � C7 pT 1�a � t1�aq
1� a

,

that is (4.45).
Then, by (4.45), for any y, ỹ P p0,�8q, we see that���gp|ξ| yq � gp|ξ| ỹq

��� ¤ C7 |ξ|2s|y2s � ỹ2s|
2s

.

Accordingly, ��Upx, yq � Upx, ỹq�� � ����F�1

�pupξq�gp|ξ| yq � gp|ξ| ỹq
	
����

¤
»
Rn

���pupξq�gp|ξ| yq � gp|ξ| ỹq
	��� dξ

¤ C7 |y2s � ỹ2s|
2s

»
Rn
|ξ|2s|pupξq| dξ,

and this implies (4.44).
Thanks to (4.44) and (4.38), in order to complete the proof of (4.42), it suffices to show that, for

any V P Xu, we have that

rV s2a ¥ rU s2a. (4.46)

To prove this, let us take V P Xu. Without loss of generality, since rU sa   �8 thanks to (4.38), we
may suppose that rV sa   �8. Hence, fixed a.e. y ¡ 0, we have that

ya
»
Rn
|∇xV px, yq|2 dx ¤ ya

»
Rn
|∇V px, yq|2 dx   �8,

hence the map x P |∇xV px, yq| belongs to L2pRnq. Therefore, by Plancherel Theorem,»
Rn
|∇xV px, yq|2 dx �

»
Rn

���F�
∇xV px, yq

�pξq���2 dξ. (4.47)

Now using the Fourier transform definition (see (A.1))

F
�
∇xV px, yq

�pξq � »
Rn

∇xV px, yq e�ix�ξ dx �
»
Rn
iξ V px, yq e�ix�ξ dx � iξF

�
V px, yq�pξq,

hence (4.47) becomes »
Rn
|∇xV px, yq|2 dx �

»
Rn
|ξ|2 |F�

V px, yq�pξq|2 dξ. (4.48)

On the other hand

F
�ByV px, yq�pξq � ByF

�
V px, yq�pξq

and thus, by Plancherel Theorem,»
Rn
|ByV px, yq|2 dx �

»
Rn

��F�ByV px, yq�pξq��2 dξ � »
Rn
|ByF

�
V px, yq�pξq|2 dξ.
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We sum up this latter result with identity (4.48) and we use the notation φpξ, yq :� F
�
V px, yq�pξq to

conclude that »
Rn
|∇V px, yq|2 dx �

»
Rn
|ξ|2 |φpξ, yq|2 � |Byφpξ, yq|2 dξ. (4.49)

Accordingly, integrating over y ¡ 0, we deduce that

rV s2a �
»
Rn�1
�

ya
�
|ξ|2 |φpξ, yq|2 � |Byφpξ, yq|2

	
dξ dy. (4.50)

Let us first consider the integration over y, for any fixed ξ P Rnzt0u, that we now omit from the
notation when this does not generate any confusion. We set hpyq :� φpξ, |ξ|�1yq. We have that h1pyq �
|ξ|�1Byφpξ, |ξ|�1yq and therefore, using the substitution t � |ξ| y, we obtain» �8

0

ya
�
|ξ|2 |φpξ, yq|2 � ��Byφpξ, yq��2	 dy

� |ξ|1�a
» �8

0

ta
�
|φpξ, |ξ|�1tq|2 � |ξ|�2

��Byφpξ, |ξ|�1tq��2	 dt
� |ξ|1�a

» �8

0

ta
�
|hptq|2 � |h1ptq|2

	
dt

� |ξ|2sGphq.

(4.51)

Now, for any λ P R, we show that

min
wPW 1,1

loc pp0,�8qqXC0pr0,�8qq
wp0q � λGpwq � λ2 C7. (4.52)

Indeed, when λ � 0, the trivial function is an allowed competitor and Gp0q � 0, which gives (4.52) in
this case. If, on the other hand, λ � 0, given w as above with wp0q � λ we set wλpxq :� λ�1wpxq.
Hence we see that wλp0q � 1 and thus Gpwq � λ2Gpwλq ¤ λ2Gpgq � λ2 C7, due to the minimality
of g. This proves (4.52). From (4.52) and the fact that

hp0q � φpξ, 0q � F
�
V px, 0q�pξq � pupξq,

we obtain that

Gphq ¥ C7
��pupξq��2.

As a consequence, we get from (4.51) that» �8

0

ya
�
|ξ|2 |φpξ, yq|2 � ��Byφpξ, yq��2	 dy ¥ C7 |ξ|2s

��pupξq��2.
Integrating over ξ P Rnzt0u we obtain that»

Rn�1
�

ya
�
|ξ|2 |φpξ, yq|2 � ��Byφpξ, yq��2	 dξ dy ¥ C7 rpus2G.

Hence, by (4.50),

rV s2a ¥ C7 rpus2G,
which proves (4.46), and so (4.42). �

We can now prove the main result of this subsection.

Proof of Theorem 4.1.7. Formula (4.31) follows from the minimality property in (4.42), by
writing that rU s2a ¤ rU � εϕs2a for any ϕ smooth and compactly supported inside Rn�1

� and any ε P R.
Now we take ϕ P C8

0 pRnq (notice that its support may now hit ty � 0u). We define uε :� u� εϕ,
and Uε as in (4.30), with pu replaced by puε (notice that (4.30) is nothing but (4.43)), hence we will be
able to exploit Lemma 4.1.9.
We also set

ϕ�px, yq :� F�1
�pϕpξq gp|ξ|yq	.
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We observe that

ϕ�px, 0q � F�1
�pϕpξq gp0q	 � F�1

�pϕpξq	 � ϕpxq (4.53)

and that

Uε � U � εF�1
�pϕpξq gp|ξ|yq	 � U � εϕ�.

As a consequence

rUεs2a � rUεs2a � 2ε

»
Rn�1
�

ya∇U �∇ϕ� dX � opεq.

Hence, using (4.31), (4.53) and the Divergence Theorem,

rUεs2a � rU s2a � 2ε

»
Rn�1
�

div
�
ϕ� ya∇XU

	
dX � opεq

� rU s2a � 2ε

»
Rn�t0u

ϕ yaByU dx� opεq.
(4.54)

Moreover, from Plancherel Theorem, and the fact that the image of ϕ is in the reals,

rpuεs2G � rpusG � 2ε

»
Rn
|ξ|2spupξq pϕpξq dξ � opεq

� rpusG � 2ε

»
Rn

F�1
�
|ξ|2spupξq	pxqϕpxq dx� opεq

� rpusG � 2ε

»
Rn
p�∆qsupxqϕpxq dx� opεq.

By comparing this with (4.54) and recalling (4.42) we obtain that

rU s2a � 2ε

»
Rn�t0u

ϕ yaByU dx� opεq � rUεs2a � C7ruεs2G

� C7rpusG � 2C7ε
»
Rn
p�∆qsupxqϕpxq dx� opεq

� rU s2a � 2C7ε
»
Rn
p�∆qsuϕdx� opεq

and so

�
»
Rn�t0u

ϕ yaByU dx � C7

»
Rn
p�∆qsuϕdx,

for any ϕ P C8
0 pRnq, that is the distributional formulation of (4.32).

Furthermore, by (4.30), we have that

yaByUpx, yq � F�1
�
|ξ| pupξq ya gp|ξ|yq	 � F�1

�
|ξ|1�a pupξq p|ξ|yqa gp|ξ|yq	.

Hence, by (4.36), we obtain

lim
yÑ0�

yaByUpx, yq � � C7F�1
�
|ξ|1�a pupξq	

� � C7F�1
�
|ξ|2s pupξq	

� � p�∆qsupxq,
that is the pointwise limit formulation of (4.32). This concludes the proof of Theorem 4.1.7. �
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4.2. An extension problem for the fractional derivative defined by Marchaud

The purpose of this Section is to introduce an extension operator for the fractional derivative
introduced by Marchaud and to prove a Harnack inequality for stationary functions (in the sense of
Marchaud).
The left and the right Marchaud fractional derivative of order s P p0, 1q (see [127], formulas 5.57 and
5.58) are respectively defined as follows:

Ds
�fptq �

s

Γp1� sq
» 8

0

fptq � fpt	 τq
τ1�s dτ. (4.55)

These fractional derivatives are well defined when f is a bounded, locally Hölder continuous function
in R. Indeed, we assume that5 f P C γ̄pRq, for s   γ̄ ¤ 1 and f P L8pRq. In addition, we just recall
here that the Marchaud derivative can be defined for s P p0, nq and n P N, as

Ds
�fptq �

tsu
Γp1� tsuq

» 8

0

f rssptq � f rsspt	 τq
τ1�tsu dτ,

where rss and tsu denote, respectively, the integer and the fractional part of s. Our work focuses on
the case n � 1 and, in the first part of the paper, on the left fractional derivative, that we can write
using a change of variable, neglecting the constant and omitting for simplicity the subscript symbol
�, as:

Dsfptq :�
» 8

0

fptq � fpt� τq
τs�1

dτ �
» t
�8

fptq � fpτq
pt� τqs�1

dτ. (4.56)

We consider (4.56) as the definition of our fractional derivative without taking care of what happens
when s Ñ 0� or s Ñ 1�. We just remark that Ds

�ϕ Ñ ϕ as s Ñ 0� and Ds
�ϕ Ñ ϕ1 as s Ñ 1�.

Indeed, as sÑ 0� or sÑ 1�, the integral term in (4.55) does not converge but one is able to pass to
the limit using the constant term (which, in those cases, plays a fundamental role).

The operator Ds naturally arises when dealing with a family of singular/degenerate parabolic
problems (which, for s � 1{2, reduces to the heat conduction problem) on the positive half-plane,
with a positive space variable and for all times, namely for px, tq P r0,8q � R.
In order to construct this extension operator, we exploit the idea recently revisited in [28]. In that
paper, the fractional Laplacian was characterized via an extension procedure, by means of a degenerate
second order elliptic local operator.

Considering the function ϕ of one variable, formally representing the time variable, our approach
relies on constructing a parabolic local operator by adding an extra variable, say the space variable,
on the positive half-line, and working on the extended plane r0,8q � R.

The heuristic argument can be described in the simplest case s � 1{2 as follows. Let ϕ : R Ñ R
be a “good” function and U be a solution of the problem$&%

BU
Bt �

B2U

Bx2
, px, tq P p0,8q � R

Up0, tq � ϕptq, t P R.
(4.57)

We point out that this is not the usual Cauchy problem for the heat operator, but a heat conduction
problem.

It is known that, without extra assumptions, we can not expect to have a unique solution of the
problem (4.57), see [143], Chapter 3.3. Nevertheless, if we denote by T1{2 the operator that associates

5Indeed, we have that����
» 8
0

fptq � fpt� τq

τs�1
dτ

���� ¤ 2}f}L8pRq

» 8
1

1

τs�1
dτ � }f}Cγ̄pRq

» 1

0
τ γ̄�s�1 dτ   8,

given that γ̄ ¡ s.
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to ϕ the partial derivative BU{Bx, whenever U is sufficiently regular, we have that

T1{2T1{2ϕ �
dϕ

dt
.

That is T1{2 acts like an half derivative, indeed

B
Bx

BU
Bx px, tq �

BU
Bt px, tq ÝÑxÑ0�

dϕptq
dt

.

The solution of the problem (4.57) under the reasonable assumptions that ϕ is bounded and Hölder
continuous, is explicitly known (check [143], Chapter 3.3) to be

Upx, tq � cx
» t
�8

e�
x2

4pt�τq pt� τq� 3
2ϕpτq dτ

� cx
» 8

0

e�
x2

4τ τ�
3
2ϕpt� τq dτ,

where the last line is obtained with a change of variables. Using t � x2{p4τq and the integral definition
(A.4) of the Gamma function we have that» 8

0

xe�
x2

4τ τ�
3
2 dτ � 2

» 8

0

e�tt�
1
2 dt � 2Γ

�
1

2



.

Hence,

Upx, tq � Up0, tq
x

� c

» 8

0

e�
x2

4τ τ�
3
2 pϕpt� τq � ϕptqq dτ,

choosing c that takes into account the right normalization. This yields, by passing to the limit, that

� lim
xÑ0�

Upx, tq � Up0, tq
x

� c

» 8

0

ϕptq � ϕpt� τq
τ

3
2

dτ.

Hence, with the right choice of the constant, we get exactly D1{2ϕ (see (4.56)), i.e. the Marchaud
derivative of order 1{2 of ϕ.

Now we are in position to state our main result.

Theorem 4.2.1. Let s P p0, 1q and γ̄ P ps, 1s be fixed. Let ϕ P C γ̄pRq be a bounded function and
let U : r0,8q � RÑ R be a solution of the problem$'''&'''%

BU
Bt px, tq �

1� 2s

x

BU
Bx px, tq �

B2U

Bx2
px, tq, px, tq P p0,8q � R

Up0, tq � ϕptq, t P R
lim

xÑ�8Upx, tq � 0, t P R.

(4.58)

Then U defines the extension operator for ϕ, such that

Dsϕptq � � lim
xÑ0�

csx
�2spUpx, tq � ϕptqq, where cs � 4sΓpsq.

We notice that one can write

Dsϕptq � � lim
xÑ0�

csx
1�2s BU

Bx px, tq, (4.59)

in analogy with formula (3.1) in [28].

Remark 4.2.2. The extension operator satisfies, as one would expect, up to constants that

D1�sDsϕptq � ϕ1ptq.
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Indeed, using (4.59) and thanks to (4.58) we have that

D1�sDsϕptq � lim
xÑ0�

x2s�1 B
Bx

�
x1�2s BU

Bx px, tq



� lim
xÑ0�

B2U

Bx2
px, tq � 1� 2s

x

BU
Bx px, tq

� lim
xÑ0�

BU
Bt px, tq �

BU
Bt p0, tq � ϕ1ptq.

An interesting application that follows from this extension procedure is a Harnack inequality for
Marchaud-stationary functions in an interval J � R, namely for functions that satisfy Dsϕ � 0 in J.
This fact is not obvious, indeed the set of functions determined by fractional-stationary functions (on
an interval) is nontrivial, see Section 2.2.

Theorem 4.2.3. Let s P p0, 1q. There exists a positive constant γ such that, if Dsϕ � 0 in an
interval J � R and ϕ ¥ 0 in R, then

sup
rt0� 3

4 δ,t0� 1
4 δs
ϕ ¤ γ inf

rt0� 3
4 δ,t0�δs

ϕ

for every t0 P R and for every δ ¡ 0 such that rt0 � δ, t0 � δs � J .

The previous result can be deduced from the Harnack inequality proved in [36] for some degenerate
parabolic operators (see also [73] for the elliptic setting). In particular, the constant γ used in Theorem
4.2.3 is the same that appears in the parabolic case in [36].

In addition, we remark that Theorem 4.2.3 does not give the usual Harnack inequality for elliptic
operators, where the comparison between the supremum and the infimum is done on the same set,
e.g. the same metric ball. This Harnack inequality for the Marchaud-stationary functions inherits the
behavior of its parabolic extension.

We point out at this point the very interesting paper [17]. Indeed, after we have submitted our
paper, we learnt from professor José L. Torrea about the results contained in his joint paper where
an extension procedure for a class of operators has been studied.

4.2.1. The extension parabolic problem. In this subsection we find a solution of the system
(4.58). At first, we introduce a particular kernel, that acts as the Poisson kernel. We then look for
a particular solution of the system by means of the Laplace transform, and in this way we show how
the solution arises. Finally, by a straightforward check, it yields that indeed the indicated solution
satisfies the problem (4.58).

We study at first the properties of a kernel, that acts as the Poisson kernel for the problem (4.58).
The readers can see Section 3 in [88], where this kernel is studied in a more general framework.
We define for every x P R,

Ψspx, tq :�
$&%

1

4sΓpsqx
2se�

x2

4t t�s�1, if t ¡ 0,

0, if t ¤ 0.

Also, let

ψsptq :�
$&%

1

4sΓpsqe
� 1

4t t�s�1, if t ¡ 0,

0, if t ¤ 0

and notice that »
R

Ψspx, tq dt �
»
R
ψsptq dt. (4.60)
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Indeed, we have by changing the coordinate τ � t{x2 that»
R

Ψspx, tq dt � 1

4sΓpsq
» 8

0

x2se�
x2

4t t�s�1 dt

� 1

4sΓpsq
» 8

0

e�
1
4τ τ�s�1 dτ

�
»
R
ψsptq dt.

The kernel Ψs satisfies also the following property:»
R

Ψspx, tq dt � 1. (4.61)

Indeed, by changing the variable t � 1{p4τq we get that»
R
ψspτq dτ � 1

4sΓpsq
» 8

0

e�
1
4τ τ�s�1 dτ � 1

Γpsq
» 8

0

e�tts�1 dt � 1, (4.62)

thanks to the integral definition of the Gamma function (see (A.4)). It follows from (4.60) that»
R

Ψspx, tq dt � 1.

Taking the Laplace transform of the kernel Ψs (see e.g. [71] for details on this integral transform),
we have the following result involving the modified Bessel function of the second kind Ks, see [110]
and [3], §9.6. We use here the notation <ω ¡ 0 to denote the real part of a complex number ω.

Lemma 4.2.4. The Laplace transform of the function ψs P L1pRq is

Lpψsqpωq � 1

2s�1Γpsqω
s
2 Ksp

?
ωq for <ω ¡ 0. (4.63)

Moreover, the Laplace transform with respect to the variable t of the kernel Ψs P L1pR, dtq is

LpΨsqpx, ωq � 1

2s�1Γpsqx
sω

s
2 Kspx

?
ωq for <ω ¡ 0. (4.64)

Proof. If one proves claim (4.63), the identity (4.64) follows by changing the variable τ � t{x2.
For <a ¡ 0 and ω P C with <ω ¡ 0, as stated in formula 5.34 in [119], we have that

L
�
tγ�1e�

a
t

� � 2
� a
ω

	 γ
2

Kγ

�
2paωq 1

2

	
.

Taking γ � �s and a � 1{4, recalling that Ks � K�s, we obtain that

Lpψsqpωq � 1

4sΓpsqL
�
e�

1
4τ τ�s�1

	
� 1

2s�1Γpsqω
s
2 Ksp

?
ωq

and thus (4.63). This concludes the proof of the Lemma. �

We recall now a useful result (see [80], Proposition 4.1) involving the modified Bessel function of
the second kind.

Proposition 4.2.5. If �8   α   1, the boundary value problem$'&'%
xαy2pxq � ypxq, in p0,8q
yp0q � 1,

lim
xÑ8 ypxq � 0.

(4.65)

has a solution y P C2�α pr0,8qq of the form

ypxq � ckx
1
2 K 1

2k

�
tk

k



,
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where ck is the positive constant

ck � 21� 1
2k k�

1
2k

Γ
�

1
2k

� and k :� 2� α

2
.

We show in the next rows how the solution of the problem (4.58) arises, using the Laplace
transform. So, we look for a possible candidate of a solution in the simplified situation in which U has
a sub-exponential growth in t, and in which the function ϕ is zero on the negative semi-axis p�8, 0s.
Under this additional hypothesis, we take the Laplace transform in t of the system (4.58). Since the
Laplace transform of the derivative of a function gives

Lpf 1qpωq � ωLfpωq,
we get that $'''&'''%

ωLUpx, ωq � 1� 2s

x

BLU
Bx px, ωq � B2LU

Bx2
px, ωq, in p0,8q � C

LUp0, ωq � Lϕpωq, in C
lim

xÑ�8LUpx, ωq � 0, in C.

We define for any fixed ω P C
fpxq :� LUpx, ωq, (4.66)

then f must be a solution of the system$'''&'''%
ωfpxq � 1� 2s

x
f 1pxq � f2pxq, in p0,8q

fp0q � Lϕpωq
lim

xÑ�8 fpxq � 0.

(4.67)

We assume here that for any ω P C, Lϕpωq � 0.
We take in Proposition 4.2.5, α � p2s� 1q{s (notice for s P p0, 1q that α P p�8, 1q) and ypxq to be
the solution there introduced. We claim that taking

fpxq � Lϕpωqy
�
ωs

� x
2s

	2s


,

fpxq is a solution of the system (4.67). Indeed, fp0q � Lϕpωq and

y2
�
ωs

� x
2s

	2s


� f2pxq 1

Lϕpωqω
�2sp2sq4s�2x2�4s

� f 1pxq 1� 2s

Lϕpωq p2sq
4s�2ω�2sx1�4s.

Since ypxq satisfies the system (4.65) we have that�
ωs

� x
2s

	2s

 2s�1

s

y2
�
ωs

� x
2s

	2s


� y

�
ωs

� x
2s

	2s


.

This implies that

ωfpxq � f2pxq � p1� 2sqx�1f 1pxq,
which yields that f is a solution of (4.67).
Now, from Proposition 4.2.5 we have k � 1{p2sq and

ypxq � 21�sp2sqs
Γpsq x

1
2 Ks

�
2sx

1
2s

	
.

And so we get that

fpxq � Lϕpωq2
1�s

Γpsqω
s
2xsKspx

?
ωq.
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We use (4.66), take the inverse Laplace transform, and recall that the pointwise product is taken into
the convolution product to obtain that

Upx, tq � 21�s

Γpsqϕ � L
�1

�
ω
s
2xsKspx

?
ωq� ptq.

And so, using (4.64), we get the following representation formula for the system (4.58):

Upx, tq � ϕ �Ψspx, tq �
» t

0

Ψpx, τqϕpt� τq dτ.

We recall that we obtained the above formula by taking the function ϕ to be vanishing in p�8, 0q.
However, it is reasonable to suppose that this formula holds true also for a function that is not a signal.
Hence, we take ϕ that does not vanish in p�8, 0q and claim that ϕ �Ψs still defines a solution of the
problem (4.58). Indeed, we show the following existence theorem:

Theorem 4.2.6. There exists a continuous solution of the problem (4.58) given by

Upx, tq � Ψspx, �q � ϕptq :�
»
R

Ψspx, τqϕpt� τq dτ.

More precisely (inserting the definition (4.2.1)) we have that

Upx, tq � 1

4sΓpsqx
2s

» 8

0

e�
x2

4τ τ�s�1ϕpt� τq dτ. (4.68)

Proof. We define

Ax,τ :�
#
e�

x2

4τ τ�s�1, if τ ¡ 0

0, if τ ¤ 0

and notice that

BAx,τ
Bx �

#
� x

2τ
Ax,τ , if τ ¡ 0

0, if τ ¤ 0.

Let

V px, tq :� 4sΓpsqUpx, tq � x2s

»
R
Ax,τϕpt� τq dτ,

where we have introduced the notation Ax,τ into (4.68). Taking the derivative with respect to x of
V px, tq we have that

BV
Bx px, tq � 2sx2s�1

»
R
Ax,τϕpt� τq dτ � x2s�1

2

»
R

Ax,τ
τ

ϕpt� τq dτ,

and that

B2V

Bx2
px, tq � 2sp2s� 1qx2s�2

»
R
Ax,τϕpt� τq dτ

� p4s� 1qx2s

2

»
R

Ax,τ
τ

ϕpt� τq dτ � x2s�2

4

»
R

Ax,τ
τ2

ϕpt� τq dτ.

Then, by changing variables, we write

V px, tq � x2s

»
R
Ax,t�τϕpτq dτ,

and taking the derivative with respect to t, we get that

BV
Bt px, tq � x2s

»
R

�
x2 Ax,t�τ

4pt� τq2ϕpτq � ps� 1qAx,t�τpt� τqϕpτq
�
dτ.

We change back variables to obtain

BV
Bt px, tq � x2s�2

»
R

Ax,τ
4τ2

ϕpt� τq dτ � ps� 1qx2s

»
R

Ax,τ
τ

ϕpt� τq dτ.
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By substituting these computations, we obtain that indeed V , hence U by the definition of V , satisfies
the equation

BU
Bt px, tq �

1� 2s

x

BU
Bx px, tq �

B2U

Bx2
px, tq.

Moreover, using for x large enough the bound

x2se�
x2

4τ ¤Me�
1
4τ ,

thanks to the Dominated Convergence Theorem and the limit

lim
xÑ�8x

2se�
x2

4τ � 0,

it yields that
lim

xÑ�8Upx, tq � 0.

Furthermore, in (4.68) by changing the variable τ̃ � τ{x2 (but still writing τ as the variable of
integration), we have that

Upx, tq � 1

4sΓpsq
» 8

0

e�
1
4τ τ�s�1ϕpt� τx2q dτ.

Since ϕ is bounded, by the Dominated Convergence Theorem, we have that

lim
xÑ0�

Upx, tq � ϕptq
4sΓpsq

» 8

0

e�
1
4τ τ�s�1 dτ � ϕptq,

according to (4.62). This proves the continuity up to the boundary of the solution U, concluding the
proof of the Theorem. �

We prove here that the Marchaud derivative is obtained as the trace operator of the extension
given by the solution of problem (4.58) obtained in Theorem 4.2.6. Namely, we prove the following
theorem.

Proof of Theorem 4.2.1. By inserting the expression of Upx, tq from (4.68), we compute

lim
xÑ0�

x�2s pUpx, tq � ϕptqq

� lim
xÑ0�

x�2s

�
1

4sΓpsq
» 8

0

x2se�
x2

4τ τ�s�1ϕpt� τq dτ � ϕptq


.

Recalling property (4.2.1) of the kernel, we have that

lim
xÑ0�

x�2s pUpx, tq � ϕptqq

� lim
xÑ0�

x�2s

4sΓpsq
» 8

0

x2se�
x2

4τ τ�s�1 pϕpt� τq � ϕptqq dτ

� lim
xÑ0�

1

4sΓpsq
» 8

0

e�
x2

4τ
ϕpt� τq � ϕptq

τs�1
dτ.

Now

e�
x2

4τ ¤ 1

and since ϕ is bounded, we have that

|ϕpt� τq � ϕptq|
τs�1

¤ 2Mτ�s�1 P L1 pp1,8qq .
On the other hand, recalling that ϕ is C γ̄pRq we have that

|ϕptq � ϕpt� τq| ¤ cτ γ̄ .

Hence, since γ̄ ¡ s,
|ϕpt� τq � ϕptq|

τs�1
¤ cτ γ̄�s�1 P L1 pp0, 1qq .
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Using the Dominated Converge Theorem, we obtain

lim
xÑ0�

x�2s pUpx, tq � ϕptqq � 1

4sΓpsq
» 8

0

lim
xÑ0�

e�
x2

4τ
ϕpt� τq � ϕptq

τs�1
dτ

� 1

4sΓpsq
» 8

0

ϕpt� τq � ϕptq
τs�1

dτ.

(4.69)

And so for cs � 4sΓpsq,

�cs lim
xÑ0�

x�2s pUpx, tq � ϕptqq �
» 8

0

ϕptq � ϕpt� τq
τs�1

dτ � Dsϕptq

by definition (4.56). This concludes the proof of Theorem 4.2.1. �

We make a short remark on the right Marchaud fractional derivative (denoted by Ds
�ϕ) and the

backward equation. The following result is true:

Theorem 4.2.7. Let s P p0, 1q and γ̄ P ps, 1s be fixed. Let ϕ P C γ̄pRq be a bounded function and
let U� : r0,8q � RÑ R be a solution of the problem$'''&'''%

� BUpx, tq
Bt � 1� 2s

x

BUpx, tq
Bx � B2Upx, tq

Bx2
, px, tq P p0,8q � R

Up0, tq � ϕptq, t P R
lim

xÑ�8Upx, tq � 0.

(4.70)

Then U� defines the extension operator for ϕ, such that

Ds
�ϕptq � � lim

xÑ0�
csx

�2spU�px, tq � ϕptqq, where cs � 4sΓpsq.

The proof follows similarly to the proof of Theorem 4.2.1. We only point out that if U� is a
solution of (4.70), then U�px, tq � Upx,�tq, where U is the solution of the differential equation in
(4.58).

4.2.2. Applications: a Harnack inequality for Marchaud-stationary functions. In this
subsection we prove a Harnack inequality for functions that have a vanishing Marchaud derivative in
a bounded interval J , namely we prove here Theorem 4.2.3. At this purpose, we use a known Harnack
inequality for degenerate parabolic operators, that can be found in [36], see Theorem 2.1. There, the
result is given in its generality, in Rn. For the reader’s convenience we recall in Proposition 4.2.9 this
result in the case n � 1.

We point out that the result given in [36] was proved for n ¥ 3. Nevertheless the same proof
works also for n � 1 with some adjustments. We recall here the hypotheses we need, adapted in our
case n � 1. It is worth to say that this problem has been studied in a more general fashion in [93]
and [94].

The degenerate parabolic

wpxqBuBt �
B
Bx

�
wpxqBuBx



, (4.71)

is given in Q � p�R,Rq � p0, T q, for R ¡ 0. The weight w has to satisfy an integrability condition
(also known as a Muckehoupt, or A2 weight condition), given by

sup
J

�
1

|J |
»
J

wpxq dx

 �

1

|J |
»
J

1

wpxq dx


� c0   8, (4.72)

for any interval J � p�R,Rq. The constant c0 is indicated as the A2 constant of w.
In this particular case we give here in (4.71), the conductivity coefficient (i.e. the coefficient in front
of the x derivative) and the specific heat (the coefficient of the t derivative) coincide. A more general
form of the equation in R can be given in these terms:

wpxqBuBt �
Bu
Bx

�
apxqBuBx



, (4.73)
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i.e. when the conductivity and the specific heat are not equal. In that case, one has to require, besides
condition (4.72), that

λ�1wpxq ¤ apxq ¤ λwpxq.
In addition we consider the functional space

W :�
"
u P L2p0, T ;H1

0 pJ,wqq s.t.
Bu
Bt P L

2p0, T ;L2pJ,wqq
*
.

We denote here by L2pJ,wq, the Banach space of measurable functions u with finite weighted norm

}u}2,w;J �
�»

J

|u|2w dx

1{2

  8,

by H1pJ,wq the completion of C8pJq under the norm

}u}1,w;J �
�»

J

pu2 � |Bxu|2qw dx

1{2

and by H1
0 pJ,wq the completion of C8

0 pJq under the norm

}u}1,w;J �
�»

J

|Bxu|2w dx

1{2

.

The time dependent Sobolev space L2
�
0, T ;H1

0 pJ,wq
�

is defined as the set of all measurable functions
u such that

}u}L2p0,T ;H1
0 pJ,wqq :�

��� ¼
J�p0,T q

|upx, tq|2wpxq dx dt

��

1
2

  8.

In this setting, we introduce the notion of weak solution of the problem (4.71).

Definition 4.2.8. We say that u P L2p0, T ;H1pJ,wqq is a weak solution of (4.71) in J � p0, T q
if, for every η PW, such that ηpx, 0q � ηpx, tq for any x P J , we have that¼

J�p0,T q

wpxq
�Bu
Bx

Bη
Bx � u

Bη
Bt



dx dt � 0.

We have the next proposition (see for the proof Theorem 2.1 in [36]).

Proposition 4.2.9. Let u be a positive solution in p�R,Rq � p0, T q of (4.71) and assume that
condition (4.72) holds, with constant c0. Then there exists γ � γpc0q ¡ 0 such that

sup
p� ρ

2 ,
ρ
2 q�

�
t0� 3ρ2

4 ,t0� ρ2

4

	u ¤ γ inf
p� ρ

2 ,
ρ
2 q�

�
t0� 3ρ2

4 ,t0�ρ2
	u

holds for t0 P p0, T q and any ρ such that 0   ρ   R{2 and rt0 � ρ2, t0 � ρ2s � p0, T q.
Remark 4.2.10. The reader can easily imagine the general situation in any dimension as ex-

plicated in Theorem 2.1 in [36], where the coefficient apxq in (4.73) is a matrix and the domains
are cylinders. We have stated the Harnack inequality in p0, T q. Nevertheless with a change of co-
ordinates in space and time, we can always say that the Harnack inequality holds in any subset of
pR1, R2q � pτ1, τ2q, where R1, R2, τ1, τ2 P R.

We consider here that Dsϕptq � 0 in an interval J . By taking the reflection of the solution of
problem (4.58), we obtain a solution in a weak sense of (4.58) across x � 0.

It is useful to introduce a weak version of the limit lim
xÑ0�

x1�2sBxUpx, tq. In this sense, we have:
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Definition 4.2.11. We say that in a weak sense

lim
xÑ0�

x1�2s BU
Bx px, tq � 0

if and only if, for any η PW such that ηpx, 0q � ηpx, tq for any x P J , we have that

lim
xÑ0�

» T
0

x1�2s BU
Bx η dt � 0. (4.74)

Lemma 4.2.12. Let U : R � r0,8q Ñ R be a solution of the problem (4.58) such that, in a weak
sense, lim

xÑ0�
x1�2sBxUpx, tq � 0. Then the extension

Ũpx, tq :�
#
Upx, tq, px, tq P r0,�8q � p0, T q
Up�x, tq, px, tq P p�8, 0q � p0, T q

is a weak solution of
Bp|x|1�2sUq

Bt px, tq � B
Bx

�
|x|1�2s BU

Bx px, tq



(4.75)

in p�R,Rq � p0, T q.
Proof. We claim that the extension Ũ is a weak solution of (4.75), hence that»

p�R,Rq�p0,T q
|x|1�2s

�
BŨ
Bx

Bη
Bx � Ũ

Bη
Bt

�
dx dt � 0. (4.76)

We compute, integrating by parts» T
0

�» R
0

x1�2s BŨ
Bx

Bη
Bx dx

�
dt

�
» T

0

R1�2s BŨ
Bx pR, tq ηpR, tq dt� lim

xÑ0

» T
0

x1�2s BU
Bx η dt

�
» T

0

�» R
0

B
Bx

�
x1�2s BŨ

Bx

�
η dx

�
dt

�
» T

0

R1�2s BŨ
Bx pR, tqηpR, tq dt�

» T
0

�» R
0

x1�2s BŨ
Bt η dx

�
dt,

where we have used the weak limit in (4.74) and the fact that Ũ solves equation (4.75). In the same
way, one obtains that» T

0

�» 0

�R
p�xq1�2s BŨ

Bx
Bη
Bx dx

�
dt �

» T
0

R1�2s BŨ
Bx p�R, tqηp�R, tq dt

�
» T

0

�» 0

�R
p�xq1�2s BŨ

Bt η dx
�
dt,

therefore, by summing up,»
p�R,Rq�p0,T q

|x|1�2s BŨ
Bx

Bη
Bx dx dt

�
» T

0

R1�2s

�
BŨ
Bx pR, tqηpR, tq �

BŨ
Bx p�R, tqηp�R, tq

�
dt

�
» T

0

�» R
�R

|x|1�2s BŨ
Bt η dx

�
dt.



4.2. AN EXTENSION PROBLEM FOR THE FRACTIONAL DERIVATIVE DEFINED BY MARCHAUD 135

Hence »
p�R,Rq�p0,T q

|x|1�2s

�
BŨ
Bx

Bη
Bx � Ũ

Bη
Bt

�
dx dt

�
» T

0

R1�2s

�
BŨ
Bx pR, tqηpR, tq �

BŨ
Bx p�R, tqηp�R, tq

�
dt

�
» T

0

�» R
�R

|x|1�2s

�
BŨ
Bt η � Ũ

Bη
Bt

�
dx

�
dt

�
» T

0

R1�2s

�
BŨ
Bx pR, tqηpR, tq �

BŨ
Bx p�R, tqηp�R, tq

�
dt

�
» R
�R

|x|1�2s
�
Ũpx, T qηpx, T q � Ũpx, 0qηpx, 0q

	
dx

� 0,

since ηpx, T q � ηpx, 0q � 0 and ηpR, tq � ηp�R, tq � 0. This is the claim in (4.76), and we conclude
the proof of the Lemma. �

We show now that the Harnack inequality for Marchaud stationary functions can be deduced from
the Harnack inequality associated with the extension operator.

The interested reader can also see [28] for the proof (using the extension operator) of the Harnack
inequality for the fractional Laplacian, and [53] for the inequality for other types of nonlocal operators.
In addition, we also point out [80] for the case of the fractional subelliptic operators in Carnot groups
and [142] for the fractional harmonic oscillator.

Proof of Theorem 4.2.3. We consider U to be the extension of ϕ, as introduced in Theorem
4.2.1. Since ϕ is nonnegative, given the explicit solution U in Theorem 4.2.6, the function U is also
positive. Now, we reflect U and obtain Ũ , as we have done in Lemma 4.2.12.
We prove at first the theorem when J � p0, T q. Since Dsϕptq � 0 in p0, T q, we have by definition that

lim
xÑ0�

x�2s BU
Bx px, tq � 0,

and thanks to Lemma 4.2.12, we obtain that Ũ is a weak solution of (4.75) in, say, p�R,Rq�p0, T q for
a fixed arbitrary R ¡ 0. Moreover, the function |x|1�2s satisfies the condition (4.72), and according
to Proposition 4.2.9, we have that

sup
p� ρ

2 ,
ρ
2 q�

�
t0� 3ρ2

4 ,t0� ρ2

4

	 Ũ ¤ γ inf
p� ρ

2 ,
ρ
2 q�

�
t0� 3ρ2

4 ,t0�ρ2
	 Ũ .

It suffices now to slice the domain at x � 0 to obtain that

sup�
t0� 3ρ2

4 ,t0� ρ2

4

	Up0, tq ¤ γ inf�
t0� 3ρ2

4 ,t0�ρ2
	Up0, tq,

hence

sup�
t0� 3ρ2

4 ,t0� ρ2

4

	ϕptq ¤ γ inf�
t0� 3ρ2

4 ,t0�ρ2
	ϕptq

for any ρ such that 0   ρ   R{2 and rt0 � ρ2, t0 � ρ2s � p0, T q.
Now, in order to prove that the Harnack inequality holds on any interval J � R, one considers a
translation of U , namely for any θ P R, the function Uθpx, tq :� Upx, t � θq, and reflects it as in
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Lemma 4.2.12. Then Ũθ is a weak solution of (4.75), and Ũθp0, tq � ϕpt� θq. One obtains then, as a
consequence of the Harnack inequality for the solution Uθ, the following:

sup�
t0� 3ρ2

4 ,t0� ρ2

4

	ϕpt� θq ¤ γ inf�
t0� 3ρ2

4 ,t0�ρ2
	ϕpt� θq

for any ρ such that 0   ρ   R{2 and rt0 � ρ2, t0 � ρ2s � p0, T q. Therefore

sup�
t0� 3ρ2

4 ,t0� ρ2

4

	ϕptq ¤ γ inf�
t0� 3ρ2

4 ,t0�ρ2
	ϕptq

for any ρ such that 0   ρ   R{2 and rt0 � ρ2, t0 � ρ2s � pθ, T � θq. As θ and R are arbitrary, one
concludes that

sup
pt0� 3δ

4 ,t0� δ
4 q
ϕptq ¤ γ inf

pt0� 3δ
4 ,t0�δq

ϕptq

for any δ ¡ 0 such that rt0 � δ, t0 � δs � J . This concludes the proof of Theorem 4.2.3. �

Remark 4.2.13. We would like to point out that the Harnack type inequality obtained in Theorem
4.2.3 can be equivalently stated as follows. Let us define for every δ ¡ 0 and for every τ P R the sets:

Ipτ, δq � rτ � 15

8
δ, τ � 1

8
δs,

I�pτ, δq � rτ � 15

8
δ, τ � 7

4
δs,

I�pτ, δq � rτ � 1

8
δ, τ � 1

8
δs.

With this notation, the Harnack inequality gives that for every Ipτ, δq � J

sup
I�pτ,δq

ϕ ¤ γ inf
I�pτ,δq

ϕ.



CHAPTER 5

Some nonlocal nonlinear stationary equations

Abstract. We deal in this chapter with some nonlocal nonlinear stationary type problems. We first

take a look at a problem connected to solitary solutions of nonlinear dispersive wave equations, in

particular that arises in the study of the fractional Schrödinger equation when looking for standing
waves. More precisely, we discuss here the existence of a solution that concentrates at interior points

of the domain, of the probelm #
ε2sp�∆qsu� u � up in Ω � Rn

u � 0 in RnzΩ,

for p P p1, 2�s�1q, where 2�s � 2n{pn� 2sq is the critical fractional Sobolev exponent and ε is a small

parameter. Moreover, we prove the existence of a positive solution of the nonlinear and nonlocal

elliptic equation in Rn

p�∆qsu � εhuq � u2�s�1

in the convex case 1 ¤ q   2�s�1, where ε is a small parameter and h is a given bounded, integrable
function. The problem has a variational structure and we prove the existence of a solution using

the classical Mountain-Pass Theorem. We work here with the harmonic extension of the fractional

Laplacian, which allows us to deal with a weighted (but possibly degenerate) local operator, rather
than with a nonlocal energy.

In this chapter, we study some nonlocal nonlinear problems of stationary type. Let s P p0, 1q
be the fractional parameter, n ¡ 2s be the dimension of the reference space, and ε ¡ 0 be a small
parameter. We consider the so-called fractional Sobolev exponent defined for n ¡ 2s as

2�s :� 2n

n� 2s
.

5.1. A nonlocal nonlinear stationary Schrödinger type equation

The type of problems introduced in this section are connected to solitary solutions of nonlinear
dispersive wave equations (such as the Benjamin-Ono equation, the Benjamin-Bona-Mahony equation
and the fractional Schrödinger equation). In this section, only stationary equations are studied and
we redirect the reader to [146,147] for the study of evolutionary type equations.

We discuss the following nonlocal nonlinear Schrödinger equation#
ε2sp�∆qsu� u � up in Ω � Rn

u � 0 in RnzΩ, (5.1)

in the subcritical case p P p1, 2�s � 1q, namely when p P
�

1,
n� 2s

n� 2s



. We study the existence of a

solution that concentrates at interior points of the domain, points that depend on the global geometry
of the domain. Moreover, we point out a simple consequence of the Uncertainty Principle, which can
be seen as a fractional Sobolev inequality in weighted spaces.

This equation 5.1 arises in the study of the fractional Schrödinger equation when looking for
standing waves. Namely, the fractional Schrödinger equation considers solutions Ψ � Ψpx, tq : Rn �
RÑ C of

i}BtΨ � �
}2sp�∆qs � V

�
Ψ, (5.2)

137
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where s P p0, 1q, } is the reduced Planck constant and V � V px, t, |Ψ|q is a potential. This equation
is of interest in quantum mechanics (see e.g. [103] and the appendix in [45] for details and physical
motivations). Roughly speaking, the quantity |Ψpx, tq|2 dx represents the probability density of finding
a quantum particle in the space region dx and at time t.
The simplest solutions of (5.2) are the ones for which this probability density is independent of time,
i.e. |Ψpx, tq| � upxq for some u : Rn Ñ r0,�8q. In this way, one can write Ψ as u times a phase that
oscillates (very rapidly) in time: that is one may look for solutions of (5.2) of the form

Ψpx, tq :� upxq eiωt{},
for some frequency ω P R. Choosing V � V p|Ψ|q � �|Ψ|p�1 � �up�1, a substitution into (5.2) gives
that �

}2sp�∆qsu� ωu� up
	
eiωt{} � }2sp�∆qsΨ� i}BtΨ� VΨ � 0,

which is (5.1) (with the normalization convention ω :� 1 and ε :� }).
The goal of this section is to construct solutions of problem (5.1) that concentrate at interior

points of the domain Ω for sufficiently small values of ε. We perform a blow-up of the domain, defined
as

Ωε :� 1

ε
Ω �

"
x

ε
, x P Ω

*
.

We can also rescale the solution of (5.1) on Ωε,

uεpxq � upεxq.
The problem (5.1) for uε then reads#

p�∆qsu� u � up in Ωε

u � 0 in RnzΩε.
(5.3)

When εÑ 0, the domain Ωε invades the whole of the space. Therefore, it is also natural to consider
(as a first approximation) the equation on the entire space

p�∆qsu� u � up in Rn. (5.4)

The first result that we need is that there exists an entire positive radial least energy solution w P
HspRnq of (5.4), called the ground state solution. Here follow some relevant results on this. The
interested reader can find their proofs in [86].

(1) The ground state solution w P HspRnq is unique up to translations.
(2) The ground state solution w P HspRnq is nondegenerate, i.e., the derivatives Diw are solu-

tions to the linearized equation

p�∆qsZ � Z � pZp�1. (5.5)

(3) The ground state solution w P HspRnq decays polynomially at infinity, namely there exist
two constants α, β ¡ 0 such that

α|x|�pn�2sq ¤ upxq ¤ β|x|�pn�2sq.

Unlike the fractional case, we remark that for the (classical) Laplacian, at infinity the ground state
solution decays exponentially fast. We also refer to [85] for the one-dimensional case.

The main theorem of this section establishes the existence of a solution that concentrates at
interior points of the domain for sufficiently small values of ε. This concentration phenomena is
written in terms of the ground state solution w. Namely, the first approximation for the solution is
exactly the ground state w, scaled and concentrated at an appropriate point ξ of the domain. More
precisely, we have:
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Theorem 5.1.1. If ε is sufficiently small, there exist a point ξ P Ω and a solution Uε of the
problem (5.1) such that ����Uεpxq � w

�x� ξ

ε

	���� ¤ Cεn�2s,

and distpξ, BΩq ¥ δ ¡ 0. Here, C and δ are constants independent of ε or Ω, and the function w is
the ground state solution of problem (5.4).

The concentration point ξ in Theorem 5.1.1 is influenced by the global geometry of the domain.
On the one hand, when s � 1, the point ξ is the one that maximizes the distance from the boundary.
On the other hand, when s P p0, 1q, such simple characterization of ξ does not hold anymore: in this
case, ξ turns out to be asymptotically the maximum of a (complicated, but rather explicit) nonlocal
functional: see [45] for more details.

We state here the basic idea of the proof of Theorem 5.1.1 (we refer again to [45] for more details).

Sketch of the proof of Theorem 5.1.1. In this proof, we make use of the Lyapunov-Schmidt
procedure. Namely, rather than looking for the solution in an infinite-dimensional functional space,
one decomposes the problem into two orthogonal subproblems. One of these problem is still infinite-
dimensional, but it has the advantage to bifurcate from a known object (in this case, a translation of
the ground state). Solving this auxiliary subproblem does not provide a true solution of the original
problem, since a leftover in the orthogonal direction may remain. To kill this remainder term, one
solves a second subproblem, which turns out to be finite-dimensional (in our case, this subproblem is
set in Rn, which corresponds to the action of the translations on the ground state).

A structural advantage of the problem considered lies in its variational structure. Indeed, equa-
tion (5.3) is the Euler-Lagrange equation of the energy functional

Iεpuq � 1

2

»
Ωε

�
p�∆qsupxq � upxq

	
upxq dx� 1

p� 1

»
Ωε

up�1pxq dx (5.6)

for any u P Hs
0pΩεq :� tu P HspRnq s.t. u � 0 a.e. in RnzΩεu. Therefore, the problem reduces to

finding critical points of Iε.
To this goal, we consider the ground state solution w and for any ξ P Rn we let wξ :� wpx � ξq.

For a given ξ P Ωε a first approximation ūξ for the solution of problem (5.3) can be taken as the
solution of the linear problem #

p�∆qsuξ � uξ � wpξ in Ωε,

uξ � 0 in RnzΩε.
(5.7)

The actual solution will be obtained as a small perturbation of ūξ for a suitable point ξ � ξpεq.
We define the operator L :� p�∆qs � I, where I is the identity and we notice that L has a unique
fundamental solution that solves

LΓ � δ0 in Rn.
The Green function Gε of the operator L in Ωε satisfies#

LGεpx, yq � δypxq if x P Ωε,

Gεpx, yq � 0 if x P RnzΩε.
(5.8)

It is convenient to introduce the regular part of Gε, which is often called the Robin function. This
function is defined by

Hεpx, yq :� Γpx� yq �Gεpx, yq (5.9)

and it satisfies, for a fixed y P Rn,#
LHεpx, yq � 0 if x P Ωε,

Hεpx, yq � Γpx� yq if x P RnzΩε.
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We have that

uξpxq �
»

Ωε

uξpyqδ0px� yq dy,
and by (5.8) that

uξpxq �
»

Ωε

uξpyqLGεpx, yq dy.
The operator L is self-adjoint and thanks to the above identity and to equation (5.7) it follows that

uξpxq �
»

Ωε

LuξpyqGεpx, yq dy �
»

Ωε

wpξ pyqGεpx, yq dy.

So, we use (5.9) and we obtain that

uξpxq �
»

Ωε

wpξ pyqΓpx� yq dy �
»

Ωε

wpξ pyqHεpx, yq dy.

Now we notice that, since wξ is solution of (5.4) and Γ is the fundamental solution of L, we have that»
Rn
wpξ pyqΓpx� yq dy �

»
Rn

LwξpyqΓpx� yq dy �
»
Rn
wξpyqLΓpx� yq dy � wξpxq.

Therefore we have obtained that

uξpxq � wξpxq �
»
RnzΩε

wpξ pyqΓpx� yq dy �
»

Ωε

wpξ pyqHεpx, yq dy. (5.10)

Now we can insert (5.10) into the energy functional (5.6) and expand the errors in powers of ε. For

distpξ, BΩεq ¥ δ

ε
with δ fixed and small, the energy of uξ is a perturbation of the energy of the ground

state w and one finds (see Theorem 4.1 in [45]) that

Iεpuξq � Ipwq � 1

2
Hεpξq �Opεn�4sq, (5.11)

where

Hεpξq :�
»

Ωε

»
Ωε

Hεpx, yqwpξ pxqwpξ pyq dx dy
and I is the energy computed on the whole space Rn, namely

Ipuq � 1

2

»
Rn

�
p�∆qsupxq � upxq

	
upxq dx� 1

p� 1

»
Rn
up�1pxq dx.

In particular, Iεpuξq agrees with a constant (the term Ipwq), plus a functional over a finite-dimensional
space (the term Hεpξq, which only depends on ξ P Rn), plus a small error.

We remark that the solution uξ of equation (5.7) which can be obtained from (5.10) does not
provide a solution for the original problem (5.3) (indeed, it only solves (5.7)): for this, we look for
solutions uξ of (5.3) as perturbations of uξ, in the form

uξ :� uξ � ψ. (5.12)

The perturbation functions ψ are considered among those vanishing outside Ωε and orthogonal to the

space Z � SpanpZ1, . . . , Znq, where Zi � Bwξ
Bxi are solutions of the linearized equation (5.5). This

procedure somehow “removes the degeneracy”, namely we look for the corrector ψ in a set where the
linearized operator is invertible. This makes it possible, fixed any ξ P Rn, to find ψ � ψξ such that
the function uξ, as defined in (5.12) solves the equation

p�∆qsuξ � uξ � upξ �
ņ

i�1

ciZi in Ωε. (5.13)

That is, uξ is solution of the original equation (5.3), up to an error that lies in the tangent space of
the translations (this error is exactly the price that we pay in order to solve the corrector equation
for ψ on the orthogonal of the kernel, where the operator is nondegenerate). As a matter of fact (see
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Theorem 7.6 in [45] for details) one can see that the corrector ψ � ψξ is of order εn�2s. Therefore,
one can compute Iεpuξq � Iεpuξ � ψξq as a higher order perturbation of Iεpuξq. From (5.11), one
obtains that

Iεpuξq � Ipwq � 1

2
Hεpξq �Opεn�4sq, (5.14)

see Theorem 7.17 in [45] for details.
Since this energy expansion now depends only on ξ P Rn, it is convenient to define the operator

Jε : Ωε Ñ R as

Jεpξq :� Iεpuξq.
This functional is often called the reduced energy functional. From (5.14), we conclude that

Jεpξq � Ipwq � 1

2
Hεpξq �Opεn�4sq. (5.15)

The reduced energy J plays an important role in this framework since critical points of J correspond
to true solutions of the original equation (5.3). More precisely (see Lemma 7.16 in [45]) one has that
ci � 0 for all i � 1, . . . , n in (5.13) if and only if

BJε
Bξ pξq � 0. (5.16)

In other words, when ε approaches 0, to find concentration points, it is enough to find critical points
of J , which is a finite-dimensional problem. Also, critical points for J come from critical points of Hε,
up to higher orders, thanks to (5.15). The issue is thus to prove that Hε does possess critical points
and that these critical points survive after the small error of size εn�4s: in fact, we show that Hε

possesses a minimum, which is stable for perturbations. For this, one needs a bound for the Robin
function Hε from above and below. To this goal, one builds a barrier function βξ defined for ξ P Ωε
and x P Rn as

βξpxq :�
»
RnzΩε

Γpz � ξqΓpx� zq dz.

Using this function in combination with suitable maximum principles, one obtains the existence of a
constant c P p0, 1q such that

cHεpx, ξq ¤ βξpxq ¤ c�1Hεpx, ξq,
for any x P Rn and any ξ P Ωε with distpξ, BΩεq ¡ 1, see Lemma 2.1 in [45]. From this it follows that

Hεpξq � d�pn�4sq, (5.17)

for all points ξ P Ωε such that d P r5, δ{εs. So, one considers the domain Ωε,δ of the points of Ωε that
lie at distance more than δ{ε from the boundary of Ωε. By (5.17), we have that

Hεpξq � εn�4s

δn�4s
for any ξ P BΩε,δ. (5.18)

Also, up to a translation, we may suppose that 0 P Ω. Thus, 0 P Ωε and its distance from BΩε is of
order 1{ε (independently of δ). In particular, if δ is small enough, we have that 0 lies in the interior
of Ωε,δ, and (5.17) gives that

Hεp0q � εn�4s.

By comparing this with (5.18), we see that Hε has an interior minimum in Ωε,δ. The value at-
tained at this minimum is of order εn�4s, and the values attained at the boundary of Ωε,δ are of
order δ�n�4sεn�4s, which is much larger than εn�4s, if δ is small enough. This says that the interior
minimum of Hε in Ωε,δ is nondegenerate and it survives to any perturbation of order εn�4s, if δ is
small enough.

This and (5.15) imply that J has also an interior minimum at some point ξ in Ωε,δ. By construc-
tion, this point ξ satisfies (5.16), and so this completes the proof of Theorem 5.1.1. �
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The variational argument in the proof above (see in particular (5.16)) has a classical and neat
geometric interpretation. Namely, the “unperturbed” functional (i.e. the one with ε � 0) has a very
degenerate geometry, since it has a whole manifold of minimizers with the same energy: this manifold
corresponds to the translation of the ground state w, namely it is of the form M0 :� twξ, ξ P Rnu
and, therefore, it can be identified with Rn.

Figure 5.1. Geometric interpretation

For topological arguments, this degenerate picture may constitute a serious obstacle to the existence
of critical points for the “perturbed” functional (i.e. the one with ε � 0). As an obvious example,
the reader may think of the function of two variables fε : R2 Ñ R given by fεpx, yq :� x2 � εy.
When ε � 0, this function attains its minimum along the manifold tx � 0u, but all the critical points
on this manifold are “destroyed” by the perturbation when ε � 0 (indeed ∇fεpx, yq � p2x, εq never
vanishes).

In the situation described in the proof of Theorem 5.1.1, this pathology does not occur, thanks
to the nondegeneracy provided in [86]. Indeed, by the nondegeneracy of the unperturbed critical
manifold, when ε � 0 one can construct a manifold, diffeomorphic to the original one (in our case of
the form Mε :� tuξ � ψpξq, ξ P Rnu), that enjoys the special feature of “almost annihilating” the
gradient of the functional, up to vectors parallel to the original manifold M0 (this is the meaning of
formula (5.13)).

Then, if one finds a minimum of the functional constrained to Mε, the theory of Lagrange mul-
tipliers (at least in finite dimension) would suggest that the gradient is normal to Mε. That is, the
gradient of the functional is, simultaneously, parallel to M0 and orthogonal to Mε. But since Mε

is diffeomorphically close to M0, the only vector with this property is the null vector, hence this
argument provides the desired critical point.

We also recall that the fractional Schrödinger equation is related to a nonlocal canonical quanti-
zation, which in turn produces a nonlocal Uncertainty Principle. In the classical setting, one considers
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the momentum/position operators, which are defined in Rn, by

Pk :� �i}Bk and Qk :� xk (5.19)

for k P t1, . . . , nu. Then, the Uncertainty Principle states that the operators P � pP1, . . . , Pnq and Q �
pQ1, . . . , Qnq do not commute (which makes it practically impossible to measure simultaneously both
momentum and position). Indeed, in this case a simple computation shows that

rQ,P s :�
ņ

k�1

rQk, Pks � i}n. (5.20)

The nonlocal analogue of this quantization may be formulated by introducing a nonlocal momentum,
i.e. by replacing the operators in (5.19) by

P sk :� �i}sBkp�∆q s�1
2 and Qk :� xk. (5.21)

In this case, one has that

F
�
xkF�1gpxq�pξq � »

Rn
dx

»
Rn

dy e2πix�py�ξqxkgpyq

� 1

2πi

»
Rn

dx

»
Rn

dy Byke2πix�py�ξqgpyq � i

2π

»
Rn

dx

»
Rn

dy e2πix�py�ξqBkgpyq

� i

2π

»
Rn

dx e�2πix�ξF�1pBkgqpxq � i

2π
F
�
F�1pBkgq

�pξq � i

2π
Bkgpξq,

(5.22)
for any test function g. In addition,

FpP skfq � p2πqs}sξk |ξ|s�1 pf.
Therefore, given any test function ψ, using this with f :� ψ and f :� xkψ, and also (5.22) with

g :� FpP skψq and g :� pψ, we obtain that

F
�
QkP

s
kψpxq � P skQkψpxq

� � F
�
xkP

s
kψpxq

�� F
�
P sk pxkψpxqq

�
� i

2π
BkFpP skψqpξq � p2πqs}sξk |ξ|s�1Fpxkψpxqqpξq

�p2πqs�1i}sBk
�
ξk |ξ|s�1 pψpξq�� p2πqs}sξk |ξ|s�1pxk � pψpξq

�p2πqs�1i}sBk
�
ξk |ξ|s�1 pψpξq�� p2πqs�1i}sξk |ξ|s�1Bk pψpξq

�p2πqs�1i}sBk
�
ξk |ξ|s�1

� pψpξq � p2πqs�1i}s
�|ξ|s�1 � ps� 1qξ2

k |ξ|s�3
� pψpξq.

Consequently, by summing up,

F
�rQ,P ssψq � p2πqs�1i}s |ξ|s�1 pn� s� 1q pψpξq.

So, by taking the anti-transform,

rQ,P ssψ � i}s pn� s� 1q F�1
�p2π|ξ|qs�1 pψ� � i}s pn� s� 1q p�∆q s�1

2 ψ. (5.23)

Notice that, as s Ñ 1, this formula reduces to the the classical Heisenberg Uncertainty Principle
in (5.20).

Now we point out a simple consequence of the Uncertainty Principle in formula (5.23), which can
be seen as a fractional Sobolev inequality in weighted spaces. The result (which boils down to known
formulas as sÑ 1) is the following:

Proposition 5.1.2. For any u P SpRnq, we have that��� p�∆q s�1
4 u

���2

L2pRnq
¤ 2

n� s� 1

��� |x|u ���
L2pRnq

���∇p�∆q s�1
2 u

���
L2pRnq

.
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Proof. The proof is a general argument in operator theory. Indeed, suppose that there are two
operators S and A, acting on a space with a scalar Hermitian product. Assume that S is self-adjoint
and A is anti-self-adjoint, i.e.

xu, Suy � xSu, uy and xu,Auy � �xAu, uy,
for any u in the space. Then, for any λ P R,

}pA� λSqu}2 � }Au}2 � λ2}Su}2 � λ
�
xAu, Suy � xSu,Auy

	
� }Au}2 � λ2}Su}2 � λxpSA�ASqu, uy.

Now we apply this identity in the space C8
0 pRnq � L2pRnq, taking S :� Qk � xk and A :� iP sk �

}sBkp�∆q s�1
2 (recall (5.21) and notice that iP sk is anti-self-adjoint, thanks to the integration by parts

formula). In this way, and using (5.23), we obtain that

0 ¤
ņ

k�1

}piP sk � λQkqu}2L2pRnq

�
ņ

k�1

�
}iP sku}2L2pRnq � λ2}Qku}2L2pRnq � iλxrQk, P sk su, uyL2pRnq

�
� }2s

���∇p�∆q s�1
2 u

���2

L2pRnq
� λ2

��� |x|u ���2

L2pRnq
� i2 λ pn� s� 1q }sxp�∆q s�1

2 u, uyL2pRnq

� }2s
���∇p�∆q s�1

2 u
���2

L2pRnq
� λ2

��� |x|u ���2

L2pRnq
� λ pn� s� 1q }s

��� p�∆q s�1
4 u

���2

L2pRnq
.

Now, if u � 0, we can optimize this identity by choosing

λ :�
pn� s� 1q }s

��� p�∆q s�1
4 u

���2

L2pRnq

2
��� |x|u ���2

L2pRnq

and we obtain that

0 ¤ }2s
���∇p�∆q s�1

2 u
���2

L2pRnq
�
pn� s� 1q2 }2s

��� p�∆q s�1
4 u

���4

L2pRnq

4
��� |x|u ���2

L2pRnq

,

which gives the desired result. �

5.2. A fractional elliptic problem in Rn with critical growth and convex nonlinearities

The goal of this section is to prove the existence of a positive solution to the convex problem

p�∆qsu � εhuq � u2�s�1 in Rn, (5.24)

where s P p0, 1q, n ¡ 2s, 1 ¤ q   2�s � 1 are given quantities, ε ¡ 0 is a small parameter, and h is a
function satisfying suitable summability conditions. The main result of this section goes as follows.

Theorem 5.2.1. Let q P r1, 2�s � 1q and h be such that

h P L1pRnq X L8pRnq and

there exists a ball B � Rn such that inf
B
h ¡ 0.

If n P p2s, 6sq, suppose in addition h ¥ 0.

(5.25)

Let ε ¡ 0 be a small parameter. Then the problem (5.24) admits a positive (mountain-pass) solution,

provided that n ¡ 2spq�3q
q�1 .
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The literature concerning problems with this type of nonlinearities is large and deep in the classical
case, see for instance [4–7,34,37], among others. In particular, in [5] A. Ambrosetti, J. Garćıa-Azorero
and I. Peral studied (5.24) for s � 1. There, the existence of solutions is proved by means of two
different techniques: bifurcation and concentration-compactness. In the first case, they construct
solutions for the whole range 0   q   2�s � 1 as small perturbations of the solutions to the problem

�∆u � u2��1 in Rn, u ¡ 0,

by using a Lyapunov-Schmidt reduction. On the other hand, the authors also prove the existence
of two solutions for 0   q   1 (that is, the concave-convex problem) by applying an argument of
concentration-compactness type (in the spirit of [105,106]).

The fractional counterpart of these results is as follows. In [59], a solution to (5.24) for 0   q  
2�s�1 is obtained by means of a Lyapunov-Schmidt reduction. Indeed, the authors prove the existence
of a function wε (which goes to zero in a suitable space with ε Ñ 0) so that, for some µ P p0,�8q
and ξ P Rn, zµ,ξ � wε solves the problem (5.24), where

zµ,ξpxq � µ
2s�n

2 z

�
x� ξ

µ



, zpxq � c�

p1� |x|2qn�2s
2

(5.26)

is a solution of

p�∆qsu � u2�s�1 in Rn, u ¡ 0.

Moreover, in [60] for the range 0   q   1 the authors use the concentration-compactness principle to
prove the existence of two solutions for the problem (5.24) (see also [13,136,137] for related problems
in the nonlocal case).

In this section, we solve the problem (5.24) in the fractional case s P p0, 1q and in the range
1 ¤ q   2�s � 1, using a concentration-compactness principle. Notice that in our problem the two
nonlinearities are convex, and the geometry of the functional suggests the existence of one solution
instead of two. In order to prove the existence of a solution we use, roughly speaking, the following
strategy:

(i) we consider the energy functional associated to (5.24) and we prove that it satisfies some
compactness condition (Palais-Smale condition) under a certain energy level.

(ii) we build a sequence of functions with an appropriate geometry (of Mountain Pass type) whose
energy lies below the critical level found in (i).

(iii) we apply the Mountain Pass Lemma (see [8]) to pass to the limit, getting a solution.
There are two fundamental points here: to identify the energy level, and to find the appropriate
sequence. We point out that, in the concave-convex (fractional) problem studied in [60], the geometry
derived from the concave term (the functional has a minimum of negative energy) helps to prove that
the sequence stays below the critical level. However, in our problem both nonlinearities are convex,
and the proof gets more involved. Indeed, if one adapts straightforwardly the compactness result
in [60, Proposition 4.2.1] and builds the sequence in the standard way (by considering the path along
the Sobolev minimizers), then the arguments to prove that the energy of the sequence is small enough
do not work.
Thus, the study of (5.24) will first require a finer analysis of the compactness properties of the
functional. More precisely, we will have to improve the estimates of the functional in order to get a
slightly higher critical level. Accordingly, once we have found this new critical level, we perform a
more careful analysis of the energy of the sequence given by the minimizers. We will finally conclude
by applying the Mountain Pass Lemma in the standard way.

We remark here that in this work we also overcome a flaw found in [5], where the classical problem
is studied; indeed, to prove compactness (Proposition 2.1 therein) they state that the critical energy
level cε has to satisfy

cε   1

n
Sn{2 � Cε

2�
2��pq�1q .
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Nevertheless, if one follows the proof it arises that, in order to reach the contradiction, it has to be
required that

cε   1

n
Sn{2 � Cε

2�
2��pq�1q � Cε.

Notice that what we are saying here is that the compactness holds below a lower critical level, and
thus it will be more difficult to find the sequence in (ii). This flaw was already fixed in [60] in the
fractional, concave-convex case (see Proposition 4.2.1), where the authors consider the lower level and
find the appropriate sequence.

We make now some preliminary observations on the problem that we study. We see at first that
if h satisfies conditions (5.25), then also

h P LmpRnq for any m P p1,�8q.
Furthermore, in the case n P p2s, 6sq we need to ask h to be positive. This restriction arises again
from the study of the energy of the Sobolev minimizers. As we commented before, we would like to
control the energy of the sequence that we will construct (and that will be based on the functions
zµ,ξ, see (5.26)), and thus we would like the negative terms to be as large as possible. In particular,
if one looks at the q-order term, we hope that the part where h is positive dominates over the part
where it is negative. To have this, we will center the function zµ,ξ in the ball where h is positive, so
that the mass is concentrated there. However, it can be easily seen that for low dimensions the mass
of the tails of the minimizers is too large and it annihilates the mass in the positive part of h. This
computation gives an idea of why the necessity of requiring h ¥ 0 for n P p2s, 6sq, but the detailed
restriction can be found in Section 5.2.4.

The section is organized as follows: in Subsection 5.2.1 we provide the functional framework that
will be needed, as well as some auxiliary results related to compactness and geometry properties.
Subsection 5.2.2 is devoted to the proof of the Palais-Smale condition for the energy functional, and
Subsection 5.2.3 to construct the sequence with mountain pass geometry and whose energy level lies
below the critical one. Finally, in Subsection 5.2.4 we prove Theorem 5.2.1.

5.2.1. Functional framework and preliminary computations. We introduce at first some
notations. Let us denote by Rn�1

� :� Rn � p0,�8q the n� 1 dimensional half-space, by X � px, yq P
Rn�1
� a n�1 dimensional vector, having x P Rn and y ¡ 0, and take a :� 1�2s. Moreover, for x P Rn

and r ¡ 0 we write Brpxq (shorted to Br when x � 0) for the ball in Rn centered at x with radius r,
i.e.

Brpxq :� tx1 P Rn s.t. |x� x1|   ru,
and for X P Rn�1

� and r ¡ 0 we write B�
r pXq for the ball in Rn�1

� centered at X with radius r, that is

B�
r pXq :� tX 1 P Rn�1

� s.t. |X �X 1|   ru.
Let us introduce first the seminorm

rus2
9HspRnq :�

¼
R2n

|upxq � upyq|2
|x� y|n�2s

dx dy,

and define the space 9HspRnq as the completion of the Schwartz space of rapidly decreasing smooth
functions, with respect to the norm r � s

9HspRnq � } � }L2�s pRnq. For the sake of simplicity, from now on

we will use the notation } � } for the L2�s pRnq norm.

Definition 5.2.2. We say that u P 9HspRnq is a (weak) solution of p�∆qsu � f in Rn for a given
f P LβpRnq where β :� 2n{pn� 2sq if

Cpn, sq
2

¼
R2n

pupxq � upyqq pϕpxq � ϕpyqq
|x� y|n�2s

dx dy �
»
Rn
fpxqϕpxq dx

for every ϕ P 9HspRnq.
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Nevertheless, instead of directly working in this framework, we will transform the problem into a local
one by using the extension due to L. Caffarelli and L. Silvestre (see Chapter 4 and the original result
in the paper [28]). Let U be the extension operator defined in (4.1) an denote

rU s�a :�
�
κs

»
Rn�1

ya|∇U |2 dX

1{2

,

where κs is a normalization constant. We then define the spaces

9Hs
apRn�1q :� C8

0 pRn�1qr�s
�
a

and
9Hs
apRn�1

� q :�
!
U :� Ũ

���
Rn�1
�

s.t. Ũ P 9Hs
apRn�1q, Ũpx, yq � Ũpx,�yq a.e. in Rn � R

)
.

The norm in 9Hs
apRn�1

� q is, neglecting the constants,

rU sa :�
�»

Rn�1
�

ya|∇U |2 dX
�1{2

.

So, finding a solution u P 9HspRnq of the nonlocal problem p�∆qsu � fpuq (thanks to (4.1)) is

equivalent to finding a solution U P 9Hs
apRn�1

� q of the local problem$&%div pya∇Uq � 0 in Rn�1
� ,

� lim
yÑ0�

yaByU � fpuq in Rn.

Since we are looking for positive solutions of (5.24), we will consider the problem

p�∆qsu � εhuq� � u
2�s�1
� in Rn (5.27)

and (according to the considerations above) its equivalent formulation$&%
div pya∇Uq � 0 in Rn�1

� ,

� lim
yÑ0�

yaByUpx, yq � εhUq�px, 0q � U
2�s�1
� px, 0q in Rn. (5.28)

In particular, we say that U P 9Hs
apRn�1

� q is a (weak) solution on the problem (5.28) if»
Rn�1
�

yax∇U,∇ϕy dX �
»
Rn

�
εhpxqUq�px, 0q � U

2�s�1
� px, 0q

	
ϕpx, 0q dx,

for every ϕ P 9Hs
apRn�1

� q. Furthermore, the energy functional associated to the problem (5.28) is

FεpUq :� 1

2

»
Rn�1
�

ya|∇U |2 dX � ε

q � 1

»
Rn
hpxqUq�1

� px, 0q dx� 1

2�s

»
Rn
U

2�s� px, 0q dx.

In particular Fε P C1p 9Hs
apRn�1

� qq and for any U, V P 9Hs
apRn�1

� q
xF 1

εpUq, V y

�
»
Rn�1
�

yax∇U,∇V y dX � ε

»
Rn
hpxqUq�px, 0qV px, 0q �

»
Rn
U

2�s�1
� px, 0qV px, 0q dx.

The purpose of the section from here on is to prove the existence of a critical point U of the operator
Fε. Then, U is a solution of (5.28) and therefore u :� Up�, 0q is a solution of (5.27). Moreover, one
can prove that any nontrivial solution u of (5.27) (hence its extension U) is nonnegative, and therefore
a true solution of (5.24) (see for this [60, Proposition 2.2.3]).

It is known that (up to constants) the harmonic extension of the fractional Laplacian gives an

isometry between 9HspRnq and 9Hs
apRn�1

� q, i.e.

rus
9HspRnq � rU sa. (5.29)
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We recall that the Sobolev embedding in 9HspRnq gives that

S}u}2 ¤ rus2
9HspRnq,

where S is the best constant of the Sobolev embedding of 9HspRnq (see for instance [55, Theorem
6.5]). As a consequence, we have the following inequality,

Proposition 5.2.3 (Trace inequality). Let U P 9Hs
apRn�1

� q. Then

S}Up�, 0q}2 ¤ rU s2a.
In [41, Theorem 1.1] the best Sobolev constant and the fractional Sobolev minimizers are explicitly
computed. The form of the fractional Sobolev minimizer is given by

zpxq :� c�
p1� |x|2qn�2s

2
(5.30)

for a positive constant c� � c�pn, sq.
We introduce for r P p1,�8q the weighted Lebesgue space endowed with the norm

}U}LrpRn�1
� ,yaq :�

�»
Rn�1
�

ya|U |r dX
�1{r

.

The following result gives a continuous Sobolev embedding of the space 9Hs
apRn�1

� q into the weighted
Lebesgue space for a particular value of r. See for the proof [60, Proposition 3.1.1].

Proposition 5.2.4 (Sobolev embedding). There exists a constant pS ¡ 0 such that for all U P
9Hs
apRn�1

� q it holds that �»
Rn�1
�

ya|U |2γ dX
�1{2γ

¤ pS�»
Rn�1
�

ya|∇U |2 dX
�1{2

,

where γ � 1� 2{pn� 2sq.
In the next proposition, we prove a useful integral inequality that will be frequently used.

Proposition 5.2.5. Let 1 ¤ q   2�s�1. Assume u P L2�spRnq and h P LmpRnq with m � 2�s
2�s�pq�1q .

Then ����»
Rn
hpxquq�1pxq dx

���� ¤ }h}LmpRnq}u}q�1.

Proof. We use the Hölder inequality to deduce that����»
Rn
hpxquq�1pxq dx

���� ¤ »
Rn
|hpxq|uq�1pxq dx ¤

�»
Rn
|h|

2�s
2�s�q�1 dx

� 2�s�q�1

2�s
�»

Rn
|u|2�s dx

� q�1
2�s

¤ }h}LmpRnq}u}q�1

for m � 2�s
2�s�q�1 ¡ 1, and so the inequality is proved. �

The next proposition is the equivalent of [60, Lemma 4.1.1] in the case q ¥ 1 and goes as follows.

Proposition 5.2.6. Let vk P L2�spRn, r0,�8qq be a sequence converging to some v in L2�spRnq.
Then for any r ¡ 1

lim
kÑ�8

»
Rn
|vrkpxq � vrpxq| 2

�
s
r dx � 0.
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Proof. For any a ¥ b ¥ 0 and any r ¡ 1 we see that

ar � br � r

» a
b

tr�1 dt ¤ rar�1pa� bq ¤ rpar�1 � br�1qpa� bq.

Exchanging a with b, we conclude that��ar � br
�� ¤ rpa� bqr�1|a� b|.

Then by the Hölder inequality we have that»
Rn
|vrkpxq � vrpxq| 2

�
s
r dx ¤ r

2�s
r

�»
Rn
pvk � vq2�s dx


pr�1q{r �»
Rn
|vk � v|2�s dx


1{r

¤ r
2�s
r }vk � v} pr�1q2�s

r }vk � v} 2�s
r .

Using the convergence }vk � v} Ñ 0 (from which it also follows that }vk � v} is uniformly bounded),
the conclusion plainly follows. �

Another useful result is given in [60, Lemma 4.2.4]. We just notice that now, for q ¡ 1, the statement
goes as follows:

Proposition 5.2.7. Let m :� 2�s
2�s�pq�1q . Then there exists a positive constant C̄ depending on

n, s, q and }h}LmpRnq such that, for any α ¡ 0,

s

n
α2�s � ε

�
1

2
� 1

q � 1



}h}LmpRnqαq�1 ¥ �C̄ε

2�s
2�s�pq�1q .

5.2.2. Palais-Smale condition. The main result of this Section is the following.

Theorem 5.2.8. There exists C̄, c1 ¡ 0, depending on h, q, n and s, such that the following
statement holds true.

Let tUkukPN � 9Hs
apRn�1

� q be a sequence satisfying

(i) lim
kÑ�8

FεpUkq � cε, with

cε � c1ε
1�δ � Cε

2�s
2�s�pq�1q   s

n
S
n
2s if n ¥ 6s,

cε � c1ε
1�δ   s

n
S
n
2s if n P p2s, 6sq,

where δ ¡ 0 and S is the Sobolev constant appearing in Proposition 5.2.3,
(ii) lim

kÑ�8
F 1
εpUkq � 0.

Then there exists a subsequence, still denoted by tUkukPN, which is strongly convergent in 9Hs
apRn�1

� q
as k Ñ �8.

Here, the limit in piiq is to be intended as

lim
kÑ�8

}F 1pUkq}LpE,Eq � lim
kÑ�8

sup
V PE,}V }E�1

��xF 1pUkq, V y
�� � 0,

where we denote by LpE,Eq the space of all linear functionals from E to E.

Remark 5.2.9. As we commented in the introduction, one of the key points in this work is to
slightly improve the critical level in such a way that further on we can build a sequence whose energy
lies below it. This is precisely the role played by the parameter δ in the previous theorem. We can
not drop this term (that will cause important difficulties) but we can choose δ large enough so that
we can neglect it when εÑ 0.

We recall at first a concentration-compactness principle, stated in [60, Proposition 3.2.3] and proved
there. This principle is based on the original results by P.L Lions in [105,106] (in particular in [106,
Lemma 2.3]). For this, we recall the next definitions.
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Definition 5.2.10. A sequence tUkukPN is tight if for every µ ¡ 0 there exists ρ ¡ 0 such that
for any k P N »

Rn�1
� zB�

ρ

ya|∇Uk|2 dX ¤ µ.

Definition 5.2.11. Let tµkukPN be a sequence of measures on a topological space X. We say that
µk converges to µ on X if and only if

lim
kÑ�8

»
X

ϕdµk �
»
X

ϕdµ for any ϕ P C0pXq.

Then the principle goes as follows.

Proposition 5.2.12 (Concentration-Compactness Principle). Let tUkukPN be a bounded and tight

sequence in 9Hs
apRn�1

� q such that Uk converges weakly to U in 9Hs
apRn�1

� q. Let µ, ν be two nonnegative

measures on Rn�1
� respectively Rn such that (in the sense of Definition 5.2.11)

lim
kÑ�8

ya|∇Uk|2 � µ

and
lim

kÑ�8
|Ukpx, 0q|2

�
s � ν.

Then there exists a set J that is at most countable and three families txjujPJ P Rn, tνjujPJ and
tµjujPJ with νj , µj ¥ 0 such that

(i) ν � |Upx, 0q|2�s �
¸
jPJ

νjδxj

(ii) µ ¥ ya|∇U |2 �
¸
jPJ

µjδtxj ,0u

(iii) µj ¥ Sν
2{2�s
j for all j P J.

We prove that a sequence tUkukPN satisfying the assumptions in Theorem 5.2.8 is bounded. A slighter
more general result is given in the following Lemma.

Lemma 5.2.13. Let ε, κ ¡ 0 and let tUkukPN � 9Hs
apRn�1

� q be a sequence that satisfies

|FεpUkq| � sup
V P 9HsapRn�1

� q, rV s�1

|xF 1
εpUkq, V y| ¤ κ

(5.31)

for any k P N. Then there exists M ¡ 0 such that for any k P N
rUksa ¤M. (5.32)

Proof. We suppose by contradiction that for every M ¡ 0 there exists k P N such that

rUksa ¡M. (5.33)

Thanks to (5.31) we have that

κ ¥ FεpUkq � 1

2
rUks2a �

ε

q � 1

»
Rn
hpxqpUkqq�1

� px, 0q dx� 1

2�s

»
Rn
pUkq2

�
s� px, 0q dx.

Using also the bound in (5.2.5), we obtain that

rUks2a ¤ 2κ� 2ε

q � 1

»
Rn
hpxqpUkqq�1

� px, 0q dx� 2

2�s

»
Rn
pUkq2

�
s� px, 0q dx

¤ 2κ� 2ε

q � 1
}h}LmpRnq}pUkq�}q�1 � 2

2�s
}pUkq�}2

�
s .

(5.34)

Thus, from this and (5.33), we deduce that also for every M̃ ¡ 0 one can find k P N so that

}pUkq�} ¡ M̃. (5.35)



5.2. A FRACTIONAL ELLIPTIC PROBLEM IN Rn WITH CRITICAL GROWTH AND CONVEX NONLINEARITIES151

Consider now the function f : p0,8q Ñ p0,8q defined as

fpτq :� τ q�1

τ2�s
.

Since q � 1   2�s we have that

lim
τÑ8 fpτq � 0,

and hence, for any δ ¡ 0 there exists τδ ¡ 0 such that for every τ ¡ τδ, one has that fpτq   δ. Hence,
fixing 0   δ   1, by (5.35) we can assume

}pUkq�} ¡ τ, }pUkq�}q�1 ¤ δ}pUkq�}2
�
s , @ τ ¡ τδ. (5.36)

Therefore, by Proposition 5.2.3 there exists k P N such that

rUksa ¡ τS1{2, @ τ ¡ τδ. (5.37)

Using (5.36) and (5.34) we obtain that

rUks2a ¤ 2κ�
�
δ

2ε

q � 1
}h}LmpRnq �

2

2�s



}pUkq�}2

�
s . (5.38)

On the other hand, considering the quotient Uk{rUksa from (5.31) we get that

|xF 1
εpUkq, Uky| ¤ κrUksa.

From this and the fact that |FεpUkq| ¤ κ, for q ¡ 1 we have that

κp1� rUksaq ¥ FεpUkq � 1

2
xF 1

εpUkq, Uky

� ε

�
1

2
� 1

q � 1


»
Rn
hpxqpUkqq�1

� px, 0q dx� s

n
}pUkq�}2

�
s ,

(5.39)

recalling that
1

2
� 1

2�s
� s

n
.

Thanks to the bound in (5.2.5), it follows that

s

n
}pUkq�}2

�
s ¤ κp1� rUksaq � ε

�
1

2
� 1

q � 1



}h}LmpRnq}pUkq�}q�1.

We use (5.36) again and we obtain that

s

n
}pUkq�}2

�
s ¤ κp1� rUksaq � δε

�
1

2
� 1

q � 1



}h}LmpRnq}pUkq�}2

�
s .

Thus �
s

n
� δε

�
1

2
� 1

q � 1



}h}LmpRnq

�
}pUkq�}2

�
s ¤ κp1� rUksaq,

which for δ small enough, implies that

c}pUkq�}2
�
s ¤ κp1� rUksaq.

Notice that for q � 1 the inequality above immediately follows from (5.39). This, together with (5.38),
yields

rUks2a ¤ C1 � C2rUksa
for suitable positive constants C1, C2, both independent of k. Choosing τ large enough in (5.37) we
contradict this inequality and conclude the proof. �

Furthermore, a sequence tUkukPN � 9Hs
apRn�1

� q that satisfies the hypotheses of Theorem 5.2.8 is tight,
as stated in the next Lemma.
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Lemma 5.2.14. Let tUkukPN � 9Hs
apRn�1

� q be a sequence that satisfies the hypothesis of Theorem
5.2.8. Then for any η ¡ 0 there exists ρ ¡ 0 such that for any k P N it holds that»

Rn�1
� zB�

ρ

ya|∇Uk|2 dX �
»
RnztBρXty�0uu

pUkq2
�
spx, 0q dx   η.

In particular, the sequence tUkukPN is tight.

Proof. First we notice that (5.31) holds in this case, due to conditions (i) and (ii) in Theo-

rem 5.2.8. Hence, Lemma 5.2.13 gives that the sequence tUkukPN is uniformly bounded in 9Hs
apRn�1

� q,
and thus

Uk á U in 9Hs
apRn�1

� q as k Ñ �8
and Uk Ñ U a.e. in Rn�1

� as k Ñ �8. (5.40)

We now proceed by contradiction. Suppose that there exists η0 ¡ 0 such that for all ρ ¡ 0 there
exists k � kpρq P N such that»

Rn�1
� zB�

ρ

ya|∇Uk|2 dX �
»
RnztBρXty�0uu

pUkq2
�
s� px, 0q dx ¥ η0. (5.41)

We observe that

k Ñ �8 as ρÑ �8. (5.42)

Indeed, let us take a sequence tρiuiPN such that ρi Ñ �8 as i Ñ �8, and suppose that ki :� kpρiq
given by (5.41) is a bounded sequence. That is, the set F :� tki : i P Nu is a finite set of integers.

Hence, there exists an integer k� so that we can extract a subsequence tkijujPN satisfying kij � k�

for any j P N. Therefore,»
Rn�1
� zB�

ρij

ya|∇Uk� |2 dX �
»
RnztBρijXty�0uu

pUk�q2
�
s� px, 0q dx ¥ η0, (5.43)

for any j P N. But on the other hand, since Uk� belongs to 9Hs
apRn�1

� q (and so Uk�p�, 0q P L2�spRnq
thanks to Proposition 5.2.3), for j large enough there holds»

Rn�1
� zB�

ρij

ya|∇Uk� |2 dX �
»
RnztBρijXty�0uu

pUk�q2
�
s� px, 0q dx ¤

η0

2
,

which is a contradiction with (5.43). This shows (5.42).

Now, since U given in (5.40) belongs to P 9Hs
apRn�1

� q, by Propositions 5.2.3 and 5.2.4 we have that
for a fixed ε ¡ 0, there exists rε ¡ 0 such that»

Rn�1
� zB�

rε

ya|∇U |2 dX �
»
Rn�1
� zB�

rε

ya|U |2γ dX �
»
RnztBrεXty�0uu

|Upx, 0q|2�s dx   εα,

with α ¡ γ and γ defined in Proposition 5.2.4. Notice that, without loss of generality, we can assume
that

rε Ñ �8 as εÑ 0. (5.44)

On the other hand, since h P LmpRnq for every m P p1,�8q, in particular we can assure the existence
of a radius r̄ε such that

}h}LmpRnzBr̄ε q ¤ εβ , (5.45)

with m satisfying 1
m � 1� q�1

2�s
and β ¡ α{γ � 1.

Moreover, by (5.32) and again by Propositions 5.2.3 and 5.2.4, there exists M̃ ¡ 0 such that»
Rn�1
�

ya|∇Uk|2 dX �
»
Rn�1
�

ya|Uk|2γ dX �
»
Rn
|Ukpx, 0q|2

�
s dx ¤ M̃. (5.46)

Let
r :� maxtrε, r̄εu. (5.47)
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Now let jε P N be the integer part of M̃
εα . Notice that jε tends to �8 as ε tends to 0. We also set

Il :� tpx, yq P Rn�1
� : r � l ¤ |px, yq| ¤ r � pl � 1qu, l � 0, 1, � � � , jε.

Thus, from (5.46) we get

pjε � 1qεα ¥ M̃

εα
εα

¥
jε̧

l�0

�»
Il

ya|∇Uk|2 dX �
»
Il

ya|Uk|2γ dX �
»
IlXty�0u

|Ukpx, 0q|2
�
s dx

�
,

and this implies the existence of l̄ P t0, 1, � � � , jεu such that, up to a subsequence,»
Il̄

ya|∇Uk|2 dX �
»
Il̄

ya|Uk|2γ dX �
»
Il̄Xty�0u

|Ukpx, 0q|2
�
s dx ¤ εα. (5.48)

We take now a cut-off function χ P C8
0 pRn�1

� , r0, 1sq, such that

χpx, yq �
#

1, |px, yq| ¤ r � l̄

0, |px, yq| ¥ r � pl̄ � 1q, (5.49)

and

|∇χ| ¤ 2. (5.50)

We also define

Vk :� χUk and Wk :� p1� χqUk. (5.51)

We estimate

|xF 1
εpUkq � F 1

εpVkq, Vky|

�
���� »

Rn�1
�

yax∇Uk,∇Vky dX � ε

»
Rn
hpxqpUkqq�px, 0qVkpx, 0q dx

�
»
Rn
pUkq2

�
s�1
� px, 0qVkpx, 0q dx�

»
Rn�1
�

yax∇Vk,∇Vky dX

� ε

»
Rn
hpxqpVkqq�1

� px, 0q dx�
»
Rn
pVkq2

�
s� px, 0q dx

����.
(5.52)

First, we observe that���� »
Rn�1
�

yax∇Uk,∇Vky dX �
»
Rn�1
�

yax∇Vk,∇Vky dX
����

¤
»
Il

ya|∇Uk|2|χ||1� χ| dX �
»
Il

ya|∇Uk||Uk||∇χ| dX

� 2

»
Il

ya|Uk||∇Uk||∇χ||χ| dX �
»
Il

ya|Uk|2|∇χ|2 dX

�: A1 �A2 �A3 �A4.

(5.53)

By (5.48), we have that A1 ¤ Cεα, for some C ¡ 0. Furthermore, by the Hölder inequality, (5.50)
and (5.48), we obtain

A2 ¤ 2

»
Il

ya|∇Uk||Uk| dX ¤ 2

�»
Il

ya|∇Uk|2 dX
�1{2 �»

Il

ya|Uk|2 dX
�1{2

¤ 2εα{2
�»

Il

ya|Uk|2γ dX
�1{2γ �»

Il

ya dX

� γ�1
2γ

.
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Since a � p1� 2sq ¡ �1, the second integral is finite, and therefore, for ε   1,

A2 ¤ C̃εα{2
�»

Il

ya|Uk|2γ dX
�1{2γ

¤ Cεα{2εα{2γ ¤ Cεα{γ ,

where (5.48) was used again. In the same way, we get that A3 ¤ Cεα{γ . Finally,

A4 ¤ C

�»
Il

ya|Uk|2γ dX
�1{γ �»

Il

ya dX

� γ�1
γ

¤ Cεα{γ .

Using this information in (5.53), since α ¡ α{γ we obtain that���� »
Rn�1
�

yax∇Uk,∇Vky dX �
»
Rn�1
�

yax∇Vk,∇Vky dX
���� ¤ Cεα{γ ,

up to renaming the constant C.
On the other hand by (5.51) and (5.48),���� »

Rn

�
pUkq2

�
s�1
� px, 0qVkpx, 0q � pVkq2

�
s� px, 0q

	
dx

���� ¤
»
Rn
|1� χ2�s�1||χ||Ukpx, 0q|2

�
s dx

¤ C

»
IlXty�0u

|Ukpx, 0q|2
�
s dx ¤ Cεα.

In the same way, applying the Hölder inequality, one obtains����ε »
Rn
hpxq

�
pUkqq�px, 0qVkpx, 0q � pVkqq�1

� px, 0q
	
dx

����
¤ ε

»
Rn
|hpxq| |1� χq||χ||Ukpx, 0q|q�1 dx

¤ C ε}h}L8pRnq
»
IlXty�0u

|Ukpx, 0q|2
�
s dx ¤ Cε1�α.

(5.54)

All in all, plugging these observations in (5.52), we obtain that

|xF 1
εpUkq � F 1

εpVkq, Vky| ¤ Cεα{γ . (5.55)

Likewise, one can see that

|xF 1
εpUkq � F 1

εpWkq,Wky| ¤ Cεα{γ . (5.56)

Now we claim that

|xF 1
εpVkq, Vky| ¤ Cεα{γ � okp1q, (5.57)

where okp1q denotes (here and in the rest of this section) a quantity that tends to 0 as k tends to �8.
For this, we first observe that

rVksa ¤ C and rWksa ¤ C, (5.58)

for some C ¡ 0. Indeed, recalling (5.51) and using (5.49) and (5.50), we have

rVks2a �
»
Rn�1
�

ya|∇Vk|2 dX

�
»
Rn�1
�

ya|∇χ|2|Uk|2 dX �
»
Rn�1
�

ya χ2|∇Uk|2 dX � 2

»
Rn�1
�

ya χUk x∇Uk,∇χy dX

¤ 4

»
Il

ya|Uk|2 dX � rUks2a � C

�»
Il

ya|∇Uk|2 dX
�1{2 �»

Il

ya|Uk|2 dX
�1{2

¤ C

�»
Il

ya|Uk|2γ dX
�1{γ

� rUks2a � C rUksa
�»

Il

ya|Uk|2γ dX
�1{2γ

,
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where the Hölder inequality was used in the last two lines. Hence, from Proposition 5.2.4 and using
(5.32), we obtain (5.58). The estimate for Wk can be proved analogously.

Now, we notice that

|xF 1
εpVkq, Vky| ¤ |xF 1

εpVkq � F 1
εpUkq, Vky| � |xF 1

εpUkq, Vky| ¤ C εα{γ � |xF 1
εpUkq, Vky|,

thanks to (5.55). Thus, from (5.58) and assumption (ii) in Theorem 5.2.8 we get the desired claim in
(5.57).

Analogously (but making use of (5.56)), one can see that

|xF 1
εpWkq,Wky| ¤ Cεα{γ � okp1q, (5.59)

Let us consider first the case n ¥ 6s. From now on, we divide the proof in three main steps: we first
show lower bounds for FεpVkq and FεpWkq (see Step 1 and Step 2, respectively), and then in Step 3
we obtain a lower bound for FεpUkq, which will give a contradiction with the hypotheses on Fε, and
so the conclusion of Lemma 5.2.14.

Step 1: Lower bound for FεpVkq. Recalling that

1

2
� 1

2�s
� s

n

we have by Proposition 5.2.5 that

FεpVkq � 1

2
xF 1

εpVkq, Vky �
�

1

2
� 1

2�s



}pVkq�p�, 0q}2

�
s

� ε

�
1

2
� 1

q � 1


»
Rn
hpxqpVkqq�1

� px, 0q dx

¥ s

n
}pVkq�p�, 0q}2

�
s � ε

�
1

2
� 1

q � 1



}h}LmpRnq}pVkq�p�, 0q}q�1,

and by Proposition 5.2.7 and (5.57) we get that

FεpVkq ¥ �Cεα{γ � Cε
2�s

2�s�pq�1q � okp1q. (5.60)

Step 2: Lower bound for FεpWkq. First of all, by the definition of Wk in (5.51) (recall that Wk is
supported in RnzBr�l � RnzBr̄ε , using also (5.47)), by Proposition 5.2.5 and 5.2.3, using (5.45) and
(5.58), we have that����ε »

Rn
hpxqpWkqq�1

� px, 0q dx
���� ¤ ε

»
RnzBr̄ε

|hpxq|pWkqq�1
� px, 0q dx

¤ ε }h}LmpRnzBr̄ε q}pWkq�p�, 0q}q�1 ¤ εC }h}LmpRnzBr̄ε qrWksq�1
a ¤ Cε1�β ,

(5.61)

where 1� β ¡ α{γ. Thus, from (5.59) we get that���� »
Rn�1
�

ya|∇Wk|2 dX �
»
Rn
pWkq2

�
s� px, 0q dx

����
¤ ��xF 1

εpWkq,Wky
��� ����ε »

Rn
hpxqpWkqq�1

� px, 0q dx
����

¤ Cεα{γ � okp1q.

(5.62)
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Moreover, notice that Wk � Uk in Rn�1
� zBr�l�1 (recall (5.49) and (5.51)). Hence, using (5.41) with

ρ :� r � l � 1, we get»
Rn�1
� zB�

r�l̄�1

ya|∇Wk|2 dX �
»
RnztBr�l̄�1Xty�0uu

pWkq2
�
s� px, 0q dx

�
»
Rn�1
� zB�

r�l̄�1

ya|∇Uk|2 dX �
»
RnztBr�l̄�1Xty�0uu

pUkq2
�
s� px, 0q dx ¥ η0,

(5.63)

for k � kpρq. We observe that k tends to �8 as εÑ 0, thanks to (5.42) and (5.44).
From (5.63) we obtain that either»

RnztBr�l̄�1Xty�0uu
pWkq2

�
s� px, 0q dx ¥

η0

2

or »
Rn�1
� zB�

r�l̄�1

ya|∇Wk|2 dX ¥ η0

2
.

In the first case, we get that»
Rn
pWkq2

�
s� px, 0q dx ¥

»
RnztBr�l̄�1Xty�0uu

pWkq2
�
s� px, 0q dx ¥

η0

2
.

In the second case, taking ε small (and so k large enough), by (5.62) we obtain that»
Rn
pWkq2

�
s� px, 0q dx ¥

»
Rn�1
�

ya|∇Wk|2 dX � Cεα{γ � okp1q

¥
»
Rn�1
� zB�

r�l̄�1

ya|∇Wk|2 dX � Cεα{γ � okp1q ¡ η0

4
.

Hence, in both cases we have that »
Rn
pWkq2

�
s� px, 0q dx ¡

η0

4
(5.64)

for ε small and k large enough. We now define ψk :� αkWk, with

α
2�s�2
k :� rWks2a

}pWkq�p�, 0q}2�s .

Notice that from (5.59) we have that

rWks2a ¤ }pWkq�p�, 0q}2
�
s �

����ε »
Rn
hpxqpWkqq�1

� px, 0q dx
����� C εα{γ � okp1q

¤ }pWkq�p�, 0q}2
�
s � C εα{γ � okp1q,

where (5.61) was used in the last line. Hence, thanks to (5.64), we get that

α
2�s�2
k ¤ 1� Cεα{γ � okp1q. (5.65)

Also, we notice that for this value of αk, we have the following chain of identities,

rψks2a � α2
krWks2a � α

2�s
k }pWkq�p�, 0q}2

�
s � }pψkq�p�, 0q}2

�
s .

Thus, by Proposition 5.2.3 and (5.29), we obtain

S ¤
rψkp�, 0qs2

9HspRnq
}pψkq�p�, 0q}2 � rψks2a

}pψkq�p�, 0q}2 �
}pψkq�p�, 0q}2�s
}pψkq�p�, 0q}2 � }pψkq�p�, 0q} 4s

n�2s .

Consequently,

}pWkq�p�, 0q}2
�
s � }pψkq�p�, 0q}2�s

α
2�s
k

¥ Sn{2s
1

α
2�s
k

.
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This, together with (5.65), gives that

Sn{2s ¤ p1� Cεα{γ � okp1qq
2�s

2�s�2 }pWkq�p�, 0q}2
�
s

¤ }pWkq�p�, 0q}2
�
s � Cεα{γ � okp1q.

(5.66)

We get that

FεpWkq � 1

2
xF 1

εpWkq,Wky � s

n
}pWkq�p�, 0q}2

�
s

�ε
�

1

2
� 1

q � 1


»
Rn
hpxqpWkqq�1

� px, 0q dx

¥ s

n
Sn{2s � Cεβ�1 � Cεα{γ � okp1q,

where we have used (5.61) to estimate the pq � 1q-order term. Finally, using also (5.59) and the fact
that β � 1 ¡ α{γ, we get

FεpWkq ¥ s

n
Sn{2s � Cεα{γ � okp1q. (5.67)

Step 3: Lower bound for FεpUkq. We first observe that by definition we can write

Uk � p1� χqUk � χUk �Wk � Vk. (5.68)

Therefore

FεpUkq �FεpVkq � FεpWkq �
»
Rn�1
�

yax∇Vk,∇Wky dX

� 1

2�s

»
Rn
pVkq2

�
s� px, 0q dx�

ε

q � 1

»
Rn
hpxqpVkqq�1

� px, 0q dx

� 1

2�s

»
Rn
pWkq2

�
s� px, 0q dx�

ε

q � 1

»
Rn
hpxqpWkqq�1

� px, 0q dx

� 1

2�s

»
Rn
pUkq2

�
s� px, 0q dx�

ε

q � 1

»
Rn
hpxqpUkqq�1

� px, 0q dx.

(5.69)

On the other hand,»
Rn�1
�

yax∇Vk,∇Wky dX

� 1

2

»
Rn�1
�

yax∇Uk �∇Vk,∇Vky dX � 1

2

»
Rn�1
�

yax∇Uk �∇Wk,∇Wky dX.

Also

xF 1
εpUkq � F 1

εpVkq, Vky
�

»
Rn�1
�

yax∇Uk �∇Vk,∇Vky dX

�ε
»
Rn
hpxqpUkqq�px, 0qVkpx, 0q dx�

»
Rn
pUkq2

�
s�1
� px, 0qVkpx, 0q dx

�ε
»
Rn
hpxqpVkqq�1

� px, 0q dx�
»
Rn
pVkq2

�
s� px, 0q dx,
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and

xF 1
εpUkq � F 1

εpWkq,Wky
�

»
Rn�1
�

yax∇Uk �∇Wk,∇Wky dX

�ε
»
Rn
hpxqpUkqq�px, 0qWkpx, 0q dx�

»
Rn
pUkq2

�
s�1
� px, 0qWkpx, 0q dx

�ε
»
Rn
hpxqpWkqq�1

� px, 0q dx�
»
Rn
pWkq2

�
s� px, 0q dx.

Hence, plugging the three formulas above into (5.69) we get

FεpUkq �FεpVkq � FεpWkq � 1

2
xF 1

εpUkq � F 1
εpVkq, Vky �

1

2
xF 1

εpUkq � F 1
εpWkq,Wky

� 1

2�s

»
Rn
pVkq2

�
s� px, 0q dx�

ε

q � 1

»
Rn
hpxqpVkqq�1

� px, 0q dx

� 1

2�s

»
Rn
pWkq2

�
s� px, 0q dx�

ε

q � 1

»
Rn
hpxqpWkqq�1

� px, 0q dx

� 1

2�s

»
Rn
pUkq2

�
s� px, 0q dx�

ε

q � 1

»
Rn
hpxqpUkqq�1

� px, 0q dx

� ε

2

»
Rn
hpxqpUkqq�px, 0qVkpx, 0q dx�

1

2

»
Rn
pUkq2

�
s�1
� px, 0qVkpx, 0q dx

� ε

2

»
Rn
hpxqpVkqq�1

� px, 0q dx� 1

2

»
Rn
pVkq2

�
s� px, 0q dx

� ε

2

»
Rn
hpxqpUkqq�px, 0qWkpx, 0q dx� 1

2

»
Rn
pUkq2

�
s�1
� px, 0qWkpx, 0q dx

� ε

2

»
Rn
hpxqpWkqq�1

� px, 0q dx� 1

2

»
Rn
pWkq2

�
s� px, 0q dx.

Therefore, using (5.55) and (5.56) we obtain that

FεpUkq ¥FεpVkq � FεpWkq

� 1

2�s

»
Rn
pVkq2

�
s� px, 0q dx�

1

2�s

»
Rn
pWkq2

�
s� px, 0q dx�

1

2�s

»
Rn
pUkq2

�
s� px, 0q dx

� 1

2

»
Rn
pUkq2

�
s�1
� px, 0qVkpx, 0q dx� 1

2

»
Rn
pUkq2

�
s�1
� px, 0qWkpx, 0q dx

� 1

2

»
Rn
pVkq2

�
s� px, 0q dx�

1

2

»
Rn
pWkq2

�
s� px, 0q dx

� ε

�
1

2
� 1

q � 1


»
Rn
hpxqpWkqq�1

� px, 0q dx

� ε

�
1

2
� 1

q � 1


»
Rn
hpxqpVkqq�1

� px, 0q dx

� ε

q � 1

»
Rn
hpxqpUkqq�1

� px, 0q dx� ε

2

»
Rn
hpxqpUkqq�px, 0qVkpx, 0q dx

� ε

2

»
Rn
hpxqpUkqq�px, 0qWkpx, 0q dx� Cεα{γ ,

for some positive C. We use identity (5.68) to write

pUkq2
�
s�1
� pVk �Wkq � pUkq2

�
s� and pUkqq�1

� � pUkqq�pVk �Wkq,
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and obtain that

FεpUkq ¥FεpVkq � FεpWkq

�
�

1

2
� 1

2�s


�»
Rn
pUkq2

�
s� px, 0q dx�

»
Rn
pVkq2

�
s� px, 0q dx�

»
Rn
pWkq2

�
s� px, 0q dx

�
� ε

�
1

2
� 1

q � 1


»
Rn
hpxq

�
pUkqq�px, 0qVkpx, 0q � pVkqq�1

� px, 0q
�
dx

� ε

�
1

2
� 1

q � 1


»
Rn
hpxq

�
pUkqq�px, 0qWkpx, 0q � pWkqq�1

� px, 0q
�
dx� Cεα{γ .

(5.70)

Using (5.54), reasoning in the same way for the term with Wk and recalling that 1� α ¡ α{γ we get
that

FεpUkq ¥FεpVkq � FεpWkq

� s

n

»
Rn

�
pUkq2

�
s� px, 0q � pVkq2

�
s� px, 0q � pWkq2

�
s� px, 0q

	
dx� Cεα{γ

�FεpVkq � FεpWkq

� s

n

»
Rn
pUkq2

�
s� px, 0q

�
1� χ2�spx, 0q � p1� χpx, 0qq2�s

	
dx� Cεα{γ ,

where (5.51) was used in the last line. Also, since 2�s ¡ 2 and

1� χ2�spx, 0q � p1� χpx, 0qq2�s ¥ 0 for any x P Rn, (5.71)

we get

FεpUkq ¥FεpVkq � FεpWkq � Cεα{γ .

This, (5.60) and (5.67) imply that

FεpUkq ¥ s

n
Sn{2s � c1ε

α{γ � Cε
2�s

2�s�pq�1q � okp1q.

Hence, taking the limit as k Ñ �8 we obtain that

cε � lim
kÑ�8

FεpUkq ¥ s

n
Sn{2s � c1ε

α{γ � Cε
2�s

2�s�pq�1q ,

which is a contradiction with assumption (i) of Theorem 5.2.8. This concludes the proof of Lemma
5.2.14 in the case n ¥ 6s.

Consider now n P p2s, 6sq. In such a case, one easily sees that

FεpVkq � 1

2
xF 1

εpVkq, Vky �
�

1

2
� 1

2�s



}pVkq�p�, 0q}2

�
s

� ε

�
1

2
� 1

q � 1


»
Rn
hpxqpVkqq�1

� px, 0q dx

¥ ε

�
1

2
� 1

q � 1


»
Rn
hpxqpVkqq�1

� px, 0q dx,

and by (5.57) we get that

FεpVkq ¥ ε

�
1

2
� 1

q � 1


»
Rn
hpxqpVkqq�1

� px, 0q dx� Cεα{γ � okp1q. (5.72)
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On the other hand, proceeding analogously to the previous case (check (5.66)), we obtain

FεpWkq � 1

2
xF 1

εpWkq,Wky � s

n
}pWkq�p�, 0q}2

�
s

L2�s pRnq

�ε
�

1

2
� 1

q � 1


»
Rn
hpxqpWkqq�1

� px, 0q dx

¥ s

n
Sn{2s � ε

�
1

2
� 1

q � 1


»
Rn
hpxqpWkqq�1

� px, 0q dx

�Cεα{γ � okp1q.
Thus, using also (5.59), we get

FεpWkq ¥ s

n
Sn{2s � ε

�
1

2
� 1

q � 1


»
Rn
hpxqpWkqq�1

� px, 0q dx� Cεα{γ � okp1q. (5.73)

Now, using the positivity of h, from (5.70) and (5.71) we get

FεpUkq ¥FεpVkq � FεpWkq

�
�

1

2
� 1

2�s


�»
Rn
pUkq2

�
s� px, 0q dx�

»
Rn
pVkq2

�
s� px, 0q dx�

»
Rn
pWkq2

�
s� px, 0q dx

�
� ε

�
1

2
� 1

q � 1


»
Rn
hpxq

�
pVkqq�1

� px, 0q � pWkqq�1
� px, 0q

�
dx� Cεα{γ

¥FεpVkq � FεpWkq

� ε

�
1

2
� 1

q � 1


»
Rn
hpxq

�
pVkqq�1

� px, 0q � pWkqq�1
� px, 0q

�
dx� Cεα{γ ,

¥ s

n
Sn{2s � Cεα{γ � okp1q,

where we have used (5.72) and (5.73) in the last line. Passing to the limit as k Ñ 8 we reach a
contradiction with assumption (i) of Theorem 5.2.8 and thus we finish the proof of Lemma 5.2.14 in
the case n P p2s, 6sq. �

Knowing that the sequence tUkukPN is bounded and tight, one can use the Concentration Compactness
principle and prove Theorem 5.2.8. More precisely, one applies Proposition 5.2.12 for the positive
sequence tpUkq�ukPN, which is also bounded and tight, to obtain that

pUkq2
�
s� p�, 0q ÝÝÝÝÑ

kÑ�8
ν � U

2�sp�, 0q �
¸
νjδxj ,

ya|∇pUkq�|2 ÝÝÝÝÑ
kÑ�8

µ ¥ ya|∇U |2 �
¸
µjδpxj ,0q,

and then, following the steps in [60, Proof of Proposition 4.2.1] and using Proposition 5.2.7, one
deduces νj � µj � 0 for every j. Finally, proceeding as in [60, Proposition 4.2.1] (using Proposition

5.2.6 instead of [60, Lemma 4.1.1]) the strong convergence in 9Hs
apRn�1

� q follows, and thus Theorem
5.2.8 holds.

5.2.3. Bound on the minmax value and geometry of the functional. The purpose of
this subsection is to show that the minmax value of the Mountain Pass Lemma lies below the critical
threshold given in Theorem 5.2.8. To see this, the idea is to find a path where the maximum value of
the functional is smaller than this critical level (and so the minmax). We obtain such path by working
with the fractional Sobolev minimizers, explicitly computed in formula (5.30). One considers, as done
in [60, Section 6.5], the ball B given in (5.25) and takes µ0 ¡ 0 and ξ P Rn to be the radius and the
center of B respectively. Namely, one has that

inf
Bµ0

pξq
h ¡ 0.
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Let φ̄ P C8
0 pBµ0

pξq, r0, 1sq be a cut-off function such that φ̄pxq � 1 in Bµ0
2
pξq. Translating and

rescaling the function z in (5.30) we define

zµ,ξpxq :� µ
2s�n

2 z

�
x� ξ

µ



, µ ¡ 0. (5.74)

Let Z̄µ,ξ be the extension of φ̄zµ,ξ, as defined in (4.1). With some manipulations (check Section 6.5
in [60]), one has that

}zµ,ξ}2 � S
n�2s

4s (5.75)

and that

rZ̄µ,ξs2a � rφ̄zµ,ξs2
9HspRnq ¤ S

n
2s � Cµn�2s. (5.76)

Moreover, we have the following result.

Lemma 5.2.15. There exists C � Cpn, s, µ0q ¡ 0 such that

}Z̄µ,ξp�, 0q}2
�
s ¥ }zµ,ξ}2

�
s � Cµn.

Proof. In the next computations, the constant may change value from line to line. Using that
φ̄ � 1 on Bµ0{2pξq, we have that

}zµ,ξ}2
�
s � }Z̄µ,ξp�, 0q}2

�
s �

»
Rn
p1� φ̄2�sqz2�s

µ,ξ dx �
»
RnzBµ0

2
pξq
p1� φ̄2�sqz2�s

µ,ξ dx

¤ µ�n
»
RnzBµ0

2
pξq
z2�s

�
x� ξ

µ



dx.

Making the change of variable y � px� ξq{µ and inserting definition (5.30) we get

}zµ,ξ}2
�
s � }Z̄µ,ξp�, 0q}2

�
s �

»
RnzBµ0

2µ

z2�spyq dy ¤ c
2�s�
»
RnzBµ0

2µ

|y|�2n dy ¤ Cµn,

where C depends on n, s, µ0. This proves the lemma. �

Let t ¡ 0. We consider the path tZ̄µ,ξ and compute the energy along it. Namely, we focus on obtaining
an upper bound for

FεptZ̄µ,ξq � t2

2
rZ̄µ,ξs2a �

t2
�
s

2�s
}Z̄µ,ξp�, 0q}2

�
s � ε

q � 1

»
Rn
hpxq �tZ̄µ,ξpx, 0q�q�1

dx

and proving that it stays below the critical threshold given in Theorem 5.2.8. Of course, if t � 0
the energy level is zero, and for ε small enough, this is trivially fulfilled. We introduce the following
Lemmata.

Lemma 5.2.16. Let n ¡ 2spq�3q
q�1 . There exists µ�   µ0{2 such that for any t ¡ 0 and any

µ P p0, µ�q »
Rn
hpxq �tZ̄µ,ξpx, 0q�q�1

dx ¥ C tq�1 µ
p2s�nqpq�1q

2 �n,

where C � Cpn, s, h, µ0, µ
�q is a positive constant.

Proof. Notice that since q   2�s � 1, we have that p2s�nqpq�1q
2 � n ¡ 0. Given the definition of

φ̄ we have that »
Rn
hpxq �tZ̄µ,ξpx, 0q�q�1

dx �
»
Rn
hpxqtq�1φ̄q�1zq�1

µ,ξ pxq dx

�
»
Bµ0

pξq
hpxqtq�1φ̄q�1zq�1

µ,ξ pxq dx ¥ tq�1 inf
Bµ0

pξq
h

»
Bµ0

2
pξq
zq�1
µ,ξ pxq dx,

(5.77)
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recalling also that infBµ0
pξq h is positive. Thus, using (5.74), changing the variable y � px� ξq{µ and

inserting definition (5.30) we obtain that»
Bµ0

2
pξq
zq�1
µ,ξ pxq dx � µ

p2s�nqpq�1q
2 �n

»
Bµ0

2µ

zq�1pyq dy

� Cµ
p2s�nqpq�1q

2 �n
»
Bµ0

2µ

p1� |y|2q p2s�nqpq�1q
2 dy,

where C � Cpn, sq ¡ 0. Passing to polar coordinates and taking µ small enough, say µ   µ0{2 we get
that »

Bµ0
2µ

p1� |y|2q p2s�nqpq�1q
2 dy ¥

»
Bµ0

2µ

|y|p2s�nqpq�1q dy

¥ cn,s

» µ0
2µ

1

ρp2s�nqpq�1qρn�1 dρ � cn,s

�
µ0

2µ

	p2s�nqpq�1q�n
� 1

p2s� nqpq � 1q � n
.

We have that p2s� nqpq � 1q � n   0 and renaming the constants we obtain that»
Bµ0

2µ

p1� |y|2q p2s�nqpq�1q
2 dy ¥ cn,s

�
µ
pn�2sqpq�1q�n
0 � p2µqpn�2sqpq�1q�n

	
¥ Cn,s,µ0,µ� ,

for any µ P p0, µ�q , µ�   µ0{2, where Cn,s,µ0,µ� designates a positive constant. Hence»
Bµ0

2
pξq
zq�1
µ,ξ pxq dx ¥ Cn,s,µ0,µ�µ

p2s�nqpq�1q
2 �n,

and from (5.77) it follows»
Rn
hpxq �tZ̄µ,ξpx, 0q�q�1

dx ¥ Ctq�1µ
p2s�nqpq�1q

2 �n,

where C is a positive constant that depends on n, s, h, µ0 and µ�. �

Let µ� be fixed as in Lemma 5.2.16. We want to prove now that the energy level along the path
induced by tZ̄µ,ξ, t ¡ 0, stays below the critical threshold given in Theorem 5.2.8 for µ   µ�. With
this purpose, we state the next result.

Lemma 5.2.17. There exists µ1 P p0, µ0q such that

lim
tÑ�8 sup

µPp0,µ1q
FεptZ̄µ,ξq � �8. (5.78)

Furthermore, if n ¡ 2spq�3q
q�1 , for any µ P p0,mintµ�, µ1uq

sup
t¥0

FεptZ̄µ,ξq   s

n
S
n
2s � C1µ

n�2s � opµn�2sq � C3εµ
p2s�nqpq�1q

2 �n, (5.79)

where µ� was given in Lemma 5.2.16.

Proof. Thanks to (5.76), (5.75) and Lemma 5.2.15 we have that

t2

2
rZ̄µ,ξs2a �

t2
�
s

2�s
}Z̄µ,ξp�, 0q}2

�
s ¤ t2

2

�
S
n
2s � C1µ

n�2s
�� t2

�
s

2�s

�
}zµ,ξ}2

�
s � C2µ

n
	

¤ t2

2

�
S
n
2s � C1µ

n�2s
�� t2

�
s

2�s

�
S
n
2s � C2µ

n
�
.

(5.80)

From (5.77) it follows that for any µ P p0, µ�q»
Rn
hpxq �tZ̄µ,ξpx, 0q�q�1

dx ¥ 0,
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and therefore

FεptZ̄µ,ξq � t2

2
rZ̄µ,ξs2a �

t2
�
s

2�s
}Z̄µ,ξp�, 0q}2

�
s � ε

q � 1

»
Rn
hpxq �tZ̄µ,ξpx, 0q�q�1

dx

¤ t2

2

�
S
n
2s � C1µ

n�2s
�� t2

�
s

2�s

�
S
n
2s � C2µ

n
�
.

Now, there exists µ1 P p0, µ0q small enough such that Sn{2s � C2µ
n is positive and hence, sending t

to �8 and recalling that 2�s ¡ 2, we obtain

lim
tÑ�8FεptZ̄µ,ξq � �8

for any µ P p0, µ1q. This proves (5.78).
To obtain (5.79), we use (5.80) and taking any µ P p0,mintµ�, µ1uq, by Lemma 5.2.16 we have

that

FεptZ̄µ,ξq ¤ t2

2

�
S
n
2s � C1µ

n�2s
�� t2

�
s

2�s

�
S
n
2s � C2µ

n
�� C3ε

tq�1

q � 1
µ
p2s�nqpq�1q

2 �n.

By renaming the constants, we obtain

FεptZ̄µ,ξq ¤ S
n
2s gptq, (5.81)

where

gptq :� t2

2

�
1� C1µ

n�2s
�� t2

�
s

2�s
p1� C2µ

nq � C3ε
tq�1

q � 1
µ
p2s�nqpq�1q

2 �n.

We compute the first derivative of g and have that

g1ptq � t
�
p1� C1µ

n�2sq � t2
�
s�2p1� C2µ

nq � C3εt
q�1µ

p2s�nqpq�1q
2 �n

�
. (5.82)

Let

fptq :� p1� C1µ
n�2sq � t2

�
s�2p1� C2µ

nq and hptq :� C3εt
q�1µ

p2s�nqpq�1q
2 �n.

Looking for a critical point of g is equivalent to looking for a solution of fptq � hptq. We notice that
fptq � 0 has the solution

α �
�

1� C1µ
n�2s

1� C2µn


n�2s
4s

,

which is positive for µ P p0, µ1q. Moreover, f is strictly decreasing on p0,�8q for any µ P p0, µ1q, h is
strictly increasing on p0,�8q (recalling that q¥1) and

fp0q ¡ 0, fpαq � 0, and hp0q � 0, hpαq ¡ 0.

From this it follows that there exists (and is unique) tµ P p0, αq such that fptµq � hptµq (hence
g1ptµq � 0). Notice also that g1ptq ¡ 0 on p0, tµq and g1ptq   0 on ptµ,�8q. This implies that gptµq is
a maximum. Now, denoting by

F ptq :� t2

2

�
1� C1µ

n�2s
�� t2

�
s

2�s
p1� C2µ

nq

we have that F 1ptq � tfptq ¡ 0 on p0, αq, hence F ptµq ¤ F pαq. On the other hand, tµ ¡ 0 and there
exists δ ¡ 0 independent on ε and µ such that tµ ¥ δ. Indeed, since g1ptµq � 0, one has from (5.82)
that

1   1� C1µ
n�2s � t

2�s�2
µ p1� C2µ

nq � C3εt
q�1
µ µ

p2s�nqpq�1q
2 �n   t

2�s�2
µ � C3t

q�1
µ
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for any µ P p0, µ1q and ε P p0, 1q and this implies the claim. And so by renaming C3 (that will depend
on δ also) and computing F pαq we have that

gptq ¤ gptµq � F ptµq � C3ε
tq�1
µ

q � 1
µ
p2s�nqpq�1q

2 �n ¤ F pαq � C3εµ
p2s�nqpq�1q

2 �n

¤
�

1

2
� 1

2�s



p1� C1µ

n�2sq n2s p1� C2µ
nq 2s�n

2s � C3εµ
p2s�nqpq�1q

2 �n

� s

n
� C1µ

n�2s � opµn�2sq � C3εµ
p2s�nqpq�1q

2 �n.

Renaming the constants, from (5.81) we have that for any µ P p0,mintµ�, µ1uq
FεptZ̄µ,ξq ¤ s

n
S
n
2s � C1µ

n�2s � opµn�2sq � C3εµ
p2s�nqpq�1q

2 �n.

This concludes the proof of Lemma 5.2.17. �

5.2.4. Proof of Theorem 5.2.1. Let us take µ � εβ with β satisfying

2

npq � 1q � 2spq � 3q   β   δ
p2s�nqpq�1q

2 � n
, (5.83)

and δ ¡ 0 large enough to have both conditions satisfied (notice that both denominators are positive
by hypothesis). This gives in particular that

βpn� 2sq ¡ 1� β

� p2s� nqpq � 1q
2

� n

�
.

Consider now the case n P p2s, 6sq. For ε small enough, from Lemma 5.2.17 and renaming the
constants, we obtain

cε � Cε1�δ ¤ s

n
Sn{2s � Cεβpn�2sq � opεβpn�2sqq � Cε1�βp p2s�nqpq�1q

2 �nq

¤ s

n
Sn{2s � Cε1�βp p2s�nqpq�1q

2 �nq   s

n
Sn{2s,

that is assumption (i) of Theorem 5.2.8 for n P p2s, 6sq.
On the other hand, if n ¥ 6s we have that

q ¥ 1 ¡ n

n� s

n

n� 2s
� 1,

which assures that
2

npq � 1q � 2spq � 3q  
2�s

pn� 2sqr2�s � pq � 1qs .
So we pick now β with the additional condition

2

npq � 1q � 2spq � 3q   β   2�s
pn� 2sqr2�s � pq � 1qs

(still taking δ ¡ 0 such that (5.83) is satisfied). In particular we have that

1� β

� p2s� nqpq � 1q
2

� n

�
  2�s

2�s � pq � 1q .

Therefore for ε small enough, we get from Lemma 5.2.17 that

cε � c1ε
1�δ � cε

2�s
2�s�pq�1q   s

n
� Cεβpn�2sq � Cε1�βp p2s�nqpq�1q

2 �nq

  s

n
Sn{2s � Cε1�βp p2s�nqpq�1q

2 �nq   s

n
Sn{2s,

that is assumption (i) of Theorem 5.2.8 for n ¡ 6s.
Hence, Theorem 5.2.8 yields that the operator Fε satisfies the Palais-Smale condition. Moreover,
Lemma 5.2.17 assures that it has the geometry of Mountain Pass type and therefore we conclude
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the existence of a critical point of Fε. This implies the existence of a positive solution of (5.24) and
concludes the proof of Theorem 5.2.1.





CHAPTER 6

Nonlocal phase transitions

Abstract. We consider in this chapter a nonlocal phase transition model, in particular described

by the Allen-Cahn equation. We deal here with a two-phase transition model, in which a fluid can

reach two pure phases forming an interface of separation. The aim is to describe the pattern and the
separation of the two phases, focusing on the study of long range interactions that naturally leads

to the analysis of phase transitions and interfaces of nonlocal type. The formation of the interface

is driven by a variational principle, and here the kinetic energy is modified to take into account far
away changes in phase (though the influence is weaker and weaker towards infinity). A fractional

analogue of a conjecture of De Giorgi, that deals with possible one-dimensional symmetry of entire

solutions naturally arises from treating this model, and will be consequently presented.

We consider a nonlocal phase transition model, in particular described by the Allen-Cahn equation.
A fractional analogue of a conjecture of De Giorgi, that deals with possible one-dimensional symmetry
of entire solutions, naturally arises from treating this model, and will be consequently presented. There
is a very interesting connection with nonlocal minimal surfaces, that will be studied in Chapter 7.

We introduce briefly the classical case1. The Allen-Cahn equation has various applications, for
instance, in the study of interfaces (both in gases and solids), in the theory of superconductors and
superfluids or in cosmology. We deal here with a two-phase transition model, in which a fluid can
reach two pure phases (say 1 and �1) forming an interface of separation. The aim is to describe the
pattern and the separation of the two phases.

The formation of the interface is driven by a variational principle. Let upxq be the function
describing the state of the fluid at position x in a bounded region Ω. As a first guess, the phase
separation can be modeled via the minimization of the energy

E0puq �
»

Ω

W
�
upxq� dx,

where W is a double-well potential. More precisely, W : r�1, 1s Ñ r0,8q such that

W P C2 pr�1, 1sq ,W p�1q � 0,W ¡ 0 in p�1, 1q,
W 1p�1q � 0 and W 2p�1q ¡ 0.

(6.1)

The classical example is

W puq :� pu2 � 1q2
4

. (6.2)

On the other hand, the functional in E0 produces an ambiguous outcome, since any function u that
attains only the values �1 is a minimizer for the energy. That is, the energy functional in E0 alone
cannot detect any geometric feature of the interface.

To avoid this, one is led to consider an additional energy term that penalizes the formation of
unnecessary interfaces. The typical energy functional provided by this procedure has the form

Epuq :�
»

Ω

W
�
upxq� dx� ε2

2

»
Ω

|∇upxq|2 dx. (6.3)

1We would like to thank Alberto Farina who, during a summer-school in Cortona (2014), gave a beautiful intro-
duction on phase transitions in the classical case.
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In this way, the potential energy that forces the pure phases is compensated by a small term, that
is due to the elastic effect of the reaction of the particles. As a curiosity, we point out that in the
classical mechanics framework, the analogue of (6.3) is a Lagrangian action of a particle, with n � 1,
x representing a time coordinate and upxq the position of the particle at time x. In this framework the
term involving the square of the derivative of u has the physical meaning of a kinetic energy. With a
slight abuse of notation, we will keep referring to the gradient term in (6.3) as a kinetic energy. Perhaps
a more appropriate term would be elastic energy, but in concrete applications also the potential may
arise from elastic reactions, therefore the only purpose of these names in our framework is to underline
the fact that (6.3) occurs as a superposition of two terms, a potential one, which only depends on
u, and one, which will be called kinetic, which only depends on the variation of u (and which, in
principle, possesses no real “kinetic” feature).

The energy minimizers will be smooth functions, taking values between �1 and 1, forming layers
of interfaces of ε-width. If we send ε Ñ 0, the transition layer will tend to a minimal surface. To
better explain this, consider the energy

Jpuq �
»

1

2
|∇u|2 �W puq dx, (6.4)

whose minimizers solve the Allen-Cahn equation

�∆u�W 1puq � 0. (6.5)

In particular, for the explicit potential in (6.2), equation (6.5) reduces (up to normalizations constants)
to

�∆u � u� u3. (6.6)

In this setting, the behavior of u in large domains reflects into the behavior of the rescaled function
uεpxq � u

�
x
ε

�
in B1. Namely, the minimizers of J in B1{ε are the minimizers of Jε in B1, where Jε is

the rescaled energy functional

Jεpuq �
»
B1

ε

2
|∇u|2 � 1

ε
W puq dx. (6.7)

We notice then that

Jεpuq ¥
»
B1

a
2W puq |∇u| dx

which, using the Co-area Formula, gives

Jεpuq ¥
» 1

�1

a
2W ptqHn�1 ptu � tuq dt.

The above formula may suggest that the minimizers of Jε have the tendency to minimize the pn� 1q-
dimensional measure of their level sets. It turns out that indeed the level sets of the minimizers of Jε
converge to a minimal surface as ε Ñ 0: for more details see, for instance, [130] and the references
therein.

In this setting, a famous De Giorgi conjecture comes into place. In the late 70’s, De Giorgi
conjectured that entire, smooth, monotone (in one direction), bounded solutions of (6.6) in the whole
of Rn are necessarily one-dimensional, i.e., there exist ω P Sn�1 and u0 : RÑ R such that

upxq � u0pω � xq for any x P Rn.

In other words, the conjecture above asks if the level sets of the entire, smooth, monotone (in one
direction), bounded solutions are necessarily hyperplanes, at least in dimension n ¤ 8.

One may wonder why the number eight has a relevance in the problem above. A possible expla-
nation for this is given by the Bernstein Theorem, as we now try to describe.

The Bernstein problem asks on whether or not all minimal graphs (i.e. surfaces that locally
minimize the perimeter and that are graphs in a given direction) in Rn must be necessarily affine.
This is indeed true in dimensions n at most eight. On the other hand, in dimension n ¥ 9 there are
global minimal graphs that are not hyperplanes (see e.g. [91]).
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The link between the problem of Bernstein and the conjecture of De Giorgi could be suggested
by the fact that minimizers approach minimal surfaces in the limit. In a sense, if one is able to prove
that the limit interface is a hyperplane and that this rigidity property gets inherited by the level sets
of the minimizers uε (which lie nearby such limit hyperplane), then, by scaling back, one obtains that
the level sets of u are also hyperplanes. Of course, this link between the two problems, as stated here,
is only heuristic, and much work is needed to deeply understand the connections between the problem
of Bernstein and the conjecture of De Giorgi. We refer to [76] for a more detailed introduction to this
topic.

We recall that this conjecture by De Giorgi was proved for n ¤ 3, see [9,16,89]. Also, the case
4 ¤ n ¤ 8 with the additional assumption that

lim
xnÑ�8upx

1, xnq � �1, for any x1 P Rn�1 (6.8)

was proved in [129].
For n ¥ 9 a counterexample can be found in [52]. Notice that, if the above limit is uniform (and

the De Giorgi conjecture with this additional assumption is known as the Gibbons conjecture), the
result extends to all possible n (see for instance [75,76] for further details).

The goal of the next part of this thesis is then to discuss an analogue of these questions for the
nonlocal case and present related results.

6.1. The fractional Allen-Cahn equation

The extension of the Allen-Cahn equation in (6.5) from a local to a nonlocal setting has theoretical
interest and concrete applications. Indeed, the study of long range interactions naturally leads to the
analysis of phase transitions and interfaces of nonlocal type.

Given an open domain Ω � Rn and the double well potential W (as in (6.2)), our goal here is to
study the fractional Allen-Cahn equation

p�∆qsu�W 1puq � 0 in Ω,

for s P p0, 1q (when s � 1, this equation reduces to (6.5)). The solutions are the critical points of the
nonlocal energy

Epu,Ωq :�
»

Ω

W
�
upxq� dx� 1

2

¼
R2nzpCΩq2

|upxq � upyq|2
|x� y|n�2s

dx dy, (6.9)

up to normalization constants that we omitted for simplicity. The reader can compare (6.9) with (6.3).
Namely, in (6.9) the kinetic energy is modified, in order to take into account long range interactions.
That is, the new kinetic energy still depends on the variation of the phase parameter. But, in this
case, far away changes in phase may influence each other (though the influence is weaker and weaker
towards infinity).

Notice that in the nonlocal framework, we prescribe the function on CΩ � CΩ and consider the
kinetic energy on the remaining regions (see Figure 6.1). The prescription of values in CΩ�CΩ reflects
into the fact that the domain of integration of the kinetic integral in (6.9) is R2nzpCΩq2. Indeed, this
is perfectly compatible with the local case in (6.3), where the domain of integration of the kinetic
term was simply Ω. To see this compatibility, one may think that the domain of integration of the
kinetic energy is simply the complement of the set in which the values of the functions are prescribed.
In the local case of (6.3), the values are prescribed on BΩ, or, one may say, in CΩ: then the domain
of integration of the kinetic energy is the complement of CΩ, which is simply Ω. In analogy with
that, in the nonlocal case of (6.9), the values are prescribed on CΩ � CΩ � pCΩq2, i.e. outside Ω for
both the variables x and y. Then, the kinetic integral is set on the complement of pCΩq2, which is
indeed R2nzpCΩq2.

Of course, the potential energy has local features, both in the local and in the nonlocal case, since
in our model the nonlocality only occurs in the kinetic interaction, therefore the potential integrals
are set over Ω both in (6.3) and in (6.9).
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For the sake of shortness, given disjoint sets A, B � Rn we introduce the notation

upA,Bq :�
»
A

»
B

|upxq � upyq|2
|x� y|n�2s

dx dy,

and we write the new kinetic energy in (6.9) as

Kpu,Ωq � 1

2
upΩ,Ωq � upΩ, CΩq. (6.10)

Figure 6.1. The kinetic energy

Let us define the energy minimizers and provide a density estimate for the minimizers.

Definition 6.1.1. The function u is a minimizer for the energy E in BR if Epu,BRq ¤ Epv,BRq
for any v such that u � v outside BR.

The energy of the minimizers satisfy the following uniform bound property on large balls.

Theorem 6.1.2. Let u be a minimizer in BR�2 for a large R, say R ¥ 1. Then

lim
RÑ�8

1

Rn
Epu,BRq � 0. (6.11)

More precisely,

Epu,BRq ¤

$''&''%
CRn�1 if s P

�
1
2 , 1

	
,

CRn�1 logR if s � 1
2 ,

CRn�2s if s P
�

0, 1
2

	
.

Here, C is a positive constant depending only on n, s and W .

Notice that for s P
�

0,
1

2

	
, Rn�2s ¡ Rn�1. These estimates are optimal (we refer to [134] for

further details).

Proof. We remark that throughout this proof the constants may change value from line to line.
We introduce at first some auxiliary functions. Let

ψpxq :� �1� 2 min
!
p|x| �R� 1q�, 1

)
, vpxq :� min

!
upxq, ψpxq

)
,

dpxq :� max
!
pR� 1� |x|q, 1

)
.

Then, for |x� y| ¤ dpxq we have that

|ψpxq � ψpyq| ¤ 2|x� y|
dpxq . (6.12)
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Figure 6.2. The functions ψ, v and d

Indeed, if |x| ¤ R, then dpxq � R� 1� |x| and

|y| ¤ |x� y| � |x| ¤ dpxq � |x| ¤ R� 1,

thus ψpxq�ψpyq � 0 and the inequality is trivial. Else, if |x| ¥ R, then dpxq � 1, and so the inequality
is assured by the Lipschitz continuity of ψ (with 2 as the Lipschitz constant).

Also, we prove that we have the following estimates for the function d:

»
BR�2

dpxq�2s dx ¤

$''&''%
CRn�1 if s P

�
1
2 , 1

	
,

CRn�1 logR if s � 1
2 ,

CRn�2s if s P
�

0, 1
2

	
,

(6.13)

where C � Cpn, sq ¡ 0. To prove this, we observe that in the ring BR�2zBR, we have dpxq � 1.
Therefore, the contribution to the integral in (6.13) that comes from the ring BR�2zBR is bounded
by the measure of the ring, and so it is of order Rn�1, namely»

BR�2zBR
dpxq�2s dx � |BR�2zBR| ¤ CRn�1, (6.14)

for some C ¡ 0. We point out that this order is always negligible with respect to the right hand side
of (6.13).
Therefore, to complete the proof of (6.13), it only remains to estimate the contribution to the integral
coming from BR. For this, we use polar coordinates and perform the change of variables t � ρ{pR�1q.
In this way, we obtain that»

BR

dpxq�2s dx � C

» R
0

ρn�1

pR� 1� ρq2s dρ � C pR� 1qn�2s

» 1� 1
R�1

0

tn�1p1� tq�2s dt

¤ C pR� 1qn�2s

» 1� 1
R�1

0

p1� tq�2s dt,

for some dimensional constant C ¡ 0. Now we observe that

» 1� 1
R�1

0

p1� tq�2s dt ¤

$'''''&'''''%

» 1

0

p1� tq�2s dt � C if s P
�

0, 1
2

	
,

� logp1� tq
���1� 1

R�1

0
¤ logR if s � 1

2 ,

� p1�tq1�2s

1�2s

���1� 1
R�1

0
¤ CR2s�1 if s P

�
1
2 , 1

	
.
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The latter two formulas and (6.14) imply (6.13).
Now, we define the set

A :� tv � ψu
and notice that BR�1 � A � BR�2. We prove that for any x P A and any y P CA

|vpxq � vpyq| ¤ max
!
|upxq � upyq|, |ψpxq � ψpyq|

)
. (6.15)

Indeed, for x P A and y P CA we have that

vpxq � ψpxq ¤ upxq and vpyq � upyq ¤ ψpyq,
therefore

vpxq � vpyq ¤ upxq � upyq and vpyq � vpxq ¤ ψpyq � ψpxq,
which establishes (6.15). This leads to

vpA, CAq ¤ upA, CAq � ψpA, CAq. (6.16)

Notice now that
Epu,BR�2q ¤ Epv,BR�2q

since u is a minimizer in BR�2 and v � u outside BR�2. We have that

Epu,BR�2q � 1

2
upBR�2, BR�2q � upBR�2, CBR�2q �

»
BR�2

W puq dx

� 1

2
upA,Aq � upA, CAq

� 1

2
upBR�2zA,BR�2zAq � upBR�2zA, CBR�2q

�
»
A

W puq dx�
»
BR�2zA

W puq dx.

Since u and v coincide on CA, by using the inequality (6.16) we obtain that

0 ¤ Epv,BR�2q � Epu,BR�2q � Epv,Aq � Epu,Aq

� 1

2
vpA,Aq � 1

2
upA,Aq � vpA, CAq � upA, CAq �

»
A

�
W pvq �W puq

	
dx

¤ 1

2
vpA,Aq � 1

2
upA,Aq � ψpA, CAq �

»
A

�
W pvq �W puq

	
dx.

Moreover, v � ψ on A and we have that

1

2
upA,Aq �

»
A

W puq dx ¤ 1

2
ψpA,Aq � ψpA, CAq �

»
A

W pψq dxq � Epψ,Aq,
and therefore, since BR�1 � A � BR�2,

1

2
upBR�1, BR�1q �

»
BR�1

W puq dx ¤ Epψ,BR�2q. (6.17)

We estimate now Epψ,BR�2q. For a fixed x P BR�2 we observe that»
Rn

|ψpxq � ψpyq|2
|x� y|n�2s

dy �
»
|x�y|¤dpxq

|ψpxq � ψpyq|2
|x� y|n�2s

dy �
»
|x�y|¥dpxq

|ψpxq � ψpyq|2
|x� y|n�2s

dy

¤ C

�
1

dpxq2
»
|x�y|¤dpxq

|x� y|�n�2s�2 dy �
»
|x�y|¥dpxq

|x� y|�n�2s dy



,

where we have used (6.12) and the boundedness of ψ. Passing to polar coordinates, we have that»
Rn

|ψpxq � ψpyq|2
|x� y|n�2s

dy ¤ C

�
1

dpxq2
» dpxq

0

ρ�2s�1 dρ�
» 8

dpxq
ρ�2s�1 dρ



� Cdpxq�2s.
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Recalling that ψpxq � �1 on BR�1 and W p�1q � 0, we obtain that

Epψ,BR�2q �
»
BR�2

»
Rn

|ψpxq � ψpyq|2
|x� y|n�2s

dy dx�
»
BR�2

W pψq dx

¤ C

»
BR�2

dpxq�2sdx�
»
BR�2zBR�1

W pψq dx.

Therefore, making use of (6.13),

Epψ,BR�2q ¤

$''&''%
CRn�1 if s P

�
1
2 , 1

	
,

CRn�1 logR if s � 1
2 ,

CRn�2s if s P
�

0, 1
2

	
.

(6.18)

For what regards the right hand-side of inequality (6.17), we have that

1

2
upBR�1, BR�1q �

»
BR�1

W puq dx ¥ 1

2
upBR, BRq � upBR, BR�1zBRq

�
»
BR

W puq dx.
(6.19)

We prove now that

upBR, CBR�1q ¤ C

»
BR�2

dpxq�2s dx. (6.20)

For this, we observe that if x P BR, then dpxq � R� 1� |x|. So, if x P BR and y P CBR�1, then

|x� y| ¥ |y| � |x| ¥ R� 1� |x| � dpxq.
Therefore, by changing variables z � x� y and then passing to polar coordinates, we have that

upBR, CBR�1q ¤ 4

»
BR

dx

»
CBdpxq

|z|�n�2s dz

¤ C

»
BR

dx

» 8

dpxq
ρ�2s�1 dρ

� C

»
BR

dpxq�2s dx.

This establishes (6.20).
Hence, by (6.13) and (6.20), we have that

upBR, CBR�1q ¤ C

»
BR�2

dpxq�2s dx ¤

$''&''%
CRn�1 if s P

�
1
2 , 1

	
,

CRn�1 logR if s � 1
2 ,

CRn�2s if s P
�

0, 1
2

	
.

(6.21)

We also observe that, by adding upBR, CBR�1q to inequality (6.19), we obtain that

1

2
upBR�1, BR�1q �

»
BR�1

W puq dx� upBR, CBR�1q

¥ 1

2
upBR, BRq � upBR, BR�1zBRq �

»
BR

W puq dx� upBR, CBR�1q

� Epu,BRq.
This and (6.17) give that

Epu,BRq ¤ Epψ,BR�2q � upBR, CBR�1q.
Combining this with the estimates in (6.18) and (6.21), we obtain the desired result. �
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Another type of estimate can be given in terms of the level sets of the minimizers (see Theorem
1.4 in [134]).

Theorem 6.1.3. Let u be a minimizer of E in BR. Then for any θ1, θ2 P p�1, 1q such that

up0q ¡ θ1

we have that there exist R and C ¡ 0 such that���tu ¡ θ2u XBR

��� ¥ CRn

if R ¥ Rpθ1, θ2q. The constant C ¡ 0 depends only on n, s and W and Rpθ1, θ2q is a large constant
that depends also on θ1 and θ2.

The statement of Theorem 6.1.3 says that the level sets of minimizers always occupy a portion
of a large ball comparable to the ball itself. In particular, both phases occur in a large ball, and the
portion of the ball occupied by each phase is comparable to the one occupied by the other.
Of course, the simplest situation in which two phases split a ball in domains with comparable, and
in fact equal, size is when all the level sets are hyperplanes. This question is related to a fractional
version of a classical conjecture of De Giorgi and to nonlocal minimal surfaces, that we discuss in the
following Section 6.2 and Chapter 7.

Let us try now to give some details on the proof of the Theorem 6.1.3 in the particular case in
which s is in the range p0, 1{2q. The more general proof for all s P p0, 1q can be found in [134], where
one uses some estimates on the Gagliardo norm. In our particular case we will make use of the Sobolev
inequality that we introduced in (2.19). The interested reader can see [131] for a more exhaustive
explanation of the upcoming proof.

Proof of Theorem 6.1.3. Let us consider a smooth function w such that w � 1 on CBR (we
will take in sequel w to be a particular barrier for u), and define

vpxq :� mintupxq, wpxqu.

Since |u| ¤ 1, we have that v � u in CBR. Calling D � pRn � Rnq z pCBR � CBRq we have from
definition (6.10) that

Kpu� v, BRq �Kpv,BRq �Kpu,BRq

� 1

2

¼
D

|pu� vqpxq � pu� vqpyq|2 � |vpxq � vpyq|2 � |upxq � upyq|2
|x� y|n�2s

dx dy.

Using the identity |a� b|2 � b2 � a2 � 2bpb� aq with a � upxq � upyq and b � vpxq � vpyq we get

Kpu� v,BRq �Kpv,BRq �Kpu,BRq

�
¼
D

ppu� vqpxq � pu� vqpyqq pvpyq � vpxqq
|x� y|n�2s

dx dy.

Since u� v � 0 on CBR we can extend the integral to the whole space Rn � Rn, hence

Kpu� v,BRq �Kpv,BRq �Kpu,BRq

�
¼

Rn�Rn

ppu� vqpxq � pu� vqpyqq pvpyq � vpxqq
|x� y|n�2s

dx dy.
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Then by changing variables and using the anti-symmetry of the integrals, we notice that¼
BR�BR

ppu� vqpxq � pu� vqpyqq pvpyq � vpxqq
|x� y|n�2s

dx dy

�
¼

BR�BR

pu� vqpxq pvpyq � vpxqq
|x� y|n�2s

dx dy �
¼

BR�BR

pu� vqpyq pvpyq � vpxqq
|x� y|n�2s

dx dy

� 2

¼
BR�BR

pu� vqpxq pvpyq � vpxqq
|x� y|n�2s

dx dy

and ¼
BR�CBR

ppu� vqpxq � pu� vqpyqq pvpyq � vpxqq
|x� y|n�2s

dx dy

�
¼

CBR�BR

ppu� vqpxq � pu� vqpyqq pvpyq � vpxqq
|x� y|n�2s

dx dy

�
¼

BR�CBR

pu� vqpxq pvpyq � vpxqq
|x� y|n�2s

dx dy �
¼

CBR�BR

pu� vqpyq pvpyq � vpxqq
|x� y|n�2s

dx dy

� 2

¼
BR�CBR

pu� vqpxq pvpyq � vpxqq
|x� y|n�2s

dx dy.

Therefore

Kpu� v,BRq �Kpv,BRq �Kpu,BRq

� 2

¼
Rn�Rn

pupxq � vpxqq pvpyq � vpxqq
|x� y|n�2s

dx dy � 2

»
Rn
pupxq � vpxqq

�»
Rn

vpyq � vpxq
|x� y|n�2s

dy



dx

� 2

»
BRXtu¡v�wu

pupxq � wpxqq
�»

Rn

vpyq � wpxq
|x� y|n�2s

dy



dx

¤ 2

»
BRXtu¡v�wu

pu� wqpxq
�»

Rn

wpyq � wpxq
|x� y|n�2s

dy



dx

� 2

»
BRXtu¡wu

pu� wqpxq p�p�∆qswq pxq dx.

Hence

Kpu� v,BRq ¤ Kpu,BRq �Kpv,BRq � 2

»
BRXtu¡wu

pu� wq p�p�∆qswq dx.

By adding and subtracting the potential energy, we have that

Kpu� v,BRq ¤ Epu,BRq � Epv,BRq �
»
BR

pW pvq �W puqq dx

� 2

»
BRXtu¡wu

pu� wq p�p�∆qswq dx

and since u is minimal in BR,

Kpu� v,BRq ¤
»
BRXtu¡w�vu

pW pwq �W puqq dx� 2

»
BRXtu¡wu

pu� wq p�p�∆qswq dx. (6.22)
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We deduce from the properties in (6.1) of the double-well potential W that there exists a small
constant c ¡ 0 such that

W ptq �W prq ¥ cp1� rqpt� rq � cpt� rq2 when � 1 ¤ r ¤ t ¤ �1� c

W prq �W ptq ¤ 1� r

c
when � 1 ¤ r ¤ t ¤ 1.

We fix the arbitrary constants θ1 and θ2, take c small as here above. Let then

θ� :� mintθ1, θ2,�1� cu.

It follows that»
BRXtu¡wu

pW pwq �W puqq dx

�
»
BRXtθ�¡u¡wu

pW pwq �W puqq dx�
»
BRXtu¡maxtθ�,wuu

pW pwq �W puqq dx

¤ � c

»
BRXtθ�¡u¡wu

p1� wqpu� wq dx� c

»
BRXtθ�¡u¡wu

pu� wq2 dx

� 1

c

»
BRXtu¡maxtθ�,wuu

p1� wq dx

¤ � c

»
BRXtθ�¡u¡wu

p1� wqpu� wq dx� 1

c

»
BRXtu¡maxtθ�,wuu

p1� wq dx.

(6.23)

Therefore, in (6.22) we obtain that

Kpu� v,BRq ¤ � c

»
BRXtθ�¡u¡wu

p1� wqpu� wq dx� 1

c

»
BRXtu¡maxtθ�,wuu

p1� wq dx

� 2

»
BRXtu¡wu

pu� wq p�p�∆qswq dx.
(6.24)

We introduce now a useful barrier in the next Lemma (we just recall here Lemma 3.1 in [134] - there
the reader can find how this barrier is build):

Lemma 6.1.4. Given any τ ¥ 0 there exists a constant C ¡ 1 (possibly depending on n, s and τ)
such that: for any R ¥ C there exists a rotationally symmetric function w P C �

Rn, r�1� CR�2s, 1s�
with w � 1 in CBR and such that for any x P BR one has that

1

C
pR� 1� |x|q�2s ¤ 1� wpxq ¤ CpR� 1� |x|q�2s and (6.25)

�p�∆qswpxq ¤ τp1� wpxqq. (6.26)

Taking w as the barrier introduced in the above Lemma, thanks to (6.24) and to the estimate in
(6.26), we have that

Kpu� v,BRq ¤ � c

»
BRXtθ�¡u¡wu

p1� wqpu� wq dx

� 1

c

»
BRXtu¡maxtθ�,wuu

p1� wq dx

� 2τ

»
BRXtu¡wu

pu� wqp1� wq dx.
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Let then τ � c
2 , and we are left with

Kpu� v,BRq ¤ c

»
BRXtu¡maxtθ�,wuu

pu� wqp1� wq dx

� 1

c

»
BRXtu¡maxtθ�,wuu

p1� wq dx

¤ C1

»
BRXtu¡maxtθ�,wuu

p1� wq dx,

with C1 depending on c (hence on W ). Using again Lemma 6.1.4, in particular the right hand side
inequality in (6.25), we have that

Kpu� v,BRq ¤ C1 � C
»
BRXtu¡maxtθ�,wuu

pR� 1� |x|q�2s.

We set

V pRq :� |BR X tu ¡ θ�u| (6.27)

and the Co-Area formula then gives

Kpu� v,BRq ¤ C2

» R
0

pR� 1� tq�2sV 1ptq dt, (6.28)

where C2 possibly depends on n, s,W .
We use now the Sobolev inequality (2.19) for p � 2, applied to u� v (recalling that the support

of u� v is a subset of BR) to obtain that

Kpu� v,BRq � Kpu� v,Rnq �
¼

Rn�Rn

|pu� vqpxq � pu� vqpyq|2
|x� y|n�2s

dx dy

¥ C̃}u� v}2
L

2n
n�2s pRnq

� C̃}u� v}2
L

2n
n�2s pBRq

.

(6.29)

From (6.25) one has that

wpxq ¤ CpR� 1� |x|q�2s � 1.

We fix K large enough so as to have R ¥ 2K and in BR�K

wpxq ¤ Cp1�Kq�2s � 1 ¤ �1� 1� θ�
2

.

Therefore in BR�K X tu ¡ θ�u we have that

|u� v| ¥ u� w ¥ u� 1� 1� θ�
2

¥ 1� θ�
2

.

Using definition (6.27), this leads to

}u� v}2
L

2n
n�2s pBRq

�
�»

BR

|u� v| 2n
n�2s dx


n�2s
n

¥
�

1� θ�
2


 2n
n�2s

�»
BR�KXtu¡θ�u

dx

�n�2s
n

¥ C3V pR�Kqn�2s
n .

In (6.29) we thus have

Kpu� v,BRq ¥ C̃3V pR�Kqn�2s
n

and from (6.28) it follows that

C4V pR�Kqn�2s
n ¤

» R
0

pR� 1� tq�2sV 1ptq dt.
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Let R ¥ ρ ¥ 2K. Integrating the latter integral from ρ to
3ρ

2
we have that

C4
ρ

2
V pρ�Kqn�2s

n ¤ C4

» 3ρ
2

ρ

V pR�Kqn�2s
n dR

¤
» 3ρ

2

0

�» R
0

pR� 1� tq�2sV 1ptq dt
�
dR �

» 3ρ
2

0

V 1ptq
�» 3ρ

2

0

pR� 1� tq�2s dR

�
dt

�
» 3ρ

2

0

V 1ptq
�

3ρ
2 � 1� t

�1�2s � 1

1� 2s
dt.

Since 1� 2s ¡ 0, one has for large ρ that

�
3ρ

2
� 1� t


1�2s

� 1 ¤ p2ρq1�2s, hence, noticing that the

function V is nondecreasing,

ρ

2
V pρ�Kqn�2s

n ¤ C5ρ
1�2s

» 2ρ

0

V 1ptq dt ¤ C5ρ
1�2sV p2ρq.

Therefore

ρ2sV pρ�Kqn�2s
n ¤ 2C5V p2ρq. (6.30)

Now we use an inductive argument as in Lemma 3.2 in [134], that we recall here:

Lemma 6.1.5. Let σ, µ P p0,8q, ν P pσ,8q and γ,R0, C P p1,8q. Let V : p0,8q Ñ p0,8q be a

nondecreasing function. For any r P rR0,8q, let αprq :� min

"
1,

log V prq
log r

*
. Suppose that V pR0q ¡ µ

and
rσαprqV prq ν�σν ¤ CV pγrq,

for any r P rR0,8q. Then there exist c P p0, 1q and R� P rR0,8q, possibly depending on µ, ν, γ,R0, C
such that

V prq ¡ crν ,

for any r P rR�,8q.
For R large, one obtains from (6.30) and Lemma 6.1.5 that

V pRq ¥ c0R
n,

for a suitable c0 P p0, 1q. Let now

θ� :� maxtθ1, θ2,�1� cu.
We have that

|tu ¡ θ�u XBR| � |tθ�   u   θ�u XBR| � |tu ¡ θ�u XBR| � V pRq ¥ c0R
n. (6.31)

Moreover, from (6.1.2) we have that for some c ¡ 0

Epu,BRq ¤ cRn�2s,

therefore

cRn�2s ¥ Epu,BRq ¥
»
tθ� u θ�uXBR

W puq dx ¥ inf
tPpθ�,θ�q

W ptq |tθ�   u   θ�u XBR|.

From this and (6.31) we have that

c0R
n ¤ CRn�2s � |tu ¡ θ�u XBR|,

and finally
|tu ¡ θ�u XBR| ¥ CRn,

with C possibly depending on n, s,W . This concludes the proof of Theorem 6.1.3 in the case s P
p0, 1{2q. �
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6.2. A nonlocal version of a conjecture by De Giorgi

In this section we consider the fractional counterpart of the conjecture by De Giorgi that was
discussed before in the classical case. Namely, we consider the nonlocal Allen-Cahn equation

p�∆qsu�W 1puq � 0 in Rn,

where W is a double-well potential, and u is smooth, bounded and monotone in one direction, namely
|u| ¤ 1 and Bxnu ¡ 0. We wonder if it is also true, at least in low dimension, that u is one-dimensional.
In this case, the conjecture was initially proved for n � 2 and s � 1

2 in [24]. In the case n � 2, for
any s P p0, 1q, the result is proved using the harmonic extension of the fractional Laplacian in [23]

and [141]. For n � 3, the proof can be found in [21] for s P
�

1
2 , 1

�
. The conjecture is still open for

n � 3 and s P
�
0, 1

2

�
and for n ¥ 4. Also, the Gibbons conjecture (that is, the De Giorgi conjecture

with the additional condition that the limit in (6.8) is uniform) is also true for any s P p0, 1q and in
any dimension n, see [77].

To keep the discussion as simple as possible, we focus here on the case n � 2 and any s P
p0, 1q, providing an alternative proof that does not make use of the harmonic extension. This part is
completely new and not available in the literature. The proof is indeed quite general and it will be
further exploited in [38].

We define (as in (6.10)) the total energy of the system to be

Epu,BRq � KRpuq �
»
BR

W puqdx, (6.32)

where the kinetic energy is

KRpuq :� 1

2

¼
QR

|upxq � upx̄q|2
|x� x̄|n�2s

dx dx̄, (6.33)

and QR :� R2nzpCBRq2 � pBR�BRqY pBR� CBRqY pCBR�BRq. We recall that the kinetic energy
can also be written as

KRpuq � 1

2
upBR, BRq � upBR, CBRq, (6.34)

where for two sets A,B

upA,Bq �
»
A

»
B

|upxq � upx̄q|2
|x� x̄|n�2s

dx dx̄. (6.35)

The main result of this section is the following.

Theorem 6.2.1. Let u be a minimizer of the energy defined in (6.32) in any ball of R2. Then u
is 1-D, i.e. there exist ω P S1 and u0 : RÑ R such that

upxq � u0pω � xq for any x P R2.

The proof relies on the following estimate for the kinetic energy, that we prove by employing a
domain deformation technique.

Lemma 6.2.2. Let R ¡ 1, ϕ P C8
0 pB1q. Also, for any y P Rn, let

ΨR,�pyq :� y � ϕ
� y
R

	
e1 and ΨR,�pyq :� y � ϕ

� y
R

	
e1. (6.36)

Then, for large R, the maps ΨR,� and ΨR,� are diffeomorphisms on Rn. Furthermore, if we de-

fine uR,�pxq :� upΨ�1
R,�pxqq, we have that

KRpuR,�q �KRpuR,�q � 2KRpuq ¤ C

R2
KRpuq, (6.37)

for some C ¡ 0.
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Proof. First of all, we compute the Jacobian of ΨR,�. For this, we write ΨR,�,i to denote the ith

component of the vector ΨR,� � pΨR,�,1, � � � ,ΨR,�,nq and we observe that

BΨR,�,ipyq
Byj � B

Byj
�
yi � ϕ

� y
R

	
δi1

	
� δij � 1

R
Bjϕ

� y
R

	
δi1. (6.38)

The latter term is bounded by OpR�1q, and this proves that ΨR,� is a diffeomorphism if R is large
enough.

For further reference, we point out that if JR,� is the Jacobian determinant of ΨR,�, then the
change of variable

x :� ΨR,�pyq, x̄ :� ΨR,�pȳq (6.39)

gives that

dx dx̄ � JR,�pyq JR,�pȳq dy dȳ

�
�

1�
� 1

R

	
B1ϕ

� y
R

	
�O

� 1

R2

	
�
1� 1

R
B1ϕ

� ȳ
R

	
�O

� 1

R2

	

dydȳ

� 1� 1

R
B1ϕ

� y
R

	
� 1

R
B1ϕ

� ȳ
R

	
�O

� 1

R2

	
dy dȳ,

thanks to (6.38). Therefore

|uR,�pxq � uR,�px̄q|2
|x� x̄|n�2s

dx dx̄

�
��upΨ�1

R,�pxqq � upΨ�1
R,�px̄qq

��2
|Ψ�1
R,�pxq �Ψ�1

R,�px̄q|n�2s
�
�

|x� x̄|2
|Ψ�1
R,�pxq �Ψ�1

R,�px̄q|2

��n�2s
2

dx dx̄

� |upyq � upȳq|2
|y � ȳ|n�2s

�

���
���ΨR,�pyq �ΨR,�pȳq

���2
|y � ȳ|2

��

�n�2s

2

�
�

1� 1

R
B1ϕ

� y
R

	
� 1

R
B1ϕ

� ȳ
R

	
�O

� 1

R2

	�
dy dȳ.

(6.40)

Now, for any y, ȳ P Rn we calculate���ΨR,�pyq �ΨR,�pȳq
���2

�
���py � ȳq �

�
ϕ
� y
R

	
� ϕ

� ȳ
R

	

e1

���2
� |y � ȳ|2 �

����ϕ� yR	
� ϕ

� ȳ
R

	����2 � 2

�
ϕ
� y
R

	
� ϕ

� ȳ
R

	

py1 � ȳ1q.

(6.41)

Notice also that ����ϕ� yR	
� ϕ

� ȳ
R

	���� ¤ 1

R
}ϕ}C1pRnq|y � ȳ|, (6.42)

hence (6.41) becomes ���ΨR,�pyq �ΨR,�pȳq
���2

|y � ȳ|2 � 1� η�

where

η� :�

����ϕ� y
R

	
� ϕ

�
ȳ
R

	����2
|y � ȳ|2 � 2

�
ϕ
�
y
R

	
� ϕ

�
ȳ
R

	

py1 � ȳ1q

|y � ȳ|2 � O
� 1

R

	
. (6.43)
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As a consequence���
���ΨR,�pyq �ΨR,�pȳq

���2
|y � ȳ|2

��

�n�2s

2

� p1� η�q�
n�2s

2 � 1� n� 2s

2
η� �Opη2

�q.

We plug this information into (6.40) and use (6.43) to obtain

|uR,�pxq � uR,�px̄q|2
|x� x̄|n�2s

dx dx̄

� |upyq � upȳq|2
|y � ȳ|n�2s

�
�

1� n� 2s

2
η� �O

� 1

R2

	

�
�

1� 1

R
B1ϕ

� y
R

	
� 1

R
B1ϕ

� ȳ
R

	
�O

� 1

R2

	

dy dȳ

� |upyq � upȳq|2
|y � ȳ|n�2s

�
�

1� n� 2s

2
η� �

�
� 1

R
B1ϕ

� y
R

	
� 1

R
B1ϕ

� ȳ
R

	


�O
� 1

R2

	�
dy dȳ.

Using this and the fact that

η� � η� � 2

����ϕ� y
R

	
� ϕ

�
ȳ
R

	����2
|y � ȳ|2 � O

� 1

R2

	
,

thanks to (6.42), we obtain

|uR,�pxq � uR,�px̄q|2
|x� x̄|n�2s

� |uR,�pxq � uR,�px̄q|2
|x� x̄|n�2s

dx dx̄

� |upyq � upȳq|2
|y � ȳ|n�2s

�
�

2�O
� 1

R2

	

dy dȳ.

Thus, if we integrate over QR we find that

KRpuR,�q �KRpuR,�q � 2KRpuq �
¼
QR

O
� 1

R2

	 |upxq � upx̄q|2
|x� x̄|n�2s

dx dx̄.

This establishes (6.37). �

Proof of Theorem 6.2.1. We organize this proof into four steps.
Step 1. A geometrical consideration
In order to prove that the level sets are flat, it suffices to prove that u is monotone in any direction.
Indeed, if u is monotone in any direction, the level set tu � 0u is both convex and concave, thus it is
flat.

Step 2. Energy estimates
Let ϕ P C8

0 pB1q such that ϕ � 1 in B1{2, and let e � p1, 0q. We define as in Lemma 6.2.2

ΨR,�pyq :� y � ϕ
� y
R

	
e and ΨR,�pyq :� y � ϕ

� y
R

	
e,

which are diffeomorphisms for large R, and the functions uR,�pxq :� upΨ�1
R,�pxqq. Notice that

uR,�pyq � upyq for y P CBR (6.44)

uR,�pyq � upy � eq for y P BR{2. (6.45)
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By computing the potential energy, it is easy to see that»
BR

W puR,�pxqq dx�
»
BR

W puR,�pxqq dx� 2

»
BR

W pupxqq dx

¤ C

R2

»
BR

W pupxqq dx.

Using this and (6.37), we obtain the following estimate for the total energy

EpuR,�, BRq � EpuR,�, BRq � 2Epu,BRq ¤ C

R2
Epu,BRq. (6.46)

Also, since uR,� � u in CBR, we have that

Epu,BRq ¤ EpuR,�, BRq.
This and (6.46) imply that

EpuR,�, BRq � Epu,BRq ¤ C

R2
Epu,BRq. (6.47)

As a consequence of this estimate and (6.11), it follows that

lim
RÑ�8

�
EpuR,�, BRq � Epu,BRq

	
� 0. (6.48)

Step 3. Monotonicity
We claim that u is monotone. Suppose by contradiction that u is not monotone. That is, up to
translation and dilation, we suppose that the value of u at the origin stays above the values of e
and �e, with e :� p1, 0q, i.e.

up0q ¡ upeq and up0q ¡ up�eq.
Take R to be large enough, say R ¡ 8. Let now

vRpxq :� min
 
upxq, uR,�pxq

(
and wRpxq :� max

 
upxq, uR,�pxq

(
. (6.49)

By (6.44) we have that vR � wR � u outside BR. Then, since u is a minimizer in BR and wR � u
outside BR, we have that

EpwR, BRq ¥ Epu,BRq. (6.50)

Moreover, the sum of the energies of the minimum and the maximum is less than or equal to the sum
of the original energies: this is obvious in the local case, since equality holds, and in the nonlocal
case the proof is based on the inspection of the different integral contributions, see e.g. formula (38)
in [120]. So we have that

EpvR, BRq � EpwR, BRq ¤ Epu,BRq � EpuR,�, BRq
hence, recalling (6.50),

EpvR, BRq ¤ EpuR,�, BRq. (6.51)

We claim that vR is not identically neither u, nor uR,�. Indeed, since up0q � uR,�peq and
up�eq � uR,�p0q we have that

vRp0q � min
 
up0q, uR,�p0q

( � min
 
up0q, up�eq(

� up�eq � uR,�p0q   up0q and

vRpeq � min
 
upeq, uR,�peq

( � min
 
upeq, up0q(

� upeq   up0q � uR,�peq.
By continuity of u and uR,�, we have that

vR � uR,�   u in a neighborhood of 0 and

vR � u   uR,� in a neighborhood of e.
(6.52)

We focus our attention on the energy in the smaller ball B2. We claim that vR is not minimal for
Ep�, B2q. Indeed, if vR were minimal in B2, then on B2 both vR and u would satisfy the same equation.
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However, vR ¤ u in R2 by definition and vR � u in a neighborhood of e by the second statement in
(6.52). The Strong Maximum Principle implies that they coincide everywhere, which contradicts the
first line in (6.52).

Hence vR is not a minimizer in B2. Let then v�R be a minimizer of Ep�, B2q, that agrees with vR
outside the ball B2, and we define the positive quantity

δR :� EpvR, B2q � Epv�R, B2q. (6.53)

We claim that

as R goes to infinity, δR remains bounded away from zero. (6.54)

To prove this, we assume by contradiction that

lim
RÑ�8

δR � 0. (6.55)

Consider ũ to be the translation of u, that is ũpxq :� upx� eq. Let also

mpxq :� min
 
upxq, ũpxq(.

We notice that in BR{2 we have that ũpxq � uR,�pxq. This and (6.49) give that

m � vR in BR{2. (6.56)

Also, from (6.52) and (6.56), it follows that m cannot be identically neither u nor ũ, and

m   u in a neighborhood of 0 and

m � u in a neighborhood of e.
(6.57)

Let z be a competitor for m in the ball B2, that agrees with m outside B2. We take a cut-off function
ψ P C8

0 pRnq such that ψ � 1 in BR{4, ψ � 0 in CBR{2. Let

zRpxq :� ψpxqzpxq � �
1� ψpxq�vRpxq.

Then we have that zR � z on BR{4 and

zR � vR on CBR{2. (6.58)

In addition, by (6.56), we have that z � m � vR in BR{2zB2. So, it follows that

zRpxq � ψpxqvRpxq � p1� ψpxqqvRpxq � vRpxq � zpxq on BR{2zB2.

This and (6.58) imply that zR � vR on CB2.
We summarize in the next lines these useful identities (see also Figure 6.3).

in B2 uR,� � ũ, m � vR, z � zR

in BR{2zB2 uR,� � ũ, v�R � vR � m � z � zR

in BRzBR{2 v�R � vR � zR, m � z

in CBR uR,� � u � vR � v�R � zR, m � z.

We compute now

Epm ,B2q � Epz,B2q
� Epm,B2q � EpvR, B2q � EpvR, B2q � EpzR, B2q � EpzR, B2q � Epz,B2q.

By the definition of δR in (6.53), we have that

Epm ,B2q � Epz,B2q
� Epm,B2q � EpvR, B2q � δR � Epv�R, B2q � EpzR, B2q � EpzR, B2q � Epz,B2q.

(6.59)
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Figure 6.3. Energy estimates

Using the formula for the kinetic energy given in (6.34) together with (6.35) we have that

Epm ,B2q � EpvR, B2q

� 1

2
mpB2, B2q �mpB2, CB2q �

»
B2

W
�
mpxq� dx

� 1

2
vRpB2, B2q � vRpB2, CB2q �

»
B2

W
�
vRpxq

�
dx.

Since m � vR on BR{2 (recall (6.56)), we obtain

Epm ,B2q � EpvR, B2q

�
»
B2

dx

»
CBR{2

dy
|mpxq �mpyq|2 � |mpxq � vRpyq|2

|x� y|n�2s
.

Notice now that m and vR are bounded on Rn (since so is u). Also, if x P B2 and y P CBR{2 we have
that |x� y| ¥ |y| � |x| ¥ |y|{2 if R is large. Accordingly,

Epm,B2q � EpvR, B2q ¤ C

»
B2

dx

»
CBR{2

1

|y|n�2s
dy ¤ CR�2s, (6.60)

up to renaming constants. Similarly, zR � z on BR{2 and we have the same bound

EpzR, B2q � Epz,B2q ¤ CR�2s. (6.61)

Furthermore, since v�R is a minimizer for Ep�, B2q and v�R � zR outside of B2, we have that

Epv�R, B2q � EpzR, B2q ¤ 0.

Using this, (7.55) and (7.4.3) in (6.59), it follows that

Epm,B2q � Epz,B2q ¤ CR�2s � δR.

Therefore, by sending RÑ �8 and using again (6.55), we obtain that

Epm,B2q ¤ Epz,B2q. (6.62)

We recall that z can be any competitor for m, that coincides with m outside of B2. Hence, for-
mula (6.62) means that m is a minimizer for Ep�, B2q. On the other hand, u is a minimizer of the
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energy in any ball. Then, both u and m satisfy the same equation in B2. Moreover, they coincide in
a neighborhood of e, as stated in the second line of (6.57). By the Strong Maximum Principle, they
have to coincide on B2, but this contradicts the first statement of (6.57). The proof of (6.54) is thus
complete.

Now, since v�R � vR on CB2, from definition (6.53) we have that

δR � EpvR, BRq � Epv�R, BRq.
Also, Epv�R, BRq ¥ Epu,BRq, thanks to the minimizing property of u. Using these pieces of information
and inequality (6.51), it follows that

δR ¤ EpuR,�, BRq � Epu,BRq.
Now, by sending RÑ �8 and using (6.54), we have that

lim
RÑ�8

EpuR,�, BRq � Epu,BRq ¡ 0,

which contradicts (6.48). This implies that indeed u is monotone, and this concludes the proof of this
Step.

Step 4. Conclusions
In Step 3, we have proved that u is monotone, in any given direction e. Then, Step 1 gives the desired
result. This concludes the proof of Theorem 6.2.1. �

We remark that the exponent two in the energy estimate (6.37) is related to the expansions of
order two and not to the dimension of the space. Indeed, the energy estimates hold for any n. However,
the two power in the estimate (6.37) allows us to prove the fractional version of De Giorgi conjecture
only in dimension two. In other words, the proof of Theorem 6.2.1 is not applicable for n ¡ 2. One
can verify this by checking the limit in (6.48)

lim
RÑ�8

�
EpuR,�, BRq � Epu,BRq

	
� 0,

which was necessary for the Proof of Theorem 6.2.1 in the case n � 2. We know from Theorem 6.1.2
that

lim
RÑ�8

C

Rn
Epu,BRq � 0.

Confronting this result with inequality (6.47)

EpuR,�, BRq � Epu,BRq ¤ C

R2
Epu,BRq,

we see that we need to have n � 2 in order for the the limit in (6.48) to be zero.

Of course, the one-dimensional symmetry property in Theorem 6.2.1 is inherited by the spatial
homogeneity of the equation, which is translation and rotation invariant. In the case, for instance, in
which the potential also depends on the space variable, the level sets of the (minimal) solutions may
curve, in order to adapt themselves to the spatial inhomogeneity.

Nevertheless, in the case of periodic dependence, it is possible to construct minimal solutions whose
level sets are possibly not planar, but still remain at a bounded distance from any fixed hyperplane.
As a typical result in this direction, we recall the following one (we refer to [43] for further details on
the argument):

Theorem 6.2.3. Let Q� ¡ Q� ¡ 0 and Q : Rn Ñ rQ�, Q�s. Suppose that Qpx� kq � Qpxq for
any k P Zn. Let us consider, in any ball BR, the energy defined by

Epu,BRq � KRpuq � 1

4

»
BR

Qpxq p1� u2q2dx,

where the kinetic energy KRpuq is defined as in (6.33).
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Figure 6.4. Minimal solutions in periodic medium

Then, there exists a constant M ¡ 0, such that, given any ω P BB1, there exists a minimal
solution uω of

p�∆qsuωpxq � Qpxq puωpxq � u3
ωpxqq for any x P Rn

for which the level sets t|uω| ¤ 9
10u are contained in the strip tx P Rn s.t. |ω � x| ¤Mu.

Moreover, if ω is rotationally dependent, i.e. if there exists ko P Zn such that ω � ko � 0, then uω
is periodic with respect to ω, i.e.

uωpxq � uωpyq for any x, y P Rn such that x� y � k and ω � k � 0.



CHAPTER 7

Nonlocal minimal surfaces

Abstract. In this chapter, we introduce nonlocal minimal surfaces. We first discuss a Bernstein

type result in any dimension, namely the property that an s-minimal graph in Rn�1 is flat (if no

singular cones exist in dimension n) and prove that an s-minimal surface whose prescribed data is
a subgraph, is itself a subgraph. The non-existence of nontrivial s-minimal cones in dimension 2

is then proved. Moreover, some boundary regularity properties will be discussed at the end of this

chapter: quite surprisingly, and differently from the classical case, nonlocal minimal surfaces do not
always attain boundary data in a continuous way (not even in low dimension). A possible boundary

behavior is, on the contrary, a combination of stickiness to the boundary and smooth separation

from the adjacent portions. Furthermore, in the last section we deal with the asymptotic behavior
as s Ñ 0� of the fractional mean curvature, and with the behavior of s-minimal surfaces when

s P p0, 1q is small in a bounded and connected open set with C2 boundary Ω � Rn. We classify
the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set

fixed outside of Ω). So, for s small and depending on the data at infinity, the s-minimal set can be

either empty in Ω, fill all Ω, or possibly develop a wildly oscillating boundary. Also, we prove the
continuity of the fractional mean curvature in all variables, for s P r0, 1s. Using this, we see that as

the parameter s varies, the fractional mean curvature may change sign.

In this chapter, we deal with nonlocal minimal surfaces, as introduced in [26] in 2010 (see also [144]
for a preliminary introduction to some properties of nonlocal minimal surfaces). In particular, follow-
ing the approach of De Giorgi (for classical minimal surfaces), we introduce the fractional perimeter
and look for minimizers in bounded open sets with respect to some fixed exterior data. The bound-
aries of such (nonlocal minimal) sets are called nonlocal minimal surfaces (and are indeed smooth
almost everywhere). We give in this chapter some notions on this subject, outline some nice recent
achievements and also present a new result on a stickiness phenomena when the fractional parameter
is small. So, in this Chapter 7


 we prove that s-minimal graphs in Rn�1 are flat if no singular cones exist in dimension n
(and this is related to a known Bernstein problem),


 we prove that minimizers with respect to the exterior data that is a subgraph, is a subgraph
also inside the domain,


 we prove that nontrivial minimal cones in dimension two do not exist (which implies, ac-
cording to the first item, that s-minimal graphs in R3 are flat),


 we discuss some nice examples of boundary regularity and stickiness phenomena.

In the last Section 7.4 we focus on the behavior of s-minimal surfaces for small values of the fractional
parameter. In particular


 we give the asymptotic behavior of the fractional mean curvature as sÑ 0�,

 we prove the continuity of the fractional mean curvature in all variables for s P r0, 1s,

 when s P p0, 1q is small we classify the behavior of s-minimal surfaces, in dependence of the

exterior data at infinity.

To give more details on the last item, we prove that when the fractional parameter is small and the
exterior data at infinity occupies (in measure, with respect to the weight) less than half the space,
then nonlocal minimal surfaces completely stick at the boundary (that is, they are empty inside the
domain), or become “topologically dense” in their domain. An analogues result, that is nonlocal

187
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minimal surfaces fill the domain or become dense, is obtained when the exterior data occupies in the
appropriate sense more than half the space (so this threshold is optimal).

Let s P p0, 1q1.
We introduce the fractional perimeter2 Let Ω � Rn be an open bounded set, and let E � Rn be

fixed outside of Ω. We consider minimizers of the Hs{2 norm

||χE ||2H s
2
�
»
Rn

»
Rn

|χEpxq � χEpyq|2
|x� y|n�s dx dy

�2

»
Rn

»
Rn

χEpxqχCEpyq
|x� y|n�s dx dy.

Notice that only the interactions between E and CE contribute to the norm.
In order to define the fractional perimeter of E in Ω, we need to clarify the contribution of Ω to the H

s
2

norm here introduced. Namely, as E is fixed outside Ω, we aim at minimizing the “Ω-contribution”
to the norm among all measurable sets that “vary” inside Ω. We consider thus interactions between
E XΩ and CE and between EzΩ and ΩzE, neglecting the data that is fixed outside Ω and that does
not contribute to the minimization of the norm (see Figure 7.1). We define the interaction IpA,Bq of

Figure 7.1. Fractional Perimeter

two disjoint subsets of Rn as

IpA,Bq :�
»
A

»
B

dx dy

|x� y|n�s �
»
Rn

»
Rn

χApxqχBpxq
|x� y|n�s dx dy. (7.1)

1 We point out that we use the fractional parameter s differently from the previous (and the following) chapters.
Indeed, it substitutes the 2s P p0, 2q power used up until now in the kernel defining our nonlocal operators. To give a
more precise idea, let us denote σ :� 2s P p0, 2q and write our singular kernel kernel (check (1.1) or (2.1)) as |x�y|�n�σ .

In the present chapter, the important thing is that σ will take into account only half of the interval of definition, that
is σ P p0, 1q, and this is equivalent to having (the original) s P p0, 1{2q. As a notation, we nonetheless writes s instead

of σ, hence we take s P p0, 1q. This is just a matter of notation, however we will make clear why we need to take the

power in the kernel smaller than 1 and not up until 2, in the upcoming Theorem 7.3.4.
2The next measure theoretic assumptions are assumed throughout this chapter. Up to modifying E � Rn on

a set of measure zero we can assume (see e.g. Appendix C of [109]) that E contains the measure theoretic interior

Eint :�
!
x P Rn | D r ¡ 0 s.t. |E XBrpxq| �

ωn
n
rn

)
� E, the complementary CE contains its measure theoretic interior

Eext :� tx P Rn | D r ¡ 0 s.t. |E X Brpxq| � 0u � CE, and the topological boundary of E coincides with its measure

theoretic boundary, BE � B�E, B�E :� RnzpEint Y Eextq � tx P Rn | 0   |E X Brpxq|   ωnrn for every r ¡ 0u. In

particular, we remark that both Eint and Eext are open sets.
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Then (see [26]), one defines the nonlocal s-perimeter functional of E in Ω as

PerspE,Ωq :� IpE X Ω, CEq � IpEzΩ,ΩzEq. (7.2)

Equivalently, one may write

PerspE,Ωq � IpE X Ω,ΩzEq � IpE X Ω, CΩzEq � IpEzΩ,ΩzEq.
Definition 7.0.4. Let Ω be an open set of Rn. A measurable set E � Rn is s-minimal in Ω if

PerspE,Ωq is finite and if, for any measurable set F such that EzΩ � F zΩ, we have that

PerspE,Ωq ¤ PerspF,Ωq.
A measurable set is s-minimal in Rn if it is s-minimal in any ball Br, where r ¡ 0.

The boundaries of s-minimal sets are referred to as nonlocal minimal surfaces.

We discuss briefly the behavior of the perimeter as s tends to 1 and to 0.
When sÑ 1�, the fractional perimeter Pers approaches the classical perimeter, see [20]. See also [44]
for the precise limit in the class of functions with bounded variations, [30,31] for a geometric approach
towards regularity and [11,123] for an approach based on Γ-convergence. See also [145] for a different
proof and Theorem 2.22 in [107] and the references therein for related discussions. A simple, formal
statement (up to renormalizing constants) is the following:

Theorem 7.0.5. Let R ¡ 0 and E be a set with finite perimeter in BR. Then

lim
sÑ1

p1� sqPerspE,Brq � Per pE,Brq
for almost any r P p0, Rq.

The behavior of Pers as sÑ 0� is slightly more involved. In principle, the limit as sÑ 0� of Pers
is, at least locally, related to the Lebesgue measure (see e.g. [113]). Nevertheless, the situation is
complicated by the terms coming from infinity, which, as s Ñ 0�, become of greater and greater
importance. We define in this sense the contribution from infinity of a set as

αpEq :� lim
sÑ0�

s

»
EzB1

dy

|y|n�s . (7.3)

We will study in more detail this quantity in the next Section 7.4.
It is proved in [57] that, if PersopE,Ωq is finite for some so P p0, 1q, and αpEq exists, then

lim
sÑ0

sPerspE,Ωq � pωn � αpEqq |E X Ω| � αpEq |ΩzE|. (7.4)

We remark that, using polar coordinates,

0 ¤ αpEq ¤ lim
sÑ0�

s

»
RnzB1

dy

|y|n�s � lim
sÑ0�

s ωn

» �8

1

ρ�1�s dρ � ωn,

therefore αpEq P r0, ωns plays the role of a convex interpolation parameter in the right hand-side
of (7.4) (up to normalization constants).
In this sense, formula (7.4) may be interpreted by saying that, as sÑ 0�, the s-perimeter concentrates
itself on two terms that are “localized” in the domain Ω, namely |EXΩ| and |ΩzE|. Nevertheless, the
proportion in which these two terms count is given by a “strongly nonlocal” interpolation parameter,
namely the quantity αpEq in (7.3) which “keeps track” of the behavior of E at infinity.
As a matter of fact, to see how αpEq is influenced by the behavior of E at infinity, one can com-
pute αpEq for the particular cases, as in Subsection 7.4.4. For instance, taking E a cone, then αpEq
gives in this case exactly the opening of the cone. We also remark that, in general, the limit in (7.3)
may not exist, even for smooth sets: indeed, it is possible that the set E “oscillates” wildly at infinity,
say from one cone to another one, leading to the non-existence of the limit in (7.3).
Moreover, we point out that the existence of the limit in (7.3) is equivalent to the existence of the
limit in (7.4), except in the very special case |EXΩ| � |ΩzE|, in which the limit in (7.4) always exists.
That is, the following alternative holds true:
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 if |E X Ω| � |ΩzE|, then the limit in (7.3) exists if and only if the limit in (7.4) exists,

 if |EXΩ| � |ΩzE|, then the limit in (7.4) always exists (even when the one in (7.3) does not

exist), and

lim
sÑ0

PerspE,Ωq � ωn |E X Ω| � ωn |ΩzE|.
We define now the s-fractional mean curvature of a set E at a point q P BE as the principal value

integral

IsrEspqq :� P.V.

»
Rn

χCEpyq � χEpyq
|y � q|n�s dy, (7.5)

that is

IsrEspqq :� lim
ρÑ0�

Iρs rEspqq, where Iρs rEspqq �
»
CBρpqq

χCEpyq � χEpyq
|y � q|n�s dy.

The fractional mean curvature gives the Euler-Lagrange equation corresponding to the s-perimeter
functional Pers. Indeed, in analogy with the case of classical minimal surfaces, which have zero mean
curvature, if E is s-minimal in Ω, then

IsrEs � 0, on BE X Ω, (7.6)

in an appropriate viscosity sense (see Theorem 5.1 of [26]).
Actually, by exploiting the interior regularity theory of s-minimal sets, the equation is satisfied in the
classical sense in a neighborhood of every “viscosity point” (see Appendix A in [108]). That is, if E
has at p P BE XΩ a tangent ball (either interior or exterior), then BE is C8 in Brppq, for some r ¡ 0
small enough, and

IsrEspxq � 0, @x P BE XBrppq.
Moreover, if Ω has a C2 boundary, then the Euler-Lagrange equation (at least as an inequality) holds
also at a point p P BE X BΩ,

It is also suggestive to think that the function χ̃E :� χCE �χE averages out to zero at the points
on BE, if BE is smooth enough, since at these points the local contribution of E compensates the one
of CE. Using this notation, for x0 P BE, one may take the liberty of writing

IsrEspx0q � 1

2

»
Rn

χ̃Epx0 � yq � χ̃Epx0 � yq
|y|n�s dy

� 1

2

»
Rn

χ̃Epx0 � yq � χ̃Epx0 � yq � 2χ̃Epx0q
|y|n�s dy

� ��p�∆q s2 χ̃Epx0q
Cpn, sq ,

using the notation of (1.1). Using this suggestive representation, the Euler-Lagrange equation in (7.6)
becomes

p�∆q s2 χ̃E � 0 along BE X Ω.

For the main properties of the fractional mean curvature, we refer to [2]. In particular, it is proved
there in Theorem 12 that for a set E � Rn with C2 boundary and any x P BE, one has

lim
sÑ1

p1� sqIsrEspxq � ωn�1HrEspxq,
where H is the classical mean curvature of E at the point x (with the convention that we take H such
that the curvature of the ball is a positive quantity). See also [31].

It is also worth recalling that the nonlocal perimeter functionals find applications in motions of
fronts by nonlocal mean curvature (see e.g. [29, 35, 96]), problems in which aggregating and disag-
gregating terms compete towards an equilibrium (see e.g. [81] and [54]) and nonlocal free boundary
problems (see e.g. [27] and [64]). See also [113] and [148] for results related to this type of problems.
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We point out that in order to find minimal surfaces we are looking for sets of minimal perimeter
(this was first done by De Giorgi in the classical case). However, it is necessary to prove that indeed
the boundaries of s-minimal sets are smooth surfaces. In the case of the local perimeter functional,
it is known indeed that the boundaries of minimal sets are smooth in dimension n ¤ 7. Moreover,
if n ¥ 8 minimal surfaces are smooth except on a small singular set of Hausdorff dimension n � 8.
Differently from the classical case, the regularity theory for s-minimizers is still quite open. We present
here some of the partial results obtained in this direction:

Theorem 7.0.6. In the plane, s-minimal sets are smooth. More precisely:
a) If E is an s-minimal set in Ω � R2, then BE X Ω is a C8-curve.
b) Let E be s-minimal in Ω � Rn and let ΣE � BE X Ω denote its singular set. Then HdpΣEq � 0
for any d ¡ n� 3.

See [133] for the proof of this results (as a matter of fact, in [133] only C1,α regularity is proved,
but then [14] proved that s-minimal sets with C1,α-boundary are automatically C8). Further regu-
larity results of the s-minimal surfaces can be found in [31]. There, a regularity theory when s is near
1 is stated, as we see in the following Theorem:

Theorem 7.0.7. There exists ε0 P p0, 1q such that if s ¥ 1� ε0, then
a) if n ¤ 7, any s-minimal set is of class C8,
b) if n � 8 any s-minimal surface is of class C8 except, at most, at countably many isolated points,
c) any s-minimal surface is of class C8 outside a closed set Σ of Hausdorff dimension n� 8.

7.1. Graphs and s-minimal surfaces

Minimal surfaces that are graphs are called minimal graphs, and they reduce to hyperplanes
if n ¤ 8 (this is called the Bernstein property, which was also discussed at the beginning of the
Chapter 6). If n ¥ 9, there exist global minimal graphs that are not affine (see e.g. [91]).

We will focus the upcoming material on two interesting results related to graphs: a Bernstein
type result, namely the property that an s-minimal graph in Rn�1 is flat (if no singular cones exist
in dimension n); we will then prove that an s-minimal surface whose prescribed data is a subgraph,
is itself a subgraph.

The first result is the following theorem:

Theorem 7.1.1. Let E � tpx, tq P Rn � R
�� t   upxqu be an s-minimal graph, and assume there

are no singular cones in dimension n (that is, if K � Rn is an s-minimal cone, then K is a half-space).
Then u is an affine function (thus E is a half-space).

To be able to prove Theorem 7.1.1, we recall some useful auxiliary results. In the following lemma
we state a dimensional reduction result (see Theorem 10.1 in [26]).

Lemma 7.1.2. Let E � F � R. Then if E is s-minimal if and only if F is s-minimal.

We define then the blow-up and blow-down of the set E are, respectively

E0 :� lim
rÑ0

Er and E8 :� lim
rÑ�8Er, where Er � E

r
.

A first property of the blow-up of E is the following (see Lemma 3.1 in [82]).

Lemma 7.1.3. If E8 is affine, then so is E.

We recall also a regularity result for the s-minimal surfaces (see [82] and [14] for details and
proof).

Lemma 7.1.4. Let E be s-minimal. Then:
a) If E is Lipschitz, then E is C1,α.
b) If E is C1,α, then E is C8.

We give here a sketch of the proof of Theorem 7.1.1 (see [82] for all the details).
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Sketch of the proof of Theorem 7.1.1. If E � Rn�1 is an s-minimal graph, then the blow-
down E8 is an s-minimal cone (see Theorem 9.2 in [26] for the proof of this statement). By applying
the dimensional reduction argument in Lemma 7.1.2 we obtain an s-minimal cone in dimension n.
According to the assumption that no singular s-minimal cones exist in dimension n, it follows that
necessarily E8 can be singular only at the origin.
We consider a bump function w0 P C8pR, r0, 1sq such that

w0ptq � 0 in

�
�8, 1

4



Y
�

3

4
,�8



w0ptq � 1 in

�
2

5
,

3

5



wptq � w0p|t|q.

The blow-down of E is

E8 �  px1, xn�1q
�� xn�1 ¤ u8px1q

(
.

For a fixed σ P BB1, let

Ft :�  px1, xn�1q
�� xn�1 ¤ u8

�
x1 � tθwpx1qσ�� t

(
be a family of sets, where t P p0, 1q and θ ¡ 0. Then for θ small, we have that

F1 is below E8. (7.7)

Indeed, suppose by contradiction that this is not true. Then, there exists θk Ñ 0 such that

u8
�
x1k � θkwpx1kqσ

�� 1 ¥ u8px1kq. (7.8)

But x1k P suppw, which is compact, therefore x18 :� lim
kÑ�8

x1k belongs to the support of w, and wpx18q
is defined. Then, by sending k Ñ �8 in (7.8) we have that

u8px18q � 1 ¥ u8px18q,
which is a contradiction. This establishes (7.7).

Now consider the smallest t0 P p0, 1q for which Ft is below E8. Since E8 is a graph, then Ft0
touches E8 from below in one point X0 � px10, x0

n�1q, where x10 P suppw. Since E8 is s-minimal, we
have that the nonlocal mean curvature (defined in (7.5)) of the boundary is null. Also, since Ft0 is a
C2 diffeomorphism of E8 we have that

IsrFt0sppq � θt0, (7.9)

and there is a region where E8 and Ft0 are well separated by t0, thus���E8zFt0�X �
B3zB2

��� ¥ ct0,

for some c ¡ 0. Therefore, we see that

IsrFt0sppq � IsrFt0sppq � IsrE8sppq ¥ ct0.

This and (7.9) give that θt0 ¥ ct0, for some c ¡ 0 (up to renaming it). If θ is small enough, this
implies that t0 � 0.

In particular, we have proved that there exists θ ¡ 0 small enough such that, for any t P p0, 1q
and any σ P BB1, we have that

u8
�
x1 � tθwpx1qσ�� t ¤ u8px1q.

This implies that
u8

�
x1 � tθwpx1qσ�� u8px1q

tθ
¤ 1

θ
,

hence, letting tÑ 0, we have that

∇u8px1qwpx1qσ ¤ 1

θ
, for any x P Rnzt0u, and σ P B1.
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We recall now that w � 1 in B3{5zB2{5 and σ is arbitrary in BB1. Hence, it follows that

|∇u8pxq| ¤ 1

θ
, for any x P B3{5zB2{5.

Therefore u8 is globally Lipschitz. By the regularity statement in Lemma 7.1.4, we have that u8
is C8. This says that u is smooth also at the origin, hence (being a cone) it follows that E8 is
necessarily a half-space. Then by Lemma 7.1.3, we conclude that E is a half-space as well. �

We introduce in the following theorem another interesting property related to s-minimal surfaces,
in the case in which the fixed given data outside a domain is a subgraph. In that case, the s-minimal
surface itself is a subgraph. Indeed:

Theorem 7.1.5. Let Ω0 be a bounded open subset of Rn�1 with boundary of class C1,1 and let
Ω :� Ω0 � R. Let E be an s-minimal set in Ω. Assume that

EzΩ � txn   upx1q, x1 P Rn�1zΩ0u (7.10)

for some continuous function u : Rn�1 Ñ R. Then

E X Ω � txn   vpx1q, x1 P Ω0u
for some function v : Rn�1 Ñ R.

The reader can see [65], where this theorem and the related results are proved; here, we only state
the preliminary results needed for our purposes and focus on the proof of Theorem 7.1.5. The proof

relies on a sliding method, more precisely, we take a translation of E in the nth direction, and move
it until it touches E from above. If the set E X Ω is a subgraph, then, up to a set of measure 0, the
contact between the translated E and E, will be E itself.

However, since we have no information on the regularity of the minimal surface, we need at first
to “regularize” the set by introducing the notions of supconvolution and subconvolution. With the
aid of a useful result related to the sub/supconvolution of an s-minimal surface, we proceed then with
the proof of the Theorem 7.1.5.

Figure 7.2. The supconvolution of a set

The supconvolution of a set E � Rn is given by

E7
δ :�

¤
xPE

Bδpxq.

In an equivalent way, the supconvolution can be written as

E7
δ �

¤
vPRn
|v|¤δ

pE � vq.
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Indeed, we consider δ ¡ 0 and an arbitrary x P E. Let y P Bδpxq and we define v :� y � x. Then

|v| ¤ |y � x| ¤ δ and y � x� v P E � v.

Therefore Bδpxq � E � v for |v| ¤ δ. In order to prove the inclusion in the opposite direction, one
notices that taking y P E � v with |v| ¤ δ and defining x :� y � v, it follows that

|x� y| � |v| ¤ δ.

Moreover, x P pE � vq � v � E and the inclusion E � v P Bδpxq is proved.
On the other hand, the subconvolution is defined as

E5
δ :� Rnz

�
pRnzEq7δ

	
.

Now, the supconvolution of E is a “regularized” version of E, whose nonlocal minimal curvature is
smaller than the one of E, i.e.:»

Rn

χCE7
δ
pyq � χE7

δ
pyq

|x� y|n�s dy ¤
»
Rn

χCEpyq � χEpyq
|x̃� y|n�s dy ¤ 0, (7.11)

for any x P BE7
δ, where x̃ :� x � v P BE for some v P Rn with |v| � δ. Then, by construction, the

set E � v lies in E7
δ, and this implies (7.11). Similarly, one has that the opposite inequality holds for

the subconvolution of E, namely for any x P BE5
δ»

Rn

χCE5
δ
pyq � χE5

δ
pyq

|x� y|n�s dy ¥ 0, (7.12)

By (7.11) and (7.12), we obtain:

Proposition 7.1.6. Let E be an s-minimal set in Ω. Let p P BE7
δ and assume that Bδppq � Ω.

Assume also that E7
δ is touched from above by a translation of E5

δ, namely there exists ω P Rn such
that

E7
δ � E5

δ � ω

and

p P pBE7
δq X pBE5

δ � ωq.
Then

E7
δ � E5

δ � ω.

Proof of Theorem 7.1.5. One first remarks is that the s-minimal set does not have spikes
which go to infinity: more precisely, one shows that

Ω0 � p�8,�Mq � E X Ω � Ω0 � p�8,Mq (7.13)

for some M ¥ 0. The proof of (7.13) can be performed by sliding horizontally a large ball, see [65]
for details.

After proving (7.13), one can deal with the core of the proof of Theorem 7.1.5. The idea is to slide
E from above until it touches itself and analyze what happens at the contact points. For simplicity,
we will assume here that the function u is uniformly continuous (if u is only continuous, the proof
needs to be slightly modified since the subconvolution and supconvolution that we will perform may
create new touching points at infinity). At this purpose, we consider Et � E � ten for t ¥ 0. Notice
that, by (7.13), if t ¥ 2M , then E � Et. Let then t be the smallest for which the inclusion E � Et
holds. We claim that t � 0. If this happens, one may consider

v � inftτ �� px, τq P CEu
and, up to sets of measure 0, E X Ω0 is the subgraph of v.

The proof is by contradiction, so let us assume that t ¡ 0. According to (7.10), the set EzΩ is
a subgraph, hence the contact points between BE and BEt must lie in Ω0 � R. Namely, only two
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Figure 7.3. Sliding E until it touches itself at an interior point

possibilities may occur: the contact point is interior (it belongs to Ω0 � Rq, or it is at the boundary
(on BΩ0 � R). So, calling p the contact point, one may have3 that

either p P Ω0 � R or (7.14)

p P BΩ0 � R. (7.15)

We deal with the first case in (7.14) (an example of this behavior is depicted in Figure 7.3). We

consider E7
δ and E5

δ to be the supconvolution, respectively the subconvolution of E. We then slide the
subconvolution until it touches the supconvolution. More precisely, let τ ¡ 0 and we take a translation

of the subconvolution, E5
δ � τen. For τ large, we have that E7

δ � E5
δ � τen and we consider τδ to be

the smallest for which such inclusion holds. We have (since t is positive by assumption) that

τδ ¥ t

2
¡ 0.

Moreover, for δ small, the sets BE7
δ and BpE5

δ � τδenq have a contact point which, according to (7.14),
lies in Ω0 � R. Let pδ be such a point, so we may write

pδ P pBE7
δq X BpE5

δ � τδenq and pδ P Ω0 � R.

Then, for δ small (notice that Bδppq � Ω), Proposition 7.1.6 yields that

E7
δ � E5

δ � τδen.

Considering δ arbitrarily small, one obtains that

E � E � τ0en, with τ0 ¡ 0.

3As a matter of fact, the number of contact points may be higher than one, and even infinitely many contact points
may arise. So, to be rigorous, one should distinguish the case in which all the contact points are interior and the case
in which at least one contact point lies on the boundary.

Moreover, since the surface may have vertical portions along the boundary of the domain, one needs to carefully
define the notion of contact points (roughly speaking, one needs to take a definition for which the vertical portions

which do not prevent the sliding are not in the contact set).

Finally, in case the contact points are all interior, it is also useful to perform the sliding method in a slighltly
reduced domain, in order to avoid that the supconvolution method produces new contact points at the boundary (which

may arise from vertical portions of the surfaces).

Since we do not aim to give a complete proof of Theorem 7.1.5 here, but just to give the main ideas and underline
the additional difficulty, we refer to [65] for the full details of these arguments.
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But E is a subgraph outside of Ω, and this provides a contradiction. Hence, the claim that t � 0 is
proved.

Let us see that we also obtain a contradiction when supposing that t ¡ 0 and that the second
case (7.15) holds. Let

p � pp1, pnq and p P pBEq X pBEtq.
Now, if one takes sequences ak P BE and bk P BEt, both that tend to p as k goes to infinity, since EzΩ
is a subgraph and t ¡ 0, necessarily ak, bk belong to Ω. Hence

p P pBEq X ΩX pBEtq X Ω. (7.16)

Thanks to Definition 2.3 in [26], one obtains that E is a variational subsolution in a neighborhood of
p. In other words, if A � E X Ω and p P A, then

0 ¥ PerspE,Ωq � PerspEzA,Ωq � IpA, CEq � IpA,EzAq
(we recall the definition of I in (7.1) and of the fractional perimeter Pers in (7.2)). According to
Theorem 5.1 in [26], this implies in a viscosity sense (i.e. if E is touched at p from outside by a ball),
that »

Rn

χCEpyq � χEpyq
|p� y|n�s dy ¤ 0. (7.17)

In order to obtain an estimate on the fractional mean curvature in the strong sense, we consider the
translation of the point p as follows:

pt � p� ten � pp1, pn � tq � pp1, pn,tq.
Since t ¡ 0, one may have that either pn � upp1q, or pn,t � upp1q.

These two possibilities can be dealt with in a similar way, so we just continue with the proof in the
case pn � upp1q (as is also exemplified in Figure 7.4). Taking r ¡ 0 small, the set BrppqzΩ is contained

entirely in E or in its complement. Moreover, one has from [25] that BEXBrppq is a C1, 1�s2 -graph in

the direction of the normal to Ω at p. That is: in Figure 7.4 the set E is C1, 1�s2 , hence in the vicinity
of p � pp1, pnq, it appears to be sufficiently smooth.

Figure 7.4. Sliding E until it touches itself at a boundary point

So, let νppq � pν1ppq, νnppqq be the normal in the interior direction, then up to a rotation and
since Ω is a cylinder (hence νnppq � 0), we can write νppq � e1. Therefore, there exists a function Ψ

of class C1, 1�s2 such that p1 � Ψpp2, . . . , pnq and, in the vicinity of p, we can write BE as the graph
G � tx1 � Ψpx2, . . . , xnqu.
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Given (7.16), we deduce that there exists a sequence pk P G such that pk P Ω and pk Ñ p as k Ñ 8.
From this it follows that there exists a sequence of points pk Ñ p such that

BE in the vicinity of pk is a graph of class C1, 1�s2 (7.18)

and »
Rn

χCEpyq � χEpyq
|pk � y|n�s dy � 0. (7.19)

From (7.18) and (7.19), and using a pointwise version of the Euler-Lagrange equation (see [65] for
details), we have that »

Rn

χCEpyq � χEpyq
|p� y|n�s dy � 0.

Now, E � Et for t strictly positive, hence»
Rn

χCEtpyq � χEtpyq
|p� y|n�s dy   0. (7.20)

Moreover, we have that the set BEt X B r
4
ppq must remain on one side of the graph G, namely one

could have that
Et XB r

4
ppq � tx1 ¤ Ψpx2, . . . , xnqu or

Et XB r
4
ppq � tx1 ¥ Ψpx2, . . . , xnqu.

Given again (7.16), we deduce that there exists a sequence p̃k P BEt X Ω such that p̃k Ñ p as k Ñ 8
and BEt X Ω in the vicinity of p̃k is touched by a surface lying in Et, of class C1, 1�s2 . Then»

Rn

χCEtpyq � χEtpyq
|p̃k � y|n�s dy ¥ 0.

Hence, making use of a pointwise version of the Euler-Lagrange equation (see [65] for details), we
obtain that »

Rn

χCEtpyq � χEtpyq
|p� y|n�s dy ¥ 0.

But this is a contradiction with (7.20), and this concludes the proof of Theorem 7.1.5. �

On the one hand, one may think that Theorem 7.1.5 has to be well-expected. On the other hand,
it is far from being obvious, not only because the proof is not trivial, but also because the statement
itself almost risks to be false, especially at the boundary. Indeed we will see in Theorem 7.3.2 that
the graph property is close to fail at the boundary of the domain, where the s-minimal surfaces may
present vertical tangencies and stickiness phenomena (see Figure 7.11).

7.2. Non-existence of singular cones in dimension 2

We now prove the non-existence of singular s-minimal cones in dimension 2, as stated in the next
result (from this, the more general statement in Theorem 7.0.6 follows after a blow-up procedure):

Theorem 7.2.1. If E is an s-minimal cone in R2, then E is a half-plane.

We remark that, as a combination of Theorems 7.1.1 and 7.2.1, we obtain the following result of
Bernstein type:

Corollary 7.2.2. Let E � tpx, tq P Rn � R
�� t   upxqu be an s-minimal graph, and assume that

n P t1, 2u. Then u is an affine function.

Let us first consider a simple example, given by the cone in the plane, drawn in Figure 7.5,

K :�
!
px, yq P R2

�� y2 ¡ x2
)
.

Proposition 7.2.3. The cone K depicted in Figure 7.5 is not s-minimal in R2.
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Figure 7.5. The cone K

Notice that, by symmetry, one can prove that K satisfies (7.6) (possibly in the viscosity sense).
On the other hand, Proposition 7.2.3 gives that K is not s-minimal. This, in particular, provides an
example of a set that satisfies the Euler-Lagrange equation in (7.6), but is not s-minimal (i.e., the
Euler-Lagrange equation in (7.6) is implied by, but not necessarily equivalent to, the s-minimality
property).

Proof of Proposition 7.2.3. The proof of the non-minimality of K is due to an original idea
by Luis Caffarelli.

Suppose by contradiction that the cone K is minimal in R2. We add to K a small square adjacent
to the origin (see Figure 7.6), and call K1 the set obtained. Then K and K1 have the same s-perimeter.
This is due to the interactions considered in the s-perimeter functional and the unboundedness of the
regions. We remark that in Figure 7.6 we draw bounded regions, of course, sets A,B,C,D,A1, B1, C 1

and D1 are actually unbounded. Indeed, we notice that in the first image, the white square M interacts

Figure 7.6. Interaction of M with A,B,C,D,A1, B1, C 1, D1

with the dark regions A,B,C,D, while in the second the now dark square M interacts with the regions
A1, B1, C 1, D1, and all the other interactions are unmodified. Therefore, the difference between the s-
perimeter of K and that of K1 consists only of the interactions IpA,Mq�IpB,Mq�IpC,Mq�IpD,Mq�
IpA1,Mq � IpB1,Mq � IpC 1,Mq � IpD1,Mq. But AYB � A1 YB1 and C YD � C 1 YD1 (since these
sets are all unbounded), therefore the difference is null, and the s-perimeter of K is equal to that of
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K1. Consequently, K1 is also s-minimal, and therefore it satisfies the Euler-Lagrange equation in (7.6)
at the origin. But this leads to a contradiction, since the the dark region now contributes more than
the white one, namely »

R2

χCK1pyq � χK1pyq
|y|2�s dy   0.

Thus K cannot be s-minimal, and this concludes our proof. �

Figure 7.7. Cone in R2

This geometric argument cannot be extended to a more general case (even, for instance, to a cone
in R2 made of many sectors, see Figure 7.7). As a matter of fact, the proof of Theorem 7.2.1 will
be completely different than the one of Proposition 7.2.3 and it will rely on an appropriate domain
perturbation argument.

The proof of Theorem 7.2.1 that we present here is actually different than the original one in [133].
Indeed, in [133], the result was proved by using the harmonic extension for the fractional Laplacian.
Here, the extension will not be used; furthermore, the proof follows the steps of Theorem 6.2.1 and
we will recall here just the main ingredients.

Proof of Theorem 7.2.1. The idea of the proof is the following: if E � R2 is an s-minimal
cone, then let Ẽ be a perturbation of the set E which coincides with a translation of E in BR{2 and

with E itself outside BR. Then the difference between the energies of Ẽ and E tends to 0 as RÑ �8.
This implies that also the energy of E X Ẽ is arbitrarily close to the energy of E. On the other hand
if E is not a half-plane, the set Ẽ XE can be modified locally to decrease its energy by a fixed small
amount and we reach a contradiction.

The details of the proof go as follows. Let

u :� χCE � χE .

We use now definition (6.35) and Theorem 6.1.2 with s P p0, 1q instead of σ :� 2s as the power of the
denominator (check the observation in the footnote at page 188 and Theorem 7.3.4 further on). We
have that

upBR, BRq � 8IpE XBR, CE XBRq
and

upBR, CBRq � 4IpBR X E, CEzBRq � 4IpCE XBR, EzBRq,
thus (up to constants that we neglect)

PerspE,BRq � KRpuq, (7.21)
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where KRpuq is given in (6.33) and PerspE,BRq is the s-perimeter functional defined in (7.2). Then
E is s-minimal if u is a minimizer of the energy KR in any ball BR, with R ¡ 0.

Now, we argue by contradiction, and suppose that E is an s-minimal cone different from the
half-space. Up to rotations, we may suppose that a sector of E has an angle smaller than π and is
bisected by e2. Thus there exists M ¥ 1 and p P E XBM on the e2-axis such that (see Figure 7.7)

p� e1 P CE.
We take ϕ P C8

0 pB1q, such that ϕpxq � 1 in B1{2. For R large (say R ¡ 8M), we define

ΨR,�pyq :� y � ϕ
� y
R

	
e1.

We point out that, for R large, ΨR,� is a diffeomorphism on R2.

Furthermore, we define u�Rpxq :� upΨ�1
R,�pxqq. Then

u�Rppq � upp� e1q for p P B2M

and u�Rppq � uppq for p P CBR.
We recall the estimate obtained in (6.37), that, combined with the minimality of u, gives

KRpu�Rq �KRpuq ¤ C

R2
KRpuq.

But u is a minimizer in any ball, and by the energy estimate in Theorem 6.1.2 we have that

KRpu�Rq �KRpuq ¤ CR�s.

This implies that
lim

RÑ�8
KRpu�Rq �KRpuq � 0. (7.22)

Let now
vRpxq :� maxtupxq, u�Rpxqu and wRpxq :� mintupxq, u�Rpxqu.

We claim that vR is not identically u nor u�R. Indeed, since p� e1 P CE and p P E
u�Rppq � upp� e1q � pχCE � χEqpp� e1q � 1 and

uppq � pχCE � χEqppq � �1.

On the other hand,

u�Rpp� e1q � uppq � �1 and

upp� e1q � pχCE � χEqpp� e1q � 1.

By the continuity of u and u�R, we obtain that

vR � u�R ¡ u in a neighborhood of p (7.23)

and
vR � u ¡ u�R in a neighborhood of p� e1. (7.24)

By the minimality of u,
KRpuq ¤ KRpvRq.

Moreover (see e.g. formula (38) in [120]),

KRpvRq �KRpwRq ¤ KRpuq �KRpu�Rq.
The latter two formulas give that

KRpvRq ¤ KRpu�Rq. (7.25)

We claim that
vR is not minimal for K2M (7.26)

with respect to compact perturbations in B2M . Indeed, assume by contradiction that vR is minimal,
then in B2M both vR and u would satisfy the same equation. Recalling (7.24) and applying the Strong
Maximum Principle, it follows that u � vR in B2M , which contradicts (7.23). This establishes (7.26).
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Now, we consider a minimizer u�R of K2M among the competitors that agree with vR outside B2M .
Therefore, we can define

δR :� K2M pvRq �K2M pu�Rq.
In light of (7.26), we have that δR ¡ 0.

The reader can now compare Step 3 in the proof of Theorem 6.2.1. There we proved that

δR remains bounded away from zero as RÑ �8. (7.27)

Furthermore, since u�R and vR agree outside B2M we obtain that

KRpu�Rq � δR � KRpvRq.
Using this, (7.25) and the minimality of u, we obtain that

δR � KRpvRq �KRpu�Rq ¤ KRpu�Rq �KRpuq.
Now we send R to infinity, recall (7.22) and (7.27), and we reach a contradiction. Thus, E is a
half-space, and this concludes the proof of Theorem 7.2.1. �

As already mentioned, the regularity theory for s-minimal sets is still widely open. Little is known
beyond Theorems 7.0.6 and 7.0.7, so it would be very interesting to further investigate the regularity
of s-minimal surfaces in higher dimension and for small s.

It is also interesting to recall that if the s-minimal surface E is a subgraph of some function u :
Rn�1 Ñ R (at least in the vicinity of some point x0 � px10, upx10qq P BE) then the Euler-Lagrange (7.6)
can be written directly in terms of u. For instance (see formulas (49) and (50) in [14]), under
appropriate smoothness assumptions on u, formula (7.6) reduces to

0 �
»
Rn

χCEpx0 � yq � χEpx0 � yq
|y|n�s dy

�
»
Rn�1

F

�
upx10 � y1q � upx10q

|y1|



ζpy1q
|y1|n�1�s dy

1 �Ψpx10q,

for suitable F and Ψ, and a cut-off function ζ supported in a neighborhood of x10.

Figure 7.8. A nonlocal catenoid

Regarding the regularity problems of the s-minimal surfaces, let us mention the recent papers [47]
and [48]. Among other very interesting results, it is proved there that suitable singular cones of
symmetric type are unstable up to dimension 6 but become stable in dimension 7 for small s (these
cones can be seen as the nonlocal analogue of the Lawson cones in the classical minimal surface theory,
and the stability property is in principle weaker than minimality, since it deals with the positivity of
the second order derivative of the functional).
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This phenomenon may suggest the conjecture that the s-minimal surfaces may develop singulari-
ties in dimension 7 and higher when s is sufficiently small.

In [48], interesting examples of surfaces with vanishing nonlocal mean curvature are provided for s
sufficiently close to 1. Remarkably, the surfaces in [48] are the nonlocal analogues of the catenoids,
but, differently from the classical case (in which catenoids grow logarithmically), they approach a
singular cone at infinity, see Figure 7.8.

Also, these nonlocal catenoids are highly unstable from the variational point of view, since they
possess infinite Morse index (differently from the standard catenoid, which has Morse index equal to
one, i.e. it is, roughly speaking, a minimizer in any functional direction with the exception of one).

Moreover, in [48], there are also examples of surfaces with vanishing nonlocal mean curvature
that can be seen as the nonlocal analogues of two parallel hyperplanes. Namely, for s sufficiently
close to 1, there exists a surface of revolution made of two sheets which are the graph of a radial
function f � �fprq. When r is small, f is of the order of 1 � p1 � sqr2, but for large r it becomes
of the order of

?
1� s � r. That is, the two sheets “repel each other” and produce a linear growth at

infinity. When s approaches 1 the two sheets are locally closer and closer to two parallel hyperplanes,
see Figure 7.9.

The construction above may be extended to build families of surfaces with vanishing nonlocal mean
curvature that can be seen as the nonlocal analogue of k parallel hyperplanes, for any k P N. These
k-sheet surfaces can be seen as the bifurcation, as s is close to 1, of the parallel hyperplanes txn � aiu,
for i P t1, . . . , ku, where the parameters ai satisfy the constraints

a1 ¡ � � � ¡ ak,
ķ

i�1

ai � 0 (7.28)

and the balancing relation

ai � 2
¸

1¤j¤n
j�i

p�1qi�j�1

ai � aj
. (7.29)

It is actually quite interesting to observe that solutions of (7.29) correspond to (nondegenerate)

Figure 7.9. A two-sheet surface with vanishing fractional mean curvature
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critical points of the functional

Epa1, . . . , akq :� 1

2

ķ

i�1

a2
i �

¸
1¤j¤n
j�i

p�1qi�j log |ai � aj |

among all the k-ples pa1, . . . , akq that satisfy (7.28).

These bifurcation techniques rely on a careful expansion of the fractional perimeter functional
with respect to normal perturbations. That is, if E is a (smooth) set with vanishing fractional mean
curvature, and h is a smooth and compactly supported perturbation, one can define, for any t P R,

Ehptq :� tx� thpxqνpxq, x P BEu,
where νpxq is the exterior normal of E at x. Then, the second variation of the perimeter of Ehptq
at t � 0 is (up to normalization constants)»

BE

hpyq � hpxq
|x� y|n�s dHn�1pyq � hpxq

»
BE

�
νpxq � νpyq� � νpxq

|x� y|n�s dHn�1pyq

�
»
BE

hpyq � hpxq
|x� y|n�s dHn�1pyq � hpxq

»
BE

1� νpxq � νpyq
|x� y|n�s dHn�1pyq.

Notice that the latter integral is non-negative, since νpxq�νpyq ¤ 1. The quantity above, in dependence
of the perturbation h, is called, in jargon, “Jacobi operator”. It encodes an important geometric
information, and indeed, as sÑ 1, it approaches the classical operator

∆BEh� |ABE |2 h,
where ∆BE is the Laplace-Beltrami operator along the hypersurface BE and |ABE |2 is the sum of the
squares of the principal curvatures.

Other interesting sets that possess constant nonlocal mean curvature with the structure of on-
duloids have been recently constructed in [46] and in [22]. This type of sets are periodic in a given
direction and their construction has perturbative nature (indeed, the sets are close to a slab in the
plane).

It is interesting to remark that the planar objects constructed in [22] have no counterpart in the
local framework, since hypersurfaces of constant classical mean curvature with an onduloidal structure
only exist in Rn with n ¥ 3: once again, this is a typical nonlocal effect, in which the nonlocal mean
curvature at a point is influenced by the global shape of the set.

While unbounded sets with constant nonlocal mean curvature and interesting geometric features
have been constructed in [22,48], the case of smooth and bounded sets is always geometrically trivial.
As a matter of fact, it has been recently proved independently in [22] and [39] that bounded sets
with smooth boundary and constant mean curvature are necessarily balls (this is the analogue of a
celebrated result by Alexandrov for surfaces of constant classical mean curvature).

7.3. Boundary regularity

The boundary regularity of the nonlocal minimal surfaces is also a very interesting, and surprising,
topic. Indeed, differently from the classical case, nonlocal minimal surfaces do not always attain
boundary data in a continuous way (not even in low dimension). A possible boundary behavior is, on
the contrary, a combination of stickiness to the boundary and smooth separation from the adjacent
portions. Namely, the nonlocal minimal surfaces may have a portion that sticks at the boundary and

that separates from it in a C1, 1�s2 -way. As an example, we can consider, for any δ ¡ 0, the spherical
cap

Kδ :� �
B1�δzB1

�X txn   0u,
and obtain the following stickiness result:
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Figure 7.10. Stickiness properties of Theorem 7.3.1.

Theorem 7.3.1. There exists δ0 ¡ 0, depending on n and s, such that for any δ P p0, δ0s, we have
that the s-minimal set in B1 that coincides with Kδ outside B1 is Kδ itself.

That is, the s-minimal set with datum Kδ outside B1 is empty inside B1.

The stickiness property of Theorem 7.3.1 is depicted in Figure 7.10.
Other stickiness examples occur at the sides of slabs in the plane. For instance, given M ¡ 1,

one can consider the s-minimal set EM in p�1, 1q � R with datum outside p�1, 1q � R given by the
“jump” set JM :� J�M Y J�M , where

J�M :� p�8,�1s � p�8,�Mq
and J�M :� r1,�8q � p�8,Mq.

Then, if M is large enough, the minimal set EM sticks at the boundary of the slab:

Theorem 7.3.2. There exist Mo ¡ 0, Co ¡ 0, depending on s, such that if M ¥Mo then

r�1, 1q � rCoM
1�s
2�s ,M s � EcM (7.30)

and p�1, 1s � r�M,�CoM
1�s
2�s s � EM . (7.31)

The situation of Theorem 7.3.2 is described in Figure 7.11. We mention that the “strange”
exponent 1�s

2�s in (7.30) and (7.31) is optimal.

For the detailed proof of Theorems 7.3.1 and 7.3.2, and other results on the boundary behavior
of nonlocal minimal surfaces, see [63]. Here, we limit ourselves to give some heuristic motivation and
a sketch of the proofs.

As a motivation for the (somehow unexpected) stickiness property at the boundary, one may look
at Figure 7.10 and argue like this. In the classical case, corresponding to s � 1, independently on the
width δ, the set of minimal perimeter in B1 will always be the half-ball B1 X txn   0u.

Now let us take s   1. Then, the half-ball B1 X txn   0u cannot be an s-minimal set, since
the nonlocal mean curvature, for instance, at the origin cannot vanish. Indeed, the origin “sees” the
complement of the set in a larger proportion than the set itself. More precisely, in B1 (or even in B1�δ)
the proportion of the set is the same as the one of the complement, but outside B1�δ the complement
of the set is dominant. Therefore, to “compensate” this lack of balance, the s-minimal set for s   1
has to bend a bit. Likely, the s-minimal set in this case will have the tendency to become slightly
convex at the origin, so that, at least nearby, it sees a proportion of the set which is larger than the
proportion of the complement (we recall that, in any case, the proportion of the complement will be
larger at infinity, so the set needs to compensate at least near the origin). But when δ is very small,
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Figure 7.11. Stickiness properties of Theorem 7.3.2.

it turns out that this compensation is not sufficient to obtain the desired balance between the set and
its complement: therefore, the set has to “stick” to the half-sphere, in order to drop its constrain to
satisfy a vanishing nonlocal mean curvature equation.

Of course some quantitative estimates are needed to make this argument work, so we describe the
sketch of the rigorous proof of Theorem 7.3.1 as follows.

Sketch of the proof of Theorem 7.3.1. First of all, one checks that for any fixed η ¡ 0,
if δ ¡ 0 is small enough, we have that the interaction between B1 and B1�δzB1 is smaller than η. In
particular, by comparing with a competitor that is empty in B1, by minimality we obtain that

PerspEδ, B1q ¤ η, (7.32)

where we have denoted by Eδ the s-minimal set in B1 that coincides with Kδ outside B1.
Then, one checks that

the boundary of Eδ can only lie in a small neighborhood of BB1 (7.33)

if δ is sufficiently small.
Indeed, if, by contradiction, there were points of BEδ at distance larger than ε from BB1, then one
could find two balls of radius comparable to ε, whose centers lie at distance larger than ε{2 from BB1

and at mutual distance smaller than ε, and such that one ball is entirely contained in B1 X Eδ and
the other ball is entirely contained in B1zEδ (this is due to a Clean Ball Condition, see Corollary 4.3
in [26]). As a consequence, PerspEδ, B1q is bounded from below by the interaction of these two balls,
which is at least of the order of εn�s. Then, we obtain a contradiction with (7.32) (by choosing η
much smaller than εn�s, and taking δ sufficiently small).

This proves (7.33). From this, it follows that

the whole set Eδ must lie in a small neighborhood of BB1. (7.34)

Indeed, if this were not so, by (7.33) the set Eδ must contain a ball of radius, say 1{2. Hence,
PerspEδ, B1q is bounded from below by the interaction of this ball against txn ¡ 0uzB1, which would
produce a contribution of order one, which is in contradiction with (7.32).
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Having proved (7.34), one can use it to complete the proof of Theorem 7.3.1 employing a geometric
argument. Namely, one considers the ball Bρ, which is outside Eδ for small ρ ¡ 0, in virtue of (7.34),
and then enlarges ρ untill it touches BEδ. If this contact occurs at some point p P B1, then the
nonlocal mean curvature of Eδ at p must be zero. But this cannot occur (indeed, we know by (7.34)
that the contribution of Eδ to the nonlocal mean curvature can only come from a small neighborhood
of BB1, and one can check, by estimating integrals, that this is not sufficient to compensate the outer
terms in which the complement of Eδ is dominant).

As a consequence, no touching point between Bρ and BEδ can occur in B1, which shows that Eδ
is empty inside B1 and completes the proof of Theorem 7.3.1. �

As for the proof of Theorem 7.3.2, the main arguments are based on sliding a ball of suitably large
radius till it touches the set, with careful quantitative estimates. Some of the details are as follows
(we refer to [63] for the complete arguments).

Sketch of the proof of Theorem 7.3.2. The first step is to prove a weaker form of sticki-
ness as the one claimed in Theorem 7.3.2. Namely, one shows that

r�1, 1q � rcoM ,M s � EcM (7.35)

and p�1, 1s � r�M, �coM s � EM , (7.36)

for some co P p0, 1q. Of course, the statements in (7.30) and (7.31) are stronger than the ones in (7.35)
and (7.36) when M is large, since 1�s

2�s   1, but we will then obtain them later in a second step.

To prove (7.35), one takes balls of radius coM and centered at tx2 � tu, for any t P rcoM, M s.
One slides these balls from left to right, till one touches BEM . When M is large enough (and co small
enough) this contact point cannot lie in t|x1|   1u. This is due to the fact that at least the sliding ball
lies outside EM , and the whole tx2 ¡ Mu lies outside EM as well. As a consequence, these contact
points see a proportion of EM smaller than the proportion of the complement (it is true that the
whole of tx2   �Mu lies inside EM , but this contribution comes from further away than the ones just
mentioned, provided that co is small enough). Therefore, contact points cannot satisfy a vanishing
mean curvature equation and so they need to lie on the boundary of the domain (of course, careful
quantitative estimates are necessary here, see [63], but we hope to have given an intuitive sketch of
the computations needed).

In this way, one sees that all the portion r�1, 1q�rcoM ,M s is clean from the set EM and so (7.35)
is established (and (7.36) can be proved similarly).

Once (7.35) and (7.36) are established, one uses them to obtain the strongest form expressed
in (7.30) and (7.31). For this, by (7.35) and (7.36), one has only to take care of points in t|x2| P
rCoM

1�s
2�s , coM su. For these points, one can use again a sliding method, but, instead of balls, one has

to use suitable surfaces obtained by appropriate portions of balls and adapt the calculations in order
to evaluate all the contributions arising in this way.

The computations are not completely obvious (and once again we refer to [63] for full details),

but the idea is, once again, that contact points that are in the set t|x2| P rCoM
1�s
2�s , coM su cannot

satisfy the balancing relation prescribed by the vanishing nonlocal mean curvature equation. �

The stickiness property discussed above also has an interesting consequence in terms of the “geo-
metric stability” of the flat s-minimal surfaces. For instance, rather surprisingly, the flat lines in the
plane are “geometrically unstable” nonlocal minimal surfaces, in the sense that an arbitrarily small
and compactly supported perturbation can produce a stickiness phenomenon at the boundary of the
domain. Of course, the smaller the perturbation, the smaller the stickiness phenomenon, but it is quite
relevant that such a stickiness property can occur for arbitrarily small (and “nice”) perturbations.
This means that s-minimal flat objects, in presence of a perturbation, may not only “bend” in the
center of the domain, but rather “jump” at boundary points as well.
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To state this phenomenon in a mathematical framework, one can consider, for fixed δ ¡ 0 the
planar sets

H :� R� p�8, 0q,
F� :� p�3,�2q � r0, δq

and F� :� p2, 3q � r0, δq.
One also fixes a set F which contains HYF�YF� and denotes by E be the s-minimal set in p�1, 1q�R
among all the sets that coincide with F outside p�1, 1q �R. Then, this set E sticks at the boundary

Figure 7.12. The stickiness/instability property in Theorem 7.3.3, with β :� 2�ε0
1�s

of the domain, according to the next result:

Theorem 7.3.3. Fix ε0 ¡ 0 arbitrarily small. Then, there exists δ0 ¡ 0, possibly depending on ε0,
such that, for any δ P p0, δ0s,

E � p�1, 1q � p�8, δ 2�ε0
1�s s.

The stickiness/instability property in Theorem 7.3.3 is depicted in Figure 7.12. We remark that
Theorem 7.3.3 gives a rather precise quantification of the size of the stickiness in terms of the size
of the perturbation: namely the size of the stickiness in Theorem 7.3.3 is larger than the size of the
perturbation to the power β :� 2�ε0

1�s , for any ε0 ¡ 0 arbitrarily small. Notice that β Ñ �8 as sÑ 1,
consistently with the fact that classical minimal surfaces do not stick at the boundary.

The proof of Theorem 7.3.3 is based on the construction of suitable auxiliary barriers. These
barriers are used to detach a portion of the set in a neighborhood of the origin and their construction
relies on some compensations of nonlocal integral terms. In a sense, the building blocks of these
barriers are “self-sustaining solutions” that can be seen as the geometric counterparts of the s-harmonic
function xs� discussed in Section 2.1.3.

Indeed, roughly speaking, like the function xs�, these barriers “see” a proportion of the set in tx1  
0u larger than what is produced by their tangent plane, but a proportion smaller than that at infinity,
due to their sublinear behavior. Once again, the computations needed to check such a balancing
conditions are a bit involved, and we refer to [63] for the complete details.
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Figure 7.13. Auxiliary barrier for the proof of Theorem 7.3.3

To conclude this section, we make a remark on the connection between solutions of the fractional
Allen-Cahn equation and s-minimal surfaces. Namely, a suitably scaled version of the functional in
(6.9) Γ-converges to either the classical perimeter or the nonlocal perimeter functional, depending on
the fractional parameter. The Γ-convergence is a type of convergence of functionals that is compatible
with the minimization of the energy, and turns out to be very useful when dealing with variational
problems indexed by a parameter. This notion was introduced by De Giorgi, see e.g. [49] for details.

Let us denote σ :� 2s P p0, 2q in the definition of the functional in (6.9). This choice is related to
the observation in the footnote at page 188. In the nonlocal case, some care is needed to introduce the
“right” scaling of the functional, which comes from the dilation invariance of the space coordinates
and possesses a nontrivial energy in the limit. For this, one takes first the rescaled energy functional

Jεpu,Ωq :� εσKpu,Ωq �
»

Ω

W puq dx,

where K is the kinetic energy defined in (6.10) (where we replace 2s with σ). Then, one considers the
functional

Fεpu,Ωq :�

$'&'%
ε�σJεpu,Ωq if σ P p0, 1q,
|ε log ε|�1Jεpu,Ωq if σ � 1,

ε�1Jεpu,Ωq if σ P p1, 2q.
The limit functional of Fε as εÑ 0 depends on σ. Namely, when σ P p0, 1q, the limit functional is (up
to dimensional constants that we neglect) the fractional perimeter, i.e.

F pu,Ωq :�
#

PerσpE,Ωq if u|Ω � χE � χCE , for some set E � Ω

�8 otherwise.
(7.37)

On the other hand, when σ P r1, 2q, the limit functional of Fε is (again, up to normalizing constants)
the classical perimeter, namely

F pu,Ωq :�
#

PerpE,Ωq if u|Ω � χE � χCE , for some set E � Ω

�8 otherwise,
(7.38)
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That is, the following limit statement holds true:

Theorem 7.3.4. Let σ P p0, 2q. Then, Fε Γ-converges to F , as defined in either (7.37) or (7.38),
depending on whether σ P p0, 1q or σ P r1, 2q.

For precise statements and further details, see [132].
We remark here that Theorem 7.3.4 clarifies now why we take σ P p0, 1q (that we denoted and will

denote in this chapter by s) when defining our nonlocal operators of this chapter, i.e. the fractional
perimeter and the fractional mean curvature (check again the footnote at page 188).

Additionally, we remark that the level sets of the minimizers of the functional in (6.9), after a
homogeneous scaling in the space variables, converge locally uniformly to minimizers either of the
fractional perimeter (if σ P p0, 1q) or of the classical perimeter (if σ P r1, 2q): that is, the “functional”
convergence stated in Theorem 7.3.4 has also a “geometric” counterpart: for this, see Corollary 1.7
in [134].

One can also interpret Theorem 7.3.4 by saying that a nonlocal phase transition possesses two
parameters, ε and s/σ. When ε Ñ 0, the limit interface approaches a minimal surface either in the
fractional case (when σ P p0, 1q) or in the classical case (when σ P r1, 2q). This bifurcation at σ � 1
somehow states that for lower values of σ the nonlocal phase transition possesses a nonlocal interface
in the limit, but for larger values of σ the limit interface is characterized only by local features (in a
sense, when σ P p0, 1q the “surface tension effect” is nonlocal, but for σ P r1, 2q this effect localizes).

It is also interesting to compare Theorems 7.0.5 and 7.3.4, since the bifurcation at σ � 1 detected
by Theorem 7.3.4 is perfectly compatible with the limit behavior of the fractional perimeter, which
reduces to the classical perimeter exactly for this value of σ, as stated in Theorem 7.0.5.
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7.4. Complete stickiness at the boundary of nonlocal minimal surfaces for small values
of the fractional perimeter

In this section, we deal with the behavior of nonlocal minimal surfaces when the fractional pa-
rameter (that we denote by s P p0, 1q) is small. In particular


 we give the asymptotic behavior of the fractional mean curvature as sÑ 0�,

 we classify the behavior of s-minimal surfaces, in dependence of the exterior data at infinity.

Moreover, we prove the continuity of the fractional mean curvature in all variables for s P r0, 1s.
The results in this section take their inspiration from [57, 63]. It is a known result, see [26,

Corollary 5.3] that when the exterior data is a half-space, the s-minimal set itself is the same half-
space. On the other hand, as we prove here, by just removing some small set from the half-space, for
s small enough the s-minimal set completely sticks to the boundary.

This section is organized as follow. We give some preliminary results on the contribution from
infinity of sets in Subsection 7.4.2.

In Subsection 7.4.3, we consider an exterior data “occupying at infinity” in measure, with respect
to an appropriate weight, less than an half-space. To be precise

αpE0q   ωn
2
. (7.39)

In this hypothesis:


 we give some asymptotic estimates of the density, in particular showing that when s is small
enough, s-minimal sets cannot fill their domain.


 we give some estimates on the fractional mean curvature. In particular we show that if a set
E has an exterior tangent ball of radius δ at some point p P BE, then the s-fractional mean
curvature of E at p is strictly positive for every s   sδ.


 we prove that when the fractional parameter is small and the exterior data at infinity occu-
pies (in measure, with respect to the weight) less than half the space, then s-minimal sets
completely stick at the boundary (that is, they are empty inside the domain), or become
“topologically dense” in their domain. A similar result, which says that nonlocal minimal
surfaces fill the domain or their complementaries become dense, can be obtained in the same
way, when the exterior data occupies in the appropriate sense more than half the space (so
this threshold is somehow optimal,).


 we narrow the set of minimal sets that become dense in the domain for s small. As a
matter of fact, if the exterior data does not completely surrounds the domain, s-minimal
sets completely stick at the boundary.

In Subsection 7.4.4, we provide some examples in which we are able to explicitly compute the contri-
bution from infinity of sets. Subsection 7.4.5 contains the continuity of the fractional mean curvature
operator in all its variables for s P r0, 1s. As a corollary, we show that for sÑ 0� the fractional mean
curvature at a regular point of the boundary of a set, takes into account only the behavior of that set
at infinity. Furthermore, the continuity property implies that the mean curvature at a regular point
on the boundary of a set may change sign, as s varies, depending on the signs of the two asymptotics
as sÑ 1� and sÑ 0�.

In the last Section 7.4.6 we collect some useful results that we use in this paper.

7.4.1. Statements of the main results. We remark that the quantity α (defined in (7.3)) may
not exist (see Example 2.8 and 2.9 in [57]). For this reason, we also define

αpEq :� lim sup
sÑ0�

s

»
CB1

χEpyq
|y|n�s dy, αpEq :� lim inf

sÑ0�
s

»
CB1

χEpyq
|y|n�s dy. (7.40)

This set parameter plays an important role in describing the asymptotic behavior of the fractional
mean curvature as sÑ 0� for unbounded sets. As a matter of fact, the limit as sÑ 0� of the fractional
mean curvature for a bounded set is a positive, universal constant (independent of the set), see e.g.
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(Appendix B in [67]). On the other hand, this asymptotic behavior changes for unbounded sets, due
to the set function αpEq, as described explicitly in the following result:

Theorem 7.4.1. Let E � Rn and let p P BE be such that BE is C1,γ near p, for some γ P p0, 1s.
Then

lim inf
sÑ0�

s IsrEsppq � ωn � 2αpEq
lim sup
sÑ0�

s IsrEsppq � ωn � 2αpEq.

We notice that if E is bounded, then αpEq � αpEq � αpEq � 0, hence Theorem 7.4.1 reduces
in this case to formula (B.1) in [67]. Actually, we can estimate the fractional mean curvature from
below (above) uniformly with respect to the radius of the exterior (interior) tangent ball to E. To be
more precise, if there exists an exterior tangent ball at p P BE of radius δ ¡ 0, then for every s   sδ
we have

lim inf
ρÑ0�

s Iρs rEsppq ¥
ωn � 2αpEq

4
.

More explicitly, we have the following result:

Theorem 7.4.2. Let Ω � Rn be a bounded open set. Let E0 � CΩ be such that

αpE0q   ωn
2
, (7.41)

and let

β � βpE0q :� ωn � 2αpE0q
4

.

We define

δs � δspE0q :� e�
1
s log ωn�2β

ωn�β , (7.42)

for every s P p0, 1q. Then, there exists s0 � s0pE0,Ωq P p0, 1
2 s such that, if E � Rn is such that

EzΩ � E0 and E has an exterior tangent ball of radius (at least) δσ, for some σ P p0, s0q, at some
point q P BE X Ω, then

lim inf
ρÑ0�

Iρs rEspqq ¥
β

s
¡ 0, @ s P p0, σs. (7.43)

Given an open set Ω � Rn and δ P R, we consider the open set

Ωδ :� tx P Rn | d̄Ωpxq   δu,
where d̄Ω denotes the signed distance function from BΩ, negative inside Ω.

It is well known (see e.g. [10,90]) that if Ω is bounded and BΩ is of class C2, then the distance
function is also of class C2 in a neighborhood of BΩ. Namely, there exists r0 ¡ 0 such that

d̄Ω P C2pN2r0pBΩqq, where N2r0pBΩq :� tx P Rn | |d̄Ωpxq|   2r0u.
As a consequence, since |∇d̄Ω| � 1, the open set Ωδ has C2 boundary for every |δ|   2r0. For a more
detailed discussion, see Appendix A.2 and the references cited therein.

The constant r0 will have the above meaning throughout this paper.

We give the next definition.

Definition 7.4.3. Let Ω � Rn be an open, bounded set. We say that a set E is δ-dense in Ω for
some fixed δ ¡ 0 if |Bδpxq X E| ¡ 0 for any x P Ω for which Bδpxq �� Ω.

Notice that if E is δ-dense then E cannot have an exterior tangent ball of radius greater or equal than
δ at any point p P BE X Ω�δ.
We observe that the notion for a set of being δ-dense is a “topological” notion, rather than a measure
theoretic one. Indeed, δ-dense sets need not be “irregular” nor “dense” in the measure theoretic sense
(see Remark 7.4.19).

With this definition and using Theorem 7.4.2 we obtain the following classification.
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Theorem 7.4.4. Let Ω be an bounded and connected open set with C2 boundary. Let E0 � CΩ
such that

αpE0q   ωn
2
.

Then the following two results hold.
A) Let s0 and δs be as in Theorem 7.4.2. There exists s1 � s1pE0,Ωq P p0, s0s such that if s   s1 and
E is an s-minimal set in Ω with exterior data E0, then either

pA.1q E X Ω � H or pA.2q E is δs � dense.

B) Either
(B.1) there exists s̃ � s̃pE0,Ωq P p0, 1q such that if E is an s-minimal set in Ω with exterior data E0

and s P p0, s̃q, then
E X Ω � H,

or
(B.2) there exist δk × 0, sk × 0 and a sequence of sets Ek such that each Ek is sk-minimal in Ω with
exterior data E0 and for every k

BEk XBδkpxq � H @ Bδkpxq �� Ω.

We remark here that Definition 7.4.3 allows the s-minimal surface to completely fill Ω. The next
theorem states that for s small enough (and αpEq   ωn{2) we can exclude this possibility.

Theorem 7.4.5. Let Ω � Rn be a bounded open set of finite classical perimeter and let E0 � CΩ
be such that

αpE0q   ωn
2
.

For every δ ¡ 0 and every γ P p0, 1q there exists σδ,γ � σδ,γpE0,Ωq P p0, 1
2 s such that if E � Rn is

s-minimal in Ω, with exterior data E0 and s   σδ,γ , then��pΩXBδpxqqzE
�� ¥ γ

ωn � 2αpE0q
ωn � αpE0q

��ΩXBδpxq
��, @x P Ω. (7.44)

Remark 7.4.6. Let Ω and E0 be as in Theorem 7.4.5 and fix γ � 1
2 .

(1) Notice that we can find δ̄ ¡ 0 and x̄ P Ω such that

B2δ̄px̄q � Ω.

Now if s   σδ̄, 12 and E is s-minimal in Ω with respect to E0, (7.44) says that

|Bδ̄px̄q X CE| ¡ 0.

Then (since the ball is connected), either Bδ̄px̄q � CE or there exists a point

x0 P BE XBδ̄px̄q.
In this case, since dpx0, BΩq ¥ δ̄, Corollary 4.3 of [26] implies that

Bδ̄cspzq � CE XBδ̄px0q � CE X Ω

for some z, where cs P p0, 1s denotes the constant of the clean ball condition (as introduced
in Corollary 4.3 in [26]) and depends only on s (and n). In both case, there exists a ball of
radius δ̄cs contained in CE X Ω.

(2) If s   σδ̄, 12 and E is s-minimal and δs-dense, then we have that

δs ¡ csδ̄.

On the other hand, we have an explicit expression for δs, given in (7.42). Therefore, if one
could prove that cs goes to zero slower than δs, one could exclude the existence of s-minimal
sets that are δs-dense (for all sufficiently small s).

An interesting result is related to s-minimal sets whose exterior data does not completely surround
Ω. In this case, the s-minimal set, for small values of s, is always empty in Ω. More precisely:
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Theorem 7.4.7. Let Ω be a bounded and connected open set with C2 boundary. Let E0 � CΩ
such that

αpE0q   ωn
2
,

and let s1 be as in Theorem 7.4.4. Suppose that there exists R ¡ 0 and x0 P BΩ such that

BRpx0qzΩ � CE0.

Then, there exists s3 � s3pE0,Ωq P p0, s1s such that if s   s3 and E is an s-minimal set in Ω with
exterior data E0, then

E X Ω � H.
We notice that Theorem 7.4.7 prevents the existence of s-minimal sets that are δ-dense (for any

δ).

Remark 7.4.8. The indexes s1 and s3 are defined as follows

s1 :� supts P p0, s0q | δs   r0u
and

s3 :� sup
!
s P p0, s0q

�� δs   1

2
mintr0, Ru

)
.

Clearly, s3 ¤ s1 ¤ s0.

Remark 7.4.9. We point out that condition (7.41) is somehow optimal. Indeed, when αpE0q
exists and

αpE0q � ωn
2
,

several configurations may occur, depending on the position of Ω with respect to the exterior data
E0zΩ. As an example, take

P � tpx1, xnq
�� xn ¡ 0u.

Then, for any Ω � Rn bounded open set with C2 boundary, the only s-minimal set with exterior data
given by PzΩ is P itself. So, if E is s-minimal with respect to E0zΩ then

Ω � P ùñ E X Ω � Ω

Ω � RnzP ùñ E X Ω � H.
On the other hand, if one takes Ω � B1, then

E XB1 � PXB1.

As a further example, we consider the supergraph

E0 :� tpx1, xnq
�� xn ¡ tanhx1u,

for which we have that (see Example 7.4.4)

αpE0q � ωn
2
.

Then for every s-minimal set in Ω with exterior data E0zΩ, we have that

Ω � tpx1, xnq
�� xn ¡ 1u ùñ E X Ω � Ω

Ω � tpx1, xnq
�� xn   �1u ùñ E X Ω � H.

Taking Ω � B2, we have by the maximum principle in Proposition 7.4.36 that every set E which is
s-minimal in B2, with respect to E0zB2, satisfies

B2 X tpx1, xnq
�� xn ¡ 1u � E, B2 X tpx1, xnq

�� xn   �1u � CE.

On the other hand, we are not able to establish what happens in B2 X tpx1, xnq
�� � 1   xn   1u.
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Remark 7.4.10. We notice that when E is s-minimal in Ω with respect to E0, then CE is s-
minimal in Ω with respect to CE0. Moreover

αpE0q ¡ ωn
2

ùñ αpCEq   ωn
2
.

So in this case we can apply Theorems 7.4.2, 7.4.4, 7.4.5 and 7.4.7 to CE with respect to CE0. For
instance, if E is s-minimal in Ω with exterior data E0 with

αpE0q ¡ ωn
2
,

and s   s1pCE0,Ωq, then either

E X Ω � Ω or CE is δspCE0q � dense.

The analogues of the just mentioned Theorems can be obtained similarly.

We point out that from our main results and the last two remarks, we have a complete classification
of nonlocal minimal surfaces when s is small whenever

αpE0q � ωn
2
.

In the last Subsection 7.4.5 of the paper, we prove the continuity of the fractional mean curvature
in all variables (see Theorem 7.4.22 and Proposition 7.4.23). As a consequence, we have the following
result.

Proposition 7.4.11. Let E � Rn and let p P BE such that BE is C1,α in BRppq for some R ¡ 0
and α P p0, 1s. Then the function

Ip�qrEsp�q : p0, αq � pBE XBRppqq ÝÑ R, ps, xq ÞÝÑ IsrEspxq
is continuous.
Moreover, if BE XBRppq is C2 and for every x P BE XBRppq we define

ĨsrEspxq :�
#
sp1� sqIsrEspxq, for s P p0, 1q
ωn�1HrEspxq, for s � 1,

then the function

Ĩp�qrEsp�q : p0, 1s � pBE XBRppqq ÝÑ R, ps, xq ÞÝÑ ĨsrEspxq
is continuous.
Finally, if BE XBRppq is C1,α and αpEq exists, and if for every x P BE XBRppq we denote

Ĩ0rEspxq :� ωn � 2αpEq,
then the function

Ĩp�qrEsp�q : r0, αq � pBE XBRppqq ÝÑ R, ps, xq ÞÝÑ ĨsrEspxq
is continuous.

As a consequence of the continuity of the fractional mean curvature and the asymptotic result in
theorem (7.4.1) we establish that, by varying the fractional parameter s, the nonlocal mean curvature
may change sign at a point where the classical mean curvature is negative, as one can observe in
Theorem 7.4.26.
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7.4.2. Contribution to the mean curvature coming from infinity. In this section, we
study in detail the quantities αpEq, αpEq, αpEq) as defined in (7.3), (7.40). As a first remark, notice
that these definitions are independent on the radius of the ball (see Observation 3 in Subsection 3.3),
so we have that for any R ¡ 0

αpEq � lim sup
sÑ0�

s

»
CBR

χEpyq
|y|n�s dy, αpEq :� lim inf

sÑ0�
s

»
CBR

χEpyq
|y|n�s dy. (7.45)

Notice that

αpEq � ωn � αpCEq, αpEq � ωn � αpCEq.
We define

αspq, r, Eq :�
»
CBrpqq

χEpyq
|q � y|n�s dy.

Then, the quantity αspq, r, Eq somehow “stabilizes” for small s independently on how large or where
we take the ball, as rigorously given by the following result:

Proposition 7.4.12. Let K � Rn be a compact set and ra, bs � R be a closed interval. Then

lim
sÑ0�

s|αspq, r, Eq � αsp0, 1, Eq| � 0 uniformly in q P K, r P ra, bs.
Moreover, for any bounded open set Ω � Rn and any fixed r ¡ 0, we have that

lim sup
sÑ0�

s inf
qPΩ

αspq, r, Eq � lim sup
sÑ0�

s sup
qPΩ

αspq, r, Eq � αpEq. (7.46)

Proof. Let K � BR and let ε P p0, 1q be a fixed positive small quantity (that we will take
arbitrarily small further on), such that

R ¡ pεrq{p1� εq.
We notice that if x P Brpqq, we have that |x|   r � |q|   R{ε, hence BRpqq � BR{ε. We write that»

CBrpqq

χEpyq
|q � y|n�s dy �

»
CBR{ε

χEpyq
|q � y|n�s dy �

»
BR{εzBrpqq

χEpyq
|q � y|n�s dy.

Now |y � q| ¥ |y| � |q| ¥ p1� εq|y|, thus for any q P BR»
CBR{ε

χEpyq
|q � y|n�s dy ¤ p1� εq�n�s

»
CBR{ε

χEpyq
|y|n�s dy

�
»
CBR{ε

χEpyq
|y|n�s dy � εpn� sq

»
CBR{ε

χEpyq
|y|n�s � opε2q.

(7.47)

Moreover»
BR{εzBrpqq

χEpyq
|q � y|n�s dy ¤

»
BR{εzBrpqq

dy

|q � y|n�s ¤ ωn

» R{ε�R
r

t�s�1 dt

� ωn
r�s �R�sεsp1� εq�s

s
¤ ωn

a�s �R�sεsp1� εq�s
s

.

(7.48)

Therefore

αspq, r, Eq � αsp0, R{ε, Eq �
»
CBrpqq

χEpyq
|q � y|n�s dy �

»
CBR{ε

χEpyq
|y|n�s dy

¤ εpn� sq
»
CBR{ε

χEpyq
|y|n�s dy � opε2q � ωn

a�s �R�sεsp1� εq�s
s

.

Now,

αsp0, R{ε, Eq � αsp0, r, Eq ¤
»
BR{εzBr

dy

|y|n�s � ωn
r�s �R�sεs

s
¤ ωn

a�s �R�sεs

s
.
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Moreover,

|αsp0, r, Eq � αsp0, 1, Eq| ¤ ωn
|1� r�s|

s
¤ ωn

maxt|1� a�s|, |1� b�su
s

.

So by the triangle inequality we have that

|αspq, r, Eq � αsp0, 1, Eq| ¤ εpn� sq
»
CBR{ε

χEpyq
|y|n�s dy � opε2q

� ωn
s

�
a�s �R�sεsp1� εq�s � a�s �R�sεs �maxt|1� a�s|, |1� b�su�.

Hence, it holds that

lim sup
sÑ0�

s|αspq, r, Eq � αsp0, 1, Eq| ¤ εnαpEq � opε2q,

uniformly in q P K and in r P ra, bs.
Letting εÑ 0�, we obtain that

lim sup
sÑ0�

s|αspq, r, Eq � αsp0, 1, Eq| � 0.

Therefore, we conclude that

lim
sÑ0�

s|αspq, r, Eq � αsp0, 1, Eq| � 0,

uniformly in q P K and in r P ra, bs.
Now, we consider K such that K � Ω. Since Brpqq � BR{ε and |q� y| ¤ |q| � |y| ¤ pε� 1q|y|, we

obtain that »
CBrpqq

χEpyq
|q � y|n�s dy ¥

»
CBR{ε

χEpyq
|q � y|n�s dy ¥ p1� εq�n�s

»
CBR{ε

χEpyq
|y|n�s dy.

Using this and the inequalities in (7.47) and (7.48), we have that

p1� εq�n�s
»
CBR{ε

χEpyq
|y|n�s dy ¤

»
CBrpqq

χEpyq
|q � y|n�s dy

¤ p1� εq�n�s
»
CBR

χEpyq
|y|n�s dy � ωn

a�s �R�sεsp1� εq�s
s

.

Passing to limsup and using (7.46) it follows that

p1� εq�nαpEq ¤ lim sup
sÑ0�

s inf
qPΩ

»
CBrpqq

χEpyq
|q � y|n�s dy

¤ lim sup
sÑ0�

s sup
qPΩ

»
CBrpqq

χEpyq
|q � y|n�s dy ¤ p1� εq�nαpEq.

Sending εÑ 0 we obtain the conclusion. �

Remark 7.4.13. Let E � Rn be such that |E|   8. Then

αpEq � 0.

Indeed,

|αsp0, 1, Eq| ¤ |E|,
hence

lim sup
sÑ0

s|αsp0, 1, Eq| � 0.

Now, we discuss some useful properties of α. Roughly speaking, the quantity α takes into account
the “largest possible asymptotic opening” of a set, and so it possesses nice geometric features such
as monotonicity, additivity and geometric invariances. The detailed list of these properties is the
following:
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Proposition 7.4.14.
(i) (Monotonicity) Let E,F � Rn be such that for some r ¡ 0 and q P Rn

EzBrpqq � F zBrpqq.
Then

αpEq ¤ αpF q.
(ii) (Additivity) Let E,F � Rn be such that for some r ¡ 0 and q P Rn

pE X F qzBrpqq � H.
Then

αpE Y F q ¤ αpEq � αpF q.
Moreover, if αpEq, αpF q exist, then αpE Y F q exists and

αpE Y F q � αpEq � αpF q.
(iii) (Invariance with respect to rigid motions) Let E � Rn, x P Rn and R P SOpnq be a rotation.
Then

αpE � xq � αpEq and αpREq � αpEq.
(iv) (Scaling) Let E � Rn and λ ¡ 0. Then for some r ¡ 0 and q P Rn

αspq, r, λEq � λ�sαs
� q
λ
,
r

λ
,E

	
and αpλEq � αpEq.

(v) (Symmetric difference) Let E,F � Rn. Then for every r ¡ 0 and q P Rn

|αspq, r, Eq � αspq, r, F q| ¤ αspq, r, E∆F q.
As a consequence, if |E∆F |   8 and αpEq exists, then αpF q exists and

αpEq � αpF q.
Proof. (i) It is enough to notice that for every s P p0, 1q

αspq, r, Eq ¤ αspq, r, F q.
Then, passing to limsup and recalling (7.46) we conclude that

αpEq ¤ αpF q.
(ii) We notice that for every s P p0, 1q

αspq, r, E Y F q � αspq, r, Eq � αspq, r, F q
and passing to limsup and liminf as sÑ 0� we obtain the desired claim.
(iii) By a change of variables, we have that

αsp0, 1, E � xq �
»
CB1

χE�xpyq
|y|n�s dy �

»
CB1p�xq

χEpyq
|x� y|n�s dy � αsp�x, 1, Eq.

Accordingly, the invariance by translation follows after passing to limsup and using (7.46).
In addition, the invariance by rotations is obvious, using a change of variables.

(iv) Changing the variable y � λx we deduce that

αspq, r, λEq �
»
CBrpqq

χλEpyq
|q � y|n�s dy � λ�s

»
CB r

λ
p qλ q

χEpxq
| qλ � x|n�s dx � λ�sαs

� q
λ
,
r

λ
,E

	
.

Hence, the claim follows by passing to limsup as sÑ 0�.
(v) We have that

|αspq, r, Eq � αspq, r, F q| ¤
»
CBrpqq

|χEpyq � χF pyq|
|y � q|n�s dy �

»
CBrpqq

χE∆F pyq
|y � q|n�s dy � αspq, r, E∆F q.

The second part of the claim follows applying the Remark 7.4.13. �
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We recall the definition (see (3.1) in [57])

µpEq :� lim
sÑ0�

sPspE,Ωq,

where Ω is a bounded open set with C2 boundary. Moreover, we define

µpEq � lim sup
sÑ0�

sPspE,Ωq

and give the following upper bound:

Proposition 7.4.15. Let Ω � Rn be a bounded open set with finite classical perimeter and let
E0 � CΩ. Then

µpE0q � αpE0q|Ω|.
Proof. Let R ¡ 0 be fixed such that Ω � BR and ε P p0, 1q be small enough such that R{ε ¡

R� 1. This choice of ε assures that B1pyq � BR{ε. For any fixed y P Ω, we have that»
Rn

χE0
pxq

|x� y|n�s dx �
»
CBR{ε

χE0
pxq

|x� y|n�s dx�
»
BR{εzB1pyq

χE0
pxq

|x� y|n�s dx�
»
B1pyq

χE0
pxq

|x� y|n�s dx.

Since |x� y| ¥ p1� εq|x| whenever x P CBR{ε, we get»
CBR{ε

χE0
pxq

|x� y|n�s dx ¤ p1� εq�n�s
»
CBR{ε

χE0
pxq

|x|n�s dx.

Also we have that»
BR{εzB1pyq

χE0pxq
|x� y|n�s dx ¤ ωn

» R{ε�R

1

ρ�s�1 dρ ¤ ωn
1� �

R
ε �R

��s
s

.

Also, we can assume that s   1{2 (since we are interested in what happens for sÑ 0). In this way, if

|x� y|   1 we have that |x� y|�n�s ¤ |x� y|�n� 1
2 , and so»

B1pyq

χE0
pxq

|x� y|n�s dx ¤
»
B1pyq

χE0pxq
|x� y|n� 1

2

dx.

Also, since E0 � CΩ, we have that»
B1pyq

χE0pxq
|x� y|n� 1

2

dx ¤
»
B1pyqzΩ

dx

|x� y|n� 1
2

¤
»
CΩ

dx

|x� y|n� 1
2

.

This means that »
Ω

»
B1pyq

χE0pxq
|x� y|n�s dx dy ¤

»
Ω

»
CΩ

dx

|x� y|n� 1
2

� P 1
2
pΩq � c   8,

since Ω has a finite classical perimeter. In this way, it follows that

sPspE0,Ωq �
»

Ω

»
Rn

χE0
pxq

|x� y|n�s dx dy ¤ sp1� εq�n�s|Ω|
»
CBR{ε

χE0
pxq

|x|n�s dx

� ωn

�
1�

�R
ε
�R

	�s	
|Ω| � sc.

(7.49)

Furthermore, notice that if x P BR{ε we have that |x� y| ¤ p1� εq|x|, hence»
Rn

χE0
pxq

|x� y|n�s dx ¥
»
CBR{ε

χE0
pxq

|x� y|n�s dx ¥ p1� εq�n�s
»
CBR{ε

χE0
pxq

|x|n�s dx.

Thus for any ε ¡ 0

sPspE0,Ωq ¥ s|Ω|p1� εq�n�s
»
CBR{ε

χE0
pxq

|x|n�s dx.

Passing to limsup as sÑ 0� here above and in (7.49) it follows that

p1� εq�nαpE0q |Ω| ¤ µpE0q ¤ p1� εq�nαpE0q |Ω|.
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Sending εÑ 0, we obtain the desired conclusion. �

7.4.3. Classification of nonlocal minimal surfaces for small s. Asymptotic estimates
of the density (Theorem 7.4.5). Now we prove Theorem 7.4.5.

Proof. We argue by contradiction. Suppose that there exists δ ¡ 0 and γ P p0, 1q for which
we can find a sequence sk × 0, a sequence of sets tEku such that each Ek is sk-minimal in Ω with
exterior data E0, and a sequence of points txku � Ω such that��pΩXBδpxkqqzEk

��   γ
ωn � 2αpE0q
ωn � αpE0q

��ΩXBδpxkq
��. (7.50)

First of all we remark that, since Ω is compact, up to passing to subsequences we can suppose
that xk ÝÑ x0, for some x0 P Ω. As a consequence, for every ε ¡ 0 there exists k̃ε such that

ΩXBδpxkq � ΩXBδ�εpx0q, @ k ¥ k̃ε. (7.51)

We fix a small ε ¡ 0. We will let εÑ 0 later on.
Since Ek is sk-minimal in Ω, it is sk-minimal also in every Ω1 � Ω. Thus, by (7.51) and by

minimality, for every k ¥ k̃ε we have

PskpEk,ΩXBδpxkqq ¤ PskpEk,ΩXBδ�εpx0qq
¤ PskpE0 Y pEk X pΩzBδ�εpx0qqq,ΩXBδ�εpx0qq

¤
»
E0

»
ΩXBδ�εpx0q

dy dz

|y � z|n�sk �
»

ΩzBδ�εpx0q

»
ΩXBδ�εpx0q

dy dz

|y � z|n�sk
�: I1

k � I2
k .

Now notice that the set Ω X Bδ�εpx0q has finite classical perimeter. Thus, by Proposition 7.4.15 we
find

lim sup
kÑ8

skI
1
k ¤ αpE0q

��ΩXBδ�εpx0q
��,

and, since Ω is bounded

lim sup
kÑ8

skI
2
k ¤ αpΩzBδ�εpx0qq

��ΩXBδ�εpx0q
�� � 0,

for every ε ¡ 0. Therefore, letting εÑ 0,

lim sup
kÑ8

skPskpEk,ΩXBδpxkqq ¤ αpE0q
��ΩXBδpx0q

��. (7.52)

On the other hand, if R ¡ 0 is such that Ω �� BRpqq for every q P Ω, then we have that

PskpEk,ΩXBδpxkqq ¥
»
EkXpΩXBδpxkqq

� »
CEkzpΩXBδpxkqq

dz

|y � z|n�sk
	
dy

¥
»
EkXpΩXBδpxkqq

� »
CΩ

χCE0
pzq

|y � z|n�sk dz
	
dy

¥
»
EkXpΩXBδpxkqq

�
inf
qPΩ

»
CΩ

χCE0pzq
|q � z|n�sk dz

	
dy

¥ ��Ek X pΩXBδpxkqq
�� inf
qPΩ

»
CBRpqq

χCE0
pzq

|q � z|n�sk dz.

So, thanks to Proposition 7.4.12

lim inf
kÑ8

skPskpEk,ΩXBδpxkqq

¥
�

lim inf
kÑ8

|Ek X pΩXBδpxkqq
��	� lim inf

kÑ8
sk inf

qPΩ

»
CBRpqq

χCE0
pzq

|q � z|n�sk dz
	

� �
ωn � αpE0q

��
lim inf
kÑ8

|Ek X pΩXBδpxkqq
��	.
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By (7.50) we have

|Ek X pΩXBδpxkqq
�� � |ΩXBδpxkq| �

��pΩXBδpxkqqzEk
�� ¡ p1� γqωn � p1� 2γqαpE0q

ωn � αpE0q |ΩXBδpxkq|,

and hence, since xk ÝÑ x0,

lim inf
kÑ8

|Ek X pΩXBδpxkqq
�� ¥ p1� γqωn � p1� 2γqαpE0q

ωn � αpE0q |ΩXBδpx0q|.

Thus, recalling (7.52) we obtain

αpE0q |ΩXBδpx0q| ¥ lim inf
kÑ8

skPskpEk,ΩXBδpxkqq ¥
�p1� γqωn � p1� 2γqαpE0q

�|ΩXBδpx0q|.
(7.53)

We remark that, since x0 P Ω, we have

|ΩXBδpx0q| ¡ 0,

hence we get

αpE0q ¥ p1� γqωn � p1� 2γqαpE0q that is p1� γqαpE0q ¥ p1� γqωn
2
.

Therefore, since γ P p0, 1q and by hypothesis αpE0q   ωn
2 , we obtain a contradiction, concluding

the proof. �

Corollary 7.4.16. Let Ω � Rn be a bounded open set of finite classical perimeter and let E0 �
CΩ be such that αpE0q � 0. Let sk P p0, 1q be such that sk × 0 and let tEku be a sequence of sets
such that each Ek is sk-minimal in Ω with exterior data E0. Then

lim
kÑ8

|Ek X Ω| � 0.

Proof. Fix δ ¡ 0. Since Ω is compact, we can find a finite number of points x1, . . . , xm P Ω such
that

Ω �
m¤
i�1

Bδpxiq.

By Theorem 7.4.5 we know that for every γ P p0, 1q we can find a kpγq big enough such that��Ek X pΩXBδpxiqq
�� ¤ p1� γqωn � p1� 2γqαpE0q

ωn � αpE0q |ΩXBδpxiq| � p1� γq|ΩXBδpxiq|,

for every i � 1, . . . ,m and every k ¥ kpγq. Thus

|Ek X Ω| ¤ p1� γq
m̧

i�1

|ΩXBδpxiq|,

for every k ¥ kpγq, and hence

lim sup
kÑ8

|Ek X Ω| ¤ p1� γq
m̧

i�1

|ΩXBδpxiq|,

for every γ P p0, 1q. Letting γ ÝÑ 1� concludes the proof. �

We recall here that any set E0 of finite measure has αpE0q � 0 (check Remark 7.4.13).
Estimating the fractional mean curvature (Theorem 7.4.2). Thanks to the previous prelimi-
nary work, we are now in the position of completing the proof of Theorem 7.4.2.

Proof of Theorem 7.4.2. Let R :� 2 maxt1,diampΩqu. First of all, (7.46) implies that

lim inf
sÑ0�

�
ωnR

�s � 2s sup
qPΩ

»
CBRpqq

χEpyq
|q � y|n�s dy



� ωn � 2αpE0q � 4β.
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Notice that by (7.41), β ¡ 0. Hence for every s small enough, say s   s1 ¤ 1
2 with s1 � s1pE0,Ωq, we

have that

ωnR
�s � 2s sup

qPΩ

»
CBRpqq

χEpyq
|q � y|n�s dy ¥

7

2
β. (7.54)

Now, let E � Rn be such that EzΩ � E0, suppose that E has an exterior tangent ball of radius
δ   R{2 at q P BE X Ω, that is

Bδppq � CE and q P BBδppq,
and let s   s1. Then for ρ small enough (say ρ   δ{2) we conclude that

Iρs rEspqq �
»
BRpqqzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy �

»
CBRpqq

χCEpyq � χEpyq
|q � y|n�s dy.

Let Dδ � Bδppq XBδpp1q, where p1 is the symmetric of p with respect to q, i.e. the ball Bδpp1q is
the ball tangent to Bδppq in q. Let also Kδ be the convex hull of Dδ and let Pδ :� Kδ �Dδ. Notice
that Bρpqq � Kδ � BRpqq . Then»

BRpqqzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy �

»
DδzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy �

»
PδzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy

�
»
BRpqqzKδ

χCEpyq � χEpyq
|q � y|n�s dy.

Since Bδppq � CE, by symmetry we obtain that»
DδzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy �

»
BδppqzBρpqq

dy

|q � y|n�s �
»
Bδpp1qzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy ¥ 0.

Moreover, from Lemma 3.1 in [65] (here applied with λ � 1) we have that���� »
PδzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy

���� ¤ »
Pδ

dy

|q � y|n�s ¤
C0

1� s
δ�s,

with C0 � C0pnq ¡ 0. Notice that Bδpqq � Kδ so���� »
BRpqqzKδ

χCEpyq � χEpyq
|q � y|n�s dy

���� ¤ »
BRpqqzBδpqq

dy

|q � y|n�s � ωn
δ�s �R�s

s
.

Therefore for every ρ   δ{2 one has that»
BRpqqzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy ¥ � C0

1� s
δ�s � ωn

s
δ�s � ωn

s
R�s.

Thus, using (7.54)

Iρs rEspqq �
»
BRpqqzBρpqq

χCEpyq � χEpyq
|q � y|n�s dy �

»
CBRpqq

χCEpyq � χEpyq
|q � y|n�s dy

¥ � C0

1� s
δ�s � ωn

s
δ�s � ωn

s
R�s �

»
CBRpqq

dy

|q � y|n�s � 2

»
CBRpqq

χEpyq
|q � y|n�s dy

¥ � δ�s
� C0

1� s
� ωn

s

	
� ωn

s
R�s �

�
ωn
s
R�s � 2 sup

qPΩ

»
CBRpqq

χEpyq
|q � y|n�s dy



¥ � δ�s

� C0

1� s
� ωn

s

	
� ωn

s
R�s � 7β

2s

¥ � δ�s
�

2C0 � ωn
s

	
� ωn

s
R�s � 7β

2s
,

(7.55)

where we also exploited that s   s1 ¤ 1{2. Since R ¡ 1, we have

R�s Ñ 1�, as sÑ 0�.
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Therefore we can find s2 � s2pE0,Ωq small enough such that

ωnR
�s ¥ ωn � β

2
, @s   s2.

Now let

s0 � s0pE0,Ωq :� min
!
s1, s2,

β

2C0

)
.

Then, for every s   s0 we have

Iρs rEspqq ¥
1

s

!
� δ�s

�p2C0qs� ωn
�� ωnR

�s � 7

2
β
)

¥ 1

s

 � δ�spωn � βq � ωn � 3β
(
,

(7.56)

for every ρ P p0, δ{2q.
Notice that if we fix s P p0, s0q, then for every

δ ¥ e�
1
s log ωn�2β

ωn�β �: δspE0q,
we have that

�δ�spωn � βq � ωn � 3β ¥ β ¡ 0.

To conclude, we let σ P p0, s0q and suppose that E has an exterior tangent ball of radius δσ at
q P BE X Ω. Notice that, since δσ   1, we have

�pδσq�spωn � βq � ωn � 3β ¥ �pδσq�σpωn � βq � ωn � 3β � β, @ s P p0, σs.
Then (7.56) gives that

lim inf
ρÑ0�

Iρs rEspqq ¥
β

s
¡ 0, @ s P p0, σs,

which concludes the proof. �

Remark 7.4.17. We remark that

log
ωn � 2β

ωn � β
¡ 0,

thus
δs Ñ 0� as sÑ 0�.

As a consequence of Theorem 7.4.2, we have that, as sÑ 0�, the s-minimal sets with small mass
at infinity have small mass in Ω. The precise result goes as follows:

Corollary 7.4.18. Let Ω � Rn be a bounded open set, let E � Rn be such that

αpEq   ωn
2
,

and suppose that BE is of class C2 in Ω. Then, for every Ω1 �� Ω there exists s̃ � s̃pEXΩ1q P p0, s0q
such that for every s P p0, s̃s

IsrEspqq ¥ ωn � 2αpEq
4s

¡ 0, @ q P BE X Ω1. (7.57)

Proof. Since BE is of class C2 in Ω and Ω1 �� Ω, the set E satisfies a uniform exterior ball
condition of radius δ̃ � δ̃pEXΩ1q in Ω1, meaning that E has an exterior tangent ball of radius at least

δ̃ at every point q P BE X Ω1.
Now, since δs Ñ 0� as sÑ 0�, we can find s̃ � s̃pE X Ω1q   s0pEzΩ,Ωq, small enough such that

δs   δ̃ for every s P p0, s̃s. Then we can conclude by applying Theorem 7.4.2. �

Classification of s-minimal surfaces (Theorem 7.4.4). To classify the behavior of the s-minimal
surfaces when s is small, we need to take into account the “worst case scenario”, that is the one in
which the set behaves very badly in terms of oscillations and lack of regularity. To this aim, we make
an observation about δ-dense sets.
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Figure 7.14. A δ-dense set of measure   ε

Remark 7.4.19. For every k ¥ 1 and every ε   2�k�1, we define the sets

Γεk :� Bε Y
2k�1¤
i�1

!
x P Rn

�� i
2k

� ε   |x|   i

2k
� ε

)
and Γk :� t0u Y

2k�1¤
i�1

BB i

2k
.

Notice that for every δ ¡ 0 there exists k̃ � k̃pδq such that for every k ¥ k̃ we have

Bδpxq X Γk � H, @Bδpxq � B1.

Thus, for every k ¥ k̃pδq and ε   2�k�1, the set Γεk is δ-dense in B1. Moreover, notice that

Γk �
£

εPp0,2�k�1q
Γεk and lim

εÑ0�
|Γεk| � 0.

It is also worth remarking that the sets Γεk have smooth boundary. In particular, for every δ ¡ 0 and
every ε ¡ 0 small, we can find a set E � B1 which is δ-dense in B1 and whose measure is |E|   ε.
This means that we can find an open set E with smooth boundary, whose measure is arbitrarily small
and which is “topologically arbitrarily dense” in B1.

We introduce a useful geometric observation.

Proposition 7.4.20. Let Ω � Rn be a bounded and connected open set with C2 boundary and let
δ P p0, r0q, for r0 given in (7.91). If E is not δ-dense in Ω and |E X Ω| ¡ 0, then there exists a point
q P BE XΩ such that E has an exterior tangent ball at q of radius δ (contained in Ω), i.e. there exist
p P CE X Ω such that

Bδppq �� Ω, q P BBδppq X BE and Bδppq � CE.

Proof. Using Definition 7.4.3, we have that there exists x P Ω for which Bδpxq �� Ω and
|Bδpxq X E| � 0, so Bδpxq � Eext. If Bδpxq is tangent to BE then we are done.

Notice that
Bδpxq �� Ω ùñ dpx, BΩq ¡ δ,

and let
δ1 :� mintr0, dpx, BΩqu P pδ, r0s.
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Now we consider the open set Ω�δ1 � Ω

Ω�δ1 :� td̄Ω   �δ1u,
so x P Ω�δ1 . According to Remark 7.4.30 and Lemma 7.4.31 we have that Ω�δ1 has C2 boundary and
that

Ω�δ1 satisfies the uniform interior ball condition of radius at least r0. (7.58)

We have two possibilities:
i) E X Ω�δ1 � H
ii) H � E X Ω � ΩzΩ�δ1 .

(7.59)

If i) happens, we pick any point y P E X Ω�δ1 . The set Ω�δ1 is path connected (see Proposition
7.4.32), so there exists a path c : r0, 1s ÝÑ Rn that connects x to y and that stays inside Ω�δ1 , that is

cp0q � x, cp1q � y and cptq P Ω�δ1 , @ t P r0, 1s.
Moreover, since δ   δ1, we have

Bδ
�
cptq� �� Ω @ t P r0, 1s.

Hence, we can “slide the ball” Bδpxq along the path and we obtain the desired claim thanks to Lemma
7.4.27.

Now, if we are in the case ii) of (7.59), then Ω�δ1 � Eext, so we dilate Ω�δ1 until we first touch
E. That is, we consider

ρ̃ :� inftρ P r0, δ1s �� Ω�ρ � Eextu.
Notice that by hypothesis ρ̃ ¡ 0. Then

Ω�ρ̃ � Eext � Eext Y BE.
If

BΩ�ρ̃ X BE � H then Ω�ρ̃ � Eext,

hence we have that
d � d

�
E X ΩzΩ�δ1 ,Ω�ρ̃

� P p0, ρ̃q,
therefore

Ω�ρ̃ � Ω�pρ̃�dq � Eext.

This is in contradiction with the definition of ρ̃. Hence, there exists q P BΩ�ρ̃ X BE.
Recall that, by definition of ρ̃, we have Ω�ρ̃ � CE. Thanks to (7.58), there exists a tangent ball

at q interior to Ω�ρ̃, hence a tangent ball at q exterior to E, of radius at least r0 ¡ δ. This concludes
the proof of the lemma. �

Proof of Theorem 7.4.4. We begin by proving part pAq.
First of all, since δs Ñ 0�, we can find s1 � s1pE0,Ωq P p0, s0s such that δs   r0 for every s P p0, s1q.

Now let s P p0, s1q and let E be s-minimal in Ω, with exterior data E0.
We suppose that E X Ω � H and prove that E has to be δs-dense.
Suppose by contradiction that E is not δs-dense. Then, in view of Proposition 7.4.20, there exists

p P CE X Ω such that
q P BBδsppq X pBE X Ωq and Bδsppq � CE.

Hence we use the Euler-Lagrange theorem at q, i.e.

IsrEspqq ¤ 0,

to obtain a contradiction with Theorem 7.4.2. This says that E is not δs-dense and concludes the
proof of part pAq of Theorem 7.4.4.

Now we prove the part pBq of the Theorem.
Suppose that point pB.1q does not hold true. Then we can find a sequence sk × 0 and a sequence of
sets Ek such that each Ek is sk-minimal in Ω with exterior data E0 and

Ek X Ω �� H.
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We can assume that sk   s1pE0,Ωq for every k. Then part pAq implies that each Ek is δsk -dense, that
is

|Ek XBδsk pxq| ¡ 0 @Bδsk pxq �� Ω.

Fix γ � 1
2 , take a sequence δh × 0 and let σδh, 12 be as in Theorem 7.4.5. Recall that δs × 0 as s× 0.

Thus for every h we can find kh big enough such that

skh   σδh, 12 and δskh   δh. (7.60)

In particular, this implies

|Ekh XBδhpxq| ¥ |Ek XBδskh
pxq| ¡ 0 @Bδhpxq �� Ω, (7.61)

for every h. On the other hand, by (7.60) and Theorem 7.4.5, we also have that

|CEkh XBδhpxq| ¡ 0 @Bδhpxq �� Ω. (7.62)

This concludes the proof of part pBq. Indeed, notice that since Bδhpxq is connected, (7.61) and (7.62)
together imply that

BEkh XBδhpxq � H @Bδhpxq �� Ω.

�

Stickiness to the boundary is a typical behavior (Theorem 7.4.7). Now we show that the
“typical behavior” of the nonlocal minimal surfaces is to stick at the boundary whenever they are
allowed to do it, in the precise sense given by Theorem 7.4.7.

Proof of Theorem 7.4.7. Let

δ :� 1

2
mintr0, Ru,

and notice that (see Remark 7.4.29)

Bδpx0 � δνΩpx0qq � BRpx0qzΩ � CE0.

Since δs Ñ 0�, we can find s3 � s3pE0,Ωq P p0, s0s such that δs   δ for every s P p0, s3q.
Now let s P p0, s3q and let E be s-minimal in Ω, with exterior data E0.
We claim that

Bδpx0 � r0νΩpx0qq � Eext. (7.63)

We observe that this is indeed a crucial step to prove Theorem 7.4.7. Indeed, once this is established,
by Remark 7.4.29 we obtain that

Bδpx0 � r0νΩpx0qq �� Ω.

Hence, since δs   δ, we deduce from (7.63) that E is not δs-dense. Thus, since s   s3 ¤ s1, Theorem
7.4.4 implies that E X Ω � H, which concludes the proof of Theorem 7.4.7.

This, we are left to prove (7.63). Suppose by contradiction that

E XBδpx0 � r0νΩpx0qq �� H,
and consider the segment c : r0, 1s ÝÑ Rn,

cptq :� x0 �
�p1� tqδ � t r0

�
νΩpx0q.

Notice that
Bδ

�
cp0q� � Eext and Bδ

�
cp1q�X E �� H,

so

t0 :� sup
!
τ P r0, 1s �� ¤

tPr0,τs
Bδ

�
cptq� � Eext

)
  1.

Arguing as in Lemma 7.4.27, we conclude that

Bδ
�
cpt0q

� � Eext and D q P BBδ
�
cpt0q

�X BE.
By definition of c, we have that either q P Ω or

q P BΩXBRpx0q.
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In both cases (see Theorem 5.1 in [26] and Theorem 1.1 in [108]) we have

IsrEspqq ¤ 0,

which gives a contradiction with Theorem 7.4.2. �

7.4.4. The contribution from infinity of some supergraphs. We compute in this Subsec-
tion the contribution from infinity of some particular supergraphs.

Example 7.4.1 (The cone). Let S � Sn�1 be a portion of the unit sphere, o :� Hn�1pSq and

C :� ttσ �� t ¥ 0, σ P Squ.
Then the contribution from infinity is given by the opening of the cone,

αpCq � o. (7.64)

Indeed,

αsp0, 1, Cq �
»
CB1

χCpyq
|y|n�s dy � Hn�1pSq

» 8

1

t�s�1 dt � o

s
,

and we obtain the claim by passing to the limit. Notice that this says in particular that the contribution
from infinity of a half-space is ωn{2.

Figure 7.15. The contribution from infinity of x3, x2 and tanhx

Example 7.4.2 (The parabola). We consider the supergraph

E :� tpx1, xnq
�� xn ¥ |x1|2u,

and we show that, in this case,
αpEq � 0.

In order to see this, we take any R ¡ 0, intersect the ball BR with the parabola and build a cone on
this intersection (see the second picture in Figure 7.15), i.e. we define

SpRq :� BBR X E, CR � ttσ �� t ¥ 0, σ P SpRqu.
We can explicitly compute the opening of this cone, that is

opRq �
�

arcsin

�?
4R2 � 1� 1

�1{2

R
?

2

�
ωn
π
.
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Since E � CR outside of BR, thanks to the monotonicity property in Proposition 7.4.14 and to (7.64),
we have that

αpEq ¤ αpCRq � opRq.
Sending RÑ8, we find that

αpEq � 0, thus αpEq � 0.

More generally, if we consider for any given c, ε ¡ 0 a function u such that

upx1q ¡ c|x1|1�ε, for any |x1| ¡ R for some R ¡ 0

and
E :� tpx1, xnq

�� xn ¥ upx1qu,
then

αpEq � 0.

On the other hand, if we consider a function that is not rotation invariant, things can go differently,
as we see in the next example.

Example 7.4.3 (The supergraph of x3). We consider the supergraph

E :� tpx, yq �� y ¥ x3u.
In this case, we show that

αpEq � π.

For this, given R ¡ 0, we intersect BBR with E and denote by S1pRq and S2pRq the arcs on the circle
as the first picture in Figure 7.15. We consider the cones

C1
R :� ttσ �� t ¥ 0, σ P S1pRqu C2

R :� ttσ �� t ¥ 0, σ P S2pRqu
and notice that outside of BR, it holds that C2

R � E � C1
R. Let xR be the solution of

x6 � x2 � R2,

that is the x-coordinate in absolute value of the intersection points BBR X BE. Since fpxq � x6 � x2

is increasing on p0,8q and R2 � fpxRq   fpR1{3q, we have that xR   R1{3. Hence

o1pRq � π � arcsin
xR
R

¤ π � arcsin
R1{3

R
, o2pRq ¥ π � arcsin

R1{3

R
.

Thanks to the monotonicity property in Proposition 7.4.14 and to (7.64) we have that

αpEq ¤ αpC1
Rq � o1pRq, αpEq ¥ αpC2

Rq � o2pRq
and sending RÑ8 we obtain that

αpEq ¤ π, αpEq ¥ π.

Thus αpEq exists and we obtain the desired conclusion.

Example 7.4.4 (The supergraph of a bounded function). We consider the supergraph

E :� tpx1, xnq
�� xn ¥ upx1qu, with }u}L8pRnq  M.

We show that, in this case,

αpEq � ωn
2
.

To this aim, let
P1 :� tpx1, xnq

�� xn ¡Mu
P2 :� tpx1, xnq

�� xn   �Mu.
We have that

P1 � E, P2 � CE.
Hence by Proposition 7.4.14

αpEq ¥ αpP1q � ωn
2
, αpCEq ¥ αpP2q � ωn

2
.
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Since αpCEq � ωn � αpEq we find that

αpEq ¤ ωn
2
,

thus the conclusion. An example of this type is depicted in Figure 7.15 (more generally, the result
holds for the supergraph in Rn tpx1, xnq

�� xn ¥ tanhx1u).
Example 7.4.5 (The supergraph of a sublinear graph). More generally, we can take the super-

graph of a function that grows sublinearly at infinity, i.e.

E :� tpx1, xnq
�� xn ¡ upx1qu, with lim

|x1|Ñ�8
|upx1q|
|x1| � 0.

In this case, we show that

αpEq � ωn
2
.

Indeed, for any ε ¡ 0 we have that there exists R � Rpεq ¡ 0 such that

|upx1q|   ε|x1|, @ |x1| ¡ R.

We denote

S1pRq :� BBR X tpx1, xnq
�� xn ¡ ε|x1|u, S2pRq :� BBR X tpx1, xnq

�� xn   �ε|x1|u
and

CiR � ttσ �� t ¥ 0, σ P SipRqu, for i � 1, 2.

We have that outside of BR
C1
R � E, C2

R � CE,
and

αpC1
Rq � αpC2

Rq �
ωn
π

�π
2
� arctan ε

	
.

We use Proposition 7.4.14, (i), and letting ε go to zero, we obtain that αpEq exists and

αpEq � ωn
2
.

A particular example of this type is given by

E :� tpx1, xnq
�� xn ¡ c|x1|1�εu, when |x1| ¡ R for some ε P p0, 1s, c P R, R ¡ 0.

In particular using the additivity property in Proposition 7.4.14 we can compute α for sets that
lie between two graphs.

Figure 7.16. The “butterscotch hard candy” graph

Example 7.4.6 (The “butterscotch hard candy”).
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Let E � Rn be such that

E X t|x1| ¡ Ru � tpx1, xnq
�� |x1| ¡ R , |xn|   c|x1|1�εu, for some ε P p0, 1s, c ¡ 0, R ¡ 0,

(an example of such a set E is given in Figure 7.16). In this case, we have that

αpEq � 0.

Indeed, we can write E1 :� E X t|x1| ¡ Ru and E2 :� E X t|x1| ¤ Ru. Then, using the computations
in Example 7.4.5, we have by the monotonicity and the additivity properties in Proposition 7.4.14
that

αpE1q ¤ α
�txn ¡ �c|x1|1�εu�� α

�txn ¡ c|x1|1�εu� � 0.

Moreover, E2 lies inside t|x1| ¤ Ru. Hence, again by Proposition 7.4.14 and by Example 7.4.1, we
find

αpE2q ¤ α
�t|x1| ¤ Ru� � α

�tx1 ¤ Ru�� α
�tx1   �Ru� � 0.

Consequently, using again the additivity property in Proposition 7.4.14, we obtain that

αpEq ¤ αpE1q � αpE2q � 0,

that is the desired result.

We can also compute α for sets that have different growth ratios in different directions. For this,
we have the following example.

Example 7.4.7 (The supergraph of a superlinear function on a small cone). We consider a set

lying in the half-space, deprived of a set that grows linearly at infinity. We denote by S̃ the portion
of the sphere given by

S̃ :�
!
σ P Sn�2

���σ � p cosσ1, sinσ1 cosσ2, . . . , sinσ1 . . . sinσn�2q,

with σi P
�π

2
� ε̄,

π

2
� ε̄

	
, i � 1, . . . , n� 2

)
,

where ε P p0, π{2q. For x0 P Rn and k ¡ 0 we define the supergraph E � Rn as

E :�  px1, xnq P Rn
�� xn ¥ upx1q( where upx1q �

#
k|x1 � x10| for x1 P X,
0 for x1 R X,

X � tx1 P Rn�1 s.t. x1 � tσ � x10, σ P S̃u.
We remark that X � txn � 0u is the cone “generated” by S̃ and centered at x0. Then

αpEq � ωn
2
�Hn�2pS̃q

» k
0

dt

p1� t2qn2 . (7.65)

Let

P� :� tpx1, xnq
�� xn ¡ 0u, P� :� tpx1, xnq

�� xn   0u
and we consider the subgraph

F :�  px1, xnq �� 0   xn   upx1q(.
Then

E Y F � P�, P� Y F � CE.
Using the additivity property in Proposition 7.4.14, we see that

αpEq ¥ ωn
2
� αpF q, ωn � αpEq � αpCEq ¤ ωn

2
� αpF q. (7.66)

Let R ¡ 0 be arbitrary. We get that

αspx0, R, F q ¤
»
pB1

Rpx10q�RqXCBRpx0q

χF pyq
|y � x0|n�s dy �

»
CpB1

Rpx10q�Rq
χF pyq

|y � x0|n�s dy
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so

αspx0, R, F q ¤
»
B1
Rpx10q

dy1

|y1 � x10|n�1�s

» 8?
R2�|y1�x10|2

|y1�x10|

dt

p1� t2qn�s2

�
»
CB1

Rpx10qXX

dy1

|y1 � x10|n�1�s

» k
0

dt

p1� t2qn�s2

� I1 � I2.

(7.67)

Using that 1� t2 ¥ maxt1, t2u and passing to polar coordinates, we obtain that

I1 �
»
B1
Rpx10q

dy1

|y1 � x10|n�1�s

�» R
|y1�x10|?
R2�|y1�x10|2

|y1�x10|

dt

p1� t2qn�s2

�
» 8

R
|y1�x10|

dt

p1� t2qn�s2




¤ ωn�1

�» R
0

τ�s�2
�
R�

a
R2 � ρ2

	
dρ� R�n�s�1

n� s� 1

» R
0

ρn�2 dρ



� ωn�1

�
R�s

» 1

0

τ�s�2
�

1�
a

1� τ2
	
dτ � R�s

pn� s� 1qpn� 1q


.

Also, for any τ P p0, 1q we have that

1�
a

1� τ2 ¤ cτ2,

for some positive constant c, independent on n, s. Therefore

I1 ¤ cωn�1R
�s

1� s
� ωn�1R

�s

pn� 1qpn� s� 1q .

Moreover,

I2 � Hn�2pS̃qR
�s

s

» k
0

dt

p1� t2qn�s2

.

So passing to limsup and liminf as sÑ 0� in (7.67) and using Fatou’s lemma we obtain that

αpF q ¤ Hn�2pS̃q
» k

0

dt

p1� t2qn2 , αpF q ¥ Hn�2pS̃q
» k

0

dt

p1� t2qn2 .

In particular αpF q exists, and from (7.66) we get that

ωn
2
� αpF q ¤ αpEq ¤ αpEq ¤ ωn

2
� αpF q.

Therefore, αpEq exists and

αpEq � ωn
2
�Hn�2pS̃q

» k
0

dt

p1� t2qn2 .

7.4.5. Continuity of the fractional mean curvature and a sign changing property
of the nonlocal mean curvature. We use a formula proved in [31] to show that the s-fractional
mean curvature is continuous with respect to C1,α convergence of sets, for any s   α and with respect
to C2 convergence of sets, for s close to 1.

By C1,α convergence of sets we mean that our sets locally converge in measure and can locally be
described as the supergraphs of functions which converge in C1,α.

Definition 7.4.21. Let E � Rn and let q P BE such that BE is C1,α near q, for some α P p0, 1s.
We say that the sequence Ek � Rn converges to E in a C1,α sense (and write Ek

C1,αÝÝÝÑ E) in a
neighborhood of q if:
(i) the sets Ek locally converge in measure to E, i.e.

|pEk∆Eq XBr| kÑ8ÝÝÝÑ 0 for any r ¡ 0
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and
(ii) the boundaries BEk converge to BE in C1,α sense in a neighborhood of q.
We define in a similar way the C2 convergence of sets.

More precisely, we denote

Qr,hpxq :� B1
rpx1q � pxn � h, xn � hq,

for x P Rn, r, h ¡ 0. If x � 0, we drop it in formulas and simply write Qr,h :� Qr,hp0q. Notice that
up to a translation and a rotation, we can suppose that q � 0 and

E XQ2r,2h � tpx1, xnq P Rn |x1 P B1
2r, upx1q   xn   2hu, (7.68)

for some r, h ¡ 0 small enough and u P C1,αpB1
2rq such that up0q � 0. Then, point piiq means that

we can write
Ek XQ2r,2h � tpx1, xnq P Rn |x1 P B1

2r, ukpx1q   xn   2hu, (7.69)

for some functions uk P C1,αpB1
2rq such that

lim
kÑ8

}uk � u}C1,αpB1
2rq � 0. (7.70)

We remark that, by the continuity of u, up to considering a smaller r, we can suppose that

|upx1q|   h

2
, @x1 P B1

2r. (7.71)

We have the following result.

Theorem 7.4.22. Let Ek
C1,αÝÝÝÑ E in a neighborhood of q P BE. Let qk P BEk be such that qk ÝÑ q

and let s, sk P p0, αq be such that sk
kÑ8ÝÝÝÑ s. Then

lim
kÑ8

Isk rEkspqkq � IsrEspqq.

Let Ek
C2ÝÝÑ E in a neighborhood of q P BE. Let qk P BEk be such that qk ÝÑ q and let sk P p0, 1q

be such that sk
kÑ8ÝÝÝÑ 1. Then

lim
kÑ8

p1� skqIsk rEkspqkq � ωn�1HrEspqq.

A similar problem is studied also in [42], where the author estimates the difference between the
fractional mean curvature of a set E with C1,α boundary and that of the set ΦpEq, where Φ is a C1,α

diffeomorphism of Rn, in terms of the C0,α norm of the Jacobian of the diffeomorphism Φ.

When sÑ 0� we do not need the C1,α convergence of sets, but only the uniform boundedness of
the C1,α norms of the functions defining the boundary of Ek in a neighborhood of the boundary points.
However, we have to require that the measure of the symmetric difference is uniformly bounded. More
precisely:

Proposition 7.4.23. Let E � Rn be such that αpEq exists. Let q P BE be such that

E XQr,hpqq � tpx1, xnq P Rn |x1 P B1
rpq1q, upx1q   xn   h� qnu,

for some r, h ¡ 0 small enough and u P C1,αpB1
rpq1qq such that upq1q � qn. Let Ek � Rn be such that

|Ek∆E|   C1

for some C1 ¡ 0. Let qk P BEk XBd, for some d ¡ 0, such that

Ek XQr,hpqkq � tpx1, xnq P Rn |x1 P B1
rpq1kq, ukpx1q   xn   h� qk,nu

for some functions uk P C1,αpB1
rpq1kqq such that ukpq1kq � qk,n and

}uk}C1,αpB1
rpq1kqq   C2
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for some C2 ¡ 0. Let sk P p0, αq be such that sk
kÑ8ÝÝÝÑ 0. Then

lim
kÑ8

skIsk rEkspqkq � ωn � 2αpEq.

In particular, fixing Ek � E in Theorem 7.4.22 and Proposition 7.4.23 we obtain Proposition
7.4.11 stated in the Introduction.

To prove Theorem 7.4.22 we prove at first the following preliminary result.

Lemma 7.4.24. Let Ek
C1,αÝÝÝÑ E in a neighborhood of 0 P BE. Let qk P BEk be such that qk ÝÑ 0.

Then

Ek � qk
C1,βÝÝÝÑ E in a neighborhood of 0,

for every β P p0, αq.
Moreover, if Ek

C2ÝÝÑ E in a neighborhood of 0 P BE, qk P BEk are such that qk ÝÑ 0 and Rk P SOpnq
are such that

lim
kÑ8

|Rk � Id| � 0,

then

RkpEk � qkq C2ÝÝÑ E in a neighborhood of 0 .

Proof. First of all, notice that since qk ÝÑ 0, for k big enough we have

|q1k|  
1

2
r and |qk,n| � |ukpq1kq|  

1

8
h.

By (7.71) and (7.70), we see that for k big enough

|ukpx1q| ¤ 3

4
h, @x1 P B1

2r.

Therefore

|ukpx1q � qk,n|   7

8
h   h, @x1 P B1

2r.

If we define
ũkpx1q :� ukpx1 � q1kq, x1 P B1

r,

for every k big enough we have

pEk � qkq XQr,h � tpx1, xnq P Rn |x1 P B1
r, ũkpx1q   xn   hu. (7.72)

It is easy to check that the sequence Ek � qk locally converges in measure to E. We claim that

lim
kÑ8

}ũk � u}C1,βpB1
rq � 0. (7.73)

Indeed, let
τkupx1q :� upx1 � q1kq.

We have that
}ũk � τku}C1pB1

rq ¤ }uk � u}
C1
�
B
1
3
2
r

�
and that

}τku� u}C1pB1
rq ¤ }∇u}

C0
�
B
1
3
2
r

�|q1k| � }u}
C1,α

�
B
1
3r
2

�|q1k|α.
Thus by the triangular inequality

lim
kÑ8

}ũk � u}C1pB1
rq � 0,

thanks to (7.70) and the fact that qk Ñ 0.
Now, notice that ∇pũkq � τkp∇ukq, so

r∇ũk �∇usC0,βpB1
rq ¤ rτkp∇uk �∇uqsC0,βpB1

rq � rτkp∇uq �∇uqsC0,βpB1
rq.

Therefore
rτkp∇uk �∇uqsC0,βpB1

rq ¤ r∇uk �∇us
C0,β

�
B
1
3r
2

�
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and for every δ ¡ 0 we obtain

rτkp∇uq �∇usC0,βpB1
rq ¤

2

δβ
}τkp∇uq �∇u}

C0
�
B
1
3r
2

� � 2r∇usC0,αpB1
rqδ

α�β .

Sending k Ñ8 we find that

lim sup
kÑ8

rτkp∇uq �∇uqsC0,βpB1
rq ¤ 2r∇usC0,αpB1

rqδ
α�β

for every δ ¡ 0, hence
lim
kÑ8

r∇ũk �∇usC0,βpB1
rq � 0.

This concludes the proof of the first part of the Lemma.
As for the second part, the C2 convergence of sets in a neighborhood of 0 can be proved similarly.
Some care must be taken when considering rotations, since one needs to use the implicit function
theorem. �

Proof of Theorem 7.4.22. Up to a translation and a rotation, we can suppose that q � 0

and νEp0q � 0. Then we can find r, h ¡ 0 small enough and u P C1,αpB1
rq such that we can write

E XQ2r,2h as in (7.68).
Since sk Ñ s P p0, αq for k large enough we can suppose that sk, s P rσ0, σ1s for 0   σ0   σ1  

β   α. Notice that there exists δ ¡ 0 such that

Bδ �� Qr,h. (7.74)

We take an arbitrary R ¡ 1 as large as we want and define the sets

Fk :� pEk XBRq � qk.

From Lemma 7.4.24 we have that in a neighborhood of 0

Fk
C1,βÝÝÝÑ E XBR.

In other words,
lim
kÑ8

|Fk∆pE XBRq| � 0. (7.75)

Moreover, if uk is a function defining Ek as a supergraph in a neighborhood of 0 as in (7.69), denoting
ũkpx1q � ukpx1 � q1kq we have that

Fk XQr,h � tpx1, xnq P Rn |x1 P B1
r, ũkpx1q   xn   hu

and that
lim
kÑ8

}ũk � u}C1,βpB1
rq � 0, }ũk}C1,βpB1

rq ¤M for some M ¡ 0. (7.76)

We also remark that, by (7.71) we can write

E XQr,h � tpx1, xnq P Rn |x1 P B1
r, upx1q   xn   hu.

Exploiting (7.72) we can write the fractional mean curvature of Fk in 0 by using formula (7.92),
that is

Isk rFksp0q � 2

»
B1
r

!
Gsk

� ũkpy1q � ũkp0q
|y1|

	
�Gsk

�
∇ũkp0q � y

1

|y1|
	) dy1

|y1|n�1�sk

�
»
Rn

χCFkpyq � χFkpyq
|y|n�sk χCQr,hpyq dy.

(7.77)

Now, we denote as in (7.93)

Gpsk, ũk, y1q :� Gpsk, ũk, 0, y1q � Gsk

� ũkpy1q � ũkp0q
|y1|

	
�Gsk

�
∇ũkp0q � y

1

|y1|
	

and we rewrite the identity in (7.77) as

Isk rFksp0q � 2

»
B1
r

Gpsk, ũk, y1q dy1

|y1|n�1�sk �
»
Rn

χCFkpyq � χFkpyq
|y|n�sk χCQr,hpyq dy.



234 7. NONLOCAL MINIMAL SURFACES

Also, with this notation and by formula (7.92) we have for E

IsrE XBRsp0q � 2

»
B1
r

Gps, u, y1q dy1

|y1|n�1�s �
»
Rn

χCpEXBRqpyq � χEXBRpyq
|y|n�s χCQr,hpyq dy.

We can suppose that r   1. We begin by showing that for every y1 P B1
rzt0u we have

lim
kÑ8

Gpsk, ũk, y1q � Gps, u, y1q. (7.78)

First of all, we observe that

|Gpsk, ũk, y1q � Gps, u, y1q| ¤ |Gpsk, ũk, y1q � Gps, ũk, y1q| � |Gps, ũk, y1q � Gps, u, y1q|.
Then

|Gpsk, ũk, y1q � Gps, ũk, y1q| �
��� » ũkpy1q�ũkp0q

|y1|

∇ũkp0q� y1|y1|

pgskptq � gsptqq dt
���

¤ 2

» �8

0

|gskptq � gsptq| dt.
Notice that for every t P R

lim
kÑ8

|gskptq � gsptq| � 0, and |gskptq � gsptq| ¤ 2gσ0ptq, @ k P N.

Since gσ0 P L1pRq, by the Dominated Convergence Theorem we obtain that

lim
kÑ8

|Gpsk, ũk, y1q � Gps, ũk, y1q| � 0.

We estimate

|Gps, ũk, y1q � Gps, u, y1q| ¤
���Gs� ũkpy1q � ũkp0q

|y1|
	
�Gs

�upy1q � up0q
|y1|

	���
�
���Gs�∇ũkp0q � y1|y1|	�Gs

�
∇up0q � y

1

|y1|
	���

¤
��� ũkpy1q � ũkp0q

|y1| � upy1q � up0q
|y1|

���� |∇ũkp0q �∇up0q|

�
���∇pũk � uqpξq � y

1

|y1|
���� |∇ũkp0q �∇up0q|

¤ 2}∇ũk �∇u}C0pB1
rq,

which, by (7.73), tends to 0 as k Ñ8. This proves the pointwise convergence claimed in (7.78).
Therefore, for every y1 P B1

rzt0u,

lim
kÑ8

Gpsk, ũk, y1q
|y1|n�1�sk � Gps, u, y1q

|y1|n�1�s .

Thus, by (7.94) we obtain that���Gpsk, ũk, y1q|y1|n�1�sk

��� ¤ }ũk}C1,βpB1
rq

1

|y1|n�1�pβ�skq ¤
M

|y1|n�1�pβ�σ1q P L
1
locpRn�1q,

given (7.76). The Dominated Convergence Theorem then implies that

lim
kÑ8

»
B1
r

Gpsk, ũk, y1q dy1

|y1|n�1�sk �
»
B1
r

Gps, u, y1q dy1

|y1|n�1�s . (7.79)

Now, we show that

lim
kÑ8

»
Rn

χCFkpyq � χFkpyq
|y|n�sk χCQr,hpyq dy �

»
Rn

χCpEXBRqpyq � χEXBRpyq
|y|n�s χCQr,hpyq dy. (7.80)



7.4. COMPLETE STICKINESS AT THE BOUNDARY OF NONLOCAL MINIMAL SURFACES FOR SMALL VALUES OF THE FRACTIONAL PERIMETER235

For this, we observe that��� »
CQr,h

pχCpEXBRqpyq � χEXBRpyqq
� 1

|y|n�sk �
1

|y|n�s
	
dy
��� ¤ »

CBδ

��� 1

|y|n�sk �
1

|y|n�s
���dy,

where we have used (7.74) in the last inequality. For y P CB1��� 1

|y|n�sk �
1

|y|n�s
��� ¤ 2

|y|n�σ0
P L1pCB1q

and for y P B1zBδ ��� 1

|y|n�sk �
1

|y|n�s
��� ¤ 2

|y|n�σ1
P L1pB1zBδq.

We use then the Dominated Convergence Theorem and get that

lim
kÑ8

»
CQr,h

pχCpEXBRqpyq � χEXBRpyqq
� 1

|y|n�sk �
1

|y|n�s
	
dy � 0.

Now ���� »
CQr,h

χCFkpyq � χF kpyq �
�
χCpEXBRqpyq � χEXBRpyq

�
|y|n�sk dy

���� � 2

»
CQr,h

χFk∆pEXBRqpyq
|y|n�sk dy

¤ 2
|Fk∆pE XBRq|

δn�σ1

kÑ8ÝÝÝÑ 0,

according to (7.75). The last two limits prove (7.80). Recalling (7.79), we obtain that

lim
kÑ8

Isk rFksp0q � IsrE XBRsp0q.
We have that Isk rFksp0q � Isk rEk XBRspqkq, so

|Isk rEkspqkq � IsrEsp0q| ¤ |Isk rEkspqkq � Isk rEk XBRspqkq| � |Isk rFksp0q � IsrE XBRsp0q|
� |IsrE XBRsp0q � IsrEsp0q|.

Since

|Isk rEkspqkq � Isk rEk XBRspqkq| � |IsrEsp0q � IsrE XBRsp0q| ¤ 4ωn
σ0

R�σ0 ,

sending RÑ8
lim
kÑ8

Isk rEkspqkq � IsrEsp0q.
This concludes the proof of the first part of the Theorem.

In order to prove the second part of Theorem 7.4.22, we fix R ¡ 1 and we denote

Fk :� Rk

�pEk XBRq � qk
�
,

where Rk P SOpnq is a rotation such that

Rk : νEkp0q ÞÝÑ νEp0q � �en and lim
kÑ8

|Rk � Id| � 0.

Thus, by Lemma 7.4.24 we know that Fk
C2ÝÝÑ E in a neighborhood of 0.

To be more precise,
lim
kÑ8

|Fk∆pE XBRq| � 0. (7.81)

Moreover, there exist r, h ¡ 0 small enough and vk, u P C2pB1
rq such that

Fk XQr,h � tpx1, xnq P Rn |x1 P B1
r, vkpx1q   xn   hu,

E XQr,h � tpx1, xnq P Rn |x1 P B1
r, upx1q   xn   hu

and that
lim
kÑ8

}vk � u}C2pB1
rq � 0. (7.82)
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Notice that 0 P BFk and νFkp0q � en for every k, that is,

vkp0q � up0q � 0, ∇vkp0q � ∇up0q � 0. (7.83)

We claim that
lim
kÑ8

p1� skq
��Isk rFksp0q � Isk rE XBRsp0q

�� � 0. (7.84)

By (7.83) and formula (7.92) we have that

Isk rFksp0q � 2

»
B1
r

dy1

|y1|n�sk�1

» vkpy1q
|y1|

0

dt

p1� t2qn�sk2

�
»
CQr,h

χCFkpyq � χFkpyq
|y|n�sk dy

� Ilocsk rFksp0q �
»
CQr,h

χCFkpyq � χFkpyq
|y|n�sk dy.

We use the same formula for E XBR and prove at first that���� »
CQr,h

χCFkpyq � χFkpyq � χCpEXBRqpyq � χEXBRpyq
|y|n�sk dy

���� ¤ |Fk∆pE XBRq|
δn�sk

¤ |Fk∆pE XBRq|
δn�1

,

(where we have used (7.74)), which tends to 0 as k Ñ8, by (7.81).
Moreover, notice that by the Mean Value Theorem and (7.83) we have

|pvk � uqpy1q| ¤ 1

2
|D2pvk � uqpξ1q||y1|2 ¤

}vk � u}C2pB1
rq

2
|y1|2.

Thus ��Ilocsk rFksp0q � Ilocsk rE XBRsp0q| ¤ 2

»
B1
r

dy1

|y1|n�sk�1

���� » vkpy1q
|y1|

upy1q
|y1|

dt

p1� t2qn�sk2

����
¤ 2

»
B1
r

|y1|�n�sk |pvk � uqpy1q| dy1 ¤
ωn�1 }vk � u}C2pB1

rq
1� sk

r1�sk ,

hence by (7.82) we obtain

lim
kÑ8

p1� skq
��Ilocsk rFksp0q � Ilocsk rE XBRsp0q| � 0. (7.85)

This concludes the proof of claim (7.84).
Now we use the triangle inequality and have that��p1� skqIsk rEkspqkq �HrEsp0q�� ¤ p1� skq

��Isk rEkspqkq � Isk rFksp0q
��

� p1� skq
��Isk rFksp0q � Isk rE XBRsp0q

��� ��p1� skqIsk rE XBRsp0q �HrEsp0q��.
The last term in the right hand side converges by Theorem 12 in [2]. As for the first term, notice that

Isk rFksp0q � Isk rEk XBRspqkq,
hence

lim
kÑ8

p1� skq
��Isk rEk XBRspqkq � Isk rEkspqkq

�� ¤ lim sup
kÑ8

p1� skq2ωn
sk

R�sk � 0.

Sending k Ñ8 in the triangle inequality above, we conclude the proof of the second part of Theorem
7.4.22. �

Remark 7.4.25. In relation to the second part of the proof, we point out that using the directional
fractional mean curvature defined in [2, Definition 6, Theorem 8], we can write

Ilocsk rFksp0q � 2

»
Sn�2

� » r
0

ρn�2

�» vkpρeq
0

dt

pρ2 � t2qn�sk2



dρ

�
dHn�2

e

� 2

»
Sn�2

Ksk,edHn�2
e .
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One is then actually able to prove that

lim
kÑ8

p1� skqKsk,erEk � qksp0q � HerEsp0q,
uniformly in e P Sn�2, by using formula (7.85) and the first claim of Theorem 12 in [2].

We prove now the continuity of the fractional mean curvature as sÑ 0.

Proof of Proposition 7.4.23. Up to a translation, we can take q � 0 and up0q � 0.
For R ¡ 2 maxtr, hu, we write

Isk rEkspqkq � P.V.

»
Qr,hpqkq

χCEkpyq � χEkpyq
|y � qk|n�sk dy �

»
CQr,hpqkq

χCEkpyq � χEkpyq
|y � qk|n�sk dy

� P.V.

»
Qr,hpqkq

χCEkpyq � χEkpyq
|y � qk|n�sk dy �

»
BRpqkqzQr,hpqkq

χCEkpyq � χEkpyq
|y � qk|n�sk dy

�
»
CBRpqkq

χCEkpyq � χEkpyq
|y � qk|n�sk dy

� I1pkq � I2pkq � I3pkq.
Now using (7.92), (7.93) and (7.94) we have that

|I1pkq| ¤ 2

»
B1
rpq1kq

|Gpsk, uk, q1k, y1q|
|y1 � q1k|n�sk�1

dy1 ¤ 2}uk}C1,αpB1
rpq1kqq

»
B1
rpq1kq

|y1 � q1k|α
|y1 � q1k|n�sk�1

dy1

¤ 2C2ωn�1
rα�sk

α� sk
.

Using (7.74) we also have that

|I2pkq| ¤
»
BRpqkqzBδpqkq

dy

|y � qk|n�sk � ωn
δ�sk �R�sk

sk
.

Thus
lim
kÑ8

sk
�|I1pkq| � |I2pkq|

� � 0. (7.86)

Furthermore��skI3pkq��ωn � 2skαskp0, R,Eq
���

¤
����sk »

CBRpqkq

dy

|y � qk|n�sk � 2sk

»
CBRpqkq

χEkpyq
|y � qk|n�sk dy � ωn � 2skαskpqk, R,Eqq

����
� 2sk|αskpqk, R,Eq � αskp0, R,Eq|

¤ |ωnR�sk � ωn| � 2sk

���� »
CBRpqkq

χEkpyq
|y � qk|n�sk dy �

»
CBRpqkq

χEpyq
|y � qk|n�sk dy

����
� 2sk|αskpqk, R,Eq � αskp0, R,Eq|

¤ |ωnR�sk � ωn| � 2sk

»
CBRpqkq

χEk∆Epyq
|y � qk|n�sk dy � 2sk|αskpqk, R,Eq � αskp0, R,Eq|

¤ |ωnR�sk � ωn| � 2C1skR
�n�sk � 2sk|αskpqk, R,Eq � αskp0, R,Eq|,

where we have used that |Ek∆E|   C1.
Therefore, since qk P Bd for every k, as a consequence of Proposition 7.4.12 it follows that

lim
kÑ8

��skI3pkq��ωn � 2skαskp0, R,Eq
��� � 0. (7.87)

Hence, by (7.86) and (7.87), we get that

lim
kÑ8

skIsk rEkspqkq � ωn � 2 lim
kÑ8

skαskp0, R,Eq � ωn � 2αpEq,
concluding the proof. �
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Proof of Theorem 7.4.1. Arguing as in the proof of Proposition 7.4.23, by keeping fixed Ek �
E and qk � p, we obtain

lim inf
sÑ0

s IsrEsppq � ωn � 2 lim sup
sÑ0

s αsp0, R,Eq � ωn � 2αpEq,

and similarly for the limsup. �

As a corollary of Theorem 7.4.22 and Theorem 7.4.1, we have the following result.

Theorem 7.4.26. Let E � Rn and let p P BE be such that BE X Brppq is C2 for some r ¡ 0.
Suppose that the classical mean curvature of E in p is Hppq   0. Also assume that

αpEq   ωn
2
.

Then there exist σ0   s̃   σ1 in p0, 1q such that
piq IsrEsppq ¡ 0 for every s P p0, σ0s, and actually

lim inf
sÑ0�

s IsrEsppq � ωn � 2αpEq,
piiq Is̃rEsppq � 0,
piiiq IsrEsppq   0 for every s P rσ1, 1q, and actually

lim
sÑ1

p1� sq IsrEsppq � ωn�1Hppq.
7.4.6. Some useful results.

Sliding the balls. For the convenience of the reader, we collect here some auxiliary and elementary
results of geometric nature, that are used in the proofs of the main results.

Lemma 7.4.27. Let F � Rn be such that

Bδppq � Fext for some δ ¡ 0 and q P F ,
and let c : r0, 1s ÝÑ Rn be a continuous curve connecting p to q, that is

cp0q � p and cp1q � q.

Then there exists t0 P r0, 1q such that Bδ
�
cpt0q

�
is an exterior tangent ball to F , that is

Bδ
�
cpt0q

� � Fext and BBδ
�
cpt0q

�X BF �� H. (7.88)

Proof. Define

t0 :� sup
!
τ P r0, 1s �� ¤

tPr0,τs
Bδ

�
cptq� � Fext

)
. (7.89)

Notice that

q P F � Fint Y BF ùñ Bδpqq X Fint �� H,
hence we have that t0   1.

Now we prove that t0 as defined in (7.89) satisfies (7.88).
Notice that by definition of t0

Bδ
�
cpt0q

� � Fext,

hence

Bδ
�
cpt0q

� � Fext � Fext Y BF. (7.90)

Now, suppose that

BBδ
�
cpt0q

�X BF � H.
Then (7.90) implies that

Bδ
�
cpt0q

� � Fext.

Since Fext is an open set, we can find δ̃ ¡ δ such that

Bδ̃
�
cpt0q

� � Fext.
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By continuity of c we can find ε P p0, 1� t0q small enough such that

|cptq � cpt0q|   δ̃ � δ, @ t P rt0, t0 � εs.
Therefore

Bδ
�
cptq� � Bδ̃

�
cpt0q

� � Fext, @ t P rt0, t0 � εs,
and hence ¤

tPr0,t0�εs
Bδ

�
cptq� � Fext,

which is in contradiction with the definition of t0. Thus

BBδ
�
cpt0q

�X BF �� H,
which concludes the proof. �

Smooth domains. Given a set F � Rn, the signed distance function d̄F from BF , negative inside
F , is defined as

d̄F pxq � dpx, F q � dpx, CF q for every x P Rn,
where

dpx,Aq :� inf
yPA

|x� y|,
denotes the usual distance from a set A. Given an open set Ω � Rn, we denote by

NρpBΩq :� t|d̄Ω|   ρu � tx P Rn | dpx, BΩq   ρu
the tubular ρ-neighborhood of BΩ. For the details about the properties of the signed distance function,
we refer to [10,90] and the references cited therein.

Now we recall the notion of (uniform) interior ball condition.

Definition 7.4.28. We say that an open set O satisfies an interior ball condition at x P BO if
there exists a ball Brpyq s.t.

Brpyq � O and x P BBrpyq.
We say that the condition is “strict” if x is the only tangency point, i.e.

BBrpyq X BO � txu.
The open set O satisfies a uniform (strict) interior ball condition of radius r if it satisfies the (strict)
interior ball condition at every point of BO, with an interior tangent ball of radius at least r.
In a similar way one defines exterior ball conditions.

We remark that if O satisfies an interior ball condition of radius r at x P BO, then the condition
is strict for every radius r1   r.

Remark 7.4.29. Let Ω � Rn be a bounded open set with C2 boundary. It is well known that Ω
satisfies a uniform interior and exterior ball condition. We fix r0 � r0pΩq ¡ 0 such that Ω satisfies a
strict interior and a strict exterior ball contition of radius 2r0 at every point x P BΩ. Then

d̄Ω P C2pN2r0pBΩqq, (7.91)

(see e.g. Lemma 14.16 in [90]).

We remark that the distance function dp�, Eq is differentiable at x P RnzE if and only if there is
a unique point y P BE of minimum distance, i.e.

dpx,Eq � |x� y|.
In this case, the two points x and y are related by the formula

y � x� dpx,Eq∇dpx,Eq.
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This generalizes to the signed distance function. In particular, if Ω is bounded and has C2

boundary, then we can define a C1 projection function from the tubular 2r0-neighborhood N2r0pBΩq
onto BΩ by assigning to a point x its unique nearest point πpxq, that is

π : N2r0pBΩq ÝÑ BΩ, πpxq :� x� d̄Ωpxq∇d̄Ωpxq.
We also remark that on BΩ we have that ∇d̄Ω � νΩ and that

∇d̄Ωpxq � ∇d̄Ωpπpxqq � νΩpπpxqq, @x P N2r0pBΩq.
Thus ∇d̄Ω is a vector field which extends the outer unit normal to a tubular neighborhood of BΩ, in
a C2 way.

Notice that given a point y P BΩ, for every |δ|   2r0 the point x :� y � δνΩpyq is such that
d̄Ωpxq � δ (and y is its unique nearest point). Indeed, we consider for example δ P p0, 2r0q. Then we
can find an exterior tangent ball

B2r0pzq � CΩ, BB2r0pzq X BΩ � tyu.
Notice that the center of the ball must be

z � y � 2r0νΩpyq.
Then, for every δ P p0, 2r0q we have

Bδpy � δνΩpyqq � B2r0py � 2r0νΩpyqq � CΩ, BBδpy � δνΩpyqq X BΩ � tyu.
This proves that

|d̄Ωpy � δνΩpyqq| � dpx, BΩq � δ.

Finally, since the point x lies outside Ω, its signed distance function is positive.

Remark 7.4.30. Since |∇d̄Ω| � 1, the bounded open sets

Ωδ :� td̄Ω   δu
have C2 boundary

BΩδ � td̄Ω � δu,
for every δ P p�2r0, 2r0q.

As a consequence, we know that for every |δ|   2r0 the set Ωδ satisfies a uniform interior and
exterior ball condition of radius rpδq ¡ 0. Moreover, we have that rpδq ¥ r0 for every |δ| ¤ r0 (see
also Appendix A in [126] for related results).

Lemma 7.4.31. Let Ω � Rn be a bounded open set with C2 boundary. Then for every δ P r�r0, r0s
the set Ωδ satisfies a uniform interior and exterior ball condition of radius at least r0, i.e.

rpδq ¥ r0 for every |δ| ¤ r0.

Proof. Take for example δ P r�r0, 0q and let x P BΩδ � td̄Ω � δu. We show that Ωδ has an
interior tangent ball of radius r0 at x. The other cases are proven in a similar way.

Consider the projection πpxq P BΩ and the point

x0 :� x� r0∇d̄Ωpxq � πpxq � pr0 � |δ|qνΩpπpxqq.
Then

Br0px0q � Ωδ and x P BBr0px0q X BΩδ.

Indeed, notice that, as remarked above,

dpx0, BΩq � |x0 � πpxq| � pr0 � |δ|q.
Thus, by the triangle inequality we have that

dpz, BΩq ¥ dpx0, BΩq � |z � x0| ¡ |δ|, for every z P Br0px0q,
so Br0 � Ωδ. Moreover, by definition of x0 we have

x P BBr0px0q X BΩδ
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and the desired result follows. �

To conclude, we remark that the sets Ω�δ are retracts of Ω, for every δ P p0, r0s. Indeed, roughly
speaking, each set Ω�δ is obtained by deforming Ω in normal direction, towards the interior. An
important consequence is that if Ω is connected then Ω�δ is path connected.

To be more precise, we have the following:

Proposition 7.4.32. Let Ω � Rn be a bounded open set with C2 boundary. Let δ P p0, r0s and
define

D : Ω ÝÑ Ω�δ, Dpxq :�
#
x, x P Ω�δ,

x� �
δ � d̄Ωpxq

�
∇d̄Ωpxq, x P ΩzΩ�δ.

Then D is a retraction of Ω onto Ω�δ, i.e. it is continuous and Dpxq � x for every x P Ω�δ. In
particular, if Ω is connected, then Ω�δ is path connected.

Proof. Notice that the function

Φpxq :� x� �
δ � d̄Ωpxq

�
∇d̄Ωpxq

is continuous in ΩzΩ�δ and Φpxq � x for every x P BΩ�δ. Therefore the function D is continuous.
We are left to show that

DpΩzΩ�δq � BΩ�δ.
For this, it is enough to notice that

Dpxq � πpxq � δνΩpπpxqq for every x P ΩzΩ�δ.

To conclude, suppose that Ω is connected and recall that if an open set Ω � Rn is connected, then
it is also path connected. Thus Ω�δ, being the continuous image of a path connected space, is itself
path connected. �

Explicit formulas for the fractional mean curvature of a graph. Now, we collect some auxiliary
results on nonlocal minimal surfaces. In particular, we recall the representation of the fractional mean
curvature when the set is a graph and a useful and general version of the maximum principle.
We denote

Qr,hpxq :� B1
rpx1q � pxn � h, xn � hq,

for x P Rn, r, h ¡ 0. If x � 0, we write Qr,h :� Qr,hp0q. Let also

gsptq :� 1

p1� t2qn�s2

and Gsptq :�
» t

0

gspτq dτ.

Notice that

0   gsptq ¤ 1, @ t P R and

» �8

�8
gsptq dt   8,

for every s P p0, 1q.
In this notation, we can write the fractional mean curvature of a graph as follows:

Proposition 7.4.33. Let F � Rn and p P BF such that

F XQr,hppq � tpx1, xnq P Rn |x1 P B1
rpp1q, vpx1q   xn   pn � hu,

for some v P C1,αpB1
rpp1qq. Then for every s P p0, αq

IsrF sppq � 2

»
B1
rpp1q

!
Gs

�vpy1q � vpp1q
|y1 � p1|

	
�Gs

�
∇vpp1q � y

1 � p1

|y1 � p1|
	) dy1

|y1 � p1|n�1�s

�
»
RnzQr,hppq

χCF pyq � χF pyq
|y � p|n�s dy.

(7.92)

This explicit formula was introduced in [31] (see also [2, 107]) when ∇vppq � 0. In [14], the
reader can find the formula for the case of non-zero gradient.
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Remark 7.4.34. In the right hand side of (7.92) there is no need to consider the principal value,
since the integrals are summable. Indeed,���Gs�vpy1q � vpp1q

|y1 � p1|
	
�Gs

�
∇vpp1q � y

1 � p1

|y1 � p1|
	��� � ��� » vpy1q�vpp1q

|y1�p1|

∇vpp1q� y1�p1|y1�p1|

gsptq dt
���

¤
���vpy1q � vpp1q �∇vpp1q � py1 � p1q

|y1 � p1|
��� ¤ }v}C1,αpB1

rpp1qq|y1 � p1|α,

for every y1 P B1
rpp1q. As for the last inequality, notice that by the Mean value Theorem we have

vpy1q � vpp1q � ∇vpξq � py1 � p1q,
for some ξ P B1

rpp1q on the segment with end points y1 and p1. Thus

|vpy1q � vpp1q �∇vpp1q � py1 � p1q| � |p∇vpξq �∇vpp1qq � py1 � p1q|
¤ |∇vpξq �∇vpp1q||y1 � p1| ¤ }∇v}C0,αpB1

rpp1qq|ξ � p1|α|y1 � p1|
¤ }v}C1,αpB1

rpp1qq|y1 � p1|1�α.
We denote for simplicity

Gps, v, y1, p1q :� Gs

�vpy1q � vpp1q
|y1 � p1|

	
�Gs

�
∇vpp1q � y

1 � p1

|y1 � p1|
	
. (7.93)

With this notation, we have

|Gps, v, y1, p1q| ¤ }v}C1,αpB1
rpp1qq|y1 � p1|α. (7.94)

A maximum principle. By exploiting the Euler-Lagrange equation, we can compare an s-minimal
set with half spaces. We show that if E is s-minimal in Ω and the exterior data E0 :� EzΩ lies above
a half-space, then also E X Ω must lie above that same half-space. This is indeed a very general
principle, that we now discuss in full detail. To this aim, it is convenient to point out that if E � F
and the boundaries of the two sets touch at a common point x0 where the s-fractional mean curvatures
coincide, then the two sets must be equal. The precise result goes as follows:

Lemma 7.4.35. Let E,F � Rn be such that E � F and x0 P BE X BF . Then

Iρs rEspx0q ¥ Iρs rF spx0q for every ρ ¡ 0. (7.95)

Furthermore, if

lim inf
ρÑ0�

Iρs rF spx0q ¥ a and lim sup
ρÑ0�

Iρs rEspx0q ¤ a, (7.96)

then E � F , the fractional mean curvature is well defined in x0 and IsrEspx0q � a.

Proof. To get p7.95q it is enough to notice that

E � F ùñ �
χCEpyq � χEpyq

� ¥ �
χCF pyq � χF pyq

� @ y P Rn.

Now suppose that p7.96q holds true. Then by p7.95q we find that

D lim
ρÑ0�

IsrEspx0q � lim
ρÑ0�

IsrF spx0q � a.

To conclude, notice that if the two curvatures are well defined (in the principal value sense) in x0

and are equal, then

0 ¤
»
CBρpx0q

�
χCEpyq � χEpyq

�� �
χCF pyq � χF pyq

�
|x0 � y|n�s dy

� Iρs rEspx0q � Iρs rF spx0q ρÑ0�ÝÝÝÝÑ 0,

which implies that χEpyq � χF pyq for a.e. y P Rn, i.e. E � F . �
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Proposition 7.4.36. [Maximum Principle] Let Ω � Rn be a bounded open set with C1,1 boundary.
Let s P p0, 1q and let E be s-minimal in Ω. If

tx � ν ¤ auzΩ � CE, (7.97)

for some ν P Sn�1 and a P R, then

tx � ν ¤ au � CE.

Proof. First of all, we remark that up to a rotation and translation, we can suppose that ν � en
and a � 0. Furthermore we can assume that

inf
xPΩ

xn   0,

otherwise there is nothing to prove.
If E X Ω � H, i.e. Ω � CE, we are done. Thus we can suppose that E X Ω �� H.

Since E X Ω is compact, we have

b :� min
xPEXΩ

xn P R.

Now we consider the set of points which realize the minimum above, namely we set

P :� tp P E X Ω | pn � bu.
Notice that  

xn ¤ mintb, 0u( � CE, (7.98)

so we are reduced to prove that b ¥ 0.
We argue by contradiction and suppose that b   0. We will prove that P � H. We remark that

P � BE X Ω.
Indeed, if p P P, then by p7.98q we have that Bδppq X txn ¤ bu � CE for every δ ¡ 0, so

|Bδppq X CE| ¥ ωn
2 δ

n and p R E1. Therefore, since E � E1 Y BE, we find that p P BE.

Roughly speaking, we are sliding upwards the half-space txn ¤ tu until we first touch the set E.
Then the contact points must belong to the boundary of E.

Notice that the points of P can be either inside Ω or on BΩ. In both cases we can use the
Euler-Lagrange equation to get a contradiction. The precise argument goes as follows.

First, if p � pp1, bq P BE X Ω, then since H :� txn ¤ bu � CE, we can find an exterior tangent
ball to E at p (contained in Ω), so IsrEsppq � 0.

On the other hand, if p P BE X BΩ, then B|b|ppqzΩ � CE and hence (by Theorem 5.1 of [65])

BE XBrppq is C1, s�1
2 for some r P p0, |b|q, and IsrEsppq ¤ 0 by Theorem 1.1 of [108] (we remark that

sign convention here is different than the one in [108]).
In both cases, we have that

p P BH X BE, H � CE and IsrCEsppq � �IsrEsppq ¥ 0 � IsrHsppq,
and hence Lemma 7.4.35 implies CE � H. However, since b   0, this contradicts p7.97q.

This proves that b ¥ 0, thus concluding the proof. �

From this, we obtain a strong comparison principle with planes, as follows:

Corollary 7.4.37. Let Ω � Rn be a bounded open set with C1,1 boundary. Let E � Rn be
s-minimal in Ω, with txn ¤ 0uzΩ � CE. Then

piq if |pCEzΩq X txn ¡ 0uq| � 0, then E � txn ¡ 0u;
piiq if |pCEzΩq X txn ¡ 0u| ¡ 0, then for every x � px1, 0q P Ω X txn � 0u there exists

δx P p0, dpx, BΩqq s.t. Bδxpxq � CE. Thus

txn ¤ 0u Y
¤

px1,0qPΩ

Bδxpxq � CE. (7.99)
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Proof. First of all, Proposition 7.4.36 guarantees that

txn ¤ 0u � CE.
piq Notice that since E is s-minimal in Ω, also CE is s-minimal in Ω.

Thus, since txn ¡ 0uzΩ � E � CpCEq, we can use again Proposition 7.4.36 (notice that txn � 0u is a
set of measure zero) to get txn ¡ 0u � E, proving the claim.

piiq Let x P txn � 0u X Ω.
We argue by contradiction. Suppose that |Bδpxq X E| ¡ 0 for every δ ¡ 0. Notice that, since

Bδpxq X txn ¤ 0u � CE for every δ ¡ 0, this implies that x P BE X Ω. Moreover, we can find an
exterior tangent ball to E in x, namely

Bεpx� ε enq � txn ¤ 0u X Ω � CE X Ω.

Thus the Euler-Lagrange equation gives IsrEspxq � 0.
Let H :� txn ¤ 0u. Since x P BH, H � CE and also IsrHspxq � 0, Lemma 7.4.35 implies

CE � H. However this contradicts the hypothesis

|pCEzΩq X txn ¡ 0u| ¡ 0,

which completes the proof. �
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Appendix A

A.1. The Fourier transform

We consider the Schwartz space of rapidly decaying functions defined as

SpRnq :�
"
f P C8pRnq �� @α, β P Nn

0 , sup
xPRn

|xαBβfpxq|   8
*
. (A.1)

In other words, the Schwartz space consists of smooth functions whose derivatives (including the
function itself) decay at infinity faster than any power of x. Endowed with the family of seminorms

rf sα,NSpRnq � sup
xPRn

p1� |x|qN
¸

|α|¤N
|Dαfpxq|, (A.2)

the Schwartz space is a locally convex topological space. We denote by S 1pRnq the space of tempered
distributions, the topological dual of SpRnq.

Using x P Rn as the space variable and ξ P Rn as the frequency variable, the Fourier transform
and the inverse Fourier transform of f P L1pRnq, are defined respectively, as

pfpξq :� Ffpξq :�
»
Rn
fpxqe�2πix�ξ dx

and qfpxq � F�1fpxq �
»
Rn
fpξqe2πix�ξ dξ.

We recall that the pointwise product is taken into the convolution product and vice versa, namely for
all f, g P L1pRnq

Fpf � gq � FpfqFpgq. (A.3)

We have that fpxq � F
�
F�1fqpxq � F�1

�
Ffqpxq holds almost everywhere if both f and pf P L1pRnq,

and pointwise if f is also continuous. Also for all f, g P L1pRnq»
Rn

pfpξqgpξq dξ � »
Rn
fpξqpgpξq dξ.

On the Schwartz space, the Fourier transform gives a continuous bijection between SpRnq and SpRnq.

A.2. Special functions

We recall here a few notions on the special functions Gamma, Beta and hypergeometric (see [3],
Chapters 6 and 15 for details).

Gamma function. The Gamma function is defined for x ¡ 0 as (see [3], Chapter 6):

Γpxq :�
» 8

0

tx�1e�t dt. (A.4)

This function has an unique continuation to the whole R except at the negative integers, by means
of Euler’s infinite product. We have that Γp1q � Γp2q � 1 and Γp1{2q � ?

π. We also recall the next

245
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useful identities:

Γpn� 1q � n! for any n P N, (A.5)

Γpx� 1q � xΓpxq for any x ¡ 0, (A.6)

Γp1{2� xq
Γp2xq �

?
π21�2x

Γpxq for any x ¡ 0, (A.7)

ΓpsqΓp1� sq � π

sinpπsq for s P p0, 1q, (A.8)

Γp1{2� sqΓp1{2� sq � π

cospπsq for s P p0, 1q, (A.9)

Γp1� sq � p�sqΓp�sq for s P p0, 1q. (A.10)

Beta function. The Beta function can be represented as an integral (see [3], Section 6.2), namely
for x, y ¡ 0

βpx, yq �
» 8

0

tx�1

p1� tqx�y dt (A.11)

and equivalently

βpx, yq �
» 1

0

tx�1p1� tqy�1 dt. (A.12)

Furthermore, we have the identity

βpx, yq � ΓpxqΓpyq
Γpx� yq . (A.13)

In particular, using this and (A.8), we get the useful formula

βps, 1� sq � π

sinpπsq . (A.14)

Hypergeometric functions. There are several representations for the hypergeometric function
(see [3], Chapter 15, or page 211 in [118]). We recall the ones useful for our own purposes.

(1) Gauss series

F pa, b, c, wq �
8̧

k�0

paqkpbqk
pcqk

wk

k!
, (A.15)

where pqqk is the Pochhammer symbol defined by:

pqqk �
#

1 for k � 0,

qpq � 1q � � � pq � k � 1q for k ¡ 0.
(A.16)

The interval of convergence of the series is |w| ¤ 1. The Gauss series, on its interval of convergence,
diverges when c � a � b ¤ �1, is absolutely convergent when c � a � b ¡ 0 and is conditionally
convergent when |w|   1 and �1   c� a� b ¤ 0. Also, the series is not defined when c is a negative
integer �m, provided a or b is a positive integer n and n   m.

Some useful elementary computations are

F pa, b, b, wq � p1� wq�a. (A.17a)

F
�
a,

1

2
� a,

1

2
, w2

	
� p1� wq�2a � p1� wq�2a

2
. (A.17b)

(2) Integral representation

F pa, b, c, wq :� Γpcq
ΓpbqΓpc� bq

» 1

0

tb�1p1� tqc�b�1p1� wtq�a dt. (A.18)

The integral is convergent (thus F is defined as an integral) when c ¡ b ¡ 0 and |w|   1.
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(3) Linear transformation formulas
From the integral representation (A.18), the following transformations can be deduced.

F pa, b, c, wq � p1� wqc�a�bF pc� a, c� b, c, wq, (A.19a)

� p1� wq�aF
�
a, c� b, c,

w

w � 1

	
, (A.19b)

� p1� wq�bF
�
b, c� a, c,

w

w � 1

	
, (A.19c)

� ΓpcqΓpc� a� bq
Γpc� aqΓpc� bqF pa, b, a� b� c� 1, 1� wq

� p1� wqc�a�bΓpcqΓpa� b� cq
ΓpaqΓpbq F pc� a, c� b, c� a� b� 1, 1� wq,

when 0   w   1. (A.19d)
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drej Nikolaevič Tichonov, Andrej Nikolaevič Tichonov, Aleksandr Andreevič Samarskij, and Aleksandr Andreevič
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