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ABSTRACT. In this thesis, we deal with problems related to nonlocal operators, in particular to the
fractional Laplacian and to some other types of fractional derivatives (the Caputo and the Marchaud
derivatives). We make an extensive introduction to the fractional Laplacian, we present some related
contemporary research results and we add some original material. Indeed, we study the potential
theory of this operator, introduce a new proof of Schauder estimates using the potential theory
approach, we study a fractional elliptic problem in R™ with convex nonlinearities and critical growth
and we present a stickiness property of nonlocal minimal surfaces for small values of the fractional
parameter. Also, we point out that the (nonlocal) character of the fractional Laplacian gives rise to
some surprising nonlocal effects. We prove that other fractional operators have a similar behavior:
in particular, Caputo-stationary functions are dense in the space of smooth functions; moreover, we
introduce an extension operator for Marchaud-stationary functions.
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Introduction

The interest in nonlocal operators has increased in the last decades given their numerous applica-
tions in many branches of physics, engineering, biology and so on. Just to name a few, several models
involving nonlocal operators are being used to describe anomalous diffusion processes, viscoelasticity,
signal processing, geomorphology, materials sciences, fractals, and many others.

Nonlocal operators have the peculiarity of capturing long-range interactions, i.e. events that
happen far away, may that be in time or in space. In our setting, we study some aspects of nonlocal
behavior, introduced by the following integral operators: the fractional Laplacian, the Caputo and
the Marchaud fractional derivatives.

Fractional calculus is a classical argument, studied since the end of the seventeenth century by
many great mathematicians (see [115] for an interesting time-line history). Fractional operators
generalize classical (integer) ones, in the sense that if the order of the fractional operator is given
by the parameter s € (0,1), then letting s — 01 one obtains the identity, and letting s — 17, one
gets the classical (integer order) operator. In the literature, there are several definitions of fractional
operators, like the Riemann-Liouville, the Caputo, the Riesz, the Marchaud fractional derivative,
or the generalization given by the Erdélyi-Kober operator (see [100, , ] for more details on
fractional integrals, derivatives and applications).

The fractional Laplacian well describes nonlocal diffusion phenomena. For instance, we can use it
to describe what happens to a sheet of metal (that has a crystalline configuration), since the behavior
at a given point (for instance, its deformation when an external force is applied) depends on a large
scale on the whole object. On the other hand, if we think of a function depending on time, the Caputo
and the Marchaud derivatives exhibit a “memory effect”, that is they “see past events”, providing a
model in which the state of a system at a given time depends on the past. They describe, hence, a
causal system, also called a non-anticipative system.

We dedicate most of the thesis to the fractional Laplacian. Moreover, we introduce along the way
the two other fractional derivatives (Caputo and Marchaud) and show that their nonlocal character
induces some properties similar to those of the fractional Laplacian.

Starting from the basics of the nonlocal equations and in particular of the fractional Laplace
operator, in this thesis we will discuss in detail some recent developments in some very interesting
topics of research, presenting:

e a problem arising in crystal dislocation (which is related to a classical model introduced by
Peierls and Nabarro),

e a problem arising in phase transitions (which is related to a nonlocal version of the classical
Allen-Cahn equation),

e a nonlocal version of the Schrodinger equation for standing waves (as introduced by Laskin),
and

e the limit interfaces arising in the above nonlocal phase transitions (which turn out to be
nonlocal minimal surfaces, as introduced by Caffarelli, Roquejoffre and Savin).

In particular, we focus our attention on the following original contributions:

e a Schauder estimate for the fractional Laplacian using the potential theory approach,
e a fractional equation in R™ in the convex, critical case,

7



8 INTRODUCTION

e a stickiness phenomenon of nonlocal minimal surfaces, when the fractional parameter is

small.
Moreover, we prove some original results related to the Caputo derivative (see [33]) and the
Marchaud derivative (see [111]). In particular, we state a density property that the Caputo derivative

shares with the fractional Laplacian. Indeed, Caputo-stationary functions are locally dense in the space
of smooth functions (just like s-harmonic functions are).

Furthermore, we introduce the extension operator of the Marchaud derivative. The extension is
a local operator defined in one dimension more, whose trace is the original nonlocal operator itself.
In this way, the nonlocal behavior of the Marchaud derivative can be seen as the effect of local events
that occur in a space with an extra dimension (similarly to the extension operator for the fractional
Laplacian, check [28]). The advantage of working with the extension is that one can overcome the
difficulty induced by the nonlocality, and use tools that are somehow classical. In our case, we prove a
Harnack inequality for Marchaud-stationary functions using the Harnack inequality in the local case.

Overview of the thesis and original results

This thesis gathers some recent research on the fractional Laplacian. Starting from the basics
of the theory for this operator, we will collect examples, recent results and observations, and enrich
the material with some original contributions. Also, we will see that some nonlocal effects registered
by the fractional Laplacian find correspondence for other fractional operators. In this sense, we will
introduce and work with two types of fractional derivative (the Caputo and the Marchaud definitions).
Furthermore, we will present some known recent results on nonlocal minimal surfaces, and discuss in
detail some new results on the behavior of nonlocal minimal surfaces for a small value of the fractional
parameter.

This thesis is organized in seven chapters, each of which focuses on a particular research theme.
We consequently present the content of each chapter.

To start with, in the first chapter, we will give a motivation for the fractional Laplacian, that
originates from probabilistic considerations. For s € (0,1) and for regular enough functions the
fractional Laplacian is defined as

Cln,s) [ ule) —u(@+y) —uz—y)
(—A)Su(x) = 5 f . |y|n+25 dy, (0.1)
where C(n, s) is a positive constant. We present here two probabilistic models in which this operator
naturally arises: a random walk that allows long jumps and a payoff model. Indeed, we show that the
fractional heat equation, i.e.

oru + (—A)°u =0,

naturally arises from a probabilistic process in which a particle moves randomly in the space, subject
to a probability that allows long jumps. Using the same probabilistic process and supposing that
exiting the domain for the first time by jumping to an outside point means earning a certain (known)
quantity of money, the payoff function will be s-harmonic in the domain, that is, inside the domain it
will satisfy (—A)%u = 0.

As a matter of fact, no advanced knowledge of probability theory is assumed from the reader, and the
topic is dealt with at an elementary level.

In Chapter 2, we will recall some basic properties of the fractional Laplacian, discuss some explicit
examples in detail and point out some structural inequalities, that are due to a comparison principle.
At first, we introduce some equivalent representations for the fractional Laplacian, as a principal value
integral (in the sense of Cauchy),

u(z) — u(y)
Re [T —y[nTs

(=A)°u(x) = C(n,s)P.V.
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and as a pseudo-differential operator

(—A)u(z) = F 1 (|E**a(9)) -
We also explicitly compute the constant C(n, s) that was introduced in definition (0.1).
Fractional Sobolev spaces enjoy quite a number of important functional inequalities. We present here
two important results and give some simple and nice proofs, namely the fractional Sobolev inequality
and the generalized co-area formula.
Moreover, we present an explicit example of an s-harmonic function on the positive half-line, that is,
we prove that

(~A)'(2:)* =0 on R,

and an example of a function with constant Laplacian on the ball, that is, we prove that up to
constants

(=A)P(1—|z[*)% =1 in Bi.
We also discuss some maximum principles and a Harnack inequality, and present a quite surprising re-
sult, which states that every smooth function can be locally approximated by functions with vanishing
fractional Laplacian (in sharp contrast with the rigidity of the classical harmonic functions).

In analogy to this result on the Laplacian, as an original contribution, we prove that Caputo-
stationary functions are dense in the space of smooth functions. Indeed, the nonlocal character of
the Caputo derivative gives rise to this peculiar behavior: on a bounded interval, say [0,1], one can
find a Caputo-stationary function “close enough” to any smooth function, without any geometrical
constraints. This again is surprising, since classical derivatives are rigid in tis sense (for instance, the
functions with null first derivative are constant functions and the functions with null second derivatives
are affine functions).

We notice that this behavior seems to be a typical nonlocal feature, and is shared by solutions of
other nonlocal equations (see for this [66], where the same type of result is proved for solutions of the
fractional heat equation).

In particular, we introduce the Caputo derivative of a (good enough) function u to be

X

AD?Ax)=ch W) (@ — 1) dt,

a

where ¢, is a positive constant, and prove the following result.

THEOREM. Let k € Ny and s € (0,1) be two arbitrary parameters. Then for any f € Ck([O, 1])
and any € > 0 there exists an initial point a < 0 and a function u € C1* such that

Diu(z) =0 in [0, 00)
and
lu— fleroay) <e-

To prove this theorem, we follow the steps of [62]. The main difficulties are given by the structure of
the Caputo derivative and the lack of symmetry of the exterior conditions. In order to get the result,
we do the following: we reduce the problem to finding a Caputo stationary function close to any
monomial, and this comes to finding a Caputo stationary function with an arbitrarily large number
of derivatives prescribed. By providing the “right” prescribed (exterior) data, we build a sequence
of Caputo-stationary functions that tends uniformly to the function z%. This allows us to obtain a
Caputo-stationary function with an arbitrarily large number of derivatives prescribed and to conclude
the proof.

In Chapter 3, we introduce the potential theory related to the fractional Laplacian. We underline
here that the fractional Laplacian is closely related to the Riesz kernel, that in our context is the
fundamental solution of the fractional Laplacian. As a matter of fact

(—A)*® = b,
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where ® is the Riesz kernel and dq is the Dirac Delta at zero. The convolution operation with this
singular integral kernel (which is also called, in fractional calculus, the Riesz fractional integral) is the
inverse operator (in a distributional sense) of the fractional Laplacian. Indeed, for u € C¢(R™) we
have that
(=AY (u=*®)(z) =u(z) in R",

both pointwise and in a distributional sense. We introduce also the Poisson kernel, that gives an
s-harmonic function inside the ball when the exterior data is known, by convolution with the known
term, that is

Car( [, Peaw) =0 B,

where u is fixed outside of B; (and is continuous and integrable at infinity with respect to the weight).
Here, P;(y,x) is the Poisson kernel (outside of the ball of radius 1).

When a function is zero outside the ball, the Green function gives the solution of the identity problem
inside the ball, more precisely in B; we have that

a0 [, v ) = (o),

for ue C%¢(By) n C(B;) and u = 0 in R"\B;. We also prove a formula for the Green function, that
is more suitable for applications. The main results in this section are inspired from [19, , 1,
but the proofs we give are elementary and easy to follow.

Furthermore, using the potential theory, we give an original proof of the Schauder estimates
for a fractional Laplacian equation, using a dyadic ball argument. In particular, we take f to be a
Hélder continuous function in B; and w solving (—A)*u = f in By. Then we prove that on the half
ball, u has the regularity of f increased by 2s. More precisely

THEOREM. Let s€ (0,1), « <1 and f € C%%(By) n C(B1) be a given function with modulus of
continuity

w(r):= sup |f(z) = f(y)l

lz—y|<r
Let ue L*(R™) n C1(By) be a pointwise solution of
(=AYu=f in Bj.
Then for any x,y € By, and denoting § := |z — y| we have for s < 1/2 that

cd 1
lu(z) — u(y)] < Chs (6uLyJ(]Rn\Bl) +dsup|f|+ f w(t)t>dt + 5f w(t)E252 dt),
B s

By 0
and for s > 1/2 that

co 1
|Du(x) — Du(y)| < Cp s <5||u||Lx (®Rm\By) T Osup|f| + J wt) 2 dt + §J w(t)t*s—3 dt),
B 0 5

where Cy, s and c are positive dimensional constants.

In particular, we have for s < 1/2 that u € C%?5*%(B,5) as long as a < 1 —2s and that u is Lipschitz
if @ >1—2s. For s > 1/2 we have that u € Ct*"271(By ) if & < 2 — 25, while for 2—2s < < 1
the derivative Du is Lipschitz in By .

In order to prove these bounds, we rely on the very nice method used in [149] for the classical
Laplacian, which is based only on the higher order derivative estimates and a dyadic ball argument.

In Chapter 4 we deal with extended problems. It is a quite remarkable fact that in some occasions
nonlocal operators can be equivalently represented as local (though possibly degenerate or singular)
operators in one dimension more. Moreover, as a counterpart, several models arising in a local
framework give rise to nonlocal equations, due to boundary effects. So, to introduce the extension
problem and give a concrete intuition of it, we will present some models in physics that are naturally
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set on an extended space to start with, and we will show their relation with the fractional Laplacian
on a trace space. We will also give a detailed justification of this extension procedure by means of the
Fourier transform.
As a special example of problems arising in physics that produce a nonlocal equation, we consider
a problem related to crystal dislocation, present some mathematical results that have been recently
obtained on this topic, and discuss the relation between these results and the observable phenomena.
We end this chapter by introducing the Marchaud fractional derivative and, as an original
contribution, the extension operator related to it. The Marchaud (left) fractional derivative is
defined (up to constants) for a bounded, locally Holder continuous function in R, as

D°f(t) ‘[ O (k) P

Ts+1

This derivative naturally arises when dealing with a family of singular/degenerate parabolic problems
(which, for s = 1/2, reduces to the heat conduction problem) on the positive half-plane, with a positive
space variable and for all times, namely for (z,t) € [0,00) x R.

Considering the function ¢ of one variable, formally representing the time variable, our approach relies
on constructing a parabolic local operator by adding an extra variable, say the space variable, on the
positive half-line, and working on the extended plane [0, 0) x R. Namely, we prove that

THEOREM. Let s € (0,1) and ¥ € (s,1] be fived. Let ¢ € C7(R) be a bounded function and let
U:[0,0) x R > R be a solution of the problem

U, | 1-20U 02U

E(m,t)— . a—x(m t) + o 2(95 t), (z,t)€ (0,00) xR
U(0,2) = o(2), teR (0.2)
lim U(x,t) =0, teR.

T—+ 0

Then U defines the extension operator for o, such that
D*p(t) = — lim_ca™2 (Ulz,t) - p(t)),
z—0

where cg 1S a positive constant.

An interesting application that follows from this extension procedure is a Harnack inequality for
Marchaud-stationary functions in an interval J € R (namely for functions that satisfy D*p = 0 in J).

THEOREM. Let s € (0,1). There exists a positive constant v such that, if D*p = 0 in an interval
JER and p =20 in R, then
sup p <y inf
[to—33,t0— 1] [to+5d,to+4]
for every tg € R and for every § > 0 such that [to — 0,0 + ] < J.

This result is obtained from the Harnack inequality for some degenerate parabolic operators by “look-
ing at it” on the trace. Indeed, using the extension operator, it is quite easy to obtain this type of
result.

In Chapter 5, we look at some nonlocal equations related to the fractional Laplacian. We first
discuss a stationary Schrodinger type equation arising in quantum mechanics, given by

e2(=AYu+u=u" inQcR"
uw=0 in RM\Q,

in the subcritical case p € (1,2¥ — 1), where for n > 2s, 2¥ := —2%_ is the critical fractional Sobolev

exponent. We give a sketch of the proof of the existence of a solution that concentrates at interior
points of the domain for sufficiently small values of . This concentration phenomena is written
in terms of the ground state solution w (i.e. w solves (—A)*w + w = wP in R™). Namely, the first
approximation for the solution is exactly the ground state w, scaled and concentrated at an appropriate
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point of the domain. Moreover, we discuss a connection between the uncertainty principle and a
fractional weighted inequality.

In the last section of this chapter, we prove as an original result, the existence of a positive
solution of the nonlinear and nonlocal elliptic equation in R™

(=A)*u = chu? +u* ! (0.3)

in the convex case 1 < ¢ < 2 — 1, where ¢ is a small parameter and h is a given bounded, integrable
function. The problem has a variational structure and we prove the existence of a solution by using
the classical Mountain-Pass Theorem. We work here with the harmonic extension of the fractional
Laplacian, which allows us to deal with a weighted degenerate local operator, rather than with a
nonlocal energy. In order to overcome the loss of compactness induced by the critical power we use a
Concentration-Compactness principle. The main result of this section goes as follows.

THEOREM. Let € > 0 be a small parameter, let g € [1,2% — 1) and h be such that

he L*(R™) n L*(R™) and
there exists a ball B ¢ R"™ such that i%fh > 0.

If n € (2s,6s), suppose in addition h = 0.

Then problem (0.3) admits a positive (mountain-pass) solution, provided that n > %.

Notice that in our problem the two nonlinearities are convex, and the geometry of the functional
suggests the existence of one solution. In order to prove the existence of a solution we use, roughly
speaking, the following strategy:

(i) we consider the energy functional associated to (0.3) and we prove that it satisfies some compactness
condition (Palais-Smale condition) below a certain energy level,

(ii) we build a sequence of functions with an appropriate geometry (of Mountain Pass type) whose
energy lies below the critical level found in (i), and

(iii) we apply the Mountain Pass Lemma to pass to the limit, getting a solution.

The proof follows the strategy of [60] for the concave-convex (fractional) case, and is based on two
fundamental points: to identify the energy level, and to find the appropriate sequence. We point out
that, in the concave-convex (fractional) problem, the geometry derived from the concave term (the
functional has a minimum of negative energy) helps to prove that the sequence stays below the critical
level. However, here both nonlinearities are convex, and the proof gets more involved.

Thus, the study of (0.3) will first require a finer analysis of the compactness properties of the functional.
More precisely, we will have to improve the estimates of the functional in order to get a slightly higher
critical level. Accordingly, once we have found this new critical level, we perform a more careful
analysis of the energy of the sequence given by the minimizers. We will finally conclude by applying
the Mountain Pass Lemma in the standard way.

Chapter 6 and 7 present topics of contemporary research related to the fractional Laplacian. We
will discuss in particular: some phase transition equations of nonlocal type and their limit interfaces,
which (below a critical threshold of the fractional parameter) are surfaces that minimize a nonlocal
perimeter functional. We will present a De Giorgi conjecture in the fractional setting, which wonders
whether entire, smooth, monotone (in one direction), bounded solutions of the (fractional) Allen-Cahn
equation are one-dimensional. This indeed is the case in the classical framework in dimension at most
3 (and up to 8, with an additional, quite natural assumption, see [128, ). The dimension 8 seems
to be suggested also by a link with a problem of Bernstein. This problem asks if all minimal graphs
(i.e. surfaces that locally minimize the perimeter and that are graphs in a given direction) in R™ must
be necessarily affine. The link between this Bernstein problem and the conjecture of De Giorgi could
be implied by the fact that minimizers approach minimal surfaces in the limit but of course, much
work is needed to deeply understand the connections between the two problems.
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In Chapter 6 we consider a nonlocal phase transition model, in particular described by the Allen-
Cahn equation

(=A)u = u—u?

in a bounded domain 2 € R™. The Allen-Cahn equation in a nonlocal setting has theoretical interest
and concrete applications. Indeed, the study of long range interactions naturally leads to the analysis
of phase transitions and interfaces of nonlocal type. A fractional analogue of a conjecture of De Giorgi,
that deals with possible one-dimensional symmetry of entire solutions, naturally arises from treating
the fractional Allen-Cahn equation, and is then presented. We give an alternative proof to the De
Giorgi conjecture in R?, using the Dirichlet energy associated to the fractional Allen-Cahn equation.

Chapter 7 deals with nonlocal minimal surfaces, as introduced in [26] in 2010. In particular,
following the approach of De Giorgi (for classical minimal surfaces), we introduce the fractional
perimeter and look for minimizers in bounded open sets with respect to some fixed exterior data.
The boundaries of such (nonlocal minimal) sets are called nonlocal minimal surfaces (and are indeed
(n — 1)-dimensional and smooth almost everywhere). We give some notions on this subject, outline
some nice recent achievements and also present a new result about a stickiness phenomena when the
fractional parameter is small.

The fractional perimeter is defined as

Pery(E,Q) = L,(E n Q,CE) + L(E\Q, Q\E),

where the interaction L£s(A, B) between two disjoint subsets of R™ is

dx dy ()
(A, B) jj f f dz dy.
B |l‘— |n+s n " |Z‘ — |n+s

Moreover, taking 2 an open set of R", we say that £ ¢ R™ is s-minimal in Q if Per (F, Q) is finite
and if, for any competitor (that is, for any set F' such that E\Q2 = F\{2), we have that

Pery(F, Q) < Perg(F, Q).

Furthermore, we introduce the s-fractional mean curvature of a set F at a point ¢ € JF (as the
fractional counterpart of the classical mean curvature notion). It is defined as the principal value
integral

._ xce(y) — xe(y)
I,[E](q) := P.V. N

(for the main properties of the fractional mean curvature, we refer to [2]).
In this Chapter we discuss some very nice known results such as

dy

e s-minimal graphs (i.e., s-minimal sets that are graphs in given direction) in R**! are flat if
no singular cones exist in dimension n (and this is related to a known Bernstein problem),

e minimizers with respect to the exterior data that is a subgraph, is a subgraph also inside
the domain,

e nontrivial minimal cones in dimension two do not exist (which implies, according to the first
point, that s-minimal graphs in R? are flat).

Also, we discuss some nice examples of boundary regularity and stickiness phenomena.

On the other hand, the asymptotic behavior of nonlocal minimal surfaces as s reaches 0 or 1
is another interesting matter. As s — 1%, one would like to obtain the classical counterpart of the
objects under study. And this is indeed the case, as the following known results show. For a set
E c R™ with C*7 boundary in Bg for some R > 0 and v € (0, 1), for almost any 7 < R and up to
constants one has indeed that

lim (1 — s)Ps(E, B,) = P(E, B,).

s—1—
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See for the proof [30]. Not only, but also (see Theorem 12 in [2], and [30]) for a set E < R"™ with C?
boundary and any z € 0F, one has that

lim (1= ) L[E](x) = wur H[E](2),
where H is the classical mean curvature of E at the point z (with the convention that we take H such
that the curvature of the ball is a positive quantity).

As s — 0T, the asymptotic behavior is a bit more involved and some surprising behavior may
arise. This is due to the fact that as s gets smaller, the nonlocal contribution to the perimeter becomes
more and more important, and the local behavior loses influence. Some very nice first results in this
sense were achieved in [57]. There, in order to mathematically encode the behavior at infinity of a
set, the authors introduce the following quantity:

. x5 (y)
af(F) = lim s , 0.4
so0%  Jep, lyl"*e (04)
(see [57]). The set function «(FE) appears naturally when looking at the behavior near s = 0 of
the fractional perimeter (see [57]). So, let  be a bounded open set with C''7 boundary, for some

v €(0,1), and E c R™ be a set with have finite so-perimeter, for some sg € (0, 1). If a(F) exists then
lir(r)1+ sPs(E,Q) = a(CE)|E n Q|+ a(E)|CE n Q|.

On this argument, we introduce in the last section some other original achievements on the be-
havior of s-minimal surfaces for small values of the fractional perimeter. Indeed, there we obtain the
asymptotic behavior of the fractional mean curvature for s — 07, noticing that the limit takes into
account only the data at infinity. In essence we prove that

THEOREM. Let E c R™ and let p € OF be such that OF is CY7 near p, for some vy € (0,1]. Then
lim irJrlsts [E](p) = wn — 2a(E)
s—0
lim sup s Z; [ F](p) = wy, — 2a(FE).

s—0t
Furthermore, we prove the continuity of the fractional mean curvature in all variables for s € [0, 1].
As a matter of fact, the s-fractional mean curvature is continuous with respect to C'*® convergence
of sets, for any s € (0, ) and with respect to C? convergence of sets, for s close to 1. Here, by C*®
convergence of sets we mean that our sets locally converge in measure and can locally be described as
the supergraphs of functions which converge in C*“. Indeed, we have the following results:

1,
THEOREM. Let Ej, N Eina neighborhood of q € OF. Let qi € 0F) be such that qx —> q and
let s, si € (0,) be such that sy Fon, s, Then

lim 7., [B)(ax) = ZE](0).

Let By <, E in a neighborhood of q € OE. Let qx € OEy be such that ¢ —> q and let sy, € (0,1)

be such that sy, k2% 1. Then

lim (1 — Sk)Isk [Ek](Qk) = wn—lH[E](Q)'

k—x0

Using this, we see that as the parameter s varies, the fractional mean curvature may change sign.

When s — 07 we do not need the C1'* convergence of sets, but only the uniform boundedness of
the C'® norms of the functions defining the boundary of E), in a neighborhood of the boundary points.
However, we have to require that the measure of the symmetric difference is uniformly bounded. More
precisely:

PROPOSITION. Let E ¢ R™ be such that a(E) exists. Let ¢ € OF be such that
EnQrn(q) ={(z',2,) e R" | 2" € Bl.(¢'), u(z') <z, < h + g},
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for some r,h > 0 small enough and u e Cl’o‘(ﬁlr(q’)) such that u(q') = qn. Let E, < R™ be such that
|ExAE| < Cy
for some C1 > 0. Let qx € 0E, n By, for some d > 0, such that
Er 0 Qrnlae) = {(a', 20) € R™ |2’ € BL(qk), ur(2') < zn < h+ qrn}

for some functions uy, € C’l’a(ﬁlr(q;ﬂ)) such that uk(qy,) = qrn and

||Uk:Hclﬂ(§:.(q§v)) <C2

k—o0

for some Cy > 0. Let s € (0,a) be such that sy, — 0. Then
i siZ., [Eul(a0) = wn = 20(B).

Finally, when s € (0,1) is small we classify the behavior of s-minimal surfaces, in dependence of
the exterior data at infinity. We prove that when the fractional parameter is small and the exterior
data at infinity occupies (in measure, with respect to the weight) less than half the space, then s-
minimal sets completely stick at the boundary (that is, they are empty inside the domain), or become
“topologically dense” in their domain. Indeed, denoting

a(E) :=lim supsf XEn(fz dy,
s—0+ e, ly["t

we give the next definition.

DEFINITION. Let Q@ < R™ be a bounded open set. We say that a set E is §-dense in Q for some
fized § > 0 if |Bs(x) n E| > 0 for any x € Q for which Bs(z) cc Q.

This notion of d-density is a “topological” notion, rather than a measure theoretic one. With this
definition and denoting
3w, — 4a(Eyp)

c
§g = ——, h = c(Ey) = log —————=,
where ¢ := c(Ep) = log 5i0n — 2(Fo)

S

we obtain the following classifications:

THEOREM. Let ) be a bounded and connected open set with C? boundary. Let Ey < CQ be such
that

a(Ey) < %
Then the following two results hold.

A) There exists s1 = s1(Eg, Q) € (0,1/2) such that if s < s1 and E is an s-minimal set in Q@ with
exterior data Ey, then either

(AL)EnQ=g or (A2)E isds— dense.

B) Either
(B.1) there exists § = §(Ep,2) € (0,1) such that if E is an s-minimal set in Q with exterior data Ey
and s € (0,8), then

EnQ=g,

or

(B.2) there exist 0, \, 0, sk \, 0 and a sequence of sets Ey, such that each Ey, is si-minimal in Q with
exterior data Ey and for every k

0E, n Bs,(x) # & ¥V Bs, (x) cc Q.

An analogue result, that is that s-minimal sets fill the domain or their complementaries become
dense, is obtained when the exterior data occupies in the appropriate sense more than half the space
(so this threshold is optimal). We point out that in this way, when a(FEp) # w,/2 we have a complete
classification of s-minimal sets when s is small.
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Notations

We consider n € N to be the dimension of the space of reference, that will be R™. We usually
denote elements in the reference spaces as € R” and X € R"*1,

We write |E| = L"(FE) for the n-dimensional Lebesgue measure of a set £ < R and H¢ for
the d-dimensional Hausdorff measure for any d > 0.

We denote by CE = R™\E the complementary of any F c R™.

We denote the n-dimensional open ball of radius r and center zg € R™ as

By (w0) = {z € R" | |[# — xo| <1}
and write B, whenever o = 0. Also, we use the notation
571 = 0By
for the (n — 1)-dimensional sphere.
We define the area of the surface of the (n — 1)-dimensional sphere as the constant
2m%

I(g)’

Wy, = /Hn—l(sn—l) —

where I' is the Gamma function defined in (A.4). The volume of the n-dimensional unit ball
is then w

LM(By) = Wn
We denote by S(R™) the Schwartz space of smooth functions rapidly decaying at infinity
(see Section A.1 in the Appendix for the definition and some other details).
We will use the following notation for the class of Holder continuous functions. Let a € (0, 1],
let S < R™ and let v : S — R™. The a-Ho6lder semi-norm of v in S is defined as

v(x) —v(y)
[v]co.a(srm) := sup %
rH#yeS |I - y|

With a slight abuse of notation, we will omit the R™ in the formulas. We also define

[vlcosy = sup lv(z)] and [v]co.a(s) = [v]cocs) + [v]co.a(s)-

Given an open set {2 ¢ R", we define the space of uniformly Holder continuous functions
CO%(Q,R™) as
CO*(Q,R™) := {ve C°(Q,R™) | HUHCO,Q@) < o0},

Recall that C'(€) is the space of those functions u : © — R such that u € C°(Q) n C'(Q)
and such that Vu can be continuously extended to €. For every S < Q we write

lullcre(sy = lulcoesy + [ Vulcoais),
and we define
CHe@) = {ue C'@) | [ul g < O}
We will usually consider the local versions of the above spaces. Given an open set {2 ¢ R",
the space of locally Holder continuous functions C*<(Q), with k € {0, 1}, is defined as

Crh(Q) = {ue CHQ)| [ull o0y < o0 for every O cc Q}.






CHAPTER 1

A probabilistic motivation for the fractional Laplacian

ABSTRACT. The goal of this chapter is to show that nonlocal operators well describe nonlocal phe-
nomena. We introduce briefly the fractional Laplacian and then we present two probabilistic models
in which such operator naturally arises. Indeed, we show that the fractional heat equation arises
from a probabilistic process in which a particle moves randomly in the space subject to a probability
that allows long jumps. Using the same probabilistic process and supposing that exiting the domain
for the first time by jumping to an outside point means earning a certain (known) quantity of money,
the payoff function will be s-harmonic in the domain. This models are treated in an elementary way,
and little knowledge on probability theory is required from the reader.

We consider a function u: R® — R (which is supposed' to be regular enough) and a fractional
parameter s € (0,1). Then, the fractional Laplacian of u is given by

(~ayule) = G [ HEZrE e Z e, (L)

where C(n, s) is a dimensional” constant.

One sees from (1.1) that (—A)® is an operator of order 2s, namely, it arises from a differential
quotient of order 2s weighted in the whole space.

The probabilistic model under consideration is a random process that allows long jumps (in further
generality, it is known that the fractional Laplacian is an infinitesimal generator of Levy processes,
see e.g. [12, 18] for further details). A more detailed mathematical introduction to the fractional
Laplacian is presented in the subsequent Section 2.1.

1.1. The random walk with arbitrarily long jumps

We will show here that the fractional heat equation (i.e. the “typical” equation that drives the
fractional diffusion and that can be written, up to dimensional constants, as diu + (—A)°u = 0)
naturally arises from a probabilistic process in which a particle moves randomly in the space subject
to a probability that allows long jumps with a polynomial tail.

For this scope, we introduce a probability distribution on the natural numbers N* := {1,2,3,---}
as follows. If I € N*  then the probability of I is defined to be

1
P(I):=cs Z s
kel
The constant ¢, is taken in order to normalize P to be a probability measure. Namely, we take
-1

1
Cs i= Z |k[1+2s ’

keN*

ITo write (1.1) it is sufficient, for simplicity, to take u in the Schwartz space S(R™) of smooth and rapidly decaying
functions (see (A.1)), or in C2(R™) n L*(R™).

2The explicit value of C(n, s) is usually unimportant. Nevertheless, we will compute its value explicitly in formu-
las (2.9) and (2.14). The reason for which it is convenient to divide C(n, s) by a factor 2 in (1.1) will be clear later on,
in formula (2.3).
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20 1. A PROBABILISTIC MOTIVATION FOR THE FRACTIONAL LAPLACIAN

so that we have P(N*) = 1.

Now we consider a particle that moves in R™ according to a probabilistic process. The process
will be discrete both in time and space (in the end, we will formally take the limit when these time
and space steps are small). We denote by 7 the discrete time step, and by h the discrete space step.
We will take the scaling 7 = h?* and we denote by u(x,t) the probability of finding the particle at
the point x at time t.

The particle in R™ is supposed to move according to the following probabilistic law: at each time
step 7, the particle selects randomly both a direction v € 0B, according to the uniform distribution
on ¢Bj, and a natural number k € N* according to the probability law P, and it moves by a discrete
space step khv. Notice that long jumps are allowed with small probability. Then, if the particle is at
time t at the point zy and, following the probability law, it picks up a direction v € 0By and a natural
number k € N*| then the particle at time ¢ + 7 will lie at xg + khv.

Now, the probability u(x,t + 7) of finding the particle at x at time ¢ + 7 is the sum of the
probabilities of finding the particle somewhere else, say at x + khv, for some direction v € dB; and
some natural number k£ € N*, times the probability of having selected such a direction and such a
natural number.

(%0 + khv,t 4+ 7)

FIGURE 1.1. The random walk with jumps

This translates into
u(z + kho,t)

C
— ——— 2 2 dH"  (w).
AP Joo, e )

u(z, t+71) =

Notice that the factor c¢y/|0B1]| is a normalizing probability constant, hence we subtract u(z,t) and
we obtain

Cs u(z + khv, t) .
u(z,t+7) —u(zr,t) = =—— f —————dH""(v) — u(z,t)
0B | kg;,k o, K1Y
Cs u(z + khv,t) — u(z,t) _
= — dH" ™ (v).
AR Jow,

As a matter of fact, by symmetry, we can change v to —v in the integral above, so we find that

Cs u(z — khv,t) —u(z,t) .1
u(z,t +7) —u(z, t) = 1B Z* LB o dH" ™ (v).
keN® Y051
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Then we can sum up these two expressions (and divide by 2) and obtain that

u(z,t + 7') —u(x,t)

u(x + khv, t) + u(x — khv, t) — 2u(z, t
ZJ )+ u( ) — 2u(z, t)

n—1
|k[1+2s dH" ™ (v).

2|6Bl| keN*

Now we divide by 7 = h?®, we recognize a Riemann sum, we take a formal limit and we use polar
coordinates, thus obtaining:

u(z, t+’7’) —u(x,t)

oru(z,t) ~
(x + khv,t) + u(x — khv,t) — 2u(x, t) 1
dH" (v
A kZNf BT )
Cs e w(z +rv,t) + ulz — ro,t) — 2u(z, t)

~—° : : LA (v) dr
ol o e .

s u(z +y,t) +ulr —y,t) — 2u(x, t) d
210B1] Jar [yl !

for a suitable ¢, s > 0.
This shows that, at least formally, for small time and space steps, the above probabilistic process
approaches a fractional heat equation.

We observe that processes of this type occur in nature quite often, see in particular the biological
observations in [95], other interesting observations in [124,135,151] and the mathematical discussions
in [ ’ ) ) )

Roughly speaking, let us say that it is not unreasonable that a predator may decide to use
a nonlocal dispersive strategy to hunt its preys more efficiently (or, equivalently, that the natural
selection may favor some kind of nonlocal diffusion): small fishes will not wait to be eaten by a big
fish once they have seen it, so it may be more convenient for the big fish just to pick up a random
direction, move rapidly in that direction, stop quickly and eat the small fishes there (if any) and then
go on with the hunt. And this “hit-and-run” hunting procedure seems quite related to that described
in Figure 1.1.

1.2. A payoff model

Another probabilistic motivation for the fractional Laplacian arises from a payoff approach. Sup-
pose to move in a domain 2 according to a random walk with jumps as discussed in Section 1.1.
Suppose also that exiting the domain 2 for the first time by jumping to an outside point y € R™\(Q,
means earning uo(y) Monopoly money. A relevant question is, of course, how rich we expect to become
in this way. That is, if we start at a given point z € 2 and we denote by u(x) the amount of Monopoly
money that we expect to gain, is there a way to obtain information on u?

The answer is that (in the right scale limit of the random walk with jumps presented in Section 1.1)
the expected payoff u is determined by the equation

1.2
u = ug in RM\Q. (1.2)

{(—A)su =0 in{,
To better explain this, let us fix a point x € ). The expected value of the payoff at x is the average of
all the payoffs at the points & from which one can reach x, weighted by the probability of the jumps.
That is, by writing & = x + khv, with v € 0B, k € N* and h > 0, as in the previous Section 1.1, we
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have that the probability of jump is . This leads to the formula

Cs
|0B1] |k|1+2s

Cs u(x + khv) -
=& BE IV a1 ().
U,(x) |(9B1| kezN:* LBI |]€|1+2$ (U)

By changing v into —v we obtain

Cs u(x — khv) .
u(z) = —— J ——————dH" " (v)
OB 24, Jo, TR
so, by summing up,
Cs u(z + khv) + u(x — kho) 1
2u(x) = f dH" ™ (v).
OB 24, o, TR

Since the total probability is 1, we can subtract 2u(z) to both sides and obtain that

0o Cs J’ u(z + khv) + u(lzr+2—s khv) — 2u(z) A ().
[0B1] &, Jo, ]
We can now divide by h'*2% and recognize a Riemann sum, which, after passing to the limit as h \, 0,

gives 0 = —(—A)u(x), that is (1.2).



CHAPTER 2

The fractional Laplacian and the Caputo derivative

ABSTRACT. We introduce here some preliminary notions on the fractional Laplacian and on frac-
tional Sobolev spaces. The definition and equivalent representations for the fractional Laplacian
are introduced and the constant that appears in this definition is explicitly computed. Fractional
Sobolev spaces enjoy quite a number of important functional inequalities. We will present here two
important inequalities which have a simple and nice proof, namely the fractional Sobolev Inequality
and the Generalized Coarea Formula. Moreover, we present an explicit example of an s-harmonic
function on the positive half-line, i.e. (—=A)*(x4)® = 0 on Ry and an example of a function with
constant Laplacian on the ball. We also discuss some maximum principles and a Harnack inequal-
ity, and present a quite surprising local density property of s-harmonic functions into the space of
smooth functions. In the last section, we prove that Caputo-stationary functions enjoy the same
property, that is they locally approximate any given smooth function.

2.1. The fractional Laplacian

We introduce here the fractional Laplace operator, the fractional Sobolev spaces and give some
useful pieces of notation. We also refer to [55] for further details related to the topic.

Another useful notion for the fractional Laplacian (other than the definition (1.1)) is the one of
principal value, namely we consider the definition

u(z) — u(y)

u(@) — u(y)
PV. [ — g e

y[s y = lim

2.1
e=0 Jpm\B, () |7 — @1)

Re |7 —

Notice indeed that the integrand above is singular when y is in a neighborhood of x, and this singularity
is, in general, not integrable (in the sense of Lebesgue). As a matter of fact, near x we have that u(z)—
u(y) behaves at the first order like Vu(zx) - (z — y), hence the integral above behaves at the first order
like

Vu(z) - (x —y)

2.2
|.’L‘ _ y|n+25 ( )

whose absolute value gives an infinite integral near x (unless either Vu(z) =0 or s < 1/2).

The idea of the definition in (2.1) is that the term in (2.2) averages out in a neighborhood of x
by symmetry, since the term is odd with respect to x, and so it does not contribute to the integral
if we perform it in a symmetrical way. In a sense, the principal value in (2.1) kills the first order
of the function at the numerator, which produces a linear growth, and focuses on the second order
remainders.

23
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The notation in (2.1) allows us to write (1.1) in the following more compact form:

(—AYu(z) = C(?;, s) Jn 2u(z) — U(E/;LJEJQ)S— u(z — y) ay

_ C(n,s) lim J 2u(zr) —u(z + y2) —u(z —y) dy
R\ B, ly|m+2s

e—0

o), [ we) —ule ) u(w) — u(z — y)
2 1 [J}R{TL\BE dy+fRn\BE dy]

e—0 |y|n+2s |y|n+25

Cn,s) . u(z) — u(n) u(z) — u(¢)
- ALY d
2 e UR"\BE(M P2 T fR”’\Bs(w) |z — |+ 41

= C(n,s) lim Md
=0 Jgm\B. (2) |2 — n]"128

where the changes of variable 1 := = + y and ( := z — y were used, i.e.

suya) — u(z) — u(y)
The simplification above also explains why it was convenient to write (1.1) with the factor 2 di-
viding C(n, s). Notice that the expression in (1.1) does not require the P.V. formulation since, for
instance, taking u € L*(R") and locally C?, using a Taylor expansion of u in Bj, one observes that

f 2u(z) — u(z +y) —u(z —y)| dy
Re |y|n+25

- | D?u()ly[?
< HuHL‘D(R") JRTL\B |y| e dy + JB |y|n+25
1 1

< HUHL%(]RTL) J . |y|—n—25 dy + HD2UHL“’3(R") J |y|—n—2s+2 dy,
R™\B1 By

and the integrals above provide a finite quantity.
As a further remark, definition (2.3) is well posed for u € LL(R™) and locally C?*¢ where the
space

LR = 1 (R _ (@]
LY(R") := {u e Ll _(R") s.t. fRn T e 4 < oo} (2.4)

is endowed naturally with the norm

— |u(z)]
H’U’HL%(]R") = J]Rn W dx.

Moreover, for ¢ > 0 a small fixed quantity, we write C?°*¢ to denote both C%2*¢ for s < 1/2 and
Ccl2ste=l for s > 1/2.

Formula (2.3) has also a stimulating analogy with the classical Laplacian. Namely, the classical
Laplacian (up to normalizing constants) is the measure of the infinitesimal displacement of a function
in average (this is the “elastic” property of harmonic functions, whose value at a given point tends to
revert to the average in a ball). Indeed, by canceling the odd contributions, and using that

J o —y*dy = f (z —yr)* dy = nj (i — yi)? dy,
By (x) k=1"Br(z)

B,(z)

for any i € {1,...,n},
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we see that

1 1
ll_I)I(l) r2 (U(.’L‘) - |BT(.T)| JBT(@-) U(y) dy>
. 1
= lim _T2|Br({£)| fBT(x) (“(y) - u(x))dy

. 1 1
= lim ~EE JB Vu(z) - (z —y) + §D2u(x)(x —y)-(z—v)

r—0
+<9<|x—y|3>d
(2.5)

j— 1 — . 2
B }13(1) T”+2|Bl| ZJ, Yi)” dy
= lim —yl?

rsb 2nr”+2|B1| 28 J’Br(z) =l dy
= — CpAu(x),

for some C,, > 0. In this spirit, when we compare this formula with (2.3), we can think that the
fractional Laplacian corresponds to a weighted average of the function’s oscillation. While the average
in (2.5) is localized in the vicinity of a point z, the one in (2.3) occurs in the whole space (though
it decays at infinity). Also, the spacial homogeneity of the average in (2.5) has an extra factor that
is proportional to the space variables to the power —2, while the corresponding power in the average
n (2.3) is —2s (and this is consistent for s — 1).

We use the usual notations for the Fourier and inverse Fourier transform (see Appendix A.1). For
u € S(R™), the fractional Laplace operator can be expressed in Fourier frequency variables multiplied
by (27|¢[)?4, as stated in the following lemma.

LEMMA 2.1.1. We have that

(=8)u(z) = F~H((2rlE) > a(E))- (2.6)

Roughly speaking, formula (2.6) characterizes the fractional Laplace operator in the Fourier space,
by taking the s-power of the multiplier associated to the classical Laplacian operator. Indeed, by using
the inverse Fourier transform, one has that

—Au(z) = —AFH@)(z) = A | a(¢)e2™ € de

Rn

- [ Crlgha©eme ds = 7 (nlla(o).

which gives that the classical Laplacian acts in a Fourier space as a multiplier of (27|¢|)?. From this
and Lemma 2.1.1 it also follows that the classical Laplacian is the limit case of the fractional one,
namely for any u € S(R™)

lim(—A)°u = —Au and also  lim(—A)’u = u.

s—1 s—0

Let us now prove that indeed the two formulations (1.1) and (2.6) are equivalent.
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PrROOF OF LEMMA 2.1.1. Consider identity (1.1) and apply the Fourier transform to obtain

f((—A)Su(m)) _ C(ms) J‘W f(?u(x) — U(CE + y) — u(x — y)) "

2 |y|n+23
C(n,s) 2 e2mily _ o—2miy (2.7)
= d .
2 J‘ . U(S) |y|n+25 Yy

1 — cos(27€ - y)
|y|n+23

= C(n.9)7(©) |

Now, we use the change of variable z = ||y and get that

_ T 1- :
J(f) .= Jn 1 COS(2 § y) dy — |£|2SJ‘H cos |f‘ . dz.

|y|n+2s |Z|n+25

n

Since J is rotationally invariant, we consider a rotation R that sends e; = (1,0, ...,0) into £/||, that
is Re; = £/|¢|, and we call RT its transpose. Then, by using the change of variables w = Rz we have
that

J(€) = |’5|23J L —cos(2nle-z) \ |£|25J L—cos(2nR"z-e1)

|Z|n+2s |RTZ|TL+28

_ |§|28J 1 — cos(2mwy) o,

|w|n+25
Changing variables @ = 27w (we still write w as a variable of integration), we obtain that
B 2s 1 — cosw;
7€) = rle)” | ot e 28)
Notice that this integral is finite. Indeed, integrating outside the ball B; we have that

J’ |1—cosw1|d <J 2 o
— 5. aw
R\ By |w|n+25 = R™\ B, |w|n+25 ?

while inside the ball we can use the Taylor expansion of the cosine function and observe that

|1—cosw1|d |w|? J dw
PR REESE w S B, Jw[* T2 w S B, w252 < .

1 —cosw !

Therefore, by taking
it follows from (2.8) that

By inserting this into (2.7), we obtain that
F((~a)u(@)) = Cn.s) (&) 1(€) = (2nlel)>*a(e),
which concludes the proof. O

Notice that the renormalization constant C(n,s) introduced in (1.1) is now computed in (2.9).

Another approach to the fractional Laplacian comes from the theory of semigroups (or, equiv-
alently from the fractional calculus arising in subordination identities). This technique is classical
(see [152]), but it has also been efficiently used in recent research papers (see for instance [32,50,142]).
Roughly speaking, the main idea underneath the semigroup approach comes from the explicit formulas
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for the Euler’s function (check the Appendix A.2): for any A > 0, one uses an integration by parts
and the substitution 7 = At to see that

+o0 +C d
—sT'(—=s)=T(1—s) = f T % Tdr = —f 7 %—(e T —1)dr
0 0 dT

+x oo
= — SJ e = 1) dr = —s)\_sf t=57 e M — 1) dt,
0 0

that is

1 +ao0
A\ = J =57 e M = 1) dt. 2.10
(=s) J, ( ) (2.10)

Then one applies formally this identity to A := —A. Of course, this formal step needs to be justified,
but if things go well one obtains

s 1 i —s—1/t
(—A) =F(—5)L 5L (etD — 1) dt,

that is (interpreting 1 as the identity operator)

+oo
(~A)u(z) = (is) L =571 (e u(z) — u(x)) di. (2.11)

Formally, if U(z,t) := e*®u(z), we have that U(x,0) = u(z) and
oU = %(emu(x)) = Ae'®u(z) = AU,

that is U(z,t) = e'®u(x) can be interpreted as the solution of the heat equation with initial datum wu.
We indeed point out that these formal computations can be justified:

LEMMA 2.1.2. Formula (2.11) holds true. That is, if u € S(R™) and U = U(z,t) is the solution
of the heat equation
{atU =AU fort >0,

U|t:0 =
then
1 +x
(—A)°u(x) = J t— YU (2,t) — u(x)) dt. (2.12)
I'(=s) Jo
PROOF. From Theorem 1 on page 47 in [72] we know that U is obtained by Gaussian convolution
with unit mass, i.e.
Ulz,t) = | G-y t)uly)dy=| Gly,t)ulz—y)dy, where
R ) B (2.13)
lz]

G(x,t) := (4mt) "2 1,

As a consequence, using the substitution 7 := |y|?/(4t),
o
f t—* (U (2, t) — u(x)) dt
0

- J’J“’“ J ) 571Gy, t) (u(z — y) — u(2)) dy] dt

OJr”/;,:

)]

= [T e e e ) - @) ay| 2
J:) _JR” :| 47

_ 9251 _—n/2 J’Hﬁ [J S3 st —r W+ Y) +|u|(x+; y) — 2u(x) dy] dr
0 n y|lnres

J, (47rt)7"/21?757167'7"2/(4’&) (uw(z —y) —u(z)) dy] dt
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Now we notice that

te n
J rrtsleTdr =1 (f + s) ,
0 2

so we obtain that

J:rxjt‘ql(U(x, t) —u(x))dt
_ 92s—1_—n/2p (g i S) f"/ u(z +y) +|Z|(:+;Sy) — 2u(x) dy

924 r=n/2T (1 4 5)
- _ 2 —A s )
oy A u()
This proves (2.12), by choosing C(n, s) appropriately. And, as a matter of fact, gives the explicit
value of the constant C(n, s) as

_225I‘(% +3) _ 22 5T (2 + 5)
72T (—3s) a2 (1 —s) ’
where we have used again that T'(1 — s) = —sI'(—s), for any s € (0,1). O

C(n,s) = (2.14)

It is worth pointing out that the renormalization constant C(n,s) introduced in (1.1) has now
been explicitly computed in (2.14). Notice that the choices of C(n, s) in (2.9) and (2.14) must agree
(since we have computed the fractional Laplacian in two different ways). We give below a direct proof
that the settings in (2.9) and (2.14) are the same, by using Fourier methods and (2.10).

LEMMA 2.1.3. ForanyneN, n>1, and s € (0,1), we have that

J 1 — cos(2mw1) - 72201 — s) (2.15)
no jw|nt2s s (% +5)
Equivalently, we have that
1 —coswy 73 (1 — )
_— = ="\ 2.16
Jn |ew |28 RSTIN (% +5) (2.16)
PROOF. Of course, formula (2.15) is equivalent to (2.16) (after the substitution & := 27w).
Strictly speaking, in Lemma 2.1.1 (compare (1.1), (2.6), and (2.9)) we have proved that
1 2u(z) —ulr +y) —u(z—y) . 255
1 — cosw; ,[ |y|n+2s dy = 7 (CrlED™a(E). (2.17)
2 ———dw
n |w|n+2s
Similarly, by means of Lemma 2.1.2 (compare (1.1), (2.12) and (2.14)) we know that
22571 sT (2 +5) 2u(z) —u(z +vy) —ulz —y)
201 —5) g ]2 2
’ (2.18)
L[ wen - ey
= — t° z,t) — u(x .
I'(=s) Jo

Moreover (see (2.13)), we have that U(z,t) := G(-,t) * u(x). We recall that the Fourier transform of
a Gaussian is a Gaussian itself, namely

Flem™l#*y = e=mlel®
therefore, for any fixed ¢ > 0, using the substitution y := z/v/4~t,

q ;)n/ZJ o lal?/at) 2z g,
I R

_ f efﬂ\y|26727riy~(\/47rt§) d
R'ﬂ/

FG(E 1)

y = 6747r2t|§\2.
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As a consequence
f(U(ac, t) — u(as)) = ]-'(G(-, t) xu(x) — u(x))
= F(G(,t) = u)(§) —u(§) = (FG(& 1) — 1)a(§)
= (e —1)a(g).
We multiply by t=5~! and integrate over ¢ > 0, and we obtain

T+ o
=s=1([(2. 1) — u(z _ —s=1(—4nt|¢[* _ 0
o T R P R D dta(e)

0
D(=s) (4n?[€]*)* a(€),
thanks to (2.10) (used here with \ := 472|¢£|?). By taking the inverse Fourier transform, we have

[ e - uw) i =1 o2 r (2 o).

0

We insert this information into (2.18) and we get

925—1 4T (% + 8) J 2u(z) —u(r +y) —ulzx —y)
) n

71—71/21"(1 — 3 |y|n+2s

dy = (2m)>* F~ (| a(9)).
Hence, recalling (2.17),
22571 5T (% +5) 2u(z) —u(z +y) —u(z —y)
et "

an/2l(1 — s ly|7+2s
_ 1 f 2u(z) —u(z +y) —u(z —y) 4
= 2J T coswy o Ja |y|n+25 Y,
n |w|n+25
which gives the desired result. O

An alternative proof of Lemma 2.1.3 is given in the subsequent Theorem 3.1.11 in Chapter 3, by
using the potential theory approach. For other approaches to the proof of Lemma 2.1.3 see also the
recent PhD dissertations [78] (and related [79]) and [97].

2.1.1. Fractional Sobolev Inequality and Generalized Coarea Formula. Fractional Sobo-
lev spaces enjoy quite a number of important functional inequalities. It is almost impossible to list here
all the results and the possible applications, therefore we will only present two important inequalities
which have a simple and nice proof, namely the fractional Sobolev Inequality and the Generalized
Coarea Formula.

The fractional Sobolev Inequality can be written as follows:

THEOREM 2.1.4. For any s€ (0,1), pe (1, %) and u € Ci°(R™),

1
|P P
ol 2ty oy < ([ [ B2 ) (2.19)

for some C > 0, depending only on n and p.

PROOF. We follow here the very nice proof given in [123] (where, in turn, the proof is attributed
to Haim Brezis). We have that

u(@)] < |u(z) = uly)] + [u(y)].

For a fixed R (that will be given later on), we integrate over the ball Br(x) and have that

Br@le@I < | ) —uldy+ [ uldy =1+ 1 (220)
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We apply the Holder inequality for the exponents p and p/(p — 1) in the first integral and obtain that

B u(z) —u(y)], nte
I = jB i| y| =5 dy

n+§p
r(z) |SE —

p—1

<R” f Julz) — ()" +
Br(z) |a:—y|” P

The Holder inequality for —22— and RE gives in the second integral

n—sp n(p—1)+sp
I < (J Ju(y)| =5 dy) (J dy)
Br(z) Br(z)

n(p—1)+s n np
< Rhe ( [ = dy) .

Dividing by R™ in (2.20) and renaiming the constants, it follows that

n(p=1)+sp

n—s

(fn W@)é +R % (Jn lu(y)| 755 dy)f] |

where C' = C(n,p) > 0. We take now R such that

|u(z)| < CR?

(. Wdy> = ([ ) ) o

s(n—sp)

u(z)| < C (J ) W dy) e (j ) u(y)| "=+ dy> =

Raising to the power —

and we obtain

and integrating over R", we get that

lu(z) = u(y)l? o\
| @)= o < =S doay | ([ = dy
n XR!L
After a simplification, we obtain that
p Ju(@) —uwl
(f . |u(x)|==r dw ff |x — y|”+8p dz dy

which is (2.19). This concludes the proof of the Theorem. O

What follows is the Generalized Co-area Formula of [148] (the link with the classical Co-area

Formula will be indeed more evident in terms of the fractional perimeter functional discussed in
Chapter 7).

THEOREM 2.1.5. For any s € (0,1) and any measurable function v : Q — [0, 1],

1 1
,J lu(z) — ug )| dz dy _J j f dxdy+ it
2Jola lz—yl"*s 0 \Jfzeq, u(@)>t) Jyeo, uy)<ty 17—yl s
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PRrROOF. We claim that for any z, y € Q

lu(z) —u(y)| = JO (X{u>t}($) Xust} (Y) + Xusty () X{u>t}(y)) dt. (2.21)

To prove this, we fix x and y in £2, and by possibly exchanging them, we can suppose that u(z) = u(y).
Then, we define

(1) = X{u>1) (T) Xgu<ty (U) + Xusty (T) X fusey (¥)-

By construction

0 if t <u(y) and t > u(zx),
w(t) = {1 if u(y% <t <u(x),

therefore

[ (1) dt = | " = u(a) — uly).

0 u(y)
which proves (2.21).
So, multiplying by the singular kernel and integrating (2.21) over  x 2, we obtain that

[ [ o= w0l
Q

RIS

Jr <J‘ J‘ X{u>t} X{ugt}(y)‘FX{ugt}(fE) X{u>t}(y) dxdy) dt

|.%' _ y|n+s

J J f dx dy J J dx dy dt
0 \Jwst) Jfusty |z —y[nts (ust) J{u>t} |w —y[+e
dz d
2 [ (o o )
(usty Justy [T —y|" T

as desired. O

2.1.2. Maximum Principle and Harnack Inequality. The Harnack Inequality and the Max-
imum Principle for harmonic functions are classical topics in elliptic regularity theory. Namely, in
the classical case, if a non-negative function is harmonic in B; and r € (0, 1), then its minimum and
maximum in B, must always be comparable (in particular, the function cannot touch the level zero
in B,).

It is worth pointing out that the fractional counterpart of these facts is, in general, false, as this
next simple result shows (see [99]):

THEOREM 2.1.6. There exists a bounded function uw which is s-harmonic in B, non-negative
in By, but such that igfu =0.
1

SKETCH OF THE PROOF. The main idea is that we are able to take the datum of u outside B;
in a suitable way as to “bend down” the function inside B; until it reaches the level zero. Namely,
let M > 0 and we take ups to be the function satisfying

(=A)up; =0 in By,
uy =1—-M in B3\Bo, (2.22)
upy =1 in R"\((B3\B2) u By).
When M = 0, the function u,; is identically 1. When M > 0, we expect uy; to bend down, since the
fact that the fractional Laplacian vanishes in B; forces the second order quotient to vanish in average

(recall (1.1), or the equivalent formulation in (2.3)). Indeed, we claim that there exists M, > 0
such that upy, = 0 in By with igf ups, = 0. Then, the result of Theorem 2.1.6 would be reached by
1

taking uw := wupy, .
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To check the existence of such M,, we show that i]glf upr — —00 as M — +00. Indeed, we argue
1

by contradiction and suppose this cannot happen. Then, for any M > 0, we would have that

infupyr = —a, (2.23)
B,

for some fixed a € R. We set
Y + M -1
UM =
Then, by (2.22),

(=A)*vpr =0 in By,

Vp = 0 in Bg\BQ7
Up = 1 in Rn\((B?)\BQ) U Bl)
Also, by (2.23), for any x € By,
—a+M-—-1
on(e) > ————.

By taking limits, one obtains that vy, approaches a function vy, that satisfies

(=A)°vy, =0 in By,

Uy =0 in B3\Bas,
Vo = 1 in R"\((Bg\Bg) v Bl)
and, for any x € By,
v () = 1.

In particular the maximum of v, is attained at some point x, € By, with v (z,) = 1. Accordingly,

0=PV. Uoo(x*) _::;iy) dy > P'V'J vm(x*) _::2(;}) dy
re |Te — Yl B3\B» |z =yl
1-0
Bs\Bs |93* - y| )
which is a contradiction. O

The example provided by Theorem 2.1.6 is not the end of the story concerning the Harnack
Inequality in the fractional setting. On the one hand, Theorem 2.1.6 is just a particular case of
the very dramatic effect that the datum at infinity may have on the fractional Laplacian (a striking
example of this phenomenon will be given in Section 2.1.5). On the other hand, the Harnack Inequality
and the Maximum Principle hold true if, for instance, the sign of the function u is controlled in the
whole of R™.

We refer to [15, 80, 99, ] and to the references therein for a detailed introduction to the
fractional Harnack Inequality, and to [53] for general estimates of this type.

Just to point out the validity of a global Maximum Principle, we state in detail the following
simple result:

THEOREM 2.1.7. If (=A)*uw >0 in By and u = 0 in R™\By, then u > 0 in By.

PROOF. Suppose by contradiction that the minimal point x, € Bj satisfies u(z,) < 0. Then
u(xy) is a minimum in R™ (since w is positive outside By), if y € By we have that 2u(x.) — u(z. +
y) —u(zs —y) < 0. On the other hand, in R™\Bs we have that z. + y € R"\By, hence u(z, £ y) > 0.
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We thus have

0 < J 2u(2y) — u(Te +y) — u(ze —y) dy

|y|n+2s

< f 2u(x,) — u(2. ++z;)‘ —u(ze —y) dy
R™\B, |y|m+2s

2u(x
< f £+;1 dy < 0.
R™\ B, |yl
This leads to a contradiction. |
Similarly to Theorem 2.1.7, one can prove a Strong Maximum Principle, such as:

THEOREM 2.1.8. If (=A)°u >0 in By and u = 0 in R™\By, then u > 0 in By, unless u vanishes
identically.

PRrROOF. We observe that we already know that v > 0 in the whole of R™, thanks to Theorem 2.1.7.
Hence, if u is not strictly positive, there exists zo € By such that u(xg) = 0. This gives that

0< J 2u(xo) — ufxo ++y2) —u(zo —y) dy = _f u(zo +y) ++126($0 —¥) dy.
" ly|n+2s " ly|n*2e

Now both u(xg + y) and u(xg — y) are non-negative, hence the latter integral is less than or equal to
zero, and so it must vanish identically, proving that u also vanishes identically. O

A simple version of a Harnack-type inequality in the fractional setting can be also obtained as
follows:

PROPOSITION 2.1.9. Assume that (—A)*u = 0 in By, with u = 0 in the whole of R™. Then

for a suitable ¢ > 0.

PRrOOF. Let I' € Cf (By/2), with I'(z) € [0,1] for any = € R”, and I'(0) = 1. We fix € > 0, to be
taken arbitrarily small at the end of this proof and set

n:=u(0) + € > 0. (2.24)

We define T'y(z) := 2nT'(z) — a. Notice that if a > 25, then I'y(z) < 2np —a < 0 < u(x) in the whole
of R™, hence the set {I'; < in R™} is not empty, and we can define

ay := inf{T', <wu in R"}.
aeR

By construction

ax < 217.
If a < n then T',(0) = 2n — a > n > u(0), therefore
ay = 1. (2.25)
Notice that
Iy, < wuin the whole of R™. (2.26)
We claim that
there exists xg € By, such that T'y, (w0) = u(zo). (2.27)

To prove this, we suppose by contradiction that u > Iy, in By, i.e.

p=min(u — Ty, ) > 0.
Byo

Also, if x € R™\By /3, we have that
0(&) = Tay () = u(z) — 20T(@) + @y = u(z) + ax > an > 7,
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thanks to (2.25). As a consequence, for any z € R”,
u(x) — q, (x) = min{p, n} =: pye > 0.
So, if we define ay := ay — (px/2), we have that ay < ay and

u(x) = T, (¢) = ula) = Lo, (0) - 5 > B > 0.
This is in contradiction with the definition of a4 and so it proves (2.27).
From (2.27) we have that 29 € By 3, hence (—A)*u(zg) = 0. Also [(=A)°Ty, (z)| = 2n[(=A)*T(z)] <
Cn, for any « € R", therefore, recalling (2.26) and (2.27),
Cn = (=A)Ta,(z0) = (=A)%u(xo)

[Fa*(xo) — Doy (w0 + y)] - [U(xo) —u(zo + y)]

= (C(n,s)P.V. J P dy
w(zo +y) — Loy (0 +y)
= (C(n,s) P.V.Jn |y|”+2: dy
+y) T +
> C(n,s) P.V.f ulzo ) o (o tv) 4,
B1(—z0) |y|
Notice now that if y € B1(—zo), then |y| < |zo| + 1 < 2, thus we obtain
C(n,s)

Cn =

Qn+2s fBl (=20) [u(iC() + y) - Fa* (.’EO + y)] dy

Notice now that 'y, () = 2nI'(x) — asx < 7, due to (2.25), therefore we conclude that

C(n,s)
= —n|B1| | -
C’I] on+2s (JBl(xo) U(Z‘o + y) dy 77| 1|>

That is, using the change of variable x := xy +y, recalling (2.24) and renaming the constants, we have

C(u(0) +¢) =Cn = J u(z) dz,

1

hence the desired result follows by sending € — 0. ]

2.1.3. An s-harmonic function. We provide here an explicit example of a function that is
s-harmonic on the positive line Ry := (0, 4+00). Namely, we prove the following result:

THEOREM 2.1.10. For any x € R, let ws(x) := x5 = max{z,0}°. Then

s —cslz|™ ifz <0,
(=A) ws () = { 0 if x>0,

for a suitable constant cs > 0.

At a first glance, it may be quite surprising that the function % is s-harmonic in (0, 4+00), since
such function is not smooth (but only continuous) uniformly up to the boundary, so let us try to give
some heuristic explanations for it.

We try to understand why the function x5 is s-harmonic in, say, the interval (0, 1) when s € (0, 1].
From the discussion in Section 1.2, we know that the s-harmonic function in (0, 1) that agrees with =5
outside (0,1) coincides with the expected value of a payoff, subject to a random walk (the random
walk is classical when s = 1 and it presents jumps when s € (0,1)). If s = 1 and we start from the
middle of the interval, we have the same probability of being moved randomly to the left and to the
right. This means that we have the same probability of exiting the interval (0,1) to the right (and
so ending the process at = 1, which gives 1 as payoff) or to the left (and so ending the process
at © = 0, which gives 0 as payoff). Therefore the expected value starting at = 1/2 is exactly the
average between 0 and 1, which is 1/2. Similarly, if we start the process at the point x = 1/4, we
have the same probability of reaching the point 0 on the left and the point 1/2 to the right. Since we
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(—A) ws(z)

FIGURE 2.1. An s-harmonic function

know that the payoff at = 0 is 0 and the expected value of the payoff at x = 1/2 is 1/2, we deduce
in this case that the expected value for the process starting at 1/4 is the average between 0 and 1/2,
that is exactly 1/4. We can repeat this argument over and over, and obtain the (rather obvious) fact
that the linear function is indeed harmonic in the classical sense.

The argument above, which seems either trivial or unnecessarily complicated in the classical case,
can be adapted when s € (0,1) and it can give a qualitative picture of the corresponding s-harmonic
function. Let us start again the random walk, this time with jumps, at = 1/2: in presence of jumps,
we have the same probability of reaching the left interval (—oo, 0] and the right interval [1, +00). Now,
the payoff at (—o0, 0] is 0, while the payoff at [1, +00) is bigger than 1. This implies that the expected
value at = 1/2 is the average between 0 and something bigger than 1, which produces a value larger
than 1/2. When repeating this argument over and over, we obtain a concavity property enjoyed by
the s-harmonic functions in this case (the exact values prescribed in [1, +00) are not essential here, it
would be enough that these values were monotone increasing and larger than 1).

FIGURE 2.2. A payoff model: case s = 1 and s € (0,1)

In a sense, therefore, this concavity properties and loss of Lipschitz regularity near the minimal
boundary values is typical of nonlocal diffusion and it is due to the possibility of “reaching far away
points”, which may increase the expected payoff.

Now we present a complete, elementary proof of Theorem 2.1.10, starting with some preliminary
computations.
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LEMMA 2.1.11. For any s € (0,1)
f (1+t)s+(1—t)5—2dt+j+7“ (141 1
0 S

t1+25 t1+25

ProOOF. Fixed € > 0, we integrate by parts:

f(1+t)8+(1—t)5—2dt

t1+2$

- ——J F(1—1)° 2]%5—2%&

1[(1+e)+(1—¢)—2 1 f (14+t)5 — (1 —t)s!

— 25 2 —

25[ g2s MR . 12s

1 1 1 1

=—[o(1)—2°+2] + = f (1+t)"" 1725 dt — J (1 —t)~ 125 qt ),
2s 2\ J. c

with o(1) infinitesimal as € \, 0. Moreover, by changing variable f := ¢/(1 — t), that is ¢ := /(1 + 1),
we have that

(2.28)
dt

1 +%
f (1—t) 1t 24t = f (1+1)5 125 at.
€ e/(1—e)
Inserting this into (2.28) (and writing ¢ instead of ¢ as variable of integration), we obtain

J'1 (1+t)5+(1—t)5—2dt

t1+2s

1 s 1 ! s—1,—2s i s—1,—2s
= —lo(1) =2 +2]+ | | (A+t)"" " dt — (L4t~ at (2.29)
2s 20 Je e/(1—¢)
/(1—¢) +o0
- %[0(1) —-2°+2] + ;U (L+t)" 12 dt — f O e dt].
£ 1

Now we remark that

e/(1—¢) e/(1—¢)
J (1+)* 172 dt < J (L+e) e dt =¥ (1 —e) (1 +2) ",

€ €

therefore
e/(1—¢)
lim (1+t)* > dt = 0.
eNo Jg
So, by passing to the limit in (2.29), we get
1 +oc
1+t +(1—-t)°—2 —2° +2 1f 1.9
dt = - = 14+ )57 =% dt. 2.30
|, ] BN 230
Now, integrating by parts we see that
1t I d
= L+t 2 dt = — t725— (1 + ) dt

s +a0
= 5 +f t 2 (1 1) dt.
By plugging this into (2.30) we obtain that
1 . ; ; 5 4+
(T+t)*+(1—-¢t)—2 2542 28 J 1_os ,
dt = — — t S(14+t)°dt
J;) tl+2s 2s + 2s 1 (1+8)"dt,

which gives the desired result. |

From Lemma 2.1.11 we deduce the following (somehow unexpected) cancellation property.
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COROLLARY 2.1.12. Let ws be as in the statement of Theorem 2.1.10. Then
(—A)ws(1) = 0.
PrOOF. The function ¢t — (1 +¢)° + (1 —¢)° — 2 is even, therefore
1 1
1+1¢t)° 1—-1¢)° -2 1+1)° 1—-t)° -2
[PEERECE L LRSS R S
—1 0

[t[1+2s t1+2s
Moreover, by changing variable ¢ := —t, we have that
-1 (1=t =2, _ e (1+£)S—2d£
L |t o 1 Fl42s
Therefore
TP w1+ 1) + we(1 —t) — 2w, (1) p
. |¢[1+2s ¢
1 1 +2
(1—-¢t)*—2 f I+t +(1—¢)°*—2 J (1+¢t)*—2
= —— Y dt + dt + ———dt
Jﬁ/u |¢]1+2s . |t[1+2s . |t[1+2s
1 +
(141 l—t) (1+1t)°—2
B R ELEUE P Y
1 _4)s _ +o s +a0
s I+t +(1—1¢) 2dt+ (1+1) gt —9 dt
o t1+2s 1 t1+2s 1 t1+2s
s 5 o dt
- g o L H+2s |0
where Lemma 2.1.11 was used in the last line. Since
oA 1
Lt 925’
we obtain that
TP ws(1+1) + ws(1 —t) — 2w, (1)
. |t[1+2s dt =0,
that proves the desired claim. O

The counterpart of Corollary 2.1.12 is given by the following simple observation:
LEMMA 2.1.13. Let wy be as in the statement of Theorem 2.1.10. Then
—(—A)’ws(—1) > 0.
PRrROOF. We have that
ws(—=1+1t) +ws(—1—1t) —2ws(—1) = (=1 4+¢)L +(-1—-¢)% >0
and not identically zero, which implies the desired result. O

We have now all the elements to proceed to the proof of Theorem 2.1.10.

PROOF OF THEOREM 2.1.10. We let 0 € {+1,—1} denote the sign of a fixed z € R\{0}. We
claim that

+90 wS(U(l + t)) + ws(o(l — t)) — 2ws(0)
Ji% |t|1+2s di

(2.31)
dt.

F‘I ws(0 +1) + wy(0 — 1) — 2w, (0)

o |t|1+25
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Indeed, the formula above is obvious when > 0 (i.e. ¢ = 1), so we suppose z < 0 (i.e. ¢ = —1) and
we change variable 7 := —t, to see that, in this case,
JJFI ws(o(1+1)) +ws(o(l —1)) —2ws(o)
dt
. e[+

dt

_ J+°° ws(=1 =) + wy(=1 +1) — 2ws(0)

o |t|1+25

J‘*OO ws(—=147) + ws(—1 —7) — 2w, (o) i
= T
e |7[ 2
B fJ’OO ws(o +7) + ws(o — 1) — 2w,(0) J
T rpre )
thus checking (2.31).
Now we observe that, for any r € R,
ws(lzlr) = (lzlr)} = |z ri = [z ws(r).
That is
ws(xr) = ws(ol|z|r) = |z|*ws(or).
So we change variable y = tx and we obtain that
+oows(x + y) + ws(z - y) - 2ws(gj) d
Y
‘ |yt +2s
—C
B JJ“% ws(z(1+1) +ws(z(1 —1t)) — 2w, (z) it
-l ERE

dt

[ 1 ) el 2
|t|1+25

N T ws(o +t) +ws(o - t) — 2w,(0) i,
|t|1+25
where (2.31) was used in the last line. This says that

s |x] 7% (—A)*ws(—1) ifx <0,
(=8)"ws(z) = { 2| ~* (=A) wy(1)  ifa >0,

hence the result in Theorem 2.1.10 follows from Corollary 2.1.12 and Lemma 2.1.13. (]

2.1.4. A function with constant fractional Laplacian on the ball. In this subsection, we
explicitly compute the fractional Laplacian of the function U(z) = (1 — |z|?)5 in B;. We have that

(—A)*U(z) = C(n, s)%ﬁ(s, 1-5) anyzeBi,

where C(n, s) is given by (2.9) and § is the special Beta function (see Appendix A.2 and references
therein). Just to give an idea of how such computation can be obtained, with small modifications

respect to [69,70] we go through the proof of this result. The reader can find the more general result,
ie. for U(z) = (1 —|z|*)% for p > —1, in the above mentioned [69,70].
Let us take u: R — R as u(z) = (1 — |z|?)%. We consider the regional fractional Laplacian

restricted to (—1,1)
1
._ u(x) — u(y)
and we compute its value at zero. By symmetry we have that

14 _.2\s
Lu(0) = 2%im [ LU=

dy.
e—0 e y1+23 Y
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Changing the variable w = y? and integrating by parts we get that
1 1
Lu(0) = 2 lim (J’ y T dy — f (1—y?)yy % dy)
E—> e e

1 —2s 1
i R f (1—w)w*dw
s &0 S £2

1 —2s _ —2s 1— 2\s 1
= — — + lim (6 G Gl +J ws(l—w)51dw).

S 2

I
|
|
+
g

Using the integral representation of the Beta function (see Appendix A.2, formula (A.12)) it yields
that

Lu(0) =p(1—s,5)— -

For x € By we use the change of variables w = 7=

Lu(zx) = P.V. Jrl (1= — (1 —y?)° dy

|£L' — y|1+2s

1 25—1 2\s —1
(1= w1 — (1= w?)°(1 - wa)
=(1—-2%)"°PV. J;l 2T dw
L1—-(1—-w?)s LA —wz)?» -1
_(1— 2PV 1-{d=w) 2.32
(1 —2%) V(J_l EE dw-i—f_l 2T dw ( )
1 (1- w2)5(1 —(1- wx)_l)
+J 5o dw
-1 |25+

= (1 — 2%~ (Lu(0) + J(x) + I (),

where we have recognized the regional fractional Laplacian and denoted

25 1 -1
=PV J |w|29+1 dw and
1 1
1-(1—wz)™ s
=P.V. J’ |W|2S+1 (1—w?)® dw.

In J(x) we have that

1 25—1 1
(1 —wz)** J —1-2s
J(x) = P.V. —dw — Sd
(z) (J—1 |w|25+1 w . |w] W
1 25—1 _ 25—1 1
= lim (J (L +wz) + (1 - wz) dw — ZJ, w72 dw).
13 £

50 |w|28+1

1
With the change of variable t = — we get that
w

1 1/e 251 251 g%
J(z) = = + lim [(t+x) +(t—2) ]dt—
S e—0 1 S
1 Q4+ x)2 1 (1+ex)® + (1 —ex)?* —2 (2.33)
s 2s 23 =5 g2s
1 (to)*+(1-a)>
s 2s '

To compute I(x), with a Taylor expansion of (1 —wz) ! at 0 we have that

I(z) = P.V. 1 M(l—wQ)sdw.

S P
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The odd part of the sum vanishes by symmetry, and so

1 ZI (xw)Qk
— : k=1 2\s

% 1
= —21lim Y 2%* f Wk257 (1 — w?)® dw.

e—0

We change the variable t = w? and integrate by parts to obtain
o 1
_ N 2k k—s—1 _1\s
I(z) = glg(l) kZ::lx L? t (1 —1¢t)%dt,

€2k—23(1 _52)8 s 1 ,
— th=5(1 =)t at|.
[ k—s k—st ( )

I
s
8
2
L

For k > 1, the limit for € that goes to zero is null, and using the integral representation of the Beta
function, we have that

Zx Bk +1—s,s).

We use the Pochhammer symbol defined as

1 for k =0,
(@)r = (2.34)

gl¢g+1)---(g+k—-1) fork>0

and with some manipulations, we get
(=s)I'(k+1—s)'(s)
k+1-— =
(k+1=59) = 0 SFrT D
(=5)L'(k — s)I'(s) (=5)
- Kl =Bl =s8)
And so
I(z) = B(1 —s,s) Z 2k
By the definition of the hypergeometric function (see Appendix A.2) we obtain
o 22k
I(x) = = B(L—s,8)+ B(L—s,5) Y, (-
k=0
11,
—6(1_S,S)<F(_S,2727$ ) _1>
Now, by (A.17a) in the Appendix, we have that
11 2\ _ 2\s
F(—s,i,i,x ) =(1—z)
and therefore
I(z) = (1 — 5,5)((1 a2 - 1).
Inserting this and (2.33) into (2.32) we obtain
1 2s 1— 2s
Cu(x) = B(1—s,5) — (1 — g2) s LFDTF A=) (2.35)

2s
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We write the fractional Laplacian of u as

A _ gy [ M)y [T,

C(1,s) —o =yt |z —y|t 2

—1 o0
=cu<x>+<1x2>5(f | |xy|”8dy)
1

—oC
(1+z)"2+(1—x)72
2s )

= Lu(x) + (1 — x2)s
Inserting (2.35) into the computation, we obtain
(=A)*u(z) = C(1,5)B(1 - s, 5). (2.36)

To pass to the n-dimensional case, without loss of generality and up to rotations, we consider = =
(0,0,...,z,) with z,, = 0. We change into polar coordinates x —y = th, with h € dB; and t > 0. We
have that

(—A)U) (1 [22) — (1 - [yf2)°
Clns) 1 e ey

_ 1 (]. — |{I?|2)S — (]_ _ |.’E + ht|2)5 o
=5 LBI (P.V. JR miE=E dt ) dH" 1 (h).

Changing the variable t = —|z|h,, + 74/|hnz|2 — |2]2 + 1, We notice that
1—|z+htf =1 -1 —|2]* + |hnz]?)

(2.37)

and so

1— 2\s 1— 2\s
pu [ U=l Ol

|t|1+25
1 _ 1— 2\s h 2 _ 2 1)8
_Pvf |2|2)* — (1 — 72)%(|hna] |x|1:;S) Il =P + 1dr
— (@ + 7/ [ 2 — [2]2 +1‘
|z >R, ’ :
( fmal — P +1) ~ 7
_PVJ 14+2s dT
|z hn )

‘ el — e +1

Vi - IJ/‘I2 +1
C(1,s)
:5(1 -5, 8)7
where the last equality follows from identity (2.36). Hence from (2.37) we have that

(=AY U(z) = C(n, $)B(1 — s, 5)%.

This concludes the proof of the result.

2.1.5. All functions are locally s-harmonic up to a small error. Here give a sketch of the
proof that s-harmonic functions can locally approximate any given function, without any geometric
constraints (the reader can see the paper [62] for further details and a complete proof). This fact is
rather surprising and it is a purely nonlocal feature, in the sense that it has no classical counterpart.
Indeed, in the classical setting, harmonic functions are quite rigid, for instance they cannot have a
strict local maximum, and therefore cannot approximate a function with a strict local maximum. The
nonlocal picture is, conversely, completely different, as the oscillation of a function “from far” can
make the function locally harmonic, almost independently from its local behavior.
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We want to give here some hints on the proof of this approximation result:

THEOREM 2.1.14. Let k € N be fized. Then for any f € C*(B;) and any £ > 0 there exists R > 0
and u € H*(R™) n C*(R™) such that
{(—A)Su(az) =0  inB

2.38
u=0 in R"\Bpr (2.38)

and
If = ulerzy <e

SKETCH OF THE PROOF. For the sake of convenience, we divide the proof into three steps. Also,
for simplicity, we give the sketch of the proof in the one-dimensional case. See [62] for the entire and
more general proof.

Step 1. Reducing to monomials
Let k£ € N be fixed. We use first of all the Stone-Weierstrass Theorem and we have that for any € > 0
and any f € C’k([O, 1]) there exists a polynomial P such that
|f = Pleray) S e
Hence it is enough to prove Theorem 2.1.14 for polynomials. Then, by linearity, it is enough to prove
N
it for monomials. Indeed, if P(z) = Z cmz™ and one finds an s-harmonic function wu,, such that
m=0
i — ™o gy S T
! lem (N +1)

N
then by taking u := Z CmUm we have that
m=0
N
lu = Plorry < X5 lemllum =™ lora <e
m=0

Notice that the function w is still s-harmonic, since the fractional Laplacian is a linear operator.

Step 2. Spanning the derivatives
We prove the existence of an s-harmonic function in Bj, vanishing outside a compact set and with
arbitrarily large number of derivatives prescribed. That is, we show that for any m € N there exist

R >1r >0, apoint x € R and a function u such that

—-A)Y’u=0 in(z—rax+r),
(=4) . ( ) (2.39)
u=0 in R\(zx — R,z + R),

and 4
D’u(x) =0 for any j € {0,...,m — 1},

D™u(x) = 1.
To prove this, we argue by contradiction.

We consider Z to be the set of all pairs (u,z) of s-harmonic functions in a neighborhood of z,
and points x € R satisfying (2.39). To any pair, we associate the vector

(u(z), Du(z),...,D™u(z)) € R™*!
and take V to be the vector space spanned by this construction, i.e.

V.= {(u(w),Du(x), ...,D™u(x)), for (u,x)e€ Z}.

(2.40)

Notice indeed that
V is a linear space. (2.41)
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Indeed, let V1, Vo € V and a1, as € R. Then, for any ¢ € {1,2}, we have that
V, = (ui(xz),Dul(:ci), .. .,Dmui(xi)) for some (u;,x;) € Z,
i.e. u; is s-harmonic in (x; — r;, z; + r;) and vanishes outside (x; — R;, z; + R;), for some R; = r; > 0.
We set
uz(x) := arur(z + 1) + agua(z + x2).
By construction, ug is s-harmonic in (—r3, r3), and it vanishes outside (—Rg3, R3), with r3 := min{ry,ro}
and R3 := max{R;, Ry}, therefore (uz,0) € Z. Moreover
Diug(x) = ay Dl uy(x + 21) + ag DI uy(x + x2)
and thus
a1V + azVe
= m (ul(:v1), Duq(x1),. .., Dmul(xl)) + as (ug(xg), Dus(x2),. .., Dmug(azg))

(Ug(O), DU3(O), B Dmu3(0)) :
This establishes (2.41).

Now, to complete the proof of Step 2, it is enough to show that

V =RmL (2.42)

Indeed, if (2.42) holds true, then in particular (0,...,0,1) € V, which is the desired claim in Step 2.

To prove (2.42), we argue by contradiction: if not, by (2.41), we have that V is a proper subspace

of R™*1 and so it lies in a hyperplane.
Hence there exists a vector ¢ = (cg, ..., cm) € R™T1\{0} such that

Vc{(eR™"|c-(=0}.

That is, taking a pair (u,z) € Z, we have that

Z c;Diu(z) =0,

j<m

i.e. the vector ¢ = (cy,...,cn) is orthogonal to any vector (u(z), Du(z),...,D™u(z)). To find a
contradiction, we now choose an appropriate s-harmonic function v and we evaluate it at an appro-
priate point x. As a matter of fact, a good candidate for the s-harmonic function is % , as we know
from Theorem 2.1.10: strictly speaking, this function is not allowed here, since it is not compactly
supported, but let us say that one can construct a compactly supported s-harmonic function with the
same behavior near the origin. With this slight caveat set aside, we compute for a (possibly small) z
in (0,1):
Dig® =s(s—1)...(s—j+ 1)z
and multiplying the sum with ™ ° (for « # 0) we have that

Z cjs(s—1)...(s—j+1)z™ 7 = 0.

js<m
But since s € (0,1) the product s(s —1)...(s — j + 1) never vanishes. Hence the polynomial is
identically null if and only if ¢; = 0 for any j, and we reach a contradiction. This completes the proof
of the existence of a function u that satisfies (2.39) and (2.40).
Step 3. Rescaling argument and completion of the proof
By Step 2, for any m € N we are able to construct a locally s-harmonic function « such that u(z) =
2™ + O(z™*1) near the origin (up to a translation). By considering the blow-up

ur(z) = “(Aff) = 2™ + AO(z" 1)

we have that for A small, u) is arbitrarily close to the monomial ™. As stated in Step 1, this concludes
the proof of Theorem 2.1.14. O
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It is worth pointing out that the flexibility of s-harmonic functions given by Theorem 2.1.14
may have concrete consequences. For instance, as a byproduct of Theorem 2.1.14, one has that a
biological population with nonlocal dispersive attitudes can better locally adapt to a given distribution
of resources (see e.g. Theorem 1.2 in [112]). Namely, nonlocal biological species may efficiently use
distant resources and they can fit to the resources available nearby by consuming them (almost)
completely, thus making more difficult for a different competing species to come into place.
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2.2. Density of Caputo stationary functions in the space of smooth functions

The Caputo fractional derivative is a so-called nonlocal operator, that models long-range inter-
actions. For instance, if we think of a function depending on time, the Caputo fractional derivative
would represent a memory effect, pointing out that the state of a system at a given time depends
on past events. In other words, the Caputo derivative describes a causal system (also known as a
non-anticipative system).

This nonlocal character of the Caputo derivative gives rise to a peculiar behavior: on a bounded
interval, say [0, 1], one can find a Caputo-stationary function “close enough” to any smooth function,
without any geometrical constraints. This is a surprising result when one thinks of the rigidity of the
classical derivatives. For instance, the functions with null first derivative are constant functions, the
functions with null second derivatives are affine functions. Such functions cannot approximate locally
any given C* function, for any fixed k € Nyg. We remark that this property of Caputo-stationary
functions is in analogy to s-harmonic functions, as proved in Subsection 2.1.5.

Let a € R and s € (0,1) be two arbitrary parameters. We define the functional space

Cche .= {f: R — R| for any z > a, f € AC([a,z]) and f'(-)(z —-) "€ L ((a,x))}. (2.43)

We denote here by AC(I) the space of absolutely continuous functions on I and define the Caputo
derivative.

DEFINITION 2.2.1. The Caputo derivative of u € CL* with initial point a € R at the point x > a
is given by

Diu(x) := ﬁ J$ u'(t)(x — )% dt. (2.44)

With this definition, we have that:

a

DEFINITION 2.2.2. We say that u € CL* is Caputo-stationary with initial point a € R at the point
x> aif
Diu(zx) = 0.
Let I be an interval such that a < inf I. We say that u is Caputo-stationary with initial point a in I
if Diu(x) =0 holds for any x € I.

For k € Ny, we consider C* ([0, 1]) to be the space of the k-times continuous differentiable functions
on [0, 1], endowed with the C*-norm

k
I flexqoay = 25 sup 1F9(x)].

i=0 :EE[O,I]

The main result that we prove here is that for any fixed k € Ny, given any C* ([0, 1]) function, there
exists an initial point a < 0 and a Caputo-stationary function with initial point a, that in [0,1] is
arbitrarily close (in the C* norm) to the given function. More precisely:

THEOREM 2.2.3. Let k € Ny and s € (0,1) be two arbitrary parameters. Then for any f €
C*([0,1]) and any € > 0 there exists an initial point a < 0 and a function u € Cp* such that
Diu(z) =0 in [0, 00)
and
lu = flerqoay <e-

In the next lines we recall some notions and make some preliminary remarks on the Caputo
derivative.

The reader can see Chapter 7.5 in [150] for the definition of absolutely continuous functions. In
particular, we use the following characterization, given in Theorem 7.29 in [150], that we recall in the
next Theorem.



46 2. THE FRACTIONAL LAPLACIAN AND THE CAPUTO DERIVATIVE

THEOREM 2.2.4. A function f is absolutely continuous in [a,b] if and only if f' exists almost
everywhere in [a,b], f’ is integrable on [a,b] and

f(x) - f(a) = j “pyd a<z

By convention, when we take the Caputo derivative D; of a function, we assume that the function
is “causal”, i.e. that it is constant on (—o0, a). In particular, we take u(x) = u(a) for any z < a and
this, by the definition (2.44), implies that Du(x) = 0 for z < a.

Moreover, we notice that if, for instance u € C?(R), then

b.

/N

Sli%l+ Diu(z) = u(x) — u(a), Slir{lﬁ Diu(x) = u'(z).
Indeed,
o/ (8) (@ = )] < o' (8) X a3 (8) + [0/ (D) (2 = )X 1,09 (1) € L ([a,2])

and using the Dominated Convergence Theorem we get that

lim Diu(z) = lim 1 Jz ' (t)(z —t)"° dt = u(x) — u(a).

s—0+ s—0t F(]. — S) a

Also, integrating by parts and using (A.6) we get that

Dju(z) = “'(ar)g - Z)) — - (21_ 3 J ") — 0 e

Since
" () (& = )] < [ (8) [X[a,0m1) (1) (& = 8) + [0 () [ X210 (1) € L ([a,2])
using the Dominated Convergence Theorem we obtain that

lim Diu(x) = u'(z).
s—1—

The proof of Theorem 2.2.3 follows the steps of the sketch of the proof introduced in Subsection
2.1.5 for the fractional Laplacian. Here, we give a complete proof of the statement, taking into
account the structure of the Caputo derivative. As a matter of fact, the main idea of the proof is
(as for the fractional Laplacian) that one can build a Caputo-stationary function in say I = [0,1]
by choosing a “good” given function as exterior datum. But while the fractional Laplacian takes
into account the entire space and the exterior datum is CI, the Caputo derivative considers only the
left-side complement and this reflects in the lack of symmetry of these exterior conditions. Namely,
the exterior datum is (—oo, 0], adding the convention that events start at a given point, say tg < 0
and f is constant before time 3. This structure has to be accounted for when proving Theorem 2.2.3.

We reduce the proof of Theorem 2.2.3 to finding a Caputo-stationary function close to any mono-
mial. For this, we follow Step 1 of the sketch of the proof of Theorem 2.1.14, using the Stone
Weierstrass Theorem and the linearity of the Caputo derivative. In the rest of the section, we proceed
as follows: In Subsection 2.2.1, we obtain a representation formula for u, when Dfu(xz) = 0 in (b, )
for a given b > a and having prescribed u on (—o0, b]. In Subsection 2.2.2, we prove that there exists a
sequence (v;) en of Caputo-stationary functions in (0, 00) such that, uniformly on bounded subinter-
vals of (0,00), we have that lim,_,,. v;(z) = ka®, for a suitable constant £ > 0. Then, in Subsection
2.2.3 we prove that there exists a Caputo-stationary function with an arbitrarily large number of
derivatives prescribed. and the last Subsection 2.2.4 deals with the proof of Theorem 2.2.3.

2.2.1. A representation formula. We deduce here a Poisson-like representation formula for
a function u that is Caputo-stationary with initial point a in the interval (b, 00) for b > a, and fixed
outside. To do this, we prove that if u € C}*, the two following problems are equivalent

Diu(z) =0 in  (b,00), f W(t)(x—t)"*dt=g(z) in (b,o),
b
prescribed data in  (—o0,b], prescribed data in (—o0,b].
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Moreover, we present here an interior regularity result.

FIGURE 2.3. A Caputo-stationary function in (b, o0) prescribed on (—o0,b]

In this subsection, we fix the arbitrary parameters a,b € R with b > a and s € (0, 1).

LEMMA 2.25. Let p € C((—o0,b]) n C*([a,b]) such that o(z) = ¢(a) in (—0,a]. Then ue CL*
satisfies the equation
Diu(x) =0 in (b, 0),
u(z) = p(x) in (—0,0]
if and only if it satisfies

T b
j u’(t)(x—t)’sdtz—f S =) dt in (b o),

b a
u(z) = p(x) in (—o0,b].

The reader can see a qualitative graphic of a function described by Lemma 2.2.5 in Figure 2.3.
An explicit example of such a function is build in Example 2.2.1, in Figure 2.5.

PRrROOF. Since ¢ € C*([a,b]) we have for any = > b
(l’ _ a)lfs _ (iE _ b)lfs

b
[[¢Oe-0al< s 0| <.
a tela,b] 1-s

b
Hence the map x — f ¢'(t)(x —t)~* dt is well defined in [b, o). Using the definition (2.44) for > b

we have that ¢

x b
(1 —s)Diu(z) = L o (t)(x — ) dt + f ' (t)(z—t)"°dt

T b
= f o (t)(x — ) dt + J o' (t)(x —t)~° dt.
b a

It follows that Diu(xz) = 0 on (b, ) is equivalent to

€T b
f W () — )0 dt = —f St —1)=dt in (bo0).

b a
This concludes the proof of the Lemma. O

In the following Theorem we introduce a representation formula for an integro-differential equa-
tion.
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THEOREM 2.2.6. Let g € C;’lfs. The problem

J$ w'(t)(x—t) °dt = g(z) in (b,0),

b (2.45)
u(b) =0
admits on [b,0) a unique solution u € C’;’S. Moreover, for any x > b,
u(z) = S”;” J g(t)(z — )L dt. (2.46)
b

PrROOF. We prove this theorem by showing that u given in (2.46) is well defined, belongs to the
space C’l’S and is the unique solution of the problem (2.45).

Since g belongs to C’1 175 (recall (2.43)), for any = > b we have that
sinws ¥ _ s
|u(x)] < f lg()|(z —1)*~Hdt < ¢ sup_|g(t)|(z —b)* < o0,
m b te[b,x]

where ¢, is a positive constant. Hence the definition (2.46) is well posed.

We prove that u belongs to C; *. We claim that

1,1-s

geCy " and u as in (2.46) =

u € AC([b,o0)) and
ww =" ([ o=y i g0 -0) e in )

We fix an arbitrary z > b. According to definition (2.43), we have g € AC([b,z]) and thanks to
Theorem 2.2.4 it follows that for any ¢ € [b, ]

mw=fﬂﬂM+mw

b

(2.47)

And so in (2.46) we have that

sirz:rs u(z) = f (

Jt g (1) d’T) (z —t)*~tdt + g(b) fx(x —t)"tat. (2.48)

b b
We compute

J (x—t)*"tdt = J (y —b)*~dy. (2.49)
Tonelli theorem applied to the positive measurable function |¢’(7)|(z — t)*~! on the domain
ba = {(t,7)| b<t<az, b<r<t} (2.50)

with the product measure d(t,7) gives

f lg'(T)| (z = t)*~ " d(t, ) = JIg (f(x—t)s—ldt> dr

(z —b)*

(2.51)

HQI”Ll((b,m))y

=;j|¢th—ﬂ%h<
b

which is a finite quantity. Hence |¢/(7)|(z —7)*~* € L' (Dy 4, d(t, 7)) and by Fubini theorem and using

(3.119) it follows that
Lt q'(1) d7> (x—t)*tdt = f q'(1) (f(x — )t dt) dr

J.(
- J’:g'(T) <Lm(y—7)s—1dy> dr — J: (Lyg’(r)(y—T)s_ldT) dy.
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Inserting this and identity (3.119) into (4.62), we obtain that

s ) = Jb ( f =) g - b)H) dy.

b
Hence u is the integral function of a L' ((b,z)) function (thanks to (2.51)) and recalling that u(b) = 0,
according to Theorem 2.2.4 we have that u € AC([b,z]). Moreover, almost everywhere in [b, 2]

) - | ")y — ) dr + )y — b

sinms b

With this, given the arbitrary choice of z, we have proved the claim (2.47).
We claim now that u/(-)(x —-)™* € L*((b,z)). Using the second identity in (2.47), we obtain that

[ Wi - ay
b

™

sin s

<[ ( [ o= dr> (= dy + o) [ (=0 = ) >

Tonelli theorem applied to the positive function |¢'(7)|(y — 7)**(z — y)~* on the domain D, , given
in (2.50) with the product measure d(y, 7) gives

[[votw=n-a=ndwn = [0l ([ -0 te-n=a) e

Db,z
By using the change of variables ¢t = F, thanks to the definition of the Beta function (A.12) and
-7
identity (A.14) we have that
T 1
s—1 —s s—1 —s ™
- — dy = t 1—¢t)7%dt = . 2.53
[ w=mta—p = [ eta—nma- I (2.53)
Hence we obtain that
! _ )s—1 _ 2\ S — 7T oy

[[ 9@l =m0 =0 dwr) = e s o i)

Dy o

From this and using again (2.53) with b = 7, we obtain in (2.52) that

fb ! ()] (2 — 9)* dy < 19|21 (v.ey) + 9B

Hence u/(+)(z—-)~* € L*((b,z)), as claimed. From this and (2.47), recalling definition (2.43) it follows
1,s
that u belongs to the space C;”.

We prove now that u is a solution of the problem (2.45). Using the second identity in (2.47) we

have that
T xr , B T
— )" S dy =
i [ a= [

T g(d) fb b @ — ) dy.

Thanks to (2.54), we have that |¢/(7)|(y—7)""'(z—y) ™ € L' (Ds,x, d(y, 7)). We apply Fubini theorem
and using (2.53) we get that

f" <er gy -7z -y dr) dy = fz g'(7) (Jm(y N —y) dy) dr,

b b

[[vom=m dT) (z—y)* dy
b (2.55)
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Thanks again to (2.53), in (2.55) it follows that

r u'(y)(x—y) " dy = g(x),

b
therefore u is a solution of the problem (2.45).

The solution is unique. We prove this by taking two different solutions uy, us € C’; ** of the problem
(2.45). Let u := uy — ug, then u satisfies

J W) (z—t)"*dt=0 in (b, 0),
b
u(b) = 0.
We take any y > x, we multiply both terms by the positive quantity (y —z)*~!, integrate from b to y
and obtain that v
f (J u'(t)(x —t)~° dt) (y —2)*tdr = 0. (2.56)
b \Jb

Since u € C’;’S, we use Tonelli theorem on Dy, (we recall definition (2.50)) and by (2.53) we obtain

that , ,
[NEE (j (2= 1)~ (y — )~ dx) dt

|l 1 ((5,9))»

j (1) (& — 1)~y — 2)* d(z )

Dy,y

sinms
which is a finite quantity. Fubini theorem then allows us to compute
b b
™
= u(y)-
It follows from (4.2.1) and from the initial condition u(b) = 0 that uy(z) = ua(z) on [b, 00). Therefore
u given in (2.46) is the unique solution of the problem (2.45) and this concludes the proof of the

Ly (r o' (t)(z —t)7° dt) (y — z)*dz = Jy u(t) (Ly(x )y — ) dx) &t
sin7s
Theorem. .

We introduce an interior regularity result.
LEMMA 2.2.7. Let g € C*([b,o0)) and u be defined as in (2.46). Then ue C* ((b, w)).

PROOF. We prove by induction that the next statement, which we call P(n), holds for any n € N:

ue C((b, )

and
u(n)(y) _ sin s fy g(n) (T)(y _ 7_)sfl dr + nz_:l é g(z)(b)(y _ b)S*TIr‘ri
T b = o (2.57)
for any y € (b, ),
where
63’1_:{(s—1)...(s—n+i+2)(s—n+i+1) forzi;én—l (2.58)
1 fori=n-—1.

We denote by

o) = [ =) ar

b
and from (2.47) we have that almost anywhere in [b, 00)

sin s

W(y) = —— (o) + )y -b)""). (2.59)
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Since g € C*([b, ®)), we have in particular that ¢’ € C;’lfs hence from the definition of v and (2.47)
we get that v € AC([b,0)). It follows that u’ € C'((b, 0)), since it is a sum of continuous functions.
Therefore u € C* ((b, 0)) and (2.59) holds pointwise in (b,0). And so P(1) is true.

In order to prove the inductive step, we suppose that P(n) holds and prove P(n + 1). Let now

y

o) = [ 9=
b

From (2.57) we have that for any y € (b, 00)

sin s

u™(y) = <v(y) + 2 29" (0)(y — b)“’“) : (2.60)

& =0

Since g € C* ([b, o)), in particular we have that ¢g(™ € C;"'~°, hence from the definition of v and
thanks to (2.47) we get that v € AC([b,0)) and almost everywhere on [b, )

y
R G R R DI
b
Now, also g(**+1) e C;’lfs and so, thanks to (2.47), the map
y
Y L JH () — 1)V dr e AC([b, ). (2.61)

It yields that v € C((b,0)) and so from (2.60) we get that u("*1) € C'((b,o0)). Taking the derivative
of (2.60) we have that pointwise in (b, )
y
() = [ gy = 1) dr M) - b
b

sin s

+ Z Ceig D (b)(s —n +1)(y — b)s~n T

y L . .
= | a = i+ Y B = b
i=0
where we have used (2.58) in the last line. Therefore the statement P(n + 1) is true and the proof by
induction is concluded.
It finally yields that v € C* ((b,0)) and this concludes the proof of the Lemma. O

2.2.2. Building a sequence of Caputo-stationary functions. In this subsection we build
a sequence of functions that are Caputo-stationary in (0,00) and that tends uniformly on bounded
subintervals of (0,00) to the function z°. We do this by building a Caputo-stationary function in
(1,00), that at the point 1 + ¢ is asymptotic to £° and then we use a blow-up argument.

We fix the arbitrary parameter s € (0,1). We introduce the first Lemma of this subsection.
LEMMA 2.2.8. Let ¢y € C*([0,1]) n C((—o0,1]) be such that
Po(x) = ¥o(0) f07“ any x € (—,0],
Yo(xz) =0 for any x € [i, 1], (2.62)
Py(z) <0 for any x € [O, Z)

Let ¢ € C’é’s be the solution of the problem
Dyu(a) =0 in (1,00),

U(z) = ho(z) in (—o0,1]. (2.63)
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Then ¢ € C*((1,00)) and if x = 1 + ¢, we have that
Y(1 +¢) = ke* + 0> (2.64)
as € — 0, for some k > 0.

An explicit example of a function described in Lemma 2.2.8 is depicted in Figure 2.6 in Example
2.2.2.

PROOF OF LEMMA 2.2.8. Thanks to Lemma 2.2.5 we have that ¢ € Cy’® is solution of the prob-
lem (2.63) if and only if

T 3/4
Lqﬂuxx—ty*dtz—-o Po(t)(x —t)"°dt in (1,00),
Y(z) = to(x) in (—o0,1].
On [1,00) we define the function
3/4
g(x) == — () (x —t) 7% dt, (2.65)

0

hence our problem is now

f W) — 1) dt = g(z)  in (1,00),
(@) = dolz) in (—o,1].

We claim that g € C*([1,00)). For that, let F: [1,00) x [0,3/4] — R be defined as F(z,t) :=
Pi(t)(x —t)~*. Now, for any h > 0 arbitrarily small we have that

‘F(x +h,t) — F(:E,t)‘

(2.66)

< sup Jup(n| CHEZI 2T

h t€[0,3/4]

Since the map [1,00) 3 x — (z —¢)~* is differentiable for any ¢ € [0, 3/4], by the Mean Value Theorem
we have that for 6 € (0, h)

(x+h—t)y " —(x—1t)"°

A <s(x+0—t) P <s(z—t) " h

Then

‘F(:C—l—h,t)—F(x,t)

) ‘ <s sup [0l — 0=t e N[0, 3/4], de),

t€[0,3/4]
hence by the Dominated Convergence Theorem, we can pass the limit inside the integral and obtain
that
3/4 3/4
g (z) =— Oz F(x,t)dt = s Yo (t)(x — )51 dt.
0 0
We can now take for any n € N the function F,, : [1,0)x[0,3/4] — R to be F,,(z,t) := ¢y(t)(x—t) "
and repeat the above argument. We obtain that g is C’“‘([L oo))7 as claimed and moreover for any
n € Ny we have that
3/4
9 MN(@) = —esn | VH() (@ —t) S, (2.67)
0
where

(2.68)

Csn =

(—=s)(=s—=1)...(—s—=n+1) forn#0
for n = 0.



2.2. DENSITY OF CAPUTO STATIONARY FUNCTIONS IN THE SPACE OF SMOOTH FUNCTIONS 53

Since ¢(1) = 0 and g € C*([1,90)) (hence in particular g € C}'"*), thanks to Theorem 2.2.6 we
get that the problem (2.66) admits a unique solution ¢ € C’l1 " given by
€T
Y(x) = J g(t)(z —t)*"tdt in (1,0),
w 1
P(x) = to(x) in (—o0,1].

Moreover, we claim that ¢ € 0 . Indeed, from Lemma 2.2.7 we get that ¢ € C’x( , 00 ) Also
lim, ,i+¥(z) = 0 = ¥(1) and so from this and the hypothesis we have that ¢ € C””(( ,00)) N
C'([0,1]) n C(R), hence 1 € AC([0,0)). Also for any z > 0

sins

(2.69)

f WO =)l dt < es¥|m(o.apr’ T <,
0

and so the claim follows from definition (2.43). Therefore, ¢ € C& ** is the unique solution of problem
(2.66) and from Lemma 2.2.5 it follows that (2.69) is also the unique solution of problem the (2.63).

We prove now the claim (2.64). Let x =1 +¢. Then from (2.69) we have that

1+e
P(l+e) = L g(T)(1+€—T)S_1 dr.

sinms

The change of variables z = (7 — 1) /e gives

1
1 =¢* (1 —2)*""de.
sinﬂsql}( +e)=¢ Jo glez+1)(1—2) 2
Using definition (2.65) we have that
3/4
glez+1) = — Po(t)(ez + 1 —t) " dt,
0

hence

sinms 0 0

1/ 3/4
T PY(l+e) = —ESJ ( Po(t)(ez+1—1)7° dt) (1—2)""tdz.
Tonelli theorem on [0, 1] x [0, 3/4] applied to the function |y} (t)|(ez + 1 —t)~%(1 — 2)*~! yields

[Wo(®l(ez +1—1)7*(1 = 2)*~d(t, 2)
[0,1]%[0,3/4]

_ J3/4 b (0)] <Jl(1 —2) ez 4 1—1) dz) dt.

0 0
We have that (ez +1—1¢)7° < (1 —¢)7° < 4%, hence

LSM ()] (J:(l —2) ez 1—t)" dz) dt < 4° f:M [%o(2)] <£(1 -2 dZ) dt

3451
sup [¢;(t)],
s te[0,3/4]

which is finite. Therefore [)(t)](ez +1 —¢)7*(1 — z)*~' € L'([0,1] x [0, 3/4],d(t, 2)) and by Fubini
theorem we have that

/N

sins

blte) = e f’” wh(t) Uol(sz +1—8)7(1—2)*"" dZ) dt 270)

3/4
—¢’ J i (t) s (e, t) dt.
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We consider the function f(z) = (ez+1—t)~° and make a Taylor expansion with a Lagrange reminder
in 0. Namely, one has that there exists ¢ € (0, z) such that

(ez+1-1t)" Zn:

where ¢, ; is given in (2.68). Using this, we have that

List) = 3 i —t)—s—ij (1—2)1sids

1—t syl (ES;nJrl €n+1(50+1_t)—s—n—1zn+17
n+1)!

1

%En+l(éc +1—t) st J’ (1—2z) 12" dz.
: 0

We use the definition (A.12) of the Beta function and continue

+

N CsiBi+1,s) —e—i  Csn1B(n+2,s) R
Is(e,t) = Zg)ﬁg’(l —t) 7+ +(n+ ol e"ec+1—t)y=5 L

n (2.70) we obtain that

T c“Bz—i-ls) 3 , e
1 ———"¢" (1 —t)" " dt
sinwsw( te)=—¢ Z € . Yo (t)( )
» (2.71)
s+n+1 CsynJrlﬁ(n + 278) / —s—n—1
—€ it 1) Po(t)(ec+1—1t) dt.
We notice that (ec +1—¢)"* "1 < 457"+ and it follows that

3/4

Py (ee+1— 1) dt\ <3477 sup [gh(1)],

0 te[0,3/4]

which is finite. We define then the finite quantities
Coif(i+1,s) (34

Cuspos = = ZLELD [ iy — oy a
i ,
=M9(1)(1) for i=0,...,n
and 54
Cs n+15(n+278) ! —s—n—1
C ntl = — — t +1—t)7" dt
$,%0,m+1 (n+ 1)' 0 1/’0( )(66 )
Bn+2,5) (i1
= n 1
(n+1)! g (ee+1),
where we have used (2.67).
It follows in (2.71) that
n+1

(1l +¢) Z Cs wwe

sin 7rs

This gives for € — 0 that
Y1 +¢) = ke® + O,

where
3/4

k=Csyo=B1s)g()==pB(1,s) | ¢pt)(1—1t) "dt.
0
Since —((z) > 0 in [0,3/4) by hypothesis (see (2.62)), we have that
3/4

— Po(t)(1 =)~ dt > 0.
0
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This implies that k is strictly positive and it concludes the proof of the Lemma. O

Blowing up the function built in Lemma 2.2.8, we obtain a sequence of Caputo-stationary functions
n (0,00) that on (0, 00) tends to the function x*.

LEMMA 2.2.9. There exists a sequence (vj)jen of functions v, € C’i; N C”((0,00)) such that for
any jEN
D? vi(x) =0 in (0,00),

i 2.72

vj(z) =0 m[—i,o] (272)
and for any x >0

lim v;(x) = ka®, (2.73)

J—>%L

for some k > 0. Moreover, on any bounded subinterval I € (0,00) the convergence is uniform.

A qualitative example of a sequence described in Lemma 2.2.9 is depicted in Figure 2.4.

U3

V2

FIGURE 2.4. A sequence of Caputo-stationary functions in (0, 00)

PROOF. We consider the function 1) solution of the problem (2.63) as introduced in Lemma 2.2.8,

and define for any j € N
s (T
vi(z) 1= w(j + 1).

Since ¥ € CS’S n C* ((1, oo)), then v; € C’i; n C* ((0, oo)) Also, since 9 is solution of the problem
(2.63), we have that

D? vi(x) = m—— jz vi(t)(x —t) " dt

ﬁ r w’(; + 1) (x —t)"*dt.

—j
We use the change of variables y = t/j + 1 and obtain

D2 jv(z) = ﬁ f/jﬂ ¥ (y) (% +1- y) dy = Diy (% ¥ 1).

This implies that D® jv;(z) = 0 (using (2.63)) when z > 0. So, using Lemma 2.2.8 and the definition
in v;, we easily verify that for any j € N the functions v; € Ci’; N C* ((O7 oo)) satisfy

D jvi(z) =0 in (0,00),

(@) =0 in [—i,o]
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and
vj(z) = %o (j + 1) in (—o0,0],

vj(z) = 710 (0) in (-0, —j].
In particular, v; is solution of the problem (2.72) for any j > 1.
Now, using (2.64), for = > 0 and for a large j we have that

. x , x* xs+1)> <a:5+1>
vi(zx) = j° - 4+1) =75 r—=+0| - = rr® + O : :
]( ) J w<] ) J < e <Js+1 j

By sending j to infinity we obtain that

lim v;(z) = kz®.
]

On any bounded subinterval I < (0, 00), we have that

lim sup |v(x) — k2®| = 0.
J2L zel

It follows also that on any bounded subinterval I < (0, ) the sequence v; is uniformly bounded. This
concludes the proof of the Lemma. O

2.2.3. A Caputo-stationary function with derivatives prescribed. Using Lemma 2.2.9
we prove that there exists a Caputo-stationary function with arbitrarily large number of derivatives
prescribed. More precisely:

THEOREM 2.2.10. For any m € N there exist a point p > 0, a constant R > 0 and a function
vE Ci’;g N C*7((0,0)) such that

)
R (2.74)
T

and
vW(p) =0 forany l<m

o) — 1 (2.75)

PROOF. We consider Z to be the set of the pairs (v, ) of all functions v € C75 A C*((0, 00))
satisfying conditions (2.74) for some R > 0, and z € (0,0). So let

Z = {(v,x) | z€(0,00) and IR > 0s.t. v € Ci’iz N C”7((0,00)),D% v =0 in (0, 0),

szm[—%ﬁ”.

We fix m € N. To each pair (v,z) € Z we associate the vector (v(z),v'(z),...,v™(z)) € R™*1
and consider V to be the vector space spanned by this construction. We claim that this vector space
exhausts R™*!. Suppose by contradiction that this is not so and V lays in a hyperplane. Then there
exists a vector (co,c1,...,cn) € R™T1\{0} orthogonal to any vector (v(z),v'(z),...,v™ (z)) with
(v,2) € Z, hence

2 ¢ (z) = 0.
i=0

We notice that for any j > 1 the pairs (v, z) with v; satisfying problem (2.72) and x € (0, c©) belong
to the set Z. It follows that for any j > 1 we have that

Z civ](i) (x) =0. (2.76)
i=0
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Let p € CF ((07 oo)) be a smooth compactly supported function. Integrating by parts we have
that for every i € Ny

f vg('i)(ff)sﬁ(x) dr = (_1)lf v;(2)o' (x) dz.
N R

Thanks to Lemma 2.2.9, the sequence v; is uniformly convergent to xkz® on any bounded subinterval
I € (0, 0), for some x > 0. By the Dominated Convergence Theorem we have that

lim | ! (z)p(x) dr = (—=1)" lim Uj(x)go(i) (z)dx = (—1)iJ ko (2) da.

i—® Jr J—=% Jr R

We integrate by parts one more time and obtain that

(—1)iJ, ka* oW (z) de = j r(x*)Do(z) de.
R R
It follows that

lim vj(.i) (x)p(x) de = J k(z®) D p(x) de.
IO IR R

Multiplying by ¢; and summing up, we obtain that

lim fR ;}Civ](i)(:r)ga(x) dr = J;R ; Ci[{(ms)(i)gp(x) dx.

J—oL

From this and equality (2.76) we finally obtain that
0= J Z cir(2®)Dp(z) da
Ri=0
for any ¢ € CZ((0,00)). This implies that on (0, o)

0= KZ ci(z®) = HZ cis(s—1)...(s—i+1)z* "
i=0 i=0

m—s

We divide this relation by x (that is strictly positive), multiply by x
x € (0,00)

and obtain that for any

Zcis(s—l)...(s—i—i-l)xm_i = 0.
i=0

We have here a polynomial that vanishes for any positive . Thanks to the fact the s € (0,1) the
product s(s—1)...(s—i+1) is never zero, therefore one must have ¢; = 0 for every i € Ny. This is a

contradiction since the vector (co, ..., ¢y) was assumed not null. Hence the vector space V exhausts
R™*! and there exists (v,p) € Z such that (v(p),v'(p), o olm) (p)) = (0,0,...,1). This concludes
the proof of Theorem 2.2.10. O

2.2.4. Proof of the density result. This subsection is dedicated to the proof of Theorem 2.2.3.

PROOF OF THEOREM 2.2.3. We prove that for any m € N and any monomial ¢,,(z) = 2™ there
exists a Caputo-stationary function u such that

lu — Qm”ck([o,u) <Ee.

For an arbitrary m € N, we take for convenience the monomial

l,m

() =
Also, we consider p, R > 0 and the function v as introduced in Theorem 2.2.10 and we translate and
rescale v. Let & be a positive quantity (to be taken conveniently small in the sequel) and let u be the
function ( )
v(dx +p
u(x) := 5
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Since v € Cifg N C*((0,00)) we have that u € cls . ne* (( — %?, oo)) and

(1 - s)DipT,Ru(ac) = J:%R u(t)(x —t)~*dt

_ lom Jf WGt p) @ — D dt.

E]

We change the variable y = §t + p and obtain that

dx+p

- s)Ds,pT,Ru(x) =465 J,_R V' (y)(6x +p—1y)*dy

=T'(1 —s)D? pu(dz + p).

Let a := — . Using the properties (2.74) of v we obtain that

Diu(z) =0in (— %oo).

With this notation, we have that v € C}** and since —%9 < 0, that Diu(x) =0 in [0, 00).
Furthermore, from the conditions (2.75) and the definition of u we get that
uD(0) = 6"mvO(p) =0 forany I<m
u™(0) = ™ (p) = 1.
Let for any @ > —p/d
9(@) := u(x) — gm(z).

We have that
m and

gP(0)=0 for any I < 2.77)
gD (z) = ™D (2)  for any | > 1.
Moreover for I > 1 we have that (™) (z) = 6o+ (§z + p) and it follows that
|9+ (@)] = 81D (62 + p)].
Hence for x € [0, 1] we have the bound

g @) <8 sup o (y)| = O, 278)
ye[p,p+4]

where C'is a positive constant. We consider the derivative of order k of g and take its Taylor expansion
with the Lagrange reminder. Thanks to (2.77), for some ¢ € (0, z) we have that

k+m+1 ) i—k
A YA ()P

i=max{k,m+1}

xm+2

(m+2)!

+ g(m+k+2) (C)

Using (2.78) for any « € [0, 1], eventually renaming the constants we have that

k+2 )
9P @) <c
i=max{l,k—m}
therefore for k € Ny
9" ()] = lat) (x) — u®(2)| = O().

If we let § — 0 we have that u(*) approximates qgf). Finally, for any small (§) > 0

lw = gmllox o) <€
and this concludes the proof of Theorem 2.2.3. O
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We give here some explicit examples related to some Lemmas that were introduced in this section.

ExAMPLE 2.2.1. To give an example of Lemma 2.2.5, we take a = 0,b = 1,s = 1/2 and the
function ¢(z) = z in [0,1] and ¢(x) =0 in (—00,0). We built the function u € Cé’l/z that satisfies
Doéu(x) =0 in (1,00),
u(z) =z in [0,1], (2.79)
u(z) =0 in (—00,0).
Let

1 ! 1
g(x) :=—L J%dtz—L(a:—t);dt=2\/x—l—2\/§.

According to Lemma 2.2.5 and to Theorem 2.2.6, the unique solution of the problem (2.79) is given
by

u(z) = u(1) + iL i(’ftdt,

NCEY

and computing, this gives

u(z) = % (x arcsin % — m) .

We depict this function in the following Figure 2.5.

FIGURE 2.5. A Caputo-stationary function in (1, 00) prescribed on (—o0,1]

EXAMPLE 2.2.2. In Lemma 2.2.8, we take a = 0,b = 1, s = 1/2 and the quadratic function
©(-3) wlpd
9 4 4
Yo(z) =

3
0 in [—,1].
in [4, ]
So we are looking for a function v € C& /2 that satisfies

Diu(x)=0  in(1,00),

(2.80)
¥(x) = Po(z) in (—o0,1].
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The solution, according again to Lemma 2.2.5 and to Theorem 2.2.6 is given by

3
1 ([ i
v = = [ oot where o)== [ wOE—0
™ 0
Computing this, we have that
16 3 1 3
9(t) =~ (8t —ot7 — (475—3)2)
and 1
27mip(x) = 277 + /v — 1(—482 + 52) + arcsin 7(96:8 — 144x)
x
1
— arcsin ———— (9627 — 144z + 54).

Var — 3

We depict this function in the following Figure 2.6.

=] w

FIGURE 2.6. A Caputo-stationary function in (1, 00) prescribed on (—o0,1]



CHAPTER 3

Potential theory approach to the fractional Laplacian

ABSTRACT. In this chapter, we give a self-contained elementary exposition of the representation
formula for the Green function on the ball. In this exposition, only elementary calculus techniques
will be used, in particular, no probabilistic methods or computer assisted algebraic manipulations are
needed. The main result of the first section in itself is not new (see for instance [19,101]), however we
believe that the exposition is original and easy to follow. In the last section of the Chapter we present
an elementary approach for the proof of the Schauder estimates for the equation (—A)%u(x) = f(z),
with f having a modulus of continuity wy. This is based on the Poisson representation formula
and dyadic ball approximation argument. We give the explicit modulus of continuity of u in balls
Br(z) c R™ in terms of wy.

3.1. Some observations on the Green function on the ball

The Green function for the ball in a fractional Laplace framework naturally arises in the study
of the representation formulas for the fractional Laplace equations. In particular, in analogy to the
classical case of the Laplacian, given an equation with a known forcing term on the ball and vanishing
Dirichlet data outside the ball, the representation formula for the solution is precisely the convolution
of the Green function with the forcing term. As in the classical case, the Green function is introduced
in terms of the Poisson kernel. For this, we will provide both the representation formulas for the
problems

—A)u = in B
(FA)u =0 . (3.1)
u=g in R™\B,
and
(=A)u=g %n B,, (3.2)
u=0 in R"\B,

in terms of the fractional Poisson kernel and respectively the Green function. Moreover, we will prove
an explicit formula for the Green function on the ball.

Here follow some notations and a few preliminary notions.
Check the Appendix A.1 for a brief introduction to the Fourier transform. We add here that f is
the Fourier transform of f in a distributional sense, for f that satisfies

J Mdm<oo for some p € N
Rn 1 + |fE|p
if for any ¢ € S(R™) we have that

f@)p@)de =]  f(z)@(z)dz. (3.3)
R R

We remark that the integral notation is used in a formal manner whenever the arguments are not
integrable.

We introduce the notion of distributional solution. Following the approach in [140] (see Definition
2.1.3), we introduce a suitable functional space where distributional solutions can be defined. Let

S,(R™) := {f e C*(R™) | Ya e Ny, 855 (1+ |x|n+25)|Daf(x)| < +oo}.

61
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The linear space Ss(R™) endowed with the family of seminorms
[f]gs(R") = Sl%p (1 + |$|n+23)|Daf(x)|
TER™

is a locally convex topological space. We denote with S.(R™) the topological dual of Sg(R™).
We notice that if ¢ € S(R™) then (—A)®p € Ss(R™), which makes this framework appropriate for
the distributional formulation. In order to prove this, we observe that for any « € R™\B; the bound

[(=A) ()] < ensla| "% (3.4)
follows from the upcoming computation and the fact that ¢ € S(R™)
[(=A)%p(z)]
2 - —y) — + - +
< f 20(2) = p(z +y2) oz +y)| dy + 2] |io(x) <P+(295 y)| ay
By ly[t2s R™\B |y ly[n =2
2 2
< cn,slxl_"_2s( St]gp(l +[2])" D2 (2)| + SuRp(l + [21)"e(2)] + <P||L1<Rn)).
z€ER™ 2€R™

Moreover, we observe that, up to constants,
O (=AY p) = 0, F (16259 () = F7* (iile*3(9) ) (x)
= (160,90 () = (~2) 0u, p(@).

Hence, by iterating the presented argument, one proves that (—A)*p € Sg(R™), which gives the claim.
And so:

DEFINITION 3.1.1. Let f € S'(R™), we say that u € SL(R™) is a distributional solution of
(=A)°u = fin R"

(u, (=A)°p)s = o f(@)p(x)dz  for any p e S(R™), (3.5)

where -, -»s denotes the duality pairing of SL(R™) and Ss(R™) and the latter (formal) integral notation
designates the pairing S(R™) and S'(R™).

We use the integral notation in (3.5) in a formal manner whenever the arguments are not integrable.
Notice that the inclusion L!(R") < S%(R") holds, in particular for any u € L1(R") and 9 € S;(R"™)
we have that

[,

|u($)| n+2s
< [ @IpEle < | ST b ) o
< [l[’]gg (Rn)

We introduce now the four functions A,., ®, P. and G, namely the s-mean kernel, the fundamental
solution, the Poisson kernel and the Green function. The reader can see Section 2.2 in [72] for the
theory in the classical case.

uf L1 (-

DEFINITION 3.1.2. Let r > 0 be fixed. Then

R —

cn,s)———5——

Ar(y) = (Jyl? = r2)sly|” B
0 y € By,

y € R"\B,,

where c(n, s) > 0.
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DEFINITION 3.1.3. For any x € R™\{0}
a(n, s)|z| "2 if n # 2s,

1 : (3.8)
a,(l, 5) log || if n = 2s,

O(z) =

where a(n, s) > 0.

DEFINITION 3.1.4. Let r > 0 be fized. For any x € B, and any y € R™\B,.

P.(y,x) := c(n,s) (r — || ) L (3.9)

P> =r2 ] |z =yl

The Poisson kernel P, gives a function which is known outside the ball and s-harmonic inside (i.e., a
solution for the problem (3.1)), by convolution with the known exterior data. Indeed:

THEOREM 3.1.5. Letr >0, g€ LL(R"™) n C(R") and let

J’ P.(y,7)g(y) dy if v € By,
R7\B,.

ug(x) := (3.10)

g(z) if x € R"\B,.
Then ug is the unique pointwise continuous solution of the problem (3.1)
(=A)*u=0 in B,
u=g in RM\B,.
DEFINITION 3.1.6. Let r > 0 be fixred. For any x,z € B, and x # z,
G(z,z) == P(xz — 2) —J &(z —y)P-(y,z) dy. (3.11)
R™\B,.

A formula for the Green function G that is more suitable for applications is introduced in the following
result.

THEOREM 3.1.7. Let r > 0 be fized and let G be the function defined in (3.11). Then if n # 2s

ro(z,z) tsfl
G(x,2) = k(n,s)|z —z[>*" f (ESiE dt, (3.12)
0

t+1)%
where
(r? = J=[*)(r* = |2]*)

r2lz — z|?

ro(w,2) = (3.13)

and k(n,s) > 0.
For n = 2s, the following holds

G(x,z2) = H(L 1) log <r2 e VA Uk Ui z2)>. (3.14)

2 rlz — x|

This result is not new (see [19, ]), however, the proof we provide uses only calculus techniques,
therefore we hope it will be accessible to a wide audience. It makes elementary use of special functions
like the Euler-Gamma function, the Beta and the hypergeometric function, that are introduced in the
Appendix A.2 (see also references therein).

The main property of the Green function is stated in the next theorem, as it gives the solution
of an equation with a known forcing term in a ball and vanishing Dirichlet data outside the ball, by
convolution with the forcing term. While this convolution property in itself may be easily guessed
from the superposition effect induced by the linear character of the equation, the main property that
we point out is that the convolution kernel is explicitly given by the function G.
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THEOREM 3.1.8. Let 7 >0, h e C%¢(B,) n C(B,) and let

U:(x) = JBT h(y)G(xa Zl) dy Zf T € Bm
0

if v € R"\B,.
Then u is the unique pointwise continuous solution of the problem (3.2)
(=A)Yu=nh in By,
u=20 in R"\B,.

The proof is classical, and makes use of the properties and representation formulas involving the two
functions ® and P,.

We are also interested in the values of the normalization constants that appear in the definitions
of the s-mean kernel (and the Poisson kernel) and of the fundamental solution. We will deal separately
with the two cases n # 2s and n = 2s. We have the following definition:

DEFINITION 3.1.9. The constant a(n, s) introduced in definition (3.8) is

(2 —ys)
a(n,s) : = m forn # 2s, (3.15)
1 1
a(l, 5) = forn = 2s. (3.16)

The constant c(n, s) introduced in definition (3.7) is

['(%)sinms

2
R

c(n, s) := (3.17)
These constants are used for normalization purposes, and we explicitly clarify how their values arise.
However, these values are only needed to compute the constant x(n, s) from Theorem 3.1.7, and have
no role for the rest of our discussion. Indeed, we explicitly compute:

THEOREM 3.1.10. The constant k(n, s) introduced in identity (3.12) is

I'(5)

92575 12(s)

H(l, 1) = 1 forn = 2s.
2 T

One interesting thing that we want to point out here is related to the two constants C(n,s) and
¢(n, s). The constant C'(n, s) is given in [55] in the definition of the fractional Laplacian, is consistent
with the Fourier expression of the fractional Laplacian, and was explicitly computed in (2.14). The
constant ¢(n, s) is introduced in [102] in the definition of the s-mean kernel and the Poisson-kernel,
and is here given in (3.17). It is used to normalize the Poisson kernel (and the s-mean kernel), and
is consistent with the constants used for the fundamental solution and the Green function. Hence,
the two constants are used for different normalization purposes, and they have similar asymptotic
properties. In the following proposition we give another proof of the explicit expression obtained in
(2.14).

k(n,s) = forn # 2s,

THEOREM 3.1.11. The constant C(n, s) is given by
22T (2 + 5)

Cns) = —3r0 9

(3.18)

This section is structured as follows: in Subsection 3.1.1 we define the s-mean value property
by means of the s-mean kernel and prove that if a function has the s-mean value property then it
is s-harmonic. Subsection 3.1.2 deals with the study of the function ® as the fundamental solution
of the fractional Laplacian. The fractional Poisson kernel is introduced in Subsection 3.1.3, and the
representation formula for equation (3.1) is obtained. Subsection 3.1.4 focuses on the Green function,
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and there we prove Theorems 3.1.7 and 3.1.8. The computation of the normalization constants
introduced at the beginning of this section is done at the end of Subsection 3.1.4. In Subsection
3.1.5 we recall the point inversion transformations and present some calculus identities that we use in
this section.

Throughout this section, we fix the fractional parameter s € (0, 1).

3.1.1. The s-mean value property. We give here some properties of the s-mean kernel. The
s-mean value property of the function v is an average property defined by convolution of u with the
s-mean kernel. We recall the definition (2.2.9) of the weighted L' space.

DEFINITION 3.1.12 (s-mean value property). Let x € R". We say that u € LL(R"), continuous in
a neighborhood of x, has the s-mean value property at x if, for any v > 0 arbitrarily small,

u(z) = Ay = u(x). (3.19)

We say that u has the s-mean value property in Q < R"™ if for any r > 0 arbitrarily small, identity
(3.19) is satisfied at any point x € ).

The above definition makes it reasonable to say that A, plays the role of the s-mean kernel. The
main result that we state here is that if a function has the s-mean value property, then it is s-harmonic
(i.e. it satisfies the classical relation (—A)*u = 0).

THEOREM 3.1.13. Let u € LL(R™) be C**¢ in a neighborhood of x € R™. If u has the s-mean
value property at x, then u is s-harmonic at x.

PrOOF. The function v has the s-mean value property for any r > 0 arbitrarily small, namely
u@) = A vule) = [ Aute ) dy
R™\B,.
Using identity (3.71) we obtain that

=u(x) — u(x — = ¢(n, s)r*® w
O=ule) = [ Aute )y =) |G Ry

thus, since r > 0

u(@) —u(r —y)
I gy = 0. (3.20)
J]R"\BT (ly[* = r2)=|y|™
Hence, in order to obtain (—A)*u(x) = 0 we prove that
, u(z) = u(x —y) : u(@) — u(z — y)
) N 2
R™\B,. Yy RM\B, Y r Yy

Let R > /2. We write the integral in (3.20) as
u(z) —u(z —y)
2 2)\s n d
R\ B, (ly[? = r2)%[yl
u(z) —u(x — u(z) —ulx — 3.22
[ ey, [ ooy, s
R™"\Bgr (ly[* = r2)*[y] Bgr\B, (ly[* = r2)*[y]
= Ii(r,R) + I2(r, R).

In I (r, R) we see that ‘yl‘%’iljﬂ < 2 and obtain

u(@) —u(z —y)| _ ,lu(@) —u(z —y)|
(Ily[* = r2)*ly[" ly|n*2s
as u € L1(R™). We can use the Dominated Convergence Theorem, send r — 0 and conclude that

lmhmm=f wz) —ulz —y)
r—0 R™\Bgr |y

€ L1 (Rn\BR7 dy)a

(3.23)
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Now, for r < |y| < R and u € C?**¢ (for s < 1/2) in a neighborhood of z we have the bound
|u(z) — u(z = y)| < cly|***,

while for s > 1/2 and u € C125+~1 we use that
1
u(e) ~ ula =)~y Vu(e)| = || 5(Vule - ty) - Vu(a)) &
0
1
<ol [ [Vute - 1) - Vu@)] dt < (s, >+
0

Notice that % yly‘vzu(? are even functions, hence they vanish when integrated on the

symmetrical domain Bg\B,. Therefore, by setting

and

u(z) = u(x —y)

|y|2s+n (324)

J(r,R) = Ir(r, R) — f

Br\B,

we have that

(ly[?=r2)s[y[™ |y[?s+m

J(r,R)zJ

Br\B,

(u(m)—u(w—y)—y Vu(r)  ule)—u(r—y)—y- wx)) "

and by passing to polar coordinates and afterwards making the change of variables p = rt we get

IRl <clse) [l (Ul = )l = ) dy
BRr\B,
R

_ n s—1 p2s € B e—1 t*
=c(n,s,e) | p m—l dp < c(n, s, e)r ) t (t—l)s_l dt

since t/(t + 1) > 1. Now for t € (1,+/2) we have that

Lﬂtsl ((t—tl) _ 1) dt < c(s) Lﬂ <(t - t5> gt = &(s).

On the other hand, for t > /2

and we have that

R

T s *x 1\—s
lim ta—l( v 1) dt < J =1 (1 — 7) —1)dt
) T v :

Thus by sending » — 0 we obtain that
lin}J J(r,R) =0

and therefore in (3.24)

u@) ~u(e -y)

}13%) I(r, R) = lim D y.

r—0 Br\B,

Using this and (3.23) and passing to the limit in (3.22), claim (3.21) follows and hence the conclusion
that (—A)%u(z) = 0. O
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3.1.2. The fundamental solution. We claim that the function ® plays the role of the fun-
damental solution of the fractional Laplacian, namely the fractional Laplacian of ® is equal in the
distributional sense to the Dirac Delta function evaluated at zero. The following theorem provides
the motivation for this claim.

=

THEOREM 3.1.14. In the distributional sense (given by definition (3.5))
(—A)’D = §p.

The computation of the Fourier transform of the fundamental solution is required in order to
prove Theorem 3.1.14.

PROPOSITION 3.1.15. a) For n > 2s, let f € L*(R") n C(R™) with f € S,(R™),
b) for n < 2s, let f € L*(R) n C(R) n C*((—0,0) U (0, +00)) with f € Ss(R) such that

|f(2)| < er]a)?® forzeR

|f(2)] < |—2| for |z > 1

[f'(@) < laf*~" for0<|z[<1 (3.25)
()] < |C;‘| for |z| > 1.

Then in both cases

f @) (@)de = f (2nla]) % f(x) da

PROOF. We notice that the hypothesis in the proposition assure that both integrals above are
well defined. Indeed, since ® € L}(R") ¢ S.(R") the left hand side is finite thanks to (3.6). The right
hand side is also finite since, for n > 2s,

j [F@lal*d < ¢, sup |f(a)] j 4 j 1 (@) [2] 72 da
Rn R"\B;

xeB1

< cn sup ()| + [ fllor @

xeB;

and for n < 2s we have that

j @)l dr < f @)l 2 dz + e f dz
R R\Bl By
< | fllorwy + 21

a) For n > 2s we prove that

a(n, 5) J 7 F ) de = J (2rle])=2 f(z) da. (3.26)

R™

We use the Fourier transform of the Gaussian distribution as the starting point of the proof. For any
0 > 0 we have that

Fle ™) = 537
In particular for any f € L'(R") and fes, (R™) (which is a subspace of L%(R")), by Parseval identity
we obtain

|2

f efmslzlzf(as) dx = 0 Fe ™5 f(x)da.

R’Vl
We multiply both sides by 62 ~*~!, integrate in § from 0 to co. We use the notations

ool
I = f 5%757167“5”'2]”(:6) dz | dé
0 R"
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I = J " ( 55 e ™ f(x) da:) do,
O R’Vl

having I; = I,. With the change of variable a = §|z|? we obtain that

5 o)
I = j || 728 f(2) (1[ i 5Tl da) dzx.
n 0

and

We set
© n
€ = J a5 leTT Y g (3.27)
0
which is a finite quantity since ¥ —s —1 > —1. On the other hand in I3 we change the variable
a = |z[*/§ and obtain that
s8]
I, = J |z| =2 f () (J o lemm da) dz.
n 0
We then set
o0
Co 1= f e ™ da, (3.28)
0

which is finite since s — 1 > —1. As [} = I5 it yields that

Q(;ﬁ f ) || 25 () d = f n(27r|:c|)725f(x) dz.
We take
alms) = W (3.29)

and the claim (3.26) follows. This concludes the proof for n > 2s.
b) For n < 2s (hence n =1 and s > 1/2), let R > 0 be as large as we wish (we will make R go to
oo in sequel). Then

7 n 2s—1( F 7
fBR oo ) d = | o271 (Fw) + o) da

=2 JO * x5! JR f(€) cos(2néx) dE da = 2JR f(6) ( J " 22571 cos(2néx) dm) d¢.

0

We use the change of variables & = 27z (but still write x as the variable of integration for simplicity),
and let R = 2rR. Then
R R
J 271 cos(2néx) do = (2m) ™3¢ J 2571 cos(éx) du.
0 0

25 1F _ 2% i 251
J;BR |z f(2) do = 5 ij(f) (L x cos(éx) dz | d€.

Integrating by parts and changing the variable |[£|z = ¢t we get that
R . R R .
J 221 cos(éx) do = xzs—lsln(fx) — (25— 1)J 252 sin({z) da
0 6 0 0 5
R Rlg

B . |
_ R2s1sm(§R) — (25— 1)|g|*251 t>* 2 sint dt.
0

We have that
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Therefore
- 21 —2s
J 2>~ f(z) do = ——R**~ 1J (¢ sin(¢ de
B " (3.30)
21=25(25 — 1) RI¢| :
SRl f<f>|£|—28( [ i) ae
T - 0
We claim that
i B 1J o™ D= (3.31)

We integrate by parts and obtain that

sin €R IICOS( R)||” 1( ” /()]
e ag) < LN ([ peonter G ae
” o (L (©)] )
—I—L | cos(¢R)] ¢ d¢
By (3.25), for £ large we have that
R ER
|f(£ ) |cos(¢R)| < 7| Cosg(f )|, hence 513910 |f(£ )| 7| COS](% ) = 0.

For & small we have that

IOl < cugrt, e iy HOLIeosER

Furthermore, by changing the variable t = ¢R (and noticing that the constants may change value
from line to line) we have that

0.

1 oL
J )] |cos(ER)| de < f €252 cos(ER)| d€ + CQJ &%) cos(ER)| dE
0 0 '

€2
B R B s c
SclRI*QSJ t25*2|cost|dt+02R2f t3| cost|dt < =
0 R 2
and
[u jeostery]de < f €| cos(&R) |d£+c2f §72| cos(¢R)| d
0
sc’IRkQSJ t25*2|cost|dt+c’2]:2‘[ 72| cost|dt < <.
0 R 2
Hence _
sin(¢R) i < c
§ TR

and in the same way we obtain

OB i - | [ s R | <

‘ —30

Therefore

nmR?Hff sin(§ d§—0

R—xC

and we have proved the claim (3.31). Now we claim that (and this holds also for n = 2s)

R|¢|
Jim JR f(§)|§|*25(f0 §25-2 sintdt) de = —Cos(ws)F(Qs—l)JR FO)I€]7% de. (3.32)
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In order to prove this, we estimate the difference

o0 Rl¢| %
J 25 2sint dt —f 2572 sintdt‘ < J t25—281ntdt‘
0

0 Rlg]
< [t** 2 cost| + (25 — 2) Ji [t[>*7%| cost| dt < e(R€[)* 2.
Rlg| RIE|

We then have that

‘ JRf(§)|§|—23(J: t2~2sint dt — JRK 1252 sintdt) dg‘

0
1 o0
scﬁﬁs—?f |f(€)||€|‘2d€<cl?2s‘2(cl j 523‘2d£+02j £‘3d€> = R*7%.
R 0 1

Hence we obtain

Jm | sole( | e sinte) dé = | (€~ ( | " 2 sin dt) ¢

and the claim (3.32) follows from the identity (3.87) at the end of this Section (in Subsection 3.1.5).
By sending R to infinity in (3.30) we finally obtain that

[ e Flaydo = 2 25 = Dcos(ra)rizs = 1) [ el f¢) de
R R (3.33)

— 2c0s(ms)T(29) | (2nl€) 7> F(6) e
Therefore taking a(1,s) = (2cos(7s)I'(2s)) ! we get that
as) [ o Floydo = [ (2nlal) > f(a) da

hence the result for n < 2s.
On the other hand, for n = 2s we have that

J’BR log || f(x) dz = 2 JR f(6) (LR log z cos(2méx) da:) de.

We change the variable # = 27z (but still write = as the variable of integration for simplicity) and let
R =27 R. Then we have that

JR log x cos(2méx) dx = f (log:c — log 27r)) cos(&x) d—x

0 2w
_ log(27) sin(¢R
f log  cos(€x) d og(2m) sin(¢R)
2w &
We integrate by parts and obtain that
R in(¢R Rig| g
= 1 t
J' log x cos(éx) dx = log RSIH@R) - = sme
0 3 €1 Jo t

We thus have that

R|¢|
N sin(& 1 sint
fBRlog|x|f(x)d R [ f© S IRGLR ( ) tdt) d.

We claim that

sin(¢R)
¢

lim log R | f(€) de¢ = 0. (3.34)
R—ow R
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Indeed we have
1/R

[

SlIl

1/R R _ rYR
d&‘ f(5)|%d«s<clRL gdg =5

0

Moreover integrating by parts

» sin(R) ||cos<sﬁ:)| oo el
R L R( [, e et e
TG
+ L/R B | cos(éR)| d{) .

We have for ¢ large that

[f(©] [cos(€R)| _ c2|cos(¢R)]
3 R "R &

hence

1 (O] |cos(¢R))
E—»fL ¢ R

On the other hand by using the change of variables t = ¢R

17l U cos(¢R) Jcos(R)|
L i cos(eR)] s < LR , d£+62£ Lot Ol g

= 0.

R 0 P2

t R

:clf | cos |dt J —5 | cost|dt < ¢1log R + ¢s.
1 3 R T

Moreover we have that

el (Y leos€R) ,, , [* lcos(€R)]
LR : |cos<§R>|df<c1LRg d£+c2f1 e ae

R LD
t R
_ ClJ | cos |dt J t—2|cost|dt<6’1 log R + ¢
1 R

Hence

sm €3 R)

hm long f€ d¢ =0

and since the same bounds hold for S_% f(f)w d¢, the claim (3.34) follows. Also, the proof of
claim (3.32) gives that

‘ | 11 11
hmf el 1(f Stdt)ds—f f©)ler 1<f ”dt)ds
_ —1
-2 [ sl ae
It follows that
f log || f(x) dr = —~ f €171 £(6) de,
hence
1 f log || () dx = j (2rle) = £ (€) de (3.35)
™ JR R

and the result holds for n = 2s. This concludes the proof of the Proposition. O



72 3. POTENTIAL THEORY APPROACH TO THE FRACTIONAL LAPLACIAN

REMARK 3.1.16. It is now clear that we have chosen a(n, s) in Definition 3.1.9 in order to normalize
the Fourier transform of the fundamental solution. Indeed, for n > 2s, we perform the change of
variable o = ¢ in (3.27) and by the definition of the Gamma function (see (A.4)) we obtain that

g =773 J tz=5" et gt = WG_F< — s)
0 2

Also in (3.28) we change the variable 7o = ¢ and get that

co = W*SJ t5 et dt = 7 °T(s).
0

Therefore 24T 9 ( )
o mEUET(L - T2 -s)
—=—-—+—"h by (3.29 =
. T0s) , hence by (3.29) a(n,s) 23T (s)’

The value a(1, s) is computed in (3.33). We point out that we can rewrite this value using (A.9) and
(A.7), as follows
a1, s) = 1 _ I'(1/2 —s)
2cos(ms)I'(2s)  225/w[(s)
Moreover, we observe that identity (3.35) says that

11 1
a - =—-—.
2 ™

By applying this latter Proposition 3.1.15, we prove Theorem 3.1.14.

PROOF OF THEOREM 3.1.14. For any f € S(R") we have that F ! (|§|2Sf(§)) € S;(R™) (ac-

cording to definition (2.6) and to (3.4)). Notice that |£|25f(£) e LY(R™) n C(R™), since
J | f(2)| da < [f]g&tz) J 2|72 dz + sup |f(z)] < (f),
R" R™\B; z€B,

where we use the seminorm defined in (A.2). Moreover, for n < 2s we have that
€11 < 1 Floem 6P = ealéel  foreR,

€171 < F@sia e~ < (& for el > 1

Also for 0 # |£]| < 1

d ~ d
| (P T < 2skeP 1 (o)) + e

dg
<16 (261l + de))

G|

7 2s5—1
o) =4
and for [¢] > 1

d S S— S n
25 (6P 7| < 25k 11 + k| 7o)

< 28[ gt [P + 162 P[5y < cblél ™,
which proves that f satisfies (3.25). From Proposmon 3.1.15 it follows that

@)D= | a@F (<2w|§|>23f<§>) (x) da

:J (2r|€]) 7 (2m[€))** f(€) dé = f (&) d¢ = £(0).
R

Therefore in the distributional sense
(—A)’D = 4. O
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We introduce now the following Lemmata, that will be the main ingredients in the proof of main
result of the subsection.

LEMMA 3.1.17. Let f € CF(R™), let ¢ be an arbitrary function such that we have @ € Ss(R™) and
the following hold:
a) forn > 2s, ¢ € L*(R") n C(R"),
b) for n < 2s, p € LY(R) n C(R) n C*((—0,0) u (0,%0))) and

lo(z)] < e1]z]? forzeR
lp(z)| < % for |z| > 1
o' (x)| < 4zt for0< x| <1
()] < |CzI2| for |z| > 1.
Then in both cases
 FrR@pa)de = | e Fl)e() do. (3.36)

PROOF. In order to prove identity (3.36) we notice that by the Fubini-Tonelli theorem we have
that

rrawpeis= [ ([ o)) s i
- [ o ([ se-npw) i

fx@(y) = | fla—y)plx)de = | [f(x)p(z+y)dr
R R

Rn

We denote

and write
 fe@Eade = | S)raE0) (3.37)

n

The operation # is well defined for f € C(R™) and ¢ € Ss(R™), furthermore it is easy to see that

F(fx@)(z) = f(x)p(z).
We notice at first that since ¢ and @ are continuous, F(@) = ¢ on R™. We define

~

P(x) := F(f*p)(x) = f(x)p(x) (3.38)

and we write (3.37) as

~

£ v@)Fa)ds = [ Swiwdy (3.39)

R’n
We check that i verifies the hypothesis of Proposition 3.1.15. Since

| w@lde = [ 1F@lie@lde < 1l el

we have that ¢ € L*(R™). Also, v € C(R™) as a product of continuous functions. We claim that
f#p € Ss(R™). Indeed, suppose supp f € Bp for R > 0. We remark that in the next computations
the constants may change from line to line. Then for |z| < 2R we have that

(14 [2]™2)| f53(2)] < cne.r f 1y — 2)3()| dy
Br(z)

< o, Rl f L ()Pl L (8-
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For |z| > 2R we have that
|| 25| fa(z)| < ”f”L‘f(BR)[é]%S(R")|I|n+2S fB |z +y| " dy
R

and we remark that |y| < |z|/2 (otherwise y ¢ supp f). Then we use the bound |z +y| > |z|—|y| = |z|/2
and we have that

"2 f2 @ ()] < | f o213, rr)

m|n+2.sf |x|—n—23 dy = Cn.s.R-
Br

We can iterate the same method to prove that (1 + |z|""2%)| D f%3(z)]| is bounded since D f¥@(x) =
f*D*p(x) and D*@ € Ss(R™). For n < 2s we have that

(@) < [F@)lle@)] < [Fls@elal®  for o <1,
W@ < 1F@lle@)] < 1l for [2] > 1.

Moreover, for |z| > 1
- d
[/ @) < @)l @) + | 7 F@)e(@)|
<Flen 2 +| [ O atflota)

C

C2 C
I
2] ||

/
<l

+ 1622 m)

and for |z| < 1, since f e CF(R)

. d ~
W' ()] < |f(@)]|¢' ()] + ‘@f(x) o ()]
< Flr @yt o™ + eala P JEF ()| ey l2] 7 = Claf* .
Hence we can apply Proposition 3.1.15 and taking also into account (3.39) we have that
Fed@)3@) s = | @)i)ds = | (nlal) v d
RTL

and from (3.38) we conclude that

n

n

Fed@)3@) ds = | (alal) > Fa)ola) . 0
RTL

Also:

LEMMA 3.1.18. Let f € C.(R™), then f + ® e LL(R").

PROOF. To prove that f = ® € LL(R"), we suppose that supp f € Br and we compute

£+ 0() o —y)
[ e = [ ([ e ) d

®(z —y)
<t [ ([, 1%t do) o
R

Pz —y) )
Cn,s,R ‘= dx | d 3.40
,8,R JBR (J‘R" 1 + |x|n+2s Y ( )

and prove it is a finite quantity. We take for simplicity R = 1 and remark that the constants in the
next computations may change value from line to line. For n > 2s we have that

Dz —y) f J lz — y[2s—n
T3 g 90 W= ST da ) dy.
JBI (J‘]R” 1+ |x|n+25 (E) Y a(”v S) B, o 1+ |x|n+25 X Yy

We set
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For x small we have that

——dx | dy < z—yl*®* "dx ) d
-[Bl (JBQ L+ |z|n+2s Y B, \JB, | d Y

2+y| 1
< cnf (J U dt> dy = cwf 2+ )%t L dt = e, 6.
B 0 0

For x large, we use that |z —y| > |z| — |y| and 1 + |2|"T2¢ > |z|**2%, thus

J (J |x_y|25_2ndx> dy < J, (J (|$| _ |y|)25—n|x|—n—25 dl‘) dy
B, \Jrmp, 1+ [z[""2* B \Jr"\B,

1 sel ox
— CTLJ. tnl(lf (,0 _ t)257npfnf2spnfl dp> dt < cnf (p _ 1)25777,71 dp = Cps-
0 2 2

Hence for n > 2s the quantity ¢, s g in (3.40) is finite. Meanwhile, for n < 2s for = small the same
bound as for n > 2s holds. For z large, we have that

[ ([, et a)ays [ ([ et el e ) a
B, \Jr\p, 1 + [z|1F2 B1 \JR\B,
1 e
= CJ (j (p+t)>tp1=2s dp> dt = c;.
0

2
In the case n = 2s from the triangle inequality we have that

log |z — y| ) r .
————dx |)dy<c| log(t+1)dt=c¢c
J (0, , ey

and

1 _ e
f (f %QM da:) dy < J log(t + 1)t~ 2 dt = ¢.
B \Jrp, 1+]7] 2

Hence ¢y, s g in (3.40) is finite and we have that

[ Vesem,
R

1+ |x|n+25 TS Cn,s,R”f”Ll (R™)- (341)

It follows that f + ® € L1(R"), as stated. O

We introduce moreover the following regularity result.

LEMMA 3.1.19. Let s € (0,1) be fized. Let f € C%¢(R™) be a given function (for a small e > 0)
and u be defined as

u(zx) = fR _ S dy (3.42)

n |.23 _ y|n—25 :
Then u € C?5%&(R™).

PROOF. Let s < 1/2 and € > 0 be such that 2s + ¢ < 1 and we prove that u € C%2T¢(R"). Let
R > 0 be such that supp f € Bgr. Then taking x1, x5 € R"™ and denoting by

0= |z1 — x9|
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we have that
[u(z1) — u(z2)]
< s =Sl | ORI
Bro{|ei—yl<2s) 171 —y|" 72 Broflei—yl<2s) |72 —y|"728
1 1
oy — |2 Jag —y[2

dy

" f F@) — F(@)]
Br\{|z1—y|<26}

1 1
el [ ( - )as
Br |$1 _ y|n—2s |.T2 _ y|n—2s
=11 +Is+ I3+ I4.

Since f is Holder continuous, we have that for C' > 0

|f(y) = flz1)] < Cly — 2]
Noticing that in the next computations the constants may change value form line to line, we obtain
that

Il < C |l‘1 _ y|fn+2s+5 dy — Cn75(525+€,
Brn{|z1—y|<26}

12 < C |$1 _ y|€|x2 _ y|7n+23 dy < Cn,3525+6
Brn{lz:—y|<20}
since |z2 — y| < |r2 — x1| + |21 — y| < 30.
In I5 we notice that since |x; — y| = 2§ we have that |zo — y| = |1 —y| — |1 — 22| = 0. The function
| - —y[>*™ is differentiable in R™\Bj;(y), hence at each point on the segment z1x5. Using the Mean
Value Theorem we have that for some x* on the segment xixo

1 1 |z1 — z2] 1

— < C, =Chd——mF—. 3.43
|1.1 _ y|n72s |1.2 _ y|n72s |.’E* _ y|n725+1 |£L’* _ y|n72s+1 ( )
It follows that
_ le
I3 < C6 e —yl” g

Br\{|z1—-y|<26} |z* — gy|n—2st1
Since |y — 2*| = |y — 21| — |#1 — 2*| = 3|21 — y|, recalling that 2s + & < 1 we obtain
Is < G, 0%+

Now for I, if 21 ¢ Bg or x2 ¢ Bg (it is enough in this latter case to replace 1 with 5 in the above
computations), then we are done. Else, for x1, 22 € Bg, suppose that dist(xy,0Bgr) = dist(xs2, 0BRr)
and take p € 0Bg (hence f(p) = 0) such that dist(x1,0B,) = |z1 — p|. So

|f(z)] = [f(z1) = f(p)| < Clay — p[f
and we distinguish two cases. When
1
(1) |21 — 22| = gle1 —pl

we have that
1 1
|.’E1 _ y|nf2s |£C2 _ y|n72s

dy

S

dy dy
< —2 + —2s
Br{lei—yl<26} 121 —Y[" %% JBpae—yl<2s) [T2 — Y|

y

1 1

|2y — y[n2s - |zg —y|n—28

g
Br\{|z1—y|<26}
= J;+Js+ J3.
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By passing to polar coordinates we have that
25
Jl < Cnf p2871 d,O — Cn7362s
0

and that "
1y <G, f P Ldp = Cp o6,
0

since |zo —y| < 30. For Js, we use (3.43) and get

1
J3 < Cpé ———dy.
Bl yi<2sy [ — gl
Passing to polar coordinates, since 2s < 1, we get that
o8}
J3 < Cpé f p* 2 dp = C,, 6%.
26
So we obtain that
1 1
J T | dy < C6%, (3.44)
Brllor —yl" 2 oy —y["

where C' = C(n, s) is a positive constant. Given that |z1 — p| < 2|1 — 22| = 26 we get that
14 < C|931 _p|6§25 < 0525+5'
This sets the bound for Jy in the case (1). On the other hand, when
1
(2) |z — a2 < §|~’E1 -7
we use the following bound (see Lemmas 2.1 and 3.5 in [56])

[ =g -y dy\ <
Br

Since 2s + ¢ — 1 < 0 we get that

1—4 < 05|x1 _p|28—1+8 < CTL,S62S+E'

|21 — 3]

max{dist(z1, 0Bg),dist(x2, 0Bg)}' 25"

(3.45)

This concludes the proof of the Lemma for s < 1/2. In order to prove the result for s > 1/2 (hence to
prove that u € C1:257¢71) one can use Lemma 4.1 in [90]

Du(z) = o Do(z —y)f(y)dy = L m_ﬁg)zw dy,

and iterate the computations of this proof. O

The interested reader can see Theorem 4.6 in [56], where the result given here in Lemma 3.1.19
is proved for u defined as

B fy)

where  is a domain with the s-property (see Definition 3.3 therein). In particular, these domains
are defined such that they satisfy a bound of the type given in (3.45), while the ball is the typical
example of this type.

We state now the main result of this subsection.

THEOREM 3.1.20. Let f € C%¢(R™) and let u be defined as
u(z) == ® = f (x).
Then u € LE(R™) n C?*F¢(R™) and both in the distributional sense and pointwise

(—A)u = f.
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PROOF. From Lemma 3.1.18, we have that u € LL(R") n C?**¢(R"). We prove at first the
statement for f e C¥(R™).

We notice that for ¢ € S(R™), the function F~1((27|€)|?*P(€)) € Ss(R™) and (27|€)|?*P(€) satisfies
the hypothesis of Lemma 3.1.17. Hence, by (3.36)

W, (~A) g, = | f (@) F (rlE)*6(0)) () de

~

= | fOede=| [f(x)p(z)da.
R™ R»

The last equality follows since f € L'(R™), which is implied by the infinite differentiability of f. We
conclude that u is the distributional solution of

(—A)u = .

We consider now f € C%¢(R"). We take a sequence of functions (fi)r € C*(R™) such that
I fr = fllz»@my o 0 and we consider ug = ® = fx. Then we have that for any ¢ € S(R™)
— %0

(879, = [ et do
By definition of fj

im | fi(z)p(x) de = N f(@)e(x) dr,

k—+wc Rn

moreover, using (3.6) and (3.41) we have that

Cup, —u, (=A)°0)s < [(=A)°@13, oy lur — L1 @n)
< cn,s,R[(—A)SW]gs(Rn)”fk = flloe @) ko 0.

We thus obtain that for any ¢ € S(R™)

(-89 = [ f@)eta)d,
Hence in the distributional sense (—A)%u = f on R™ for any f € C%¢(R").
In order to obtain the pointwise solution, from the continuity of the mapping R” 3 z — (—A)*u(x)
(according to Proposition 2.1.7 from [140]), we have that (g, (—A)*u(z)@(x) dz is well defined. Since
for any p € CZ(R"™) we have that

| we-ar et dn = [ fayeta)da,

R™

S

thanks to Fubini-Tonelli’s Theorem and changing variables we obtain that

| f@ypla)do - f u(@)(~A) p(z) dz = f (—A)*u(a)p(z) da.

n n

Since both f and (—A)®u are continuous, we conclude that pointwise in R™
(=A)u(z) = f(x). O
As a corollary, we have a representation formula for a C*(R™) function.
COROLLARY 3.1.21. For any f € CF(R™) there exists a function ¢ € C*(R™) such that
f(x) = ¢ (),

and p(z) = O(|z|"2%) as |z| - co.
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Proor. For f e CF(R™), we define ¢ as

p(x) = (=A)"f(z).

The bound established in (3.4) gives the asymptotic behavior of ¢, while it is not hard to see that
p € C*(R™). Then by using Theorem 3.1.20 we have that pointwise in R”

g # D) = (—A) f  B() = f(a). 0

3.1.3. The Poisson kernel. We claim that P, plays the role of the fractional Poisson kernel
namely, we prove here Theorem 3.1.5.

PROOF OF THEOREM 3.1.5. We see at first that u, € LL(R"). Take R > 2r and x € B,, then by
using (3.73), the inequality |« — y| > |y| — r and for |y| > R the bound

ly|" 2

(ly]> = r2)*le —y|

< 2t (3.46)

we have that

g (2)] < f Py(y, 2)\g(w)| dy + j Py, 2)lg(w)] dy
R>|y|>r ly|>R

<c(n,s) sup |g(y)| + 2" c(n, s)(r? — |$|2)“’J |g7(1?i)2|s dy
yEBR\B, ly|>R |y
<c(n,s) sup |g(y)| + 2" 5c(n, s)r%f |g£ﬁ)2|s d
veBR\B, ly/>r Yl

Since g € L (R™), the last integral is bounded, and so u,, is bounded in B,. It follows that u, € LL(R"),
as stated. Moreover, the local C* regularity of uy in B, follows from the regularity of the Poisson
kernel.

Let us fix + € B, and prove that u, has the s-mean value property in z. If this holds, indeed,
Theorem 3.1.13 implies that (—A)*u(xz) = 0, and given the arbitrary choice of x, the same is true in
the whole B,..

We claim that for any p such that 0 < p < r — |z| we have

A, xug(x) = ug(x). (3.47)
Let at first g be in C(R™). By Corollary 3.1.21, there exists a function ¢ € C*(R"™) such that

o) = | o=
and at infinity ¢(2) = O(|z|7"72%). For r > 0 fixed, we write g as
o) = | e-pewdet [ B pp)dn (3.45)
R™\B, B,

Using identity (3.84) we have that

JBT (2 —y)p(z)dz = JBT (JRH\BT Pu(t, 2)®(y —t) dt) o(2)dz

_ J @(y—t)(f Pu(t, 2)(2) dz) dt.
R™\B, B,
Therefore, in (3.48) it follows that

o= ew-ovoa. (3.49)
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where ¥(t) = o(t) + SBT P.(t,2z)¢(2) dz. In particular, using (3.10) and (3.49) we have that

w(@ = | . R«(y,x)( | = 0u) dt) dy

= t>rw(t)<-[y|>r P.(y,z)®(y —t) dy) dt = V()D(z —t) dt

|t|=>r
thanks to (3.84). Furthermore, we compute

Ay xug(x) = f

ly|>p

a( [ wwe—y—na)ay
|t|>r
[ wo([  awee-y-n) .
[¢]>r lyl>p
Having chosen p < r — |z| we have that | —t| = |t| — |z| = p and from (3.82) we obtain

Ay xug(x) = Y()P(x —t) dt.

|t|>r

Consequently A, = ugy(z) = ug(x), thus for g € CF(R™) the claim (3.47) is proved.

We now prove the claim (3.47) for any forcing term g € LL1(R™) n C(R"). In particular, let
N, € CF(R™) be such that n(x) € [0,1], g = 1 in By, and 1, = 0 in B41. Then gi := nrg € CF(R™)
and we have that g 9 pointwise in R™, in norm L!(R™) and uniformly on compact sets. So, for
—xL
any k > 0 the function ug, () has the s-mean value property in x. Precisely, for any p > 0 small
independent of k,

(Ap # ug, ) (x) = ug, (z). (3.50)
We claim that
klim Ug, (@) = ug(x) (3.51)
-
and that for any p > 0 small
kh_)ni (Ap * ng) () = Ap # ug(z). (3.52)

Let € be any arbitrarily small quantity. For k large and R > 2r, we take advantage of (3.46) and
obtain that for z € B,

)~ @) < [ lons) =9I )

<2n+sc n,s T2— 1,2 SJ |gk(y)_g(y)|dy
o) ey [ S

+ sup  gx(y) — 9(y)| P (y,z) dy
yEBR\B: BRr\B;

gx(y) — g(y
<dm&ﬂj Di%;glhw+ sup |gk(y) —g(y)| <e
R™\Bg |yl yeEBR\B,

by the convergence in L!(R™) norm, the uniform convergence on compact sets of gy to g and integra-
bility in R™\B,. of the Poisson kernel (by identity (3.73)). Hence, claim (3.51) is proved. In order to
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prove claim (3.52), we notice that for any p > 0 small we have that

4y 2 @) = Ay 2@ < [ Al =) e )l dy

ly|>p
j wisp AeWgk(z —y) = gz —y)|dy
lz—yl=r
+J |9k (= |j|y\>p Ap(y) Pz, 2 — y)dy dz
|z|>r lr—y|<r
=1+ Is. (353)

Let R > 2p. Thanks to the bound (3.46) for |y| > R, the convergence in L!(R") norm, the uniform
convergence on compact sets of g to g and the integrability in R™\B, of the s-mean kernel (by identity
(3.71)) we have that for k large

7 :Cnysrsz‘ lgr(z —y) —g(z =)l ,
R N N (Ve R

nts lgx(x —y) = g(z —y)|
< 2" ¢(n, s,r)j [ dy

lz—y[=r

ly|>R

| ™

+ swp |gk(z—y>—g<x—y>|j Ay(y) dy <
yeBR\B, R>ly|>p

Once more, for R > 2r and |z| > R we use the bound (3.46) and we have that

I, = J gr(z J P.(z,z —y)dy dz
\z|>R| | lyl>p p

lo—y|<r

+J o 90 9(2|JH> o) Pz, 2 — y) dy d>

le—y|<r
<ctns) [, A i—le—ypy [ JeEo0C)

z1>r (|27 =712)* [z —z+y["

dz dy

+ sup |gx(z |J J P.(z,x —y)dzdy
ly|>p p R>|z|>r

ZEER\BT |:E y‘<r

o
wdw sup  Jgu(z) — g(2)|
|Z| ZEER\BT

< c(n,s,r)f

|z|>R

since by identity (3.71) and (3.73)

- <
[, 20 [ PCy—naa<

|z—y|<r

Therefore again by the convergence in L!(R™) norm, the uniform convergence on compact sets of g
€
we have that I < 3 In (3.53) it follows that

lim (A, *ug, )(z) = A, * ug(x),

k—oC

thus the desired result (3.52).
By (3.50), (3.51) and (3.52) we have that

thus ug has the s-mean value property at z. This concludes the proof of the claim (3.47).
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We now prove the continuity of u,. Of course, u, is continuous in B, and in R™\B,. We need to
check the continuity at the boundary of B,.

Let yo € 0B, and € > 0 arbitrarily small to be fixed, §. > 0 be such that, if y € Bs_(yo) then
lg(y) — g(yo)| < e. We fix p arbitrarily small such that 0 < p < %E, R >2r, and z € B, n B,(yo).
Notice that

r? — |z = (r + |2))(r — |z]) < 2r|yo — x| < 2rp.
From (3.73) we have that

) =g < [ low) gt Pr () (354)

For r < |y| < R and |y — yo| = 0. we have that |z —y| = 0. — pu > %. Meanwhile, for |y| > R we use
the bound (3.46). We have that

l9(y) — 9(yo)| Pr-(y, z) dy

ly|>r
ly—yo|=de
2" g(y)| + 19(yo a()| + lg(yo
< el s By ( JR> . w dy +2""° M dy
o Ivfylgng (lyf* =r2) w>r Yl

A ~
< C(”v S, R)MS <5nC(7’7 R, s, g) + 2n+SHg”L§(R") + C(ga S, R))

53

= C(n,s,R,r,g,0:)u°.
From this and the fact that

f e 190) = 9(o) By, 2) dy < sJ’ P.(y,z)dy =€
R

n\B,.
ly—yol<de \

by (3.73) and the continuity of g, we can pass to the limit in (3.54). Sending first © — 0 and afterwards
€ — 0 we obtain that

lim (uy(x) — g(yo)) = 0,

z—yo
thus the continuity of u,.
The uniqueness of the solution follows from the Maximum Principle. Indeed, if one takes wu
and uy two different continuous solutions of the Dirichlet problem, then v = u; — us is a continuous
solution to the problem

(=A)°u(x) =0, in B,
u(z) =0, in R"\B,.
By Theorem 2.1.8, the solution u is constant, hence null since it is continuous in R™ and vanishing

outside of B,.. This concludes the proof of the Theorem. O

3.1.4. The Green function for the ball. The purpose of this subsection is to prove Theo-
rems 3.1.7 and 3.1.8. We also compute the normalization constants needed in the formula of the Green
function on the ball.

We prove now Theorem 3.1.7 in the three cases n > 2s, n < 2s and n = 2s separately.

PROOF OF THEOREM 3.1.7 FOR n > 2s. Let x, z € B, be fixed.
We insert the explicit formula (3.8) into definition (3.11) and obtain that

G(z,2) = a(n,s)(|z — z[** " — A(z, 2)), (3.55)

where
P.(y,
Ale,2) = j L)y,
ly|>r |y o Z|
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Inserting also definition (3.9) we have that

dy.

7,,2_ $2 s
Az, z) = c(n,s)j ( %)

wlsr 1Y — 2" 2 (Y2 = r?)sy — x|

We use the point inversion transformation that is detailed in the Subsection 3.1.5. Let 2* € R™\B,.
and y* € B, be the inversion of x, respectively y with center at z, defined by the relation (3.69). With
this transformation, using formulas (3.70a), (3.70b) and (3.70c) we obtain that

%2 2\s

Aw2) = e =l [ AT
B, (= [y*[*)*|z* —y*["
We continue the proof for n > 3. However, the results hold for n < 3 and can be proved with
similar computations. We use hyperspherical coordinates with p > 0 and 0,61, ...,6,_3 € [0,7],0,,_2 €
[0, 27] (see (3.74) in the Subsection 3.1.5 and observations therein). Without loss of generality and up
to rotations, we assume that 2* = |2*|e,,, so we have the identity |z* —y*|? = p? + |2*|> —2|2*|p cos

(see Figure 3.2 in the Subsection 3.1.5 for clarity). With this change of coordinates, we obtain

®

dy*.

n—3 A~
Az, 2) = c(n, 8)|z — z|*7"(|z*]? — r?)*2r H J sin® 0 df
k=170

T n—1 ™ oon—2
J’ P J sin" " “ 4 d9) dp.
0 2= \Jy (P17 — 2+ [peos )2
_ =¥

Let 7 := = (notice that 7 > 1). We have that

us oon—2 I on—2
J sin"~“ 6 d0 — ij sin" ™= 6 0.
o (p? + |2*|2 — 2|z*|pcos )/2 p" Jo (12 +1 — 27 cos6)n/2
Thanks to identity (3.85) we obtain that

I on—2 T
sin 0 1 1
dd = ——————— sin” % ada
), TR T,
1 4 9
= in""* ada.
|x*|"—2<|x*|2—p2>fo e

Then, using identity (3.86) and inserting the explicit value of ¢(n, s) given by (3.17), we arrive at

Sin(’ITS) . |CC*|2 _ ’I"2 S ar 2pn71
A(x,z):7|2—x|2 ( *n—2) 2 2\s(|, %2 _ 2 dp
™ |z*| o (r2=p?)s(Jz** — p?) (3.56)
sin(rs) 2sn (J2¥2 = 12)°
= | - 1‘| " |l‘*|n72 J(LL'*)7
where
s 2pn71
J(z*) = f dp.
SRl N ey e )

Now we define the constant

k(n, s) = ;(

(we compute its explicit value at the end of Subsection 3.1.4). Then we have that

J(2*) = 2k(n, 5) L ' CE pgf&;;z — <£ preeml(] g2t dr) p.

f Fre2l(] g2yl dT) B (3.57)

0
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We perform the change of variables t = 7p and apply the Fubini-Tonelli’s theorem to obtain that

J(z*) = 2k(n, 5) f 2 (Lﬂ g2l ()2 _ 4251 dt) dp

o 7= (P = )

T T 2 _ 42\s—1
= 2k(n, s)f g2l (J 20(p” =) dp> dt.
t

: = ) (o = 5?)
We change variables p? — t?2 = 7 and 2 — 7 — 2 = p to obtain

T o1 r2—t2 Ts—l
#) _ ok 28— dr ) dt
J(x*) (ms)L (L (r2 =7 — 2 (|o* 2 — 7 — 12) T)
T r2—t2 2 42 ys—1
— Qk(n, S)J‘ t’n72871 (j (T t p) dp) dt

0 0 pe(|z** + p—12)

T
= 2k(n, s)f t"25 () dt,
0

where

2t 2 42 s—1
— 2 _
I(t) = f =) g,
o PP +p—7?)
Using Proposition 3.1.32 for a = r?2 — 2 and 3 = |2*|*> — r? we have that

T (|x*|2 _tz)s—l

It = sin(mrs) (Jz*|2 —r2)s °
Hence in J(z*), with the changes of variables @ = 7 and then 72 — 1 =t we have that
J(a*) = 2k(n, s) Sin?m) (Ja*[? — )~ fo 172 (2* P~ 12)s .
= 2k(n s) sin7(r7rs) (|90|f|z|i:2)s ;* (TQT_"*lzk1 ar
=““@ma$mﬁfirﬁgﬂafﬁwﬁ

Using formula (3.70a) and definition (3.13) we have the equalities

PP = (= leP)? — [P)
3 = TP =ro(z, 2).

Therefore inserting J(z*) into (3.56) it follows that

0 tsfl
Az, z) = k(n, s z—xzs*"f ——dt.
(2.2 =k o |
By inserting this into (3.55) we obtain that
%0 ts_l
G(z, 2) = a(n, s)|z — x| 1—kn,sf dt).
r.5) =l a)le = (k) [
Now we change the variable t = 1/72 — 1 in definition (3.57) and obtain that

0 tsfl
k —dt = 1. 3.58
) | Gt (3.5%)
It follows that
C ) ) ro(z,2)  ys—1 p
x,z) =a(n,s)k(n,s)|z —z|**™" ——dt.
(@.2) = alm.h(n. o)z~ [ i

We set
k(n,s) :=a(n, s)k(n, s) (3.59)
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and conclude that
$5— 1

ro(x,z)
G ) = ) - QS_nf = dt
(z,2) = k(n,s)|z — x| . T

Hence the desired result in the case n > 2s. O

PROOF OF THEOREM 3.1.7 FOR n < 2s. We consider without loss of generality » = 1 (by rescal-
ing, the statement of the theorem is verified in the more general case). By (3.8) and definition (3.11)
we have that

G(z,2) = a(1,s)(|]z — z[**7! = A(z, 2)), (3.60)

where
Pl (y7 J})

Az, z) := J ———dy.
(=:2) R\(-1,1) |2 —y[' 72
Using definition (3.9) we have that
(1 —a2?)°
A(x,z) =c(1,s f
(z,2) = {1, ) r\(-1,1) [V — 2" 725 (y? = 1)%y — 2

We proceed exactly as in the case n > 2s performing the point inversion transformation and we arrive
at

dy.

1 %2 s
—1
Az, z) = c(l,s)|z—x|2$_lj ($2 ) dy*,
—1 (L=y*)%la* — |
where |2*| > 1. By symmetry we have that
Az, 2) = c¢(1,s)]z — ;10|23_1(917*2 —1)%|z*|J(z*), (3.61)

with

1w = | 1 2 dy*.

o (L=y*)s(a* —y**)
We change the variable y*2 = t and obtain that

J(z*) = (%)2 Ll 12 - t)’s(l - #)71 dt.

By the integral representation (A.18) of the hypergeometric function, it follows that

We use the linear transformation (A.19d) (notice that (1/gv*)2 < 1) and obtain that

F<1 131 >: F(g_S)F(_s))F(L1,5+1f”*2_1)

272 T ) T (L — (1 - 2 a2
s , (3.62)
x* -1 I'(5—s)I'(s) 1 ¥ —1
+ 5 — | s—s,1=8,1-5,———|.
x* rmr(;) 2 x*

The first hypergeometric function obtained in the sum (3.62) is transformed according to (A.19¢) as

1 #2 1 1
F<172,S+1,xx*2> = |$*|F<2,S,S+1,1—.’L’*2)

For s+1 > s > 0 and |[1—2*?| < 1 the convergence conditions are fulfilled for the integral representation
(A.18) of the hypergeometric function. Therefore we may write

1 *2_q L(s+1) ¢ {51
F<177s+1,m . >:|x*| (s + )f _dt.
2 x* F(s) 0 (1 + (1.*2 _ l)t) /
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On the other hand, for the second hypergeometric function obtained in identity (3.62), we use trans-
formations (A.19b) and (A.19¢) and arrive at

1 *2 1 _ 1
F<—s,1—s,1—s,x ):m* 23|;C*|F<2—s,0,1—8,1—$*2>

2 r¥2
_2s 1 ¥ —1
=z* ‘|x*|F<0,271—s7 )

x#2

2
We use the Gauss expansion (A.15) witha =0, b =1, c=1-sand w = wz*fl (we notice that

0>c—a—b>—1fors>1/2 and |w| < 1, thus the series is convergent). Since a = 0, all the terms
of the series vanish, except for £ = 0. Hence we obtain that

1 ¥ -1
F<072,1_87I*2> :1
1 *2_q _
F(2—s,l—s,l—s,acx*2 ):x* |2

1 (T(HT(=s)T(s+1) [ o1 I'(s)I'(1 —s)
< -L (1+(.’L‘*2_1)t)1/2dt (;C*Q—l)s >

and therefore

Consequently

and we define the constant

D(3)I(—s)D(s + 1)

k(1,s) :=c(1,s)—2 (3.63)
L(3—s)(s)
We insert J(z*) into (3.61) and have that
1 %2 s4s—1
—-1)%
Az, 2) = k(1, 8)|2 — 22! f (@ ) Lyt [z — a7
0 (14 (z** 1))
With the change of variables (#** — 1)t = 7 we obtain that
;c*2—1 ts_l
Az, z) = k(17s)|z—x|23_1J ——dt + |z — 2>
(t+1)2
Inserting this into (3.60) and noticing that 2** — 1 = ro(z, 2) it follows that
2s1 ro(z,2) ts—l
G(z,z) = —a(l,s)k(1, s)|z — z|**~ f — dt.
(z,2) (1,5)k(1, 5)|z — x| (D)
We call
k(1,8) = —a(l, s)k(1, s) (3.64)
and conclude the proof of Theorem 3.1.7 for n < 2s. ]

PROOF OF THEOREM 3.1.7 FOR n = 2s. Without loss of generality, we assume r = 1. We insert
the explicit formulas (3.8) and (3.9) into definition (3.11). Moreover, we use the explicit values of the

constant a(l, %) from (3.16) and c(l, %) from (3.17). We obtain that

1 1 1—22 dy
G(z,z) = ——log|lr — 2 +—J logly —z|A | ¥————. 3.65
(@) =~ logle |+ 7 | gl o[ (3.65)
Let
1—22 dy
Az, z :=J log |y — = .
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We perform the change of variables v = y?f:;. Since 1 —v? > 0, we have that |v] < 1. We set

w := £2=1 and observe that |w| = 1. It follows that

v — W) dv
Az, z :,[ (10 |7—%10 z—x).
(%) lv|<1 & v — x| Bl | 1—102

We use identity (3.83) and since |w| > 1 and |z| < 1 we obtain that
A(z, z) = log (|w| + (w? — 1)1/2> + mlog|r — 2|

=7log(l —zz + /(1 — 22)(1 — 22)).

Inserting this into (3.65) we obtain that

1— 2z + /(1= 22)(1 —22)>.

1
G =—1
(z,2) = — og< |
This completes the proof of Theorem 3.1.7 for n = 2s. O
We prove here Theorem 3.1.8, which gives the representation formula for the Poisson equation.

PROOF OF THEOREM 3.1.8. We identify h with its C%¢(R") extension, namely we consider he
CY%¢(R") with B, c supph such that h = h on B,.. Then, by definition (3.11) we have that in B,

u(z) = J h(z)G(x, z) dz

r

= J hz)®(z — x)dz — J h(z) <J d(y — 2)P.(y, x)dy) dz
B, By R™\B,
=hx*®(x) — f P (y,z)(h * ®)(y) dy.
R™\B,.
Let
g(z) := h = ®(x) for any x € R™.
From Theorem 3.1.20, we have that g € L1(R") n C?**¢(R"). Let for any x € R"
u(z) = vo(z) — vi(z),

where vo(x) = g(z) in R and

J P.(y,7)g(y) dy if x € B,,
R™\B,

g(x) if z € R™\B,.
Then for x € B,, thanks to Theorems 3.1.20 and 3.1.5

(—A)u(z) = h(z) — 0 = h(z),

hence w is solution (3.2). Also, from Theorems 3.1.20 and 3.1.5, it follows that u € C'(R™).
The uniqueness of the solution follows from the simple application of the Maximum Principle for
the fractional Laplacian (see Theorem 2.1.8). O

vi(z) =

We compute now the constant x(n, s) in Theorem 3.1.7. For this, we start with the next identity
for k(n,s) given in (3.57), when n > 2s:

I'(5)

D(5 —9)l(s)

k(n,s) = (3.66)

Indeed, using definition (3.57) and taking the change of variable 72 =t we have that

1 ! b
= 2[ L O W e L f t2 51 —t)" Lt
0
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We use identities (A.12) and (A.13) to obtain that

Lo (% —s)I(s)
te -ttt = —2 -
J;) INCO
which is exactly the result.
We now prove Theorem 3.1.10, namely we compute the constant x(n, s) encountered in the formula

of the Green function G.

PROOF OF THEOREM 3.1.10. For n > 2s, we insert the values of a(n, s) from (3.15) and of k(n, )
from (3.66) into (3.59) and we obtain that

I'(3)
2253 12(s)
For n < 2s, we recall definitions (3.63), (3.64) and (3.15), we use identities (A.8), (A.10) and (A.6)
relative to the Gamma function and obtain that
(=s)I(—s) 1 _ 1
225T(s) T(1—s)['(s) 225T2(s)’

k(n,s) = a(n, s)k(n,s) =

k(1,8) = —a(1,9)k(1,s) =

On the other hand, we recall that I'i(l, %) = %, as we have seen in the proof of Theorem 3.1.7 for

n = 2s. This concludes the proof of Theorem 3.1.10. ([l
We prove now Theorem 3.1.11, that gives the value of the constant C(n, s) introduced in (1.1).
PROOF OF THEOREM 3.1.11. By Lemma 2.1.4 we have that in By

(—A)*u(z) = C(n, $) 2 B(1 — s, 5).

2
We use Theorem 3.1.8 and for n # 2s, we obtain that
u(@) = | C(n.s) 5 BOL = 5,5)G(x,y)dy

B,

Wy, ) ro(zy)  ys—1
= C’(n,s)?B(l—s,s)n(n,s) 4[3 |z — 9 Sn(L (t—l—l)gdt> dy.
1

We compute this identity in zero and have that

1—]y|?

1 = C(n, )2 B(1 — s, s)r(n, S)J |y|23_"(L w (ts_lgdt) dy. (3.67)

2 B, t+1)
We compute the double integral, by using Fubini-Tonelli’s theorem

1-]y|?

1—p2 -~
f |y|25"(J v dt) dy =w fl p231<f et dt) dp
B: 0 (t+1)2 0 0 (t+1)2
L psl A,
= wnf — J p*T dp ) dt
o (t+1)2\Jo
0 s—1
Y )
2s Jo (E+1)2ts 2s 2

By inserting this, the value of k(n, s) from Theorem 3.1.10 and the measure of the (n — 1)-dimensional
unit sphere w,, = (27"/2)/T(n/2) into (3.67) and using (A.13) we obtain that

2255T(% + 5)

For n = 2s we have that (—A)*u(xz) = C (1,1/2) 7. Thanks to Theorem 3.1.8

w(z) = C (17 ;) 7 fl G(z,y) dy.
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Using formula (3.14) and computing u at zero, we obtain that

1=c<1,1>f1 LA =ﬂc<1,;>.

2 [yl
Hence C'(1,1/2) = 1/m and this concludes the proof of the Theorem. O

3.1.5. Point inversion transformations and some useful integral identities. The purpose
of this subsection is to recall some basic geometric features of the point inversion, related to the so-
called Kelvin transformation.

Let 7 > 0 to be fixed.

DEFINITION 3.1.22. Let xg € B, be a fized point. The inversion with center xq is a point trans-
formation that maps an arbitrary point y € R™\{zo} to the point K, (y) such that the points y, xo,
K., (y) lie on one line, x¢ separates y and K,,(y) and

Koy (y) := 20 — il ] (y — o) (3.68)

” ly — @ol?
This is a bijective map from R™\{zo} onto itself. Of course, K, (Kq,(x)) = 2. When this does
not generate any confusion, we will use the notation y* := ngo( ) and z* := K, ( ) to denote the

inversion of y and x respectively, with center at xg.
REMARK 3.1.23. It is not hard to see, from definition (3.68), that
ly* — zolly — 20| = r? — |$0|2' (3.69)

PROPOSITION 3.1.24. Let zg € B, be a fized point, and * and y* be the inversion of x € R™\{zo}
respectively y € R™"\{zo} with center at xo. Then:
a) points on the sphere 0B, are mapped into points on the same sphere,

b) points outside the sphere 0B, are mapped into points inside the sphere,

ly — 2ol 1
¢ - , 3.70a
) T T P) o ) 700
d dy*
e (3.70b)
ly —@ol™  |y* — xol"
* #* 2 2 ly — |
e)ly" —x7| = (r —|x _ 3.70¢c
The Kelvin point inversion transformation is well known (see, for instance, the Appendix in [102])

and elementary geometrical considerations can be used to prove this lemma. We give here a sketch of
the proof.

SKETCH OF THE PROOF. A simple way to prove claims a) to ¢) is to consider the first triangle in
Figure 4.4.

We denote b := |OY| = |y, b* := |OY*| = |[y*|, a := | XoY| = |y—xo| and B := | XY *| = |y* —x0|-
Let OH be the perpendicular from O onto YY*. We apply the Pythagorean Theorem in the three
triangles AOY H, AOH Xy, AOHY*, add the equation (3.69) and by solving the system, one gets
that

B2 _ Br? +ar? — BbQ.
Q@
From this, claims a) to ¢) follow after elementary computations.

In order to prove d), without loss of generality, one can consider the point inversion of radius one
with center at zero y* = —y/|y|? and take its derivative. Since the point inversion transformation is
invariant under rotation, we can assume that y = |y|e; and the desired result plainly follows.

To prove e), see the Appendix in [102], or consider the second triangle in Figure 4.4. We denote

— |XoX| = |r — a0, b= [Xo¥]| = ly — 2], @ == |XV] = |z — y| and B = [X*V*| = [a* — y*|.
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Y*

Y H X, Y
o v

FIGURE 3.1. Inversion of z,y with center at xg

Let YH, and Y*H, be perpendiculars from Y, respectively Y* onto the segment X X*. By applying
the Pythagorean Theorem in the four triangles AX Y Hy, AXY H;, AXqY*Hy, AX*Y*H,, adding
relation (3.69) and using that Y H; is parallel to Y* Hy, one gets after solving the system that

_ (= wo)a
/6 - ab 9

which is the desired result. O

We present here a few detailed computations related to the functions ®, A, and P, and some
other useful integral identities.

LEMMA 3.1.25. For anyr >0

f A (y)dy = 1. (3.71)
R™\B,

Proor. Using (3.7) and passing to polar coordinates we have that

,rQS

Arydy=cn,sJ ———dy
Joog, At =t |

e 7,.25

= ¢(n, $)wp, f —————dp.

r p(p? —12)°
We change the variable z = (p/r)? — 1 and have that

c(n, s) fl 1
A (y)dy = w, | ———d= 3.72
fRn\BT )y = 5, [ (3.72)

Using (A.14) and the definition (3.17) of ¢(n, s), it follows that SR"\BT A (y)dy =1, as desired. O

LEMMA 3.1.26. For any r > 0 and any z € B,

f P.(y,z)dy = 1. (3.73)
R™\B,
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PROOF. We make the proof for n > 3. However, the results hold for n < 3. We change variables
using the hyperspherical coordinates with radius p > 0 and angles 6,61, ...,60,,_3 € [0,7],0,_2 € [0, 27]
y1 =psinf@sinb; ...sinf, 3sind, o
Yo =psinfsinb; ...sinb,_3cosb,_o

y3 =psinfsinfy ...cosb, 3 (3.74)

Yn =pcosb.

The Jacobian of the transformation is given by p"~'sin® 26sin® 26, ...sin6,_3. We only remark
that for n = 3 the usual spherical coordinates can be used y; = psinésinfq,ys = psinfcosf; and y3 =
pcos B, while for n = 2 and n = 1 similar computations can be performed.

Without loss of generality and up to rotations, we assume that = |z|e,, to obtain the identity
|z —y|? = p?+|x|? —2|x|pcosd (see Figure 3.2 for clarity). With this change of coordinates, we obtain

J‘ P.(y,x)dy
R™\B,.

P sin™ 2 0.df dp
— |z]?)*2 0 do :
=c(n, s)(r? — |z|?) wﬂj sin J f S(02 + |22 — 2p[z| cos )72

We do the substitution 7 = r/|z| and p = p/|z| but still use r and p for simplicity and we remark

€n

Rn%
FIGURE 3.2.

that now p > 1 and r > 1. We obtain that

J‘ P.(y,x)dy
R7\B,.

s Sinn_29d9
—1)%2 "0dg o
— c(n, s) r WHJ sin f (P2 —12)s (L (p2+1—2pc059)"/2) P

. 4 sin" 20
i) = |

df
o (p?2 —2pcosf +1)/2

(3.75)

Let
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We claim that, given that p > 1
. 1 J T a2
i(p) = —+—5—= | sin""“6db. 3.76
(°) p"2(p* = 1) Jo (370)
To prove this, we use the following change of coordinates
sin 6 sin

= . (3.77)

A/ p? —2pcost +1 o

pe — Sl «

To see this, one takes the derivative of the relation (3.77)

We have that

(pcos—1)(p — cos:)) g0 < S5 o (3.79)
— 2pcos B
(p? —2pcosf + 1) P

and obtains with some manipulations of identity (3.77) that

cos ay/ p? — sin’ a _ p(pcost —1)(p —cosd)

\p? —sin® a — cosa (p2 —2pcos +1)2

Now by changing variables we obtain that

™ an—2
sin""* 6
i(p) = do
i) J,O (p2 —2pcosf + 1)7/2
1 J” sin" 2 a dov
P2 Jo (v/p? —sin®a — cosa)y/p? — sin® a

1 J‘” sin™ % a(v/p? — sin® a + cos a) da

2 ) (p?2 — 1)/ p? —sin® «
1 s s on—
= — <f sin" "% ada + J e CO; a da).
P2 (p* —=1) \ Jo 0 A/ p?—sin“«

By symmetry

T sin” 2 o cos a

————da =0,
0 \p?—sin®a
therefore
. 1 fr . p—2
i(p) = —5——= | sin"" “ada.
(°) p"2(p* = 1) Jo

We substitute this into (3.75) and obtain that

n—2 Is's]
.k pdp
P.(y,z)dy = ¢(n, s)(r* —1)*2x f smk9d91f .
JRW\BT () dy = cln5)r* —°2r ] | | . PP )

We claim that

7T.n/2

n—2 A~ .
WIQL sin® 6df = T/ (3.80)

To prove this, we integrate by parts and obtain that

Isz sinkadez(k—l)f sink’20d9—(k—l)f sin* 6 do,
0 0 0

which implies that

k—1 (" k-1
IszL sin*~20dh = ; In_o.
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Thus we have

k—1k— 1
k=1k=3  Lp ik even,

n=1.k52% 3
PZINTS 21 ifkodd
k k—2 3t Brodd

with Iy = 7 and I; = 2, and the claim (3.80) follows after elementary computations. And so

_ 2 s ﬂ-n/Q * 2p
JRH\BT Frly, @) dy = eln. s)(r" = 1" 5y J P21 "

2_ .2 .
We change variable 27— = z and obtain

[ LR O Ry
r , L =cn,s z.
g, T(n/2) Jy z°(z+1)

We use (A.14) and the value of ¢(n, s) from (3.17) and obtain that
J Pr(y,x)dy = 1.
R™\B,

This completes the proof of Lemma 3.1.26. O

LEmMA 3.1.27. For any r > 0 and any x € B,

(n:5) | W
c(n, s =
B, (r® —|y?)s|e —y|* =2

PROOF. Let y* be the inversion of y with center at x (notice that |y*| > r). Then by using
(3.70a) and (3.70b) we obtain that

2 2 \° *
l[ dy _ J 4 — |z dy
2= lyP)le =y S, \IW*P =72 ) o —y*|

From identity (3.73) the desired result immediately follows. O

(3.81)

LEMMA 3.1.28. For any r > 0 and any x € R™\B,
j A,(y)®(x — ) dy = B(x). (3.82)
R\ B,
PROOF. We prove the claim for n # 2s. We insert definitions (3.7) and (3.8) and obtain that

1
A, ()@ (z — y) dy = r**c(n, s)a(n, s) f | .
fw\g,. re\g, ([Y[2 —7r2)s|y|" |z — y[n—2s

Let z* and y* be the inversion of x, respectively y with center at 0. Using identities (3.69), (3.70a)
(3.70c) and (3.70b) we obtain that

dy.

c(n,s)a(n, s dy*
J Ar(y)‘b(.’lﬁ N y) dy = ( 17(25 ) J #* ®|n—2s 2 %]2)5 "
R™\B,. || B, |z* —y*| (7" — y*| )

From (3.81) it follows that
a(n, s)

Ar(y)2(z —y)dy = )
fRn\BT ()9 ) dy = 1)

and thus the desired result.
We now prove the claim for n = 2s, assuming r = 1. We have that

—1 log |y — x|
A () @(x —y)dy = — ————dy.
JRH\BT ' 7 Jiyi=1 /y2 — 1y|
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We perform the change of variables v = %7 with |v] < 1. We set w := 1, hence |w| < 1. Then we have
that
-1 v —w| dv
et -ndy= =5 [ (gt o) L
fR"\Br ™ Jpi<t 0] V1—v2
We use the following result (see [19], page 549)
dv —mlog 2, if |a] <1
log |v — a| —= = 3.83
J’vgl &l |\/1 — 02 {wlog(|a| +(a®> = 1)'?) —7log2, if|a| = 1. (3.83)
We thus obtain
1
| Awee-ydy=-log)al,
R™\ B, ™
which concludes the proof of the Lemma. O

LEMMA 3.1.29. For any r > 0, let xg € B, be a fized point. For any x € R"\B,
| Pa)® - ) dy = B - a0). (384)
Rn\BT

PROOF. We prove the claim for n # 2s. We have that

(r® = lwol*)Je — y[** " dy
P.(y,z0)®(x — y) dy = ¢(n, s)a(n, s) ,[
JR"'\BT. B, ([YPP = r?)ly — x|

Let z* and y* be the inversion of z, respectively y with center at xg. From (3.69), (3.70a) (3.70b)
and (3.70c) we have that

J Pr(y,z0)®(z —y) dy
R\ B,

( ) ( ) |$* _ CCO|n723 J* dy*
=c(n,s)a(n, s .
B R D P e

Using (3.81), we obtain that

a(n, s)

Po(y,w0)®(z —y)dy = ———"—-,
J,]R"\BT " |£L' - .’E()|7172S

which concludes the proof for n # 2s.
We now prove the claim for n = 2s, assuming r = 1. We have that

-1 1—292logly — =z
f Py, x0)®(z —y)dy = — f — | |dy~
R™\B,. ™ Jyl>1 | Y — L |y — zo

We perform the change of variables v = yff;Ol, noticing that |v| < 1. We set w := %, hence
|w| < 1. Then we have that
-1 v—w dv
[ nweose-na=Z [ (g =0 piogle — aol) L
R™\B,. T Jpl<1 [v — 2o 1—w
We use identity (3.83) and obtain
1
| Plwao)ete—y)dy =~ logle

R™\B,. 7T

which concludes the proof. O

‘We emphasize here two computations that we used in the proof of Lemma 3.1.26, namely identities
(3.76) and (3.80).
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ProrosiTioN 3.1.30. For any 7 > 1

J” sin" "2 0 d0 - 1 f”
o (T2 =27cos+1)"/2 "~ m=2(r2-1) J,

ProproSITION 3.1.31.
n/2

n—2 s
.k ™
™ sin"0df = ———.
11 f T(n/2)
In the next Proposition we introduce yet another integral identity.

ProPOSITION 3.1.32. Let «, B € R such that |ﬁ| < 1. Then

JO‘ (o—x)~t 7 (a4 /3)3_1.

dr =
0 z%(8+x) * sin(7s) B
PrOOF. We change the variable x = at and obtain that

“la—a)pTt o1t s_1< a>‘1
Joiﬁ(ﬂﬂ) dx—ﬂjot -t (1+5)

sin" 2 a da.

95

(3.85)

(3.86)

We use the integral definition (A.18) of the hypergeometric function for a = 1, b=1—s, ¢ = 1 and
w = —3 (since [t| <1, the integral is convergent) and we obtain that

Ll 51— ) (1 + gt> - dz = F(‘S)FF((;)_S’)FO 1—s1, —2‘)

Now we use the linear transformation (A.19¢) and compute

a\ [a+p st _
F<1,1—s,1,—5>—( ﬂ> F(l 50,1, ——

We use the Gauss expansion in (A.15) and notice that for k > 0, all the terms of the sum vanish. We
are left with only with the term k£ = 0 and obtain that

Q
Fl1-501,—2 ) =1
( y a—i—ﬂ)

Furthermore, from (A.14) it follows that

We consider the closed path §, = 6(([0,/}] x [0,p]) N Bp(O)).

So

p
Cauchy’s Theorem, the contour integral is 0 (there are no poles inside 2,), therefore

o z%(8 +x) * 7 Sinrs B

J(’ (@—a)t T (a+pf)Th

We explicitly compute here another integral that was used in our computations, namely :

PROPOSITION 3.1.33. For any s € (0,1/2] we have that
ve
J t**"2sint dt = — cos(ws)['(2s — 1).
0
PRrROOF. We have that

e v 8] .
J t252gint dt = —Imj 2527 4t
0 0

(3.87)

(3.88)

We take the contour integral

227277 dz, and let v, = 0B,(0) n ([0, p] x [0, p]) (the boundary of the quarter of the circle). By

0
J 12527t dt + J
0 7,

P

P )
2257277 dy — zf (it)>"2e~ " dt = 0.
0
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Integrating along «,, by using polar coordinates z = pe’? and then the change of variables cos = t

we have that
/2
J 225_26_2 dz J e—pcos@ da‘
Yo 0

/2 ) i
J p25—1€10(25—1)€—pe da‘ < p2s—1
0

_ 2s5—1

1 efpt
=p

—dt
0 V1 —1¢2
1
f (1—t)~Y/? dt‘ +cp*t
1/2

_ Cp2571€7p/2 +6p2572(67p/2 _ 1)

< p2$71€7p/2

1/2
f e Pt dt‘
0

Hence

lim 225727242 = 0
pP—L0
Yo

and we are left only with the integrals along the real and the imaginary axis, namely

o8] oo
J t257267t dt = Z‘stl f t257267it dt.
0 0

Here the left hand side returns the Gamma function according to definition (A.4). We compute
725 = (cos(m/2) +isin(7r/2))1723 = sin(ws) + icos(ws) and in (3.88) we obtain that

-
f t2 Zsint dt = —I'(2s — l)Im(sin(ws) +icos(7rs)) = —cos(ms)I'(2s — 1).
0

This concludes the proof of the Proposition. O
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3.2. Schauder estimates for the fractional Laplacian

In what follows we assume that n > 2 and consider s € (0,1) to be a fixed quantity. Let f be a
given Holder continuous function and u solving

(—A)’u=f in Bj. (3.89)

We want to study the regularity of u using a very simple method based on the Poisson representation
formula and dyadic ball approximation argument. For regularity up to the boundary of weak solutions
of the Dirichlet problem, see the very nice paper [125].

More precisely, we prove here that given f € C%%(B;) n C(B), then on the half ball u has the
regularity of f increased by 2s.

THEOREM 3.2.1. Let s€ (0,1), a < 1 and f € C%*(B1) nC(B1) be a given function with modulus
of continuity w(r) := supj,_y<, [f(¥) = f(y)|. Let ue L*(R") n CY(By) be a pointwise solution of
(=A)°u = f in By. Then for any x,y € By, and denoting 6 := |x — y| we have that for s < 1/2

cd 1
lu(z) — u(y)] < Chs <5|UL7,(R7L\BI) +dsup |f|+ j w(t)t>* L dt + 51[ w(t)t? 2 dt) (3.90)
B 0 5

while for s > 1/2

co 1
|Du(z) — Du(y)| < Cp s <5||U||Lr (®Rm\By) +Osup|f| + f w(t) 2 dt + §J w(t)t?s 3 dt), (3.91)
B, 0 )

where Cy, s and c are positive dimensional constants.

There are other approaches to prove Schauder estimates for the fractional order operators with
more general kernels see [68] and references therein. Here we follow the one proposed by Xu-Jia Wang
in [149] which is based only on the higher order derivative estimates, that we state here in Lemma
3.97 and on a maximum principle, given in Lemma 3.100.

One of the motivations to study (3.89) comes from the active scalars (see [40]). The 2D incom-
pressible Euler equation
wy +vVw =0
v = (agw, —(%w) (392)
w=Avy

is one of the well-known active scalar equations. Here v is the velocity, w the vorticity, ¥ the stream
function.

The uniqueness was proved by Yudovich (see [153]) under the condition that w(t) € L*(0, T; L (R?))n
L*(0,T; L*(R?)). Observe that by the Biot -Savart law one has that v = k # w, where

il
k()

oz
© 27|z)?”

Clearly k € L} (R?*), 1< p <2 and k € LYR?), ¢ > 2 near infinity, implying that one must assume

w e LP(R?) n L% (R?), p, < 2 < ¢, to make sure that v = k * w is well defined. In particular

Po =1, q, = 00 will do.

A generalization of the 2D Euler equation is the quasigeostrophic active scalar

wy +vVw =0
v = (029, — 111/1) (3.93)
—w=(~A)hy

or more generally when one takes —w = (—A)®i, 0 < s < 1. Thus this leads to the study of ks#(A)™*w
where n = 2 and o

|x|n—20'

ko(z) = V4
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We see that the regularity of the stream function can be concluded from that of w via Schauder
estimates.

3.2.1. Holder estimates for the Riesz potentials. In the next Lemma, we establish that
given a bounded function with bounded support, its convolution with the function ® defined in (3.8)
is Holder continuous.

LEMMA 3.2.2. Let s € (0,1/2) u (1/2,1) be fized. Let Q S R™ be a bounded set, the function
f e L*(R™) be supported in Q and u be defined as

f()
u(x) := — " dy. 3.94
(=) fR" |z — y|n—2s (3.94)
Then u € C%25(R") for s < 1/2 and u € C1*~ 1 for s > 1/2.
The proof of this Lemma takes inspiration from [153], where some bounds are obtained in the
case s = 1/2. Check also Lemma 3.1 in [56] for other considerations.

PROOF. Let s < 1/2 be fixed. We consider x1, x5 € R™ and denote by ¢ := |z1 — 22|. We notice
that in the course of the proof, the constants may change value from line to line. We have that

1 1
uer) — uwa)] < IS | dy.

Q |.’1?1 _ y|n—23 o |$2 _ y|n—23

Using (3.44) (with € instead of Bgr) we obtain that
u(z1) = u(z2)] < [|fL@n)CO™, (3.95)

where C = C(n, s) is a positive constant. To prove the bound for s > 1/2, thanks to Lemma 4.1
in [90] we have that

f()
The proof then follows as for s < 1/2, and one gets that
1 1

|Du(z1) — Du(x2)| < | f|r=@n) f dy < C”f”L‘Z(R%)62871,

ollzr =y 2 oy —y[n 2

where C' = C(n, s) is a positive constant. This concludes the proof of the Lemma. O
REMARK 3.2.3. On  one has the following bounds. For x1, 22 € 2

Clzy — x2|(1 + |z — x2|2571) for s<1/2
u(zr) = u(zs)| <
C|x1—x2|(1+|ln|x1—x2||) for s=1/2,
and

|Du(x1) — Du(xs)| < Clay — x2|(1 + |z — 332|2$_2) for s> 1/2,

where C' = C(n, s, f,Q) is a positive constant depending on n, s the L* norm of f and the diameter
of €.
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3.2.2. Some useful estimates. In this subsection we introduce some useful estimates, using
the representation formulas in Theorems 3.1.20 and 3.1.5. The interested reader can also check [74],
where Cauchy-type estimates for the derivatives of s-harmonic functions are proved using the Riesz
and Poisson kernel.

We fix r > 0.

LEMMA 3.2.4. Let u € L™(R™) n C(R™\B,) be such that (—A)*u(x) =0 for any x in B,. Then
for any o € N§
Dl (B, ) < e u) Lo @, (3.97)
where ¢ = ¢(n, s,a) is a positive constant.
PROOF. We notice that it is enough to prove (3.97) for r = 1, i.e.
IDul| =B, ) < clulLe@mp,)- (3.98)

Indeed, if (3.98) holds, then by rescaling, namely letting y = rz and v(y) = u(x) for x € By, we have
that Du(z) = rl*/D*v(y). Hence 71°!|D*(y)| = |Du(z)| < cllul Lo @®mB,) = c|v]Lo@mp,) and one
gets the original estimate for any 7.

We use the representation formula given in Theorem 3.1.5. By inserting definition (3.9), we have
that in Bl

uw = [ uwPa)dy
R"\Bl
(1—|z?)®  dy
= ¢(n, s)j u(y .
r\B,  (y?=1)% [z —y["
Let x € By/;. We take the j*" derivative of u and have that
Dju(x)

=c(n,s U (1 —Ja*)° 1
= cln, )fw\& W)D; [<|y|2—1> |x—y|"] &

o u(y) (20t (1 e ( — )
—ew) [ G| s |

lyl? - |z =y |z — y|"*?
Therefore renaming the constants (even from line to line),

(1 — 1— |z]?)*
| Du(z)] <CWJ it [I ) IxLBI] ]
R™\B, Iyl —1 |z — yl |z — yl

Given that |z| < 1/2 we have that 3/4 <1 —|z|> <1 and |x — y| = |y|/2 and so

(3.99)

1 1
IR I | " 2
V) s, Lyl = 1%fy* ™ (lyl = 1)*[y[+1

Passing to polar coordinates and renaming the constants, we have that
v 20
IDu@)] < nlulie oy | [ 0= 07 o+ [ o172
1 1

Now we compute

90 2 s}
f (p=1)""p dp= L (p=1)""p 'dp +L (p=1)""p ldp<C

1
and likewise,

e
J (p—1)""p?dp<C.
1

It follows that
|Du(z)| < cnsllullpe@mp,) for any x € Byj,.
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By reiterating the computation, we obtain the conclusion for the « derivative. This proves the estimate
(3.98), thus (3.97) by rescaling. O

LEMMA 3.2.5. Let f € C%(B,) n C(B,) be a given function and u € C1(B,) n L*(R™) be a
pointwise solution of
(—A)u = f in B,
u=0 in R"\B,.
Then
lull=(B,) < cr? sup | f1, (3.100)
B,

where ¢ = ¢(n, s) is a positive constant. Furthermore, for s > 1/2

”DUHL%(B,,./Q) <ot sup FaB (3.101)

B,
where ¢ =¢(n, s) is a positive constant.

PROOF. We notice that it is enough to prove (3.100) and (3.101) for r = 1, i.e.

lulL=(z,) < csup|f]| (3.102)
By
and
| DulL=(B,,,) < Esup|f]. (3.103)
B

Indeed, by rescaling, we let y = 7o and v(y) = u(x) we have that (—A)*v(y) = r~25(=A)*u(x), while
rDv(y) = Du(z) and one gets the original estimates for any 7.

We take f to be a continuous extension of f, namely let f € CY%¢(R") be such that
~ f in Bl
f= 0 inR™Bjyp
and supga. | f| < Csupg, |f|. Let

a(z) = f = ®(x) = a(n,s) J ) x—fg(/?T’)lQS dy. (3.104)
Then % € LL(R") n C2S+8~(R") (according to Lemmata 3.1.18 and 3.1.19) Thanks to Theorem 3.1.20,
we have that (—A)®a = f pointiwse in R™. Hence, thanks to the definition of f, (—A)®*(@¢ —u) =0 in
B;. Moreover, @ —u = @ in R™\B; and from Theorem 3.1.5 we have that in By

@) = | Py (3.105)

We notice at first that by definition (3.104) and passing to polar coordinates, we obtain for any positive

constant ¢ that
é+3/2

il (5.) < anssup |f] f 2V dp < o usup | f]. (3.106)
Rn 0 5

By renaming constants, we also have that

o= ulimm < [ la@IP@ oy [ )P dy
B2\B1 R\ B2

Il o (B, + 1 (3.107)

Cn,s sup | f| + 1.
B,

<
<
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Inserting the definition (3.9) and using for |y| = 2 the bounds |y — x| = |y|/2 and |y|? — 1 = |y|*/2 we
have that

|a(y)|
I <e(n,s) f dy
r\B, (|Y[? —1)%|z —y|"
rRe\B, [Y|"12*
We estimate the L! norm of @ as follows
. |a(y)]
il s ) = f
§(R™\B2) R\ B, |y|7+2s
. /(1))
< a(n,S)J 7] f T At | dy 3.108
R"\B, By |y — "7 ( )
<atmsyswplfl [ [ iy -y ae
R™ Bg/Q Rn\BQ
We use that |y — t| = |y|/4 and passing to polar coordinates we get that
e
|] 21 (®m\By) < @n,ssup | f] f p " tdp = anssup|f]. (3.109)
Rn 2 B

Hence

I <cpssuplf].
B,

It follows in (3.107) (eventually renaming the constants) that

|a — | pe By < cn,ssgplfl- (3.110)
1

By the triangle inequality, we have that
lul Lo sy < @l sy + @ —ulL=(s,)-
Hence by using (3.106) and (3.110) we obtain that

”u”L‘Z(Bl) < Cn,s Sllp |f|7
B,

that is the desired estimate (3.102), hence (3.100) after rescaling.
In order to prove (3.103), we take x € By, and obtain by the triangle inequality that
|[Du(z)| < |D(a — u)(z)| + |Du(z)|. (3.111)

We notice that in the next computations the constants may change value from line to line. By using
(3.105) and (3.99), for || < 1/2 (hence |y — x| = |y|/2) we obtain that

_ |u(y)|
D(t—u)(z)| < cns J —_—
| | e (9P — DTy
|u(y)
+ Cns S L
JR"\Bl (Jy[? = 1)*[y|n+1

= Cn,s(ll =+ 12)

We compute by passing to polar coordinates that

a(y) ~
oA dy < s || Lo (By) < Cnyssup | f
J-Bz\Bl (JyP = Dspy|» 7 = ™° (B2) X Cns B

according to (3.106). Moreover, for |y| = 2 we have that |y|* — 1 > |y|?/2 and so

|a(y)| j |[a(y)|
dy < dy < Qp,s SUP f
J]R"\BQ (Jyl> = 1)s[y[" Ro\B, [Y[**F" B 4

a (3.112)
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thanks to (3.108) and (3.109). Hence

Il § cn,s Sllp |f|
B

We split also integral I into two and by passing to polar coordinates, we get that

ja(v)] )
e dy < e,y < s sp f]
JBz\Bl (P =1yt Y S emslileegoy < en s

again by (3.106). Also, using definition (3.104) of @ and for |y| > 2 the fact that |y|? — 1 = |y|?/2, we

get
u(y)l 251 If(#)]
—————dy < a(n,s) ly| "= —————dt| dy.
fR”\BZ (Jy|* = 1)?[y|+! R"\Bs Bs)a |y — t|n—2s

We have that |y — t| = |y|/4 and obtain that

ja(y)|
MWLy <o, sup .
fRn\Bz (TP — 12yl S e

It follows that
Iy < cpssuplf].
B

Inserting the bounds on I; and I into (3.112), we finally obtain that
|D(@ — u)(z)| < cp s sup|f]. (3.113)
By
On the other hand, for s > 1/2, using (3.96) we get that
fy) 4,

|{,C _ y|n72s+1

Di(z) = a(n, ) f

B3z
and therefore by passing to polar coordinates
2

|D’l](.’L‘)| < Gn,s SEp|f| |-’L’-y|28_n_1 dy < Qn,s Sllp|f| p2‘9_2 dp
By BS/Q B1 0
= s sup|f].
B,

This and (3.113) finally allow us to conclude from (3.111) that
|Du(z)| < csup|f|
B,

for any x € B ,, therefore the bound in (3.103). From this after rescaling, we obtain the estimate in
(3.101). O

3.2.3. A proof of Schauder estimates. In this subsection we give a simple proof of some
Schauder estimates related to the fractional Laplacian, as stated in Theorem 3.2.1. As we see by
substituting in (3.90) and (3.91) that w(r) < Cr®, we obtain for s < 1/2

lu(z) = u(y)| < Cn,sd (”u”LD(R"\Bl) +sup | f| + (5a+2*"'_1> ,
By

hence u € C%2***(By5) as long as o < 1 — 2s and Lipschitz if & > 1 —2s. For s > 1/2 we have that

|Du(z) — Du(y)| < Cp,s0 (Iqu(Rn\Bl) +sup [ f] + 5“252) :
B
Hence if @ < 2 — 2s then u € C’LQHS*I(BUQ) while for 2 — 2s < a < 1 the derivative Du is Lipschitz
in By/p. The proof takes its inspiration from [149], where a similar result is proved for the classical
case of the Laplacian.
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We prove here the case s > 1/2, noting that for s < 1/2 the proof follows in the same way, using
the lower order estimates.

PRrROOF OF THEOREM 3.2.1. For k = 1,2,..., we denote by By := B,«(0), where p = 1/2 and let
uy, be a solution of

(=A)*uy = f(0) in By
Uy = U in R™\By.
Then we have that
(=A)*(uk —u) = f(0) = f in By
up —u =0 in R™\By.
We remark that in the next computations, the constants may change value from line to line.
Thanks to (3.100), we get that

lue = wlpr(By) < Cnsp™* sup|£(0) — /I
k

(3.114)
S Cnsp ksw(pk)
Using (3.101), we obtain that
[D(uk = W)L (Byy) S o™ Ew(p"). (3.115)
From here, sending k to infinity, for s > 1/2 it yields that
lim Duy(0) = Du(0). (3.116)
k—x :
Furthermore,
(—A)S(Ulc - Ulc+1) =0 in By
Up — Ug+1 = U — U in Bi\Bi+1
U — Uk4+1 = 0 in Rn\Bk,
hence from (3.97) we have that
ID(ur = ks 1)L (Byya) < Cnsp™ D sup - Jug —ul
Bi\Br 41
and
| D (ur, — wis1) | 2 (Brya) < Cnsp 2T sup  Jug — ul.
Bi\B+1
Using now (3.114), we get that
ID(ur = k1)L (Brsa) < €05 VFw(p") (3.117)
and
| D?(ur = wi1) | L (Bryn) S €n,sp> ™D w0 (). (3.118)
Let us fix s > 1/2. Then for any given point z near the origin we have that
|Du(z) — Du(0)| < |Dug(z) — Du(z)| + |Dug(0) — Du(0)| + | Dug(z) — Duy(0)] (3.110)

=A; + Ay + As.
For k € N* fixed, we take z such that p¥*2 < |2| < pF*1. Using (3.115) we get that
A1 < ensp @ Dhy(pb).
Taking into account (3.116) and using (3.117), we have that

o'}
(2s—1)j
Z |Du;(0) — Duj11(0)] < cns Z p ),
j=k j=k
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therefore by renaming the constants

(2s—1)k

A+ Ay <cpp w(p Zp(% 1%) o)

< ens Y, PPV w(p).

i=k

For the positive constant ¢s = (2s — 1)/ (p1’25 — 1) and any j = k,k + 1,... we have that

j—1

P
p(25—1)j _ CSJ, t25—2 dt.
09

Since w is a increasing function, we obtain that

Jj—1 Jj—1

) . . P
w(p)p®* VI = e w(p?) J 2572 dt < ¢ J w(t)t>* 2 dt,
pi pi
hence given that 8|z| > pF~!
=~ o ppi—l pF—1
2 @s=1ig(p7) < e, f w2 dt < cq J w(t)t>* =2 dt
=k =k ¥ 0
8|2|
< csf w(t)t* 2 dt.
0
Therefore,
8|z|
A+ Ay < e J w(t)t* 2 dt. (3.120)
0
Moreover, for j = 0,1,...,k — 1 we consider h; := u;j41 — u; and have that

k—1
A3 < ) |Dhy(2) = Dhy(0)] + | Dug(2) — Dug(0))-
=0

By the mean value theorem, there exists 6 € (0, |z|) such that
| Dhj(z) — Dh;(0)] < |2]|D*h; (0))]
and since |z| < pF*!, thanks to (3.118) we obtain that
|D?1(0)] < cnop*™DIw(p).

Hence

k=1 k=1 o

> 1D (2) = Dh;(0)] < enslzl Y p29w(p?) = e sl (sup |f] + S gy ).

j=0 7=0 B j=1

As previously done, we have that for the positive constant ¢ = (2—2s)/ (1 — p2_23) andj=1,...,k—1

Jj—1

p(2572)j _ CSJ’ t2573 dt
oI

and since w is increasing
p? !

w(p)p® I < e, J w(t)t 3 dt.

oI
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It follows that

k—1 p] 1 1
Z 2s=2)iy(p)) < ¢, ZJ w(t)th_Sdt<ch w3 dt

pkfl

1
< csf w(t)t? =3 dt,
|

since |z| < p*~L. Therefore,

k—1 1
1 IDhj(2) = Dhj(0)] < cnolz] | w(®)t* ™2 dt.
j=1 |=|

Moreover, let
vo(2) 1=k s f(O)(1 — |2]?)%.  for z € R™.
Then using the result in Subsection 2.1.4 (check there also the explicit value of k,, ;) we have in By
that (—A)%vo(x) = f(0). Then the function ug — vg is s-harmonic in By, with boundary data u. We
have that
| Duo(2) — Duo(0)] < |2[|D%u0(6)] < |2] (ID?(uo — v0) ()] + [D*vo (6)]) -
Using the estimate in (3.97) we have for 0 € (0, |z|)
| D?(uo — v0) (0)] < cns [ullLozmp,).
Moreover, |D?vg(6)] is bounded. It follows that
[Duo(2) = Duo(0)] < sl 2l |ul Lo @m\By)
hence
1
As < cn sl (sup [+l sy + f lw(t)t”‘*dt) :
B, z
Inserting this and (3.120) into (3.119) we finally obtain that

c|z|
|Du(z) — Du(0)] < Cn,s[IZI (IIUIIm(Rn\Bl) +sup|f|> +f w(t)t* 2 at
B, 0
1
+lzl | w()e?s? dt].
|2|

From this the conclusion plainly follows. This concludes the proof of the Theorem. O






CHAPTER 4

Extension problems

ABSTRACT. We discuss in this chapter an extension procedure for two integral (nonlocal) operators,
the fractional Laplacian and the Marchaud derivative. We present at first two applications for the
fractional Laplacian: the water wave model and a model related to crystal dislocations, making
clear how the extension problem appears in these models. We then discuss in detail this harmonic
extension problem via the Fourier transform. Furthermore, we prove that the (nonlocal) Marchaud
fractional derivative in R can be obtained from a parabolic extension problem with an extra (positive)
variable as the operator that maps the heat conduction equation to the Neumann condition. Some
properties of the fractional derivative are deduced from those of the local operator. In particular we
prove a Harnack inequality for Marchaud-stationary functions.

We dedicate this chapter to obtaining the fractional Laplacian and the Marchaud derivative
from an extension procedure, as the behavior on the trace of two local operators, defined in an
extra-dimension space. We present at first two applications, the water wave model and the Peierls-
Nabarro model related to crystal dislocations. We show that the extension operator related to the
half-Laplacian arises in the theory of water waves of irrotational, incompressible, inviscid fluids in the
small amplitude, long wave regime. The mathematical framework of crystal dislocation is related to
the Peierls-Nabarro model and in this context we obtain that at a macroscopic level, dislocations tend
to concentrate at single points, following the natural periodicity of the crystal. We then discuss' in
detail the extension problem via the Fourier transform. We conclude this chapter by discussing the
extension operator related to the Marchaud fractional derivative. As an application of this, we give a
proof of a Harnack inequality for Marchaud-stationary functions.

4.1. The harmonic extension of the fractional Laplacian

The harmonic extension of the fractional Laplacian in the framework considered here is due to Luis
Caffarelli and Luis Silvestre (we refer to [28] for details). We also recall that this extension procedure
was obtained by S. A. Mol¢anov and E. Ostrovskil in [116] by probabilistic methods (roughly speaking
“embedding” a long jump random walk in R™ into a classical random walk in one dimension more,
see Figure 4.1).

The idea of this extension procedure is that the nonlocal operator (—A)* acting on functions
defined on R™ may be reduced to a local operator, acting on functions defined in the higher-dimensional
half-space R’}rﬂ :=R" x (0,+00). Indeed, take U': Riﬂ — R solution to the equation

div(y1_2SVU(ac,y)) =0 in RYM
U(z,0) = u(z) in R™

(4.1)

'Though we do not develop this approach here, it is worth mentioning that extended problems arise naturally
also from the probabilistic interpretation described in Chapter 1. Roughly speaking, a stochastic process with jumps
in R™ can often be seen as the “trace” of a classical stochastic process in R™ x [0, +0) (i.e., each time that the classical
stochastic process in R™ X [0, 400) hits R™ x {0} it induces a jump process over R™). Similarly, stochastic process with
jumps may also be seen as classical processes at discrete, random, time steps.

107
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FI1GURE 4.1. The random walk with jumps in R™ can be seen as
a classical random walk in R™?t1

Then up to constants one has that

~ lim (yl_QsayU(x,y)> = (—A)*u(z).

y—0t

4.1.1. Water wave model. Let us consider the half space RZH =R" x (0, +00) endowed with
the coordinates x € R™ and y € (0, +o0). We show that the half-Laplacian (namely when s = 1/2)
arises when looking for a harmonic function in Riﬂ with given data on R™ x {y = 0}. Thus, let us
consider the following local Dirichlet-to-Neumann problem:

{AU -0 in R+,

U(x,0) = u(z) forzeR™

The function U is the harmonic extension of u, we write U = Fu, and define the operator L as
Lu(z) := —0,U(z,0). (4.2)

We claim that

L= V _Ama (43)

L% =—A,.

Indeed, by using the fact that E(Lu) = —0,U (that can be proved, for instance, by using the Poisson
kernel representation for the solution), we obtain that

L2u(z) = L(Lu)(z)

— 0yE(Lu)(x,0)

— 0y(— 0,U)(x,0)

(OyyU + AU — ALU) (2,0)
= AU(z,0) — Au(x)

= — Au(z),

in other words

which concludes the proof of (4.3).

One remark in the above calculation lies in the choice of the sign of the square root of the operator.
Namely, if we set Lu(z) := 0yU(z,0), the same computation as above would give that L£2=—-A.In
a sense, there is no surprise that a quadratic equation offers indeed two possible solutions. But a
natural question is how to choose the “right” one.

There are several reasons to justify the sign convention in (4.2). One reason is given by spectral
theory, that makes the (fractional) Laplacian a negative defined operator. Let us discuss a purely
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geometric justification, in the simpler n = 1-dimensional case. We wonder how the solution of the
problem

{(—A) u=1 in (-11), ”m
u=10 in R\(—1,1).
should look like in the extended variable y. First of all, by Maximum Principle (recall Theorems 2.1.7
and 2.1.8), we have that u is positive? when x € (—1,1) (since this is an s-superharmonic function,
with zero data outside).

Then the harmonic extension U in y > 0 of a function w which is positive in (—1, 1) and vanishes
outside (—1, 1) should have the shape of an elastic membrane over the halfplane Ri that is constrained
to the graph of u on the trace {y = 0}.

FIGURE 4.2. The harmonic extension

We give a picture of this function U in Figure 4.2. Notice from the picture that d,U(z,0) is negative,
for any z € (—1,1). Since (—A)*u(x) is positive, we deduce that, to make our picture consistent with
the maximum principle, we need to take the sign of £ opposite to that of d,U(x,0). This gives a
geometric justification of (4.2), which is only based on maximum principles (and on “how classical
harmonic functions look like”).

We show now that the operator £ arises in the theory of water waves of irrotational, incompress-

ible, inviscid fluids in the small amplitude, long wave regime.
Consider a particle moving in the sea, which is, for us, the space R™ x (0,1), where the bottom of
the sea is set at level 1 and the surface at level 0 (see Figure 4.3). The velocity of the particle is
v: R™ x (0,1) - R™ and we write v(z,y) = (va(,y),vy(z,y)), where v,: R™ x (0,1) — R™ is the
horizontal component and v, : R™ x (0,1) — R is the vertical component. We are interested in the
vertical velocity of the water at the surface of the sea.
In our model, the water is incompressible, thus div v = 0 in R™ x (0, 1). Furthermore, on the bottom
of sea (since water cannot penetrate into the sand), the velocity has only a non-null horizontal compo-
nent, hence v, (z,1) = 0. Also, in our model we assume that there are no vortices: at a mathematical
level, this gives that v is irrotational, thus we may write it as the gradient of a function U: R"*! — R.
This says that the vertical component of the velocity at the surface of the sea is v, (z,0) = 9,U(x,0).
We are led to the problem

AU =0 in R,

0,U(z,1)=0 inR", (4.5)

U(z,0) = u(x) in R".

2As a matter of fact, the solution of (4.4) is explicit and it is given by (1 — x2)%, up to dimensional constants
(see Section 2.1.4). See also [70] for a list of functions whose fractional Laplacian can be explicitly computed (unfortu-
nately, differently from the classical cases, explicit computations in the fractional setting are available only for very few
functions).
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reR"

FIGURE 4.3. The water waves model

Let L be, as before, the operator Lu(z) := —0,U(z,0). We solve the problem (4.5) by using the
Fourier transform and, up to a normalization factor, we obtain that

gl _ e—l€]
R e N
Lu=7F <|’5|e§| t e el “(5))'
Notice that for large frequencies &, this operator is asymptotic to the square root of the Laplacian:

Lu~ ]—'1<|§|ﬁ(§)> = V—Au.

The operator £ in the two-dimensional case has an interesting property, that is in analogy to a
conjecture of De Giorgi (the forthcoming Section 6.2 will give further details about it): more precisely,
one considers entire, bounded, smooth, monotone solutions of the equation Lu = f(u) for given f,
and proves that the solution only depends on one variable. More precisely:

THEOREM 4.1.1. Let f € C1(R) and u be a bounded smooth solution of
{ﬁu = f(u) in R2

Ozt > 0 in R2.
Then there exist a direction w € S* and a function ug: R — R such that, for any x € R?,
u(x) = ug(z - w).

See Corollary 2 in [51] for a proof of Theorem 4.1.1 and to Theorem 1 in [51] for a more general
result (in higher dimension).

4.1.2. Crystal dislocation. A crystal is a material whose atoms are displayed in a regular way.
Due to some impurities in the material or to an external stress, some atoms may move from their rest
positions. The system reacts to small modifications by pushing back towards the equilibrium. Never-
theless, slightly larger modifications may lead to plastic deformations. Indeed, if an atom dislocation
is of the order of the periodicity size of the crystal, it can be perfectly compatible with the behavior
of the material at a large scale, and it can lead to a permanent modification.

Suitably superposed atom dislocations may also produce macroscopic deformations of the material,
and the atom dislocations may be moved by a suitable external force, which may be more effective if
it happens to be compatible with the periodic structure of the crystal.

These simple considerations may be framed into a mathematical setting, and they also have
concrete applications in many industrial branches (for instance, in the production of a soda can, in
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order to change the shape of an aluminium sheet, it is reasonable to believe that applying the right
force to it can be simpler and less expensive than melting the metal).

It is also quite popular (see e.g. [104]) to describe the atom dislocation motion in crystals in
analogy with the movement of caterpillar (roughly speaking, it is less expensive for the caterpillar to
produce a defect in the alignment of its body and to dislocate this displacement, rather then rigidly
translating his body on the ground).

The mathematical framework of crystal dislocation presented here is related to the Peierls-Nabarro
model, that is a hybrid model in which a discrete dislocation occurring along a slide line is incorporated
in a continuum medium. The total energy in the Peierls-Nabarro model combines the elastic energy
of the material in reaction to the single dislocations, and the potential energy of the misfit along the
glide plane. The main result is that, at a macroscopic level, dislocations tend to concentrate at single
points, following the natural periodicity of the crystal.

o [ [ J [ [ [
] [ J (] [ ] [ ] ®
[ [ ® C—@ ® [ ]
[ J [ ] [ J [ o [ ]

[ ] [ ] [ J [ [ ] [

FIGURE 4.4. Crystal dislocation

To introduce a mathematical framework for crystal dislocation, first, we “slice” the crystal with a
plane. The mathematical setting will be then, by symmetry arguments, the half-plane Ri = {(z,y) €
R2 s.t. y > 0} and the glide line will be the x-axis. In a crystalline structure, the atoms display
periodically. Namely, the atoms on the z-axis have the preference of occupying integer sites. If atoms
move out of their rest position due to a misfit, the material will have an elastic reaction, trying
to restore the crystalline configuration. The tendency is to move back the atoms to their original
positions, or to recreate, by translations, the natural periodic configuration. This effect may be
modeled by defining v%(x) := v(z,0) to be the discrepancy between the position of the atom x and
its rest position. Then, the misfit energy is

M) = JR W(vo(x)) dz, (4.6)

where W is a smooth periodic potential, normalized in such a way that W(u+1) = W(u) for any u € R
and 0 = W(0) < W(u) for any u € (0,1). We also assume that the minimum of W is nondegenerate,
ie. W”(0) > 0.

We consider the dislocation function v(z,y) on the half-plane R . The elastic energy of this model

is given by
1
E(v) = ifR

The total energy of the system is therefore
1

Fw)i= ) + M) = 3 |

R

2
Vou(z, y)‘ dx dy. (4.7

2
+

Vou(z, y)‘2 dx dy + J W(v(x, 0)) dx. (4.8)

2
2 R
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Namely, the total energy of the system is the superposition of the energy in (4.6), which tends to settle
all the atoms in their rest position (or in another position equivalent to it from the point of view of
the periodic crystal), and the energy in (4.7), which is the elastic energy of the material itself.

Notice that some approximations have been performed in this construction. For instance, the atom
dislocation changes the structure of the crystal itself: to write (4.6), one is making the assumption
that the dislocations of the single atoms do not destroy the periodicity of the crystal at a large scale,
and it is indeed this “permanent” periodic structure that produces the potential W.

Moreover, in (4.7), we are supposing that a “horizontal” atom displacement along the line {y = 0}
causes a horizontal displacement at {y = €} as well. Of course, in real life, if an atom at {y = 0} moves,
say, to the right, an atom at level {y = €} is dragged to the right as well, but also slightly downwards
towards the slip line {y = 0}. Thus, in (4.7) we are neglecting this “vertical” displacement. This
approximation is nevertheless reasonable since, on the one hand, one expects the vertical displacement
to be negligible with respect to the horizontal one and, on the other hand, the vertical periodic
structure of the crystal tends to avoid vertical displacements of the atoms outside the periodicity
range (from the mathematical point of view, we notice that taking into account vertical displacements
would make the dislocation function vectorial, which would produce a system of equations, rather
than one single equation for the system).

Also, the initial assumption of slicing the crystal is based on some degree of simplification, since
this comes to studying dislocation curves in spaces which are “transversal” to the slice plane.

In any case, we will take these (reasonable, after all) simplifying assumptions for granted, we
will study their mathematical consequences and see how the results obtained agree with the physical
experience.

To find the Euler-Lagrange equation associated to (4.8), let us consider a perturbation ¢ €
Ci (R?), with ¢(x) := ¢(x,0) and let v be a minimizer. Then

d
E./—"(U +€¢)) .

= ()’
=0
which gives

Vv -Vodrdy + f W'(v%)pdx = 0.

R2 R

Consider at first the case in which suppp n dR% = ¢, thus ¢ = 0. By the Divergence Theorem we
obtain that

¢Avdrdy =0 for any ¢ € Cf (R?),
®

thus Av =0 in R%. If suppg n dR% s F then we have that

0= f div(¢Vo) dz dy + f W' (v°)p dx

J ¢— dx + J, W (v°) dx

—J —d;v—i—JW' Yo dx

for an arbitrary ¢ € C§°(R) therefore @(:17, 0) = W' (v°(z)) for 2 € R. Hence the critical points of F

0y
are solutions of the problem
Av(z,y) =0 forx e R and y > 0,
v(z,0) = v%(2) for z € R,

oyv(x,0) =W’ (v(x, 0)) for z e R
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and up to a normalization constant, recalling (4.2) and (4.3), we have that
—v=Av(z,0) = W' (v(x,0)), for any z € R.
The corresponding parabolic evolution equation is d;v(x,0) = —/—Av(z,0) — W’ (v(z,0)).

After this discussion, one is lead to consider the more general case of the fractional Laplacian
(—A)® for any s € (0,1) (not only the half Laplacian), and the corresponding parabolic equation

o =—(—A)’v—W'(v)+o

where o is a (small) external stress.
If we take the lattice of size € and rescale v and o as

t oz 2 t
'Ue(t7l') = ’U<61+2S76> and g =& U(M, €>7

then the rescaled function satisfies
1 1
atve = E( - (_A)Sve - GKWI(’UE) + J) in (07 +OO) xR (49)
with the initial condition

v(0,2) = v2(x) for = € R.

To suitably choose the initial condition v?,

solution of the problem

we introduce the basic layer® solution u, that is, the unique

—(=A)*u(x) = W' (u) inR, (4.10)
u' >0 and u(—o0) = 0,u(0) = 1/2, u(+00) = 1. ’
For the existence of such solution and its main properties see [120] and [23]. Furthermore, the solution
decays polynomially at +oo0 (see [61] and [58]), namely
1 x c
u(z) — H(z) + S5 (0) 2] < P for any x € R", (4.11)

where ¥ > 2s and H is the Heaviside step function

1, z=20
H(x):{o 2 <0

We take the initial condition in (4.9) to be the superposition of transitions all occurring with the same

orientation, i.e. we set
T —x;
W” o(0,2) + Z ( ) (4.12)

ve(,0) :=

where 29, ...,2%, are N fixed points.

The main result in this setting is that the solution v, approaches, as ¢ — 0, the superposition of step

functions. The discontinuities of the limit function occur at some points (ml (t))i=1 ~ which move

accordingly to the following” dynamical system

i .
=7 o(t,x;) + . ) in (0, +00),
< JZ:# 2s|xz — xj|?s+L (4.13)

2;(0) = 29

7

3As a matter of fact, the solution of (4.10) coincides with the one of a one-dimensional fractional Allen-Cahn
equation, that will be discussed in further detail in the forthcoming Section 6.1.
4 The system of ordinary differential equations in (4.13) has been extensively studied in [83].
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e i |
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‘Tl _’L‘Q x3 ‘/L‘N

FIGURE 4.5. The initial datum when ¢ — 0

where

v = <JR(u')2> _1. (4.14)

More precisely, the main result obtained here is the following.

THEOREM 4.1.2. There exists a unique viscosity solution of

1 S 1 ! .
Ove = - ( - (=A)*ve — e@W (ve) + a) in (0, +00) x R,
62 Xr — IO

s N
ve(O,z)zma(O,x)—i-iZlu( ; Z) forxeR

such that

B

Il
fat

li_r)r(l) ve(t,z) = )y H(z—z(t)), (4.15)

(2

where (x;(t)), is solution to (4.13).

=1,..,.N

s

1 1 1
We refer to [92] for the case s = 2 to [61] for the case s > 2 and [58] for the case s < 5 (in

these papers, it is also carefully stated in which sense the limit in (4.15) holds true).
We would like to give now a formal (not rigorous) justification of the ODE system in (4.13) that
drives the motion of the transition layers.

JUSTIFICATION OF ODE SYSTEM (4.13). We assume for simplicity that the external stress o is
null. We use the notation ~ to denote the equality up to negligible terms in €. Also, we denote

u(t, ) = u<r—x(t>>

€

and, with a slight abuse of notation

€

Uit z) = u<x_m(t))
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By (4.11) we have that the layer solution is approximated by

w(t ) ~ z—z(t)) e (x — zi(t))
z(t7 )_H( € ) 2SVV”(O)|I_xi(t)|1+25' (416)

We use the assumption that the solution v, is well approximated by the sum of N transitions and

write
ve(t,m)zz:ui(t,m (x—xz )

o) = —% DI

i=1

Mz

For that

and, since the basic layer solution u is the solution of (4.10), we have that

— i You(t,x) = Ti (ac%xz(t))

)
N

— 2 1
DN (“ )=

Now, returning to the parabolic equation (4.9) we have that

N
_ 72 (t,z)Z;(t) = o <Z W' (us(t, x)) —W’(Zui(t,m))) (4.17)

Fix an integer k between 1 and N, multiply (4.17) by u} (¢, z) and integrate over R. We obtain

_,2% f (¢, )l (¢, @) do
_ 6251+1 <ZJ W (us(t, 7)) (1, ) d:c—f W’(iui(t,x))ug(t,x) dm).

R i=1

N
W' (ui(t,z)).
1

i=

(4.18)

We compute the left hand side of (4.18). First, we take the k' term of the sum (i.e. we consider the
case i@ = k). By using the change of variables

y = I%x’“(t) (4.19)
we have that
1. 9 1. of @ — xp(t)
——2(t) | (u))?(t,x)de = — =2%(t) | (u') dx
ek JR k ek J]R ( € ?t) (4.20)
- =) [ WP dy =0,

where v is defined by (4.14).
Then, we consider the i*" term of the sum on the left hand side of (4.18). By performing again the
substitution (4.19), we see that this term is

_%x-i(t) JR Wbt D)l (t, x) do = — %aéi(t) fR u/<x —ji(t))u'<$ - fk(t)) d
= —Z(t) JRU'<y+ M)tﬂ(y) dy
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g (t) — x;(t

where, for the last equivalence we have used that for € small, v’ (y + ( )> is asymptotic to

W/ (+00) = 0.

We consider the first member on the right hand side of the identity (4.18), and, as before, take
the k"' term of the sum. We do the substitution (4.19) and have that

€

% f W (ur(t, ) (¢, @) dx = f W’ (u(y))u' (y) dy

—W(1)—W(0)=0

— 0

=W (u(y))

by the periodicity of W. Now we use (4.16), the periodicity of W’ and we perform a Taylor expansion,
noticing that W’ (0) = 0. We see that

ui(t,z)) =~ W' z —mi(t) _ eQS(I—sz‘(t))
W' (ui(t, z)) ~ W (H( ¢ ) 2sW”(0)Ix—xz‘(t)|1+28)

ol €2 (z — x;(t))
_W/< %Wﬂmh—xﬁﬂH%>
N —€e% (x — x;(t))

B 23|:)3 — xi(t)|1+25.

Therefore, the i*" term of the sum on the right hand side of the identity (4.18) for i # k, by using the
above approximation and doing one more time the substitution (4.19), for € small becomes

€2 (z — (1)) w(x—mﬂﬂ>dx

)|1+23 €

L e a - -1 |

€ Jr 2s|a — (¢

_ €28 (ey + zi(t) — a:z(t)) y
B J]R 28|6y—|—xk(t) _xi(t)|1+28 (y) dy
e (z1(t) — z(1)) y

2S|xk(t) — $i(t)|1+2g f (y) dy
_ €28 (mk(t) - {Ei(t)) .

28|J;k(t) _ xi(t)|1+28

(4.21)

We also observe that, for € small, the second member on the right hand side of the identity (4.18), by
using the change of variables (4.19), reads

N

A GO U

i=1

= % jR w’ (uk(t, x) + ;Ui(t; f))“;g(tv z)dx
= [+ Do+ 2O=20) )

i#k

() — xi(t)

For e small, u(y + Tk
€
for z; < x;. By using the periodicity of W, it follows that

is asymptotic either to u(+00) = 1 for xp > x;, or to u(—ow) = 0

N

%JR W’(Z ui(t,x))ug(tm) dr = J

W (u(w) ) (y) dy = W (1) = W(0) =0,
i=1 R
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again by the asymptotic behavior of u. Concluding, by inserting the results (4.20) and (4.21) into
(4.18) we get that

Ty (t) _ zy(t) — ()
TG 2| — )]
which ends the justification of the system (4.13). |

We recall that, till now, in Theorem 4.1.2 we considered the initial data as a superposition of
transitions all occurring with the same orientation (see (4.12)), i.e. the initial dislocation is a monotone
function (all the atoms are initially moved to the right).

Of course, for concrete applications, it is interesting to consider also the case in which the atoms
may dislocate in both directions, i.e. the transitions can occur with different orientations (the atoms
may be initially displaced to the left or to the right of their equilibrium position).

To model the different orientations of the dislocations, we introduce a parameter &; € {—1,1}
(roughly speaking &; = 1 corresponds to a dislocation to the right and & = —1 to a dislocation to the
left).

The main result in this case is the following (see [121]):

THEOREM 4.1.3. There exists a viscosity solution of

1 . ‘
Orve = p ( - (—A) )+ 0€> in (0,4+00) x R,

E(O,x)—W” o(0,z) +Z < ) forzeR
such that
N
hmv6 (t, ) ZH(& x—xl(t)))
i=1
where (acz-(t))iz1 18 solution to
. -z .
i = — ol + 3 &g frt) i 04),
( ; ’2s Ix ;[ +t (4.22)
2;(0) = 9.

We observe that Theorem 4.1.3 reduces to Theorem 4.1.2 when & = --- = &, = 1. In fact, the case
discussed in Theorem 4.1.3 is richer than the one in Theorem 4.1.2, since, in the case of different initial
orientations, collisions can occur, i.e. it may happen that z;(T.) = x;+1(T.) for some i € {1,..., N—1}
at a collision time T.

For instance, in the case N = 2, for & = 1 and & = —1 (two initial dislocations with different
orientations) we have that

91+25
ifo<0thenT, < ———,
(25 + 1)y
91+28
if 6y < ( f)_Tls then T, < %o

Y(1 = 2sbo]oc)’

where 6 := 29— is the initial distance between the dislocated atoms. That is, if either the external
force has the right sign, or the initial distance is suitably small with respect to the external force,
then the dislocation time is finite, and collisions occur in a finite time (on the other hand, when these
conditions are violated, there are examples in which collisions do not occur).

This and more general cases of collisions, with precise estimates on the collision times, are discussed
in detail in [121].

An interesting feature of the system is that the dislocation function v. does not annihilate at the
collision time. More precisely, in the appropriate scale, we have that v, at the collision time vanishes
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outside the collision points, but it still preserves a non-negligible asymptotic contribution exactly at
the collision points. A formal statement is the following (see [121]):

THEOREM 4.1.4. Let N = 2 and assume that a collision occurs. Let x. be the collision point,
namely . = ©1(T.) = x2(T.). Then

lim limo.(t,z) =0 for any x # z, (4.23)
t—T.e—0
but
limsup v. (¢, x.) = 1. (4.24)
t—T,.
e—0

Formulas (4.23) and (4.24) describe what happens in the crystal at the collision time. On the one
hand, formula (4.23) states that at any point that is not the collision point and at a large scale, the
system relaxes at the collision time. On the other hand, formula (4.24) states that the behavior at the
collision points at the collision time is quite “singular”. Namely, the system does not relax immediately
(in the appropriate scale). As a matter of fact, in related numerical simulations (see e.g. [1]) one may
notice that the dislocation function may persists after collision and, in higher dimensions, further
collisions may change the topology of the dislocation curves.

What happens is that a slightly larger time is needed before the system relaxes exponentially
fast: a detailed description of this relaxation phenomenon is presented in [122]. For instance, in the
case N = 2, the dislocation function decays to zero exponentially fast, slightly after collision, as given
by the following result:

THEOREM 4.1.5. Let N =2, & =1, & = —1, and let v. be the solution given by Theorem 4.1.3,
with 0 = 0. Then there exist ¢ >0, ¢ > 0, T. > T, and p. > 0 satisfying

lim 7T, =T,
e—0
and lim o, =0
e—0
such that for any € < eg we have
Te—
[ve(t, z)| < geece2s+t1 , foranyxeR andt>=T.. (4.25)

The estimate in (4.25) states, roughly speaking, that at a suitable time T, (only slightly bigger
than the collision time 7.) the dislocation function gets below a small threshold p., and later it decays
exponentially fast (the constant of this exponential becomes large when € is small).

The reader may compare Theorem 4.1.4 and 4.1.5 and notice that different asymptotics are
considered by the two results. A result similar to Theorem 4.1.5 holds for a larger number of dislocated
atoms. For instance, in the case of three atoms with alternate dislocations, one has that, slightly after
collision, the dislocation function decays exponentially fast to the basic layer solution. More precisely
(see again [122]), we have that:

THEOREM 4.1.6. Let N = 3, & = &3 =1, & = —1, and let v, be the solution given by Theo-
rem 4.1.3, with o = 0. Then there exist g >0, ¢ > 0, T}, T? > T, and p. > 0 satisfying

lim 7' = lim 7?2 = T,

e—0 e—0
and lim g, =0
e—0

and points §. and Z. satisfying
lim |Z. — 3| =0
e—0

such that for any € < eg we have

T — e _et=Th 1
ve(t,z) <u + pce” EFL foranyzeR andt > T, (4.26)
€
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and

T — Z _e(t=T2) 5
ve(t,x) = u ; — Q€T TFT foranyzeR andt > T, (4.27)

where u is the basic layer solution introduced in (4.10).

Roughly speaking, formulas (4.26) and (4.27) say that for times T}, T2 just slightly bigger than the
collision time T, the dislocation function v, gets trapped between two basic layer solutions (centered
at points 7. and Z.), up to a small error. The error gets eventually to zero, exponentially fast in time,
and the two basic layer solutions which trap v. get closer and closer to each other as € goes to zero
(that is, the distance between g, and Z. goes to zero with ).

We refer once more to [122] for a series of figures describing in details the results of Theorems 4.1.5
and 4.1.6. We observe that the results presented in Theorems 4.1.2, 4.1.3, 4.1.4, 4.1.5 and 4.1.6
describe the crystal at different space and time scale. As a matter of fact, the mathematical study
of a crystal typically goes from an atomic description (such as a classical discrete model presented
by Frenkel-Kontorova and Prandtl-Tomlinson) to a macroscopic scale in which a plastic deformation
occurs.

In the theory discussed here, we join this atomic and macroscopic scales by a series of intermediate
scales, such as a microscopic scale, in which the Peierls-Nabarro model is introduced, a mesoscopic
scale, in which we studied the dynamics of the dislocations (in particular, Theorems 4.1.2 and 4.1.3), in
order to obtain at the end a macroscopic theory leading to the relaxation of the model to a permanent
deformation (as given in Theorems 4.1.5 and 4.1.6 , while Theorem 4.1.4 somehow describes the further
intermediate features between these schematic scalings).

4.1.3. An approach to the extension problem via the Fourier transform. We will discuss
here the extension operator of the fractional Laplacian via the Fourier transform approach (see [28]
and [142] for other approaches and further results and also [84], in which a different extension formula
is obtained in the framework of the Heisenberg groups).

We fix at first a few pieces of notation. We denote points in RTFI :=R" x (0, +00) as X = (z,y),
with # € R and y > 0. When taking gradients in R%*!, we write V = (V,,d,), where V, is the
gradient in R™. Also, in RT’l, we will often take the Fourier transform in the variable x only, for
fixed y > 0. We also set

a:=1-2s€e(-1,1).
We will consider the fractional Sobolev space H* (R™) defined as the set of functions u that satisfy

lullL2®ny + [U]le < +o0,

o = \/ |RGREGIRS

For any u € W, ((0, +00)), we consider the functional

G(u) = LM t“(|u(t)|2 + |u’(t)|2) dt. (4.28)

where

By Theorem 4 of [138], we know that the functional G attains its minimum among all the functions u €
W0, +00)) n CO([0, +0)) with u(0) = 1. We call g such minimizer and
Cy:=Glg) = min G(u). (4.29)
ueW ot ((0,420))ACO([0,4))
u(0)=1

The main result of this subsection is the following.

THEOREM 4.1.7. Let u € S(R™) and let
U, y) = F (&) g(1€ly) ) (4.30)
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Then
div (y*VU) =0 (4.31)
for any X = (x,y) € R, In addition,

—y*o,U = Cy(—A)*u (4.32)
{y=0}
in R™, both in the sense of distributions and as a pointwise limit.

In order to prove Theorem 4.1.7, we need to make some preliminary computations. At first, let
us recall a few useful properties of the minimizer function g of the operator G introduced in (4.28).
We know from formula (4.5) in [138] that

0<g<1, (4.33)
and from formula (2.6) in [138] that
J <. (431)
We also cite formula (4.3) in [138], according to which g is a solution of
g"(t) +at™lg'(t) = g(t) (4.35)
for any ¢t > 0, and formula (4.4) in [138], according to which
lim t%g'(t) = —Cs. 4.36
Jim 2%4'(2) : (4.36)

Now, for any V e W2 (R we set

loc
V], = J Yo [TV (X)]? dX.
Ry

Notice that [V], is well defined (possibly infinite) on such space. Also, one can compute [V], explicitly
in the following interesting case:

LEMMA 4.1.8. Let ¢ € S(R™) and

Ula,y) = F~ (40 9(1€ly) ). (4.37)
Then
[UT: = Cy [V]e- (4.38)

PRrROOF. By (4.33), for any fixed y > 0, the function & — 1(€) g(|¢]y) belongs to L?(R™), and so
we may consider its (inverse) Fourier transform. This says that the definition of U is well posed.
By the inverse Fourier transform definition (A.1), we have that

VaU(w.y) = Va | 0 g(iEly) e'"t dg
= | iew© alet) < ae
= 7 (i€0(©)g(I€ly) ) (=),

Thus, by Plancherel Theorem,

f VU (e, y) P do = f () gl de.
RWV RW,
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Integrating over y > 0, we obtain that

o0
[ Lrwucopax - | |§|2|w(5)|2[j y“|g<|§|y)|2dy] ¢
Ri“ R 0

- [ ol [Lmtﬂg(wfdt] e

(4.39)
i a 2 2s 2
— [P | o de
0 Rn
+ )
=Méj t]g(t)]" dt.
0
Let us now prove that the following identity is well posed
0,U(w,y) = F~ (1€l w(€) g'(€ly)). (4.40)
For this, we observe that
lg'(t)] < Cyt=*. (4.41)
To check this, we define y(t) := ¢t |¢’(¢)|. From (4.34) and (4.35), we obtain that
d - a
V(1) = =2 ("' () = " (¢"(t) +at ™' g (1)) = —t"g(t) < 0.

Hence
. _ . al ! —
7(#) < lim 4(7) = lim 7%g'(r)] = Gy,

where formula (4.36) was used in the last identity, and this establishes (4.41).
From (4.41) we have that [£][¢(€)] ¢ (|¢]y)| < Cay™ €)1 [¥(€)] € L2(R™), and so (4.40) follows.
Therefore, by (4.40) and the Plancherel Theorem,

f 10,U (2, y)? de = f P 1) |9 (el de.
Rn R™

Integrating over y > 0 we obtain

+oC
T G R I
Ry R" 0
+o0
~ [ el [ el ol g
R~ 0
T+
=f t“lg’(t)lzdt-f 6P [ ()| dg
0 R~

= [y]% fo "y 0.

By summing this with (4.39), and recalling (4.29), we obtain the desired result [U]? = Cy [¢]4. This
concludes the proof of the Lemma. O

Now, given u € L{ _(R™), we consider the space X,, of all the functions V € W&)Cl (R such that,

loc
for any « € R, the map y — V(z,y) is in C°([0, +00)), with V(z,0) = u(z) for any z € R". Then
the problem of minimizing [ -], over X, has a somehow explicit solution.

LEMMA 4.1.9. Assume that u e S(R™). Then

min [VI2 = (U2 = G [al3, (142

Ua,y) = F (&) g(l€ly) ) (4.43)
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PROOF. We remark that (4.43) is simply (4.37) with ¢ := @, and by Lemma 4.1.8 we have that
(U2 = Cylule

Furthermore, we claim that
Ue X,. (4.44)

In order to prove this, we first observe that
C |T28 _ t28|
9(T) = g(t)] < 5 ——.

To check this, without loss of generality, we may suppose that 7" > ¢ > 0. Hence, by (4.34) and (4.41),

ij (Tlfa _ tlfa)
1—a

(4.45)

)

T T
19(T) — g(t)] < f 19/ (")] dr < Gy j oy =

that is (4.45).
Then, by (4.45), for any y, § € (0, 4+00), we see that

Celely™ ~ 57
2s '

l9(lély) - 911 )| <
Accordingly,

Ue0) = U] = 7 (360 (sl ) - alel ) )
< | [5© (sticln) —ots1) | a¢

2s _ ~2s
< Glv™ — 7]

2s |5
g | e

and this implies (4.44).
Thanks to (4.44) and (4.38), in order to complete the proof of (4.42), it suffices to show that, for
any V € X, we have that
V]2 = [U]2. (4.46)
To prove this, let us take V' € X,,. Without loss of generality, since [U], < 400 thanks to (4.38), we
may suppose that [V], < 4+00. Hence, fixed a.e. y > 0, we have that

v [ VPl <yt [ V@R de < 4o,
R™ Rn
hence the map x € |V, V (x,y)| belongs to L?(R™). Therefore, by Plancherel Theorem,
2
| wveppd = [FEvE@E)] @ (447

Now using the Fourier transform definition (see (A.1))

F(VaV(zy)(€) = fRn ViV (a,y) e da = f gV (w,y) e da = i€ F(V(2,9))(9),

n

hence (4.47) becomes

L wvepP s = | e EV @) ©F (4.48)

On the other hand
F(0,V(2,9))(§) = 0, F (V(2,9))(€)
and thus, by Plancherel Theorem,

| veara = [ Fevem©Fe= [ ar e o e
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We sum up this latter result with identity (4.48) and we use the notation ¢(¢,y) := F(V(z,y))(§) to
conclude that

| V@ = [ 1R ol + 1000 0 de (4.49)
Accordingly, integrating over y > 0, we deduce that
W= [ o (168 ol& ) + 13,006 ) de dy (4.50)
Ry

Let us first consider the integration over y, for any fixed £ € R™\{0}, that we now omit from the
notation when this does not generate any confusion. We set h(y) := ¢(&, |¢| 'y). We have that h'(y) =
€17 0, 0(&, |€] y) and therefore, using the substitution ¢ = |¢|y, we obtain

+o
| (1 0.0 + o0t 0 ) v
0

+c
— g | e ol lel 0P +Iel o0t ko) d

0 (4.51)
+o
=g | e (hoR + o) d
0
= [€]** G(h).
Now, for any A € R, we show that
min w(0) = AG(w) = \? Cy. (4.52)

weW L ((0,450)) nCO([0,+00))

Indeed, when A = 0, the trivial function is an allowed competitor and G(0) = 0, which gives (4.52) in
this case. If, on the other hand, A # 0, given w as above with w(0) = A we set wy(x) := \"tw(z).
Hence we see that wy(0) = 1 and thus G(w) = A\? G(wy) < AN G(g) = A2 Cy, due to the minimality
of g. This proves (4.52). From (4.52) and the fact that

h(0) = ¢(€,0) = F(V(2,0)) (&) = a(&),
we obtain that
G(h) = Cylu(€)
As a consequence, we get from (4.51) that

o a 2 2 2 2s |~0ey|2
| (P ot + oot v > el o)

Integrating over £ € R™\{0} we obtain that

[ (1 ot + oot ) dedy = G la.

| 2

Hence, by (4.50),

which proves (4.46), and so (4.42). O
We can now prove the main result of this subsection.

PROOF OF THEOREM 4.1.7. Formula (4.31) follows from the minimality property in (4.42), by
writing that [U]? < [U + ep]? for any ¢ smooth and compactly supported inside Rff’l and any € € R.
Now we take ¢ € C3°(R™) (notice that its support may now hit {y = 0}). We define u. := u + €y,
and U, as in (4.30), with @ replaced by @, (notice that (4.30) is nothing but (4.43)), hence we will be
able to exploit Lemma 4.1.9.
We also set

pu(@,y) = FH (50 g(ly) )
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We observe that

pul@,0) = F7(3(8) 9(0)) = F7H(89)) = (@) (4.53)
and that

U= U+eF (39 g(lely) = U+ epu.

As a consequence

(U2 = [Uels + 2ef L YIVU - Ver dX +ofe).

-

Hence, using (4.31), (4.53) and the Divergence {’heorem,

UL = U +2 |

=[U)? - 2¢ fR o 0 y*oy,U dz + o(e).

div (ap* y“VXU) dX + o(e)
n+1
+ (4.54)

Moreover, from Plancherel Theorem, and the fact that the image of ¢ is in the reals,

[6.)% = [A]c + 2¢ j I€1240(€) B(E) dE + o(e)

n

= [ia +2¢ | F7(|€**0(9) (@) (@) da + o(¢)

Rn

— [A]e +2¢ f (—A) u(z) o(x) dz + ofe).

n

By comparing this with (4.54) and recalling (4.42) we obtain that

VR =2 puaUdstold) = [0 = Giucls
R x {0}

— Gy[]e +2C4e f (—A) () o(x) dz + o(e)

n

=[U)? + ZCﬁeJ, (=AY’ updr + oe)

n

and so
—f e y*o,Udx = C’ﬁJ, (=A)Y’ud,
R"X{O} n

for any ¢ € C§°(R™), that is the distributional formulation of (4.32).
Furthermore, by (4.30), we have that

y“0,U(x,y) = F (1€l a(€) v 9(I¢ly)) = F (el () (Igl)* g(lgly))-
Hence, by (4.36), we obtain
lim y*0,U(z,y) = - GF ! (Il ae))
- G F (Ief* o))
= — (=A)u(z),
that is the pointwise limit formulation of (4.32). This concludes the proof of Theorem 4.1.7. O
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4.2. An extension problem for the fractional derivative defined by Marchaud

The purpose of this Section is to introduce an extension operator for the fractional derivative
introduced by Marchaud and to prove a Harnack inequality for stationary functions (in the sense of
Marchaud).

The left and the right Marchaud fractional derivative of order s € (0,1) (see [127], formulas 5.57 and
5.58) are respectively defined as follows:

5 T i) - fEFT)
I(1-s) Jg Tlts

S () = dr. (4.55)

These fractional derivatives are well defined when f is a bounded, locally Holder continuous function
in R. Indeed, we assume that® f € C7(R), for s <4 < 1 and f € L*(R). In addition, we just recall
here that the Marchaud derivative can be defined for s € (0,n) and n € N, as

(s} f 719(t) — Bt F )
I~ {s) T

where [s] and {s} denote, respectively, the integer and the fractional part of s. Our work focuses on
the case n = 1 and, in the first part of the paper, on the left fractional derivative, that we can write
using a change of variable, neglecting the constant and omitting for simplicity the subscript symbol

+, as:
D f(t) J )= ft=7) dr = t MdT. (4.56)

7—erl o (t _ 7—)erl

1ft) = dr,

We consider (4.56) as the definition of our fractional derivative without taking care of what happens
when s — 07 or s — 1. We just remark that Di¢ — ¢ as s — 0" and Dip — ¢ as s — 1.
Indeed, as s — 0% or s — 17, the integral term in (4.55) does not converge but one is able to pass to
the limit using the constant term (which, in those cases, plays a fundamental role).

The operator D® naturally arises when dealing with a family of singular/degenerate parabolic
problems (which, for s = 1/2, reduces to the heat conduction problem) on the positive half-plane,
with a positive space variable and for all times, namely for (z,t) € [0,00) x R.

In order to construct this extension operator, we exploit the idea recently revisited in [28]. In that
paper, the fractional Laplacian was characterized via an extension procedure, by means of a degenerate
second order elliptic local operator.

Considering the function ¢ of one variable, formally representing the time variable, our approach
relies on constructing a parabolic local operator by adding an extra variable, say the space variable,
on the positive half-line, and working on the extended plane [0, 00) x R.

The heuristic argument can be described in the simplest case s = 1/2 as follows. Let ¢ : R > R
be a “good” function and U be a solution of the problem

ou  *U

o = IR ($7t)
U0,t) = p(t), teR.

€ (0,00) xR (4.57)

We point out that this is not the usual Cauchy problem for the heat operator, but a heat conduction
problem.

It is known that, without extra assumptions, we can not expect to have a unique solution of the
problem (4.57), see [143], Chapter 3.3. Nevertheless, if we denote by T}/, the operator that associates

5Indeed7 we have that

Oy — ft—7
[ TOSCD o <opftns) [ = Wlorce [ 77 dr <0

given that 4 > s.
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to ¢ the partial derivative oU/0z, whenever U is sufficiently regular, we have that

d
Ty 0T = dff

That is T, acts like an half derivative, indeed

ooU, U dio(t)
o=@t —o =

The solution of the problem (4.57) under the reasonable assumptions that ¢ is bounded and Hélder
continuous, is explicitly known (check [143], Chapter 3.3) to be

2

t . P
Uz, t) =cx f e T (t— 1) 2(7) dr
—w
vo] 22 3
=ca:J, e~ 2p(t —7)dT,
0

where the last line is obtained with a change of variables. Using ¢ = 2%/(47) and the integral definition
(A.4) of the Gamma function we have that

*© z2 3 x 1 1
J re AT 2 d7'=2f e~ ttT2dt =T <> .
0 0 2

Ut V00 _ " 52t oty =) - gt

Hence,

choosing c¢ that takes into account the right normalization. This yields, by passing to the limit, that

p— 0 —_— —_
iy UED=UO0 [0 =n),
r—0t x 0 T2

Hence, with the right choice of the constant, we get exactly D'/2¢ (see (4.56)), i.e. the Marchaud
derivative of order 1/2 of ¢.
Now we are in position to state our main result.

THEOREM 4.2.1. Let s € (0,1) and 7 € (s,1] be fized. Let ¢ € CT(R) be a bounded function and
let U: [0,00) x R > R be a solution of the problem

oU 125U U

E(mvt): T ox (Qf,t)-f‘ﬁ(!l},t), (SL’,t)E(0,00) x R

U(0,t) = (1), teR (4.58)
lim U(x,t) =0, teR.

T—+00

Then U defines the extension operator for v, such that
D%p(t) = — lim+ csx 2 (U(x,t) — @(t)), where ¢, =4°T(s).
x—0

‘We notice that one can write

s . — saU
Dre(t) = = lim, '™ 5

z,t), (4.59)
in analogy with formula (3.1) in [28].
REMARK 4.2.2. The extension operator satisfies, as one would expect, up to constants that

D' Dp(t) = '(1).
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Indeed, using (4.59) and thanks to (4.58) we have that

0 oU
1—sTs _ 2s—1 1-2s 77
DI=*Dep(t) = lim o>~ - ( P ,t))
02U 1—2s0U
=l G g @
U ou /
= lim = () = =-(0,) = ¢'(1).

An interesting application that follows from this extension procedure is a Harnack inequality for
Marchaud-stationary functions in an interval J € R, namely for functions that satisfy D@ = 0 in J.
This fact is not obvious, indeed the set of functions determined by fractional-stationary functions (on
an interval) is nontrivial, see Section 2.2.

THEOREM 4.2.3. Let s € (0,1). There exists a positive constant y such that, if D¢ = 0 in an
interval J S R and ¢ = 0 in R, then

sup p <y inf
[to—25,to—15] [to+56,t0+6]

for every tg € R and for every § > 0 such that [to — 0,10 + ] < J.

The previous result can be deduced from the Harnack inequality proved in [36] for some degenerate
parabolic operators (see also [73] for the elliptic setting). In particular, the constant v used in Theorem
4.2.3 is the same that appears in the parabolic case in [36].

In addition, we remark that Theorem 4.2.3 does not give the usual Harnack inequality for elliptic
operators, where the comparison between the supremum and the infimum is done on the same set,
e.g. the same metric ball. This Harnack inequality for the Marchaud-stationary functions inherits the
behavior of its parabolic extension.

We point out at this point the very interesting paper [17]. Indeed, after we have submitted our
paper, we learnt from professor José L. Torrea about the results contained in his joint paper where
an extension procedure for a class of operators has been studied.

4.2.1. The extension parabolic problem. In this subsection we find a solution of the system
(4.58). At first, we introduce a particular kernel, that acts as the Poisson kernel. We then look for
a particular solution of the system by means of the Laplace transform, and in this way we show how
the solution arises. Finally, by a straightforward check, it yields that indeed the indicated solution
satisfies the problem (4.58).

We study at first the properties of a kernel, that acts as the Poisson kernel for the problem (4.58).
The readers can see Section 3 in [88], where this kernel is studied in a more general framework.

We define for every = € R,

2s _a? —s—1 :
e At t , ift >0,
U, (z,t) := { 4°T(s)

0, ift<0.

Also, let

1
e~art™s7lif ¢ >0,

0, ift <0

and notice that

f U, (2, t) dt = f by (t) dt. (4.60)
R R
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Indeed, we have by changing the coordinate 7 = t/z? that

J U, (x,t)dt -1 Jm e2e T gy
R 45T(s)

0
1 i 1 1
- - —frs-ly
45I‘(s)J,0 e~ T T
= J’ Vs (t) dt.
R
The kernel ¥ satisfies also the following property:
J Uy (o, ) dt = 1. (4.61)
R
Indeed, by changing the variable ¢t = 1/(47) we get that
sz()d —1r —ipstlg —1F “hEldr =1 (4.62)
RST T_45I‘(s)oe T T_I‘(s)oe =1, .

thanks to the integral definition of the Gamma function (see (A.4)). It follows from (4.60) that

f Uy(z,t)dt = 1.
R

Taking the Laplace transform of the kernel Uy (see e.g. [71] for details on this integral transform),
we have the following result involving the modified Bessel function of the second kind K, see [110]
and [3], §9.6. We use here the notation R®w > 0 to denote the real part of a complex number w.

LEMMA 4.2.4. The Laplace transform of the function ¢, € L'(R) is

1 s
Moreover, the Laplace transform with respect to the variable t of the kernel ¥, € LY(R, dt) is
1 s
LV, (z,w) = mx‘swiKs(m\@) for Rw > 0. (4.64)
PROOF. If one proves claim (4.63), the identity (4.64) follows by changing the variable T = t /2.
For fa > 0 and w € C with Rw > 0, as stated in formula 5.34 in [119], we have that

crmet)=2(4) K, (2aw)?).

Taking v = —s and a = 1/4, recalling that Ky = K_, we obtain that

L) (w) = Lc(efﬁfﬂ) _ %W%KS(\@

45T (s) - 2s-1T(
and thus (4.63). This concludes the proof of the Lemma. O
We recall now a useful result (see [80], Proposition 4.1) involving the modified Bessel function of

the second kind.

PROPOSITION 4.2.5. If —0 < o < 1, the boundary value problem

2%y (x) = y(x), in (0,0)
y(0) =1, (4.65)
Jim @) =0,

has a solution y € C*~*([0,00)) of the form

1 tk
o) = ety ().
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where cy, s the positive constant

- g—
Ck= (

" ??‘
z-"“

and k:= 2= a.
) 2

We show in the next rows how the solution of the problem (4.58) arises, using the Laplace
transform. So, we look for a possible candidate of a solution in the simplified situation in which U has
a sub-exponential growth in ¢, and in which the function ¢ is zero on the negative semi-axis (—oo, 0].
Under this additional hypothesis, we take the Laplace transform in ¢ of the system (4.58). Since the
Laplace transform of the derivative of a function gives

L(f)(w) = wLf(w),

we get that
1-2s0LU LU .
wLU(z,w) = . a—x(x,w) + W(m,w), in  (0,00) x C
LU0, w) = Lo(w), in C
lim LU(z,w) =0, in C.

We define for any fixed w e C

f(z) := LU(z,w), (4.66)
then f must be a solution of the system
wf(@) = 2@ + @), (0,0)
f(0) = Lp(w) (4.67)
L f(z) =0

We assume here that for any w € C, Lo(w) # 0.
We take in Proposition 4.2.5, a = (2s — 1)/s (notice for s € (0,1) that o € (—o0,1)) and y(z) to be
the solution there introduced. We claim that taking

f(z) = Lo(w)y (ws (2338)2> ;

f(z) is a solution of the system (4.67). Indeed, f(0) = Ly(w) and

y// (ws (23;)25) — f”(x) E(pl(w)w—2s(2s)4s—2x2—4s

1—-2
+ f/(l') 8(28)43_2(,0_285(}1_48.

Since y(x) satisfies the system (4.65) we have that

(G) ) @)

wf(@) = f"(z) + (1 = 2s)a7" f'(2),
which yields that f is a solution of (4.67).
Now, from Proposition 4.2.5 we have k = 1/(2s) and

y(x) = 21;8((52)8)81‘;K5 (28.%‘%) .

This implies that

And so we get that
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We use (4.66), take the inverse Laplace transform, and recall that the pointwise product is taken into
the convolution product to obtain that

2175
I(s)
And so, using (4.64), we get the following representation formula for the system (4.58):

Uz,t) = o L7 (w2 K (zVw)) (t).

U(z,t) =p*Uy(x,t) = Jo U(x,7)p(t — 7)dT.

We recall that we obtained the above formula by taking the function ¢ to be vanishing in (—00, 0).
However, it is reasonable to suppose that this formula holds true also for a function that is not a signal.
Hence, we take ¢ that does not vanish in (—o0,0) and claim that ¢ = U, still defines a solution of the
problem (4.58). Indeed, we show the following existence theorem:

THEOREM 4.2.6. There exists a continuous solution of the problem (4.58) given by

Uz, t) = Wys(x,-) = p(t) := JR Uz, 7)p(t — 7)dr.

More precisely (inserting the definition (4.2.1)) we have that

_ 1 2s . 22 —s5—1
Uz, t) = 4SF(s)x Jo e T p(t—7)dr. (4.68)

ProOOF. We define

A, = {6_437'_5_1, ifr>0
0, ifr <0
and notice that .
0Avyr _ { — g Aer, i 7>0
O 0, if 7 < 0.

Let
V(n,t) = 4°T(s)U (. 1) = 22 J Ay riplt — 1) dr,
R
where we have introduced the notation A, ; into (4.68). Taking the derivative with respect to = of
V(z,t) we have that
ov

25+1
%(1’7 t) = 25?71 fR Ay rp(t —7)dr — ’ 5 J A ot —7)dr,

and that
0%V
—— (z,t) =25(25 — 1)z%—2 J’ Ap rp(t —T)dr
5$ R
(45 + 1)

A:ET x28+2 A:Jc‘r
— —p(t—T1)d —p(t —T1)dT.
7 | et =+ T [ S5e—nar

Then, by changing variables, we write

Viz,t) = % f Az i—ro(T)dr,
R

and taking the derivative with respect to ¢, we get that
ov 2 2 A:c t—1 Aac t—7
—(x,t) = x*° — — 1 : dr.
0 = [ | B~ 4 )t | ar
We change back variables to obtain

av 25+2 ALT 2s Amﬂ'
—(x,t) = 2°° JR ng(t —71)dr —(s+ 1)z I[R = o(t — 1) dr.

ot
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By substituting these computations, we obtain that indeed V', hence U by the definition of V', satisfies
the equation

oU 1-2s0U 02U
E(l’vt)z - %(l’at)"‘ﬁ(%ﬂ-

Moreover, using for x large enough the bound

22
e e~ < Me™ 7,
thanks to the Dominated Convergence Theorem and the limit

2
. —_z
lim z%%e¢~ i =0,
T—+0

it yields that
lim U(x,t) =0.

T—>+L
Furthermore, in (4.68) by changing the variable ¥ = 7/2% (but still writing 7 as the variable of
integration), we have that
Uz, t) = I efinsflgo(t —72?)dr.
451(s) Jo
Since ¢ is bounded, by the Dominated Convergence Theorem, we have that

. _ o(t) oL —s—1 -
Ilirgh U(z,t) = T(s) J, e T dr = (1),
according to (4.62). This proves the continuity up to the boundary of the solution U, concluding the
proof of the Theorem. O

We prove here that the Marchaud derivative is obtained as the trace operator of the extension
given by the solution of problem (4.58) obtained in Theorem 4.2.6. Namely, we prove the following
theorem.

PROOF OF THEOREM 4.2.1. By inserting the expression of U(z,t) from (4.68), we compute
lim_ 2 (U, ) — (1))
x—0t

: —2s 1 . 2s 22 —s5—1
= lim z T0s) x%e T et —7)dr —p(t) ).

z—0t 0
Recalling property (4.2.1) of the kernel, we have that
lim 272 (U(z,t) — o(t))

z—0t
—2s

y
o0+ 45T(s)

[ et - - o0 ar

[[epet=noe,

= lim para)

z—0t 43F(S)

T.
0

Now

M

e~ <1

and since ¢ is bounded, we have that

w <2M7 e LM ((1,0)).

On the other hand, recalling that ¢ is C7(R) we have that
lo(t) =t =) < e
Hence, since 4 > s,

lett=1) = 2Ol ¢ st 1 (0,1,



132 4. EXTENSION PROBLEMS

Using the Dominated Converge Theorem, we obtain

lim a2 (U(,1) — p(t)) = ==~ j lim 52U —00 )

z— 45T z— s+1
0+ (s) o 0+ T (4.69)
L [,
4SF(S) 0 TS+1
And so for ¢s = 4°T(s),
*o(t) — ot —
~e lim o™ (Ule, 1) = (1) = | PO =2 =T) 4 pyogpr)
z—0t 0 75+

by definition (4.56). This concludes the proof of Theorem 4.2.1. O

We make a short remark on the right Marchaud fractional derivative (denoted by D?® ¢) and the
backward equation. The following result is true:

THEOREM 4.2.7. Let s € (0,1) and 5 € (s,1] be fized. Let ¢ € CT(R) be a bounded function and
let U_:[0,00) x R — R be a solution of the problem

oU(x,t)  1—2s0U(x,t) = 0°U(x,t)
T P I (z,t) € (0,00) x R

U(0,t) = (1), teR (4.70)
lim U(x,t) =0.

T+

Then U_ defines the extension operator for o, such that
D% p(t) = — lim+ cst 2 (U_(x,t) — @(t)), where ¢ =4°T(s).
z—0

The proof follows similarly to the proof of Theorem 4.2.1. We only point out that if U_ is a
solution of (4.70), then U_(x,t) = U(x,—t), where U is the solution of the differential equation in
(4.58).

4.2.2. Applications: a Harnack inequality for Marchaud-stationary functions. In this
subsection we prove a Harnack inequality for functions that have a vanishing Marchaud derivative in
a bounded interval J, namely we prove here Theorem 4.2.3. At this purpose, we use a known Harnack
inequality for degenerate parabolic operators, that can be found in [36], see Theorem 2.1. There, the
result is given in its generality, in R™. For the reader’s convenience we recall in Proposition 4.2.9 this
result in the case n = 1.

We point out that the result given in [36] was proved for n > 3. Nevertheless the same proof
works also for n = 1 with some adjustments. We recall here the hypotheses we need, adapted in our
case n = 1. It is worth to say that this problem has been studied in a more general fashion in [93]
and [94].

The degenerate parabolic

wmgzé@mZ) (4.71)

is given in Q = (—R, R) x (0,7T), for R > 0. The weight w has to satisfy an integrability condition
(also known as a Muckehoupt, or As weight condition), given by

([ o) ([ oh i) < am

for any interval J € (—R, R). The constant ¢ is indicated as the Ay constant of w.

In this particular case we give here in (4.71), the conductivity coefficient (i.e. the coefficient in front
of the x derivative) and the specific heat (the coefficient of the ¢ derivative) coincide. A more general
form of the equation in R can be given in these terms:

w(x)% = % <a(x)§;) , (4.73)
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i.e. when the conductivity and the specific heat are not equal. In that case, one has to require, besides
condition (4.72), that

M lw(r) < alz) < dw(z).
In addition we consider the functional space

ou

W = {UEL2(0,T§H&(J7U})) s.t 6t

e L*(0,T; L*(J, w))}

We denote here by L?(.J,w), the Banach space of measurable functions u with finite weighted norm

1/2
[ull2,w;0 = (J |u|?w dx) < o,
J

by H'(J,w) the completion of C*(J) under the norm

1/2
s = ( [+ |axu|2>wdx)
J

and by Hg(J,w) the completion of Cg”(J) under the norm

1/2
el = ( j |awu|2wdx> |
J

The time dependent Sobolev space L? (O, T; H}(J, w)) is defined as the set of all measurable functions
u such that

2

e 20,7518 (50 = JJ (x)drdt | < oo.
Jx(0,T)

In this setting, we introduce the notion of weak solution of the problem (4.71).

DEFINITION 4.2.8. We say that u € L*(0,T; H' (J,w)) is a weak solution of (4.71) in J x (0,T)
if, for every n € W, such that n(x,0) = n(z,t) for any x € J, we have that

Oou On on _
[[ (MI— at)d dt =0,

Jx(0,T)
We have the next proposition (see for the proof Theorem 2.1 in [36]).

PROPOSITION 4.2.9. Let u be a positive solution in (—R, R) x (0,T) of (4.71) and assume that
condition (4.72) holds, with constant co. Then there exists v = vy(co) > 0 such that

sup u <y inf U
(5)x (-t ao-) (B t0s?)

holds for to € (0,T) and any p such that 0 < p < R/2 and [ty — p?,to + p*] = (0,T).

REMARK 4.2.10. The reader can easily imagine the general situation in any dimension as ex-
plicated in Theorem 2.1 in [36], where the coefficient a(x) in (4.73) is a matrix and the domains
are cylinders. We have stated the Harnack inequality in (0,7"). Nevertheless with a change of co-
ordinates in space and time, we can always say that the Harnack inequality holds in any subset of
(Rl, RQ) X (Tl,TQ), where Rl, RQ,Tl,TQ e R.

We consider here that D*p(¢) = 0 in an interval J. By taking the reflection of the solution of
problem (4.58), we obtain a solution in a weak sense of (4.58) across x = 0.
It is useful to introduce a weak version of the limit lim 2'72%0,U(z,t). In this sense, we have:

rz—0t
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DEFINITION 4.2.11. We say that in a weak sense
oU
li 122577 (2,8) =0
L e o (@)

if and only if, for any n € W such that n(z,0) = n(z,t) for any x € J, we have that

T
oU

li 1=2s— pdt = 0. 4.74

a0t Jo Tz (4.74)

LEMMA 4.2.12. Let U: R x [0,00) — R be a solution of the problem (4.58) such that, in a weak

sense, lim+ 217250, U(x,t) = 0. Then the extension
x—0

- U(z,t),  (2,t) €[0,+0) x (0,T)
Uie.) = {U(—x,t), () € (~0,0) x (0,T
is a weak solution of
Nl 20) (= 2 (|x|1256U(x t)) (4.75)
ot " or or ’

in (—R,R) x (0,T).

PROOF. We claim that the extension U is a weak solution of (4.75), hence that

J |2 oU an _ f]@ da dt = 0. (4.76)
(—R,R)x(0,T) Oz Ox ot

We compute, integrating by parts

T R =
J (J xl_Qsa—U @ dm) dt
0

0 or Ox
T 7 T
oU oU
= | RY"2ZZ2(R,t)n(R,t)dt — li 1=2s2 7 pdt
L oy To (B dt =T | o= n

T " a 1—2860
—JO (Jo e x e ndx | dt

_ f ' R1—2SZZ(R, (R, 1) dt — JT (

R -
J xl_QSa—Undx dt,
0 o \Jo ot

where we have used the weak limit in (4.74) and the fact that U solves equation (4.75). In the same
way, one obtains that

o o0 on T
_ 1-2s~~ Y — 1-2s¥~ ¢ _
L (fn,( D o ) L R (=R, t)n(=R,?) dt

T 0 6(’}
_ _ \1-2s
L (J—R( ) ot na ) d

therefore, by summing up,

J(—R,R)X(O,T) Oz 0z
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Hence

f || 2 Uon _ U@ dx dt
(—R,R)x(0,T) (3$ (3$ 0t

= JT R72s <‘Z(R, tn(R,t) — %(—R, tn(—R, t)) dt

0

T R a(} B 677
_ 1-2s | ¥~ U
Jo (JRle <6t ! ot e )

- JT R'72s (‘;Z(R, tn(R,t) — (ZZ:Z(_R’ tHn(—R, t)) dt

0

R

_J |2 (U(x,T)ﬂ(x,T) - U(x,O)n(x,())) dx
-R

=0,

since n(x,T) = n(z,0) = 0 and n(R,t) = n(—R,t) = 0. This is the claim in (4.76), and we conclude
the proof of the Lemma. O

We show now that the Harnack inequality for Marchaud stationary functions can be deduced from
the Harnack inequality associated with the extension operator.

The interested reader can also see [28] for the proof (using the extension operator) of the Harnack
inequality for the fractional Laplacian, and [53] for the inequality for other types of nonlocal operators.
In addition, we also point out [80] for the case of the fractional subelliptic operators in Carnot groups
and [142] for the fractional harmonic oscillator.

PRrROOF OF THEOREM 4.2.3. We consider U to be the extension of ¢, as introduced in Theorem
4.2.1. Since ¢ is nonnegative, given the explicit solution U in Theorem 4.2.6, the function U is also
positive. Now, we reflect U and obtain U , as we have done in Lemma 4.2.12.

We prove at first the theorem when J = (0,T"). Since D®p(t) = 0 in (0,7"), we have by definition that

and thanks to Lemma 4.2.12, we obtain that U is a weak solution of (4.75) in, say, (—R, R) x (0, T) for
a fixed arbitrary R > 0. Moreover, the function |z|'=2% satisfies the condition (4.72), and according
to Proposition 4.2.9, we have that

sup U<~ inf , U.

(=5.8) % (10— 242 t0—27) (=5.8)x(to+ 24" to+r?)

It suffices now to slice the domain at z = 0 to obtain that

sup U,t) <~ inf U(0,t),

(to*#,to*é) (t0+#7t0+p2>
hence
sup p(t) <v inf o(t)

2 2 3p2
(to*%io*%) <t0+%7t0+p2)

for any p such that 0 < p < R/2 and [to — p?,to + p?] = (0,7).
Now, in order to prove that the Harnack inequality holds on any interval J < R, one considers a
translation of U, namely for any 6 € R, the function Up(x,t) := U(x,t + ), and reflects it as in
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Lemma 4.2.12. Then Uy is a weak solution of (4.75), and Up(0,t) = ¢(t + 0). One obtains then, as a
consequence of the Harnack inequality for the solution Uy, the following:

sup p(t+0) <~ inf p(t+0)
(to*%,to*%) <t0+%7t0+p2

for any p such that 0 < p < R/2 and [to — p?, to + p?] = (0,T). Therefore
sup pt) <y inf ()

2 2 3p2
(0222 50—22) (to+ 22 to+?)

for any p such that 0 < p < R/2 and [ty — p?,to + p?] € (0,T + 0). As § and R are arbitrary, one
concludes that
sup  p(t) <v, inf  o(t)
(to—%,to—%) (t0+37§7t0+6)
for any § > 0 such that [tg — J,t9 + d] = J. This concludes the proof of Theorem 4.2.3. (]

REMARK 4.2.13. We would like to point out that the Harnack type inequality obtained in Theorem
4.2.3 can be equivalently stated as follows. Let us define for every § > 0 and for every 7 € R the sets:

15 1
I(7,8) = [r — —8,7 + =6
(r,6) = [r = <6,7 + <),

15 7
§5,T - 16],

_ 1 1
I (1,6)=[r— §57T+ g&]

IT(1,0)=[r —

With this notation, the Harnack inequality gives that for every I(7,0) < J

sup ¢ <7 inf o.
I+(7,6) S e



CHAPTER 5

Some nonlocal nonlinear stationary equations

ABSTRACT. We deal in this chapter with some nonlocal nonlinear stationary type problems. We first
take a look at a problem connected to solitary solutions of nonlinear dispersive wave equations, in
particular that arises in the study of the fractional Schrodinger equation when looking for standing
waves. More precisely, we discuss here the existence of a solution that concentrates at interior points
of the domain, of the probelm

e2(—A)Yu+u=uP inQcR®

u=0 in R™M\Q,
for p € (1,25 — 1), where 2} = 2n/(n — 2s) is the critical fractional Sobolev exponent and ¢ is a small
parameter. Moreover, we prove the existence of a positive solution of the nonlinear and nonlocal
elliptic equation in R"™

(—A)°u = ehuf + w2t

in the convex case 1 < ¢ < 25 — 1, where ¢ is a small parameter and h is a given bounded, integrable
function. The problem has a variational structure and we prove the existence of a solution using
the classical Mountain-Pass Theorem. We work here with the harmonic extension of the fractional
Laplacian, which allows us to deal with a weighted (but possibly degenerate) local operator, rather
than with a nonlocal energy.

In this chapter, we study some nonlocal nonlinear problems of stationary type. Let s € (0,1)
be the fractional parameter, n > 2s be the dimension of the reference space, and € > 0 be a small
parameter. We consider the so-called fractional Sobolev exponent defined for n > 2s as

2n

n—2s

2% =

S

5.1. A nonlocal nonlinear stationary Schrodinger type equation

The type of problems introduced in this section are connected to solitary solutions of nonlinear
dispersive wave equations (such as the Benjamin-Ono equation, the Benjamin-Bona-Mahony equation
and the fractional Schréodinger equation). In this section, only stationary equations are studied and
we redirect the reader to | , | for the study of evolutionary type equations.

We discuss the following nonlocal nonlinear Schrédinger equation

e2(—AYu+u=uP inQcR”?

5.1
uw=0 in R™\Q, (5:1)

. . n+2s .
in the subcritical case p € (1,25 — 1), namely when p € {1, o ) We study the existence of a
n —2s

solution that concentrates at interior points of the domain, points that depend on the global geometry
of the domain. Moreover, we point out a simple consequence of the Uncertainty Principle, which can
be seen as a fractional Sobolev inequality in weighted spaces.

This equation 5.1 arises in the study of the fractional Schrédinger equation when looking for
standing waves. Namely, the fractional Schrodinger equation considers solutions ¥ = ¥(z,t) : R™ x
R — C of

iho U = (B**(—A)* + V)V, (5.2)

137
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where s € (0,1), A is the reduced Planck constant and V = V(z,,|¥|) is a potential. This equation
is of interest in quantum mechanics (see e.g. [103] and the appendix in [45] for details and physical
motivations). Roughly speaking, the quantity |¥(x,t)|? dx represents the probability density of finding
a quantum particle in the space region dz and at time ¢.

The simplest solutions of (5.2) are the ones for which this probability density is independent of time,
ie. |¥(z,t)| = u(z) for some u: R™ — [0,400). In this way, one can write ¥ as v times a phase that
oscillates (very rapidly) in time: that is one may look for solutions of (5.2) of the form

U(z,t) := u(z) e,
for some frequency w € R. Choosing V = V(|¥|) = —|¥|P~1 = —yP~!
that

, a substitution into (5.2) gives

(ﬁQS(—A)Su + wu — up> e = 125 (—A)*W — ihd U + VT =0,

which is (5.1) (with the normalization convention w:= 1 and € := #).
The goal of this section is to construct solutions of problem (5.1) that concentrate at interior
points of the domain €2 for sufficiently small values of e. We perform a blow-up of the domain, defined

as
0. = 1o = {xmeﬂ}
& £

We can also rescale the solution of (5.1) on .,
ue(x) = ulex).

The problem (5.1) for u. then reads

(5.3)

(—AYu+u=uP inQ,
u=0 in R™\Q,.

When ¢ — 0, the domain 2. invades the whole of the space. Therefore, it is also natural to consider
(as a first approximation) the equation on the entire space

(—=A)’u+u =uP in R". (5.4)

The first result that we need is that there exists an entire positive radial least energy solution w €
H*(R"™) of (5.4), called the ground state solution. Here follow some relevant results on this. The
interested reader can find their proofs in [86].

(1) The ground state solution w € H*(R™) is unique up to translations.
(2) The ground state solution w € H*(R™) is nondegenerate, i.e., the derivatives D,w are solu-
tions to the linearized equation

(=A)Z + Z = pzPL. (5.5)

(3) The ground state solution w € H*(R™) decays polynomially at infinity, namely there exist
two constants «, 3 > 0 such that

a|$|f(n+25) < u(a:) < ﬂ|x|f(n+2s)'

Unlike the fractional case, we remark that for the (classical) Laplacian, at infinity the ground state
solution decays exponentially fast. We also refer to [85] for the one-dimensional case.

The main theorem of this section establishes the existence of a solution that concentrates at
interior points of the domain for sufficiently small values of €. This concentration phenomena is
written in terms of the ground state solution w. Namely, the first approximation for the solution is
exactly the ground state w, scaled and concentrated at an appropriate point £ of the domain. More
precisely, we have:
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THEOREM 5.1.1. If € is sufficiently small, there exist a point & € Q and a solution U, of the
problem (5.1) such that

r—§

3

Ue(x) — w(

and dist(€,09) = 6 > 0. Here, C and § are constants independent of € or ), and the function w is
the ground state solution of problem (5.4).

2
)‘ $ C«&,n—&- s7

The concentration point £ in Theorem 5.1.1 is influenced by the global geometry of the domain.
On the one hand, when s = 1, the point £ is the one that maximizes the distance from the boundary.
On the other hand, when s € (0, 1), such simple characterization of £ does not hold anymore: in this
case, £ turns out to be asymptotically the maximum of a (complicated, but rather explicit) nonlocal
functional: see [45] for more details.

We state here the basic idea of the proof of Theorem 5.1.1 (we refer again to [45] for more details).

SKETCH OF THE PROOF OF THEOREM 5.1.1. In this proof, we make use of the Lyapunov-Schmidt
procedure. Namely, rather than looking for the solution in an infinite-dimensional functional space,
one decomposes the problem into two orthogonal subproblems. One of these problem is still infinite-
dimensional, but it has the advantage to bifurcate from a known object (in this case, a translation of
the ground state). Solving this auxiliary subproblem does not provide a true solution of the original
problem, since a leftover in the orthogonal direction may remain. To kill this remainder term, one
solves a second subproblem, which turns out to be finite-dimensional (in our case, this subproblem is
set in R™, which corresponds to the action of the translations on the ground state).

A structural advantage of the problem considered lies in its variational structure. Indeed, equa-
tion (5.3) is the Euler-Lagrange equation of the energy functional

L =5 [ (8@ + u@))u@) o = — [ i) de (5.6)

2 p+1Jqg,

for any v € H3(Q:) := {u € H*(R") s.t. u = 0 a.e. in R™\Q.}. Therefore, the problem reduces to
finding critical points of I..

To this goal, we consider the ground state solution w and for any & € R™ we let we := w(z — &).
For a given £ € . a first approximation g for the solution of problem (5.3) can be taken as the
solution of the linear problem

{(—A)Sug +Ue =wy in Q, (5.7)

ue =0 in R™\Q..
The actual solution will be obtained as a small perturbation of @ for a suitable point { = &(¢).

We define the operator £ := (—A)® + I, where I is the identity and we notice that £ has a unique
fundamental solution that solves

LT'=§, inR™

The Green function G, of the operator £ in . satisfies

LG (z,y) =0y(x) ifzeq, (5.8)
Ge(z,y) =0 if x € R™\{2.. )

It is convenient to introduce the regular part of G, which is often called the Robin function. This
function is defined by

Hs(wvy) = F(l’ - y) - Gs(x,y) (59)
and it satisfies, for a fixed y € R”,
LH.(z,y)=0 if v e Q.
H.(z,y) =T(x —y) if z e R"\..
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We have that
e(w) = | welw)iote = v)dy,

€

and by (5.8) that
Te(e) = | We()LGu(w.p)dy.

Qe

The operator L is self-adjoint and thanks to the above identity and to equation (5.7) it follows that

g (1) = L L7 (4) G, y) dy = fQ WP (y)Ge(e,y) dy.

e

So, we use (5.9) and we obtain that

Ue(x) = fQ wg (y)T(z —y) dy — 4[ wg (y)He (2, y) dy.

e

Now we notice that, since we is solution of (5.4) and I is the fundamental solution of £, we have that
| wtwre =iy = | LoduPe-y)dy= | vy dy = uo).
Therefore we have obtained that

) = o) = |

Now we can insert (5.10) into the energy functional (5.6) and expand the errors in powers of . For

R

wg (y)T'(z —y) dy — J wi (y)He(z,y) dy. (5.10)

= €

1
dist(&, 0Q.) = - with ¢ fixed and small, the energy of u; is a perturbation of the energy of the ground

state w and one finds (see Theorem 4.1 in [45]) that
1
I(Tg) = I(w) + SH:(8) + O™, (5.11)

where
Ho(€) = j j H. (z, yyul (2wl (y) da dy

and I is the energy computed on the whole space R™, namely

() =+ f ) ((—A)Su(x) + u(m))u(x) dz — ﬁ WP (z) do.

2 1 Jgn

In particular, I.(Tg) agrees with a constant (the term I(w)), plus a functional over a finite-dimensional
space (the term H. (&), which only depends on £ € R™), plus a small error.

We remark that the solution % of equation (5.7) which can be obtained from (5.10) does not
provide a solution for the original problem (5.3) (indeed, it only solves (5.7)): for this, we look for
solutions wue of (5.3) as perturbations of %, in the form

Ug := Ug + . (5.12)
The perturbation functions ¢ are considered among those vanishing outside 2. and orthogonal to the
0
space Z = Span(Zi,...,Zy), where Z; = % are solutions of the linearized equation (5.5). This
T

7
procedure somehow “removes the degeneracy”, namely we look for the corrector v in a set where the
linearized operator is invertible. This makes it possible, fixed any £ € R", to find ¥ = )¢ such that
the function wug¢, as defined in (5.12) solves the equation

n
(=A)*ug +ug = ug + Z ¢iZ; in Q.. (5.13)

i=1
That is, u¢ is solution of the original equation (5.3), up to an error that lies in the tangent space of
the translations (this error is exactly the price that we pay in order to solve the corrector equation
for ¢ on the orthogonal of the kernel, where the operator is nondegenerate). As a matter of fact (see
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Theorem 7.6 in [45] for details) one can see that the corrector ¢ = ¢ is of order e"2*. Therefore,

one can compute I.(u¢) = I.(Te + 1¢) as a higher order perturbation of I.(u¢). From (5.11), one
obtains that

1
I (ug) = I(w) + 57—[5(5) + O(e"T), (5.14)
see Theorem 7.17 in [45] for details.

Since this energy expansion now depends only on £ € R™, it is convenient to define the operator
Jo: Q. > Ras

Je(§) := Ic(u).

This functional is often called the reduced energy functional. From (5.14), we conclude that

1
Jo(€) = T(w) + FHo(E) + O() (5.15)
The reduced energy J plays an important role in this framework since critical points of J correspond
to true solutions of the original equation (5.3). More precisely (see Lemma 7.16 in [45]) one has that
¢i=0foralli=1,...,nin (5.13) if and only if
aJ.
a; (€)= 0. (5.16)

In other words, when € approaches 0, to find concentration points, it is enough to find critical points
of J, which is a finite-dimensional problem. Also, critical points for J come from critical points of H,,
up to higher orders, thanks to (5.15). The issue is thus to prove that H. does possess critical points
and that these critical points survive after the small error of size e"*4%: in fact, we show that H.
possesses a minimum, which is stable for perturbations. For this, one needs a bound for the Robin
function H. from above and below. To this goal, one builds a barrier function 8¢ defined for & € €2,
and x € R™ as

Bd@”:LﬂQFQ—OFW—ZMA

Using this function in combination with suitable maximum principles, one obtains the existence of a
constant ¢ € (0,1) such that

cH.(z,€) < Be(x) < ¢ H.(x,£),

for any z € R™ and any £ € €2, with dist(&, 0€2.) > 1, see Lemma 2.1 in [45]. From this it follows that

)
H(€) = d= (), (5.17)
for all points £ € €. such that d € [5,d/<]. So, one considers the domain €. 5 of the points of Q. that
lie at distance more than §/e from the boundary of Q.. By (5.17), we have that

n+4s
He (&) ~ ﬁ for any £ € €. (5.18)

Also, up to a translation, we may suppose that 0 € Q. Thus, 0 € ). and its distance from 0. is of
order 1/e (independently of §). In particular, if § is small enough, we have that 0 lies in the interior
of Q¢ 5, and (5.17) gives that

H. (0) ~ En+4s )

By comparing this with (5.18), we see that . has an interior minimum in Q.. The value at-
tained at this minimum is of order e"*** and the values attained at the boundary of Q. s are of
order 6"~ 45gn+4s which is much larger than €"*%_if § is small enough. This says that the interior
minimum of H, in Q. 5 is nondegenerate and it survives to any perturbation of order e"*45 if § is
small enough.

This and (5.15) imply that J has also an interior minimum at some point ¢ in Q. 5. By construc-
tion, this point & satisfies (5.16), and so this completes the proof of Theorem 5.1.1. |
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The variational argument in the proof above (see in particular (5.16)) has a classical and neat
geometric interpretation. Namely, the “unperturbed” functional (i.e. the one with £ = 0) has a very
degenerate geometry, since it has a whole manifold of minimizers with the same energy: this manifold
corresponds to the translation of the ground state w, namely it is of the form My := {we, & € R"}
and, therefore, it can be identified with R™.

VI,

M M.

FIGURE 5.1. Geometric interpretation

For topological arguments, this degenerate picture may constitute a serious obstacle to the existence
of critical points for the “perturbed” functional (i.e. the one with £ # 0). As an obvious example,
the reader may think of the function of two variables f. : R?> — R given by f.(z,y) = 2% + ey.
When e = 0, this function attains its minimum along the manifold {z = 0}, but all the critical points
on this manifold are “destroyed” by the perturbation when £ # 0 (indeed V fc(x,y) = (2z,¢) never

vanishes).
In the situation described in the proof of Theorem 5.1.1, this pathology does not occur, thanks
to the nondegeneracy provided in [86]. Indeed, by the nondegeneracy of the unperturbed critical

manifold, when e # 0 one can construct a manifold, diffeomorphic to the original one (in our case of
the form M, := {ue + ¢(§), £ € R™}), that enjoys the special feature of “almost annihilating” the
gradient of the functional, up to vectors parallel to the original manifold My (this is the meaning of
formula (5.13)).

Then, if one finds a minimum of the functional constrained to M., the theory of Lagrange mul-
tipliers (at least in finite dimension) would suggest that the gradient is normal to M. That is, the
gradient of the functional is, simultaneously, parallel to My and orthogonal to M.. But since M.
is diffeomorphically close to My, the only vector with this property is the null vector, hence this
argument provides the desired critical point.

We also recall that the fractional Schrédinger equation is related to a nonlocal canonical quanti-
zation, which in turn produces a nonlocal Uncertainty Principle. In the classical setting, one considers



5.1. A NONLOCAL NONLINEAR STATIONARY SCHRODINGER TYPE EQUATION 143

the momentum/position operators, which are defined in R™, by
Pk = —iﬁak and Qk =Tk (519)

for k € {1,...,n}. Then, the Uncertainty Principle states that the operators P = (P,..., P,;) and Q =
(Q1,...,Qy) do not commute (which makes it practically impossible to measure simultaneously both
momentum and position). Indeed, in this case a simple computation shows that

n

[Q, P]:= > [Qx, Pi] = ihn. (5.20)

k=1
The nonlocal analogue of this quantization may be formulated by introducing a nonlocal momentum,
i.e. by replacing the operators in (5.19) by

P = —iﬁSﬁk(—A)% and Q1= . (5.21)

In this case, one has that

F(znF " g(x))(€) fﬂ dxf dy 2™ W= z1.9(y)
1

iz (y— v i (y—
5 dxf dy 8y, > g(y) = — dwf dy > =99 g(y)
T Jpn n 21 Jgn n

1

2

- dr e 2™ EF=1( 0 g) () =

) F(F00)(€) = 5-019(6),
T Jr T

(5.22)
for any test function g. In addition,

F(PLf) = @m)*mee, €7 f.
Therefore, given any test function 1, using this with f := ¢ and f := zx, and also (5.22) with
g = F(PZ¢) and g := v, we obtain that

f(Qkaﬂ’( ) = PiQui(w)) = F (P (a)) — F (B (zrp()))
=5 O F(PLU)(€) — (2m)* B [€*~  Flanth(2)) (€)
=(2m)* Yk O (& €1° 1)) — (2m) hoEk [€]° Bk % (€
=(2m)* Vil Oy (& €° 1)) — (2m) Vil €k | Ok (€)
=(2m)* il 0 (G 1E1° 1) () = (2m)* tik® (JE] T+ (s — DEIE1P) $(©).
Consequently, by summing up,
F([Q, Plw) = 2m)* Vbt | (n+ s — 1) 9(6).

So, by taking the anti-transform,

[Q, Pl = if® (n+s—1) FH((2r|e))* ') = ih* (n + s — 1) (=A)F 4. (5.23)
Notice that, as s — 1, this formula reduces to the the classical Heisenberg Uncertainty Principle

n (5.20).

Now we point out a simple consequence of the Uncertainty Principle in formula (5.23), which can
be seen as a fractional Sobolev inequality in weighted spaces. The result (which boils down to known
formulas as s — 1) is the following:

PROPOSITION 5.1.2. For any u € S(R™), we have that

2 2
L2(R?) n+s—1

1

s

‘V(—A)Tu

L2(R™) L2(R™) ’
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PROOF. The proof is a general argument in operator theory. Indeed, suppose that there are two
operators S and A, acting on a space with a scalar Hermitian product. Assume that S is self-adjoint
and A is anti-self-adjoint, i.e.

(u, Suy = {Su,uy and {u, Auy = —(Au,uy,
for any u in the space. Then, for any A € R,
[(A+AS)ul® = JAul? + \2[Sul® + A(CAu, Su) + (Su, Au))
|Aul? + 22| Sul®* + M(SA — AS)u, u).

Now we apply this identity in the space C§°(R") c L?(R"), taking S := Q) = z and A := iP} =
ﬁsé’k(—A)% (recall (5.21) and notice that i P} is anti-self-adjoint, thanks to the integration by parts
formula). In this way, and using (5.23), we obtain that

0 < DGR +2Qu)ull72gn
k=1

= > |:|‘iPI:u||%2(R”) + N2 Qrul 7z gy + i/\<[QkaP§]U7U>L2(R")]
k=1

2 2 )

;2 - 1 s _A S% 2 n
Lo(a) +iZA(n+ 5= 1) (=A) 2 u,upr2(mn)
2

= 12| V(=A)Tu

) + )\2H ||

L2(R™

s—1 2

(-8)F

-
_A)T
V)Tl

= h* —An+s—1)h°

) + )\2H || u

L2(R") L2(Rn)
Now, if u # 0, we can optimize this identity by choosing

s—1 2

(—A) T u

L2(R)

(n+s—1)h°

2H |

L2 (Rn)

and we obtain that
4

s—1

AT
(=4) .

2 )

N

(n +5— 1)2 hQs

s—1 2

0<h*|V(-A) = u

L2(R™) 4 H || u

L2(R™)

which gives the desired result. O

5.2. A fractional elliptic problem in R™ with critical growth and convex nonlinearities
The goal of this section is to prove the existence of a positive solution to the convex problem
(=A)*u = chu? +u*~! in R", (5.24)

where s € (0,1), n > 2s, 1 < ¢ < 2% — 1 are given quantities, € > 0 is a small parameter, and h is a
function satisfying suitable summability conditions. The main result of this section goes as follows.

THEOREM 5.2.1. Let g€ [1,2% — 1) and h be such that
he LY(R™) n L*(R™) and
there exists a ball B < R"™ such that i%fh > 0. (5.25)
If n € (2s,6s), suppose in addition h = 0.

Let € > 0 be a small parameter. Then the problem (5.24) admits a positive (mountain-pass) solution,

. 2s(q+3)
provided that n > =
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The literature concerning problems with this type of nonlinearities is large and deep in the classical
case, see for instance [4-7,34,37], among others. In particular, in [5] A. Ambrosetti, J. Garcia-Azorero
and I. Peral studied (5.24) for s = 1. There, the existence of solutions is proved by means of two
different techniques: bifurcation and concentration-compactness. In the first case, they construct
solutions for the whole range 0 < g < 2% — 1 as small perturbations of the solutions to the problem

—Ay =u? 1 in R™, u >0,

by using a Lyapunov-Schmidt reduction. On the other hand, the authors also prove the existence
of two solutions for 0 < ¢ < 1 (that is, the concave-convex problem) by applying an argument of
concentration-compactness type (in the spirit of [105, D-

The fractional counterpart of these results is as follows. In [59], a solution to (5.24) for 0 < ¢ <
2% —1 is obtained by means of a Lyapunov-Schmidt reduction. Indeed, the authors prove the existence
of a function w, (which goes to zero in a suitable space with ¢ — 0) so that, for some p € (0, 400)
and ¢ € R", 2, ¢ + w, solves the problem (5.24), where

zpe(x) = u%z (w ; {) , z(x) = W (5.26)
is a solution of
(=A)su = u% 1 in R, u>0.
Moreover, in [60] for the range 0 < ¢ < 1 the authors use the concentration-compactness principle to

prove the existence of two solutions for the problem (5.24) (see also |
in the nonlocal case).

, ,137] for related problems

In this section, we solve the problem (5.24) in the fractional case s € (0,1) and in the range
1 < ¢ < 2% — 1, using a concentration-compactness principle. Notice that in our problem the two
nonlinearities are convex, and the geometry of the functional suggests the existence of one solution
instead of two. In order to prove the existence of a solution we use, roughly speaking, the following
strategy:

(i) we consider the energy functional associated to (5.24) and we prove that it satisfies some
compactness condition (Palais-Smale condition) under a certain energy level.

(ii) we build a sequence of functions with an appropriate geometry (of Mountain Pass type) whose
energy lies below the critical level found in (i).

(iil) we apply the Mountain Pass Lemma (see [8]) to pass to the limit, getting a solution.
There are two fundamental points here: to identify the energy level, and to find the appropriate
sequence. We point out that, in the concave-convex (fractional) problem studied in [60], the geometry
derived from the concave term (the functional has a minimum of negative energy) helps to prove that
the sequence stays below the critical level. However, in our problem both nonlinearities are convex,
and the proof gets more involved. Indeed, if one adapts straightforwardly the compactness result
in [60, Proposition 4.2.1] and builds the sequence in the standard way (by considering the path along
the Sobolev minimizers), then the arguments to prove that the energy of the sequence is small enough
do not work.
Thus, the study of (5.24) will first require a finer analysis of the compactness properties of the
functional. More precisely, we will have to improve the estimates of the functional in order to get a
slightly higher critical level. Accordingly, once we have found this new critical level, we perform a
more careful analysis of the energy of the sequence given by the minimizers. We will finally conclude
by applying the Mountain Pass Lemma in the standard way.

We remark here that in this work we also overcome a flaw found in [5], where the classical problem
is studied; indeed, to prove compactness (Proposition 2.1 therein) they state that the critical energy
level ¢, has to satisfy

1 LI
e < =S _ CeT=GD,
n
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Nevertheless, if one follows the proof it arises that, in order to reach the contradiction, it has to be
required that

1 L
c. < =8"? _ CeTG — (k.
n

Notice that what we are saying here is that the compactness holds below a lower critical level, and
thus it will be more difficult to find the sequence in (ii). This flaw was already fixed in [60] in the
fractional, concave-convex case (see Proposition 4.2.1), where the authors consider the lower level and
find the appropriate sequence.

We make now some preliminary observations on the problem that we study. We see at first that
if h satisfies conditions (5.25), then also

h e L™(R"™) for any m € (1, 400).

Furthermore, in the case n € (2s,6s) we need to ask h to be positive. This restriction arises again
from the study of the energy of the Sobolev minimizers. As we commented before, we would like to
control the energy of the sequence that we will construct (and that will be based on the functions
Zue, see (5.26)), and thus we would like the negative terms to be as large as possible. In particular,
if one looks at the g-order term, we hope that the part where h is positive dominates over the part
where it is negative. To have this, we will center the function 2, ¢ in the ball where h is positive, so
that the mass is concentrated there. However, it can be easily seen that for low dimensions the mass
of the tails of the minimizers is too large and it annihilates the mass in the positive part of h. This
computation gives an idea of why the necessity of requiring h > 0 for n € (2s,6s), but the detailed
restriction can be found in Section 5.2.4.

The section is organized as follows: in Subsection 5.2.1 we provide the functional framework that
will be needed, as well as some auxiliary results related to compactness and geometry properties.
Subsection 5.2.2 is devoted to the proof of the Palais-Smale condition for the energy functional, and
Subsection 5.2.3 to construct the sequence with mountain pass geometry and whose energy level lies
below the critical one. Finally, in Subsection 5.2.4 we prove Theorem 5.2.1.

5.2.1. Functional framework and preliminary computations. We introduce at first some
notations. Let us denote by R’}:’l :=R" x (0, +00) the n + 1 dimensional half-space, by X = (z,y) €
Rﬁ“ a n+ 1 dimensional vector, having € R™ and y > 0, and take a := 1 —2s. Moreover, for x € R"
and r > 0 we write B,.(z) (shorted to B, when z = 0) for the ball in R™ centered at x with radius r,
i.e.

B.(z) := {2 e R" s.t. |z — 2| <r},
and for X € R%*! and » > 0 we write B;" (X) for the ball in R%*" centered at X with radius r, that is
BHX) :={X"eR}" st. | X - X'| <7}
Let us introduce first the seminorm
2 _ ([ @) = u()?
[U]HS(Rn) = J e —y[rrr dx dy,
R2n

and define the space H® (R™) as the completion of the Schwartz space of rapidly decreasing smooth
functions, with respect to the norm [ ]z gn) + | - | 122 (gn)- For the sake of simplicity, from now on

we will use the notation | - || for the L2* (R") norm.

DEFINITION 5.2.2. We say that u € H*(R") is a (weak) solution of (~A)*u = f in R™ for a given
f e LA(R™) where 5 =2n/(n+ 25) if

C(n,s H W) (@) = W) 44— N F@)p(x) da

|$ _ |n+2$
R2n

for every ¢ € H*(R™).
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Nevertheless, instead of directly working in this framework, we will transform the problem into a local
one by using the extension due to L. Caffarelli and L. Silvestre (see Chapter 4 and the original result
in the paper [28]). Let U be the extension operator defined in (4.1) an denote

1/2
0]; = ( | ya|w|2dx) ,
Rn+1

where k5 is a normalization constant. We then define the spaces

H(RY) = CF (RO

and

HS(R?Y) 1= {U =0

st. Ue H:(R"),U(z,y) = U(z, —y) ae. in R" x R}_

n+1
R+

The norm in Hj(RZH) is, neglecting the constants,

1/2
[U]a:=J Yy VUPdX | .
R

So, finding a solution u € H*(R™) of the nonlocal problem (—A)*u = f(u) (thanks to (4.1)) is
equivalent to finding a solution U € HZ(R':!) of the local problem

div (y*VU) =0 in R+
— lim y*0,U = f(u) inR™
y—0t

Since we are looking for positive solutions of (5.24), we will consider the problem

(—A)*u = ehu? + ui;_l in R” (5.27)
and (according to the considerations above) its equivalent formulation
div (y*VU) = 0 in R

. 5.28
- li%1+ y*0,U(z,y) = ehU%(x,0) + U2 "' (2,0) in R (5.28)
y—

In particular, we say that U € H (R is a (weak) solution on the problem (5.28) if

J . y{VU,VpydX = J (Eh(x)Ui(x,O) + Uigil(x,0)> o(z,0) dz,
R’_"L_ 1 Rn

for every o € H S(RM). Furthermore, the energy functional associated to the problem (5.28) is

1 2 & 1 1 2*
€ == @ X — h o+ - 7-[‘ ° .
FU) = fwl VU X = — f @V w0 de = 5 | UF @0y de
In particular F, € C'(H$(R™™)) and for any U,V € H?(R"*!)
(FLU), V)
= f L YVU V) dX —gf W)U (2,0)V(z,0) — | U 7(z,0)V(x,0)dz.
Ryt n Rn

The purpose of the section from here on is to prove the existence of a critical point U of the operator
F-. Then, U is a solution of (5.28) and therefore u := U(-,0) is a solution of (5.27). Moreover, one
can prove that any nontrivial solution u of (5.27) (hence its extension U) is nonnegative, and therefore
a true solution of (5.24) (see for this [60, Proposition 2.2.3]).

It is known that (up to constants) the harmonic extension of the fractional Laplacian gives an
isometry between H*(R") and HZ(R), i.e.

[ul s ) = [Ula- (5.29)
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We recall that the Sobolev embedding in H*(R™) gives that

Slul? < [ o
where S is the best constant of the Sobolev embedding of H*(R™) (see for instance [55, Theorem
6.5]). As a consequence, we have the following inequality,

PROPOSITION 5.2.3 (Trace inequality). Let U € H;(]Rf_ﬂ) Then
S|U0)* < [T

a

In [41, Theorem 1.1] the best Sobolev constant and the fractional Sobolev minimizers are explicitly
computed. The form of the fractional Sobolev minimizer is given by

z(x) := G

W (5.30)

for a positive constant ¢, = c.(n, s).
We introduce for r € (1, 400) the weighted Lebesgue space endowed with the norm

1/r
”U”L»«(Riﬂ’ya) = (JR"“ ya|U|r dX) :
+

The following result gives a continuous Sobolev embedding of the space H s (R’fl) into the weighted
Lebesgue space for a particular value of r. See for the proof [60, Proposition 3.1.1].

~ PrOPOSITION 5.2.4 (Sobolev embedding). There exists a constant S > 0 such that for all U €
HE (R it holds that

1/2v 1/2
J YUY dx <8 J Yy IVUPdx |,
R1+1 Ri‘i'l

where v =1+2/(n — 2s).

In the next proposition, we prove a useful integral inequality that will be frequently used.

PROPOSITION 5.2.5. Let 1 < g < 2% —1. Assume u € L*(R™) and h € L™ (R™) with m = %

Then

| @y @) de) < Pl .
PROOF. We use the Holder inequality to deduce that
25 —q—1 g+1
25 2% - 23
f h(z)ud(x) de| < f |h(2)|u?™ () do < U |h| 2Tt d:z:] U || dx]
n ]R’n R’VL n
< (Al o ey [l 7+
for m = 2*3'(:171 > 1, and so the inequality is proved. O
The next proposition is the equivalent of [60, Lemma 4.1.1] in the case ¢ = 1 and goes as follows.

PROPOSITION 5.2.6. Let v, € L% (R™, [0, 400)) be a sequence converging to some v in L% (R™).
Then for any r > 1

2
lim |vgp(z) —v"(x)| 7 dax = 0.
k—+w Rn
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PRrROOF. For any a > b > 0 and any r > 1 we see that

a"—b" = rJ t"rdt <ra"(a—b) <r(@™t + 0" (a - b).
b

Exchanging a with b, we conclude that
la” = b"| < r(a+ b) " a —b).

Then by the Holder inequality we have that

. . (r=1)/r
f [vp(z) — 1}T(;1c)|2T dx < r (J (vg +v)% dx) (J lvg — v
n n ]R'n.

2% (r—1)2% *

2 28
<7 foe o T o —of 7

1/r
% dx)

Using the convergence |vy — v|| = 0 (from which it also follows that ||vg + v| is uniformly bounded),
the conclusion plainly follows. |

Another useful result is given in [60, Lemma 4.2.4]. We just notice that now, for ¢ > 1, the statement

goes as follows:
PROPOSITION 5.2.7. Let m := %;H)
n,8,q and || gmwny such that, for any a > 0,

Then there exists a positive constant C depending on

52 11 h a+l > C_'#ZH)
o s —¢& 2_q+1 || HLnL(Rn)O{ = —(¢g~s .

5.2.2. Palais-Smale condition. The main result of this Section is the following.

THEOREM 5.2.8. There exists C,c; > 0, depending on h,q,n and s, such that the following
statement holds true.
Let {Uy}ren © HE(R™TY) be a sequence satisfying
(i) lim F.(Uy) = c., with
k—+x

2*
A T S qn .
Ce + 01t 4 0@t < 2§35 if n = 6s,
n
S \n .
e+t < 293 if n € (2s,6s),
n

where § > 0 and S is the Sobolev constant appearing in Proposition 5.2.3,
i ' _0.
() Jim, Fi0) =0
Then there exists a subsequence, still denoted by {Uy}ren, which is strongly convergent in H;j (RT’l)
as k — +o0.

Here, the limit in (4¢) is to be intended as

lim ||F (U, = lim su F(U), V| =0,
k_)+%|| (U)lee.m) k—>+00VeE,|\vp\|E=1|< (Ur), V)|

where we denote by L(E, E) the space of all linear functionals from E to E.

REMARK 5.2.9. As we commented in the introduction, one of the key points in this work is to
slightly improve the critical level in such a way that further on we can build a sequence whose energy
lies below it. This is precisely the role played by the parameter ¢ in the previous theorem. We can
not drop this term (that will cause important difficulties) but we can choose § large enough so that
we can neglect it when € — 0.

We recall at first a concentration-compactness principle, stated in [60, Proposition 3.2.3] and proved
there. This principle is based on the original results by P.L Lions in [105, ] (in particular in [106,
Lemma 2.3]). For this, we recall the next definitions.
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DEFINITION 5.2.10. A sequence {Uy}ren is tight if for every u > 0 there exists p > 0 such that
for any ke N

f - Y| VU ?dX <
R” B

DEFINITION 5.2.11. Let {u}ren be a sequence of measures on a topological space X. We say that
i converges to p on X if and only if

lim pdu = J wdu  for any ¢ € Co(X).
X

k—+2 Jx
Then the principle goes as follows.
PROPOSITION 5.2.12 (Concentration-Compactness Principle). Let {Ug}ren be a bounded and tight

sequence in HS(R"H) such that Uy, converges weakly to U in HS(R”H) Let p, v be two nonnegative
measures on RTH respectively R™ such that (in the sense of Definition 5.2.11)

lim y* VU =
k—+a0

and
N
s = .

: 2
i, 10

Then there exists a set J that is at most countable and three families {x;}je; € R", {v;}jcs and
{1} jes with Vj,uj = 0 such that

(i) v= S+ Z V0,
jeJ
(it) p = Y| VU + ) pi0a, 03
jed

(tii) pj = SV;/Q*: for all j e J.

We prove that a sequence {Uy }ren satisfying the assumptions in Theorem 5.2.8 is bounded. A slighter
more general result is given in the following Lemma.

LEMMA 5.2.13. Let e,k > 0 and let {Uy}ren © H;(R?fl) be a sequence that satisfies
|Fe(Uk)| + sup KFL(UR), V)l <

VeH: (R}, [V]=1 (5.31)
for any k € N. Then there exists M > 0 such that for any k € N
[Ukla < M. (5.32)
PrOOF. We suppose by contradiction that for every M > 0 there exists k € N such that
[Ukla > M. (5.33)
Thanks to (5.31) we have that
n?ﬁww=;wﬁ—q;anX%VWx®m—% (U2 (2,0) da.
Using also the bound in (5.2.5), we obtain that
(U] < 25 + q2+€1 f h(@) (U (2, 0) der + 23 CAEEE -

2e 2
<2k + ﬁ||h||Lm(R" ||(Ulc)+||q+1 + ?gH(Ukﬁ 2

Thus, from this and (5.33), we deduce that also for every M > 0 one can find k € N so that
[(Uk)+| > M. (5.35)
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Consider now the function f: (0,00) — (0, 0c) defined as

7.qul

f() = =

T4s

Since ¢ + 1 < 2% we have that
lim f(7) =0,
T—0

and hence, for any § > 0 there exists 75 > 0 such that for every 7 > 75, one has that f(7) < §. Hence,
fixing 0 < § < 1, by (5.35) we can assume

Ul >7 (U <UD, V7> (5.36)
Therefore, by Proposition 5.2.3 there exists k € N such that
[Uk]a > 782, V7 >75 (5.37)
Using (5.36) and (5.34) we obtain that
9 2e 2 o
OO < 20+ (62 Il + 2 ) 104 12 (5:39

On the other hand, considering the quotient Uy /[Uk], from (5.31) we get that
[KFL(Uk), Ur)l < K[Uk]a-
From this and the fact that |F.(Uy)| < &, for ¢ > 1 we have that

W1+ [Ura) > F(Us) = 3T U

1 1 q+ S
_. (2 - q+1> | 0@ w0 de + 2100,

(5.39)
2

recalling that

1 1.5
2 2¢
Thanks to the bound in (5.2.5), it follows that
O 1% <R+ [0 + 2 ( 2 = — ) [l e | () [ 7
n + < a 9 g+ 1 L™ (Rn) + .
We use (5.36) again and we obtain that
S o* 1 1 o*
YOI < ol 4 [000) 402 (5 = 7 ) Ul [

Thus
2 < li(l + [Uk]a),

s 1 1
[n —de (2 - q+1> hLm(R")] [(Uk) +

which for ¢ small enough, implies that
c|(Un)4 % < k(1 + [Urla)-

Notice that for ¢ = 1 the inequality above immediately follows from (5.39). This, together with (5.38),
yields

[Uk]z < C1 + Ca[Ukla
for suitable positive constants Cy, Cs, both independent of k. Choosing 7 large enough in (5.37) we
contradict this inequality and conclude the proof. O

Furthermore, a sequence {Ug}ren C H s (erfl) that satisfies the hypotheses of Theorem 5.2.8 is tight,
as stated in the next Lemma.
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LEMMA 5.2.14. Let {Ug}ren < Hj(R’}rH) be a sequence that satisfies the hypothesis of Theorem
5.2.8. Then for any n > 0 there exists p > 0 such that for any k € N it holds that

J YO VU2 dX +J (Un)% (x,0) da < 1.
RIHN\B R™\(B, n{y=0}}

In particular, the sequence {Uy}ren is tight.

PRroOF. First we notice that (5.31) holds in this case, due to conditions (i) and (ii) in Theo-
rem 5.2.8. Hence, Lemma 5.2.13 gives that the sequence {Uj }xen is uniformly bounded in H3(R*!),
and thus

Up—U in HX(R™)  ask — 4o

it (5.40)
and Uy - U a.e. in R} as k — +o0.

We now proceed by contradiction. Suppose that there exists 1y > 0 such that for all p > 0 there
exists k = k(p) € N such that

J Y| VUL dX + J (Uk)i': (x,0) dz = no. (5.41)
RyYIABY R™\{B,~{y=0}}
We observe that
k— 40w as p— +oo0. (5.42)

Indeed, let us take a sequence {p;}ien such that p; — +00 as i — 400, and suppose that k; := k(p;)
given by (5.41) is a bounded sequence. That is, the set F':= {k; : i € N} is a finite set of integers.

Hence, there exists an integer k* so that we can extract a subsequence {k;, } jen satisfying k;; = k*
for any j € N. Therefore,

YO VU 2 dX + J (Up)* (,0) da > no, (5.43)

JR’;“\B;:], RA\(B,, ~{y=0}}

for any 7 € N. But on the other hand, since Uy+ belongs to H;(R’}FH) (and so Ug+(-,0) € L% (R™)
thanks to Proposition 5.2.3), for j large enough there holds

Y VU |? dX +J (Uk*)i:(:zr,O) de < °

J‘MH\B% Rn\{Bp,ij ~{y=0}} 2

which is a contradiction with (5.43). This shows (5.42).
Now, since U given in (5.40) belongs to € H (R 1), by Propositions 5.2.3 and 5.2.4 we have that
for a fixed € > 0, there exists r. > 0 such that

J Yy |VU? dX +J Y |\U|*Y dX+J |U(z,0)
RTNBT RTTNBE R™\{ By, n{y=0}}

with a > v and 7 defined in Proposition 5.2.4. Notice that, without loss of generality, we can assume
that

*
% de < e,

re = +0 as e — 0. (5.44)

On the other hand, since h € L™(R™) for every m € (1, 4+00), in particular we can assure the existence
of a radius 7. such that
Bl ges,, ) < 22, (5.45)

with m satisfying % =1- qztl and 8 > a/y — 1.

Moreover, by (5.32) and again by Propositions 5.2.3 and 5.2.4, there exists M > 0 such that

f y“|VUk|2dX+f y“|Uk|27dX+f Ui (,0)
Rn+1 Rn+1 Rn
+ +

% dr < M. (5.46)

Let
r = max{re, T }. (5.47)
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Now let j. € N be the integer part of EM; Notice that j. tends to +0o as ¢ tends to 0. We also set

Li={(z,y) e R :r +1<|(z,y)|<r+(1+1D)}, 1=0,1,--, je.

Thus, from (5.46) we get
M
(je + 1)504 = 7&504

jE
> Z (J Y| VUL? dX +J Yo U |2 dX +J { }IUk(x70)|2Z d:c) ,
Iz IL Ilﬁ yZO

1=0
, Je} such that, up to a subsequence,

and this implies the existence of [ € {0, 1, -
J Y| VUR|> dX + f Y| UR? dX + f Uk (2,0)[% da < £ (5.48)
I It Irn{y=0}
We take now a cut-off function y € Cg (R, [0, 1]), such that
L@yl <r
x(z,y) = (5.49)
{o, PN
and
Vx| <2 (5.50)
(5.51)

We also define
and Wy := (1 — x)Uy.

Vi :== xUy

We estimate
[KFe(Ux) — FL(Vi), Vi)l
h(x)(Ug)% (x,0) Vi(z,0) da

f ya<VUk,VVk>dX —€f x :) ¥
]Ri"’l n
(5.52)

— | W) (,0) Vi(z,0) da — YUV Vi, VViYdX
Rn+1
"

+ 5f i h(z)(Vk)‘fl(x, 0)dz + f § (Vk)

(1’ 0) dx|.

First, we observe that

‘ f " ya<VUk, VVk>dX — f — y“<VVk, VV]OdX‘
R” R:’;

VU |xII1 - dX+J’ *|VUL|UL|| Vx| dX
| vV v PR - x AN 55

[ T

o f Y Ukl VULV xIx] dX + f YO UR2 V2 dX
T T

=: A + Ay +A3+A4.
By (5.48), we have that Ay < Ce®, for some C' > 0. Furthermore, by the Holder inequality, (5.50)
and (5.48), we obtain

1/2 1/2
Ay, < QJ y“|VUk||Uk|dX<2<J y“|VUk|2dX> (J y“|Uk|2dX>
I I

y—1

I
2y

1/2v
< 27 (J y“|Uk|27dX> (J y“dX)

Iy
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Since a = (1 — 2s) > —1, the second integral is finite, and therefore, for ¢ < 1,

1/2v
Y| U |> dX) < O < Ce,

AQ < C’€a/2 (J'
I,

1

where (5.48) was used again. In the same way, we get that As < Ce®/". Finally,

/v =t
YUY dX) < J y° dX) < Ce,
I,

1

AM(J
I

T

Using this information in (5.53), since o > a/y we obtain that

J . y“<VUk,VVk>dX—J . ya<VVk,VVk>dX‘ < Ceol,
R Ry

up to renaming the constant C.
On the other hand by (5.51) and (5.48),

[ (@0 @0 w0 - 007 @) di| < [ J1-x% IV 0 do
n R’n
< C Ui (2, 0)[% da < Ce®.
Irn{y=0}
In the same way, applying the Holder inequality, one obtains
e | ) (0L, 0) Vile,0) = (Vi) (2,0)) da
RVL
< [ @I = XNV 0 da (5.54
Rn
< CE”hHL/v(Rn) J |U}€(£B70) 2 dx < C€1+a.
I;n{y=0
All in all, plugging these observations in (5.52), we obtain that
KFLUR) = FLVi), Vieyl < Ce™/. (5.55)
Likewise, one can see that
KFLUR) = FLWi), Wi)| < Ce/. (5.56)
Now we claim that
KFL(VR), Viy] < Ce®™ + ox(1), (5.57)

where 04 (1) denotes (here and in the rest of this section) a quantity that tends to 0 as k tends to +o0.
For this, we first observe that

Vila < C and [Wi], < C, (5.58)

[
for some C > 0. Indeed, recalling (5.51) and using (5.49) and (5.50), we have

[Vil2

N

N

1y“|VVk|2dX

J..

.
f Y VX UR|? dX +J Y X2 | VUR? dX + 2f y* x Uy VUi, Vx)dX
R1+1 R1+1 ]R1+1

1/2
4[ Y |\U?dX + [U2 + C (f y“|VUk|2dX> (J
I I+ I

7 1 T

C<L

T

1/2
y“|Uk|2dX>

1/'y 1/2'y
y“|Uk|2wX> (U2 + C Ukl (f ya|Uk|2wX) ,

I
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where the Holder inequality was used in the last two lines. Hence, from Proposition 5.2.4 and using
(5.32), we obtain (5.58). The estimate for W}, can be proved analogously.
Now, we notice that

KFLVi), Vil < KFL(Vi) = FLUR), Vil + KFL(UR), Vil < O + KFL(U), Vi,
thanks to (5.55). Thus, from (5.58) and assumption (ii) in Theorem 5.2.8 we get the desired claim in

(5.57).
Analogously (but making use of (5.56)), one can see that

KFL(W), Wid| < C/7 + 04(1), (5.59)

Let us consider first the case n > 6s. From now on, we divide the proof in three main steps: we first
show lower bounds for F.(Vj) and F.(Wj) (see Step 1 and Step 2, respectively), and then in Step 3
we obtain a lower bound for F,(Uy), which will give a contradiction with the hypotheses on F, and
so the conclusion of Lemma 5.2.14.

Step 1: Lower bound for Fc(V}). Recalling that

1_1_s
2 28 n
we have by Proposition 5.2.5 that
1, 11 "
FeVi) = 5FeVie), Vip = { 5 = o ) (Vi) + (5 O

+e <; - 1) Ln h(@)(Vi)4™ (x,0) do

q+1

= —|[(Vi)+(-,0)

* ]. 1
2 1
F—e (5 ) Pl 0RO,

Slw

and by Proposition 5.2.7 and (5.57) we get that

o*

F.(Vi) = —Ce™ — CeZ=i0 4 g,(1). (5.60)

Step 2: Lower bound for F.(W}). First of all, by the definition of Wy, in (5.51) (recall that Wy, is
supported in R™\B,  ; ¢ R"\B;_, using also (5.47)), by Proposition 5.2.5 and 5.2.3, using (5.45) and
(5.58), we have that

5Jn h(z) (W)L (2,0) da

< 5f |h(2)|(Wy) T (,0) da
R™\B7,

(5.61)
<& Wl [Wi)+ (- O < & C [l s, ) (W2 < C2147,
where 1 4+ 8 > «a/v. Thus, from (5.59) we get that
J YUV dX — | (W) (2,0) da
]R:_Jrl Rn
(5.62)

< KFL W), Wiy| +

EJ h() (W) (2, 0) der
Rn

< Ce7 4 0(1).
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Moreover, notice that W, = U}, in RTFl\B
pi=r+1+1, we get

i1 (recall (5.49) and (5.51)). Hence, using (5.41) with

f 1 Y VW2 dX + f (W) (2,0) d
REFNBY, RP\(B, 4111 ~{y=0}} * (5.63)
= J Y |VU* dX +J (U5 (2, 0) da = o,
R:L_+1\B:+l’+1 R™\{B, 1410 {y=0}}
for k = k(p). We observe that k tends to +00 as e — 0, thanks to (5.42) and (5.44).
From (5.63) we obtain that either
| (W) (2, 0)do > ™
RA\{B, 17410 {y=0}} 2
or
f Y VW2 dx = 2.
R1+1\B:—+i+1 2
In the first case, we get that
[ ¥ @oyde> | (W) (.0 o > ™.
" R”\{Br+i+1”{y:0}}
In the second case, taking e small (and so k large enough), by (5.62) we obtain that
f (W% (2,0) da > f VW dX — O/ — 0p(1)
n ]R:L—-f-l
;f YV |2 dX — Ce/" — o4(1) > %0.
R:—+1\B:F+L'+1
Hence, in both cases we have that
f (W) (2,0) da: > %0 (5.64)
for € small and k large enough. We now define ¢, := apWj, with
Q22 . [Wila
g (W)« (- 0)]%
Notice that from (5.59) we have that
Wils < W)+ (L 0))* + EJ h(z)(Wi) 4 (2,0) dz| + C 7 + ok (1)
< W)+ (5 0)* + C ™7 4 op(1),
where (5.61) was used in the last line. Hence, thanks to (5.64), we get that
a2 <14 Ce 4 o (1). (5.65)

Also, we notice that for this value of ay, we have the following chain of identities,

[Vr]2 = W12 = i (W) (5 0)1% = ()« (-, 0) .
Thus, by Proposition 5.2.3 and (5.29), we obtain
[’(/)k(-,())]2~3 n 2 . 0)]% 4s
S < H Hs(R™) _ ['(/)k]a _ ”(wk)+(a )””2 _ ‘|(wk)+(70) =—rl

(@r)+ GO @R+ GO0 (k) +(-50)
Consequently,

2%
(i) oy = LGOI o 1
.’ ay,
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This, together with (5.65), gives that

S < (14 Ce7 + 04 (1)) T2 |(Wi) 1. (-, 0) (5.66)
< W)+ (L 0)[* + Ce™7 + o5, (1).
We get that
1, _, s *
Fe(Wi) = 5Fe(W), Wiy = (W) (-, 0) %
1 1 q+1

> Sgn/2s _ 0P 0ol 4oy (1),
n

where we have used (5.61) to estimate the (¢ + 1)-order term. Finally, using also (5.59) and the fact
that 8+ 1 > a/v, we get

Fo(Wy) = %sn/zs — C 1 ok (1). (5.67)

Step 3: Lower bound for F.(Uy). We first observe that by definition we can write
Ue = (1 = X)Uk + XUk = Wi + Vi (5.68)

Therefore

Fo(Us) = Fo(Vi) + F.(Wi) + f OV YW dX
Rn 1

+
1 * €
n (Vi) (2, 0) da + — h(z) (Vi) (z,0) da
13 Rn» . q E R™ (569)
+ o N (Wi)3 (x,0) dz + ol h(z) (W) (2,0) da
1 2; g q+1
T ). (Ur)§ (2,0) dz — 741 e hz)(Uk){ ™ (2,0) dz.

On the other hand,

j y YV Vi, VW) dX
Ry

1 1
== f yVU, = VVj,, VViydX + = f
2 R1+1 2 ]R:’_

ya<VUk - VWk, VWk> dX.
+1
Also
(FLUUR) = FL(Vi), Viey

_ f L YVUL = YV, Vi) dX
Ryt

—sjn h(z)(Ug)2 (2, 0) Vi(z, 0) d:c—f (U) >~ (,0) Vi(z,0) da

n

+e f ) h(z) (Vi) 4 (2, 0) da + f (Vk)i; (z,0)dz,

n
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(FLUL) = FLWL), Wiy
- f YUV Uy — VW, VIV dX
RL

- h(z)(Ug)2 (z, 0) Wy (z, 0) dx—fn(Uk)i:_l(x,O) Wi(z,0) da

n

+€J' h(z)(Wi) T (2,0) da + f (Wk)i:(x, 0) dx.
Hence, plugging the three formulas above into (5.69) we get

FulU) = FoVi) + Fo(Wi) + SCFUUR) = FUVR), Viy+ S CFLUUR) = FLWe), Wiy

+ % N (Vi) (,0) da + q—ng jR" h(z)(Vi)$" (2,0) dz

+% T @0 dr+ g | @) (@00 d

-5 | 00T 0 d - =1 [ @O0t @0 d

n %JW h(z)(Ur)? (z,0) Vi(z,0) dz + %Jn’(Uk)i’;_l(%O) Vi(@,0) dz
-5 | o0t @o -3 [ 0% @0

n gjw h(z)(Ug)? (z,0) Wi(z,0) d + %Jn(Uk)i:_l(w»O) Wi(z,0) dx
5 | @t @o a5 | o 0ydn

* 1 * 1 *
2 e de+ = [ W) (,0)de - §J (U2 (2, 0) dor
R™ s JR®
1 2* 1 1 2* 1
+ (Uw)y (z,0) Vi(z,0) dx + 3 (Ur)y (z,0) Wi(z,0) dz
R~ n

2
1 o* 1 o*
Rn n

(3 737) L oo @o
—€ <; - qj—l) JR" h(x) (Vi) (2, 0) o
13

n

i f h(z)(Uy)" (2, 0) dz + %J h(z)(Ug)2 (2, 0)Vi(z,0) dx
+Z J h(z)(Ug)2 (, 0)Wy(z, 0) do — Ce®/,
for some positive C. We use identity (5.68) to write

U)T T (Ve +Wi) = (U5 and  (Up)%T = (UL (Vi + Wa),
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and obtain that

Fe(Ur) = Fo(Vi) + Fe(Wh)

t(3-5) | [ oF@ow- [ tfeoda- | mdeowl

e (; - q+11> | 1) [0t .0V 0) - (1)1 (w,0)] do (5.70)

e (1 - 1) f (@) [0 (@, 0Wa(,0) = (W)} (@,0)| do = C=/7.

Using (5.54), reasoning in the same way for the term with W}, and recalling that 1 + a > «/v we get
that

Fe(Ug) = Fe(Vi) + Fe(Wy)

w2 | (@0F @0 - (W @0 - W (@.0)) do - ceoF

=Fe (Vi) + Fe(Wy)

S

2 [ @0T 0 (1= (@0) = (1= x(@0))%) do = Ceo7,

where (5.51) was used in the last line. Also, since 25 > 2 and
1—x%(x,0) = (1 = x(,0))% =0 for any = € R, (5.71)
we get
Fe(Ur) 2Fo(Vie) + F(Wy,) — Ce™/.

This, (5.60) and (5.67) imply that

_ 23
Fe(Ur) = %S”/Qs — 167 — CeZ=¥0 4 o(1).

Hence, taking the limit as k — 400 we obtain that

*
25

. S Ve o ey
ce = lim Fo(Up) = =82 — ¢1e®/" — Ce=(D)
k—+a0 n

which is a contradiction with assumption (i) of Theorem 5.2.8. This concludes the proof of Lemma
5.2.14 in the case n = 6s.

Consider now n € (2s,6s). In such a case, one easily sees that

1 1

FA) = 5 F00.0 = (5= 52 ) 108)- 0
11 it
+é (2 — q—i—l) - h(x)(Vk)++ (17,0) dx
11 ot
> e <2 - q+1> J h(2) (V)T (2, 0) dar,

and by (5.57) we get that

Fo(Vi) > e <; - qi1> J h(@) (Vi) (2,0) da — C=/7 + o4 (1). (5.72)



160 5. SOME NONLOCAL NONLINEAR STATIONARY EQUATIONS

On the other hand, proceeding analogously to the previous case (check (5.66)), we obtain
1, ., S 2*
Fe(Wy) — §<}'€(Wk), Wiy = E”(Wkﬁ(" 0) L8 (k)

€ (; — 1) J h(z)(Wi) 4 (,0) dz

s 1 1
s 2 n/2s -+ q+1
= nS +€<2 q+1)jﬂw h(x)(Wy)3 (x,0) dz
—Ce/ + op(1).
Thus, using also (5.59), we get
1 1
Fo(Wy) = %S"/% te (2 — q+1> f h(z) (W) (,0) do — Ce*7 + o4,(1). (5.73)

Now, using the positivity of h, from (5.70) and (5.71) we get
J:E(Uk) Z.Fs(vk) + ]:E(Wk))
1 1 2* 2} 27
3= ) | @Feoa - [ onieod— | wFe o

S

. (1 - 1) h) [(VO)1 (@, 0) + (W) £ (2, 0)] dar — €

2 qg+1
Z]:e(vk) + fs(Wk)
. <; - qur1) f ha) [(V) 5 (2, 0) + (W) 2, 0)] d — €=/,

> %s"ﬂs — 0 + op(1),

where we have used (5.72) and (5.73) in the last line. Passing to the limit as k¥ — o we reach a
contradiction with assumption (i) of Theorem 5.2.8 and thus we finish the proof of Lemma 5.2.14 in
the case n € (2s, 6s). O

Knowing that the sequence {Uy } ey is bounded and tight, one can use the Concentration Compactness
principle and prove Theorem 5.2.8. More precisely, one applies Proposition 5.2.12 for the positive
sequence {(Uy)+ }ren, which is also bounded and tight, to obtain that

(U3 (-,0) v =T"(-0)+ > 6.,

k—+0

a 2 a|I77|2
VIV P o 12 0 IVOP + Y 100,00,
and then, following the steps in [60, Proof of Proposition 4.2.1] and using Proposition 5.2.7, one
deduces v; = p; = 0 for every j. Finally, proceeding as in [60, Proposition 4.2.1] (using Proposition
5.2.6 instead of [60, Lemma 4.1.1]) the strong convergence in H3(R:") follows, and thus Theorem
5.2.8 holds.

5.2.3. Bound on the minmax value and geometry of the functional. The purpose of
this subsection is to show that the minmax value of the Mountain Pass Lemma lies below the critical
threshold given in Theorem 5.2.8. To see this, the idea is to find a path where the maximum value of
the functional is smaller than this critical level (and so the minmax). We obtain such path by working
with the fractional Sobolev minimizers, explicitly computed in formula (5.30). One considers, as done
in [60, Section 6.5], the ball B given in (5.25) and takes pg > 0 and £ € R™ to be the radius and the
center of B respectively. Namely, one has that

inf h>0.
By (§)
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Let ¢ € CF(B,,(),[0,1]) be a cut-off function such that ¢(x) = 1 in Bug (§). Translating and
rescaling the function z in (5.30) we define

Zpe(x) = u%z (x /: 5) , > 0. (5.74)

Let Z, ¢ be the extension of ¢z, ¢, as defined in (4.1). With some manipulations (check Section 6.5
in [60]), one has that

n—=2s

l2uel? = 57 (5.75)

and that

n

(20617 = [020.elfy gn) < S +Cp" 7% (5.76)
Moreover, we have the following result.
LEMMA 5.2.15. There exists C = C(n, s, po) > 0 such that
12,06 (O = Nz

~ ProOOF. In the next computations, the constant may change value from line to line. Using that
¢ =1on B, /2(§), we have that

= 12ue(-,0)

* —o* 2* —o* 2
e e [ o= | (1= §%)%, da
R‘IL R"\Bﬂzl (E)

SM%J 2% (x—f) dz.
R™\B g (&) z

Making the change of variable y = (x — £)/p and inserting definition (5.30) we get

* — * * 2* _on n
25—H2m430)23=‘f \ z%@DdyS(xsf ly| " dy < Cp”,
R™M\B o
2p

(S

R™\B pq
2p

where C' depends on n, s, p19. This proves the lemma. O

Let t > 0. We consider the path tZu,g and compute the energy along it. Namely, we focus on obtaining
an upper bound for

_ +2

_ 12 _
}—s(tZu,é) = g[ZmEE - ?HZME(WO)

* € > +1
%‘q+1LwM”@Z%@ﬁ»q da

and proving that it stays below the critical threshold given in Theorem 5.2.8. Of course, if t = 0
the energy level is zero, and for € small enough, this is trivially fulfilled. We introduce the following
Lemmata.

LEMMA 5.2.16. Let n > %. There exists p* < po/2 such that for any t > 0 and any
e (0, p%)

(2s=m)(atD) Ly

[ 1) (Ze0))™™ o> € gt e,
where C = C(n, s, h, uo, 1*) is a positive constant.

PROOF. Notice that since ¢ < 2% — 1, we have that % +n > 0. Given the definition of
¢ we have that

J;W h(x) (thg(:L‘,O))qul dz = f h(z)tqﬂq_ﬁqﬂzzzl () dx

n

. (5.77)
= h(x)tI T @I 20 (1) doe = 7Y inf b J 200 () du,
J;Mxo e Buo(© Jpuge) "

w5
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recalling also that infp, (¢)h is positive. Thus, using (5.74), changing the variable y = (x — £)/un and

inserting definition (5.30) we obtain that

(25=n)(g+1)
J’ Zzzl(x) de = Zamnjlatl +"J 21 (y) dy
Bﬂzl(f) Bpg

2p
(2s—=n)(g+1)
2

(2s—n)( )
=wiﬁﬁ*{ (1+ yf?) dy,
B

Ko
2p

where C' = C(n, s) > 0. Passing to polar coordinates and taking p small enough, say p < po/2 we get

that
(2s—n)(a+1)
2

dy

\%

J |y|(287n)(Q+1) dy
B g
2p

f 1+ yf?)
By

e g\ 25 (@ D
(5

> Cps J‘Tu p(2sfn)(q+1)pn71 dp = cns
1

B

(2s—=n)(g+1)+n
We have that (2s —n)(¢+ 1) + n < 0 and renaming the constants we obtain that

Ko
2p
for any p € (0, %) , pu* < po/2, where Cy, 5 0.4+ designates a positive constant. Hence

@smm)(@+1) 4y

q+1 (2s=n)(q+1)
fB Zpe (#) dx = Chs pug,ur )
%

and from (5.77) it follows

(25772(q+1) +n

|| 1e) (2l 0) " e > cre

where C'is a positive constant that depends on n, s, h, yg and p*.

| Ty o (67— ) 3 e

O

Let p* be fixed as in Lemma 5.2.16. We want to prove now that the energy level along the path
induced by tZ, ¢, t > 0, stays below the critical threshold given in Theorem 5.2.8 for p < p*. With

this purpose, we state the next result.

LEMMA 5.2.17. There exists uy € (0, o) such that

lim  sup F.(tZ,¢) = —o0.
t—+x 1e(0,1) B

Furthermore, if n > %, for any p € (0, min{u*, p1})

@s=m)(a+1) |

sup Fo(tZ,,¢) < %S% +C " fo(u" ) — Caep 2 ,
>0

where p* was given in Lemma 5.2.16.
PRrROOF. Thanks to (5.76), (5.75) and Lemma 5.2.15 we have that

2, R N Loy B
S0l = 12O < 5 (8% +Cunm ) = 5 (lae
S S
2 2
<G (% v owr) -
2 2

(S2 — Cop™).
From (5.77) it follows that for any u € (0, u*)

f (@) (tZpe(2,0) " dz > 0,

2% C2lun)

(5.78)

(5.79)

(5.80)
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and therefore

_ 2 - 2% . £ _ +1
Fit200) = 51 Z0el: = G2 O = =5 [ h@) (tZelr0)) ™ o
s q +1 R™
2 n 2%
<G (SE+ O ) - Lo (5E — o).

S

Now, there exists ju; € (0, f19) small enough such that S$™/2% — Cyu™ is positive and hence, sending ¢
to 4+00 and recalling that 2% > 2, we obtain
tEI-PTL Fe(tZue) = —0
for any p € (0, 1). This proves (5.78).
To obtain (5.79), we use (5.80) and taking any p € (0, min{x*, p1}), by Lemma 5.2.16 we have
that
_ t2 " L t2: " tq+1
Fe(tZug) < 5 (% + Cupu™™) = o (8% = Cop”) = S

S

(@s=m)atd) |y

I

By renaming the constants, we obtain

F(tZ,¢) < S g(t), (5.81)
where
2 2 t9Fl eonya4n)
)= — (1 n=28) _ 2 (1 — Cop™) — C R
g(t) i= 5 (1+Cip"™) 2 (1= Cop™) = Cse

We compute the first derivative of g and have that
! n—2s 2% 2 n q—1 Cs=m)(g+D) |
g'(t) =t[(1+01,u ) —t% (1 — Cou™) — C3et? ' 3 ] ) (5.82)

Let

(2571L2)(11+1)+n

f@) = (14 Cp"=2%) —t%72(1 = Cop™)  and  h(t) := Cset?™'p

Looking for a critical point of g is equivalent to looking for a solution of f(t) = h(t). We notice that
f(t) = 0 has the solution
n—2s
1+ Cl,un_QS 4s
a=|—7-"—" )
1-— CQM"

which is positive for p € (0, 7). Moreover, f is strictly decreasing on (0, +o0) for any u € (0, u1), h is
strictly increasing on (0, +0) (recalling that ¢=>1) and

f(0)>0, f(a)=0, and h(0)=0, h(a)>D0.

From this it follows that there exists (and is unique) t, € (0,«) such that f(¢,) = h(t,) (hence
g'(t,) = 0). Notice also that ¢’(t) > 0 on (0,¢,) and ¢'(t) < 0 on (t,, +o0). This implies that g(t,) is
a maximum. Now, denoting by

2 2%

t s
F() =5 (L+ O ) = o

S

(1—Cap")

we have that F’(t) = tf(¢t) > 0 on (0, ), hence F(t,) < F(c). On the other hand, ¢, > 0 and there
exists 6 > 0 independent on € and p such that ¢, > 6. Indeed, since ¢’(¢,) = 0, one has from (5.82)
that

1< 14 Cu™ 2 = 15777 (1 = Cop™) + Caet? '

(e=n)atD) o

<t Tt 4 Otat
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for any p € (0, 1) and € € (0, 1) and this implies the claim. And so by renaming C5 (that will depend
on ¢ also) and computing F'(«) we have that

ta+l o, son
g(t) < g(tu) = F(tﬂ) — Os¢ u+ 1'u(2 2)(q+1)+n < F(Oé) _ 036[1,(2 2)(q+1)_|_n
q
1 1 o s—n (2s—n)(q+1)
) (2 B 2) (L+ O =) 5 (1= Cop™) 5" = Chep™ 247
S

(omn)atn) Ly

5 —zS8 n—zs
=g+01,u" % L o(u"%) — Csep

Renaming the constants, from (5.81) we have that for any p € (0, min{p*, u1})

@smn)(@+1) 4y

Fe(tZye) < %S?L + O™ % 4 o(u™ %) — Caep
This concludes the proof of Lemma 5.2.17. O

5.2.4. Proof of Theorem 5.2.1. Let us take yu = ¢’ with 3 satisfying
2 <B< 0
n(qg+1) —2s(q + 3) %4_”’

(5.83)

and § > 0 large enough to have both conditions satisfied (notice that both denominators are positive
by hypothesis). This gives in particular that

,B(n—25)>1+ﬂ[(28_n)(q+1)+n].

2

Consider now the case n € (2s,6s). For € small enough, from Lemma 5.2.17 and renaming the
constants, we obtain

ce + Ce'0 < 2 gn/2s | ceBn=2s) 4 o(ePn=2)) — Cel+B(E=5 1)
n
< fsn/Qs _ CEl+ﬂ(7(257"2)(q+1)+n) < fsn/Qs
n n ’
that is assumption (i) of Theorem 5.2.8 for n € (2s, 6s).
On the other hand, if n > 6s we have that
g=1> i,
n—sn—2s
which assures that
2 2%

g+ D) =25(g+3) " (=292 — (g + ]
So we pick now S with the additional condition
2 2%
g+ D) - 2sg+8) -2~ (a1 1]
(still taking 6 > 0 such that (5.83) is satisfied). In particular we have that

(2s —n)(g+1) 2%
SR (CEETESING D

Therefore for £ small enough, we get from Lemma 5.2.17 that

2*
o2 s _ s-n)(a+1)
Ce + 1" pEeTE < 2y 0pfn=2s) _ ol BB )
n

< Sgn/zs _ potp( et )
n

< fSn/Zs,
n
that is assumption (i) of Theorem 5.2.8 for n > 6s.
Hence, Theorem 5.2.8 yields that the operator F. satisfies the Palais-Smale condition. Moreover,
Lemma 5.2.17 assures that it has the geometry of Mountain Pass type and therefore we conclude
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the existence of a critical point of F.. This implies the existence of a positive solution of (5.24) and
concludes the proof of Theorem 5.2.1.






CHAPTER 6

Nonlocal phase transitions

ABSTRACT. We consider in this chapter a nonlocal phase transition model, in particular described
by the Allen-Cahn equation. We deal here with a two-phase transition model, in which a fluid can
reach two pure phases forming an interface of separation. The aim is to describe the pattern and the
separation of the two phases, focusing on the study of long range interactions that naturally leads
to the analysis of phase transitions and interfaces of nonlocal type. The formation of the interface
is driven by a variational principle, and here the kinetic energy is modified to take into account far
away changes in phase (though the influence is weaker and weaker towards infinity). A fractional
analogue of a conjecture of De Giorgi, that deals with possible one-dimensional symmetry of entire
solutions naturally arises from treating this model, and will be consequently presented.

We consider a nonlocal phase transition model, in particular described by the Allen-Cahn equation.
A fractional analogue of a conjecture of De Giorgi, that deals with possible one-dimensional symmetry
of entire solutions, naturally arises from treating this model, and will be consequently presented. There
is a very interesting connection with nonlocal minimal surfaces, that will be studied in Chapter 7.

We introduce briefly the classical case'. The Allen-Cahn equation has various applications, for
instance, in the study of interfaces (both in gases and solids), in the theory of superconductors and
superfluids or in cosmology. We deal here with a two-phase transition model, in which a fluid can
reach two pure phases (say 1 and —1) forming an interface of separation. The aim is to describe the
pattern and the separation of the two phases.

The formation of the interface is driven by a variational principle. Let u(x) be the function
describing the state of the fluid at position z in a bounded region ). As a first guess, the phase
separation can be modeled via the minimization of the energy

Eo(u) = J W (u(z)) da,
Q
where W is a double-well potential. More precisely, W: [—-1,1] — [0, ) such that
WeC?*([-1,1]),W(+1) = 0,W > 0in (—1,1), 61)
W'(+1) = 0 and W”(£1) > 0. )

The classical example is
W(u) := ~—. (6.2)

On the other hand, the functional in & produces an ambiguous outcome, since any function u that
attains only the values +1 is a minimizer for the energy. That is, the energy functional in & alone
cannot detect any geometric feature of the interface.

To avoid this, one is led to consider an additional energy term that penalizes the formation of
unnecessary interfaces. The typical energy functional provided by this procedure has the form

2
E(u) == L W (u()) da + % L Vu(z)|? da. (6.3)

"We would like to thank Alberto Farina who, during a summer-school in Cortona (2014), gave a beautiful intro-
duction on phase transitions in the classical case.
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In this way, the potential energy that forces the pure phases is compensated by a small term, that
is due to the elastic effect of the reaction of the particles. As a curiosity, we point out that in the
classical mechanics framework, the analogue of (6.3) is a Lagrangian action of a particle, with n = 1,
2 representing a time coordinate and u(z) the position of the particle at time z. In this framework the
term involving the square of the derivative of v has the physical meaning of a kinetic energy. With a
slight abuse of notation, we will keep referring to the gradient term in (6.3) as a kinetic energy. Perhaps
a more appropriate term would be elastic energy, but in concrete applications also the potential may
arise from elastic reactions, therefore the only purpose of these names in our framework is to underline
the fact that (6.3) occurs as a superposition of two terms, a potential one, which only depends on
u, and one, which will be called kinetic, which only depends on the variation of w (and which, in
principle, possesses no real “kinetic” feature).

The energy minimizers will be smooth functions, taking values between —1 and 1, forming layers
of interfaces of e-width. If we send € — 0, the transition layer will tend to a minimal surface. To
better explain this, consider the energy

J(u) = f%|Vu|2 + W(u) dz, (6.4)

whose minimizers solve the Allen-Cahn equation
— Au+ W' (u) = 0. (6.5)

In particular, for the explicit potential in (6.2), equation (6.5) reduces (up to normalizations constants)
to

—Au=u—u’. (6.6)
In this setting, the behavior of w in large domains reflects into the behavior of the rescaled function
ue(z) = u(f) in By. Namely, the minimizers of J in By /. are the minimizers of J. in By, where J. is
the rescaled energy functional

Jo(u) = L; Vul? + éW(u) da. (6.7)

We notice then that
J.(u) > f 20 () |V da
B,

which, using the Co-area Formula, gives

Jo(u) > L VIO H ! ({u = 1)) dt.

The above formula may suggest that the minimizers of J. have the tendency to minimize the (n — 1)-
dimensional measure of their level sets. It turns out that indeed the level sets of the minimizers of J
converge to a minimal surface as ¢ — 0: for more details see, for instance, [130] and the references
therein.

In this setting, a famous De Giorgi conjecture comes into place. In the late 70’s, De Giorgi
conjectured that entire, smooth, monotone (in one direction), bounded solutions of (6.6) in the whole
of R™ are necessarily one-dimensional, i.e., there exist w € S"~! and ug : R — R such that

u(z) =ug(w-z) for any xeR"™.

In other words, the conjecture above asks if the level sets of the entire, smooth, monotone (in one
direction), bounded solutions are necessarily hyperplanes, at least in dimension n < 8.

One may wonder why the number eight has a relevance in the problem above. A possible expla-
nation for this is given by the Bernstein Theorem, as we now try to describe.

The Bernstein problem asks on whether or not all minimal graphs (i.e. surfaces that locally
minimize the perimeter and that are graphs in a given direction) in R™ must be necessarily affine.
This is indeed true in dimensions n at most eight. On the other hand, in dimension n > 9 there are
global minimal graphs that are not hyperplanes (see e.g. [91]).
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The link between the problem of Bernstein and the conjecture of De Giorgi could be suggested
by the fact that minimizers approach minimal surfaces in the limit. In a sense, if one is able to prove
that the limit interface is a hyperplane and that this rigidity property gets inherited by the level sets
of the minimizers u. (which lie nearby such limit hyperplane), then, by scaling back, one obtains that
the level sets of u are also hyperplanes. Of course, this link between the two problems, as stated here,
is only heuristic, and much work is needed to deeply understand the connections between the problem

of Bernstein and the conjecture of De Giorgi. We refer to [76] for a more detailed introduction to this
topic.
We recall that this conjecture by De Giorgi was proved for n < 3, see [9,16,89]. Also, the case
4 < n < 8 with the additional assumption that
lirri uw(z’,z,) = +1, forany z’eR"! (6.8)
Tp—>T0

was proved in [129].

For n > 9 a counterexample can be found in [52]. Notice that, if the above limit is uniform (and
the De Giorgi conjecture with this additional assumption is known as the Gibbons conjecture), the
result extends to all possible n (see for instance [75,76] for further details).

The goal of the next part of this thesis is then to discuss an analogue of these questions for the
nonlocal case and present related results.

6.1. The fractional Allen-Cahn equation

The extension of the Allen-Cahn equation in (6.5) from a local to a nonlocal setting has theoretical
interest and concrete applications. Indeed, the study of long range interactions naturally leads to the
analysis of phase transitions and interfaces of nonlocal type.

Given an open domain 2 ¢ R™ and the double well potential W (as in (6.2)), our goal here is to
study the fractional Allen-Cahn equation

(=A)Y’u+W'(u)=0 in Q

for s € (0,1) (when s = 1, this equation reduces to (6.5)). The solutions are the critical points of the
nonlocal energy

2

E(u,N) = JQ W (u(z)) JJ |x — |n521| dz dy, (6.9)
R2"\(CQ

up to normalization constants that we omitted for simplicity. The reader can compare (6.9) with (6.3).

Namely, in (6.9) the kinetic energy is modified, in order to take into account long range interactions.

That is, the new kinetic energy still depends on the variation of the phase parameter. But, in this

case, far away changes in phase may influence each other (though the influence is weaker and weaker

towards infinity).

Notice that in the nonlocal framework, we prescribe the function on CQ2 x C{2 and consider the
kinetic energy on the remaining regions (see Figure 6.1). The prescription of values in CQ x CS) reflects
into the fact that the domain of integration of the kinetic integral in (6.9) is R?"\(CQ)?2. Indeed, this
is perfectly compatible with the local case in (6.3), where the domain of integration of the kinetic
term was simply €. To see this compatibility, one may think that the domain of integration of the
kinetic energy is simply the complement of the set in which the values of the functions are prescribed.
In the local case of (6.3), the values are prescribed on 02, or, one may say, in CQ2: then the domain
of integration of the kinetic energy is the complement of C(), which is simply 2. In analogy with
that, in the nonlocal case of (6.9), the values are prescribed on C2 x CQ2 = (C2)?, i.e. outside Q for
both the variables x and y. Then, the kinetic integral is set on the complement of (C2)?, which is
indeed R?™\(CQ)2.

Of course, the potential energy has local features, both in the local and in the nonlocal case, since
in our model the nonlocality only occurs in the kinetic interaction, therefore the potential integrals
are set over € both in (6.3) and in (6.9).
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For the sake of shortness, given disjoint sets A, B € R™ we introduce the notation

|2
u(A, B) ff |x—y|"+2s dz dy,

and we write the new kinetic energy in (6.9) as

K(u, ) = iu(Q, 0) + u(Q,CN). (6.10)

FIGURE 6.1. The kinetic energy

Let us define the energy minimizers and provide a density estimate for the minimizers.

DEFINITION 6.1.1. The function u is a minimizer for the energy € in Bgr if E(u, Br) < £(v, BR)
for any v such that u = v outside Bp.

The energy of the minimizers satisfy the following uniform bound property on large balls.

THEOREM 6.1.2. Let u be a minimizer in Bryo for a large R, say R > 1. Then

Rl_i)rJrrlx %5(1@ Bgr) =0. (6.11)
More precisely,
CR! if se (%,1),
E(u,Br) < { CR" 'log R if s=3,
CR2s if se (0, %).

Here, C is a positive constant depending only on n,s and W.

1
Notice that for s € (07 5)7 R" 2% > R" 1. These estimates are optimal (we refer to [134] for
further details).

PRrROOF. We remark that throughout this proof the constants may change value from line to line.
We introduce at first some auxiliary functions. Let

P(x):=—1+ 2min{(|x| —R-1)., 1}, v(z) := min {u(x),w(x)},

d(z) := max{(R+ 1 - |z)), 1}.
Then, for |z — y| < d(x) we have that

(6.12)
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FIGURE 6.2. The functions 1, v and d

Indeed, if |2| < R, then d(z) = R+ 1 — |z| and
yl < lz =yl + [a] < d(z) + [z < R+ 1,

thus ¢ (x) —9(y) = 0 and the inequality is trivial. Else, if |x| > R, then d(x) = 1, and so the inequality
is assured by the Lipschitz continuity of ¢ (with 2 as the Lipschitz constant).
Also, we prove that we have the following estimates for the function d:

CR1 if se (%, 1),
J d(z)™**de < { CR" 'logR  if s=1, (6.13)
BRr2 CRn—2s if se (0, %),

where C' = C(n,s) > 0. To prove this, we observe that in the ring Bry2\Bgr, we have d(z) = 1.
Therefore, the contribution to the integral in (6.13) that comes from the ring Bri2\Bpr is bounded
by the measure of the ring, and so it is of order R"*~!, namely

J d(z)™**dx = |Bp.2\Bgr| < CR"™, (6.14)
Br+2\Br

for some C > 0. We point out that this order is always negligible with respect to the right hand side
of (6.13).

Therefore, to complete the proof of (6.13), it only remains to estimate the contribution to the integral
coming from Bp. For this, we use polar coordinates and perform the change of variables t = p/(R+1).
In this way, we obtain that

1
R+1

1
)% d _Cf C(R 1”QSJ A € R )
| dw=a=c | = ey | (1-1)

<CR+1)™ 2SJ "1t
0

for some dimensional constant C' > 0. Now we observe that

1

J(l—t)’QsdtzC if se(O,%),

IR b 1k

Jo (1—t)""dt < —log(l—t)‘o i <logR if S=%,
(1_t)172s 1_%4_1

T I-2s

<SCR>™1  if se(%,l).
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The latter two formulas and (6.14) imply (6.13).
Now, we define the set

A={v=1
and notice that Bry1 € A € Brio. We prove thit for a};ly x € A and any y € CA
[v(@) = v()| < max{Ju(@) - u(y)], (@) - V) }-
Indeed, for x € A and y € CA we have that
v(z) = ¢(z) Su(z) and v(y) = uly) < P(y),

therefore

v(z) —v(y) Su(z) —u(y) and v(y) —o(z) < YP(y) —P(),
which establishes (6.15). This leads to

v(A,CA) < u(A,CA) + ¢(A,CA).
Notice now that
E(u, Bry2) < E(v, Bry2)

since u is a minimizer in Br,o and v = u outside Bryo. We have that

E(u, Bry2) = = w(Bry2, Bry2) + u(Bry2,CBry2) + W(u) dx

Br+2

1
2
1
3 u(A, A) +u(A4,CA)
J’_

w(Bry2\A, Bri2\A) + u(Bry2\A,CBRry2)

DN | =

+ J:q W (u)dx + JBR+2\A W (u) dx.

Since u and v coincide on CA, by using the inequality (6.16) we obtain that
0 < &(v, Brya) — E(u, Brya) = E(v, A) — E(u, A)

_ % V(A A) — %u(A, A) +v(A,CA) — u(A,CA) + L (W)~ W) da
< % V(A A) — %U(A, A) + 0(A,CA) + L (W)~ Ww) de.

Moreover, v = 9 on A and we have that

% u(A, A) +J Wi(u)de < = (A, A) +(A,CA) + J W () dx) = E(y, A),
A A

1
2
and therefore, since Bg.1 € A € Bryo,
S u(Brin, Bre) + | W) de < £, Brea).
Br+41
We estimate now (¢, Br12). For a fixed © € Br12 we observe that

J [¥(x) = ¥ (y)| dy = J s [ (x) = (y)| dy+f| e ¥ (x) = (y)| dy

|x_y|n+25 |x_y|n+23 |x_y|n+25

(6.15)

(6.16)

(6.17)

1
< C< J’ Ix—yl’"’25+2dy+f | —y| "% dy>,
d(x)? Jjo—y|<a(e) o —y|>d(x)

where we have used (6.12) and the boundedness of ¢. Passing to polar coordinates, we have that

W(I) - 7/’(y)|2 ( 1 Jd(m) —2s5+1 J-I — 251 )
" _dy<C SThdp + 7 d
fn o — gz Y d@y? Jy 7 S P P

= Cd(z)~%.
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Recalling that 1(z) = —1 on Bg41 and W(—l) = 0, we obtain that

2
£(0. Bres) = f [ it [ woa
Bry2 JR™ -

BRr42
d(z) ™% dx + J W () de.
BRr42 Br+2\BRr+1
Therefore, making use of (6.13),
CR*! if se (%,1),
E(W,Bri2) <A CR"llogR if s=3, (6.18)
CRn2 it se(0,1).
For what regards the right hand-side of inequality (6.17), we have that
1 1
B U(BR+1,BR+1) + W(u)d 5 (BR,BR) +U(BR,BR+1\BR)
P (6.19)
+ W(u) dx.
Br
We prove now that
u(Bgr,CBri1) < C d(x)™% da. (6.20)
Br42

For this, we observe that if x € Bg, then d(z) = R+ 1 — |z|. So, if z € B and y € CBgy1, then
[z =yl = [yl = [z| = R+ 1 - [a] = d(2).

Therefore, by changing variables z = x — y and then passing to polar coordinates, we have that

u(Bgr,CBRri1) < J dwf |2| "% dz
BR CBd(J.)

<C dxj p~ 2 Ldp
BR d(;c)

=C d(x)™% dx.

Br
This establishes (6.20).
Hence, by (6.13) and (6.20), we have that
CR 1 if se (%,1),
u(Bgr,CBpy1) < C d(z) **de <{ CR" 'logR if s=1, (6.21)
P CR2 it se(0,3),

We also observe that, by adding u(Bg,CBg+1) to inequality (6.19), we obtain that

— U(BR+1,BR+1) + W(u) dl‘+u(BR,CBR+1)
BRr+1
— U(BR,BR) +U(BR,BR+1\BR) + W(’LL) dI+U(BR,CBR+1)
Br
= S(U,BR)

This and (6.17) give that
E(u, Br) < E(Y, Br+2) + w(Bgr,CBR+1).
Combining this with the estimates in (6.18) and (6.21), we obtain the desired result. O
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Another type of estimate can be given in terms of the level sets of the minimizers (see Theorem
1.4 in [134]).

THEOREM 6.1.3. Let u be a minimizer of € in Br. Then for any 01,02 € (—1,1) such that
U(O) > 91
we have that there exist R and C > 0 such that

{u> 62} n Br| = CR"

if R > R(61,605). The constant C > 0 depends only on n, s and W and R(01,02) is a large constant
that depends also on 0, and 0.

The statement of Theorem 6.1.3 says that the level sets of minimizers always occupy a portion

of a large ball comparable to the ball itself. In particular, both phases occur in a large ball, and the
portion of the ball occupied by each phase is comparable to the one occupied by the other.
Of course, the simplest situation in which two phases split a ball in domains with comparable, and
in fact equal, size is when all the level sets are hyperplanes. This question is related to a fractional
version of a classical conjecture of De Giorgi and to nonlocal minimal surfaces, that we discuss in the
following Section 6.2 and Chapter 7.

Let us try now to give some details on the proof of the Theorem 6.1.3 in the particular case in
which s is in the range (0,1/2). The more general proof for all s € (0,1) can be found in [134], where
one uses some estimates on the Gagliardo norm. In our particular case we will make use of the Sobolev
inequality that we introduced in (2.19). The interested reader can see [131] for a more exhaustive
explanation of the upcoming proof.

PROOF OF THEOREM 6.1.3. Let us consider a smooth function w such that w = 1 on CBr (we
will take in sequel w to be a particular barrier for u), and define

v(z) 1= min{u(z), w(z)}.

Since |u| < 1, we have that v = uw in CBg. Calling D = (R" x R")\ (CBr x CBgr) we have from
definition (6.10) that
IC(’LL—’U BR +]C(’U BR) ]C(U,BR)
H| u—v)(x) = (u—0)(m P + [v(z) —vE)* - |u(@) —uy)?

|x_y|n+25

dx dy.

Using the identity |a — b|? + b* — a® = 2b(b — a) with @ = u(x) — u(y) and b = v(z) — v(y) we get

K(u—wv,Br) + K(v, BR) lC(u Bg)
U ~ (= ) ()~ o)

|z — y[n*2e

Since u —v = 0 on CBR we can extend the integral to the whole space R™ x R”, hence

IC(U—U,BR) -‘r’C(’U,BR) —IC(’U,7BR)
_ JJ ((u =) (@) — (u=)(y)) (v(y) — v(z))

|z —y[n+2e

dx dy.

R xRn™
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Then by changing variables and using the anti-symmetry of the integrals, we notice that

([ v -tne) e e ,,

|l‘ _ |n+25

BrXxXBr

[ e | B

BRXBR BRXBR

_ (u—v)(z) (vly) —v(@))
=2 ,U o — g dx dy

BRXBR

and

([ v -ne) e e,

|.I‘ _ |n+25
BRXCBR

((u=v)(z) = (u=v)(y)) (v(y) — v(z))
-l

|.’E _ |n+2s

dzx dy

CBRXBR

(u—v) (u—v) —v(x))
Jf |x— |n+25 d dy — ff |x— |n+25 dz dy

BRX CBRXBR

BRXCBR

Therefore

’LL—U BR)+’C(U BR) ’C(U,BR)

175

o [ BB [ ([ 252 0)

R™ xR™

2 L;Rm{wv:w}(u(:r) —e) <JR" Tiyz;|iv+(2) dy) o
JBRm{u>v=w}(u @) <J]R" u|}$(y—) ;|ﬂ(i) dy> -

2 | (4= w)(x) (~(—A)*w) (2) da.
Brn{u>w}

/N
N

Hence

K(u—wv,Br) < K(u,Br) — K(v,Bg) + 2J (u —w) (—(—A)°w) dz.

BRm{u>w}
By adding and subtracting the potential energy, we have that

K(u—v,Bgr) < &(u,Br) —&(v,Br) + JB (W) —W(u)) dz

+2 JBRm{u>w}(u —w) (—(—A)°w) dzx

and since v is minimal in Bg,

K(u—wv,Bg) < JB S (W(w) — W(u)) dz + 2J (u—w) (—(—A)’w) dz.

BRm{u>w}

(6.22)
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We deduce from the properties in (6.1) of the double-well potential W that there exists a small
constant ¢ > 0 such that

WEt)—W(r)=c(l+7r)(t—7r)+c(t—r)> when —1<r<t<—1+4c¢
1+7r

W(r)—WI(t) < .

when —1<r<t<1.

We fix the arbitrary constants 6, and 65, take ¢ small as here above. Let then
0x := min{fy,05, —1 + ¢}.

It follows that

| (W (w) — W (w) de
Brn{u>w}

f (W (w) = W (u)) do + f (W (w) — W () da
Brn{0,>u>w} Brn{u>max{0,,w}}
< (1—-w)(u—w) dx—cj (u —w)? dx (6.23)

Brn{0,>u>w}

_ CJ
Brn{0,>u>w}
1
+ - J (1+w)dz
C JBrn{u>max{0,,w}}
1
(1 —-w)(u—w)dx+ -

Brn{f,>u>w} C JBrn{u>max{6,,w}}

(1 4+ w)dz.

Therefore, in (6.22) we obtain that

1
/C(u—v,BR)S—cJ (1—w)(u—w)dx+fj
Brn{0,>u>w} C JBr~{u>max{0,,w}}

+2 fBRm{uM}}(u —w) (—(—A)°w) dx.

(14 w)dz
(6.24)

We introduce now a useful barrier in the next Lemma (we just recall here Lemma 3.1 in [134] - there
the reader can find how this barrier is build):

LEMMA 6.1.4. Given any T = 0 there exists a constant C > 1 (possibly depending on n,s and 7)
such that: for any R = C there exists a rotationally symmetric function w € C (R", [-1+ CR™2, 1])
with w =1 in CBRr and such that for any x € Br one has that

LR+ 1) > <1+w@) <CR+1—|a) > and (6.25)

Q]

—(=A)’w(z) < 7(1 + w(x)). (6.26)

Taking w as the barrier introduced in the above Lemma, thanks to (6.24) and to the estimate in
(6.26), we have that

K(u—v,Bgr) < —CJ (1+w)(u—w)dz

Brn{0,>u>w}

J
+ —
c BRm{u>max{0hw}}

+27J (v —w)(1 +w)dz.
Brn{u>w}

(14 w)dx
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Let then 7 = 5, and we are left with
lC(u—v,BR)Scf (u—w)(1 +w)dx
Brn{u>max{0,,w}}
1
+ - J’ (1+w)dz
C JBrn{u>max{0,,w}}

<Oy J (1 +w)dz,
Brn{u>max{0,,w}}

with C} depending on ¢ (hence on W). Using again Lemma 6.1.4, in particular the right hand side
inequality in (6.25), we have that

K(u —v, Bgr) <C1'Cf (R+1— |z|) 2.
Brn{u>max{0,,w}}

We set
V(R) :=|Bg n {u > 0,}| (6.27)

and the Co-Area formula then gives

R
K(u—v, B) < Cs J (R+1—1)"2V'(t) dt, (6.28)
0
where C5 possibly depends on n, s, W.
We use now the Sobolev inequality (2.19) for p = 2, applied to u — v (recalling that the support
of u — v is a subset of Br) to obtain that

_ _ _ 2
Ku= v Ba) = Ko = [[ == Rm 0 g,
R g (6.29)
>Clu—vf? 2 =Clu—v|? 20 .
L n—2s (Rn) Ln—2s (BR)

From (6.25) one has that
w(z) <C(R+1—|z))7% — 1.
We fix K large enough so as to have R > 2K and in Br_x

1+0.
5

wr) <CAL+K) > -1<-1+

Therefore in Br—x n {u > 6,} we have that
1+60. _ 1+6.

lu—v|Zu—w=u+1 5 > 5
Using definition (6.27), this leads to
n—2s _2n n—2s
ot = (o) T (5 ()
L7=2(Bg) Br 2 Br_r n{u>0}

n—2s

> C3V(R— K)o

In (6.29) we thus have
n—2s

K(u—wv,Br) = CsV(R—K) ™=

and from (6.28) it follows that

R
CiV(R-K) < f (R+1—1t)"2V'(t)dt.
0




178 6. NONLOCAL PHASE TRANSITIONS

3
Let R > p > 2K. Integrating the latter integral from p to 7/) we have that

3p
n—=2s

<c4fz V(R — K)+ dR
P

n—=2s

C4gV(P —K)

0
3 3
0 1-2s

R ¥ ¥
f (R+1—1t)"%V'(1) dt) dsz V'(t) (f (R+1—1)"% dR) dt
0 0 0

)1—25471

dt.

1-2s
3 .
Since 1 — 2s > 0, one has for large p that (2/) +1- t) —1< (2,0)1—25, hence, noticing that the

function V is nondecreasing,

—2s 2p
§V(p LK) <Ot | Vi) dE < CsptEV(2p).
0
Therefore
n—2s
PP V(p—K) = <205V (2p). (6.30)
Now we use an inductive argument as in Lemma 3.2 in [134], that we recall here:

LEMMA 6.1.5. Let o, € (0,00),v € (0,0) and 7y, Ro,C € (1,00). Let V: (0,00) — (0,0) be a
log V'
nondecreasing function. For any r € [Rp, o), let a(r) := min{ 1, og(r)} Suppose that V(Rg) > u

and o
r’a(r)V(r) = < CV(yr),
for any r € [Ro,0). Then there exist c € (0,1) and R, € [Rg, ), possibly depending on p,v,~, Ry, C
such that
V(r) > ecr”,
for any r € [R., ).
For R large, one obtains from (6.30) and Lemma 6.1.5 that
V(R) 2 coRR",
for a suitable ¢g € (0,1). Let now
0* := max{6;,602, —1 + c}.
We have that
{u > 6*} n Br| + |{0. <u <0} n Bg|=|{u> 6.} n Br| =V(R) = coR". (6.31)
Moreover, from (6.1.2) we have that for some ¢ > 0
E(u, Br) < eR"%,

therefore

CR"* > E(u, Bg) > J W(u)dr = inf W(t)|{0, <u<0*}n Bgl
(0. <u<0*}nBr te(65,0%)
From this and (6.31) we have that
coR" < CR"™% + |{u > 0*} n Bg,
and finally
[{u> 6%} o Brl > CR",

with C possibly depending on n,s, W. This concludes the proof of Theorem 6.1.3 in the case s €
(0,1/2). |
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6.2. A nonlocal version of a conjecture by De Giorgi

In this section we consider the fractional counterpart of the conjecture by De Giorgi that was
discussed before in the classical case. Namely, we consider the nonlocal Allen-Cahn equation

(=A)’u+W'(u)=0 in R",

where W is a double-well potential, and u is smooth, bounded and monotone in one direction, namely
|u] < 1and d,,u > 0. We wonder if it is also true, at least in low dimension, that u is one-dimensional.
1

In this case, the conjecture was initially proved for n = 2 and s = 5 in [24]. In the case n = 2, for

any s € (0,1), the result is proved using the harmonic extension of the fractional Laplacian in [23]

and [141]. For n = 3, the proof can be found in [21] for s € [%, 1]. The conjecture is still open for

n=3and s € [0, %] and for n > 4. Also, the Gibbons conjecture (that is, the De Giorgi conjecture

with the additional condition that the limit in (6.8) is uniform) is also true for any s € (0,1) and in
any dimension n, see [77].

To keep the discussion as simple as possible, we focus here on the case n = 2 and any s €
(0,1), providing an alternative proof that does not make use of the harmonic extension. This part is
completely new and not available in the literature. The proof is indeed quite general and it will be
further exploited in [38].

We define (as in (6.10)) the total energy of the system to be

E(u, Br) = Kr(u) + W (u)dz, (6.32)
Br
where the kinetic energy is
L[ Ju@) —w@)?
Qr

and Qg := R?"\(CBR)? = (Bg x Bg) u (Br x CBg) u (CBg x Bg). We recall that the kinetic energy
can also be written as

1
Kr(u) = 5“(312, Bgr) + u(Br,CBr), (6.34)
where for two sets A, B
|u(@) —u@)?
u(A, B) f f = x|n+2s dz d. (6.35)
The main result of this section is the following.

THEOREM 6.2.1. Let u be a minimizer of the energy defined in (6.32) in any ball of R%. Then u
is 1-D, i.e. there exist w € S' and up : R — R such that

u(z) = ug(w-z) for any xe R

The proof relies on the following estimate for the kinetic energy, that we prove by employing a
domain deformation technique.

LEMMA 6.2.2. Let R > 1, p € CJ(B1). Also, for any y € R", let

Ur(y) =y + w(%) er and Vg _(y):=y— w(%) er. (6.36)

Then, for large R, the maps Vg 1 and Vi _ are diffeomorphisms on R™. Furthermore, if we de-
fine up +(x) := u(\Ifﬁli(x)), we have that

Knlun,+) + Knun ) ~ 2Kn(u) < 3 Knu), (6.37)

for some C > 0.
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PRrOOF. First of all, we compute the Jacobian of ¥ 1. For this, we write U | ; to denote the i*t

component of the vector ¥ = (Vg 41, -, PR +,n) and we observe that
0Vr+ily) _ 0 Yy 1 Y
— = it ol 5 )0 ) =0 £ =050 5 )it 6.38
fy = gy W2 e(R)) =0 £ 50e(f) (639

The latter term is bounded by O(R™!'), and this proves that U 1 is a diffeomorphism if R is large
enough.

For further reference, we point out that if Jr + is the Jacobian determinant of Up +, then the
change of variable

=Yg 1(y), T:= Vg +(7) (6.39)
gives that

dzdz = Jg+(y) Jr+(y) dydy

- (12 (B)ae(2) r0()) (1 () o)
-1 oo (2) £ hael(B) +0(i)
thanks to (6.38). Therefore

|ur,+ () — ur,+(Z)]
|$ _ :Z.|n+2s

2
dx dT

) o, _n#2s
- [u(V5 ' (2) —u(V5! (7)) _ o — )’ 2 dz dz
[9rh (@) = UL @2 \ |95 (@) - UL @)

n+2s

12\ 2 (6.40)
_u) —u@P | [ [¥re®) - Vas)
Syl ly =P
(e () = e (B) +0l) )
Now, for any y, ¥ € R™ we calculate
“I’R +(y) — ‘IIR,i(y)‘Q
= ‘(y—ﬂ) + @(%) —w(é)) 61‘2 (6.41)
“-+ [ ()~ (D) £2(e(%) - (L)) tn -
Notice also that B
o(%) - o(§)| < Fleloranly -3, (6.42)
hence (6.41) becomes
[V () W (o)
- =1+nt
ly —gl?
(-0 ()
‘wy—wg (@”—@’7>(y—y)
N = R|y - y|2R PR ” _Ry|2 S O(%). (6.43)
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As a consequence

n+2s
2\ T2
Urt(y) — Vr(Y) nt2s n+ 2s

— = (L4m) 75 = 1= == + O()).

ly — 9l
We plug this information into (6.40) and use (6.43) to obtain
_ —\|2

lur,+ () _UR,i($)| de d5

|.’E _ x|n+2s

—u(y)|? + 2

B0 (_ne o))
ly — 9l R?
1 Y 1
1+ = 7 il —
(1— Raw’(R) 61‘/’( ) O(R ))dydy
lu(y) — (@) n + 2, 1, (¥
= — 2 . [1- + é’ + —dip( =
|y_g|n+25 190 - R 190<R)

1 _

+0(ﬁ) dy dy.
Using this and the fact that
2
vy _ g
tn =9 ‘@(R) sD<R) _ (’)(i)
e ly—g?2 T \R2)

thanks to (6.42), we obtain

jurs (@) = up s @) fun- (@) = un @F
|$ _ 37;|n+2s |£C _ j|n+23 T ax

- |“|:(yy)_;|1:(+%)| (2 +0( Bl?)> dy dy.

Thus, if we integrate over Qg we find that

Kr(ur,+) + Kr(ugr,—) = 2Kg(u Ho 7 |“ Wz )|2d dz.

CL’ _ x|n+2s

This establishes (6.37). O

PROOF OF THEOREM 6.2.1. We organize this proof into four steps.
Step 1. A geometrical consideration
In order to prove that the level sets are flat, it suffices to prove that u is monotone in any direction.
Indeed, if u is monotone in any direction, the level set {u = 0} is both convex and concave, thus it is
flat.

Step 2. Energy estimates
Let p € Cg°(By) such that ¢ = 1 in By, and let e = (1,0). We define as in Lemma 6.2.2

Unal) = y+o(L)e and Vr-(y)i=y—p(%)e
which are diffeomorphisms for large R, and the functions ug 4 (z) := u(\IIE,lJr(x)) Notice that

ur+(y) = u(y) for y e CBR (6.44)
ur+(y) =u(y —e) for y € Brys. (6.45)
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By computing the potential energy, it is easy to see that

W (up,+(x))dz + W(ug,—(x))dx —2 JB W(u(zx)) dx

BR BR
C’
Using this and (6.37), we obtain the followmg estimate for the total energy
C
E(uR7+,BR)+5(uR7_,BR)—2€(u,BR) Rzg(u BR) (646)
Also, since up + = u in CBp, we have that
E(U, BR) < S(uR,,, BR)
This and (6.46) imply that
C
5(uR’+,BR) —g(u,BR) RZE(U BR) (647)
As a consequence of this estimate and (6.11), it follows that
Jim (g(uR,+, Br) - £(u, BR)) —0. (6.48)

Step 3. Monotonicity
We claim that « is monotone. Suppose by contradiction that u is not monotone. That is, up to
translation and dilation, we suppose that the value of u at the origin stays above the values of e
and —e, with e := (1,0), i.e
u(0) > u(e) and u(0) > u(—e).

Take R to be large enough, say R > 8. Let now

vg(z) := min {u(z),up+(x)} and wg(z):=max{u(z),up ()} (6.49)
By (6.44) we have that vg = wr = u outside Br. Then, since u is a minimizer in Br and wg = u
outside Br, we have that

E(wr, Br) = E(u, Br). (6.50)
Moreover, the sum of the energies of the minimum and the maximum is less than or equal to the sum
of the original energies: this is obvious in the local case, since equality holds, and in the nonlocal
case the proof is based on the inspection of the different integral contributions, see e.g. formula (38)
in [120]. So we have that
S(UR, BR) + S(wR,BR) < 5(u, BR) + 5(uR7+, BR)

hence, recalling (6.50),

g(UR,BR) < 5(UR7+,BR). (651)
We claim that vg is not identically neither w, nor ug . Indeed, since u(0) = upg +(e) and
u(—e) = ur,+(0) we have that
vr(0) = min {u(0),ur, +(0)} = min {u(0),u(—e)}
=u(—e) =up +(0) <u(0) and
vr(e) = min{u(e),ur,+(e)} = min{u(e),u(0)}

= u(e) <u(0) = ug ().
By continuity of v and ug 4, we have that
VR = UR,+ < u in a neighborhood of 0 and

vp =u < up 4 in a neighborhood of e. (6.52)

We focus our attention on the energy in the smaller ball B;. We claim that vy is not minimal for
E(-, Bs). Indeed, if vg were minimal in By, then on Bs both vg and u would satisfy the same equation.
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However, vg < u in R? by definition and vg = u in a neighborhood of e by the second statement in
(6.52). The Strong Maximum Principle implies that they coincide everywhere, which contradicts the
first line in (6.52).

Hence vg is not a minimizer in By. Let then v}, be a minimizer of £(-, By), that agrees with vg
outside the ball By, and we define the positive quantity

(SR = 5(UR,BQ) _E(UI*%,BQ). (653)
We claim that
as R goes to infinity, dg remains bounded away from zero. (6.54)

To prove this, we assume by contradiction that

lim 6 =0. (6.55)

R—4or
Consider 4 to be the translation of u, that is @(x) := u(x — ¢). Let also
m(z) := min {u(z),@(z)}.
We notice that in Brj, we have that @(x) = ug, 4 (x). This and (6.49) give that
m = vg in Bg/s. (6.56)
Also, from (6.52) and (6.56), it follows that m cannot be identically neither « nor @, and

m < u in a neighborhood of 0 and

m = u in a neighborhood of e. (6.57)

Let z be a competitor for m in the ball By, that agrees with m outside By. We take a cut-off function
Y € Cg°(R™) such that ¢ = 1 in Bgyy, 9 = 0 in CBrj,. Let

2r(2) = P(x)2(2) + (1 — U(z))vr(@).
Then we have that zr = z on Bgjy and
zr = vg on CBgys. (6.58)
In addition, by (6.56), we have that z = m = vg in Bgs\Ba. So, it follows that
zr(@) = P(z)or(z) + (1 — ¥(2))vr(z) = vr(z) = 2(z) on Bprp\Bs.

This and (6.58) imply that zg = vg on CBs.
We summarize in the next lines these useful identities (see also Figure 6.3).

in By UR,+ =U, M =0VR, Z=2ZR

in Bp\B2 Up+ =1U, VhE=Uvp=m=z=2zp
in Bg\Bg/2 vh=vp=2r, M=z

in CBgr Up4+ =U=UVRp =0V =2zr, M=2.

We compute now
g(m 732) - S(Za B2)
= &(m, Ba) — E(vgr, B2) + E(vR, Ba) — E(2Rr, Ba) + E(2Rr, Ba2) — £(z, B2).

By the definition of dg in (6.53), we have that
5(7’71 aBQ) - g(zv B2)

6.59
Zg(m,Bg)—g(vR,Bz)+(53+5(1}}§,Bz)—5(2R7BQ)+S(ZR,B2)—5(Z,BQ). ( )
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FIGURE 6.3. Energy estimates

Using the formula for the kinetic energy given in (6.34) together with (6.35) we have that
S(m 5 BQ) — g(’UR, Bg)

—m(Bz, By) + m(Bs,CBs) + JB W (m(z)) dz

% (BQ, BQ) - UR(BQ,CBQ) JB2 W(’UR(SL')) dx.

Since m = vg on BR/2 (recall (6.56)), we obtain

E(m ,By) — 5UR,B2)

[ — m)l ~ m(x) ~ o)
B, CBR/2 |z — y|nt2s

Notice now that m and vg are bounded on R™ (since so is u). Also, if z € By and y € CBp/, we have
that |z —y| = |y| — |z| = |y|/2 if R is large. Accordingly,

E(m, Bs) — E(vr, By) < C de. 1 y<cor, (6.60)
B, CBrya |y|+2s
up to renaming constants. Similarly, zr = z on Bg/, and we have the same bound
E(zr, B2) — &E(2,By) < CR™%. (6.61)
Furthermore, since v}, is a minimizer for £(-, B2) and v}, = zg outside of Bs, we have that
E(}, Ba) — E(2r, B2) < 0.
Using this, (7.55) and (7.4.3) in (6.59), it follows that
E(m, By) — (2, By) < CR™?® + 6g.
Therefore, by sending R — +o0 and using again (6.55), we obtain that
E(m, Bs) < &(2, By). (6.62)

We recall that z can be any competitor for m, that coincides with m outside of By. Hence, for-
mula (6.62) means that m is a minimizer for £(-, B2). On the other hand, w is a minimizer of the
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energy in any ball. Then, both u and m satisfy the same equation in By. Moreover, they coincide in
a neighborhood of e, as stated in the second line of (6.57). By the Strong Maximum Principle, they
have to coincide on By, but this contradicts the first statement of (6.57). The proof of (6.54) is thus
complete.

Now, since v}, = vg on CBjy, from definition (6.53) we have that
(SR = E(UR,BR) - 5(’()1*%, BR).

Also, £(v}, Br) = £(u, Br), thanks to the minimizing property of u. Using these pieces of information
and inequality (6.51), it follows that

or < E(up,+, Br) — E(u, Br).
Now, by sending R — +00 and using (6.54), we have that

lim g(uR’Jr,BR) —E(u, BR) >0,
R—+x

which contradicts (6.48). This implies that indeed u is monotone, and this concludes the proof of this
Step.

Step 4. Conclusions
In Step 3, we have proved that w is monotone, in any given direction e. Then, Step 1 gives the desired
result. This concludes the proof of Theorem 6.2.1. ]

We remark that the exponent two in the energy estimate (6.37) is related to the expansions of
order two and not to the dimension of the space. Indeed, the energy estimates hold for any n. However,
the two power in the estimate (6.37) allows us to prove the fractional version of De Giorgi conjecture
only in dimension two. In other words, the proof of Theorem 6.2.1 is not applicable for n > 2. One
can verify this by checking the limit in (6.48)

Jim (Euny Br) - £u Br)) = 0,

which was necessary for the Proof of Theorem 6.2.1 in the case n = 2. We know from Theorem 6.1.2
that
lim £S(u Bg) = 0.
R—+x R™ ’
Confronting this result with inequality (6.47)

C
g(uR,+a BR) - g(’u’a BR) < ﬁg(u? BR)7

we see that we need to have n = 2 in order for the the limit in (6.48) to be zero.

Of course, the one-dimensional symmetry property in Theorem 6.2.1 is inherited by the spatial
homogeneity of the equation, which is translation and rotation invariant. In the case, for instance, in
which the potential also depends on the space variable, the level sets of the (minimal) solutions may
curve, in order to adapt themselves to the spatial inhomogeneity.

Nevertheless, in the case of periodic dependence, it is possible to construct minimal solutions whose
level sets are possibly not planar, but still remain at a bounded distance from any fixed hyperplane.
As a typical result in this direction, we recall the following one (we refer to [43] for further details on
the argument):

THEOREM 6.2.3. Let Q4 > Q_ >0 and Q : R™ — [Q_,Q+]. Suppose that Q(z + k) = Q(z) for

any k € Z™. Let us consider, in any ball Br, the energy defined by
1
&(u, Br) = Kr(u) + (2) (1 - u*)*dz,
4 Jp,

where the kinetic energy Kr(u) is defined as in (6.33).
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FIGURE 6.4. Minimal solutions in periodic medium

Then, there exists a constant M > 0, such that, given any w € 0By, there exists a minimal
solution u,, of
(—A)*uy(z) = Q(2) (uw(x) —u(2))  for any x e R"
Jor which the level sets {|u,| < {5} are contained in the strip {x € R" s.t. |w - x| < M}.
Moreover, if w is rotationally dependent, i.e. if there exists k, € Z™ such that w - k, = 0, then u,,
is periodic with respect to w, i.e.

Uy () = uy(y) for any z, y € R™ such that x —y =k and w -k = 0.



CHAPTER 7

Nonlocal minimal surfaces

ABSTRACT. In this chapter, we introduce nonlocal minimal surfaces. We first discuss a Bernstein
type result in any dimension, namely the property that an s-minimal graph in R**! is flat (if no
singular cones exist in dimension n) and prove that an s-minimal surface whose prescribed data is
a subgraph, is itself a subgraph. The non-existence of nontrivial s-minimal cones in dimension 2
is then proved. Moreover, some boundary regularity properties will be discussed at the end of this
chapter: quite surprisingly, and differently from the classical case, nonlocal minimal surfaces do not
always attain boundary data in a continuous way (not even in low dimension). A possible boundary
behavior is, on the contrary, a combination of stickiness to the boundary and smooth separation
from the adjacent portions. Furthermore, in the last section we deal with the asymptotic behavior
as s — 0T of the fractional mean curvature, and with the behavior of s-minimal surfaces when
s € (0,1) is small in a bounded and connected open set with C? boundary Q@ < R™. We classify
the behavior of s-minimal surfaces with respect to the fixed exterior data (i.e. the s-minimal set
fixed outside of 2). So, for s small and depending on the data at infinity, the s-minimal set can be
either empty in Q, fill all , or possibly develop a wildly oscillating boundary. Also, we prove the
continuity of the fractional mean curvature in all variables, for s € [0, 1]. Using this, we see that as
the parameter s varies, the fractional mean curvature may change sign.

In this chapter, we deal with nonlocal minimal surfaces, as introduced in [26] in 2010 (see also [144]
for a preliminary introduction to some properties of nonlocal minimal surfaces). In particular, follow-
ing the approach of De Giorgi (for classical minimal surfaces), we introduce the fractional perimeter
and look for minimizers in bounded open sets with respect to some fixed exterior data. The bound-
aries of such (nonlocal minimal) sets are called nonlocal minimal surfaces (and are indeed smooth
almost everywhere). We give in this chapter some notions on this subject, outline some nice recent
achievements and also present a new result on a stickiness phenomena when the fractional parameter
is small. So, in this Chapter 7

e we prove that s-minimal graphs in R**! are flat if no singular cones exist in dimension n
(and this is related to a known Bernstein problem),

e we prove that minimizers with respect to the exterior data that is a subgraph, is a subgraph
also inside the domain,

e we prove that nontrivial minimal cones in dimension two do not exist (which implies, ac-
cording to the first item, that s-minimal graphs in R? are flat),

e we discuss some nice examples of boundary regularity and stickiness phenomena.

In the last Section 7.4 we focus on the behavior of s-minimal surfaces for small values of the fractional
parameter. In particular

e we give the asymptotic behavior of the fractional mean curvature as s — 0%,

e we prove the continuity of the fractional mean curvature in all variables for s € [0, 1],

e when s € (0,1) is small we classify the behavior of s-minimal surfaces, in dependence of the

exterior data at infinity.

To give more details on the last item, we prove that when the fractional parameter is small and the
exterior data at infinity occupies (in measure, with respect to the weight) less than half the space,
then nonlocal minimal surfaces completely stick at the boundary (that is, they are empty inside the
domain), or become “topologically dense” in their domain. An analogues result, that is nonlocal

187
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minimal surfaces fill the domain or become dense, is obtained when the exterior data occupies in the
appropriate sense more than half the space (so this threshold is optimal).

Let s € (0,1)".
We introduce the fractional perimeter® Let 2 < R™ be an open bounded set, and let E ¢ R™ be
fixed outside of Q. We consider minimizers of the H*/? norm

2
x|l 5 f f (@) ~ xe(y)] dz dy

|x _ y|n+s

_ZI f Xe()xce(y) dz dy.
n n |$_ |n+s

Notice that only the interactions between E and CFE contribute to the norm.

In order to define the fractional perimeter of E in 2, we need to clarify the contribution of Q to the H 2
norm here introduced. Namely, as F is fixed outside (2, we aim at minimizing the “Q-contribution”
to the norm among all measurable sets that “vary” inside 2. We consider thus interactions between
E n Q and CE and between E\Q2 and Q\E, neglecting the data that is fixed outside € and that does
not contribute to the minimization of the norm (see Figure 7.1). We define the interaction I(A, B) of

CE\ 2

- - "/’

FIGURE 7.1. Fractional Perimeter

two disjoint subsets of R™ as

wam=[ [ 22 = [ e Ty

L we point out that we use the fractional parameter s differently from the previous (and the following) chapters.
Indeed, it substitutes the 2s € (0,2) power used up until now in the kernel defining our nonlocal operators. To give a
more precise idea, let us denote o := 2s € (0, 2) and write our singular kernel kernel (check (1.1) or (2.1)) as [z —y| " 7.
In the present chapter, the important thing is that o will take into account only half of the interval of definition, that
is 0 € (0,1), and this is equivalent to having (the original) s € (0,1/2). As a notation, we nonetheless writes s instead
of o, hence we take s € (0,1). This is just a matter of notation, however we will make clear why we need to take the
power in the kernel smaller than 1 and not up until 2, in the upcoming Theorem 7.3.4.

?The next measure theoretic assumptions are assumed throughout this chapter. Up to modifying E < R™ on
a set of measure zero we can assume (see e.g. Appendix C of [109]) that E contains the measure theoretic interior

Eint = {a: eR™|Ar > 0s.t. |[EnBr(z)| = ""7"7'" C E, the complementary CE contains its measure theoretic interior

Eezt :={z € R"|[Ir > 0s.t. |E n Br(x)] = 0} < CE, and the topological boundary of E coincides with its measure
theoretic boundary, 0E = 0~ E,0" E := R™"\(Eint U Feat) = {x € R"|0 < |E n By(z)| < wpr™ for every r > 0}. In
particular, we remark that both E;,+ and Ecz¢ are open sets.
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Then (see [26]), one defines the nonlocal s-perimeter functional of E in 2 as
Perg(E,Q) :=I(En Q,CE) + I(E\Q,Q\E). (7.2)
Equivalently, one may write
Pergy(E,Q) = I(En Q,Q\E) + I(E n Q,CO\E) + I[(E\Q,Q\E).

DEFINITION 7.0.4. Let Q be an open set of R™. A measurable set E < R" is s-minimal in Q if

Pers(E, Q) is finite and if, for any measurable set F such that E\Q2 = F\Q), we have that
Pery(E,Q) < Pery(F, ).

A measurable set is s-minimal in R™ if it is s-minimal in any ball B,., where r > 0.

The boundaries of s-minimal sets are referred to as nonlocal minimal surfaces.

We discuss briefly the behavior of the perimeter as s tends to 1 and to 0.
When s — 17, the fractional perimeter Per, approaches the classical perimeter, see [20]. See also [44]
for the precise limit in the class of functions with bounded variations, [30,31] for a geometric approach
towards regularity and [11, ] for an approach based on I'-convergence. See also | ] for a different
proof and Theorem 2.22 in [107] and the references therein for related discussions. A simple, formal
statement (up to renormalizing constants) is the following:

THEOREM 7.0.5. Let R > 0 and E be a set with finite perimeter in Br. Then
lin%(l — s)Pers(E, B,) = Per (E, B,)
for almost any r € (0, R).

The behavior of Perg as s — 07 is slightly more involved. In principle, the limit as s — 0% of Per;
is, at least locally, related to the Lebesgue measure (see e.g. [113]). Nevertheless, the situation is
complicated by the terms coming from infinity, which, as s — 0%, become of greater and greater
importance. We define in this sense the contribution from infinity of a set as

. dy
a(F) = lim s f . 7.3
(&) BB, [yl (7:3)

s—0t

We will study in more detail this quantity in the next Section 7.4.
It is proved in [57] that, if Pers (E, ) is finite for some s, € (0,1), and a(E) exists, then

gig(l)sPers(E,Q) = (wp, —a(E)) |En Q|+ a(E) |Q\E|. (7.4)

We remark that, using polar coordinates,

) dy ) +x .
0<a(E) < lim s JRH\BI i lim, swnjl p~ T dp = wy,
therefore a(FE) € [0,w,] plays the role of a convex interpolation parameter in the right hand-side
of (7.4) (up to normalization constants).

In this sense, formula (7.4) may be interpreted by saying that, as s — 0%, the s-perimeter concentrates
itself on two terms that are “localized” in the domain €, namely |E n Q] and |Q\E|. Nevertheless, the
proportion in which these two terms count is given by a “strongly nonlocal” interpolation parameter,
namely the quantity «(E) in (7.3) which “keeps track” of the behavior of E at infinity.

As a matter of fact, to see how a(F) is influenced by the behavior of E at infinity, one can com-
pute a(E) for the particular cases, as in Subsection 7.4.4. For instance, taking E a cone, then a(F)
gives in this case exactly the opening of the cone. We also remark that, in general, the limit in (7.3)
may not exist, even for smooth sets: indeed, it is possible that the set E “oscillates” wildly at infinity,
say from one cone to another one, leading to the non-existence of the limit in (7.3).

Moreover, we point out that the existence of the limit in (7.3) is equivalent to the existence of the
limit in (7.4), except in the very special case |[En Q| = |Q\E|, in which the limit in (7.4) always exists.
That is, the following alternative holds true:
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o if |En Q|+ |Q\E|, then the limit in (7.3) exists if and only if the limit in (7.4) exists,
o if |[EnQ| = |Q\E|, then the limit in (7.4) always exists (even when the one in (7.3) does not
exist), and
li_r% Pers(E,Q) = wy, |E N Q| = w, |Q\E]|.

We define now the s-fractional mean curvature of a set E at a point ¢ € JF as the principal value
integral
Xce\Y) — XEY
L;[E)(q) := P-V-J ()—nﬂ() dy, (7.5)
|y —q|
that is

LIEN@ = tw TEN@),  where  ZZE)) - [ xeeW) —xe®) 4,

cB,(q) |ly—ql"ts

The fractional mean curvature gives the Euler-Lagrange equation corresponding to the s-perimeter
functional Perg. Indeed, in analogy with the case of classical minimal surfaces, which have zero mean
curvature, if £ is s-minimal in €2, then

Z,E] =0, on 0EnQ, (7.6)
in an appropriate viscosity sense (see Theorem 5.1 of [26]).
Actually, by exploiting the interior regularity theory of s-minimal sets, the equation is satisfied in the
classical sense in a neighborhood of every “viscosity point” (see Appendix A in [108]). That is, if E

has at p € 0F n 2 a tangent ball (either interior or exterior), then 0F is C* in B,.(p), for some r > 0
small enough, and
LJ[E](z) =0, VYaedE n B,(p).

Moreover, if 2 has a C? boundary, then the Euler-Lagrange equation (at least as an inequality) holds
also at a point p € 0F n 092,

It is also suggestive to think that the function xg := xcg — X averages out to zero at the points
on 0F, if OF is smooth enough, since at these points the local contribution of F compensates the one
of CE. Using this notation, for zg € 0F, one may take the liberty of writing

1 Xe(®o+vy)+ XE(To—Y
LE)w) = [ XXz,
1 J Xe(ro +y) + Xe(ro — y) — 2XE(20) d
= 3 Yy
2 n |y|n+s

—(=A)%Xn(w0)

C(n, s) ’
using the notation of (1.1). Using this suggestive representation, the Euler-Lagrange equation in (7.6)
becomes

(=A)3Yg = 0 along 0F N Q.

For the main properties of the fractional mean curvature, we refer to [2]. In particular, it is proved
there in Theorem 12 that for a set £ < R™ with C? boundary and any = € dF, one has

lim (1= ) L[E](x) = w, 1H[E](x),
where H is the classical mean curvature of E at the point x (with the convention that we take H such
that the curvature of the ball is a positive quantity). See also [31].

It is also worth recalling that the nonlocal perimeter functionals find applications in motions of
fronts by nonlocal mean curvature (see e.g. [29,35,96]), problems in which aggregating and disag-
gregating terms compete towards an equilibrium (see e.g. [81] and [54]) and nonlocal free boundary
problems (see e.g. [27] and [64]). See also [113] and [148] for results related to this type of problems.
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We point out that in order to find minimal surfaces we are looking for sets of minimal perimeter
(this was first done by De Giorgi in the classical case). However, it is necessary to prove that indeed
the boundaries of s-minimal sets are smooth surfaces. In the case of the local perimeter functional,
it is known indeed that the boundaries of minimal sets are smooth in dimension n < 7. Moreover,
if n > 8 minimal surfaces are smooth except on a small singular set of Hausdorff dimension n — 8.
Differently from the classical case, the regularity theory for s-minimizers is still quite open. We present
here some of the partial results obtained in this direction:

THEOREM 7.0.6. In the plane, s-minimal sets are smooth. More precisely:
a) If E is an s-minimal set in Q < R?, then 0F n Q is a C*-curve.
b) Let E be s-minimal in Q < R"™ and let ¥ < 0F n Q denote its singular set. Then HY(Xg) = 0
for any d >n — 3.

See [133] for the proof of this results (as a matter of fact, in [133] only C1® regularity is proved,
but then [14] proved that s-minimal sets with C1'**-boundary are automatically C*). Further regu-
larity results of the s-minimal surfaces can be found in [31]. There, a regularity theory when s is near

1 is stated, as we see in the following Theorem:

THEOREM 7.0.7. There exists eg € (0,1) such that if s = 1 — €g, then
a) if n <7, any s-minimal set is of class C*,
b) if n =8 any s-minimal surface is of class C* except, at most, at countably many isolated points,
¢) any s-minimal surface is of class C* outside a closed set ¥ of Hausdorff dimension n — 8.

7.1. Graphs and s-minimal surfaces

Minimal surfaces that are graphs are called minimal graphs, and they reduce to hyperplanes
if n < 8 (this is called the Bernstein property, which was also discussed at the beginning of the
Chapter 6). If n > 9, there exist global minimal graphs that are not affine (see e.g. [91]).

We will focus the upcoming material on two interesting results related to graphs: a Bernstein
type result, namely the property that an s-minimal graph in R**! is flat (if no singular cones exist
in dimension n); we will then prove that an s-minimal surface whose prescribed data is a subgraph,
is itself a subgraph.

The first result is the following theorem:

THEOREM 7.1.1. Let E = {(z,t) € R® x R | t < u(x)} be an s-minimal graph, and assume there
are no singular cones in dimension n (that is, if K < R™ is an s-minimal cone, then K is a half-space).
Then u is an affine function (thus E is a half-space).

To be able to prove Theorem 7.1.1, we recall some useful auxiliary results. In the following lemma
we state a dimensional reduction result (see Theorem 10.1 in [26]).

LEMMA 7.1.2. Let E = F x R. Then if E is s-minimal if and only if F' is s-minimal.

We define then the blow-up and blow-down of the set F are, respectively
E
FEy:=1limFE, and FE,:= lim F,, where FE,=—.

r—0 r——+o0 r

A first property of the blow-up of E is the following (see Lemma 3.1 in [82]).
LEMMA 7.1.3. If E. is affine, then so is E.

We recall also a regularity result for the s-minimal surfaces (see [82] and [14] for details and
proof).

LEMMA 7.1.4. Let E be s-minimal. Then:
a) If E is Lipschitz, then E is C12.
b) If E is C%“, then E is C*.

We give here a sketch of the proof of Theorem 7.1.1 (see [82] for all the details).
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SKETCH OF THE PROOF OF THEOREM 7.1.1. If E ¢ R™*! is an s-minimal graph, then the blow-
down E; is an s-minimal cone (see Theorem 9.2 in [26] for the proof of this statement). By applying
the dimensional reduction argument in Lemma 7.1.2 we obtain an s-minimal cone in dimension n.
According to the assumption that no singular s-minimal cones exist in dimension n, it follows that
necessarily F. can be singular only at the origin.

We consider a bump function wg € C*(R, [0, 1]) such that

wo(t) = 0 in (—oo,i) U <i,+oo>

wo(t) = 1 in (?2)
w(t) = wo(t]).

The blow-down of F is
E, = {(xl’xnﬂ) | Tl S ux(x')}.
For a fixed o € 0B, let
Fy = {(2',2n11) | Tpi1 < uyp (2 + thw(a’)o) — t}

be a family of sets, where ¢t € (0,1) and 6 > 0. Then for § small, we have that

F} is below E,. (7.7)

Indeed, suppose by contradiction that this is not true. Then, there exists 8 — 0 such that
Uog, (@}, + Opw(z))o) — 1 = uy (a},). (7.8)
But 2, € suppw, which is compact, therefore 2/, := kll)rJrrlL ), belongs to the support of w, and w(z’,)

is defined. Then, by sending & — 400 in (7.8) we have that

uf(x/”/‘) -1= Ux(mloo)a

which is a contradiction. This establishes (7.7).

Now consider the smallest tg € (0,1) for which F; is below E,,. Since E,, is a graph, then Fy,
touches E, from below in one point Xo = (zf, 22 ), where z{, € suppw. Since E. is s-minimal, we
have that the nonlocal mean curvature (defined in (7.5)) of the boundary is null. Also, since F}, is a
C? diffeomorphism of E,, we have that

Zs[Fi 1(p) ~ 6to, (7.9)
and there is a region where E,. and F;, are well separated by to, thus
|(E2\Fy,) 0 (Bs\B2)| = cto,

for some ¢ > 0. Therefore, we see that

Zs[Fi](p) = Ls[F, ] (p) — Ls[E](p) = clo.
This and (7.9) give that 6ty > ctg, for some ¢ > 0 (up to renaming it). If # is small enough, this
implies that tg = 0.
In particular, we have proved that there exists § > 0 small enough such that, for any ¢ € (0,1)
and any o € 0B, we have that

Uy (2 + thw(a’)o) —t < uy(2').

This implies that
U, (@' + tOw(2")o) — ug(2) < 1
t0 6’

hence, letting ¢ — 0, we have that

Vg (2 ) w(z')o <

, for any x € R"\{0}, and o € Bj.

SR
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We recall now that w = 1 in Bs;5\By/s and o is arbitrary in 0B;. Hence, it follows that

1
Vi, (z)] < 7’ for any z € By5\By/s.

Therefore u,, is globally Lipschitz. By the regularity statement in Lemma 7.1.4, we have that u,
is C*. This says that u is smooth also at the origin, hence (being a cone) it follows that E.. is
necessarily a half-space. Then by Lemma 7.1.3, we conclude that E is a half-space as well. (]

We introduce in the following theorem another interesting property related to s-minimal surfaces,
in the case in which the fixed given data outside a domain is a subgraph. In that case, the s-minimal
surface itself is a subgraph. Indeed:

THEOREM 7.1.5. Let Qg be a bounded open subset of R" ™1 with boundary of class CY' and let
Q:=Q¢ xR. Let E be an s-minimal set in Q. Assume that

E\Q = {z, <u(z)), ' e R""\Qp} (7.10)
for some continuous function u: R*~! — R. Then
EnQ={z, <v@), 2 € Q}
for some function v: R*~! — R.

The reader can see [65], where this theorem and the related results are proved; here, we only state
the preliminary results needed for our purposes and focus on the proof of Theorem 7.1.5. The proof
relies on a sliding method, more precisely, we take a translation of F in the nth direction, and move
it until it touches F from above. If the set E n  is a subgraph, then, up to a set of measure 0, the
contact between the translated F and E, will be E itself.

However, since we have no information on the regularity of the minimal surface, we need at first
to “regularize” the set by introducing the notions of supconvolution and subconvolution. With the
aid of a useful result related to the sub/supconvolution of an s-minimal surface, we proceed then with
the proof of the Theorem 7.1.5.

FIGURE 7.2. The supconvolution of a set

The supconvolution of a set £ € R" is given by
Ef = | Bs(a).
zeE
In an equivalent way, the supconvolution can be written as
Ei= | (E+v).

veR™
Jv]<6
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Indeed, we consider § > 0 and an arbitrary = € E. Let y € Bs(z) and we define v := y — z. Then

| <|ly—2|<d and y=ax+veEFE +v.

Therefore Bs(x) € E + v for [v| < §. In order to prove the inclusion in the opposite direction, one
notices that taking y € F + v with |v| < § and defining x := y — v, it follows that

[z =yl =] <0

Moreover, z € (E +v) —v = E and the inclusion F + v € Bs(z) is proved.
On the other hand, the subconvolution is defined as

E} =R\ ((R"\E)})

Now, the supconvolution of E is a “regularized” version of E, whose nonlocal minimal curvature is
smaller than the one of E, i.e.:

f XegtW) ~ X @ j xee(y) = xe(y)
" |x_y|n+s = n |j_y|n+s

dy <0, (7.11)

for any = € (?E§, where Z := & — v € 0F for some v € R™ with |v] = §. Then, by construction, the
set B + v lies in Eg, and this implies (7.11). Similarly, one has that the opposite inequality holds for
the subconvolution of FE, namely for any = € 6Eg

J XcES () — XE? ()
n |:C — y|n+s

y =0, (7.12)

By (7.11) and (7.12), we obtain:

PROPOSITION 7.1.6. Let E be an s-minimal set in Q. Let p € 6E§ and assume that Bs(p) S Q.
Assume also that E§ 18 touched from above by a translation of Eg, namely there exists w € R™ such
that

ElCE:+w
and
pe (0B m (0E} + w).
Then
Eg = B} 4 w.

PRrROOF OF THEOREM 7.1.5. One first remarks is that the s-minimal set does not have spikes
which go to infinity: more precisely, one shows that

Q()X(—CD,—M)EE(WQQQ()X(—CD,M) (713)

for some M > 0. The proof of (7.13) can be performed by sliding horizontally a large ball, see [65]
for details.

After proving (7.13), one can deal with the core of the proof of Theorem 7.1.5. The idea is to slide
E from above until it touches itself and analyze what happens at the contact points. For simplicity,
we will assume here that the function u is uniformly continuous (if u is only continuous, the proof
needs to be slightly modified since the subconvolution and supconvolution that we will perform may
create new touching points at infinity). At this purpose, we consider E; = F + te,, for t > 0. Notice
that, by (7.13), if t = 2M, then F € F;. Let then ¢ be the smallest for which the inclusion E € F;
holds. We claim that ¢ = 0. If this happens, one may consider

v =inf{r | (z,7) € CE}

and, up to sets of measure 0, E n )y is the subgraph of v.
The proof is by contradiction, so let us assume that ¢t > 0. According to (7.10), the set E\(2 is
a subgraph, hence the contact points between 0F and 0F; must lie in ¢ x R. Namely, only two
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F1GURE 7.3. Sliding F until it touches itself at an interior point

possibilities may occur: the contact point is interior (it belongs to 29 x R), or it is at the boundary
(on 0 x R). So, calling p the contact point, one may have® that

either pe Qy xR or (7.14)

pe i x R. (7.15)

We deal with the first case in (7.14) (an example of this behavior is depicted in Figure 7.3). We
consider E§ and Eg to be the supconvolution, respectively the subconvolution of E. We then slide the
subconvolution until it touches the supconvolution. More precisely, let 7 > 0 and we take a translation
of the subconvolution, Eg + 7e,. For 7 large, we have that Ef c Eg + Te, and we consider 75 to be
the smallest for which such inclusion holds. We have (since ¢ is positive by assumption) that

t
= ->0.
Ts 9

Moreover, for ¢ small, the sets 6E§ and 0(E? + 75e,,) have a contact point which, according to (7.14),
lies in 2y x R. Let ps be such a point, so we may write

Ds € (6E§) N O(ES + 75€,) and  ps € Qo x R.

Then, for 6 small (notice that Bs(p) € ), Proposition 7.1.6 yields that
EY = B} + 754,
Considering § arbitrarily small, one obtains that

E =F+ e, with 75> 0.

3As a matter of fact, the number of contact points may be higher than one, and even infinitely many contact points
may arise. So, to be rigorous, one should distinguish the case in which all the contact points are interior and the case
in which at least one contact point lies on the boundary.

Moreover, since the surface may have vertical portions along the boundary of the domain, one needs to carefully
define the notion of contact points (roughly speaking, one needs to take a definition for which the vertical portions
which do not prevent the sliding are not in the contact set).

Finally, in case the contact points are all interior, it is also useful to perform the sliding method in a slighltly
reduced domain, in order to avoid that the supconvolution method produces new contact points at the boundary (which
may arise from vertical portions of the surfaces).

Since we do not aim to give a complete proof of Theorem 7.1.5 here, but just to give the main ideas and underline
the additional difficulty, we refer to [65] for the full details of these arguments.
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But F is a subgraph outside of 2, and this provides a contradiction. Hence, the claim that ¢ = 0 is
proved.
Let us see that we also obtain a contradiction when supposing that ¢ > 0 and that the second
case (7.15) holds. Let
p=(p,pn) and pe(OF)n (OE).
Now, if one takes sequences a;, € F and by, € 0E;, both that tend to p as k goes to infinity, since E\Q
is a subgraph and ¢ > 0, necessarily ay, by, belong to 2. Hence

p€(OE) n Q n (0E:) n Q. (7.16)

Thanks to Definition 2.3 in [26], one obtains that E is a variational subsolution in a neighborhood of
p. In other words, if A€ EnQ and p € A, then

0 = Pers(F,Q) — Perg(E\A,Q) = I(A,CE) — I(A, E\A)
(we recall the definition of I in (7.1) and of the fractional perimeter Pers in (7.2)). According to

Theorem 5.1 in [26], this implies in a viscosity sense (i.e. if E is touched at p from outside by a ball),
that
xes(y) = xey)
=S dy < 0. 7.17
Jn lp—y|"+e (0

In order to obtain an estimate on the fractional mean curvature in the strong sense, we consider the
translation of the point p as follows:

pr=p—te, = (p',pn—1t) = (P, pny)-

Since ¢t > 0, one may have that either p,, # u(p’), or pn+ # u(p’).

These two possibilities can be dealt with in a similar way, so we just continue with the proof in the
case p, # u(p’) (as is also exemplified in Figure 7.4). Taking r > 0 small, the set B, (p)\Q is contained
entirely in E or in its complement. Moreover, one has from [25] that 0F n B,.(p) is a C’l’#—graph in

1+s

the direction of the normal to Q at p. That is: in Figure 7.4 the set F is C*"2 , hence in the vicinity
of p= (p',pn), it appears to be sufficiently smooth.

________________

FI1GURE 7.4. Sliding F until it touches itself at a boundary point

So, let v(p) = (V'(p), vn(p)) be the normal in the interior direction, then up to a rotation and
since ) is a cylinder (hence v, (p) = 0), we can write v(p) = e;. Therefore, there exists a function ¥
of class C1*%* such that p1 = ¥(pa,...,pn) and, in the vicinity of p, we can write 0F as the graph
G={r1 =9(za,...,2,)}.
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Given (7.16), we deduce that there exists a sequence py € G such that p, € Q and pr, — p as k — 0.
From this it follows that there exists a sequence of points pr — p such that

O in the vicinity of py is a graph of class C' "% (7.18)
and
no ok =yt
From (7.18) and (7.19), and using a pointwise version of the Euler-Lagrange equation (see [65] for

details), we have that
J xer(y) — ><+E(y) dy = 0.
wo P =yl

Now, E c FE; for t strictly positive, hence
f xee (y) — xe, (v)
n |p _ y|n+s

Moreover, we have that the set dE; n Br(p) must remain on one side of the graph G, namely one
could have that

dy < 0. (7.20)

Eyn Br(p) S {z1 < ¥(z2,...,25)} or
Ethg(p)Q{xl \D($27...,$n)}-

Given again (7.16), we deduce that there exists a sequence p € 0E; n  such that pp — p as k —» o

<
=

and 0F; n 2 in the vicinity of py is touched by a surface lying in FE;, of class CL*%*. Then

f Xer, (y) iff;(y) dy > 0.
n |Px — vl
Hence, making use of a pointwise version of the Euler-Lagrange equation (see [65] for details), we
obtain that
J- Xes, (y) — X+Et (y) dy > 0.
wo =yt
But this is a contradiction with (7.20), and this concludes the proof of Theorem 7.1.5. ]

On the one hand, one may think that Theorem 7.1.5 has to be well-expected. On the other hand,
it is far from being obvious, not only because the proof is not trivial, but also because the statement
itself almost risks to be false, especially at the boundary. Indeed we will see in Theorem 7.3.2 that
the graph property is close to fail at the boundary of the domain, where the s-minimal surfaces may
present vertical tangencies and stickiness phenomena (see Figure 7.11).

7.2. Non-existence of singular cones in dimension 2

We now prove the non-existence of singular s-minimal cones in dimension 2, as stated in the next
result (from this, the more general statement in Theorem 7.0.6 follows after a blow-up procedure):

THEOREM 7.2.1. If E is an s-minimal cone in R?, then E is a half-plane.

We remark that, as a combination of Theorems 7.1.1 and 7.2.1, we obtain the following result of
Bernstein type:

COROLLARY 7.2.2. Let E = {(z,t) e R" x R | t < u(x)} be an s-minimal graph, and assume that
n € {1,2}. Then u is an affine function.

Let us first consider a simple example, given by the cone in the plane, drawn in Figure 7.5,
K= {(a:,y) e R? | v > xQ}.

PROPOSITION 7.2.3. The cone K depicted in Figure 7.5 is not s-minimal in R2.
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FIGURE 7.5. The cone K

Notice that, by symmetry, one can prove that K satisfies (7.6) (possibly in the viscosity sense).
On the other hand, Proposition 7.2.3 gives that IC is not s-minimal. This, in particular, provides an
example of a set that satisfies the Euler-Lagrange equation in (7.6), but is not s-minimal (i.e., the
Euler-Lagrange equation in (7.6) is implied by, but not necessarily equivalent to, the s-minimality

property).

PROOF OF PROPOSITION 7.2.3. The proof of the non-minimality of I is due to an original idea
by Luis Caffarelli.

Suppose by contradiction that the cone K is minimal in R?. We add to K a small square adjacent
to the origin (see Figure 7.6), and call ' the set obtained. Then K and K’ have the same s-perimeter.
This is due to the interactions considered in the s-perimeter functional and the unboundedness of the
regions. We remark that in Figure 7.6 we draw bounded regions, of course, sets A, B,C, D, A’, B',C’
and D' are actually unbounded. Indeed, we notice that in the first image, the white square M interacts

FIGURE 7.6. Interaction of M with A,B,C,D,A’, B',C", D’

with the dark regions A, B, C, D, while in the second the now dark square M interacts with the regions
A',B',C" D', and all the other interactions are unmodified. Therefore, the difference between the s-
perimeter of K and that of K’ consists only of the interactions I(A, M)+I(B, M)+I(C, M)+I(D, M)—
I(AM)—I(B'\M)—-I(C",M)—I(D',M). Bt AuB=A"uB and CuD = C"u D' (since these
sets are all unbounded), therefore the difference is null, and the s-perimeter of K is equal to that of
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K'. Consequently, K’ is also s-minimal, and therefore it satisfies the Euler-Lagrange equation in (7.6)
at the origin. But this leads to a contradiction, since the the dark region now contributes more than
the white one, namely

J xex! (¥) — xxr (y)
RQ

e dy < 0.

Thus K cannot be s-minimal, and this concludes our proof. O

FIGURE 7.7. Cone in R?

This geometric argument cannot be extended to a more general case (even, for instance, to a cone
in R? made of many sectors, see Figure 7.7). As a matter of fact, the proof of Theorem 7.2.1 will
be completely different than the one of Proposition 7.2.3 and it will rely on an appropriate domain
perturbation argument.

The proof of Theorem 7.2.1 that we present here is actually different than the original one in [133].
Indeed, in [133], the result was proved by using the harmonic extension for the fractional Laplacian.
Here, the extension will not be used; furthermore, the proof follows the steps of Theorem 6.2.1 and
we will recall here just the main ingredients.

PROOF OF THEOREM 7.2.1. The idea of the proof is the following: if £ — R? is an s-minimal
cone, then let E be a perturbation of the set E which coincides with a translation of E in B ry2 and
with E itself outside Bg. Then the difference between the energies of E and E tends to 0 as R — +00.
This implies that also the energy of E n E is arbitrarily close to the energy of E. On the other hand
if E is not a half-plane, the set E n E can be modified locally to decrease its energy by a fixed small
amount and we reach a contradiction.

The details of the proof go as follows. Let

U= XCcE — XE-
We use now definition (6.35) and Theorem 6.1.2 with s € (0,1) instead of o := 2s as the power of the
denominator (check the observation in the footnote at page 188 and Theorem 7.3.4 further on). We
have that
U(BR,BR) = SI(E N BR7CE N BR)
and
U(BR,CBR) = 4I(BR N E7CE\BR) + 4I(CE N BR,E\BR),
thus (up to constants that we neglect)

Pers(E, Br) = Kr(u), (7.21)



200 7. NONLOCAL MINIMAL SURFACES

where Kg(u) is given in (6.33) and Pery(E, Br) is the s-perimeter functional defined in (7.2). Then

E is s-minimal if « is a minimizer of the energy g in any ball Br, with R > 0.

Now, we argue by contradiction, and suppose that E is an s-minimal cone different from the
half-space. Up to rotations, we may suppose that a sector of E has an angle smaller than 7 and is
bisected by es. Thus there exists M > 1 and p € E n By on the eg-axis such that (see Figure 7.7)

P + e € CE.
We take ¢ € C"(B1), such that ¢(z) = 1 in Byj,. For R large (say R > 8M), we define

Vr+(y) =y + @(%) er.

We point out that, for R large, ¥y . is a diffeomorphism on R2.
Furthermore, we define u};(z) := u(¥5', (z)). Then

uh(p) =u(p—e1) forpe Bay
and uj(p) = u(p) for p € CBg.
We recall the estimate obtained in (6.37), that, combined with the minimality of u, gives
C
Kr(ug) = Kr(u) < 73 Kr(w)-

But w is a minimizer in any ball, and by the energy estimate in Theorem 6.1.2 we have that
]CR(UE) — ICR(u) < CR™%.

This implies that
lim Kr(ug) — Kr(u) = 0.

R—+o
Let now
vg(z) := max{u(z), uf(z)} and wr(z) := min{u(z), uk(z)}.
We claim that vg is not identically u nor uE. Indeed, since p+e; e CE and pe E
uh(p) =ulp—e1) = (xce —xe)(p—e1) =1 and
u(p) = (xce — xe)(p) = —1.
On the other hand,
uh(p+e1) =ulp) =—-1 and
u(p+e1) = (xce — xp)(p+e1) = 1.
By the continuity of u and u};, we obtain that
VR = u} > u in a neighborhood of p

and
VR = U > u}r{ in a neighborhood of p + €.

By the minimality of u,

Kr(u) < Kr(vr).
Moreover (see e.g. formula (38) in [120]),

ICR(UR) + ICR(wR) < ICR(U) + ’CR(UE)

The latter two formulas give that

Kr(vr) < Kr(uf).
We claim that

vg is not minimal for Kops

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

with respect to compact perturbations in Bsys. Indeed, assume by contradiction that vy is minimal,
then in Boys both vg and v would satisfy the same equation. Recalling (7.24) and applying the Strong
Maximum Principle, it follows that u = vg in Bajs, which contradicts (7.23). This establishes (7.26).
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Now, we consider a minimizer u}, of ICaps among the competitors that agree with vg outside Bayy.
Therefore, we can define
Or = Kom(vr) — Konr (uf).
In light of (7.26), we have that ér > 0.
The reader can now compare Step 3 in the proof of Theorem 6.2.1. There we proved that
0r remains bounded away from zero as R — +0. (7.27)

Furthermore, since u};, and vg agree outside Bg); we obtain that
Kr(uk) + 6r = Kr(vr).
Using this, (7.25) and the minimality of u, we obtain that
0r = Kr(vr) — Kr(uk) < Kr(uf) — Kr(u).
Now we send R to infinity, recall (7.22) and (7.27), and we reach a contradiction. Thus, F is a
half-space, and this concludes the proof of Theorem 7.2.1. ]

As already mentioned, the regularity theory for s-minimal sets is still widely open. Little is known
beyond Theorems 7.0.6 and 7.0.7, so it would be very interesting to further investigate the regularity
of s-minimal surfaces in higher dimension and for small s.

It is also interesting to recall that if the s-minimal surface E is a subgraph of some function w :
R" ! — R (at least in the vicinity of some point zg = (z, u(z})) € OF) then the Euler-Lagrange (7.6)

can be written directly in terms of u. For instance (see formulas (49) and (50) in [14]), under
appropriate smoothness assumptions on u, formula (7.6) reduces to
0 = J xce(To +y) —+XE($0 +y) dy
n |y|n s
u(zy +y') — U(SCB)) W) /
= F dy’ + ¥ (xp),
fR"*1 < /| ly/ [t ’

for suitable F' and ¥, and a cut-off function ¢ supported in a neighborhood of x},.

T3

FIGURE 7.8. A nonlocal catenoid

Regarding the regularity problems of the s-minimal surfaces, let us mention the recent papers [47]
and [48]. Among other very interesting results, it is proved there that suitable singular cones of
symmetric type are unstable up to dimension 6 but become stable in dimension 7 for small s (these
cones can be seen as the nonlocal analogue of the Lawson cones in the classical minimal surface theory,
and the stability property is in principle weaker than minimality, since it deals with the positivity of
the second order derivative of the functional).
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This phenomenon may suggest the conjecture that the s-minimal surfaces may develop singulari-
ties in dimension 7 and higher when s is sufficiently small.

In [48], interesting examples of surfaces with vanishing nonlocal mean curvature are provided for s
sufficiently close to 1. Remarkably, the surfaces in [48] are the nonlocal analogues of the catenoids,
but, differently from the classical case (in which catenoids grow logarithmically), they approach a
singular cone at infinity, see Figure 7.8.

Also, these nonlocal catenoids are highly unstable from the variational point of view, since they
possess infinite Morse index (differently from the standard catenoid, which has Morse index equal to
one, i.e. it is, roughly speaking, a minimizer in any functional direction with the exception of one).

Moreover, in [48], there are also examples of surfaces with vanishing nonlocal mean curvature
that can be seen as the nonlocal analogues of two parallel hyperplanes. Namely, for s sufficiently
close to 1, there exists a surface of revolution made of two sheets which are the graph of a radial
function f = +f(r). When r is small, f is of the order of 1 + (1 — s)r?, but for large r it becomes
of the order of \/1 — s-r. That is, the two sheets “repel each other” and produce a linear growth at
infinity. When s approaches 1 the two sheets are locally closer and closer to two parallel hyperplanes,
see Figure 7.9.

The construction above may be extended to build families of surfaces with vanishing nonlocal mean
curvature that can be seen as the nonlocal analogue of k parallel hyperplanes, for any k € N. These
k-sheet surfaces can be seen as the bifurcation, as s is close to 1, of the parallel hyperplanes {x,, = a;},

for i € {1,...,k}, where the parameters a; satisfy the constraints
k
a; > -+ > ag, Zaiz() (7.28)
i=1
and the balancing relation
(_1)i+j+1
i =2 . 7.29
¢ 1@2n i — aj ( )

Jj#i

It is actually quite interesting to observe that solutions of (7.29) correspond to (nondegenerate)

FIGURE 7.9. A two-sheet surface with vanishing fractional mean curvature
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critical points of the functional

k
1 o
Blar,...,a) = 5y af + 3 (=1)*"logla; —a;
i=1

1<j<n
J#i

among all the k-ples (a1, ..., ax) that satisfy (7.28).

These bifurcation techniques rely on a careful expansion of the fractional perimeter functional
with respect to normal perturbations. That is, if E is a (smooth) set with vanishing fractional mean
curvature, and h is a smooth and compactly supported perturbation, one can define, for any t € R,

En(t) := {x + th(x)v(z), x € OF},

where v(x) is the exterior normal of E at . Then, the second variation of the perimeter of Fj(t)
at t = 0 is (up to normalization constants)

f hy) = h(=)

g |z —yl"s

_ J h(y) - h(.]?) dH"_l(y) + h(l‘) J 1- V(x) i V(y) dH"_l(y).

g v —yl"ts o |lr =yt

dH" " (y)

aH ) + he) | (v(@) = v(w)) - v()

oE |z — y[n+s

Notice that the latter integral is non-negative, since v(x)-v(y) < 1. The quantity above, in dependence
of the perturbation h, is called, in jargon, “Jacobi operator”. It encodes an important geometric
information, and indeed, as s — 1, it approaches the classical operator

Asph + |Asp* h,

where Azf is the Laplace-Beltrami operator along the hypersurface 0E and |Asg|? is the sum of the
squares of the principal curvatures.

Other interesting sets that possess constant nonlocal mean curvature with the structure of on-
duloids have been recently constructed in [46] and in [22]. This type of sets are periodic in a given
direction and their construction has perturbative nature (indeed, the sets are close to a slab in the
plane).

It is interesting to remark that the planar objects constructed in [22] have no counterpart in the
local framework, since hypersurfaces of constant classical mean curvature with an onduloidal structure
only exist in R™ with n > 3: once again, this is a typical nonlocal effect, in which the nonlocal mean
curvature at a point is influenced by the global shape of the set.

While unbounded sets with constant nonlocal mean curvature and interesting geometric features
have been constructed in [22,48], the case of smooth and bounded sets is always geometrically trivial.
As a matter of fact, it has been recently proved independently in [22] and [39] that bounded sets
with smooth boundary and constant mean curvature are necessarily balls (this is the analogue of a
celebrated result by Alexandrov for surfaces of constant classical mean curvature).

7.3. Boundary regularity

The boundary regularity of the nonlocal minimal surfaces is also a very interesting, and surprising,
topic. Indeed, differently from the classical case, nonlocal minimal surfaces do not always attain
boundary data in a continuous way (not even in low dimension). A possible boundary behavior is, on
the contrary, a combination of stickiness to the boundary and smooth separation from the adjacent
portions. Namely, the nonlocal minimal surfaces may have a portion that sticks at the boundary and
that separates from it in a C’L%—Way. As an example, we can consider, for any ¢ > 0, the spherical
cap

Ks := (B1+5\Bl) N {l‘n < O},
and obtain the following stickiness result:
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FIGURE 7.10. Stickiness properties of Theorem 7.3.1.

THEOREM 7.3.1. There exists 6o > 0, depending on n and s, such that for any § € (0,dp], we have
that the s-minimal set in By that coincides with Ks outside By is Ky itself.
That is, the s-minimal set with datum K outside By is empty inside By.

The stickiness property of Theorem 7.3.1 is depicted in Figure 7.10.

Other stickiness examples occur at the sides of slabs in the plane. For instance, given M > 1,
one can consider the s-minimal set Ey; in (—1,1) x R with datum outside (—1,1) x R given by the
“jump” set Jyr 1= Jy; U J]\f[, where

Jyp = (=00, —1] x (=00, —M)
and Jir = [1,+mw) x (—o0, M).
Then, if M is large enough, the minimal set Ej; sticks at the boundary of the slab:
THEOREM 7.3.2. There exist M, > 0, C, > 0, depending on s, such that if M > M, then
[—1,1) x [C,M 7+ M] € ES, (7.30)
and  (=1,1] x [-M, —C,M?*+:] C Ey;. (7.31)
The situation of Theorem 7.3.2 is described in Figure 7.11. We mention that the “strange”

exponent 322 in (7.30) and (7.31) is optimal.

For the detailed proof of Theorems 7.3.1 and 7.3.2, and other results on the boundary behavior
of nonlocal minimal surfaces, see [63]. Here, we limit ourselves to give some heuristic motivation and
a sketch of the proofs.

As a motivation for the (somehow unexpected) stickiness property at the boundary, one may look
at Figure 7.10 and argue like this. In the classical case, corresponding to s = 1, independently on the
width 0, the set of minimal perimeter in By will always be the half-ball B; n {z,, < 0}.

Now let us take s < 1. Then, the half-ball By n {z,, < 0} cannot be an s-minimal set, since
the nonlocal mean curvature, for instance, at the origin cannot vanish. Indeed, the origin “sees” the
complement of the set in a larger proportion than the set itself. More precisely, in B; (or even in By )
the proportion of the set is the same as the one of the complement, but outside B;.s the complement
of the set is dominant. Therefore, to “compensate” this lack of balance, the s-minimal set for s < 1
has to bend a bit. Likely, the s-minimal set in this case will have the tendency to become slightly
convex at the origin, so that, at least nearby, it sees a proportion of the set which is larger than the
proportion of the complement (we recall that, in any case, the proportion of the complement will be
larger at infinity, so the set needs to compensate at least near the origin). But when ¢ is very small,
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FIGURE 7.11. Stickiness properties of Theorem 7.3.2.

it turns out that this compensation is not sufficient to obtain the desired balance between the set and
its complement: therefore, the set has to “stick” to the half-sphere, in order to drop its constrain to
satisfy a vanishing nonlocal mean curvature equation.

Of course some quantitative estimates are needed to make this argument work, so we describe the
sketch of the rigorous proof of Theorem 7.3.1 as follows.

SKETCH OF THE PROOF OF THEOREM 7.3.1. First of all, one checks that for any fixed n > 0,
if 6 > 0 is small enough, we have that the interaction between By and Bjis\Bj is smaller than 7. In
particular, by comparing with a competitor that is empty in By, by minimality we obtain that

Per,(Es, B1) < 1, (7.32)

where we have denoted by Fj the s-minimal set in By that coincides with K outside Bj.
Then, one checks that

the boundary of Es can only lie in a small neighborhood of 0B84 (7.33)

if 4 is sufficiently small.

Indeed, if, by contradiction, there were points of 0Ej at distance larger than e from 0Bj, then one
could find two balls of radius comparable to €, whose centers lie at distance larger than €/2 from 0B;
and at mutual distance smaller than e, and such that one ball is entirely contained in By n Fs and
the other ball is entirely contained in B1\Es (this is due to a Clean Ball Condition, see Corollary 4.3
in [26]). As a consequence, Pers(Es, By) is bounded from below by the interaction of these two balls,
which is at least of the order of ¢"~*. Then, we obtain a contradiction with (7.32) (by choosing 7
much smaller than €"~*, and taking ¢ sufficiently small).

This proves (7.33). From this, it follows that

the whole set E5 must lie in a small neighborhood of 0B;. (7.34)

Indeed, if this were not so, by (7.33) the set E5 must contain a ball of radius, say 1/2. Hence,
Per,(Es, B1) is bounded from below by the interaction of this ball against {x,, > 0}\ By, which would
produce a contribution of order one, which is in contradiction with (7.32).
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Having proved (7.34), one can use it to complete the proof of Theorem 7.3.1 employing a geometric
argument. Namely, one considers the ball B,, which is outside Es for small p > 0, in virtue of (7.34),
and then enlarges p untill it touches 0FEs. If this contact occurs at some point p € Bj, then the
nonlocal mean curvature of Es at p must be zero. But this cannot occur (indeed, we know by (7.34)
that the contribution of Es to the nonlocal mean curvature can only come from a small neighborhood
of 0B1, and one can check, by estimating integrals, that this is not sufficient to compensate the outer
terms in which the complement of Ej is dominant).

As a consequence, no touching point between B, and 0E; can occur in By, which shows that Ej
is empty inside By and completes the proof of Theorem 7.3.1. O

As for the proof of Theorem 7.3.2, the main arguments are based on sliding a ball of suitably large
radius till it touches the set, with careful quantitative estimates. Some of the details are as follows
(we refer to [63] for the complete arguments).

SKETCH OF THE PROOF OF THEOREM 7.3.2. The first step is to prove a weaker form of sticki-
ness as the one claimed in Theorem 7.3.2. Namely, one shows that

[=1,1) x [eoM , M] S ES, (7.35)
and (=1,1] x [-M, —c,M]| S Eyr, (7.36)

for some ¢, € (0,1). Of course, the statements in (7.30) and (7.31) are stronger than the ones in (7.35)
and (7.36) when M is large, since éi‘; < 1, but we will then obtain them later in a second step.

To prove (7.35), one takes balls of radius ¢, M and centered at {zy = t}, for any ¢ € [c,M, M].
One slides these balls from left to right, till one touches 0E);. When M is large enough (and ¢, small
enough) this contact point cannot lie in {|z1| < 1}. This is due to the fact that at least the sliding ball
lies outside Fjy, and the whole {xy > M} lies outside Ej; as well. As a consequence, these contact
points see a proportion of Ej; smaller than the proportion of the complement (it is true that the
whole of {xy < —M} lies inside Ej;, but this contribution comes from further away than the ones just
mentioned, provided that ¢, is small enough). Therefore, contact points cannot satisfy a vanishing
mean curvature equation and so they need to lie on the boundary of the domain (of course, careful
quantitative estimates are necessary here, see [63], but we hope to have given an intuitive sketch of
the computations needed).

In this way, one sees that all the portion [—1,1) x [c,M , M] is clean from the set Ej; and so (7.35)
is established (and (7.36) can be proved similarly).

Once (7.35) and (7.36) are established, one uses them to obtain the strongest form expressed
in (7.30) and (7.31). For this, by (7.35) and (7.36), one has only to take care of points in {|za| €
[CoM %, coM]}. For these points, one can use again a sliding method, but, instead of balls, one has
to use suitable surfaces obtained by appropriate portions of balls and adapt the calculations in order
to evaluate all the contributions arising in this way.

The computations are not completely obvious (and once again we refer to [63] for full details),

1+s
but the idea is, once again, that contact points that are in the set {|zz| € [CoM 5 oM ]} cannot
satisfy the balancing relation prescribed by the vanishing nonlocal mean curvature equation. O

The stickiness property discussed above also has an interesting consequence in terms of the “geo-
metric stability” of the flat s-minimal surfaces. For instance, rather surprisingly, the flat lines in the
plane are “geometrically unstable” nonlocal minimal surfaces, in the sense that an arbitrarily small
and compactly supported perturbation can produce a stickiness phenomenon at the boundary of the
domain. Of course, the smaller the perturbation, the smaller the stickiness phenomenon, but it is quite
relevant that such a stickiness property can occur for arbitrarily small (and “nice”) perturbations.
This means that s-minimal flat objects, in presence of a perturbation, may not only “bend” in the
center of the domain, but rather “jump” at boundary points as well.
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To state this phenomenon in a mathematical framework, one can consider, for fixed 6 > 0 the
planar sets
H:=R x (—0,0),
F_ :=(-3,-2) x[0,9)
and F, :=(2,3) x[0,9).
One also fixes a set F' which contains H U F_ U F.. and denotes by E be the s-minimal set in (—1,1) xR

among all the sets that coincide with F outside (—1,1) x R. Then, this set F sticks at the boundary

A

FIGURE 7.12. The stickiness/instability property in Theorem 7.3.3, with 8 := %

of the domain, according to the next result:

THEOREM 7.3.3. Fiz eg > 0 arbitrarily small. Then, there exists g > 0, possibly depending on €,
such that, for any § € (0, ],

2+e€q

E2(-1,1) x (—00,6 = ].

The stickiness/instability property in Theorem 7.3.3 is depicted in Figure 7.12. We remark that
Theorem 7.3.3 gives a rather precise quantification of the size of the stickiness in terms of the size

of the perturbation: namely the size of the stickiness in Theorem 7.3.3 is larger than the size of the
perturbation to the power 3 := 21:‘), for any ¢y > 0 arbitrarily small. Notice that 8 — +00 as s — 1,

consistently with the fact that classical minimal surfaces do not stick at the boundary.

The proof of Theorem 7.3.3 is based on the construction of suitable auxiliary barriers. These
barriers are used to detach a portion of the set in a neighborhood of the origin and their construction
relies on some compensations of nonlocal integral terms. In a sense, the building blocks of these
barriers are “self-sustaining solutions” that can be seen as the geometric counterparts of the s-harmonic
function z¥% discussed in Section 2.1.3.

Indeed, roughly speaking, like the function «?% , these barriers “see” a proportion of the set in {z1 <
0} larger than what is produced by their tangent plane, but a proportion smaller than that at infinity,
due to their sublinear behavior. Once again, the computations needed to check such a balancing
conditions are a bit involved, and we refer to [63] for the complete details.
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-

FicUre 7.13. Auxiliary barrier for the proof of Theorem 7.3.3

To conclude this section, we make a remark on the connection between solutions of the fractional
Allen-Cahn equation and s-minimal surfaces. Namely, a suitably scaled version of the functional in
(6.9) I'-converges to either the classical perimeter or the nonlocal perimeter functional, depending on
the fractional parameter. The I'-convergence is a type of convergence of functionals that is compatible
with the minimization of the energy, and turns out to be very useful when dealing with variational
problems indexed by a parameter. This notion was introduced by De Giorgi, see e.g. [49] for details.

Let us denote o := 2s € (0,2) in the definition of the functional in (6.9). This choice is related to
the observation in the footnote at page 188. In the nonlocal case, some care is needed to introduce the
“right” scaling of the functional, which comes from the dilation invariance of the space coordinates
and possesses a nontrivial energy in the limit. For this, one takes first the rescaled energy functional

Jo(u, Q) :=e"K(u, Q) + f W (u) dx,
Q

where K is the kinetic energy defined in (6.10) (where we replace 2s with o). Then, one considers the
functional

e % J(u, Q) if o € (0,1),
F.(u,Q) :={ |eloge| ' J.(u,Q) ifo=1,
e M (u, Q) if o€ (1,2).

The limit functional of F; as ¢ — 0 depends on o. Namely, when o € (0, 1), the limit functional is (up
to dimensional constants that we neglect) the fractional perimeter, i.e.

Per,(E,Q) ifulg = xg — xcE, for some set E c Q
. (7.37)
+ otherwise.

F(u,9) := {
On the other hand, when o € [1,2), the limit functional of F. is (again, up to normalizing constants)
the classical perimeter, namely

Per(E, Q if ulg = — , for some set £ c Q
F(u, Q) = { (&) lo = Xz~ xcr (7.38)

+ o otherwise,
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That is, the following limit statement holds true:

THEOREM 7.3.4. Let o € (0, 2). Then, F. T'-converges to F, as defined in either (7.37) or (7.38),
depending on whether o € (0,1) or o € [1,2).

For precise statements and further details, see [132].

We remark here that Theorem 7.3.4 clarifies now why we take o € (0,1) (that we denoted and will
denote in this chapter by s) when defining our nonlocal operators of this chapter, i.e. the fractional
perimeter and the fractional mean curvature (check again the footnote at page 188).

Additionally, we remark that the level sets of the minimizers of the functional in (6.9), after a
homogeneous scaling in the space variables, converge locally uniformly to minimizers either of the
fractional perimeter (if o € (0, 1)) or of the classical perimeter (if o € [1,2)): that is, the “functional”
convergence stated in Theorem 7.3.4 has also a “geometric” counterpart: for this, see Corollary 1.7
in [134].

One can also interpret Theorem 7.3.4 by saying that a nonlocal phase transition possesses two
parameters, ¢ and s/o. When ¢ — 0, the limit interface approaches a minimal surface either in the
fractional case (when o € (0,1)) or in the classical case (when o € [1,2)). This bifurcation at o = 1
somehow states that for lower values of o the nonlocal phase transition possesses a nonlocal interface
in the limit, but for larger values of o the limit interface is characterized only by local features (in a
sense, when o € (0, 1) the “surface tension effect” is nonlocal, but for o € [1,2) this effect localizes).

It is also interesting to compare Theorems 7.0.5 and 7.3.4, since the bifurcation at ¢ = 1 detected
by Theorem 7.3.4 is perfectly compatible with the limit behavior of the fractional perimeter, which
reduces to the classical perimeter exactly for this value of o, as stated in Theorem 7.0.5.



210 7. NONLOCAL MINIMAL SURFACES

7.4. Complete stickiness at the boundary of nonlocal minimal surfaces for small values
of the fractional perimeter

In this section, we deal with the behavior of nonlocal minimal surfaces when the fractional pa-
rameter (that we denote by s € (0,1)) is small. In particular

e we give the asymptotic behavior of the fractional mean curvature as s — 0%,
e we classify the behavior of s-minimal surfaces, in dependence of the exterior data at infinity.

Moreover, we prove the continuity of the fractional mean curvature in all variables for s € [0, 1].

The results in this section take their inspiration from [57,63]. It is a known result, see [26,
Corollary 5.3] that when the exterior data is a half-space, the s-minimal set itself is the same half-
space. On the other hand, as we prove here, by just removing some small set from the half-space, for
s small enough the s-minimal set completely sticks to the boundary.

This section is organized as follow. We give some preliminary results on the contribution from
infinity of sets in Subsection 7.4.2.

In Subsection 7.4.3, we consider an exterior data “occupying at infinity” in measure, with respect
to an appropriate weight, less than an half-space. To be precise

Wn

OZ(E(]) < 7 (739)
In this hypothesis:

e we give some asymptotic estimates of the density, in particular showing that when s is small
enough, s-minimal sets cannot fill their domain.

e we give some estimates on the fractional mean curvature. In particular we show that if a set
E has an exterior tangent ball of radius § at some point p € 0F, then the s-fractional mean
curvature of E at p is strictly positive for every s < ss.

e we prove that when the fractional parameter is small and the exterior data at infinity occu-
pies (in measure, with respect to the weight) less than half the space, then s-minimal sets
completely stick at the boundary (that is, they are empty inside the domain), or become
“topologically dense” in their domain. A similar result, which says that nonlocal minimal
surfaces fill the domain or their complementaries become dense, can be obtained in the same
way, when the exterior data occupies in the appropriate sense more than half the space (so
this threshold is somehow optimal,).

e we narrow the set of minimal sets that become dense in the domain for s small. As a
matter of fact, if the exterior data does not completely surrounds the domain, s-minimal
sets completely stick at the boundary.

In Subsection 7.4.4, we provide some examples in which we are able to explicitly compute the contri-
bution from infinity of sets. Subsection 7.4.5 contains the continuity of the fractional mean curvature
operator in all its variables for s € [0,1]. As a corollary, we show that for s — 0% the fractional mean
curvature at a regular point of the boundary of a set, takes into account only the behavior of that set
at infinity. Furthermore, the continuity property implies that the mean curvature at a regular point
on the boundary of a set may change sign, as s varies, depending on the signs of the two asymptotics
as s — 17 and s —» 07.
In the last Section 7.4.6 we collect some useful results that we use in this paper.

7.4.1. Statements of the main results. We remark that the quantity « (defined in (7.3)) may

not exist (see Example 2.8 and 2.9 in [57]). For this reason, we also define
_ : X5 (y) o x&(y)
a(E) :=lim supsf dy, a(E) :=lim mfsf dy. 7.40
s—0t CB: |y|n+s s—0+ CB; |y|n+s ( )

This set parameter plays an important role in describing the asymptotic behavior of the fractional
mean curvature as s — 0 for unbounded sets. As a matter of fact, the limit as s — 07 of the fractional
mean curvature for a bounded set is a positive, universal constant (independent of the set), see e.g.
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(Appendix B in [67]). On the other hand, this asymptotic behavior changes for unbounded sets, due
to the set function a(FE), as described explicitly in the following result:

THEOREM 7.4.1. Let E ¢ R™ and let p € OF be such that 0E is CYY near p, for some ~ € (0,1].

Then
liminf s Z,[E](p) = wy, — 2a(E)

s—0t
limsup s Z,[E](p) = wp, — 2a(E).
s—07t
We notice that if F is bounded, then o(E) = a@(E) = a(F) = 0, hence Theorem 7.4.1 reduces
in this case to formula (B.1) in [67]. Actually, we can estimate the fractional mean curvature from

below (above) uniformly with respect to the radius of the exterior (interior) tangent ball to E. To be
more precise, if there exists an exterior tangent ball at p € dF of radius § > 0, then for every s < s;
we have

liminf s Z°[E](p) LME).

p—0t 4

\%

More explicitly, we have the following result:

THEOREM 7.4.2. Let < R™ be a bounded open set. Let Eq < CQ be such that

a(Eo) < %" (7.41)
and let (Eo)
wn, — 2a(E
B = B(Eop) == fo.
We define
8y = 05(Ep) 1= e+ 18 % (7.42)

for every s € (0,1). Then, there exists sg = so(Eo,2) € (0, %] such that, if E < R™ is such that
E\Q = Ey and E has an exterior tangent ball of radius (at least) d,, for some o € (0, sp), at some
point g € 0E n Q, then

liminf Z?[E](q) = g > 0, Vse (0,0]. (7.43)

p—0+
Given an open set 2 c R™ and § € R, we consider the open set
Qs .= {z e R" | do(z) < d},

where dg denotes the signed distance function from 0Q, negative inside Q.
It is well known (see e.g. [10,90]) that if  is bounded and € is of class C2, then the distance
function is also of class C? in a neighborhood of 0f2. Namely, there exists 79 > 0 such that

dqo € C*(Nay, (09)), where Nop (09Q) := {x € R"||da(z)| < 2r¢}.

As a consequence, since |Vdg| = 1, the open set 5 has C? boundary for every |§| < 2ry. For a more
detailed discussion, see Appendix A.2 and the references cited therein.
The constant rg will have the above meaning throughout this paper.

We give the next definition.

DEFINITION 7.4.3. Let Q c R™ be an open, bounded set. We say that a set E is §-dense in Q) for
some fized 6 > 0 if |Bs(x) n E| > 0 for any x € Q for which Bs(x) cc .

Notice that if E is §-dense then E cannot have an exterior tangent ball of radius greater or equal than
0 at any point p € 0F n Q_s.

We observe that the notion for a set of being d-dense is a “topological” notion, rather than a measure
theoretic one. Indeed, d-dense sets need not be “irregular” nor “dense” in the measure theoretic sense
(see Remark 7.4.19).

With this definition and using Theorem 7.4.2 we obtain the following classification.
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THEOREM 7.4.4. Let Q be an bounded and connected open set with C? boundary. Let Ey < CS)
such that
a(E()) < 7
Then the following two results hold.

A) Let sg and 65 be as in Theorem 7.4.2. There exists s1 = s1(Eo, ) € (0, so] such that if s < s1 and
E is an s-minimal set in Q) with exterior data Ey, then either

(ADEnQ=¢g or (A2)FE isds— dense.
B) Fither
(B.1) there exists § = §(Ep,Q) € (0,1) such that if E is an s-minimal set in Q with exterior data Ey

and s € (0,8), then
EnQ =g,

or
(B.2) there exist 6, \, 0, sk \, 0 and a sequence of sets Ey, such that each Ey is sg-minimal in Q with
exterior data Ey and for every k

0E, n Bs,(x) # & ¥V Bs, (x) cc Q.

We remark here that Definition 7.4.3 allows the s-minimal surface to completely fill 2. The next
theorem states that for s small enough (and @(F) < w,/2) we can exclude this possibility.

THEOREM 7.4.5. Let Q < R"™ be a bounded open set of finite classical perimeter and let Ey < CQ
be such that

Wn
a(Eo) < 7

For every § > 0 and every v € (0,1) there exists 05, = 05(Eo, ) € (0,3] such that if E < R™ is
s-minimal in §), with exterior data Ey and s < 05, then

wy, — 2a(Ey)
wyn, — a(Ey)
REMARK 7.4.6. Let 2 and Ey be as in Theorem 7.4.5 and fix v = %
(1) Notice that we can find 6 > 0 and Z €  such that
Bys(z) < Q.
Now if s < 051 and F is s-minimal in  with respect to Fy, (7.44) says that
|B5(Z) n CE| > 0.
Then (since the ball is connected), either B5(Z) c CFE or there exists a point
zo € 0E n Bg(%).
In this case, since d(zo, 052) > &, Corollary 4.3 of [26] implies that
Bj..(z) € CE n Bs(x9) « CE n Q

for some z, where ¢s € (0,1] denotes the constant of the clean ball condition (as introduced
in Corollary 4.3 in [26]) and depends only on s (and n). In both case, there exists a ball of
radius dcs contained in CE n Q.

(2) If s <051 and E is s-minimal and d,-dense, then we have that

(Q A Bs(z)\E| = v A Bs(z)|, Vael. (7.44)

s > Cg0.

On the other hand, we have an explicit expression for ds, given in (7.42). Therefore, if one
could prove that ¢, goes to zero slower than §,, one could exclude the existence of s-minimal
sets that are Js-dense (for all sufficiently small s).

An interesting result is related to s-minimal sets whose exterior data does not completely surround
Q. In this case, the s-minimal set, for small values of s, is always empty in 2. More precisely:
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THEOREM 7.4.7. Let Q be a bounded and connected open set with C? boundary. Let Ey < CS)
such that
_ Wn,
Ot(Eo) < 77

and let s1 be as in Theorem 7.4.4. Suppose that there exists R > 0 and xg € 092 such that
BR(.’E())\Q C CEO

Then, there exists s3 = s3(Eo, ) € (0,s1] such that if s < s3 and E is an s-minimal set in Q with
exterior data Ey, then

EnQ=¢g.
We notice that Theorem 7.4.7 prevents the existence of s-minimal sets that are d-dense (for any
J).
REMARK 7.4.8. The indexes s; and s3 are defined as follows
s1:=sup{s € (0,s0) |0s < ro}
and

1
83 := sup {s € (0, sp) |5s < 3 min{rO,R}}.
Clearly, s3 < s1 < sg.

REMARK 7.4.9. We point out that condition (7.41) is somehow optimal. Indeed, when a(Ej)

exists and
w
olBo) = 5

several configurations may occur, depending on the position of {2 with respect to the exterior data
Ep\Q2. As an example, take

B = {(2',xn) | zn > O}.

Then, for any < R” bounded open set with C? boundary, the only s-minimal set with exterior data
given by PB\Q is P itself. So, if F is s-minimal with respect to Eo\§) then

QcP = FEnQ=0Q
Qc R™\B = EnQ=g.
On the other hand, if one takes {2 = By, then
EnB; =BnB.
As a further example, we consider the supergraph
Ey = {(2,2y) | #, > tanh z1},

for which we have that (see Example 7.4.4)

Wn
Then for every s-minimal set in 2 with exterior data Ey\2, we have that
Qc{(@, zn) | xn > 1} — EnQ=0

Qc{(@, z,) |zn < -1} = EnQ=(.

Taking € = Bs, we have by the maximum principle in Proposition 7.4.36 that every set E which is
s-minimal in Bs, with respect to Ep\Ba, satisfies

By n{(#',2n) | 2n > 1} C E, By n{(#', %) | 2 < —1} € CE.

On the other hand, we are not able to establish what happens in By n {(2/,2,,) | —1 <z, < 1}.



214 7. NONLOCAL MINIMAL SURFACES

REMARK 7.4.10. We notice that when F is s-minimal in €2 with respect to Ey, then CFE is s-
minimal in Q with respect to CEy. Moreover

a(Ep) > (%" = a(CE) < %
So in this case we can apply Theorems 7.4.2, 7.4.4, 7.4.5 and 7.4.7 to CE with respect to CEy. For

instance, if E is s-minimal in Q with exterior data Ey with

Q(EO) > %7

and s < s1(CEp,(?), then either
EnQ=0Q or CE is 64(CEp) — dense.
The analogues of the just mentioned Theorems can be obtained similarly.

‘We point out that from our main results and the last two remarks, we have a complete classification
of nonlocal minimal surfaces when s is small whenever

Wn
Oé(Eo) # ?

In the last Subsection 7.4.5 of the paper, we prove the continuity of the fractional mean curvature
in all variables (see Theorem 7.4.22 and Proposition 7.4.23). As a consequence, we have the following
result.

PROPOSITION 7.4.11. Let E ¢ R™ and let p € 0F such that OF is CY% in Bgr(p) for some R > 0
and € (0,1]. Then the function

ZH[EN=) - (0,a) x (OE n Br(p)) — R, (s,2) — LJ[E](x)

18 continuous.
Moreover, if 0E n Br(p) is C? and for every v € 0E n Br(p) we define

s(1 = 8)Zs[E](x), forse(0,1)
wa HIEN@),  fors=1,

then the function

Z(H[E)(=) : (0,1] x (0E n Bgr(p)) — R, (s,2) —> L, [E](z)

18 continuous.
Finally, if 0F n Br(p) is C® and a(E) exists, and if for every x € 0E n Br(p) we denote

To[El(x) := w, — 2a(E),

then the function

Lo[EN(=) : [0,0) x (OF A Br(p)) — R, (s,2) — L,[E](x)
1S continuous.

As a consequence of the continuity of the fractional mean curvature and the asymptotic result in
theorem (7.4.1) we establish that, by varying the fractional parameter s, the nonlocal mean curvature
may change sign at a point where the classical mean curvature is negative, as one can observe in
Theorem 7.4.26.
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7.4.2. Contribution to the mean curvature coming from infinity. In this section, we
study in detail the quantities a(F), a(F),a(F)) as defined in (7.3), (7.40). As a first remark, notice
that these definitions are independent on the radius of the ball (see Observation 3 in Subsection 3.3),
so we have that for any R > 0

_ . xe(Y) . J xXE(Y)
a(F) =limsup s dy, «(F):=liminfs dy. 7.45
(F) = ln o LBR s @ 2B IR e (49

Notice that
a(E) = Wn _Q(CE)v

XE\Y
as(q,r, E) :=f %dy
CB.(q) lg — ¥

Then, the quantity as(g,r, E) somehow “stabilizes” for small s independently on how large or where
we take the ball, as rigorously given by the following result:

a(F) = w, —a(CE).
We define

PROPOSITION 7.4.12. Let K < R™ be a compact set and [a,b] € R be a closed interval. Then
lim+ slas(q,r E) —ag(0,1, E)| =0 uniformly in g€ K,r € [a,b].
s—0
Moreover, for any bounded open set Q2 < R™ and any fixed r > 0, we have that

limsup s inf as(q,r, E) = limsup ssup as(q,r, E) = a(E). (7.46)

s—0t qeQ s—0t qeQ

PROOF. Let K © Bgr and let ¢ € (0,1) be a fixed positive small quantity (that we will take
arbitrarily small further on), such that

R> (er)/(1 —¢).
We notice that if = € B,.(q), we have that |z| < r + |¢| < R/e, hence Br(q) € BR/s. We write that

J XE(yn)Jrs dy = J XE(:yTl)+s dy +J XE(yn)Jrs dy
B, (q) 14— Yl cBp. |7l Bry\B,(q) 14— Yl

Now |y —q| > [yl = lg| > (1 —&)ly|, thus for any g € Br

C

By la—y["*s cBp. [Y["TE (7.47)
= f XEn(_zZZ dy +e(n+s) f XETL(_%Q + o(£?).
CBrye Y] CBry. Y|
Moreover
d R/€+R
J XE(Z{L)-&-S dy < f yn+s < an t7571 dt
By \B.(a) 14— Y] Bry\B.(a) 17— ] " (7.48)

r S — R %5(1+¢)”° - a*—R%5(14¢)°

= Wp < wp
S
Therefore
e B) —a O RfeB) = [ W gy [ X2
CB.(q) lg — vl CBrye |yl
-5 _ R—525(1 —s
<5(n+8)f XETEfz dy+0(82)+wna £ ( +€) .
CBr/e |y S
Now,
d —S_R—S S —S_R—S S
as(0, R/z, E) — a,(0,r, E) < J J =t = <wnt =
Br/\B- |y s s
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Moreover,
1—r—° l—a®,|1=b"°%
L—r) ) max{ll=a*1—b}

|as(0ara E) - OLS(O, 17E)| S wp
S S

So by the triangle inequality we have that

las(q,r, E) — as(0,1, E)] sg(n-i-s)J XE;Q dy + o(<?)
CBry. ly|

il [a7® —R™°c*(1+€e)™° +a~° — R™°° + max{|1 —a™*|,[1 = b—*}].
s
Hence, it holds that
lim sup s|as(q, 7, E) — as(0,1, E)| < ena(E) + o(e?),

s—0+
uniformly in ¢ € K and in r € [a, b].
Letting ¢ — 0T, we obtain that
limsup s|as(q,r, E) — as(0,1, E)| = 0.
s—0t
Therefore, we conclude that
lim+ slas(q,m, E) — as(0,1, E)| =0,
s—0

uniformly in ¢ € K and in r € [a, b].
Now, we consider K such that K = Q. Since B,(q) € Bg/. and ¢ —y| < |g| + |y| < (¢ + 1|y, we
obtain that

J XE(yn)+S dy > f XE(:’{(L)+S dy > (1 _i_g)—n—sj XEn(i'iZ d
CB,(q) |q - y| CBry. Iq - y| CBry. |Z/|
Using this and the inequalities in (7.47) and (7.48), we have that
(14+e)™° J XEn(fz dy <J, 7XE(yn)+8 dy
CBry. |y CB.,(q) lg — v
-5 _ R%5(1 —s
g (1 _6)7?7,73‘], XE(f) dy _I_wna’ € ( +€) .
ey [Y[Mte s

Passing to limsup and using (7.46) it follows that

(1+¢e)™"a(E) < limsup s inf Lyl
so0t a2 Jen, (q) la — YIS

< limsupssupf L?i)ﬁ dy < (1 —e) "a(FE).
520+ ¢eQr JCB.(q) lg —yl

Sending ¢ — 0 we obtain the conclusion. O

REMARK 7.4.13. Let E < R"™ be such that |E| < 0. Then
a(E) = 0.

Indeed,
|as (0,1, E)| < | E],
hence
lim sup s|as(0,1, E)| = 0.
s—0

Now, we discuss some useful properties of &@. Roughly speaking, the quantity @ takes into account
the “largest possible asymptotic opening” of a set, and so it possesses nice geometric features such
as monotonicity, additivity and geometric invariances. The detailed list of these properties is the
following:
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PROPOSITION 7.4.14.
(i) (Monotonicity) Let E, F < R™ be such that for some r > 0 and g € R"

E\B,(q) € F\B:(q).
Then
a(E) <a(F).
(i) (Additivity) Let E, F c R™ be such that for some r > 0 and g € R"™
(En F)\B,(q) = &.
Then
a(FuF)<a(E)+a(F).
Moreover, if a(E),a(F) exist, then a(E U F) exists and
a(Eu F) =a(F)+a(F).

(#i) (Invariance with respect to rigid motions) Let E ¢ R™, x € R™ and R € SO(n) be a rotation.
Then

a(E+z)=a(E) and @(RE)=a(k).
(iv) (Scaling) Let E ¢ R™ and A > 0. Then for some r > 0 and ¢ € R™

as(g,r, AE) = A\ %ag (%, g,E) and Q(AE) =a(E).
(v) (Symmetric difference) Let E,F < R™. Then for every r > 0 and g € R"™
las(q,r, E) — as(q,r, F)| < as(q,r, EAF).
As a consequence, if |[EAF| < oo and a(E) exists, then a(F) exists and
a(F) = o(F).
PRrROOF. (i) It is enough to notice that for every s € (0, 1)
as(q,r, B) < as(g,r, F).
Then, passing to limsup and recalling (7.46) we conclude that
a(E) < a(F).
(ii) We notice that for every s € (0, 1)
as(q,r, E U F) = as(q,r, E) + as(q,r, F)

and passing to limsup and liminf as s — 0" we obtain the desired claim.
(iii) By a change of variables, we have that

XE+2(Y) j xEe(Y)
as(0,1,E + =f XE+2\Y) g XY g o (—,1, E).
( V= Jem T YT op oy T gy W s LE)

Accordingly, the invariance by translation follows after passing to limsup and using (7.46).
In addition, the invariance by rotations is obvious, using a change of variables.
(iv) Changing the variable y = Az we deduce that

Xae(y) _ XE(T) _ q T
as(q,r,)\E)zl[ L dy = A SJ — =7 dr = A %ay (f,f,E).
CB.(q) |0 —yI"T* es () 1% — " AA

Hence, the claim follows by passing to limsup as s — 0%.
(v) We have that

oo B) —adler. P < [ DeW =)l [ XA 4o (g1 pAR),
CB,(q) ly —al CB.,(q) ly —ql

The second part of the claim follows applying the Remark 7.4.13. |
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We recall the definition (see (3.1) in [57])
p(E) := lim sPs(FE,Q),

s—0+

where € is a bounded open set with C? boundary. Moreover, we define
L(F) = limsup sPs(F,Q)

s—0t

and give the following upper bound:

PROPOSITION 7.4.15. Let Q < R™ be a bounded open set with finite classical perimeter and let
FEy c CQ. Then
A(Eo) = a(Eo) Q.

PrOOF. Let R > 0 be fixed such that 2 ¢ Bg and € € (0,1) be small enough such that R/e >
R + 1. This choice of ¢ assures that By(y) © Bprj.. For any fixed y € 2, we have that

T T T x
J XEO(?’L)-'FS dx = J‘ XEO(TLZFS dx +J XEO(NZFS dx +J XEO(TLZ—S dm
R~ | — y| CBgy. |33 - ?J| ’ Bpr/:\B1(y) |33 - ?J| ’ Bi(y) |JU - Z/| ’

Since |z —y| = (1 — €)|z| whenever x € CBp/., we get

f XEO(x)_,,_, dx < (1 _5)777,78J‘ XEO(J’:_E’) dx
CBr/. |z — y|nts CBr/. ||+
Also we have that
S

R/e+R (R -
f XEo( ) dISWnJ pfsfldpswnl (5+R)
BR/E\Bl

y |z —ylnte 1 s

Also, we can assume that s < 1/2 (since we are interested in what happens for s — 0). In this way, if
|z —y| < 1 we have that |z —y| ™™ * < |z —y| "2, and so

J XEO(i)_,'_S dx <J XEO(:I:) . dx
Bi(y) [© =Yl Bi(y) |z —y|"*2

Also, since Ey < CS, we have that

J desf e 4 e
Bi(y) |z —y|"*2 Biy\a |z —y|"tz  Jeq |z —y["t

drdy < =Pi(Q) =c< o,
J fBl (v) | —y[ts |ﬁ+9 vs co |33 - |’”r2 + @)

since 2 has a finite classical perimeter. In thls way, it follows that
y|nre By 2|7

sPs(Fy, Q J J
+wn<1 - (g + R)_S)|Q| + sc.

Furthermore, notice that if 2 € Bg/. we have that |z —y| < (1 + ¢)|x|, hence
J. XEO(I)_;,_ dx ZJ XEO(I)_;,_ dr > (1 +E)fnfsJ~ XEO(-:_E) dx
R™ |$_y|n s CBR/E |x_y|n s CBR/E |m|n 8

Thus for any € > 0

This means that

xxfo dady < s(1— )% (@) 4,

(7.49)

sPy(Eo,Q) = 5|01 +g)—n—sj Xy (z) 5
C

Brye |x|n+s

Passing to limsup as s — 0T here above and in (7.49) it follows that
(1+¢e) "a(Eo) 9] < T(Eo) < (1—¢) "a(Eo) €.
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Sending ¢ — 0, we obtain the desired conclusion. O

7.4.3. Classification of nonlocal minimal surfaces for small s. Asymptotic estimates
of the density (Theorem 7.4.5). Now we prove Theorem 7.4.5.

PrROOF. We argue by contradiction. Suppose that there exists § > 0 and « € (0,1) for which
we can find a sequence si \, 0, a sequence of sets {Fx} such that each Ej is sp-minimal in Q with
exterior data Ey, and a sequence of points {z;} < Q such that

2a EO

|(Q A Bs(zi))\Ex| < 'y |Q N Bs(ay). (7.50)

First of all we remark that, since Q is compact, up to passing to subsequences we can suppose
that xy — z¢, for some zy € Q2. As a consequence, for every € > 0 there exists k. such that

QA Bs(z) € Qn Byye(z0), Yk = ke (7.51)

We fix a small € > 0. We will let £ — 0 later on.
Since Ej is sp-minimal in €, it is sg-minimal also in every Q' < Q. Thus, by (7.51) and by
minimality, for every k > k. we have
Py, (Ek, Q2 0 Bs(zy)) < Ps, (Ej, Q 0 Bsie(20))

»(Eo U (B 0 (N\Bsic(70))), 2 N Bsieo(w0))

J J dydz J f dydz
Eg QF\B(;+E($0 |y - Z|,n-"_‘;lC Q\B(§+€(Io) Q(‘\B5+E(:E0) |y - Z|n+8k

<
<P

Now notice that the set Q n Bs..(xg) has finite classical perimeter. Thus, by Proposition 7.4.15 we
find
limsup s I}, < @(Eo)|Q n Bsye(z0)],

k—w
and, since 2 is bounded
liin sup spl7 < A(\Bs1e(20))|2 N Byye(wo)| =0,
—0

for every € > 0. Therefore, letting ¢ — 0,

liin sup s, Ps, (B, Q n Bs(xg)) < E(E0)|Q ) Bg($0)|. (7.52)
—w
On the other hand, if R > 0 is such that Q cc Br(q) for every g € 2, then we have that
dz
Pu (B0 By(w)) > [ | Ny,
§ En(QnBs (1)) ( CENQABs(z)) 1Y — Z|n+s’“>

XCEO( )
> _Xemo\Z) g gy
JEkm(QmBg(xk)) (LQ ly — 2| tsn )

. XcEo (%)
> inf J —S=20 L dz ) dy
JEkm(QmB(;(rk)) (q€§ cQ |q - Z|n+sk )

. XcE, (2)
> By n (Qn Bs(z 1nfj L0z
| k ( 6( 1€))|q€ﬁ CBr(q) |q—Z|”+5k

So, thanks to Proposition 7.4.12
lilgn inf s Ps, (Ek, Q N Bs(ay))
—> 0

> (liminf |Ex 0 (2 n Bg(xk))D (liminf s inf XCEi"(i)g dz)
k—c0 k—w € JeBRr(q) lg — z|"Fsw

= (= (B0)) (tgninf | 0 (92 By )
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By (7.50) we have

L= )wn — (1= 27)a(Eo)
Wp — a(Eo)

|Ek N (Q ] B(;(J?k))| = |Q N B(;(xk)| — |(Q N B5($k))\Ek| > ( |Q N Bg(l‘k)|,

and hence, since xp — x,

(1 —y)wn — (1 = 2y)a(Eo)

Wy, — a(Eo) |Q N B5(l‘0)|

lilgninf |Er n (2 Bé(mk))| =
— 0

Thus, recalling (7.52) we obtain
a(Ep) |22 n Bs(xo)| = h;?_l,iril\f 81 Ps, (Er, Q N Bs(xg)) = ((1 —Ywnp — (1 — 27)6(E0))|Q N Bs(xo)].

(7.53)
We remark that, since xg € €2, we have
|Q N B(S(.’,EQ)| > 07
hence we get
. _ Wn
a(Eo) 2 (1 =wn = (1= 2y)a(Ey) thatis (1 —7)a(Eo) = (1—7)=
Therefore, since v € (0,1) and by hypothesis @(Ep) < “*, we obtain a contradiction, concluding
the proof. O

COROLLARY 7.4.16. Let Q) € R"™ be a bounded open set of finite classical perimeter and let Fy c
CQ be such that a(Eg) = 0. Let s € (0,1) be such that s \, 0 and let {Ey} be a sequence of sets
such that each Ej, is si-minimal in Q with exterior data Eo. Then

lim |E;C N Q| =0.
k—oo

PrOOF. Fix § > 0. Since 2 is compact, we can find a finite number of points z1, ..., z,, € Q such
that

Qc | Bs().
i=1
By Theorem 7.4.5 we know that for every « € (0,1) we can find a k() big enough such that
(1 = y)wn — (1 = 2y)a(Eo)
Wp — a(Eo)

for every i = 1,...,m and every k > k(7). Thus

|Ek N (Q N B5($Z))| <

00 Bs(zi)| = (1 =) n Bs(:)],

m

1B 0 Q] < (1=7) ), |9 n Bs(a),
i=1
for every k = k(v), and hence

m

limsup |Ey, 0 Q] < (1=7) Y. |2 Bs(x;)),
k—w0

i=1

for every v € (0,1). Letting v — 1~ concludes the proof. O

We recall here that any set Ey of finite measure has a(Ey) = 0 (check Remark 7.4.13).
Estimating the fractional mean curvature (Theorem 7.4.2). Thanks to the previous prelimi-
nary work, we are now in the position of completing the proof of Theorem 7.4.2.

PROOF OF THEOREM 7.4.2. Let R :=2 max{l,diam(Q2)}. First of all, (7.46) implies that

lim inf (wnRS —2s supf M dy) = w, —2a(Ey) = 40.
s=0 sea JeBrg la—yl"e
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Notice that by (7.41), 8 > 0. Hence for every s small enough, say s < s’ < % with s’ = §'(Ep, 2), we
have that W)
—s 7
wnR™* = 25 sup J XYLy > 2B (7.54)
e JeBr(g) 14— Yl 2

Now, let E < R™ be such that E\Q2 = Ey, suppose that E has an exterior tangent ball of radius

§ < R/2 at g€ 0F n Q, that is
B;s(p) c CE and q € dB;s(p),

and let s < ¢’. Then for p small enough (say p < §/2) we conclude that

J xcEe(y) —nx+fi(y) d + J xce(y) _ﬁ(y) dy.
Ba(@\B,(o) 149" CBa(a) 7= yI"™

Let Ds = Bs(p) n Bs(p'), where p’ is the symmetric of p with respect to ¢, i.e. the ball Bs(p') is
the ball tangent to Bs(p) in ¢. Let also K be the convex hull of Dy and let Ps := K5 — Ds. Notice
that B,(q) € K5 < Bgr(gq) . Then

J xee(y) —xey) , f Xen(y) = xuy) \ f xee(y) = xe)
Brlo\B,(a) 4= yI"** DAB(g) g —yl"** PAB,(g)  l1—yI"F*

I7[E](g) =

N f xce(y) — xe(y)
Brloh\Kks 12— y["T*

Since Bs(p) € CE, by symmetry we obtain that

— d —
[ ey, [ G [ e, s,
DB, (@) 19— yl"F Bs(p\Bo(a) 14 =Yl Bsw\By(a) |4 —y["T

Moreover, from Lemma 3.1 in [65] (here applied with A = 1) we have that

— d C
J xce(y) ﬁEs(y) dy‘ gf yn+g < G0 5,
Ps\B,(q) |q - y| Ps |q - y| : 1—s

with Cy = Cy(n) > 0. Notice that Bs(q) < Ks so

_ d 5 — R
J Xce(y) Tin(y) dy‘ < J Vo, .
Br(o\Ks 4=l Br(a\Bs(g) 14—Vl s

Therefore for every p < 6/2 one has that

dy.

- C
Br@\B,(a) |4l 1—s s 5
Thus, using (7.54)

e I 1 LICUPWY LI EUY
Ba(@\Bo(a) 14~ Yl cBalg 4=yl
n n — d
S 5*3—15*8+iRS+J 7yn+s—2f L%dy
1—s s S CBr(q) lg —yl CBr(q) lg —y|"+
= — 575( Co + wl) + R (L%RS — QSupJ Lyn)“ dy) (7.55)
1—s s S S ¢eQ JCBr(q) lg — y[™+
> —5*5( “ +w—") L gy P
1—s S S 2s
Wn, Wn 73
2 _ —S 2 _n - S e
1) ( Co + p ) + . R+ %

where we also exploited that s < s’ < 1/2. Since R > 1, we have

R -1, as s — 0.
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Therefore we can find s” = s”(FEy, ) small enough such that

woR™% 2w, — =, Vs < s”.

o™

Now let

s0 = s0(Fo, ) := min {s',s”, %}

Then, for every s < sq we have
7
IJE](g) = { —67°((2Co)s + wn) + wa R™° + 55}
(7.56)

> —{ =07 (wn + B) +wn + 38},

[V VR

for every p € (0,9/2).
Notice that if we fix s € (0, s¢), then for every

_1le wn+28
5> e tlos BEE 5 (B,

we have that

—0 *(wp +B) +wp +38=5>0.
To conclude, we let o € (0,s9) and suppose that E has an exterior tangent ball of radius 0, at
q € 0F n Q. Notice that, since §, < 1, we have

—(65) " (wn + B) +wn +38 2 —(0,) "7 (wn + ) +wn +38 =6,  Vse(0,0].
Then (7.56) gives that
liminf Z°[E](q) = p >0, Vse(0,0],

p—0+t S
which concludes the proof. O
REMARK 7.4.17. We remark that
n + 2
]Og M > O7
wn + B
thus
§s — 0t as s —» 0T,

As a consequence of Theorem 7.4.2, we have that, as s — 07, the s-minimal sets with small mass
at infinity have small mass in €2. The precise result goes as follows:

COROLLARY 7.4.18. Let Q c R"™ be a bounded open set, let E < R™ be such that

Wn
a(l) < —
a(E) < 2.
and suppose that OF is of class C? in Q. Then, for every Q' cc Q there exists 5§ = 5(E n ) € (0, s0)
such that for every s € (0, §]
wn — 2a(F)

LBl >

PROOF. Since 0F is of class C? in Q and ' cc , the set E satisfies a uniform exterior ball
condition of radius 6 = & (E N ) in ¥, meaning that F has an exterior tangent ball of radius at least
§ at every point g € 0F n (V.

Now, since d, — 0% as s — 07, we can find 5§ = 5(E n V') < so(E\Q2, Q), small enough such that
8, < 6 for every s € (0,5]. Then we can conclude by applying Theorem 7.4.2. O

> 0, Yge 0E n QY. (7.57)

Classification of s-minimal surfaces (Theorem 7.4.4). To classify the behavior of the s-minimal
surfaces when s is small, we need to take into account the “worst case scenario”, that is the one in
which the set behaves very badly in terms of oscillations and lack of regularity. To this aim, we make
an observation about d-dense sets.



7.4. COMPLETE STICKINESS AT THE BOUNDARY OF NONLOCAL MINIMAL SURFACES FOR SMALL VALUES OF THE FRACTIONAL

FIGURE 7.14. A §-dense set of measure < ¢

REMARK 7.4.19. For every k > 1 and every € < 27!, we define the sets
2k_1 . . 2k 1
7 :=DB:u LJl {xeR”|%_a<|x|<2ik+e} and Tp:={0}u LJl 632%.
1= 1=
Notice that for every d > 0 there exists k = 12(5) such that for every k > k we have
B(;(:L‘) Ny #3, VB[s(x) c Bj.
Thus, for every k > k(6) and ¢ < 27F=1, the set I';, is d-dense in B;. Moreover, notice that

Te= () T% and lim [T§[=0.
e—>0t
ee(0,2-k—1)
It is also worth remarking that the sets I'}, have smooth boundary. In particular, for every 6 > 0 and
every € > 0 small, we can find a set F < By which is d-dense in By and whose measure is |E| < e.
This means that we can find an open set F with smooth boundary, whose measure is arbitrarily small
and which is “topologically arbitrarily dense” in Bj.

We introduce a useful geometric observation.

PROPOSITION 7.4.20. Let Q < R™ be a bounded and connected open set with C? boundary and let
0 € (0,r9), for ro given in (7.91). If E is not §-dense in Q and |E n | > 0, then there exists a point
q € OE n Q such that E has an exterior tangent ball at q of radius § (contained in 1), i.e. there exist
p€CE n Q such that

B;(p) cc Q, g€ 0Bs(p) n0E and Bs(p) cCE.

PRrOOF. Using Definition 7.4.3, we have that there exists x € Q for which Bs(x) cc Q and
|Bs(z) n E| =0, so Bs(z) € Eezt. If Bs(z) is tangent to 0E then we are done.
Notice that
Bs(z)ccQ = d(z,d0) >4,
and let
8" := min{ro, d(x, 0Q)} € (8, 7¢].
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Now we consider the open set Q_g5 < Q
Q_5 = {JQ < —5’},

so x € Q_g. According to Remark 7.4.30 and Lemma 7.4.31 we have that Q_s has C? boundary and
that
)_s satisfies the uniform interior ball condition of radius at least rq. (7.58)

We have two possibilities: -
1) En Q_g/ # Q

i) g##EnQcO\Q 4.

If i) happens, we pick any point y € E n Q_s. The set Qs is path connected (see Proposition
7.4.32), so there exists a path ¢ : [0, 1] — R”™ that connects = to y and that stays inside {)_g/, that is

c(0) =z, c(l)=y and c(t)eQ g, Vtel0,1].

Moreover, since § < §’, we have

(7.59)

Bs(c(t)) cc Q@ Vte[o,1].

Hence, we can “slide the ball” Bs(x) along the path and we obtain the desired claim thanks to Lemma
7.4.27.
Now, if we are in the case ii) of (7.59), then Q_5 < FE.t, so we dilate Q_s until we first touch
E. That is, we consider
p:=inf{pe [0,6']|Q_, € Ecxt}.
Notice that by hypothesis p > 0. Then

Q—ﬁ C Eemt = Eewt u OFE.

If
0N_;n0E = then Q_;C Eey,
hence we have that
d=d(EnQ\Q_s,0_5) € (0,p),
therefore
Q,ﬁ C Q—(ﬁ—d) C Eeajt.

This is in contradiction with the definition of p. Hence, there exists g € 02_; n 0F.

Recall that, by definition of p, we have Q_; < CE. Thanks to (7.58), there exists a tangent ball
at g interior to Q2_;, hence a tangent ball at g exterior to E, of radius at least 79 > . This concludes
the proof of the lemma. O

PROOF OF THEOREM 7.4.4. We begin by proving part (A).
First of all, since d5 — 07, we can find s; = s1(Fo, Q) € (0, so] such that d; < ro for every s € (0, s1).
Now let s € (0,s1) and let E be s-minimal in €, with exterior data Fjy.
We suppose that £ n Q # J and prove that F has to be d;-dense.
Suppose by contradiction that E is not ds-dense. Then, in view of Proposition 7.4.20, there exists
p € CE n Q such that
q€0Bs,(p) N (CEnQ) and Bs,(p) cCE.

Hence we use the Euler-Lagrange theorem at g, i.e.

to obtain a contradiction with Theorem 7.4.2. This says that F is not ds-dense and concludes the
proof of part (A) of Theorem 7.4.4.

Now we prove the part (B) of the Theorem.
Suppose that point (B.1) does not hold true. Then we can find a sequence s; \, 0 and a sequence of
sets F}, such that each E}, is si-minimal in  with exterior data Ey and

E;ﬂ\Q:{:Q.
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We can assume that s; < s1(Eo, 2) for every k. Then part (A) implies that each Fy is 5, -dense, that
is
|Ex 0 Bs,, (z)| >0 VBs, (z)cc i
Fix v = %, take a sequence dp \, 0 and let 05,1 be as in Theorem 7.4.5. Recall that §, \, 0 as s \, 0.
Thus for every h we can find kj, big enough such that
Sky < 05, 1 and Oy, < On. (7.60)

In particular, this implies

|Exy 0 Bs, ()] = |Ep 0 Bs,, (2)] >0V Bs, (x) cc Q, (7.61)

for every h. On the other hand, by (7.60) and Theorem 7.4.5, we also have that
|CEg, n Bs, (z)] >0 V¥ B;s, (z) cc Q. (7.62)
This concludes the proof of part (B). Indeed, notice that since Bs, () is connected, (7.61) and (7.62)
together imply that
0Ek, n Bs, (x) # & VY Bs, (z) cc Q.
(|

Stickiness to the boundary is a typical behavior (Theorem 7.4.7). Now we show that the
“typical behavior” of the nonlocal minimal surfaces is to stick at the boundary whenever they are
allowed to do it, in the precise sense given by Theorem 7.4.7.

PROOF OF THEOREM 7.4.7. Let
1
§:= B min{rg, R},

and notice that (see Remark 7.4.29)
B5({E0 + 5VQ($O)) C BR(io)\Q c CEj.

Since §5 — 0T, we can find s3 = s3(FEp, Q) € (0, so] such that d; < § for every s € (0, s3).
Now let s € (0,s3) and let E be s-minimal in €, with exterior data FEjy.
We claim that
Bs(zo — rova(zo)) © Eeat. (7.63)
We observe that this is indeed a crucial step to prove Theorem 7.4.7. Indeed, once this is established,
by Remark 7.4.29 we obtain that
Bs(xg — rora(zg)) cc Q.
Hence, since 05 < ¢, we deduce from (7.63) that E is not Js-dense. Thus, since s < s3 < s1, Theorem
7.4.4 implies that £ n Q = &, which concludes the proof of Theorem 7.4.7.
This, we are left to prove (7.63). Suppose by contradiction that
E n Bs(zo — rova(zo)) + I,

and consider the segment ¢ : [0,1] — R™,
c(t) :=z0 + ((1 — )0 — tro)valzo).
Notice that -
B§(C(0)) c F.;+ and Bg(C(l)) NnE+ J,
SO

to := sup {T e[0,11] |J Bs(e) < Em} <1
te[0,7]
Arguing as in Lemma 7.4.27, we conclude that
Bs (c(to)) c E..+ and 3dqge€dBs (c(to)) N OFE.
By definition of ¢, we have that either ¢q € Q) or
q € 02 N Br(xp).
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In both cases (see Theorem 5.1 in [26] and Theorem 1.1 in [108]) we have
which gives a contradiction with Theorem 7.4.2. O

7.4.4. The contribution from infinity of some supergraphs. We compute in this Subsec-
tion the contribution from infinity of some particular supergraphs.

EXAMPLE 7.4.1 (The cone). Let S < S"~! be a portion of the unit sphere, o := H"~1(S) and
C:={to|t=>0, ce9)}.

Then the contribution from infinity is given by the opening of the cone,

a(C) = 0. (764)
Indeed,
u
0,s(0,1,0) = f xolw) g, %"‘I(S)f = lde =2,
e, lyl"te 1 5

and we obtain the claim by passing to the limit. Notice that this says in particular that the contribution
from infinity of a half-space is w, /2.

~

FIGURE 7.15. The contribution from infinity of 3, 2 and tanh 2

EXAMPLE 7.4.2 (The parabola). We consider the supergraph
E :={(2',2,) | Ty = |z'|2},

and we show that, in this case,

a(E) = 0.
In order to see this, we take any R > 0, intersect the ball B with the parabola and build a cone on
this intersection (see the second picture in Figure 7.15), i.e. we define

S(R) := 0Brn E, C’Rz{t0|t>0, o€ S(R)}.

We can explicitly compute the opening of this cone, that is

(mn“)w
=

o(R) = (arcsin NG
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Since E ¢ Cg outside of Bg, thanks to the monotonicity property in Proposition 7.4.14 and to (7.64),
we have that
a(E) < a(Cgr) = o(R).
Sending R — o0, we find that
a(E)=0, thus «(F)=0.

More generally, if we consider for any given ¢, > 0 a function u such that

u(z’) > c|2’|'T¢,  for any |2'| > R for some R > 0

and
E = {(2,2,) | xn = u(z)},

then

a(E) = 0.
On the other hand, if we consider a function that is not rotation invariant, things can go differently,
as we see in the next example.

EXAMPLE 7.4.3 (The supergraph of 23). We consider the supergraph
E:={(z,y) |y =%}

In this case, we show that

a(E) = .
For this, given R > 0, we intersect 0Br with E and denote by S1(R) and S3(R) the arcs on the circle
as the first picture in Figure 7.15. We consider the cones

CL:={to |t>0, o€ Si1(R)} C% .= {to |t>0, o€ S:(R)}
and notice that outside of Bg, it holds that C% ¢ E < Ck. Let Tr be the solution of
2% 4+ 2% = R?,

that is the x-coordinate in absolute value of the intersection points 0Bg n 0FE. Since f(x) = 2® + 22
is increasing on (0,0) and R? = f(Zr) < f(R'?), we have that Zp < R'/3. Hence

T R/3 R/3
0'(R) = 7 + arcsin ER < 7 + arcsin 7 0%(R) = 7 — arcsin

Thanks to the monotonicity property in Proposition 7.4.14 and to (7.64) we have that
a(E) <a(Ch) = o'(R), a(E) > a(C}) = o*(R)
and sending R — o0 we obtain that
a(E) <7, alE)=m.
Thus a(F) exists and we obtain the desired conclusion.
EXAMPLE 7.4.4 (The supergraph of a bounded function). We consider the supergraph
E = {(2',2,) | zn = u(z)}, with || ooy < M.

We show that, in this case,

To this aim, let
Py = {(2', ) | X, > M}
PBo = {(z', x) | Ty < —M}.
We have that
B, c E, Py c CE.

Hence by Proposition 7.4.14
Wn,

a(B) >a(P) =5 alCB) >a(Pa) = -
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Since a(CE) = wy, — a(E) we find that

Wn

2 )

thus the conclusion. An example of this type is depicted in Figure 7.15 (more generally, the result
holds for the supergraph in R™ {(z/,2y,) | #,, > tanhz1}).

a(F) <

EXAMPLE 7.4.5 (The supergraph of a sublinear graph). More generally, we can take the super-
graph of a function that grows sublinearly at infinity, i.e.

!
E = {(2',z,) | zn > u(2)}, with lim lu)| = 0.
a0 [a]
In this case, we show that
Wy,
E)=—.
o(B) =

Indeed, for any € > 0 we have that there exists R = R(¢) > 0 such that
lu(z")| < elz’], VY |2'| > R.
We denote
S1(R) := 0Bg n {(2',z,) | zn > el2'|}, S3(R) 1= 0Bg n {(¢',zn) | @ < —ela’|}
and
Cp={to|t=0, ceSi(R)}, for i=1.2.

We have that outside of Bgr
CLcE, C% c CE,

and
Wn

a(CE) = a(C%) = = (g - arctans) .
™
We use Proposition 7.4.14, (i), and letting £ go to zero, we obtain that «(F) exists and

Wy,
E)=—.
a(B) = 2
A particular example of this type is given by
E:={(2,x,) | zn > c|2/|"°}, when |2/| > R for some e € (0,1], ce R, R > 0.

In particular using the additivity property in Proposition 7.4.14 we can compute « for sets that
lie between two graphs.

FIGURE 7.16. The “butterscotch hard candy” graph

EXAMPLE 7.4.6 (The “butterscotch hard candy”).
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Let E < R”™ be such that
En{|2'| >R} c{(a',z,) | |2'| > R, || <c|2/|'""¢}, for some e € (0,1], ¢ >0, R >0,
(an example of such a set E is given in Figure 7.16). In this case, we have that
a(E) = 0.

Indeed, we can write Ey := E n {|z'| > R} and E5 := E n {|z’| < R}. Then, using the computations
in Example 7.4.5, we have by the monotonicity and the additivity properties in Proposition 7.4.14
that

a(Ey) < a({z, > —c2')"7°}) — a({z, > cfa’|'7}) = 0.
Moreover, Fs lies inside {|z1] < R}. Hence, again by Proposition 7.4.14 and by Example 7.4.1, we
find

a(Es) < a({|z1] < R}) = a({z1 < R}) —a({z1 < —R}) =0.
Consequently, using again the additivity property in Proposition 7.4.14, we obtain that
a(E) <a(Ey) +a(Ez) =0,

that is the desired result.

We can also compute « for sets that have different growth ratios in different directions. For this,
we have the following example.

EXAMPLE 7.4.7 (The supergraph of a superlinear function on a small cone). We consider a set
lying in the half-space, deprived of a set that grows linearly at infinity. We denote by S the portion
of the sphere given by

S = {O’ esSn2 ‘cr = (cosoq,sin oy cosog,...,sinoq ...sino,_a),

Wﬁhme(g—ag4%j,i=ann—2}

where € € (0,7/2). For zy € R™ and k > 0 we define the supergraph E c R" as
klz" —z(]  for 2’ € X,
E:={(z/,an) €R" |z, = u(a’)} where wu(a’) = ,
0 for ' ¢ X,
X ={2'eR" st. 2’ =to+a), o€ S}

We remark that X c {x,, = 0} is the cone “generated” by S and centered at zo. Then
k
w ~ dt
E=i—w45f——ﬁ; 7.65

a(B) = % ® | G (7.65)

Let
Py = {(2', 2n) | zn > 0}, P_ = {(2',xn) | 2n < 0}

and we consider the subgraph

Fi={(2',2,) | 0 <z, <u(2)}.

Then
FEuF=%,, B U F=CE.

Using the additivity property in Proposition 7.4.14, we see that
a(B) > S -a(F),  w,—a(B) =a(CE) < 3t +a(F). (7.66)
Let R > 0 be arbitrary. We get that

o0, B, F) <J xF(Y) +J XF(y)
I (Bpy () xR) ~CBR(zo) [ = To|™* (Bl (ap) xR) [y — xo["**
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SO
dy’ * dt
Q. (IO7R7F) < J- — J — |y —z! n+s
’ Bitep) ' — a7 N ()
dy' k dt (7.67)
+ /! _ ol In—1+s o\ 2ts
Bl (ey)nx Y — @0l o (1+1¢2)

=1L+ Is.

Using that 1+ t? > max{1,#?} and passing to polar coordinates, we obtain that

dy’ P dt * dt
I = ey el W Nem—yE e PRI
Bl(ap) [V — o] SN TR0 (1 442) 2 B (1+12)2

ly’ =g [y
R R—n—s+1 R
< Wno1 (J T2 (R - \/m) dp + —— j P2 dp>
0 n+s—1J

m+s—1)(n—1)

1 _
R S
Wp—1 (R_S f 7872 (1 —/1- 72) dr + )
0
Also, for any 7 € (0,1) we have that

1—+1—72<er?,
for some positive constant ¢, independent on n, s. Therefore

cwp_1R™* Wp_1R™*

I < .
! 1—s (n—1)(n+s—1)

Moreover,
dt

t2) 'ng-s :

~ R (*
I, = H"*(S) f
s Jo (1+
So passing to limsup and liminf as s — 0% in (7.67) and using Fatou’s lemma we obtain that

k k

In particular a(F') exists, and from (7.66) we get that

S —a(F) <a(B) <@(E) < 5 —a(F).

Therefore, a(FE) exists and

Wn n—2,& k dt
olB) =5 —H (S)J; (1+2)%

7.4.5. Continuity of the fractional mean curvature and a sign changing property
of the nonlocal mean curvature. We use a formula proved in [31] to show that the s-fractional
mean curvature is continuous with respect to C'*® convergence of sets, for any s < o and with respect
to C? convergence of sets, for s close to 1.

By C%® convergence of sets we mean that our sets locally converge in measure and can locally be
described as the supergraphs of functions which converge in C'¢.

DEFINITION 7.4.21. Let E c R™ and let q € OF such that OF is C* near q, for some a € (0,1].

1,
We say that the sequence E < R™ converges to E in a CY* sense (and write Ej, < E)ina
neighborhood of q if:
(i) the sets Ey locally converge in measure to E, i.e.

|(ExAE) n By LNy for any r >0
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and
(ii) the boundaries OEy, converge to OE in C1* sense in a neighborhood of q.
We define in a similar way the C? convergence of sets.

More precisely, we denote
Qrn(z) = BL(z') x (¥, — hyzp, + D),
for x € R”, r,h > 0. If 2 = 0, we drop it in formulas and simply write @, := Q- r(0). Notice that
up to a translation and a rotation, we can suppose that ¢ = 0 and
E N Qaoron = {(2',2,) eR" | 2" € B, u(z') < x,, < 2h}, (7.68)
for some r,h > 0 small enough and u € C*® (EIQT) such that «(0) = 0. Then, point (i¢) means that

we can write

Er 0 Qoron = {(2',x,) e R™ | 2" € B, ug(z') < x, < 2h}, (7.69)
for some functions uy, € C1® (EIQT) such that
Jim Juy, = ul ez, = 0- (7.70)
We remark that, by the continuity of «, up to considering a smaller r, we can suppose that

h

lu(z")] < 5 V'€ Bj,. (7.71)

We have the following result.

1,
THEOREM 7.4.22. Let EY, S Eina neighborhood of ¢ € OE. Let q; € OE} be such that q, — ¢

and let s, s, € (0, ) be such that sy A%, 5. Then

lim T, [ (ar) = ZL[E(0).

Let Fy, <, E in a neighborhood of q € OE. Let qx € 0Ey be such that q —> q and let sy, € (0,1)

be such that sy, ko, Then

lim (1 — sx)Zs, [Ex](qr) = wn—1H[E](q).

k—0

A similar problem is studied also in [42], where the author estimates the difference between the
fractional mean curvature of a set E with C1'* boundary and that of the set ®(E), where ® is a C*©
diffeomorphism of R", in terms of the C%® norm of the Jacobian of the diffeomorphism ®.

When s — 0% we do not need the C™® convergence of sets, but only the uniform boundedness of
the C norms of the functions defining the boundary of E}, in a neighborhood of the boundary points.
However, we have to require that the measure of the symmetric difference is uniformly bounded. More
precisely:

PROPOSITION 7.4.23. Let E ¢ R™ be such that a(E) exists. Let ¢ € OF be such that
EnQrn(q) = {2, zn) e R" [2" € BL(q), u(a) <zn <h+qn},
for some r,h > 0 small enough and u e Cl’”‘(ﬁlr(q’)) such that u(q') = qn. Let E, < R™ be such that
|ExAE| < Cy
for some C1 > 0. Let qx € 0E}, n By, for some d > 0, such that
Er 0 Qrn(qr) = {(2',2,) e R™ | 2" € Bl(q},), ur(2') < xp < h + qrn}
/

for some functions uy, € Clva(gi(qk)) such that uk(q),) = qr.n and

||UkHclva(§:.(q§c)) <C2
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for some Cy > 0. Let s € (0,a) be such that sg 52050, Then
Jim 51, Zs, [Er](ar) = wn —20(E).

In particular, fixing Fy = E in Theorem 7.4.22 and Proposition 7.4.23 we obtain Proposition
7.4.11 stated in the Introduction.
To prove Theorem 7.4.22 we prove at first the following preliminary result.

LEMMA 7.4.24. Let Ey, o, E in a neighborhood of 0 € OF. Let gy, € OE) be such that ¢, —> 0.
Then
chP . ;
Ey —qr. — E  in a neighborhood of 0,

for every B € (0,q).
Moreover, if Ej, C—2> E in a neighborhood of 0 € OE, qi € 0FE) are such that gz — 0 and Ry € SO(n)
are such that

lim [Ry — Id| =0,

k—x0
then ,

Ri(Ex — qi) “SE ina neighborhood of O .

PROOF. First of all, notice that since ¢ — 0, for k big enough we have

1 1
Gl<gr and el = gl < gh

By (7.71) and (7.70), we see that for k big enough

lug (z')] < %h7 V' € B),.
Therefore
lug (') — qrn| < gh < h, V' e Bi,.
If we define
ag(2') == up(2’ + q), €D,

for every k big enough we have

(Ex —qi) N Qrp = {(a',z,) e R" |2' € By, uy(z') < x, < h}. (7.72)
It is easy to check that the sequence Fy — qi locally converges in measure to E. We claim that

Jim Jlax — ulors iz, =0 (7.73)

Indeed, let
mru(x') == u(z’ + qj,).
We have that

||”l~l,k - TkuHCI(EL) < HUk — ’LLHC1 (EI:; )
3r

and that

= wlon ) < IVl oz okl + [t v, 1

3r
2
Thus by the triangular inequality
kh—>H}C 1t — U”cl(ﬁ’r) =0,

thanks to (7.70) and the fact that ¢, — 0.

Now, notice that V(ix) = 7(Vuy), so

[Vig — vu]ooﬁ(ﬁ;) < [m(Vuy — Vu)]co,ﬁ(gfr) + [ (Vu) — Vu)]coﬁ(gzr).

Therefore
[T6(Vuy, — Vu)]cw(g;) < [Vug — Vu]

0.8 (E’%)
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and for every § > 0 we obtain

2
(V) = Vst < 55170 = Vil o g,

) + Q[VU/]CO@‘(E;)éa_ﬁ'

Sending k — oo we find that
lim sup[73(Vu) — Vu)]co,,g(giﬂ) < 2[Vu]c0,a(§zr)5a*'8

k—oo
for every § > 0, hence
Jim [V = Vulos g, = 0-

This concludes the proof of the first part of the Lemma.

As for the second part, the C? convergence of sets in a neighborhood of 0 can be proved similarly.
Some care must be taken when considering rotations, since one needs to use the implicit function
theorem. (]

PROOF OF THEOREM 7.4.22. Up to a translation and a rotation, we can suppose that ¢ = 0
and vg(0) = 0. Then we can find r,h > 0 small enough and u € C’l*o‘(ﬁ;) such that we can write
E N Q225 as in (7.68).

Since s — s € (0,«) for k large enough we can suppose that sy, s € [0g,01] for 0 < 09 < 07 <
B < a. Notice that there exists § > 0 such that

Bs cc Qrp. (7.74)
We take an arbitrary R > 1 as large as we want and define the sets
Fy := (Ex n Bgr) — gx.
From Lemma 7.4.24 we have that in a neighborhood of 0

chp
Fk — En BR.

In other words,
Jim |FACE 0 Bg)| = 0. (7.75)

Moreover, if uy, is a function defining Fj, as a supergraph in a neighborhood of 0 as in (7.69), denoting
Up(x') = ug(2z’ + ¢j,) we have that
Fien Qrp = {(2',z,) eR"|2" € By, ug(a') <z, < h}

and that
dm i = vlors @) =0, iklerss,) < M for some M > 0. (7.76)

We also remark that, by (7.71) we can write
EnQpp={(2',z,) e R"|2' € B, u(z') < x, < h}.

Exploiting (7.72) we can write the fractional mean curvature of Fy in 0 by using formula (7.92),

that is
I, [F)(0) = 2 JB; {G.. (“’“(y)|y_|“’“(0)) — Gy, (Vin(0) - |z|) }wd_yH -
+ fRn XCF ﬁﬁ;fﬂ“ ) XcQ,., (y) dy.

Now, we denote as in (7.93)
. . g (y') — ux(0 !
G(sk, e, y') = G(sk, Uk, 0,y') = Gy, (W 2
and we rewrite the identity in (7.77) as

_ dy’ xer (y) — xF(y)
T, [Fr](0) = 2 . G(sk, ukay/)W + JRH k [ k XcQT’h(y) dy.
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Also, with this notation and by formula (7.92) we have for E

/

dy J XC(EmBR)(y) — XEABr(Y)

IS[E N BR](O) =2 g(S,U,yl) |y/|n71+5

B!

We can suppose that r < 1. We begin by showing that for every 3’ € B/\{0} we have
Jim G(sg, ar,y') = G(s,u,9).
First of all, we observe that
|G (ske, i, y') = G5, u, )| < NGk, Uk, y') — G(s, U, )| +1G (s, e, y') — G(s,u,9).
Then

a, (y' )=y (0)

905k = Gt = || o, (00 =g

v’
7

[y’

—+oC
<2 j 1901 (1) — gu(0)] dt.
0

Notice that for every t € R
dim g, (0~ gu()] =0, and g, ()~ g:(0)] < 200, (1), VREN.
Since g,, € L*(R), by the Dominated Convergence Theorem we obtain that
Jim |G (s, Uk, y") — G (s, Un, y')| = 0.
We estimate
ur(y') —a u(y’) —u
1905, @, y') = G(s,u,y)]| < \G(W) - G(W)\

! !

+ ‘Gs (vak(O) : y—) ~ G, (Vu(()) : y—)‘

| 'l
uk(y') — uk(0) _ uly’) = u(0) i (0) — Vu
g‘ /| /| ‘Hv HO) = ulo)

- [V -0

< 2|Vig, = Vuleosy),

+ |V, (0) — Vu(0)]

|y|’ﬂ+S Xch,h(y) dy

(7.78)

which, by (7.73), tends to 0 as k — o0. This proves the pointwise convergence claimed in (7.78).

Therefore, for every y' € B/\{0},

. g(skaﬁkay/) g(87u7y/)
lim = .
kor |y/|n—1+sk |y/|n—1+5

Thus, by (7.94) we obtain that

1 M

G(sk, U, y') .
Tomiten | S ”ukHCl’ﬁ(BIr) |y/|n717(,875k) < |y/|n717(,370'1)

|y/|n71+sk

€ L}OC(Rn_1)7

given (7.76). The Dominated Convergence Theorem then implies that

dy' dy’
I ~ N__ 7 s
Jim " G(sk, U, y') T G(s,wy) lyr[rtts

Now, we show that

lim

Xxcr (y) = xr () Xe(BnBr) (Y) = XBaBa(Y)
k> Jgn : |y|n-%-s;c - XCQrn (y)dy = R

|y|n+s XCQr,n (y) dy.

n

(7.79)

(7.80)
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For this, we observe that

1 1 1 1
(XC la) (y) — XEnB (y)) (7 - 7)61271‘ < f ‘ T nts dy7
‘JCQT,;L (EnBr) R |y|n+ak |y|n+s B, |y|n+3k |y|n+s

where we have used (7.74) in the last inequality. For y € CB;

1 1 2 1
‘|y|n+sk - |y[+ < |y|n+oo e L'(CB1)
and for y € B1\B;s
! L [P LY(B,\B
‘|y|n+sk - |y|n+s = |y|n+01 € ( 1\ 5)'

We use then the Dominated Convergence Theorem and get that

1 1
lim Xe(EaBr)(Y) = XEABR(Y (7—7)dy=0
Eon CQT)h( C(E BR)( ) R( )) |y|7’b+8k |y|n+s
Now

XCFy, (y) - XFk(y) - (XC(EmBR)(y) - XEmBR(y)) dul = 2 XFkA(EmBR)(y) d
s 17 e

CQr,n Y CQrn Y

< 2|FkA(EﬁBR)| k—x 0’
57L+(71

according to (7.75). The last two limits prove (7.80). Recalling (7.79), we obtain that
klim T, [F](0) = Z,[E n Bg](0).
—%0

We have that Z,, [F}](0) = Zs, [Ex n Br](qk), so
T, [E)(00) = ZLLENO)| < Z., [B)(00) = Toy (i 0 Br)(g)| + 2., [F)(0) = ZL[E  Br)(0)
+ LIE n Brl(0) — ZIEIO)]
Since
\Zs,. [Ex](ar) = Zs. [Ex 0 Br](qr)| + |Zs[E](0) — Zs[E n Br](0)] < %Rigg’
sending R — o
Jim T, [Ex](qr) = Z[E](0)-

This concludes the proof of the first part of the Theorem.

In order to prove the second part of Theorem 7.4.22, we fix R > 1 and we denote
Fi := Ry ((Ex 0 Br) — ai),
where Ry € SO(n) is a rotation such that
Ry :vg,(0) — vg(0) = —e, and lim Ry —1Id| =0.

k—0

Thus, by Lemma 7.4.24 we know that F}, <, FE in a neighborhood of 0.
To be more precise,

Jim [FA(E 0 Bg)| = 0. (7.81)
Moreover, there exist 7, h > 0 small enough and vy, u € C? (PIT) such that
Fin Qrp={(2',2,) eR" |2 € B, vp(z') <z, < h},
EnQrp={a,x,) eR" |2 € B, u(z') < z, < h}
and that
Jim for —uf 2 gy = 0. (7.82)
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Notice that 0 € 0F}), and vp, (0) = e, for every k, that is,
vp(0) = u(0) =0, Vug(0) = Vu(0) =0. (7.83)

We claim that
Jim (1 5)|Z., [Fi)(0) = Zo, [B ~ Br(0)] = 0. (7.81)

By (7.83) and formula (7.92) we have that

dy’ i dt xer (y) — xr.(y)
IS‘ Fk 0 :2J‘ 7J ¥ 7M+J‘ CFy Fy, dy
k[ ]( ) Bl |y/|n+sk—1 0 ( +sg COn |y|”+5k

125
:Iézc[Fk](0)+J XCFk(y)njrSXFk(y) dy.
CQrn ly|mon

We use the same formula for £ n Br and prove at first that

J‘ xer (Y) = XF.(Y) = Xe(BaBr) (Y) + XEABR(Y)
CQr.n

_ |FWAE ~ Br)| _ [FyA(E A Br)|
|y[+ 5 h

5n+sk = 5n+1 ’

dy

(where we have used (7.74)), which tends to 0 as k — oo, by (7.81).
Moreover, notice that by the Mean Value Theorem and (7.83) we have

2 Ik~ tlem

(ox = w) )| < 51D (x — )@y P < ———5 Py 2

Thus

v

Iv/1 dt
u(y’) 1+ t2)n+25’“
Iy’

dy’
, |y/|77,+8k*1

(2 F10) — ZE ~ Br)O)] <2 |
B

—n— Wn—1 Hvk — u”o2 B B
<2J |y/| n 5’“|(vk—U)(y’)|dy’< a ( ,,.)Tl sk
B! .,
hence by (7.82) we obtain
Jim (1= )| ZE7[F](0) = Z°[E n Br](0)] = 0. (7.85)

This concludes the proof of claim (7.84).
Now we use the triangle inequality and have that

|(1 = s1)Zs, [Ee](ar) = HIEJ(0)] < (1 = s)|Zs, [Erl(ar) — Zs, [F] (0)]
+ (1= s1)|Zs [F](0) = s, [E  BRI(0)] + |(1 — s1)Zs,,[E 0 Br](0) — H[E](0)].
The last term in the right hand side converges by Theorem 12 in [2]. As for the first term, notice that
Zs, [Fr](0) = Zs, [Ex 0 Brl(qk),
hence
}(3113}(1 — sk)|ISk [Ex n Br](qr) — Isk[Ek](qk)| < limsup(1 — sk)%R_sk =0.

k—x
Sending k — oo in the triangle inequality above, we conclude the proof of the second part of Theorem
7.4.22. ([l

REMARK 7.4.25. In relation to the second part of the proof, we point out that using the directional
fractional mean curvature defined in [2, Definition 6, Theorem 8|, we can write

T v (pe) dt
Ze R0 =2 U 2 (f W)dp] aHr?
sn—2 | Jo 0 (P2 +2)=2

=2 | R ed
S§n—2
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One is then actually able to prove that

m (1 — sp) Ky, e[ Ex — qx](0) = He[E](0),

li
k—w

uniformly in e € S"~2, by using formula (7.85) and the first claim of Theorem 12 in [2].

We prove now the continuity of the fractional mean curvature as s — 0.

PROOF OF PROPOSITION 7.4.23. Up to a translation, we can take ¢ = 0 and u(0) = 0.
For R > 2max{r, h}, we write

. [Ex](qe) = PV. xem, (y) — XE, W) gy + J X, (y) — XE, W) 4y
Qunlar) 1Y — @[T CQunlar) |V — qr|"Te*
_pv Xem(¥) = xmY) ) xee () = xm, ()
Qrantar) |y = qrl"Fx Brla\@ralae) Y~ qe["F"
N f xes,(y) — xE,.(y)
CBrgr)  |Y— ak|"t®*
= I (k) + I2(k) + I3(k).
Now using (7.92), (7.93) and (7.94) we have that
|Q(sk,uk,q§€,y’)| ’ |y/_q;6|a /
I (k <2J Bk 2o ko I 0 gt < 9l\uig]| on ot g L 11—
10 gy [ —q et lueles.o @, a0 By [V — @t
rafsk
< 2Cqwp 1 .
o — Sk
Using (7.74) we also have that
d 675k — R~k
1 (k)| < J Y =, .
Br(an\Bs(ar) 1Y — Tl Sk
Thus
Jim s (|11 (k)] + [ 12(k)]) = 0. (7.86)
Furthermore
|Sk[3(k)—(wn — 280, (0, R, E))|
d
< Sk:f 7yn+s_28kj XEk((Z)Jrsdy_wn‘i‘stask(Qk7RaE))‘
CBr(an) [Y — qr|™ 5 CBrian) 1Y — qr]"H5x

+ 28k |as, (g, R, E) — g, (0, R, E)|

xe, (Y xe(y
J k(nzrék dy - f ( n)-‘rs;c dy‘
CBr(ar) Y — k] CBrg) [V — ]

+ 2si|as, (g, R, E) — a5, (0, R, E))|

< |wn R™%% — wp| + 25k

< |wp R™%% — wy | + 25 J % dy + 2si|as, (g, R, E) — a5, (0, R, E)|
CBR(qk) |y - qk|

< |wn R™%% —wp| +2C1 s R™™°F + 2sk|as, (qk, R, E) — s, (0, R, E)|,

where we have used that |EyAE| < Cy.
Therefore, since g € By for every k, as a consequence of Proposition 7.4.12 it follows that

Jim. |sil3(k)— (wn — 28k, (0, R, E))| = 0. (7.87)
Hence, by (7.86) and (7.87), we get that
klim $1Zs, [Ex](qr) = wn — Qinm spas, (0, R, E) = w, —2a(E),
—0 —o0

concluding the proof. |
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PROOF OF THEOREM 7.4.1. Arguing as in the proof of Proposition 7.4.23, by keeping fixed Fj =
E and ¢, = p, we obtain

liminf s Z,[ F](p) = wy, — 2limsup s a,(0, R, E) = w,, — 2a(E),

5—0 s—0

and similarly for the limsup. |
As a corollary of Theorem 7.4.22 and Theorem 7.4.1, we have the following result.

THEOREM 7.4.26. Let E ¢ R™ and let p € OF be such that 0E n B,(p) is C? for some r > 0.
Suppose that the classical mean curvature of E in p is H(p) < 0. Also assume that
Wn

a(k) < -

Then there exist og < § < o1 in (0,1) such that
(1) Zs[E]l(p) > 0 for every s € (0,0¢], and actually

lisgci)rifs I E]l(p) = wn, — 2a(E),
(i1) Zs[E](p) =0,
(1ii) Zs[F](p) <0 for every s € [01,1), and actually

lim (1= 5) Z[E)(p) = s H(p).

7.4.6. Some useful results.

Sliding the balls. For the convenience of the reader, we collect here some auxiliary and elementary
results of geometric nature, that are used in the proofs of the main results.

LEMMA 7.4.27. Let F < R" be such that
B;s(p) € Feyt  for some § >0 and geF,
and let ¢ : [0,1] — R™ be a continuous curve connecting p to q, that is
c(0)=p and c(l) =q.
Then there exists to € [0,1) such that Bs(c(to)) is an exterior tangent ball to F, that is
Bs (c(to)) c F..t and 0B (c(to)) NnoF + &. (7.88)

PROOF. Define
to == sup {T e0,1]] |J Bs(e®) Fu} (7.89)

tel0,7]
Notice that
qEF:FintuaF - Bﬁ(q)mFint:*:Qa
hence we have that tg < 1.
Now we prove that ¢y as defined in (7.89) satisfies (7.88).
Notice that by definition of ¢

Bs(c(to)) < Feat,
hence
Bs (c(to)) c Fop = Fogr U OF. (7.90)
Now, suppose that
0Bs(c(to)) n OF = &.
Then (7.90) implies that
Bs(c(to)) € Feas.

Since F,,; is an open set, we can find § > & such that

BS (C(to)) C Fea:t~
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By continuity of ¢ we can find € € (0,1 — ¢y) small enough such that
le(t) — c(to)] <6 —6,  Vte [to,to+ el
Therefore
Bs(c(t)) © Bs(c(to)) < Feat, Vte [to,to +¢l,

and hence

) Bs(e(t) © Feu,

te[0,to+e]
which is in contradiction with the definition of ¢y. Thus

0Bs(c(to)) N OF # &,
which concludes the proof. (|

Smooth domains. Given a set F' c R", the signed distance function dp from 0F, negative inside
F, is defined as

dp(x) = d(z,F) — d(z,CF) for every z € R",
where
d(z, A) := inf |z — y],
yeA
denotes the usual distance from a set A. Given an open set {2 € R", we denote by
N,(09) i= {|da| < p} = {z € R |d(z,00) < p}

the tubular p-neighborhood of 09). For the details about the properties of the signed distance function,
we refer to [10,90] and the references cited therein.
Now we recall the notion of (uniform) interior ball condition.

DEFINITION 7.4.28. We say that an open set O satisfies an interior ball condition at x € 00 if
there exists a ball B,(y) s.t.
B.(y)c O and x € 0B, (y).

We say that the condition is “strict” if x is the only tangency point, i.e.
0B, (y) n 00 = {x}.

The open set O satisfies a uniform (strict) interior ball condition of radius v if it satisfies the (strict)
interior ball condition at every point of 00, with an interior tangent ball of radius at least r.
In a similar way one defines exterior ball conditions.

We remark that if O satisfies an interior ball condition of radius r at x € 0O, then the condition
is strict for every radius v’ < r.

REMARK 7.4.29. Let Q2 ¢ R” be a bounded open set with C? boundary. It is well known that
satisfies a uniform interior and exterior ball condition. We fix rg = r¢(2) > 0 such that Q satisfies a
strict interior and a strict exterior ball contition of radius 2rg at every point x € 0X2. Then

dg € C?(Na,, (092)), (7.91)
(see e.g. Lemma 14.16 in [90]).

We remark that the distance function d(—, F) is differentiable at z € R™\E if and only if there is
a unique point y € dF of minimum distance, i.e.

d(z, E) = |z —yl.
In this case, the two points z and y are related by the formula

y =z —d(z, E)Vd(z, E).
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This generalizes to the signed distance function. In particular, if Q is bounded and has C?
boundary, then we can define a C'! projection function from the tubular 2rg-neighborhood Ny, (0€2)
onto 0N by assigning to a point x its unique nearest point w(z), that is

7t Nop (002) — 09, 7(x) := x — do(x)Vda(z).
We also remark that on 09 we have that Vdgq = vq and that
Vdg(z) = Vdg(r(x)) = vo(r(z)), YV € Nap, (092).

Thus Vdq is a vector field which extends the outer unit normal to a tubular neighborhood of 652, in
a C? way.

Notice that given a point y € 02, for every [0| < 2r¢ the point z := y + dvq(y) is such that
da(r) = 6 (and y is its unique nearest point). Indeed, we consider for example € (0, 270). Then we
can find an exterior tangent ball

BQTO(Z) C (CQ, é’BgTO (2) N o) = {y}
Notice that the center of the ball must be
z =y~ 2rova(y).
Then, for every ¢ € (0,2ry) we have
Bs(y + 6va(y)) < Bary(y + 2rova(y)) < €2, 0Bs(y + dva(y)) n 02 = {y}.
This proves that -
lda(y + dva(y))| = d(z,09Q) = 6.
Finally, since the point x lies outside £, its signed distance function is positive.
REMARK 7.4.30. Since |Vdgq| = 1, the bounded open sets
Qg = {C?Q < 5}
have C2? boundary -
0Qs = {dq = 0},
for every § € (—2rg, 2r9).
As a consequence, we know that for every |§| < 2r¢ the set Qs satisfies a uniform interior and

exterior ball condition of radius 7(§) > 0. Moreover, we have that r(d) > ro for every |§] < r¢ (see
also Appendix A in [126] for related results).

LEMMA 7.4.31. Let Q € R"™ be a bounded open set with C? boundary. Then for every & € [—ro, o]
the set Qs satisfies a uniform interior and exterior ball condition of radius at least rq, i.e.

r(6) = 7o for every || < ro.

PROOF. Take for example § € [—7(,0) and let x € 0Qs = {dq = §}. We show that Qs has an
interior tangent ball of radius rg at z. The other cases are proven in a similar way.
Consider the projection 7(x) € dQ and the point

xo 1=z —1oVdq(x) = 7(z) — (ro + |0])va(7(z)).

Then
B, (z9) € s and x € By (x0) N 8.

Indeed, notice that, as remarked above,
d(z0,0Q) = |zg — m(z)| = (ro + 19]).
Thus, by the triangle inequality we have that
d(z,08) = d(xg,00) — |z — xo| > 4], for every z € By, (o),
so B, < 5. Moreover, by definition of zy we have
x € 0By, (x0) M s
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and the desired result follows. O

To conclude, we remark that the sets Q_s are retracts of €2, for every 6 € (0,70]. Indeed, roughly
speaking, each set Q_; is obtained by deforming € in normal direction, towards the interior. An
important consequence is that if € is connected then Q_s is path connected.

To be more precise, we have the following:

PROPOSITION 7.4.32. Let Q < R™ be a bounded open set with C? boundary. Let 6 € (0,7¢] and
define

Q a x, T € Q_(;,

D: - D(z) = - _

e (@) x— (0 + do(x))Vda(z), e QN\Q_s.

Then D is a retraction of Q onto Q_s, i.e. it is continuous and D(x) = x for every x € Q_5. In

particular, if Q is connected, then _s is path connected.

PrROOF. Notice that the function
®(z) =z — (6 + do(x)) Vda(z)
is continuous in Q\Q_s and ®(z) = z for every x € I2_s. Therefore the function D is continuous.
We are left to show that
'D(Q\Q_g) C 09_5.
For this, it is enough to notice that
D(z) = w(x) — dvg(n(x)) for every z € O\Q_;.

To conclude, suppose that 2 is connected and recall that if an open set 2 < R"” is connected, then
it is also path connected. Thus )_s, being the continuous image of a path connected space, is itself
path connected. O

Explicit formulas for the fractional mean curvature of a graph. Now, we collect some auxiliary
results on nonlocal minimal surfaces. In particular, we recall the representation of the fractional mean
curvature when the set is a graph and a useful and general version of the maximum principle.
We denote
Qrn(z) = B.(z') x (xy, — hyz,, + D),
for x e R", r,h > 0. If © = 0, we write Q,.5, := @, 1(0). Let also
1 t
gs(t) i= ————pr and Gs(t) := f gs(7) dr.
(14+1¢2)= 0
Notice that
+o
0<g.(t)<1, YteR  and f gu(t) dt < o0,
—C
for every s € (0,1).
In this notation, we can write the fractional mean curvature of a graph as follows:

PROPOSITION 7.4.33. Let F' < R™ and p € OF such that
F 0 Qra(p) ={(2,zn) e R"[2" € BL(p'), v(2') < @n <pn +h},
for some v e CH*(B.L(p')). Then for every s € (0, )

nire) =2 {e (M) 6 (T )

|y/_p/| |y/ _p/| y/ _p/|n—1+s

T xer ()~ xr(v) 722

+]
Q) [V =PI

This explicit formula was introduced in [31] (see also [2,107]) when Vou(p) = 0. In [14], the
reader can find the formula for the case of non-zero gradient.

Y.
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REMARK 7.4.34. In the right hand side of (7.92) there is no need to consider the principal value,
since the integrals are summable. Indeed,

o(y) = v(r) v~ W
G ————2) — G (Vo) - ‘=U gs(t) dt
‘ <|M—ﬂ|) ( ()|y—ﬂ0 Vo(p') B2 (®)
V@ﬁ—v@ﬁ—vﬂﬂ%@/—
ly' = 7'l
for every y' € Bl (p'). As for the last inequality, notice that by the Mean value Theorem we have
v(y') —v(p') = V(&) - (v — 1),
for some & € Bl (p’) on the segment with end points 3’ and p’. Thus
(') —v(p') = Vo) - (' = p)| = [(Vo(§) = V() - (v — )]
[Vu(€) — Vo@)lly' — 1| < |[Vllcow s @pylé — 1'%y — '

<

j2)
‘ < vllere sy ly’ — 1,

<
< |vllere s @y ly — /|

We denote for simplicity

v(y’) —v(p') y —r
G(s,v,9,p) := G (W) - Gs (VU(P/) ’ W) (7.93)
With this notation, we have
G(s, 0,9, )| < |vllcrameyly’ — 1% (7.94)

A maximum principle. By exploiting the Euler-Lagrange equation, we can compare an s-minimal
set with half spaces. We show that if E' is s-minimal in €2 and the exterior data Ey := E\Q lies above
a half-space, then also E n 2 must lie above that same half-space. This is indeed a very general
principle, that we now discuss in full detail. To this aim, it is convenient to point out that if £ c F
and the boundaries of the two sets touch at a common point £y where the s-fractional mean curvatures
coincide, then the two sets must be equal. The precise result goes as follows:

LEMMA 7.4.35. Let E, F c R™ be such that E C F and xq € 0E n 0F. Then

IP[El(zo) = I F)(z0) for every p > 0. (7.95)
Furthermore, if
lim igfIﬁ[F](mo) >a and limsupZf/[E](zo) < a, (7.96)
p—0 p—0t

then E = F, the fractional mean curvature is well defined in xg and Zs[E](zo) = a.

PRrROOF. To get (7.95) it is enough to notice that

EcF = (xce(y) —xe(®) = (xer(y) —xr(y)) VyeR"
Now suppose that (7.96) holds true. Then by (7.95) we find that
3 lim Z[E](zo) = lim Z.[F](x0) =
Jim, [E](z0) Jim, [F](z0) = a

To conclude, notice that if the two curvatures are well defined (in the principal value sense) in xg

and are equal, then

0< J (xee) — xeW)) — (xer(y) — xr))
X CB, (v0) |$0 _ y|n+s

p—0t

= Z{[E)(xo) — Z¢[F](x0) —— O,

dy

which implies that xg(y) = xr(y) for a.e. ye R ie. E =F. a
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PROPOSITION 7.4.36. [Mazimum Principle] Let @ < R™ be a bounded open set with C1'1 boundary.
Let s € (0,1) and let E be s-minimal in Q. If

{z-v<a}\Q c CE, (7.97)

for some v e S ! and a € R, then
{x-v<a} cCE.

PROOF. First of all, we remark that up to a rotation and translation, we can suppose that v = e,
and a = 0. Furthermore we can assume that
inf z,, <0,
zeQ
otherwise there is nothing to prove.
fENQ =g, ie Qc CFE, we are done. Thus we can suppose that £ n Q £ .
Since E n () is compact, we have
b:= min z, € R.
2eENQ
Now we consider the set of points which realize the minimum above, namely we set

P:={peEnQ|p, =0}
Notice that
{z,, < min{b,0}} c CE, (7.98)

so we are reduced to prove that b > 0.

We argue by contradiction and suppose that b < 0. We will prove that P = ¢§. We remark that
PcoEnQ.

Indeed, if p € P, then by (7.98) we have that Bs(p) n {z, < b} ¢ CE for every 6 > 0, so
|Bs(p) n CE| = %~0™ and p ¢ E1. Therefore, since E = E; u 0E, we find that p € 0F.

Roughly speaking, we are sliding upwards the half-space {x, <t} until we first touch the set E.
Then the contact points must belong to the boundary of E.

Notice that the points of P can be either inside € or on d€2. In both cases we can use the
Euler-Lagrange equation to get a contradiction. The precise argument goes as follows.

First, if p = (p/,b) € OF n Q, then since H := {z, < b} ¢ CE, we can find an exterior tangent
ball to E at p (contained in Q), so Z;[F](p) = 0.

On the other hand, if p € 0F n 09, then By, (p)\Q2 € CE and hence (by Theorem 5.1 of [65])

0F A B,(p) is C*"% for some r € (0, |b]), and Z,[E](p) < 0 by Theorem 1.1 of [108] (we remark that
sign convention here is different than the one in [108]).
In both cases, we have that

pedHnNnoE, HcCE and Z,CFE](p) = —I:;[E](p) = 0 = I,[H](p),

and hence Lemma 7.4.35 implies CE' = H. However, since b < 0, this contradicts (7.97).
This proves that b > 0, thus concluding the proof. O

From this, we obtain a strong comparison principle with planes, as follows:

COROLLARY 7.4.37. Let Q < R"™ be a bounded open set with C1' boundary. Let E — R™ be
s-minimal in Q, with {x, < 0}\Q c CE. Then

(2)  if |(CE\Q) n{z, > 0})| =0, then E = {z,, > 0};

() if ([CE\QY) n{zy, > 0} > 0, then for every x = (2',0) € Q n {x, = 0} there exists
9z € (0,d(x,002)) s.t. Bs, (x) € CE. Thus

{#n<0}u [J Bs(x)cCE. (7.99)
(z,0)eQ
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PROOF. First of all, Proposition 7.4.36 guarantees that
{z, <0} c CE.

(¢)  Notice that since E is s-minimal in 2, also CFE is s-minimal in Q.

Thus, since {z, > 0}\Q2 € E = C(CE), we can use again Proposition 7.4.36 (notice that {z,, = 0} is a
set of measure zero) to get {x,, > 0} c E, proving the claim.

(i) Let x € {x, =0} n Q.

We argue by contradiction. Suppose that |Bs(z) n E| > 0 for every § > 0. Notice that, since
Bs(z) n {z, < 0} < CFE for every 6 > 0, this implies that x € 0E n Q. Moreover, we can find an
exterior tangent ball to E in x, namely

Bz —cey) c{r, <0} nQcCEnQ.
Thus the Euler-Lagrange equation gives Z;[E](z) = 0.

Let H := {x, < 0}. Since x € 0H, H c CE and also Z;[H](z) = 0, Lemma 7.4.35 implies

CE = H. However this contradicts the hypothesis

[(CE\Q) n {z, > 0}] >0,
which completes the proof. ([l
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Appendix A

A.1. The Fourier transform

We consider the Schwartz space of rapidly decaying functions defined as
SR™) := {f € C*(R") |Va, BeN§, sup |z*05f(z)| < oo} . (A.1)
zeR™

In other words, the Schwartz space consists of smooth functions whose derivatives (including the
function itself) decay at infinity faster than any power of . Endowed with the family of seminorms

[y = sup (L+ 2™ 3T 1D ()], (A.2)
TeER™ |a|§N

the Schwartz space is a locally convex topological space. We denote by S’(R™) the space of tempered
distributions, the topological dual of S(R™).

Using x € R™ as the space variable and £ € R” as the frequency variable, the Fourier transform
and the inverse Fourier transform of f € L!(R™), are defined respectively, as

F&) = Ff(e) := N Fla)e™?™ % dg

and

~

fa)=F @) = | JE©Sm* de.

We recall that the pointwise product is taken into the convolution product and vice versa, namely for
all f, ge L*(R™)
F(f =g) =F(f) F(g)- (A3)

We have that f(z) = F(F 1 f)(z) = F*(Ff)(x) holds almost everywhere if both f and f € L' (R™),
and pointwise if f is also continuous. Also for all f, g € L*(R")

~

f(©)g(&)ds = | f(E)g(&) .
R R

On the Schwartz space, the Fourier transform gives a continuous bijection between S(R™) and S(R™).

A.2. Special functions
We recall here a few notions on the special functions Gamma, Beta and hypergeometric (see [3],
Chapters 6 and 15 for details).

Gamma function. The Gamma function is defined for x > 0 as (see [3], Chapter 6):

I(x) := LL t* tetdt. (A.4)

This function has an unique continuation to the whole R except at the negative integers, by means
of Euler’s infinite product. We have that I'(1) = I'(2) = 1 and T'(1/2) = /7. We also recall the next

245
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useful identities:

I'(n+1) =n! for any n € N, (A.5)
Iz +1) =2al(x) for any x > 0, (A.6)
D(1/2+z) L/m2t72
= f Al
T'(22) () or any x > 0, (A7)
T
I(s)I'(1 — = f 1 A.
e or s € (0,1), (A8)
I'(1/2 —s)I'(1/2 = f 1 Al
(12— 9P(/2 +5) = s or s € (0,1), (4.9)
(1 —s)=(—s)'(—s) for s € (0,1). (A.10)
Beta function. The Beta function can be represented as an integral (see [3], Section 6.2), namely
for x,y >0
0 t:E—l
= ——dt A1l
O ey (A1)
and equivalently
1
B(x,y) = f 711 — )y~ dt. (A.12)
0
Furthermore, we have the identity
I'(@)C(y)
Y) = ———=. A3
59 = T (A13)
In particular, using this and (A.8), we get the useful formula
Bls,1—s) = —
HETEE sin(rs)’ (A.14)

Hypergeometric functions. There are several representations for the hypergeometric function
(see [3], Chapter 15, or page 211 in [118]). We recall the ones useful for our own purposes.

(1) Gauss series

o (@)x(b)y, wh
F(a,b,c,w) = —_— A.15
(@) = 3 O (A.15)
where (¢)x is the Pochhammer symbol defined by:
1 for k =0,
@k = (A.16)
qlg+1)---(g+k—-1) fork>0.

The interval of convergence of the series is |w| < 1. The Gauss series, on its interval of convergence,
diverges when ¢ — a — b < —1, is absolutely convergent when ¢ —a — b > 0 and is conditionally
convergent when |w| <1 and —1 < ¢ —a —b < 0. Also, the series is not defined when c is a negative
integer —m, provided a or b is a positive integer n and n < m.

Some useful elementary computations are

F(a,b,b,w) = (1 —w)™ . (A.17a)

1 I 5 (T+w)™2 4+ (1—w)2
F(a,§+a,§,w ) = 5 . (A.17b)

(2) Integral representation

c 1
F(a,b,c,w) := I’U))lg’((c)—l)) L 1 =) (1 — wt) T d. (A.18)

The integral is convergent (thus F is defined as an integral) when ¢ > b > 0 and |w| < 1.
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(8) Linear transformation formulas
From the integral representation (A.18), the following transformations can be deduced.

F(a,b,c,w) = (1 —w)* """ F(c —a,c—b,c,w), (A.19a)
—a e
=(1—w) F(a,c b,c,w_l), (A.19b)
— _ )b _
=(1—w) F(b,c a,¢, —— 1), (A.19¢)

_T(e)T(c—a—b) wbathec Cw
- —F(c—a)F(c—b)F( ba+b—c+1,1—w)
c—a— F(C)F(a’ +b— C)

B e D)

when 0 < w < 1. (A.19d)

Flc—a,c—bc—a—-b+1,1—w),
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