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Abstract

How the olfactory bulb processes odor input cannot be easily addressed using stan-

dard experimental techniques, therefore we have developed a large scale model of

olfactory bulb, using realistic three-dimensional inputs, cell morphologies of mitral

and granule cells, and connectivity. The model makes experimentally testable pre-

diction, providing a powerful framework for investigating the olfactory bulb com-

putations, such as the odor learning and representation.

By the odor learning, the olfactory bulb organizes itself in synaptic colum-

nar clusters related to individual glomeruli, called glomerular units. Using our 3D

model, we identify the mechanisms for forming one or more glomerular units in

response to a given odor, how and to what extent the glomerular units interfere or

interact with each other during learning.

Together, we have analyzed how the olfactory bulb processes inputs from olfac-

tory receptor neurons activated by natural odors. This is realized through two com-

putational tiers: the glomerular layer at the site of input, and the granule cell level

at the site of output to the olfactory cortex. We suggest that the postulated functions

of glomerular circuits have as their primary role transforming a complex and dis-

organized input into a contrast-enhanced and normalized representation, but cannot

provide for synchronization of the distributed glomerular outputs. By contrast, at

the granule cell layer, the dendrodendritic interactions mediate temporal decorrela-

tion, which we show is dependent on the preceding contrast enhancement by the
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glomerular layer. The results provide the first insights into the successive operations

in the olfactory bulb, and demonstrate the significance of the modular organization

around glomeruli. This layered organization is especially important for natural odor

inputs, because they activate many overlapping glomeruli.



Abstract

Le attuali tecniche sperimentali non permettono di studiare come il bulbo olfat-

tivo processa gli odori, quindi ne abbiamo sviluppato un modello tridimensionale

su larga scala. Questi riproduce in maniera realistica gli stimoli dovuti alla pre-

senza di odori naturali, le morfologie di cellule mitrali e granulari, insieme alla

loro connettivit. Il nostro modello ritorna predizioni che sono sperimentalmente

verificabili, fornendo un potente strumento per lo studio delle computazioni del

bulbo olfattivo, quali ad esempio l’apprendimento e la rappresentazione degli odori.

Con l’apprendimento di un odore, il bulbo olfattivo si auto-organizza in gruppi di

colonne, ciascuna in corrispondenza di un singolo glomerulo o unit glomerulare.

Usando il nostro modello, abbiamo identificato i meccanismi su cui si basa la for-

mazione di una o pi colonne/unit glomerulari in seguito alla presentazione di un

odore. In aggiunta, abbiamo esaminato come le interazioni fra unit glomerulari du-

rante l’apprendimento possono influenzare la configurazione finale delle colonne.

In seguito, abbiamo studiato come il bulbo olfattivo elabora gli ingressi provenienti

dai recettori olfattivi attivati dagli odori naturali. Questo avviene su due livelli com-

putazionali: lo strato glomerulare al livello di input, e lo strato delle cellule granulari

al livello di output verso la corteccia olfattiva. Ci suggerisce che le funzioni postu-

late nei circuiti glomerulari hanno come ruolo primario la trasformazione di un input

complesso e disorganizzato in una rappresentazione dove i livelli di attivazione sono

normalizzati, e il loro contrasto intensificato. Tuttavia loutput del livello glomeru-
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lare non pu sincronizzare lattivit dei glomerulari. Pertanto, a livello delle cellule

granulari, le interazioni dendrodendritiche inducono una decorrelazione temporale

dei pattern rappresentativi dei vari odori, a sua volta dipendente da quella preceden-

temente realizzata nel livello glomerulare. Questi risultati forniscono importanti in-

dizi riguardanti la computazione/rappresentazione del bulbo olfattivo, dimostrando

l’importanza della sua auto-organizzazione modulare in unit glomerulari. La sua

organizzazione a strati particolarmente importante per la rappresentazione degli

odori naturali, dal momento che le aree da essi attivate sulla superficie del bubo

sono sovrapposte.
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Introduction

The olfactory bulb is a small self-contained neural system that realizes several im-

portant mechanisms for odor discrimination. It is located between the olfactory ep-

ithelium and the olfactory cortex, which respectively implement the outermost and

innermost computational tiers of the odor signal pathway.

The odor signal pathway is therefore straightforward, so as the internal organiza-

tion of the olfactory bulb, which nevertheless does not perform a naive computation.

Bear in mind that the dynamics underlying a single neuron functioning are highly

non-linear, then extremely difficult to understand, so they make even more intri-

cate to investigate an entire neural system. This is true even in the olfactory bulb,

of which computation is orchestrated by millions of tiny interneurons that inter-

connect its computational units (i.e. glomerular unit). In fact, the available models

of olfactory bulb are not able to explain how it works, thus its coding mechanism

remain still poorly understood. On the one hand, the current models appear to be

too abstract in explaining the olfactory bulb behavior, and ignore many fundamental

physiological mechanisms that are instead explored in experimental works. On the

other hand, a number of technical limitations in carrying out experimental investiga-

tions makes it difficult to study the basic cellular mechanisms of odor recognition.

A theoretical model fully constrained to experimental findings will be increasingly

helpful to override the typical technical issues of experimental protocols, since it

could be analyzed instead of the real system. The realistic neuron simulation fullfills
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this goal, whereby the returned numerical results perfectly match the real behaviour

of nervous systems.

The NEURON simulation environment [24] is the most popular and advanced

engine for realistic neuron simulation. Here, neuron morphology are reproduced

with the full dendritic tree in a virtual 3D space, with its real spatial extent and

arborization, whereas the passive and active membrane properties are simulated by

solving the Hodgkin-Huxley model [5]. The Hodgkin-Huxley model in particular

reproduces the real action potential, together its propagation through the dendritic

tree. Thus, taking into account its characteristics, we have built a 3D realistic large

scale model of the olfactory bulb [38] based on NEURON. This itself is the first

model of its genre, which has been used to carry out all predictions shown in the

present thesis.

The thesis is organized as follows:

• Chapter 1: a description of the anatomy of olfactory bulb, especially of its struc-

ture, connectivity, and neuron populations;

• Chapter 2: a short discussion around the experimental findings showing the ol-

factory bulb is organized in columnar computational units;

• Chapter 3: a description of the basic electrophysiological and modelistic concepts

that form the basis for realistic neuron simulation;

• Chapter 4: a description of the first realistic large scale 3D model of the olfactory

bulb;

• Chapter 5: the first study performed by our 3D model of olfactory bulb, in which

we have investigated the relation between column formation and odor learning;

• Chapter 6: a study about the reciprocal inter-glomerular interaction, so as the

firing pattern that such interaction sculpts on mitral cells;

• Chapter 7: the analysis of the olfactory bulb computation, which aimed to under-

stand the role of the glomerular and granule cell layers.

We thus aimed to understand how the olfactory bulb works, and the organiza-

tional patterns that are behind its functioning. These may be used to perform futher

comparative studies across other brain areas. In addition, since the olfactory bulb is
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one of the oldest region out of the nervous system, understanding its internal orga-

nization may be also helpful to unravel the evolutionary logic that stands behind the

nervous system.

However, understanding the olfactory bulb may not remain confined to a biolog-

ical domain, the mechanisms used by the olfactory bulb, to efficiently discriminate

and categorize odors, are modeled and understood, they could be exploited in the

industrial and ITC fields to design, for example, new and more efficient algorithms

for data mining and clustering, to propose new neural networks. Whereas a robotic

olfactory bulb could be implemented, with industrial applications to develop sensors

for ”natural” odors or prostheses for individuals that have lost the smell sensibility.





Part I

The anatomy of the olfactory bulb





Chapter 1

The anatomy of the olfactory bulb

In this chapter, we introduce the basics of the olfactory bulb organization, describing

its structure, neuron populations, and connectivity. Most of the content in this chap-

ter is summarized from “The Synaptic Organization of the Brain” (G.M. Shepherd,

[4]), enriched with some recent experimental findings.

In case the reader is well acquainted of olfactory bulb, we reccommend to skip

reading this chapter.

1.1 The structure

The OB is a small self-contained neural system located inside the braincase (Fig.

1.1A). It performs several important functions for odor discrimination. The OB re-

ceives input and sends output through two different bundles of axons; they are the

ON and the LOT, respectively. The ON is a fasciculation of ORNs axons, while the

LOT is the axonal tree that belongs to M/Ts.

The ORNs are randomly scattered on the OE surface, where they are directly in

touch with the external environment. On one hand, each ORN performs a transduc-

tion of odor molecules into action potentials. Thus, ORN activities carry out the first

odor representation within the olfactory system, likely as a firing rate code. On the

other hand, the OC constitutes the last computational tier of the olfactory system,

whereby one operates the odor recognition. This is the main task of the olfactory

7



8

system. Taking into account the position of the OB in the odor signal pathway, it

can be seen as a gate between OE and OC.

There are two identical OBs, each belongs to an individual brain hemisphere.

The shape of each OB can be approximated by ellipsoid of 2-3 mm in axis, where

neurons are arranged in several layers (Fig. 1.1B). These layers are the GL (150 µm

thick, Fig. 1.1B, blue layer), the EPL (400 µm thick, Fig. 1.1B, red layer), and the

GCL (400 µm thick, Fig. 1.1B, green layer), from the outermost to the innermost.

Here, the largest neuron populations are MCs, TCs, and GCs; MCs and TCs lie on

EPL whereas GCs occupy the GCL space (Fig. 1.1B).

Moreover, the OB concerns two subparts that are the MOB and the AOB. Both

have basically the same connectivity and neuron populations, whereas only dif-

ference between MOB and AOB concerns a few minor details in the translami-

nar connectivity. The MOB and AOB receive input from the OE and the VNO,

respectively, thus they are sensitive to different odor types. Particularly, the AOB

is mostly pheromone-sensitive, while the MOB is responsive to a wider variety of

odor molecules. In addition, their own principal neurons project to different cortical

regions that are the OC and the amygdala, respectively. However, such a difference

between AOB and MOB is not precisely determinable. For example, pheromone-

sensitive glomeruli have been discovered on the MOB surface, of which M/Ts

project to the amygdala.

In this thesis, we have only been investigating the MOB. This has been interesting

since the MOB makes a larger contribution to the higher level functions related to

the odor recognition.

1.2 The connectivity

The olfactory system is structured in three computational tiers that are the OE, the

OB, and the OC (Fig. 1.2). The odor information goes through these three tiers,
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Fig. 1.1 (A) The position of

the olfactory olfactory and (B)

the coronal view of the main

olfactory bulb.

propagating thus from the outermost to the innermost ones. Accordingly, even the

odor learning may occur through these three tiers in the same order.

The OE is randomly endowed by ORNs. Each ORN owns a single odor receptor,

which binds with specific subtypes of odor molecules. The binding evokes the ORN

response in form of tonic firing, of which rate is graded with concentration of odor.

Therefore, ORNs are in different subtypes, each is sensitive to specific subgroups

of odor molecules (i.e. odor phenotype). Those ORN axons which belong to a given

odor phenotype convey into a spherical structure of neuropil, called glomerulus.

All glomeruli form the outermost layer of the OB, in which it is conveyed the

excitatory input produced by the ORNs. Within the glomerulus, the ORN axons

release glutamate on tuft dendrites of PG and M/T, activating AMPA and NMDA

receptors on their membrane. At the same time, glomeruli are surrounded by PGs.

These neurons mediate GABAergic inhibition on M/T tuft dendrites. The PGs, to-

gether with superficial-axon and external tufted cells constitute the juxtglomerular

circuit, where the PGs are the output. The juxtglomerular circuit modulates the ex-
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Fig. 1.2 Neurons and connectivity of the olfactory bulb.

citatory activities induced by ORNs. Without PGs, the M/T activity would merely

driven by ORNs.

Subsequently, the excitation resulting within a glomerulus grades the intensity

of M/T response. The M/T apical dendrites traverse the EPL, where they neither

bifurcate nor receive any synaptic afference. Thus, M/T apical dendrites basically

pass the excitation odor representation occurring in the GL to the M/T cell bodies.

Several lateral dendrites arise from the M/T bodies, ramifying in 6-7 levels in-

side the EPL. Here, they make a larg a large number of reciprocal dendroden-

dritic synapses (Fig. 1.2, inset) with tiny interneurons, called GCs. The M/T-to-GC

synapse release glutamate, activating AMPA and NMDA receptors on the GC tuft

dendrite, whereas GCs releases GABAB on M/T lateral dendrite as feedback re-
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sponse. Such a peculiar type of synapse occurs robustly across EPL. The reciprocal

synapses are in fact 80% of total, whereas the remaining 20% are due to inhibitory

synapses between dSACs and GCs.

The M/Ts in turn produce the output of the OB, which is sent to the OC through

the M/T axonal projections. The inhibition plays the most relevant role in orches-

trating the overall activity of the OB. Therefore, the GCs finely sculpt the OB output

by rhythmic inhibition released on the M/T dendrites.

Those action potentials that are fired by an M/T, after backpropagating through

its lateral dendrites, evoke the GC responses which in turn inhibit all M/Ts to which

they are connected. By this mechanism, M/Ts that belong to different glomeruli can

inhibit each other (i.e. lateral inhibition).

The inhibition induced by the GCs can be decomposed in two components that

self and lateral -inhibitions. First one is induced from a glomerulus on itself through

its own GCs. Second one is instead due to the activity of surrounding glomeruli,

which is thus transmitted through shared subsets of GCs. Both self and lateral -

inhibition have been reproduced by realistic computer simulations; these results are

shown in the last chapters.

1.3 The Neuron Populations

1.3.1 The Olfactory Receptor Neurons

The ORNs form a morphologically homogeneous population that randomly endows

the OE surface. This makes the outermost level of the olfactory system that thus

interacts with the external environment.

Each ORN is a small and simple neuron formed by a soma, a single thin apical

dendrite, and an axon. The soma is 10 µm in diameter, both apical dendrite and

axon arise from it, and their diameter taper and range between 0.1 and 0.4 µm.

The axon perforates the OE, terminating into a glomerulus, where it makes synapse
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Fig. 1.3 Olfactory receptor neurons of mouse, colored by different odor markers, one for each

odor phenotype.

with either M/T or PG. Inversely, the apical dendrite projects into a knob situated in

the OE, which holds a metabotropic ligand gate channel (i.e. odor receptor) on its

terminal that can bind with only a subtype of odor molecules. The binding triggers

the ORN response that occurs therefore selectively. The odor phenotypes are coded

into 1,000 different types by a large multigene family and are coded [110], therefore

ORNs express the most diversified phenotype out of the nervous system.

Despite of the phenotype, ORNs are arranged on OE randomly, though all ax-

ons of the same phenotype converge exclusively into two glomeruli in the medial

and lateral OB. Yet, it is not clear whether and how both glomeruli are related to

each other in odor coding, but experimental findings suggest that they may realize

a temporal code reliable for the odor concentration through reciprocal interactions

[112].

Moreover, ORNs undergo to neurogenesis, so that each is periodically replaced

by basal cell located in the OE. After the basal cell becomes a mature ORN, this

tightly keeps the same odor phenotype and glomerular target of replaced ORN.

Such high dynamicity, the strict specificity in response, and the highly variegated

phenotype, make ORNs the unique case out of the nervous system.
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1.3.2 Glomeruli

The glomeruli are spherical neuropils of 30-50 µm in diameter and sharp borders.

They form the outermost layer of the OB. Every glomerulus collects exclusively the

ORN axons expressing a single odor phenotype, which make excitatory synapses

with tuft dendrites of M/T and PG.

1.3.3 Periglomerular cells

The PGs are located in the GL, where they surround the glomeruli.

A PG is formed by a soma, a few short dendrites, and a single axon. The soma

is 6-8 µm in diameter, from which arise both axon and dendrites. The dendrites

arborize within one or more glomeruli, depending on the PG subtype, where they

extend 50-100 µm. The axon projects laterally as far as 5 glomeruli. Some PGs

appear to be axonless, but such absence is suspected to be due to a fail in the staining

method, rather than a real lack.

PGs are still inclosed in much uncertainty. For example, it is not know in how

many different subtypes the PG can be classified. Very peculiarly, although the

GABA is deemed to be inhibitory, it can have an excitatory effect on PGs [116].

1.3.4 Mitral cells

MCs and TCs work in tandem to carry out the second order representation of odor.

They form two parallel distinct signal pathways.

An MC is formed by a soma, a single apical dendrite, several lateral dendrites,

and a huge axonal tree. The cell body is 15-30 µm in diameter. The apical dendrite

traverses the EPL, terminating within a glomerulus, where it branches in 6-7 levels

of tuft dendrites. The tuft dendrites form a tangle that is 30-150 µm in diameter,

which is extended through the most part of the glomerulus. The tuft dendrites re-
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ceive synapses from ORNs and PGs, which are excitatory (AMPA and NMDA) and

inhibitory (GABAB), respectively. The apical dendrite is 300-500 µm in length and

2-10 µm in diameter; it does not bifurcate or make any synapse on its way cross-

ing the EPL. Therefore, the apical dendrite merely passes to the soma the excitation

resulting in tuft dendrites.

The MC has a large lateral dendritic tree that is extended further than 1,000 µ .

The lateral dendrites sparingly bifurcat in the EPL; their diameter tapers from 6 to 1

µm. In turn, MCs can be in two subtypes on the basis of the lateral dendrites depth.

MC of first type has lateral dendrites that extend deeper than seconde type.

The lateral dendrites form wide dendritic fields that connect to GCs by recipro-

cal synapses. Those overlapping portion of dendritic fields that belongs to different

glomeruli can connect to common GCs. The number of common GCs in turn grades

the strength of the inter-glomerular interactions, such as the lateral inhibition. The

lateral interaction sculpts the overall activity of the OB, driving the odor represen-

tation; this is finally sent to the OC through the M/T axons.

Fig. 1.4 Mitral cells observed in rats.
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1.3.5 Tufted cells

Similar to MC, a TC is formed by a soma, a single apical dendrite, several lateral

dendrites, and an axonal tree. The cell body is 15-20 µm in diameter. The apical

dendrite traversea the EPL, terminating within a glomerulus, where it branches in

several tuft dendrites; these form a tangle that is 200-300 µm in width. The lateral

dendrites extend 300-600 µm. The axons ramify in many collateral branches within

the GCL, while they penetrate only the OT and AON in the OC. Differently, the

MCs innervate the overall OC [76].

According to the laminar position, TC can be classified in three subtypes that are

the eTC, mTC, and iTC. The eTC are located in the GL. The iTC body are very

deep in the EPL, so their lateral dendrites overlap with those of the MCII . The mTC

stands between the eTCs and iTCs. However, on the basis of the electrophysiological

properties, the TCs can be classified into only two groups: one including eTCs only,

another formed by both iTCs and mTCs.

The eTCs lateral dendrites extend within the GL, together with those ones of the

superficial-short axon cell [8]. Experimental findings suggest that both glomeruli ex-

pressing the same odor phenotype (see par. 1.3.1) are reciprocally connected through

the eTC axons [111], realizing an intrabulbar associative subsystem for the odor

concentration coding[112].

1.3.6 Granule cells

The GCs are tiny inter-neurons that form a large population in the GCL. They share

the GCL space with a sparse population of dSACs [113]. The dSAC axons innervate

the GC on the perimsomatic region and the primary dendrites [114].

A GC is a tiny axonless neuron with a simple morphology. It has a body of 6-8

µm in diameter, from which arise spare short basal dendrites and a single primary

dendrite. The primary dendrite penetrates into the EPL, where it branches in sev-
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eral tuft dendrites, spreading laterally 50-200 µm. The tuft dendrites are plenty of

synaptic spines that make reciprocal synapses with M/T lateral dendrites.

The GC cell bodies are grouped in horizontal clusters (i.e. islets), of which depth

is deemed to reflect the age. The GCs undergo periodically to neurogenesis. The

new borned GCs migrate from the SVZ toward more superficial islets, replacing the

older GCs which in turn shift up to more superficial islets.

GC can be classified in three types, on the basis of the body depth and the primary

dendrite extent (GI , GII , and GIII). The GIII has body that is located more superfi-

cially, so as its primary dendrite. Likely, GIII makes synapses with TCs. Differently,

the GII body and primary dendrite are located deeper, making synapses with MCs.

Finally, the GI body is located at any depth of GCL, whereas its primary dendrite

is extended through the full depth of EPL. Then, GI is capable of making synapse

with both MCs and TCs [59].

1.3.7 Cell populations

The OB is constituted by 2,000 glomeruli, 50 · 106 ORNs, 50,000 MCs, 100,000

TCs, and 3,000,000 GCs. About 25 ·103 ORNs, 20-50 MCs, 40-100 TCs converge

on each glomerulus.

1.4 The olfactory cortex

The OC is deemed to work as associative memory [48]; it performs the final stage

of the odor processing. In Fig. 1.5 is shown the different subzones of the OC that are

the OT, the AOC, and the PC. The PC is in turn subdivided in two subunits that are

the anterior (aPC) and the posterior pyriform cortex (pPC). The entire OC receives

the odor information filtered through the OB.

The M/Ts are the primary input source of the OC. Here, the M/T axons spread

tangentially, creating a vast innervation of it. The M/T axons are thus massively in-
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Fig. 1.5 The olfactory cortex and its subregions (adapted from [108]).

termingled in the OC [106], where none of the structural features of the OB colum-

nar organization [29, 106, 58] is reflected in the arrangement of the M/T axonal

targets. Moreover, the TCs and the MCs form two parallel pathways that project

to different regions of the OC. Particularly, the TCs innervates only the OT and

the AON, whereas the MCs innervates all subregions. Therefore, although TCs and

MCs form two separate pathways, their outputs may be combined in the OT and the

AON. However, the way they perform such task remains still unclear.

The OC also connects to other brain regions that are involved in a wide variety of

functions. Fig. 1.6 shows a schematic representation of the connectivity between the

OC and the rest of the brain. The OC connects to the amygdala and the enthorinal

cortex through its posterior part, while it projects to the hypothalamus. Moreover,

even different regions of the OC connect among themselves, while they project back

to the OB, innervating all of its layers. The functional role of these projections is

still unclear, but experimental findings suggest that they may drive the oscillatory

activity of the OB. The PC receives axons belonging to the AON, while it projects

to both the amygdala and the enthorinal cortex. The PC has a laminar organization
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similar to the palecortex [4]. The AON is in turn surrounded by the neocortex, the

prefrontal cortex, the PC, and the OT. It thus occupies a central position that facili-

tates to it interacting with other cortical regions. Although the OC connects to many

brain regions, the most part of its synaptic afferences belong to the OB. The OB then

mostly drives the OC activity. Therefore, so many different brain regions connecting

to the OC give insight into the importance of the sense of smell, and how it can be

influential in our lives. These regions are indeed reliable for many different func-

tions. In particular, the enthorinal cortex is involved in associative memory tasks,

the prefrontal cortex in mediating complex discriminative tasks related to behav-

ioral response, the OT in rewarded decision making, the hypothalamus in regulating

endocrine functions, the amygdala in driving emotional and visceral response such

as aggressivity, fear, and sexual attractions. Therefore, the OB is directly or indi-

rectly involved in many different brain functions that are not necessarily related to

the odor recognition.

Fig. 1.6 The olfactory cortex surrounded by other cortical areas (adapted from [4]).

Moreover, the OB seems to be a cross between conscious and uncoscious

processing. For example, even though pheromone-sensitive glomeruli are mostly

present in the AOB, someones are on the MOB [109, 118]. They seem to respond

to rewarded odors [117], projecting to the amygdala [118]. This creates an unclear

cross between the MOB and AOB circuits, then a loop formed by LOT and cortical
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back projections. Therefore, we can conclude that the MOB somewhat combines

conscious and unconscious processing.





Chapter 2

The columnar organization of the olfactory bulb

The connectivity of the OB was examined by infecting PRV. The examination re-

vealed that the OB is organized in many columnar computational units, called GUs.

Each GU is formed by a set of neurons related to a single glomerulus, in which the

GC column is the key-site for inter-glomerular interaction. The GC column has been

a core concept in our research project. It has been studied and reproduced by real-

istic simulations, proving its reliability in all computations performed by the OB,

such as the odor representation.

2.1 The experimental setup

PRV injections were performed into the OB in order to probe the OB circuitry. A

representative experiment consisted of multiple local injections into either the GL

or the PC.

When injections are performed into GL, the diameter of the injection site was

≈ 300 µm, covering 4-8 glomeruli. The infection worked in two steps. First, the

infection propagates to the M/Ts belonging to the infected glomerulus. Second, once

the PRV infection propagated into the M/Ts lateral dendrites, it passed through the

most potentiated reciprocal synapses, so infecting the GCs.

When injections are performed into PC, the diameter of the injection site was ≈

500 µm, covering all cortical layers. The infection thus spreaded retrogradely from

21
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Fig. 2.1 A section of the ipsilateral bulb posterior to the injection site [58].

the cortical neurons to the M/Ts through the M/T axons. Afterward, the PRV passed

from M/Ts to GCs through the most potentiated reciprocal synapses.

2.2 The evidence of the columnar organization

After injecting PRV into the GL, it was observed that the neurons were not randomly

labeled (Fig. 2.1). They were indeed grouped in clusters (i.e. column) of 40-50 µm

in diameter, oriented perpendicularly to the GCL boundaries. In 95% of cases, the

GC columns were extended through the full depth of the GCL, each was centered

beneath a single glomerulus. Taken together, these evidences suggested that GC

column is in anatomical relation with individual glomerulus. Moreover, an accurate

visual inspection revealed that the M/Ts were also infected upon every GC column.

Therefore, not only the GCs, but all neurons that are functionally related to a single
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glomerulus formed a computational unit that is anatomically columnar; this is called

GU.

2.3 The inter-glomerular connectivity

Thereafter, the PRV was in two different markers: red and green. The infected neu-

rons appeared in red, green, and yellow. In particular, yellow neurons were co-

infected (co-labeled) with both red and green markers.

The injections were performed into GL sites in order to determine the degree

of convergence or segregation in the lateral connectivity between M/Ts and GC

columns. The injection sites were separated by at least 500 µm to minimize the

chance of co-infection with both markers in M/Ts. Subsequently, a columnar la-

beling was apparent in the GCL (Fig. 2.2 A). All columns held only a few yellow

GCs, or none, suggesting a high degree of segregation in the OB connectivity. Note

that the co-labeled GCs were indicative of the amount of convergent M/T lateral

dendrites on a GC column. Therefore, M/T lateral dendrites formed sparse, and seg-

regated connections within GC column.

Then, it was determined the significance of the co-labeled GCs. First, by stechi-

ological counts, it was estimated the percentage of neurons in every labeling color.

Second, it was tested whether the convergence was more or less than expected. We

compared the observed GC co-labeling against the assumption that the convergence

is stochastic. For example, under this assumption, if 10% of M/Ts were in red, and

10% were in green, the expected yellow GCs should be 1% of total.

Fig. 2.3A shows the expected GC co-labeling with the stochastic connectivity

model. The abscissa and ordinate represent the percentage of red and green M/T

cells, respectively; the color scale shows the expected percentage of yellow GC cells.

Fig. 2.3B compares the experimental convergence (points) against the expected one.

Each point is representative of a real GC column; its color changes with the percent
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Fig. 2.2 Sparse, segregated labeling in GCL columns after GL injections [29].

of co-labeled GCs. The heaviest percent of co-labeled GCs within a column was 7%

lower than expected, suggesting that the convergence is non-stochastic and sparse.

2.4 The intra-glomerular connectivity

Another key question is how the 20-50 M/Ts within a GU connect to GCs. They

may connect to a common set of GCs, or connect to disjoint subsets of GCs.

PRV injections were performed in the APC in order to probe the connectivity

within a GU (Fig. 2.4). Again, red and green GCs appeared, without any yellows,

suggesting that the M/Ts of the same GU connect to disjoint subsets of GCs.
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Fig. 2.3 Labeling shows non-stochastic convergence [29].

Fig. 2.4 Segregated labeling from injections in piriform cortex [29].

2.5 Discussion

All of these experimental findings addressed the connectivity within OB. They sug-

gests that the OB is organized in GUs that are anatomically columnar (Fig. 2.1).

In particular, the GC column may exert a key-role in inter-glomerular communica-

tion. GUs connect to each other through sparse and segregated subsets of GCs (Fig.

2.2), whereas no intra-glomerular interaction occurs via GCs (Fig. 2.4). In light of

the experimental results, intra and inter -glomerular connectivity is schematically
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Fig. 2.5 Intra- and inter-glomerular unit connectivity [105].

shown in Fig. 2.5. A GC is limited in its own synaptic connections to its own M/T

within a GU (left), but can connect to dendrites from any M/T belonging to other

GUs (right).

The GC columns enable the lateral inhibition between GUs, as suggested by

previous model [62]- Taking into account the long extent of the MC lateral dendrites

[103, 104], the lateral inhibition might occur between glomeruli that are very far

apart.

Another model predicted that the GC column formation may rely on the odor

learning process [80], while GC column can be more or less demarcated depending

on the intensity of the glomerular response [62]. Therefore, a GC column can be

formed beneath only those glomeruli that are strongly activated during learning,

and their location might therefore reflect the odor identity and intensity, so as the

representation operated by the GL [105].

The structure of the GC column itself gives insight into the MCs and TCs con-

nectivity with the GL. We know that all MCs are inhibited by the PGs, which let

them firing and hushing all together within the same GU, when they receive strong

and weak inputs, respectively. Thus, when the MCs are firing lead to the GC column

formation [80]. TCs and MCs connect to different subpopulations of GCs that are

superficial and deep GCs, respectively; hence, their activities might drive the forma-

tion of the top and bottom halves of GC column, respectively. If TCs and MCs are
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both inhibited by the PGs, they should be either firing or hushing together within the

same GU. Therefore, both top and bottom halves of GC column within the same GU

are formed together when both MCs and TCs are firing in response to a strong in-

put. If TCs are not connected with the GL, they are not inhibited by the PGs, so they

could substantially fire even if the MCs belonging to the same GU are silent. Thus,

TCs may form half GC column extended only in the superficial half of the GCL

more often than observed, contradicting the fact that 95% of GC columns are ex-

tended through the full depth of GCL. Therefore, both MCs and TCs are connected

with the GL circuitry in the same way.





Part II

The basic principles of the realistic neuron

simulation





Chapter 3

Neuroscience modeling by realistic simulations

The membrane potential is the physical variable within the nervous system that owns

three important properties:

• it can operate at high speeds;

• it can be enrich by a large repertoire of computational primitives to implement

linear and nonlinear high-gain operations;

• it is able to represent sensory input pattern accurately.

The membrane potential controls a big variety of nonlinear gates, called ionic

channels, providing the basis for implementing nonlinear operations. These chan-

nels transduce sensory input into a train of brief and rapid electric pulses, called

action potential, which changes the voltage membrane, so leading to the neurotrans-

mitter release.

A simple and elegant fashion to describe the electrical properties of neuron mem-

brane consists of the characteristic membrane circuit. Every small segment of mem-

brane is approximated to a single point compartment; then, many compartments are

connected to represent a full dendrite or axon.

To a characteristic membrane circuit corresponds an equation set, by which one

can describe active and passive properties. In multi-compartimental simulations, an

equation set is associated to a single segment of membrane. This is the approach

used in realistic simulation environments such as NEURON [24].

31
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NEURON is a powerful simulation environment that allows to simulate all neu-

ron membrane behaviours so far observed. It also realizes the software and mathe-

matical primitives of our 3D model of the OB (see in the next chapter).

3.1 The passive properties of the neuron membrane

3.1.1 Voltage membrane

The membrane potential (Vm) is defined as the difference between intracellular (Vi)

and extracellular (Ve) potentials:

Vm (t) =Vi (t)−Ve (t) (3.1)

where t stands for time. At rest, the membrane has a negative potential Vrest (i.e.

resting potential) that ranges between -30 and -90 mV. The resting potential results

of the combined effects between two independent mechanisms, they are the intrin-

sic membrane permeability and the membrane-bound pumps. These mechanisms

induce two distinct perpetual ion flows across the membrane, so that the net ionic

current is zero. This leads to a dynamic electro-chemical equilibrium that charac-

terizes the value of Vrest. In particular, the intrinsic membrane permeability alone

would induce a membrane potential that obeys to the Nernst’s law. At the same

time, the membrane-bound pumps upkeep the ions gradient by actively transporting

sodium and potassium ions across the membrane, driving the membrane potential.

Maintaining this equilibrium requires a strong energy expenditure, it was indeed es-

timated that the membrane-bound pumps spend half of the total metabolic energy

consumed by mammalian brain.
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Fig. 3.1 The passive neuronal membrane [1].

The capacitance

The neuron membrane is made by two layers of phospholipid molecules that form a

thin insulating layer, isolating the cell from the external space. The high resistivity

of the lipids prevents passages of charge across the membrane, thus the electric

properties of the membrane can be described by a capacitance. The capacitance Cm

is a measure of how much charge Q needs to be distributed across the membrane to

set the potential Vm up to a certain value (Fig. 3.1).

Q(t) =Cm ·Vm (t) (3.2)

the capacitance is usually specified in terms of the specific membrane capacitance,

in units of microfarads per square centimeter of membrane area ( µF
cm2 ).

The current flow corresponding to a variation of the voltage membrane across the

capacitance is obtained by differentiating the eq. 3.2 with respect to time

IC (t) =Cm
dVm (t)

dt
(3.3)

Therefore, the membrane capacitance imposes a constraint on how rapidly Vm can

change in response to this current, so that the larger the capacitance, the slower the

voltage change.
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The Resistance

The membrane is endowed by a large variety of proteins (Fig. 3.1), which subserve

an enormous range of specific cellular functions, including ionic channels, pumps,

and receptors. They act as gates in the phospholipid barrier through which ions can

be selectively transferred from one side to the other.

In particular, ionic channel can be described as a current flow by a simple re-

sistance, called membrane resistance. The membrane resistance is usually specified

in terms of the specific membrane resistance (Rm), in resistance times unit area

(Ω · cm2).

The ions flow induces a current (Ic), of which characteristic equation is

dVm (t)
dt

= Rm · Ic (t) (3.4)

The membrane circuit

From an electrical point of view, a single compartment approximates a small mem-

brane segment to an RC circuit. When a segment is assumed to be so small, the

differences of electrical potential across the membrane are neglected. Therefore,

such a cell piece is considered to be isopotential.

The dynamics of this circuit is mathematically described by applying Kirchhoff’s

law. The current flowing across the capacitance is given by the eq. 3.3, whereas the

current through the resistance is

IR =
Vm−Vrest

R
(3.5)

Because of the conservation low of currents, the capacitive and resistive currents

must be equal to an external one

Cm
dVm (t)

dt
+

Vm (t)−Vrest

Rm
= Iinj (t)

where τ = RmCm with units of Ω ·F = sec. We can rewrite this as
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τm
dVm (t)

dt
+Vm (t)−Vrest = Rm · Iinj (t) (3.6)

This equation is known as the membrane equation and is a first order ordinary dif-

ferential equation.

An important detail is the sign of the external current. By convention, an outward

current, which is a positive charge flowing from inside the neuron to the outside, is

represented as a positive current. An outward current, which is delivered through an

intracellular electrode, makes the inside of the cell more positive; the physiologists

then use to say that the cell is depolarized. Conversely, an inward directed current

supplied by the same electrode is plotted by convention in the negative direction; this

makes the inside an external source but is generated by a membrane conductance.

3.2 Modeling of elongated neuron process: the cable equation

At this stage, one wants to extend the membrane model to represent a full dendrite

or axon. This comes as a series of discrete compartments, as expressed by the eq.

3.6, connected by an axial resistance Ri (Fig. 3.2). In light of the Ohm’s law, the

characteristic equation is

Vi (t,x)−Vi (t,x+∆x) = Ri · Ii (t,x)

when ∆x→ 0, and with Vm =Vi, it can be rewritten as

dVm (t,x)
dx

=−ri · Ii (t,x) (3.7)

In this scheme, we have two currents flowing through a neuronal tissue, the im(x, t)

that crosses the membrane at location x, and the Ii(x, t) that propagates along the

axial direction.

It is noteworthy the dominant fraction of current inside a neuronal process flows

along the axial direction, while only a very small amount flows across the mem-
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Fig. 3.2 Neuron membrane and axial resistance.

brane. This is due to both geometrial and electrical properties of the membrane

cable.

3.3 The action potential

Neurons generate series of brief voltage pulses in response to an input that is suffi-

ciently strong. These pulses, called action potentials (Fig. 3.3), propagate at constant

velocity and amplitude. The ionic mechanisms underlying the initiation and propa-

gation of action potential were elucidated in the squid axon by Hodgkin and Huxley

in Cambridge (1952)[5].

Hodgkin and Huxley dissected the membrane current into two components. The

total membrane current is thus the sum of the ionic current and the capacitive cur-

rent:
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Im (t) = Iionic (t)+Cm
dV (t)

dt

The action potential involves two independent voltage-dependent ionic conduc-

tances, a sodium conductance GNa and a potassium conductance GK . Hence, the

total ionic current flowing is the sum of a sodium current and a potassium current:

Iionic = INa + IK

The individual ionic currents I∗ (t) are linearly related to the membrane potential:

I∗ = G∗ (Vm (t))(Vm (t)−E∗)

where the ionic reversal potential E∗ is given by Nerst’s law for the appropriate ionic

species (Fig. 3.4).

Fig. 3.3 Example of action potential [2].

3.3.1 The potassium KDR current

In the Hogdkin and Huxley model, the equation of the potassium current is

IKDR = GKDR ·n(Vm (t))4 · (Vm−EK) (3.8)
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Fig. 3.4 The extension of the characteristic membrane circuit including the active membrane prop-

erties.

where GK is the maximal conductance of channel and EK is the reversal poten-

tial; n(Vm (t)) describes the state of a fictional activation particle and is dimen-

sionless number ranging between 0 and 1; IK as outward current is always positive

(for Vm ≥ EK). We assume that the probability of finding one activation particle in

its permissive state is n, while it can be in its nonpermissive state with probability

1−n. Thus the transition from a state to the other is governed by first-order kinetics:

n
βn

αn
1-n

where αn and βn are voltage-dependent rate (1/sec), specifying how many transi-

tions occur in a time unit. In light of the mass model law, this scheme corresponds

to a first-order differential equation:

dn
dt

= αn (V )(1−n)−βn (V )n (3.9)

The eq. 3.9 can be simplified, rewriting it in term of a voltage-dependent time

constant τn (V ) and a steady-state value n∞ (V ) with
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dn
dt

=
n∞−n

τn
(3.10)

where

τn =
1

αn +βn
(3.11)

and

n∞ =
αn

αn +βn
(3.12)

While τn has a bell-shaped dependency, n∞ is a monotonically increasing func-

tion of Vm (Fig. 3.5). The curve relating the steady-state potassium conductance to

the membrane potential is an even steeper function, given the fourth-power relation-

ship between GK and n.

3.3.2 The sodium current

The dynamics of the sodium channel are more complex. Hodgkin and Huxley as-

sumed the existence of two particles in the sodium channel that are the activation

particle m and the inactivation particle h. The characteristic equation of the sodium

currenti is

INa = GNa ·m(Vm (t))3 ·h(Vm (t)) · (Vm−ENa) (3.13)

where GNa is the maximal sodium conductance, ENa is the sodium reversal po-

tential, m and h are dimensionless numbers, with 0 ≤ m,h ≥ 1. By convention the

sodium current is negative throughout the physiological voltage range (for V <ENa).

The amplitude of the sodium current is contingent of four hypothetical gating

particles making independent first-order transitions between an open and a closed

state.

dm
dt

= αm (V )(1−m)−βm (V )n (3.14)
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and
dh
dt

= αh (V )(1−h)−βh (V )n (3.15)

Similar to the potassium channel, both τm and τh are bell-shaped curves, but with

a tenfold difference in duration (Fig. 3.5). While m∞ s a monotonically increasing

function of V , as expected of an activation variable, h∞ decreases with increasing

membrane depolarization, the defining feature of an inactivating particle. Without

inactivation, the sodium conductance would remain at its maximum value in re-

sponse to a depolarizing voltage step. For voltages below or close to the resting

potential, the activation variable m is close to zero while at positive potentials the

inactivation variable h is almost zero.

Fig. 3.5 Sodium and potassium time constants and activation/inactivation curves [3].
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3.3.3 The KA current

The KA is another potassium current that act in smaller time scale than the delay

rectifier current. The dynamics of the KA conductance are similar to the sodium

one. This current is not included in the original version of the Hodgkin and Huxley

model but its characteristic equation reflects the same kinetic scheme. The channel

is formed by a single activation particle m and a single inactivation particle h:

IKA = GKA ·m(Vm (t)) ·h(Vm (t)) · (Vm−EK) (3.16)

where GKA is the maximal conductance, EK is the potassium reversal potential.

m and h are dimensionless numbers, with 0≤ m,h≥ 1.

Similar to the other channels described above, both τm and τh are bell-shaped

curves, while m∞ is a monotonically increasing function of V , h∞ decreases with

increasing membrane depolarization, similar to sodium channel.

The sigmoid of activation particle is shifted few millivolts less than KDR and

Na particles. Thus the KA modulates the action potential, delaying its onset, and

decreasing its peak value. The overall effect is the induction of a faster hyperpolar-

ization. Paradoxically, although the KA current reduces the input resistance, it speeds

up the overall dynamic of action potential, so increasing the maximum firing rate.

3.4 Generation of action potential

In the Hodgkin and Huxley model [5], all currents flowing across the membrane are

described by a single equation:

Cm
dVm (t)

dt
= Gm (Vrest −Vm (t))+

GNam3h(ENa−Vm)+GKn4 (EK−Vm)+

Iin j (t)

(3.17)
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where Iinj is the current that is injected via an intracellular electrode, or induced by

the activation of synaptic receptor. The eq. 3.17 is a nonlinear differential equation

that constitute the core of our simulations environment. This equation allows to sim-

ulate the initiation and propagation of action potentials, together with the synaptic

activation.

The neuronal membrane responds in either of two ways to brief depolarizing

pulse; if its amplitude move the Vm below the threshold, the membrane returns to

the resting potential after slightly depolarizing. Differently, a stronger pulse that let

the Vm crossing the threshold, triggers the action potential. An important features of

action potential regards its shape, which is not affected by the stimulus.

The depolarization increases both the sodium (m) and potassium (n) activations,

and decreases the sodium inactivation (h). Because the time constant of the sodium

activation particle (τm), its activation is more than one order of magnitude faster than

the potassium activation particle (τn) and the potassium inactivation particle (τh) at

these voltages. We can consider the latter two to be stationary when the sodium

conductance GNa increases.

3.4.1 The membrane response to a strong stimulus

When the current pulse is strong enough to overcome the threshold, the depolariza-

tion due to the voltage-independent membrane components reaches a point where

the amount of INa generated exceeds the amount of IK . The membrane voltage thus

undergoes a runaway reaction: the additional INa depolarizes the membrane, fur-

ther increasing m, which increases INa, causing further membrane depolarization.

Thus the inrushing sodium moves the membrane potential within a fraction of a

millisecond to 0 mV and beyond. In the absence of sodium inactivation and potas-

sium activation, this positive feedback would continue until the membrane would

come to rest at ENa. After a delay both the slower sodium inactivation h as well as

the potassium activation n will turn on. Sodium inactivation acts to directly decrease
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the amount of sodium conductance available, while the activation of the potassium

conductance tends to try to bring the membrane potential toward EK by increasing

IK . Thus both processes cause the membrane potential to dip down from its peak.

Since IK persists longer at small amplitudes, the membrane potential is depressed

to below its resting levels. During this period, it is more difficult to initiate an ac-

tion potential than before; the membrane remains in a refractory state. The neuron

persists in this state until the inactivation h is not discharged and the potassium ac-

tivation is not closed again. At these low potentials, the system finally returns to its

initial configuration as Vm approaches the resting potential.

The ionic channels involved in generating action potential consume large amount

of energy, in form of ATP. In particular, the sodium channel needs threefold more

the energy consumed by the potassium channel, and such a quantity of energy in-

creases as the overlap over time between the opening curves of these channels. In

fact, under this condition, the depolarizing effect of the sodium is somewhat re-

duced by the potassium inrush, which occurs at the same time instant. Thus more

sodium is finally needed to generate a full action potential. Therefore, to optimize

the ATP consumption, mammal neurons own potassium and sodium channels of

which curves do not overlap during action potential [107].

3.5 The synapses

A fast communication between two neurons occurs through specialized microscop-

ical sites called synapses. The synapse is the functional unit whereby the brain con-

nectivity is realized, then several important mechanisms such as the memory and

the brain computations.

Synapse can be in two different types, they are the electrical (i.e. gap junctions)

and chemical synapses. The gap junction is the one structurally simplest, it is formed

by a neurite tissue that works likewise a passive cable. The electrical synapse is less

common than the chemical one. The chemical synapse consists of a presynaptic (ax-
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Fig. 3.6 A generic schematic representation of chemical synapse.

onal) terminal and a postsynaptic terminal that is usually located on dendrite (Fig.

3.6). The area of contact between pre and post -synaptic terminal has a diameter of

0.5-1.0 µm, whereas the terminal is only slightly larger.

The presynaptic terminal holds the neurotransmitters, which are packed in many

small vesicles. When an action potential invade the presynaptic terminal, it causes

an inrush of calcium ions via voltage-dependent calcium channels. They cause to

release the synaptic vesicle through a complex chain of metabolic reactions called

exocytosis. The neurotransmiters thereby diffuses through the synaptic cleft where

is uptaken by a postsynaptic receptor. Upon its activation, the receptor causes a rapid

and transient change in the membrane potential (Fig. 3.6, left part).

The receptor can work by two different action mechanisms. A ionotropic recep-

tor is directly coupled to a ionic channel, which opens and permits certain types of

ions to cross the postsynaptic membrane. Its action is rapid and transient. Ionotropic

receptors are the most part of synapses present in the OB, such as the reciprocal

synapse between M/Ts and GCs. On the other hand, binding of neurotransmitter to

metabotropic receptor triggers a complex cascade of biochemical reactions inside

the postsynaptic cell, based on molecules termed second messengers. It acts in hun-
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dred milliseconds. Finally, the overall process leads to opening some ionic channels

or modulate kinetic or conformation thereof.

From the anatomical point of view, synapse can be classified according to the

morphology into two classes, Gray type I and Gray type II synapses. Type I syn-

pases (i.e. asymmetrical synapses) have been found to be excitatory, whereas Type

II synapses (i.e. symmetric synapses) act in a inhibitory manner. Typical inhibitory

receptors are the GABA A and B, whereas the AMPA and NMDA are excitatory.

All these receptors bind with different type of neurotransmitters. Particularly, the

GABA receptors bind with GABA and glycine, while the AMPA and the NMDA

bind with glutamate and aspartate. With the activation of an excitatory synapse is

excitatory, the postsynaptic membrane potential depolarizes; this is also referred as

excitatory postsynaptic potential (i.e EPSP). Conversely, with the activation of in-

hibitory synapse, the postsynaptic membrane is hyperpolarized; this is usually called

inhibitory postsynaptic potential (i.e IPSP). To excitatory and inhibitory postsy-

naptic potentials correspond excitatory (EPSC) and inhibitory postsynaptic currents

(IPSC), respectively, induced by the activation of the ionic channels associated to

receptor. The instensity of a postsynaptic current Isyn is

Isyn = Gsyn (t)(Vm (t)−Esyn) (3.18)

where Gsyn depends on time and describes the time course of the postsynaptic cur-

rent, and it is related to the opening fraction of channel; Esyn is the reversal potential

of channel, and depends on the specifity of ion species that flow through, its value is

in accord to the Nerst’s law. The Esyn term thoroughly characterizes the excitatory

and inhibitory behavior of synapse, which is in turn related to the cases Esyn <Vrest

and Esyn > Vrest , respectively; the value of Esyn is 0 mV at NMDA and AMPA re-

ceptors, and -80 mV at GABA ones.
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3.5.1 The plasticity rule

The synaptic weight (w) is a scalar variable that describes the synaptic strength in

term of the peak of postsynaptic potential. Since the time course of postsynaptic

current is driven by the term Gsyn (eq. 3.18), it is immediate to assume

Gsyn ∝ w

The synaptic weight is moreover indicative of its internal state s in which the

synapse itself stands, which in turn depends on the past activities of neuron. It is

noteworthy the whole synaptic transmission, then neurotransmitter release and up-

take, are stochastic phoenomena, therefore, they can be seen from a probabilistic

point of view. The synaptic weight is

w = n · p ·q(t)

where w is the synaptic weight, n is the number of presynaptic vesicles, p is the

probability of presynaptic release, q is a variable that describes the postsynaptic

response which itself is a function of time.

The synaptic weight is not stationary and can change with the neuron activity.

This phoenomena is also referred as synaptic plasticity. There are diverse synaptic

plasticity protocols. The synaptic plasticity can be in two different form: the short

and the long -term plasticity, according to how long the change of weight lasts. The

synaptic weight can either increase, or decrease, or being stationary as function of

the stimulus. A synaptic weight increment is called potentation, while its decrement

is called depression.

Because of the small dimension of the synapses, they are not easy to be exper-

imentally analyzed. Hence, the mechanisms underlying the synaptic potentiation

and depression are not fully understood. Conjectures involving the presynaptic ter-

minal assume the potentiation/depression may change the number of vesicles n, or

the release probability p. Less usually, it is assumed that changes may involve the

postsynaptic receptor represented by the term q.
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However, despite of these assumptions, the synaptic plasticity can be described

by the fluctuation of the synaptic state ∆s. In particular, in our 3D model we have

implemented the non-hebbian synapses, in which ∆s depends only on the interspike

interval:

∆s =


+1 if the interspike interval is > 33 ms

−1 if the interspike interval is > 250 and ≤ 33 ms

0 otherwise

The maximum value of synaptic state is smax, so that smax = s1/2. The state s changes

as

s =

s+∆s if s < smax and ∆s =+1 or s > 0 and ∆s =−1

s otherwise

Finally, the synaptic weight is

w(s) =
1

1+ exp
(

s−s1/2
c

)
where the synaptic weight w is function of the state s through a sigmoidal law, c is is

the sigmoid slope, s1/2 is the center of sigmoid and characterizes how many spikes

at potentiation frequency are needed to achieve the maximum synaptic weight with

s = 0 as initial condition.





Chapter 4

A model of nonlinear cable equations for

neurons with the full dendritic tree

4.1 A brief introduction to the common experimental procedures

In their experiments, Hodgkin and Huxley used space and voltage clamp to charac-

terize the local dynamic of a section of squid axon.

From a geometric point of view, a squid axon can be seen as a long cylindrical

tube encased in a double-layered lipidic membrane and filled by axoplasm. Such

a membrane acts as insulator, whereas the axoplasm exhibits resistive properties.

Variations of the transmembrane voltage are thus due to the current that flows lon-

gitudinally through the axoplasm.

An important feature of the neuron membrane is its permeability to ion species.

This is fundamental properties to generate action potentials. The permability is mea-

sured in specific ionic permeability per unit area as a function of the transmembrane

voltage. The current flowing through the axoplasm induces fluctuations in the trans-

membrane voltage, so making difficult measuring the permeability to specific ions.

In order to eliminate these longitudinal fluctuations of the membrane potential,

one can insert a wire that acts as a terminal of the internal voltage inside the mem-

brane section. This wire must traverses the whole section and must be oriented along

the longitudinal axis. Under this condition, the transmembrane voltage is approxi-

mately constant. This method is called space-clamp.

49
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Instead, the voltage clamp is based on a negative feedback amplifier that keep

the membrane voltage at a fixed value. There are two major advantages in using this

method:

• the input resistance of the amplifier is high, so that setting the membrane voltage

up to a constant value is easy

• the output resistance is low, so the output membrane potential remains stable

even in presence of fluctuations within the section

4.2 The generation of the action potential

Here, we show an extended version of the Hogdkin and Huxley model [5] of the ac-

tion potential generation, including the distributions of the ionic channels through-

out an axonal or dendritic section. We assume the action potential propagation is a

function of the distance x, which is measured along the axial direction (Fig. 4.1). The

section is approximated as a thin cylinder with radius a. We assume that, within the

cylinder, the cytoplasm works as a ionic medium with conductive properties, called

core conductor. Even outside the cylinder, there is another type of ionic medium

with conductive properties and without any resistive property.

Fig. 4.1 Sketch of axonal section modeled as a thin cylinder with radius a.

Here, we define several variables that are used in the equations below:

Ri = πa2ri

Rm = 2πarm
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Cm =
cm

2πa

where

• ri is the axial resistance of the core conductor, measured in Ω/cm

• Ri is the specific intercellular resistance, measured in Ω · cm

• rm is the specific membrane resistance, measured in Ω · cm

• Rm is the membrane resistance, measured in Ω · cm3

• cm is the specific membrane capacitance, measured in F/cm

• Cm is the membrane capacitance, measured in F/cm3

• x is the distance along the axis of the core conductor, usually measure in µm

• Vi the internal voltage of the core conductor, measured in mV

We assume the current flows in the same direction along which x increases. Given

Vi as a function of x and t, because of the Ohm’s law, we obtain

∂Vi

∂x
=−Iiri

and
∂ 2Vi

∂x2 =−ri
∂ Ii

∂x
(4.1)

where Ii is the intracellular current.

The eq. 4.1 allows to find the relation between intracellular (Ii) and transmem-

brane (Im) currents within the section. If the transmembrane current crosses the

membrane outward (or inward) over a small length ∆x, the Ii decreases (or increases)

over ∆x (Fig. 4.2).

Given I1 and I2 crossing the section at x1 and x2, respectively, because of the

conservation law of current, we obtain

I2− I1 =−Im∆x

with the limit ∆x→ 0+, we obtain

∂ Ii

∂x
=−Im (4.2)

By combining the eq. 4.2 with the Ohm’s law, we obtain
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Fig. 4.2 Decrease/increase of Ii as the current Im.

∂ 2Vi

∂x2 = riIm (4.3)

We remind that the transmembrane voltage is V = Vi−Ve, where Vi and Ve are

the internal and external voltages, respectively. V , Vi, and Ve are functions of x and

t. Im is modeled by using a characteristic R−C circuit of neuron membrane, so the

membrane is approximated by many identical characteristic R−C circuits (chapter

3 for a more detailed explaination).

Because of the Kirchoff’s laws, we obtain

Im = cm
∂V
∂ t

+
Vi−Ve

rm
(4.4)

By combining the eq. 4.4 with the eq. 4.3, we finally obtain

rm

ri

∂ 2V
∂x2 = rmcm

∂V
∂ t

+V (4.5)

where

τm = rmcm

and

λ =

√
rm

ri

We thus rewrite the eq. 4.5 as

τm
∂V
∂ t

= λ
2 ∂ 2V

∂x2 −V (4.6)

This is called cable equation.



53

Next, we consider the specific ionic currents in addition to the eq. 4.5, obtaining

Im =Cm
∂V
∂ t

+ IK + INa

so that

Cm
∂V
∂ t

+
a

2Ri

∂ 2V
∂x2 −gK(V, t)(V −EK)−gNa(V, t)(V −ENa) (4.7)

where gK and gNa are the potassium and sodium conductances as in the classic

Hodgkin-Huxley model. This is the Hodgkin-Huxley model with spatial and tem-

poral domain. The variable x ranges in [0,L], with boundary conditions x = 0 and

x = L. At x = 0, there is a junction between different sections, and V (0, t) can be

equal as Vs(t) (i.e. Dirichlet boundary condition). At x = L, if the resistance is so

high that can be approximated as infinite, the amount of the axial current is neg-

ligible. Since the axial current is the voltage derivative along x, the last bounday

condition can be rewritten as
∂V
∂x

(L, t) = 0

which is know as zero-slope or von Neumann boundary condition, and it implies a

sealed-end terminal. This is the most common assumption in modeling the neurite

terminals.

There is another boundary condition, under which one assumes the cutted neu-

rite terminal is open (short-circuit). The intracellular voltage at the termination

thus coincides with the extracellular potential, then the effective potential is zero

(V (L, t) = 0).

Remark. The cable equation (linear or non-linear) can be inferred from the Kir-

choff’s law from a multi-compartmental model of action potential. In this model,

the flow balance among compartments is zero at limit when the compartment size

tends to zero. Conversely, the multi-compartmental model can be seen as a finite

differences approximation of the cable equation.
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4.3 Analysis of the Hodgkin-Huxley model in the

spatio-temporal domain

We introduce a generalization of the Hodgkin-Huxley model by including the equa-

tions of different types of ionic channels:
τ

∂u
∂ t = λ 2 ∂u

∂x2 −u−∑
N
j=1 ḡ jm

s j
j h

q j
j (u−E j)+ J(t)

∂m j
∂ t = α j(u)(1−m j)−β j(u)m j

∂h j
∂ t = a j(u)(1−h j)−b j(u)h j

(4.8)

where x∈ [0,L] is the longitudinal distance along the neurite (without branching),

t is the time, u(x, t) is the membrane voltage with N > 1 ion species, ḡ j is the

conductance peak of the j−th ionic channel with Nernst potential E j, m j(x, t) and

h j(x, t) are dimensionless variables describing activation and inactivation of the jth

channel, s j and q j are their respective numbers, α j, β j, a j, and b j are rate functions

that are nonnegative bounded smoothed functions so that 0≤ m j0,h j0 ≤ 1, and J(t)

is a generic external current. The initial conditions are u(x,0) = u0(x), u(0, t) =V0,
∂u
∂x (L, t) = 0, m j(x,0) = m j0(x), and h j(x,0) = h j0(x).

We want to show that the Hogdkin-Huxley model is well-posed in terms of

Hadamard.

Taking into account the results shown in Lamberti [139] and Mascagni [140,

141], we split the first equation in of the eqs. 4.8 into the non-linear cable equation

τ
∂u
∂ t

= λ
2 ∂u

∂x2 −B(m,h)u+D(m,h, t)+ J(t), (4.9)

where

B(m,h) = 1+
N

∑
j=1

ḡ jm
s j
j h

q j
j

and

D(m,h, t) =
N

∑
j=1

ḡ jm
s j
j h

q j
j E j
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Next, the eq. 4.9 is rewritten in a more abstract format by using a variational

setting (see e.g [135, 143]). We thus consider the following functions of the space

(see the format in [135])

H = L2(0,L)

V = { u ∈ H1(0,L), u(0) =V0 },

where H1 is a Sobolev space.

We then search for a solution (u,m,h), so that

u ∈ L2(0,T ;V )∩H1(0,T ;H) and m j, h j ∈ H1(0,T ;H)

Note that the rate functions α j, β j, a j, b j and are H−valued functions.

Without lossing in generality, hereafter, we analyse m j, but the same analysis can

be extended to h j. By assuming m0 ∈ H so that 0≤ m0 ≤ 1, we obtain

m′(t) = α(v)(1−m)−β (v)m (4.10)

where m(0)=m0, v is a function in L2(0,T ;H) over the domain (x, t)∈ [0,L]× [0,T ]

with T > 0, while α, β are H−valued integrable nonnegative functions.

We then define the following functions

A(t) =
∫ t

0
α(v)ds

B(t) =
∫ t

0
β (v)ds

Therefore, the only solution mv of eq. 4.10 is

mv(t) = e−(A(t)+B(t))
[

m0 +
∫ t

0
e(A(s)+B(s))

α(v)ds
]

Since α,β ≥ 0, we have

0≤
∫ t

0
e(A(s)+B(s))

α(v)ds≤
∫ t

0
e(A(s)+B(s))(α(v)+β (v))ds = e(A(t)+B(t))−1,

and

0≤ mv(t)≤ e−(A(t)+B(t))
[
m0 + e(A(t)+B(t))−1

]
= 1− (1−m0)e−(A(t)+B(t)).
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where 0≤ m(t)≤ 1 ∀t. The uniqueness of the solution is thus proved.

Moreover, if |v(t,x)| ≤ K, with (t,x) ranging in [0,T ]× [0,L], we have 0 ≤

α(v),β (v)≤CK . After several naive computations, we obtain

‖mv1(t)−mv2(t)‖H ≤ LK

∫ t

0
‖v1(s)− v2(s)‖Hds +‖m0,1−m0,2‖H

where LK is constant, v1 and v2 are two distinct functions with initial conditions m0,1

and m0,2, respectively.

We then define two functions

bv (t) = B(mv (t) ,hv (t))

dv (t) = D(mv (t) ,hv (t))

so that

bv ≥ 0

|bv +dv| ≤MK

|bv(t +h)−bv(t)|+ |dv(t +h)−dv(t)| ≤ Nk|h|

For two different functions v1 and v2, and their sets of initial conditions (m1
j,0,h

1
j,0)

and (m2
j,0,h

2
j,0), we find the following estimation

‖bv1(t)−bv2(t)‖H +‖dv1(t)−dv2(t)‖H ≤

C
(

Lk

∫ t

0
‖v1(s)− v2(s)‖Hds

)
+

N

∑
j=1

(‖m1
j,0−m2

j,0‖+‖h1
j,0−h2

j,0‖)

where C is constant. We then rewrite the eq. 4.9 as

τ
∂u
∂ t

= λ
2 ∂u

∂x2 −bvu+dv + J(t) (4.11)

The continous dependence on the data is thus proved.

In order to prove the local existence of the equation system (4.8), where W =

L2(0,T ;V )∩H1(0,T ;H), we assume that the operator Q : W →W is defined as
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follows: for a function v ∈W , we firstly find the solution (mv,hv) of the gating

equation. We then find bv and dv, together with the solution v̄ ∈W of the linear

equation (4.11) that is v̄ = Q(v). It is possible to find a time T so that the operator

Q is a contractive function, so its fixed point is a local solution of the nonlinear

problem. In order to find a global solution, we extend the local solution by a simple

way, as in the case of a set of ordinary differential equations. The the existence of

the solution is thus proved.

Finally, taking into account all these findings, we conclude that the problem is

well-posed in terms of Hadamard.

4.4 A mathematical model for soma and neurites

As noted by Rall [142], there is not a unique way to model the dendrites. There are

indeed many different ways, each addressing different aspects of the same problem.

Each modeling approach may be hence useful under specific assumptions and cir-

cumstances but not under others. This certainly regards the passive cable models,

which have been developed to investigate the roles of dendritic branching, tapering,

and spines, and passive voltage spreading throughout the neuron.

Likewise in Evans (2000) [138], we consider a nonlinear version of the Rall’s

single cylinder model. This provides the basis to approximate a dendritic tree to a

multi-cylinder morphology, if the dendritic tree is simmetric (see e.g. [144]). Fig.

4.3 shows this transformation.

The voltage spread throughout the ith neurite as described by the following non-

linear cable equation

τi
∂ui

∂ t
= λ

2 ∂ 2ui

∂x2 −ui−
Ni

∑
j=1

ḡi jm
si j
i j h

qi j
i j (u−Ei j)+ Ji(t), in(0,Li)× (0,T ) (4.12)

where M ≥ 1 is the number of neurites connected to the cell body, Li is the length

of the equivalent cylinder with i = 1,2, . . . ,M, taking an arbitrary time T > 0 and

with ui : (0,Li)×(0,T )→R. The initial conditions are ui(x,0)= ui,0, x∈ (0,Li), i=
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Fig. 4.3 Transformation made in the development of model of branching complexity. Under cer-

tain symmetry assumptions each dendritic tree can be represented by an equivalent cylinder giving

the equivalent multi cylinder model.

1, ...,M. We thus assume a neurite to be as a one-dimensional continuum entity in

[0,Li], where the junction point between the cell body and a dendrite is at x = 0,

while the dendritic terminal is at x = Li and has free end. Moreover, as all dendrites

are connected to the soma, the following M− 1 boundary conditions have to be

satisfied

u1(0, t) = u2(0, t) = . . .= uM(0, t), t ∈ (0,T ).

Because of the Kirchoff’ law, at x = 0, we have the following conservative equation,

us describing the somatic voltage

us + τs
dus

dt
−

M

∑
i=1

ai
∂ui

∂x
(0, t) = RsIs(t), t ∈ (0,T )

where ai are positive constants fixed a-priori and related to the conductance of neu-

rites, Is(t) is a current injected into the soma.

It remains to define all conditions for the dendritic free ends. We then assume the

homogeneous Neumann conditions
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∂ui

∂x
(Li, t) = 0, t ∈ (0,T ), i = 1, ...,M

Each cable equation is coupled with an equation set of gating variables

∂mi j
∂ t = αi j(u)(1−mi j)−βi j(u)mi j, mi j(x,0) = mi j0(x);

∂hi j
∂ t = ai j(u)(1−hi j)−bi j(u)hi j, hi j(x,0) = hi j0(x).

(4.13)

The analysis of the linearized case for multi-cylinder model was developed in

[136] and [137], in which one assumes that us does not variate. One could proceed

likewise in the single nonlinear cable equation, introducing the space functions

H := L2(0,L1)× . . .×L2(0,LM)

V := {u = (u1, ...,uM) : ui ∈H1(o,Li), ui(0) = uj(0) for i, j = 1, ...,M}.

It is then possible to define an operator

Q : H1(0,T ;H)∩L2(0,T;V)→H1(0,T;H)∩L2(0,T;V)

similarly to single nonlinear cable equation. However, the linearized case is modeled

by a set of M linear parabolic equations that are coupled to one boundary condition.

Remark. In order to make involved the NMDA receptors during synaptic inputs,

one can assume a nonlinear relationships between current and patched voltage,

∂u
∂x

(L, t)+g(u(L, t)) = 0, t ∈ (0,T ),

where g : R → R is a continuous function, experimentally obtained by voltage

clamp.





Part III

The 3D model of the olfactory bulb





Chapter 5

The 3D model of the olfactory bulb

The OB seems to be exquisitely tailored to be reproduced by a large scale 3D model.

This is useful to analyze how its spatio-temporal dynamics produce the odor repre-

sentation with complex natural odors [53]. Thus, we have built up the first 3D real-

istic large scale model of the OB. This makes experimentally testable predictions on

distributed processing of the odor input, introducing a powerful approach of general

applicability for investigating the functions of brain microcircuits.

5.1 Starting up the 3D model

We start by illustrating the patterns of glomerular activation in the dorsal surface of

the OB that are used in our model. Briefly, Fig. 5.1A (top) illustrates the experimen-

tal setup used to record these patterns of glomerular activation. Below is the laminar

organization of the OB. Particularly, the glomerular activity levels were recorded

by optical intrinsic imaging during the delivery of odor stimuli and clearing with

aspiration [53]. This provided the activity levels of 127 glomeruli distributed in the

dorsal area, evoked by the presentation of 20 natural odors (Fig. 5.1B). Typical in-

trinsic optical signal imaging of evoked activity during presentation of coffee and

kiwi is shown in Fig. 5.1C. This experimental data was used to simulate the odor

input in our model of the OB.

63
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Fig. 5.1 Experimental data of glomerular activation [38].

To relate our model of the glomerular patterns to the deeper MC-GC network,

we made a model of the laminar organization as shown in Fig. 5.1B. This shows a

tangential sagittal section of the OB model (similar to Fig. 5.1A, bottom), which we

built as a truncated ellipsoidal shape of 1050 and 1200 µm semi-axes. This size is

consistent with the adult mouse OB (as prof. G. Shepherd observed). To estimate a

reasonable distribution of glomeruli, a full set of 1800, 100 µm diameter, glomeruli

was initially randomly distributed in a 150 µm thick GL (green spheres); 127 of

them, in the dorsal part (Fig. 5.1D, light green spheres on the top) were mapped to

those studied experimentally, based on their 2D position (shown in Fig. 5.1B). Their
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spatial location on the OB surface implicitly determined the position of the 635 MCs

soma (5 per glomerulus) used in our model, which were randomly distributed in the

50 µm thick MCL within an area approximately below (± 100 µm diameter) the

glomerulus to which they projected their tuft. Unless explicitly noted otherwise, in a

typical network approximately 120,000 GC bodies were randomly distributed inside

a 400 µm thick GCL. Each projected a single radial dendrite into the 300 µm thick

EPL. Approximately 70,000 of them were connected to the MC lateral dendrites.

Typical glomerular normalized activation patterns by several different natural odors

are shown in Fig. 5.1E. These illustrate several important features of the odor pat-

terns. First, some patterns are quite extensive, as in mint; others are more restricted,

as in cloves. Second, the extent of activation ranges from a high to low intensity, as

in mint, to a limited range of intensity, as in kiwi. Finally, the specific sites and de-

grees of activated glomeruli are overlapping but different, consistent with virtually

all studies and with the original finding and hypothesis that the different patterns can

contribute to discrimination of different odors [99]. This provides a model of the in-

put patterns of glomerular activation that can be applied to any arbitrary pattern. In

addition, it sets up the framework for relating any input pattern to the corresponding

pattern of activation of the MC-GC network. These data were directly used to drive

the MC-GC network activity.

5.2 The algorithm for generating synthetic mitral cells

There are many methods available for generating realistic neurons, but only two are

actually used: one is Cuntz’s method [67] and other is L-NEURON [121].

By the first method, dendrites are generated as a minimum spanning tree con-

necting a cloud of points (i.e. carrier point), of which coordinates are randomly

generated. The spatial distribution of the carrier points is directly estimated from

neuron reconstructions, to ensure that the synthetic neurons have got realistic mor-

phologies. Even though this method is general, it has some shortcomings. First,
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estimating the spatial distribution of carrier point requires an intricate resampling

of the dendritic trees. Second, in order to achieve a good accuracy, this distribution

should be estimated over a large number of neuron reconstructions, whereas we only

had 8 MC real reconstructions [76]. Third, the method itself holds a certain degree

of empirism in choosing the number of carrier points, which grades the numbers

of branches and the total dendrite length of generated neurons [120]; by choosing

a wrong number of them, one therefore risks to generate unrealistic neurons, with

biased morphological features.

The second method, L-NEURON, was not useful to generate MCs. It indeed re-

quired to be extended to let the dendrites growing and curving as the EPL boundary

surface. However, adding such functions to L-NEURON would be not convenient,

since it could require a long coding.

In light of these reasons, we did not use any of these methods for generating

synthetic MCs. Rather, we have preferred to design a new general method based on

random walk. The full algorithm for generating realistic neurons is described in the

Appendix A.

5.2.1 The random walk

In order to generate the lateral dendrites of MC, we developed an extended version

of biased and correlated random walk [119]. Random walk mimicks the movements

of real biological process or system, reproducing growing and branching structures

with realistic variability. Particularly, our version of random walk embeds branching

and stop growth conditions that are governed from probability distributions. In order

to guarantee the realism of the synthetic neurons, we estimated all these distributions

from real MC reconstructions, as described in section 5.2.3.

A random walk can be seen as a sequence of steps, each described by spherical

coordinates. Given the ith step, its direction is described by two angles, θi and φi,

which are the azimutal and the polar angles, respectively. The direction of the i+1th
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step is then

θi+1 = θ̃i +∆θ

φi+1 = φ̃i +∆φ

(5.1)

where ∆φ and ∆θ are the random components, and are randomly picked for each

step. θ̃i and φ̃i are coordinates of the preferential growth direction, obtained as func-

tion of the previous direction by applying the bias (see section 5.2.2). Particularly,

the bias makes the lateral dendrites curving as the EPL boundary surfaces. It is

calculated at each step and depends on the space boundaries and the current spa-

tial position. Moreover, the direction of a given step is correlated with the previous

one. The influence of the initial direction fades over a substantial number of steps,

because of the combined effects due to the bias and ∆φ and ∆θ .

5.2.2 The bias

The bias controls the growth direction of dendrites, approximating the effect of the

membrane enzymes that drives the dendritic growth [122, 123]. The bias therefore

needs to be defined in accord to a specific neuron type.

Fig. 5.2 The correction factor applied for lateral dendrites of mitral cell [38].
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The bias we have defined for MC lateral dendrites is inspired by the force of

gravity (Fig. 5.2). It indeed operates a resistance against the growth direction that

is graded with its centrifugal component, and its intensity increases with the dis-

tance from the lower boundary surface of EPL. Of course, we use a mathematical

formalism to describe the bias.

The distance from the low EPL surface is:

h(pi) =

√√√√ 3

∑
j=1

(
pi, j− ci, j

R j

)2

(5.2)

where pi is the position reached at i-th step, c is the position of the OB center,

R1,R2,R3 are the axis of a hypothetical ellipsoid that approximates the lower bound-

ary surface of EPL. By using the h distance function instead of the euclidean one,

the distance is normalized, eliminating the distorsion due to the ellipsoid eccentric-

ity. Obviously, the value of h increases with the distance from the OB center c. It is

higher than 1, equal to 1, and less than 1, when pi is located beyond the EPL upper

surface, on the EPL upper surface, and within the ellipsoid surface, respectively.

Given the preferential growth direction vi, we consider a hypothetical point p′i

obtained by extending the dendrite from pi along vi:

p′i = pi +L · vi

where vi is the ith growth direction (described by spherical coordinates θi and φi as

shown in eq. 5.1). The bias is then

bi +

vi +α ·h(pi) ·ui if h
(

p′i
)
> h(pi)

0 otherwise

where L is the step length, α is the bias intensity factor, ui is the bias direction

that is perpendicular to the boundary surface. The first condition tests whether the

preferential growth direction is centrifugal, while the equation beside describes the

gravity-like bias. Finally, the new preferential growth direction is
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vi+1 = vi +bi

which is described by spherical coordinates θ̃i and φ̃i (eq. 5.1).

5.2.3 Parameter and distributions estimation

In order to carry out the parameters and probability distribution estimation, we have

analyzed 8 reconstructed MCs [76]. The raw morphology files were first rotated

along their principal axis. To calculate the spatial direction of a dendritic section,

the raw data points composing the dendrites were resampled in 20 µm segments,

as schematically illustrated in the top left of Fig. 5.3B. Since the spatial orienta-

tion of each section was expressed in spherical coordinates (Fig. 5.3B, bottom),

the direction of a new dendritic segment was randomized according to the prob-

ability distribution function for the relative displacement in the spatial orientation

of two consecutive membrane sections, ∆θ and ∆φ bar graphs in Fig. 5.3B, right.

The observed values for ∆φ and ∆θ were reproduced by the Laplace distributions

pd f (∆φ) = 3.125 ·e−|∆φ |/0.16 and pd f (∆θ) = 3.57 ·e−|∆θ |/0.14, respectively. Their

parameters were found by a maximum likelihood method, and resulted in a sta-

tistically significant reproduction of the data. Since the main focus has been on

the lateral dendrites, three additional main characteristics were analyzed in detail

(schematically indicated in Fig. 5.3A, right): the path lengths, the branch lengths,

and the probability for each branch order (defined as the number of bifurcations

from the cell body). The observed distributions of these features are shown in Fig.

5.3C. The path and branch length distributions were generated using a Gaussian (µ

= 838, σ = 238) and an exponential function (µ=227), respectively, which gave a

statistically significant reproduction of the experimental data (χ2 test, p = 0.269 and

p = 0.292, respectively). The probability for each branch order was directly applied

during the growth process.

For each synthetic MC, the shape of the soma was randomly chosen from the 8

reconstructions. A random number of (4-9) lateral dendrites arose from the soma
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Fig. 5.3 Statistical parameters of full mitral cell 3D reconstructions [38].

with an initial random diameter, Di, of 3-5 µm, tapering with distance from the

soma as Di−2.6 ·exp(−0.0013 ·d) to a minimum of 0.3 µm. For the apical and tuft

dendrites, we used data from the reconstructions and the constraints of our laminar

model of the OB to set the range of values for diameter and length, which were also
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constrained to reproduce several experimental findings on the electrophysiological

properties for MCs [64, 69]. Briefly, non-bifurcating apical dendrites were modeled

with 4-5 µm diameters and a length in the range of 420-520 µm (depending on the

relative glomerulus location). To take into account the tuft morphology, a random

number (between 4 and 6) of 0.8 µm diameter dendrites (40-60 µm long) were

added at the tip of the apical dendrites.

5.2.4 The realism of the synthetic mitral cells

Fig. 5.4 The synthetic mitral cells are statistically indistinguishable from real reconstructions [38].

The final result is shown for two typical cells in Fig. 5.4A. A Sholl plot [89],

typically used to compare the statistical properties of dendritic tree extension [67],

is arranged to test the quality of the synthetic reconstructions. This type of plot

(Fig. 5.4B, left) reports the number of dendrites intersecting with the surface of

a sphere centered at the soma, as a function of the sphere radius. An additional
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independent test was given by the proportion of dendrites of a given branch order

(Fig. 5.4B, right). Both plots show the close correlations between experimental and

model morphologies, which were statistically indistinguishable (Wilcoxon Signed

Rank test p = 0.229 for the Sholl Plot and p = 0.313 for the branch order).

5.2.5 A possible generalization

Fig. 5.5 The synthetic purkinje cells generated by the same procedure used to build synthetic

mitral cells [38].

This approach thus gave a close approximation of modeled cells to experimental

data. This method is completely general. An example of its application to the case of

a cerebellar Purkinje cell is shown in Fig. 5.5. In this case, the correction factor for

growing the dendrites in the appropriate (molecular) layer was directed vertically,

toward the surface (compare ui in Fig. 5.5 and 5.2).

5.3 The mitral and granule cell membrane properties

In this section we describe the properties of the MCs and GC that form the model

network. For MCs, uniform passive properties were used, with Ra = 150 S · cm, and
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τm = 7 ms, in agreement with recent experimental findings [85] at physiological

temperature. All passive and active properties, already validated against experimen-

tal findings, were taken from our previous model [62]. Briefly, in MCs, Na-, KA-,

and KDR-type conductances were uniformly distributed over the entire dendritic tree.

In GC, Na, and KA channels were distributed throughout whereas KDR was present

only in the soma, with resting potential set at -65 mV for all cells.

One important characteristic of the modeled MCs was the total dendritic length of

approximately 10,000 µm which determined the extent of interactions with GC. An-

other feature directly related to the cell excitability was the input resistance, which

peaked at approximately 20 MΩ . These characteristics were in accord with experi-

mental findings [13, 75]. Two other important properties for odor processing are the

latency of the first spike in response to odor input [77], and the firing rate [47, 90].

This is shown for the model of a typical cell in Fig. 5.6A bottom, for a single sim-

ulated sniff as a function of the odor concentration, as measured by the total peak

synaptic conductance activated on the MC tuft. As in experiments, as the strength

increases, the first spike latency decreases and the peak firing frequency increases.

The ranges are in agreement with experimental findings [63, 71].

With regard to GC (Fig. 5.6B, top), the total dendritic length was widely dis-

tributed. The GC bodies were distributed within the ellipsoidal GCL, which meant

that their radial dendrites vary in length as they rise to the EPL, with a consequent

variability in their input resistance. Below is shown the average and peak somatic

firing frequency during random activation of 50 MC synapses of increasing weights.

In this graph, the peak frequency rises with increasing synaptic input as in the MCs,

whereas the average frequency is shown reaching a lower level of firing rate, be-

cause the input due to the high level of synaptic firing, and corresponding high level

of synaptic currents, saturates the granule cell responses in their dendrites.
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Fig. 5.6 The mitral and granule cell properties [38].

5.4 The mitral and granule cell connectivity

The functioning of the network depends critically on the connectivity between mi-

tral and GC. The key factor providing for the connectivity is the dendrodendritic

synapses between the MC lateral dendrites and the spines of the GC in the EPL

[87]. The rule that nature uses to establish these synapses during development is

unknown. To set up the initial arrangement of the network, we use an algorithm in

which we fix the total number of GC in the GCL layer and the average number of

synapses for a specific segment of MC lateral dendritic membrane, one synapse for

either 2, 10, or 20 µm of length. A schematic illustration of this process is shown

in Fig. 5.7A. For each segment of mitral cell dendrite, one granule cell is randomly

chosen within a 50 µm rectangular volume inside the GCL (red box in Fig. 5.7A). A

spine is then added to the closest granule cell dendritic segment, and a dendroden-

dritic synapse is formed. As in previous models [40, 62], this synapse contains the

same proportion of AMPA and NMDA channels, with the appropriate compartment

of MC secondary dendrites containing GABA channels.
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The distribution of how many GC would be connected with a given number of

mitral cells is shown in the plot in Fig. 5.7A, bottom, for the assumptions of 1

synapse per 2, 10, and 20 µm of lateral dendritic length. It should be stressed this

is the connectivity presumably set during development, corresponding to logical

connections established between granule and MCs. The actual conductance of each

synapse will be dynamically determined by its activity, according to the plasticity

rule. Note that for the assumption of 1 synapse per 2 µm length, each granule cell

forms on average 2,000 synapses with MCs; with 1 synapse per 20 µm length, the

average is 16. This will allow testing simulations covering a wide range of possible

connection density.

Fig. 5.7 Mitral cell and granule cell connectivity [38].

As a consequence of this connectivity rule, the number of MCs connected to

a given number of GC is shown in Fig. 5.7B. Above the diagram shows a single

MC with its lateral dendrites, potentially connected to a number of randomly placed

GC and their dendrites. Below is plotted the proportion of MCs connected to a
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given number of GC, showing that the peak connectivity for a mitral cell could be

easily adjusted in such a way to connect, on average, from ≈500 to ≈2000 GC,

with a ratio ranging from about 20 to 100 GC per MC. Thus, as can be seen from

both plots in A and B, the actual overall density of connectivity can be adjusted in

the model, to test presumably corresponding functional consequences. A change in

synapse number and connectivity in the EPL during integration of adult-generated

GC has been experimentally observed, and suggests that this mechanism can be an

important variable for the network operations [92].

5.5 Odor Inputs and Olfactory Receptor Neuron Dose-Response

Relations

Information about an odor is contained in the activity of the ORNs, which are or-

ganized in functional classes, each expressing a particular receptor [11, 50]. To un-

derstand better the input/output operations of the OB, it is thus necessary to have

first a physiologically plausible representation of the signal that is delivered to any

MC, representing an odor and its concentration. This can be expected to be partic-

ularly important for natural odors, which appear to activate many ORN types with

a complex spatiotemporal distribution [53]. We start from the experimental find-

ings [12] suggesting that, during a sniff, the axons of a homogeneous population of

ORNs converging onto a single glomerulus generate a typical signal with precise

temporal pattern dynamics (Figure 5.7A). These axons release glutamate, which ex-

cites AMPA and NMDA receptors on the mitral cell dendritic tufts (reviewed in

[4]. Importantly, the peak amplitude of this pattern changes with odor identity and

concentration, but not its temporal dynamics [130].



77

Fig. 5.8 Modeling odor inputs and olfactory receptor neuron activation [105].

5.5.1 Olfactory Receptor Activity

To model the experimentally-observed time course of the excitatory signal conveyed

to the dendritic tuft of the MCs, we used a custom modification of the set of ordinary

differential equations based on a generic scheme previously used to model synaptic
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transmission [15]. In particular, the activation of a homogeneous population of ORN

is modeled as

SORN (t) = O(t)(1−D(t)) t ∈ [0,T ] (5.3)

where O(t) and D(t) are the solutions of the following ODEs
dO
dt = KO (1−C−O)

dC
dt = KC1C (1−C)+KC2 (1−C) ti ∈ [0, t1]∪ ...∪ [tn,T ]

dD
dt = KD1O(1−D)−KD2D(1−O)

where t j is the start time of the j-th sniff. In this scheme, there are three states, open

(O), closed (C) and desensitized (D). The O and C states reproduce the rise and

decay of the signal during a sniff [12], whereas the D variable implements receptor

desensitization which occurs at high sniffing frequency. The initial condition at the

beginning of a simulation (i.e. at t=0) are O=0, C=1 and D=0; at each sniff, C is

reset to 0. All constants are KO = 0.01ms−1, KC1 = 0.01ms−1, KC2 = 10−4ms−1,

KD1 = 1.7 ·10−4ms−1, KD2 = 0.01ms−1.

The overall synaptic current [16] generated on the mitral cell tuft dendrites by

odor activation was calculated as:

Isyn (t) = g(t)(Vm (t)−Eexc) t ∈ [0,T ] (5.4)

where

g(t) = g̃+gmax ·GL(c) ·SORN (t) (5.5)

Vm is the membrane potential, Eexc = 0 mV, gmax the peak conductance, GL(c) is

directly related to the odor identity, concentration, and ORN type (see eq. 5.6, in the

next paragraph 5.5.2) and g̃ implements a random (normal) background activity (0

± 1 nS) taking into account the physiological fluctuations in olfactory receptor neu-

rons activation. The resulting synaptic conductance time course (eq. 5.3) is shown

in Fig. 5.8B for three odor concentrations roughly reproducing the experimentally

OB observations shown in Fig. 5.8A. These equations were also able to reproduce

typical olfactory receptor neurons response at high sniffing frequency (Fig. 5.8C).
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5.5.2 ORN Dose-Response Relations

The equations described above realize a reasonable representation of the synaptic

input in a glomerulus in response to an odor at a specific concentration, but we

need to represent the responses to an odor as a function of the concentration, i.e.,

the dose-response curve. We started from the relative ORN activation level for 127

glomeruli (see Fig. 5.1A-C). We have these data for a set of 20 natural odors at one

(suprathreshold, but relatively low) concentration [53]. Experimentally, the ORN

activity is represented by dose-response curves, which correspond to the peak Isyn

current generated for each odor concentration. These curves can be expressed as Hill

functions, with different parameters for each odor-glomerulus pair. For example, the

overall response of the ORNs converging on glomerulus GLi in the presence of odor

U at concentration c, can be expressed as [130]:

GLi (c) =
Fmax

1+ 1
ηn

i

(
1+ Ki

c

)n i = 0, ...,NG (5.6)

where n is the Hill coefficient, Fmax is the maximal response, ηi is the transduc-

tion efficiency for odorant U and NG +1 is the number of glomeruli. The asymptote

of each GLi (c) is

asyi =
Fmax

1+ 1
ηn

i

(5.7)

and the concentration of odor U at half maximun response is Ki
n
√

2+ηn
i −1

.

In order to compare and analyze the response to different odors we need the odor-

response curve for each of our odor-glomerulus pair. We started from the relative

ORN activation level for 127 glomeruli. We have these data for a set of 20 natural

odors at one (suprathreshold, but relatively low) concentration [53]. Since this in-

formation is not experimentally available, the next step is thus to implement these

curves from suitable assumptions for all the parameters. For example, experimen-

tally, the Hill coefficient, n, is quite variable, in the range [0.1,18] [128, 130], and

Fmax can be considered to be an intrinsic neuronal property related to the maximum

activity that can be generated by any given ORN. For simplicity, in this paper we



80

fixed their value to 2 and 25, respectively, for all cases. From the raw data [53] we

have the GLi for all of our odor-glomerulus pairs at a single concentration. We call

this concentration cV and assume cV =1. For ηi (modulating the maximal response

at high concentrations) and Ki (related to the concentration at which there is half-

maximal activation), there are several experimental findings [128, 130, 55], showing

that each odor-glomerulus pair can exhibit an apparently arbitrary combination of

these parameters. To derive their values, it would be necessary and sufficient to

find two independent equations for each odor-glomerulus pair. We determined these

equations as follows. Assuming without loss in generality cV =1, for each odor U

from eq. 5.6 we olfactory bulbtain

ρi (c) =
Fmax

1+ 1
ηn

i
(1+Ki)

n i = 0, ...,NG (5.8)

Let us define ρmax = maxi=0,...,NG ρi. We assume that in all cases the asymptotic

value of the response is proportional to the value at cV , i.e.

asyi = αU
ρi

ρmax

where

αU = max
i=0,...,NG

Fmax

1+ 1
ηn

i

is also the asymptotic value of the dose-response curve for the odor-glomerulus

pair with the highest input at cV , i.e., GLh (cV ) = ρmax. To determine αU we must

define a range of possible values of asymptotic response (asyi) for each glomerular

input. From preliminary simulations, we empirically found that the minimum value

of asymax to form a column is approximately 1.5 greater than the average value of

asyi. Thus, to ensure that all odors would eventually be able to form a column, if

presented at a concentration high enough, we imposed that:

asymax =
1

NG +1

NG

∑
i=0

Fmax

1+ 1
ηn

i

= β

With β = 1.5. After standard algebraic manipulations we olfactory bulbtain that
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αU =
β

1− 1
NG+1 ∑

NG
i=0

ρi
ρmax

Finally, we can determine the (positive) ηi and Ki for all odor-glomerulus pairs by

solving the system: 
Fmax

1+
(

1+Ki
ηi

) = ρi

Fmax
1+ 1

ηn
i

= β
ρi

ρmax− 1
NG+1 ∑

NG
i=0 ρi

With β = 1.5, the above system admits positive solutions for all odors.

Following the procedure described here, we were able to write a set of Hill func-

tions representing the dose-response curves for a given odor. It is important to stress

that, to derive these (experimentally unknown) curves for the response of different

glomeruli to the same odor, we used the assumption that the relative ratio of their

asymptotic value is the same as that at the reference concentration (cV ). This con-

straint is important because it reproduces the progressive recruitment of glomeruli

often observed experimentally for increasing odor concentration [49]. Two typical

examples of odors (mint and onion) are shown in Fig. 5.8D (left), and the result-

ing dose-response curve of the most active glomerulus for each odor is shown in

Fig. 5.8D (right). It should be noted that concentration in these plots is reported in

arbitrary absolute units. Only the relative overall action is important, measured in

terms of the peak synaptic conductance that will be activated in the mitral cell tufts

to model an odor presentation. Taken together these results suggest one of the pos-

sible approaches to extrapolating missing information about odor inputs using the

available data and suitable constraints.





Chapter 6

The column formation and odor learning

The OB is organized in computation units, called GUs, that can interact through the

MC-GC circuit. Such interaction may even occur during learning, so conditioning

the configuration of the OB network in terms of sparse and segregated GC columns

[58, 29].

Understanding the neural basis of odor learning is difficult or impossible in ex-

periments, therefore it can be conveniently explored using our realistic computa-

tional model of OB [38]. Here, we have analyzed the synaptic interactions between

GUs through the MC-GC circuit. They have been related to the column shape, which

has been demonstrated to be affected from interaction between GUs. The interacts

can be negative or positive, whereas learning has been demonstrated to be a non-

commutative operator.

6.1 The validation of the model

We began by identifying experimental findings as a basis for validating our 3D

model of the OB. Single clusters in the OB were obtained from a pseudorabies virus

staining pattern after a single injection [58] (Fig. 6.1A, green spots in the GCL),

each cluster belonged to a single GU. We assume that these green spots indicate

GCs with active synapses on MCs at spatially segregated locations on their lateral

dendrites. It has been observed that the number of GCs involved in a column varies

83
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with distance from its center (Fig. 6.1A, bottom), and it was also demonstrated (Fig.

6.1B) that MCs belonging to the same glomerulus form connections with different

subsets of GCs [29] and make connections through their lateral dendrites with GCs

belonging to different GUs (yellow spots within columns in Fig. 6.1B).

Fig. 6.1 The 3D model can reproduce single- and multicolumn formation, as observed in the ex-

periments. [39].
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In order to validate our model against these experimental findings, we ran a simu-

lation in which a relatively strong input was presented to one glomerulus (glomeru-

lus 37) for a simulation time long enough to allow the synaptic weights to reach

equilibrium values (7 s). The final weight configuration is shown in Fig. 6.1E, left.

To make a clearer comparison with the experimental data (Fig. 6.1A), we visualize

the cells contained in a 200-µm-thick section centered on the glomerulus. MC lat-

eral dendrite segments were color-coded for the peak (normalized) inhibitory inputs

they receive from GCs. Green-colored points represent GC somas in which at least

one synapse was strongly potentiated more than 95% of its peak value. A clear col-

umn can be distinguished that is very similar to those observed experimentally (Fig.

6.1A), which also exhibit different widths and cell densities (Fig. 6.1A, bottom plot).

If we model a double injection in two of the MCs of the same glomerulus (red and

green in Fig. bottom plot of E, middle), we observe that they form connections with

different sets of GCs (red and green dots below the glomerulus), according with

experimental findings [29]. Finally, a double injection in two different glomeruli

(Fig. 6.1E, right), after a simulation activating two neighboring glomeruli, reveals

the presence of lateral synaptic connections between MCs, through GCs, belonging

to different glomeruli (Fig. 6.1E, right, yellow dots in the GCL), according with

experimental findings [29] (Fig. 6.1B). These results therefore show the model can

reproduce the basic experimental observations for single- and multiple-column for-

mation.

6.2 Column results of a balance between excitation and

inhibition

Previous model predicted the synaptic plasticity is the key mechanism for col-

umn formation [80]. This particularly occurs in the dendrodendritic reciprocal

synapses connecting MCs and GCs (see chapter 1), where both excitatory and in-

hibitory synapses incur in potentiation or depression as function of the firing rate
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Fig. 6.2 The formation of an isolated column requires a relatively strong input, a large number of

GCs, and mitral-granule synapses with a balanced excitation/inhibition ratio [39].

[17, 34, 20, 7]. Odor learning may therefore cause the synaptic plasticity, and so the

column formation.
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Plasticity in these dendrodendritic synapses may be activated by action potentials

backpropagating in the MC lateral dendrites, which thereby evoke the response in

the connected GC; the GC in turn inhibits the MC locally as feedback. The back-

propagation proceeds from the cell body toward distal lateral dendrites. It can be

then blocked by the inhibition due to the GC feedback, especially if the inhibitory

synapses are significantly potentiated. Such inhibition then decreases the number of

backpropagating action potentials with the distance from the cell body, so decreas-

ing the firing rate in the more distant lateral dendrites. Here, the reciprocal synapses

remain hence weakly potentiated. Such dynamic underlies the typical structure of

the GC column (Fig. 6.2A, left), where the inhibitory synapses are strongly poten-

tiated in proximity of the cell body, while the more distant ones remain weak (Fig.

6.2A, right). This configuration is assumed as control. Taking into account this dy-

namic, the GC column results of a balance between inhibition and excitation.

We have therefore investigated how the GC column shape is dependent on this

balance. This can be altered by changing the excitatory and inhibitory conductance

peaks in the reciprocal synapse, together with the input conveyed on MC tuft den-

drites. By reducing the input to half of control (Fig. 6.2B), even the firing rate de-

creases in the MCs, as well as in the connected GCs. The proximal synapses are

therefore less potentiated, so the formed column appears to be spare. Conversely,

by increasing the input to double of control (Fig. 6.2C), the firing rate increases in

both MCs and GCs. Thus, the GCs respond with such a feedback that overwelmes

completely the backpropagation, then the column cannot be formed. By decreasing

the inhibitory conductance peak to half of control (Fig. 6.2D), the action poten-

tials overly backpropagate in the MC lateral dendrites, so a major number of distal

synapses is potentiated. Hence, the column appears to be wider about double than

control. Moreover, if multiple connections were allowed between GC and more MCs

within the same glomerulus (Fig. 6.2E), the MCs could laterally inhibit each other,

impairing the column formation.
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Fig. 6.3 Columns interact in a predictable distance-dependent way [39].

In summary, the column shape is not only susceptible to variation of the ratio

between excitation and inhibition, but it also requires the MCs belonging to the

same glomerulus connect to disjoint subsets of GCs.
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6.3 Glomerular units positively or negatively interact with each

other in a distance-dependent way

How do glomeruli affect activity of each other through the inhibition induced

through the GC columns? To investigate this issue, we first calculated the distance-

dependent inhibition that a typical column (Fig. 6.3A) below a given glomerulus

can exert on another column, assuming that this is proportional to the average in-

hibitory weight. This is shown in (Fig. 6.3B), where we plot the average normalized

inhibitory weight of GC synapses versus the distance from the column center. As-

suming that all glomeruli have the same type of column associated with them, it is

possible to calculate theoretically a coupling score, defined as the extent to which

two columns can interact through the GCs that make synapses on MCs belonging

to both columns. The score was calculated as the normalized sum of the synaptic

weights of the GCs in common found within a 50 µm rectangular box centered be-

neath each column. The distribution of the coupling score for all of the possible

pairs of our 127 experimentally labeled glomeruli is shown in Fig. 6.3C as a func-

tion of the geodesic distance between their centers and implies that GCs in common

between glomeruli can receive additional input that can act in a positive or negative

way for column formation. It can be expected that most of this effect will be caused

by the strongest synapses.

To test this hypothesis, we ran two simulations in which glomerulus 37 was

weakly stimulated alone (Fig. 6.3D, left) or together (Fig. 6.3D, middle) with two

other strongly activated neighboring glomeruli (glomerulus 86 and glomerulus 123).

As can be easily seen in Fig. 6.3D, right, the coupling with strongly active neigh-

boring glomeruli promoted the formation of a better column by the weakly acti-

vated glomerulus 37. Coactivation of a more distant pair (glomeruli 61 and 10; Fig.

6.3E) resulted in a less pronounced increase of the column below glomerulus 37.

We tested this mechanism for different combinations of two glomeruli at different

distances from glomerulus 37, and the average (n = 9, ± SEM) proportion of GCs

with strong synapses below glomerulus 37 is shown in Fig. 6.3F.
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Fig. 6.4 Typical case in which the formation of a column can be hindered by activity in other

glomeruli [39].

A typical case in which the formation of a column can be hindered by activity

in other glomeruli is shown in Fig. 6.4. We considered how the quantity of strongly

potentiated GC synapses under glomerulus 37 (yellow in left panel) was affected by

the co-activation with a group of relatively distant glomeruli (red). For a first simu-

lation, the yellow glomerulus was activated alone, and it generated a typical column

(middle). The normalized proportion of potentiated synapses in three GCL regions

is shown in the inset. Then, in another simulation (right), the four red glomeruli

were also strongly activated. Column formation in region B, well-formed when the

yellow glomerulus was activated alone, was hindered when activity in the dendrites

of the MCs belonging to the red glomeruli tended to form clusters of inhibitory

synapses in different parts of the dendritic range of the MCs belonging to the yel-

low glomerulus.

Taken together, these results suggest that the sparse, distributed, and segregated

columns of active GC synapses, as those observed experimentally, can interact in a

way that can promote (Fig. 6.3) or hinder (Fig. 6.4) column formation on neighbor-

ing weakly activated glomeruli.
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Fig. 6.5 Odor exposure is a noncommutative operation [39].

6.4 Odor exposure is a noncommutative operation

Another crucial point for understanding how OB circuits work is the network re-

configuration in the presence of different inputs. In terms of column operations, this
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is equivalent to studying how new inputs may change the size and definition of any

given GC column. In Fig. 6.5, we show what happens when the same two odors,

activating the same neighboring glomeruli, are presented in a different sequence.

This is important because although each individual may be exposed to similar odors

during his or her life, the order in which odors are learned will be different. To ex-

plore this issue, we simulated the presentation of two odors in a different sequence.

The final configuration of potentiated GC synapses in the two cases was signifi-

cantly different (compare Fig. 6.5 A and B, left), with a different dynamic (Fig. 6.5

A and B, right). As also expected from the previous results, this effect depends on

the relative distances between the glomeruli. These results suggest that the process

of odor exposure is noncommutative. Each OB at any given stage of its life thus

contains a unique representation not only of the past odor learning episodes but also

of the order in which they were learned. This is especially true for odors that activate

neighboring glomeruli.

6.5 Discussion

This study focused on two main points directly related to the network mechanisms

underlying the input/output computational properties of the OB: the dynamic forma-

tion, interaction, and computational role of sparse and spatially segregated clusters

of GC synapses on MCs, in relation to given glomeruli that we term GUs. The model

gives new insight into the neural basis of the experimental findings on variations in a

columns size, connectivity, and cell density. This in turn suggests specific theoretical

and experimentally testable predictions:

1. Column formation and interaction is a dynamic process that depends in a pre-

dictable way on the concurrent activity of different GUs, their respective loca-

tions, and past odor inputs in such a way as to promote or hinder column for-

mation on neighboring GUs. This supports and gives a physiological plausible

explanation for the hypothesis and the experimental suggestions (reviewed in ref.
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15) of the existence of molecular-feature-activated clusters of glomeruli. Column

formation can be experimentally tested by examining changes in the activity of

the same set of GCs belonging to a glomerulus before and after delivering differ-

ent stimulation protocols to the glomerulus.

2. Each olfactory bulb at any given stage of its life contains a unique representation

not only of the past odor learning episodes but also of the order in which they

were learned. In principle, this effect can be experimentally tested by training

different animals to the same or different sequences of the same odors, and then

analyzing the spatial distribution of the columns formed in their olfactory bulb:

individuals trained with the same odor sequence should show fewer differences

among column size and distribution.

By previous 2D model of OB, it was predicted the inter-glomerular interactions

through GCs are non distance-dependent [81], whereas our 3D model predicts that

such interactions are distance-dependent, according to recent experimental findings

[57]. The major realism of of our OB model have been crucial in reproducing the

real grade of overlap among the lateral dendritic fields related to different glomeruli,

which finally leads to a more correct prediction.

Recently, it was investigated the role of the dSACs, they perform a precise lo-

cal inhibition on GC spine that limit the action potential propagation [31]. Under

this condition, a spine is completely isolated, so it works as an independent com-

putational unit. Therefore, dSAC action may block both positive and negative inter-

glomerular interactions (Fig. 6.3 and 6.4) during learning. In addition, the DSACs

may avoid the noncommutativity (Fig. 6.5) by selectively inhibiting the GCs that are

connected at more distant dendrites from the soma, restoring the same excitation-

inhibition balance of control. Taken together, the dSACs may not allow concurrent

interglomerular interaction to occur. However, testing these predictions remain still

not achievable by the current experimental techniques.

Moreover, dSACs may shift the GC baseline activity [114], perhaps in tandem

with the excitatory axon collaterals of TCs [76]. This mechanism would mediate

hypo- or hyper- response of GC that impaired the column formation with extremely
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low or high excitation intensities (Fig. 6.2). Thus, dSACs may regulate the GC re-

sponse during learning, eliminating those inter-glomerular interactions which im-

pair the robustness of the column formation process.



Chapter 7

Inter-glomerular coupling through the granule

cell columns and the odor coding over time

How do MCs take the input information processed in the GL and encode it for out-

put in the second GC level? The MC activity represents the output from the GU to

the OC; its firing rate is often used for this purpose [18]. However, although firing

rates contain enough information to recognize an odor [54], during an odor presen-

tation many MCs do not exhibit a significant rate change, especially in awake mice

[22]. Another way in which information can be encoded is through the spike tem-

poral distribution within a respiratory cycle [22]. One mechanism that can mediate

this type of coding is the synchronization of MCs from different glomeruli [21].

Experimental findings suggest that the GC-to-MC inhibition is organized in sparse

and segregated columns [58]; computational findings suggest that they may form a

computational unit with their related glomerulus [39]; and in a previous study it was

shown how this organization may promote synchronization between MCs belonging

to different glomeruli [37].

7.1 Spine relocation in adult-born granule cells

Recently, a new form of synaptic plasticity have been recently observed in the

OB, it relies on the synaptic spine relocation of adult-born GCs [115]. Whereas

synaptic potentiation/depression protocols and the GC neurogenesis have been so

far considered the only adaptation mechanisms of the OB. To different plasticity

95
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mechanisms correspond different action time scales. For example, synaptic poten-

tiation/depression operates in few minutes, GC neurogenesis within some days,

whereas spine relocation needs just few milliseconds. Therefore, spine relocation

would realize a high performance mechanism of synaptic plasticity, allowing fast

adaption to rapid environmental changes.

Previous studies on the OB have suggested that the shared inhibition can devise

the synchronization between the MCs [21] whereas a significant part of this inhibi-

tion is conveyed from the GCs; the reliability of GCs to drive the synchronization

was also confirmed from the model of the MC-GC network [37]. Taking into con-

sideration these suggestions, we want figure out how the mature spine migration can

affect the synchronization between those MCs belonging from different glomeruli.

Therefore, we have used the realistic simulations to unravel how the synchroniza-

tion changes as the percentage of the migrated spines. All of these simulations have

regarded three aligned glomeruli (GL86, GL37, GL123), each one with a formed

column below (Fig. 7.1). The migrating spines range from 0 to 6 % of the total

ones. This range is constrained to the spatial distribution of the GCs and MCs lateral

dendrites, according to experimental observations. Thus, the migrating spines stem

out from those GCs that are shared between the GL86 and GL123 with the GL37.

For each quantity of migrated spines, we measured the synchronization between the

GL37 with either the GL86 or the GL123. The synchronization has been measured

as the cross-correlation between the pair of poststimulus time histograms (PSTHs)

of the glomeruli that is obtained from 14 spikes trains evoked from the related sniffs

(Fig. 7.1, rasters plots) using a time bin of 20 ms (Fig. 7.1, histograms).

Although a visual inspection of both the rasters plot and PSTHs does not re-

veal any clear difference, the cross-correlation between the glomeruli pair changes

gradually as the percentage of spines migrated from the GL86 to the GL123.

Hence, these results suggest that spine migration would be a mechanisms that

promotes the quick adaptation of the network to an eventual new input leading to

a faster synchronization of the MCs then that obtained by an eventual formation

of the new spines. These results also suggested that the relocation of relatively few
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Fig. 7.1 Spine migration promotes a fast cells synchronization [115].
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spines in response to a new sensory input can be an effective mechanism for quickly

changing the set of synchronized MC, which in turn affects odor information pro-

cessing.

7.2 The information content carried by correlated spikes

To characterize the information content carried by the synchronous MC spikes, we

have analyzed the inter-glomerular synchronization during a sniff and how it is af-

fected by the MC-GC synaptic network configuration.

For this purpose, we needed to evaluate MC spike synchronization from the spike

times obtained in any given simulation, and then pool the results for the MCs be-

longing to a given glomerulus. Thus, we calculated the spike synchronization during

a sniff, and how its information content evolved as a function of time under different

conditions. Note that, the information content carried out by synchronous spikes can

be finally calculated from their probability.

The total simulation time was first divided in bins of equal size, with each bin

set to 1 if it contains at least one spike and 0 otherwise (Fig. 7.2A1). Two vectors

were formed with two spike trains from any two given MCs connected to distinct

glomeruli. A contingency table was then calculated based on the results obtained by

exploring the two vectors with a sliding time window (Fig. 7.2A2).

A fundamental step is the choice for the sliding window and the bin size, which

must be chosen in such a way to capture the maximum amount of information, in

light of the principle of maximum entropy [26], on MC synchronization, similarly

as shown in previous works. This can be pursued by considering that without GCs

the activity in any two glomerular units will have a higher average joint entropy

because the MC spikes are not expected to be correlated. The best combination of

time window and bin size is thus that resulting in the maximum reduction of the

joint entropy between spike trains obtained with or without GCs; in such manner

it is discovered the combination which intercepts the maximum information carried
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Fig. 7.2 Spikes train analysis used to calculate the information content of synchronized spikes

[105].

from the MCs spikes about the stimulus. In general, the joint entropy, i.e. the entropy

of a joint probability distribution (represented in our case by the contingency table)

is calculated as

H (Xt ,Yt) = ∑
a,b∈0,1

−p(a,b) log2 p(a,b)

where Xt and Yt are the discretized spikes inside a time window centered at t, and

p(a,b) is the probability to have a given value for a and b in the contingency table

for Xt and Yt .

The probability that any two MCs generate a spike within the same time bin can

be considered as a measure of synchronization. To capture the amount of informa-

tion from the simulations, we tested sliding windows of 25-125 ms partitioned in 8,

16, or 32 bins, to understand which combination results in the maximum average

difference in the joint entropy between simulations with and without GCs. It was

found that a 100 ms (16 bin) sliding time window gave the best result (Fig. 7.2B).
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The information content during a sniff was estimated by calculating the aver-

age difference between the average information on two MCs firing during a sniff,

log2
(
1/pi

)
, and its value at time t, log2

(
1/pi

t
)
, i.e.

∆ I =
1
s

s

∑
i=1

(
log2

(
1/pi)− log2

(
1/pi

t
))

where s is the number of sniffs. Note that, the average information depends on

the probability of spike synchronization, which shifts with the average firing rate

during a sniff. This is in turn modulated by the combined overall amounts of ex-

citation and inhibition conveying on tuft and lateral dendrites (by the columns),

respectively. Therefore, by subtracting the average information, we take out the dif-

ference between the cases with and without columns, where the different intensity

of inhibition causes then different firing rates.

The control condition was a model with two glomeruli approximately 500 µm

apart, each one trained with the same stimulus, in such a way to generate a column

(Fig. 7.3A). Note that, given the natural physiological variability of MC morphol-

ogy, included in our model, the columns are not identical. The information content

carried by correlated spikes during a sniff was estimated as eq. 7.2. The average

value (from 7 sniffs) under control conditions (i.e. with GCs) is shown in the right

panel of Fig.7.3B (black line); it was maximal after approximately 50 ms from the

sniff onset. Without GCs (Fig. 7.3B, red line), the information content was signifi-

cantly lower (Wilcoxon Signed Rank Test, p value < 0.001), suggesting that under

this condition no odor information could be propagated to the cortex [21]. Note

that negative values of ∆ I mean that the spikes in the MCs belonging to different

glomeruli are less synchronized than average, thus carrying less information. The

implication is that the GCL is able to transform the MC output signal in such a

way that a relatively large amount of information is transmitted within the first 100

ms from the sniff onset. This range can be related to the overall time course of the

inhibitory signal elicited by MCs during their bursting activity. Considering the ad-

ditional time needed to form a behavioral response, this result is consistent with

the experimental findings showing that odor recognition can occur within 200 ms
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Fig. 7.3 Information content carried by correlated MC spikes during a sniff [105].

from a sniff onset [51]. This time interval must include information passing through

other brain regions. The model suggests that most of the information from the OB

is transmitted within the first 100ms (with a peak at about 50ms).

Odor input, in principle, can stimulate any glomerulus. This will occur inde-

pendently from the presence of a column. The lack of a well-formed column in

general may result in reciprocal synapses that lack one or both of the excitatory

or inhibitory components. These configurations, termed symmetric or asymmetric,

were predicted by our model [40] and recently observed experimentally [9]. They

are schematically illustrated in the top plot of Fig. 7.3C for the two-glomeruli model

used in this case. To test their effect, we calculated the difference in information con-

tent from simulations in which only one column was present, below GL37. With re-
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spect to control, the information content is significantly lower when there is only one

column (Fig. 7.3C, bottom left, compare black with blue/green curves), indepen-

dently of the presence of symmetric (p < 0.001) or asymmetric (p = 0.011) synapses

on glomerulus 86 (GL86). However, asymmetric synapses can induce lateral inhibi-

tion and can affect the spike train in a significant way. As shown in Fig.7.3C (bot-

tom right), in the presence of asymmetric synapses (green bars) GL86 decreased

significantly the GL37 firing rate, whereas the opposite (GL37-mediated inhibition

on GL86) is not possible (Fig.7.3C, bottom right, compare green and blue bars for

GL86). This effect may have functional consequences for odor discrimination, be-

cause it would reduce the interaction between glomeruli activated by a relatively

new odor (i.e. for example with an asymmetric column) and other glomeruli previ-

ously involved with other odors (i.e. with a well-formed, and symmetric, column).

7.3 Discussion

In summary, lateral inhibition through GCL circuits is a basic mechanism for im-

plementing interglomerular communication and shaping synchronous spike distri-

bution across the sniff time course, maximizing the information content carried by

spikes. We hypothesize that the GL circuits are not involved in this effect, because

it requires a reciprocal lateral inhibitory mechanism. Such a mechanism cannot rely

on the GL circuit, which implements a feedforward inhibition. The role of the GL

circuit in this process cannot be studied in more detail in this work, where we im-

plemented glomerular microcircuits with an effective set of (experimentally con-

strained) equations rather than with explicitly interacting cells. When more exper-

imental constraints on morphology, electrophysiology, connectivity, and synaptic

plasticity of GL circuits become available, they can be readily introduced into the

model and test additional hypotheses.



Chapter 8

The odor operator theory

The previous chapter gives insight into the interactions between MCs and GCs

within and between GUs during learning. These interactions continue even after

the GC columns are formed, so conditioning the OB output. A mathematical char-

acterization of them allows to estimate several important features regarding the odor

representation space.

8.1 The mathematical framework based on the odor operator

We have designed a mathematical framework for analyzing the MC-GC circuit. This

is assumed to work as an operator that transforms a given input, convergent on the

GL, into an output, due to MC activities. By linear algebra, we aim to approximate

the highly non-linear interactions between and within GUs to unravel the struc-

ture of the odor representation space. This approach, of course, cannot replace the

realistic simulations, but would extend it by allowing an analytical and abstract in-

terpretation of their output.

We describe the MC-GC circuit in the form of a square matrix MOB, where an

entry i, j describes the overall inhibition on GUi generated by the activity of GU j.

The operator MOB results of the previous odor experience, then it is related to the

configuration of GC columns. Given an input vector I, and an output vector O (cor-
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responding to input and output of a generic OB, respectively), the odor processing

through the MC-GC circuit can be described as

O = I · (1−MOB) (8.1)

Also, we assume the interaction between GUs can be represented by the combi-

nation of the three matrices W exc, W inh, and H:

MOB =W inh ·H ·W exc (8.2)

where

• W exc is NxNGC matrix

• W inh is NGCxN matrix

• H is NGCxNGC matrix

NGC and N are the number of GC columns and GUs, respectively. Particularly, each

entry in W exc, wexc
i j , describes the overall synaptic weight (or excitation) converging

from GUi to j-GC column; conversely, each entry in W inh, winh
i j , is graded with

the overall synaptic weight (or inhibition) converging from j-GC column to GUi.

The H matrix is a connectivity matrix describing how the presence of different GC

columns is correlated within a given OB. This way suggests a general strategy to

study the OB, which can be applied on any specific OB, independently on its size

and connectivity.

8.2 Classes of odor operators

To illustrate the usefulness of this approach, we consider one of the simulation find-

ings: the presentation sequence of the learned odors affects the final network config-

uration (Fig. 8.1). This means that the OB in each individual is different, implying

that each individual presumably transforms the same input into different outputs.
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How can this be related with the fact that most individuals are able to recognize the

same odor independent from their personal history of odor exposure?

Fig. 8.1 Naive example of different odor operators that return same outputs with same inputs[39].

This question can be turned to how many different classes COB of operators MOB

result in the same output with a given input? We have estimated the number of

different operator classes by analyzing the structure of MOB. We call C m
OB the odor

operator class with m non-zero elements on each row of the matrices; k0 are rows

with only zeros, k1 are rows with only a single non-zero entry, k2 are rows with two

non-zero entries, and so on; N is the number of GUs so that N = ∑
m
j=0 k j. Formally,

the problem can be seen as the computation of |COB| under the following condition

∃I,O : ∃MOB,i,MOB, j ∈ COB,MOB,i 6= MOB, j⇒MOB,i · I = MOB, j · I

For m = 1 we have

|C 1
OB|=

N

∑
k0,k1=0

(
N
k0

)
Nk1 (8.3)

This is equivalent to the physiological condition in which each GU is able to inhibit

only one other GU among the k1 = N−k0 others. Assuming the inhibition of the k1

GUs involves only a proportions p of them, we can approximate to
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|C 1
OB|=

N

∑
k0,k1=0

(
N
k0

)
bp ·Nck1 (8.4)

For m = 2 we have

|C 2
OB|=

N

∑
k0,k1,k2=0

(
N
k0

)(
N− k0

k1

)
Nk1

(
N
2

)k2

(8.5)

This is equivalent to the physiological condition in which each GU is able to inhibit

only one other GU among the k1 = N−k0 others. Assuming the inhibition of the k1

GUs involves only a proportions p of them, we can approximate to

|C 2
OB|=

N

∑
k0,k1,k2=0

(
N
k0

)(
N− k0

k1

)
bp ·Nck1

(
bp ·Nc

2

)k2

(8.6)

In general, ∀m≤ N, the number of classes is

Ω
m
N

[
Nk1

(
N
2

)k2
(

N
3

)k3

...

(
N

m−1

)km−1
(

N
m

)km
]
= Ω

m
N

m

∏
i=1

(
N
i

)ki

(8.7)

where (
N
k0

)(
N− k0

k1

)(
N− k0− k1

k2

)
...

(
N−∑

m−2
i=0 ki

km−1

)
(8.8)

then

|C m
OB|=

c

∑
k0,k1,k2,...,km=0

Ω
m
N

m

∏
i=1

(
N
i

)ki

(8.9)

If m = N, we obtain

|C N
OB|= 2N2

(8.10)

whereas if only a proportion p of total GUs are involved

|C bp·NcOB |= 2bp·Nc
2

(8.11)

Finally, if m≤ bp ·Nc and N = ∑
m
j=0 k j ≤ bp ·Nc

|C bp·NcOB =
bp·Nc

∑
k1,...,km=1

k1+...+km≤bp·Nc
k0=N−(k1+...+km)

[
Ω

m
N

m

∏
i=1

(
bp ·Nc

i

)ki
]

(8.12)

with m = bp ·Nc
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|C bp·NcOB = 2bp·Nc
2

(8.13)

Fig. 8.2 There is a discrete number of operators that operate on a given input to give the same

output, in terms of firing rate [39].

Of course, the number of operators changes as a function of the parameters that

are the number of involved GUs and the degree of connectivity between them. Fig.

8.2 shows how these paremeters affect the (normalized) number of operators, as-
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suming an OB formed by 1,000 GUs. As can be expected, the number of operators

increases with the number of involved GUs, whereas it can increase or decrease with

their connectivity (Fig. 8.2, top). However, there is a specific combination of size

and connectivity for which the number of operators is higher. This optimal num-

ber can further increase or decrease with the number of GUs connected to others

(Fig. 8.2, bottom). It should be stressed that the actual number of operators will de-

pend on the values of the parameters, such as the number of GUs (which affects the

size of the operator) and the connectivity properties (which affect the way in which

non-zero elements are distributed in the operator).

8.3 Discussion

A theory based on experiments is necessary to gain insight into a complex sys-

tem such as the MC-GC network. The mathematical framework introduced in this

chapter illustrates how the transformation of an input into a specific output can be

described by a square matrix defining an operator corresponding to a specific con-

figuration of OB at any given instant of its life. Operators are commonly used to de-

scribe input/output transformation of neuronal signals. Typical examples are those

used to model the receptive field of retinal ganglion cells [124], representation of

time [125], auditory stimuli [126], and extracellular neural signals [127]. In our

case, this seems to be a promising approach that allows one to make general pre-

dictions about the properties, number, and structure of the operators representing

the odor stimuli. This appears to be the first time to our knowledge that the oper-

ations of the OB are represented in this way. General computational models of the

OB operations are usually implemented using a pattern recognition approach with

artificial or single-point neuron networks, built from scratch according to the kind

of problems/hypotheses to investigate. Here, we were instead interested in obtaining

an abstract representation of the OB that nevertheless retained a direct link with its

physiological components, structure, and properties at the single-cell level.
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The odor operator concept thus provides a framework for understanding how the

glomerular-based connectivity of the olfactory bulb can mediate non-commutative

learning experiences in different individuals that nonetheless can give rise to similar

odor perceptions. The degree of similarity can be seen to be a complex but analytical

function of both the number of involved GUs and how they are connected. Further

development of this approach should lead toward insight into the optimal balance

between numbers and sizes of GUs and the uniqueness of individual odor learning

experiences.





Chapter 9

A new model of the olfactory receptor neuron

response

The ORNs realize the earliest odor representation of the olfactory system, of which

they constitute the outermost layer. Each ORN has a simple structure, and even the

dynamic underlying its response may be relatively ordinary.

However, no model can predict its response to odor faithfully. Particularly, the

existing models are not able to predict synergistic or inhibitory responses evoked

by a binary odor mixture. Some of these models have been built without motivating

their equations by a kinetic. Here, we try to fix this shortcoming by defining a new

kinetic, verifying its ability in fitting the experimental data.

9.1 The previous kinetic

The ORNs constitute the outermost layer of the olfactory system, so they directly

interact with the external environment. They are tiny and morphologically homoge-

neous neurons that translate the identity and concentration of odor molecules into

neural activity. Therefore, they perform the first odor representation of the olfactory

system. If the reader wants to know more details about the ORNs, we remaind to

section 1.3.1.

An odor receptor is located on top of the ORN. It binds with odor molecules,

triggering a complex cascades of reactions that activate G-proteins. The ORNs are

in different subtypes, each corresponding to a different odor receptor. Every type

111
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of odor receptor is in turn sensitive to subgroups of odor molecules. This therefore

leads to different dose-dependent responses to different odors [128, 129, 130]. The

response is a (sigmoidal) Hill function of the odor concentration.

Previously, in order to model the ORN response, the following kinetic was de-

fined for single odor [129]:

R + U
k1U

k−1U
CU

k2U

k−2U
P

with the conservative law

R0 = R+CU +P

where R is the free receptor, U is the odor, CU is the complex formed after binding,

P is the product, and R0 is the overall of receptor.

By applying the Law Mass Model, and after a several substitutions, one finally

obtains the equation of the ORN response as function of the odor concentration:

P =
FU

1+ KU
U

The product P is related to the activated G-protein. It is graded with the maximum

opening of the receptor-coupled channel. The opening fraction of the channel in turn

grades the ORN response. The product P therefore predicts the ORN neural activity

in response to an odor at a certain concentration.

In presence of binary mixture (with two odors U and V ), the previous kinetic is

extended to

R + U
k1U

k−1U
CU

k2U

k−2U
PU

R + V
k1V

k−1V
CV

k2V

k−2V
PV

with the conservative law

R0 = R+CU +PU +PV

Thus, the overall product P for a binary mixture of U and V is
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P = PU +PV =
FU

(
U
KU

)n
+FV

(
V
KV

)n

1+
(

U
KU

)n
+
(

V
KV

)n (9.1)

Cruz and Lowe [130] demonstrated how this kinetic holds an ambiguity if one

considers a mixture formed by two identical odors, so that U = V . Under this con-

dition, the total concentration is 2U , so the eq. 9.1 is turned to

P = PU +PU =
FU

(
U
KU

)n
+FU

(
U
KU

)n

1+
(

U
KU

)n
+
(

U
KU

)n =
2FU

(
U
KU

)n

1+2
(

U
KU

)n

This differs from the response for single odor at double concentration which is

2PU =
2FU

(
U
KU

)n

1+2
(

U
KU

)n 6=
FU

(
2U
KU

)n

1+
(

2U
KU

)n = P2U

In order to fix this problem, by several reductions, Cruz and Lowe [130] rewrote

the eq. 9.1 as
FM

1+
[

1+ U
KU

+ V
KV

ηU
U

KU
+ηV

V
KV

]n (9.2)

while the dose-response curve for single odor is

PU =
FM

1+ 1
ηn

U

(
1+ KU

U

)n

Note that Cruz and Lowe [130] only performed a cascade of algebric manipula-

tions without modifying the original kinetic.

Marasco et al. [36] again extended the eq. 9.2 by constraining the exponent re-

lated to a mixture

nUV =
nU ηU KV +nV ρηV KU

ηU KU +ρηV KV

Thus, they eliminated any correspondence between the dose-response equation and

the kinetic. They also found the equations of the parameters ηUV and KUV :ηUV = ηU KV+ρηV KU
KU+ρKV

KUV = KU KV (1+ρ)
ρKU+KV
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So far, the kinetic are somewhat unreasonable. It indeed assumed the reversibility

of the product P, which can turn back to the complex. This would imply that the

ligands of odor molecules do not change after binding, which is not realistic.

Taking into account these shortcomings and the results obtained by the previous

models, we have built a new kinetic.

9.2 A new kinetic scheme

Biochemical reactions can be modeled through the kinetic of Michaelis and Menten

[131]. Here, we find a new kinetic to model the ORN response. We start by defining

our kinetic for single odor. It consists of the following reactions:

R + U
k1U

k−1U
R∗U

k2U DU
k3U

R

R∗U + U
k4U

k−4U
R∗U U

k5U D∗U + P
k6U R∗U + P

P
kP

As usual, we assume that the total receptor is conserved across reactions

[R]0 = [R]+ [R∗U ]+ [DU ]+ [R∗UU ]+ [D∗U ] (9.3)

The first reaction describes the odor receptor priming. This is the main novelty

of our model. Odor molecules with concentration U bind with free receptor R, pro-

ducing primed odor receptor R∗U but without making any product P. Therefore, no

ORN response is evoked by priming. The receptor priming is typically occuring

in metabotropic receptors, wherein the neurotransmitters pre-activate the receptors

without triggering any membrane voltage change. The response is subsequently

evoked when more neurotransmitters bind with primed odor receptors.

The primed receptor R∗U can either turn to desensitived receptor DU , or binding

with odor molecules, so causing the second reaction. The desensitived receptor DU

turns back to free receptor R. Instead, in the second reaction, likewise the first re-
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action, the primed receptor R∗U binds with odor molecules U forming the complex

R∗U U. This reaction makes the product P and desensitived receptor D∗U . Even in

our kinetic, the product P grades the ORN response. P is a generic state that may

be related to the active G-protein. In accord with calcium-signal imaging of ORN

response [12], the concentration of the G-proteins decay with time, as well as the

ORN response, which is modeled by the third reaction.

The first and the second reactions constitute a cooperative Michalis-Menten ki-

netic. It implies that the odor molecules use to bind with several distinct sites of the

same receptor (allostery). This kind of kinetic is tipical for synergistic/inhibitory

phoenomena. Additionally, in presence of different types of odor molecules, this

kinetic is extended by adding competive receptor binding, as explained in the next

section.

Next, by applying the Law Mass Model, these reactions are translated into a non-

linear equation set.

u̇ =−k1U ur+ k−1U c1− k4U uc1 + k−4U c2

ṙ =−k1U ur+ k−1U c1− k3U d1

ċ1 = k1U ur− (k−1U + k2U )c1− k4U uc1 +(k−4U + k6U )c2

ḋ1 = k2U c1− k3U d1

ċ2 = k4U uc1− (k−4U + k5U )c2

ḋ2 = k5U c2− k6U d1

ṗ = k5U c2− kP p

(9.4)

with the conservation law (eq. 9.3)

ṙ+ ċ1 + ḋ1 + ċ2 + ḋ2 = 0 =⇒ r (t)+ c1 (t)+d1 (t)+ c2 (t)+d2 (t) = r0 (9.5)

and initial conditions

r (0) = r0,u(0) = u0,c1 (0) = 0,d1 (0) = 0,c2 (0) = 0,d2 (0) = 0

while concentration of the reactants are
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u = [U ],r = [R],c1 = [R∗U ],d1 = [DU ],c2 = [R∗UU ],d2 = [D∗U ], p = [P], p0 = [R]0

Since the odor concentration within a nostril is high compared to the number of

receptors, we think that is reasonable to assume the quasi steady state approxima-

tion. Under this condition, one assumes that the complex formation is fast, so that

ċ≈ 0. It can be seen as the odor concentration does not significantly change during

the initial transient stage, achieving the steady-state very quickly. Its equation can

be therefore neglected when we find the solution at equilibrium of the eqs 9.4:

ṙ =−k1U ur+ k−1U c1− k3U d1 = 0

ċ1 = k1U ur− (k−1U + k2U )c1− k4U uc1 +(k−4U + k6U )c2 = 0

ḋ1 = k2U c1− k3U d1 = 0

ċ2 = k4U uc1− (k−4U + k5U )c2 = 0

ḋ2 = k5U c2− k6U d1 = 0

ṗ = k5U c2− kP p = 0

For sake of readibility, we prefer to avoid rewriting this equation set as many time

as it was manipulated. We rather prefer to briefly describe how it was manipulated:

first, we find d1, d2, and c2 that are replaced in the system; second, ċ1 is coincident

with ṙ which can be therefore ignored; finally, we replace c1 and c2. We thus obtain

c1 =
k1U

k−1U+k2U
ur

d1 =
k2U
k3U

k1U
k−1U+k2U

ur

c2 =
k4U

k−4U+k5U

k1U
k−1U+k2U

u2r

d1 =
k5U
k6U

k4U
k−4U+k5U

k1U
k−1U+k2U

u2r

p = k5U
kP

k4U
k−4U+k5U

k1U
k−1U+k2U

u2r

where KU =
k−1U+k2U

k1U
, K∗U =

k−4U+k5U
k4U

, FU
r0

= k5U
kP

, MU = k2U
k3U

, M∗U = k2U
k3U
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c1 =
ur
KU

d1 = MU
ur
KU

c2 =
u2r

K∗U KU

d1 = M∗U
u2r

K∗U KU

p = FU
r0

u2r
K∗U KU

(9.6)

The eq. 9.6 is the solution at equilibrium. By replacing all terms of the eq. 9.6 into

the eq. 9.5, we obtain

r0 = r+
ur
KU

+MU
ur
KU

+
u2r

K∗U KU
+M∗U

u2r
K∗U KU

= r
(

1+
u

KU
+MU

u
KU

+
u2

K∗U KU
+M∗U

u2

K∗U KU

)
In order to find r, the previous equation can be rewritten as

r =
r0

1+ u
KU

+MU
u

KU
+ u2

K∗U KU
+M∗U

u2

K∗U KU

By replacing the product p of eqs. 9.6, we obtain

p =
FU

r0

u2r
K∗U KU

=
FU

r0

u2

K∗U KU

r0

1+ u
KU

+MU
u

KU
+ u2

K∗U KU
+M∗U

u2

K∗U KU

=

FU
K∗U KU

u2 +
K∗U
u +MU

K∗U
u +1+M∗U

=

FU
K∗U KU

u2 +
K∗U
u (1+MU )+1+M∗U

Although this is not a Hill function, it is still a sigmoidal function.

9.2.1 The extended version of our kinetic for binary mixture

Here, we describe our model extended for binary mixtures.

R + U
k1U

k−1U
R∗U

k2U DU
k3U

R
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R + V
k1V

k−1V
R∗V

k2V DV
k3V

R

R∗U + U
k4U

k−4U
R∗U U

k5U D∗UU + P
k6U R∗U + P

R∗V + V
k4V

k−4V
R∗V V

k5V D∗VV + P
k6V R∗V + P

R∗V + U
k4U

k−4U
R∗V U

k5U D∗VU + P
k6U R∗V + P

R∗U + V
k4V

k−4V
R∗U V

k5V D∗UV + P
k6V R∗U + P

P
kP

with the conservation law

[R]0 = [R]+ [R∗U ]+ [DU ]+ [R∗UU ]+ [D∗UU ]+

[R∗V ]+ [DV ]+ [R∗VV ]+ [D∗VV ]+

[R∗UV ]+ [DUV ]+ [R∗VU ]+ [DVU ]

(9.7)

The concentration of reactants are

u = [U ],r = [R], p = [P], p0 = [R]0,

c1 = [R∗U ],c2 = [R∗V ],c3 = [R∗UU ],c4 = [R∗VV ],c5 = [R∗UV ],c6 = [R∗VU ],

d1 = [DU ],d2 = [DV ],d3 = [D∗UU ],d4 = [D∗VV ],d5 = [D∗UV ],d6 = [D∗VU ]

Even for binary mixtures, we apply the Law Mass Model, and assume the quasi

steady state approximation, as well as for single odor. By performing the same sub-

stitutions, we obtain
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c1 =
ur
KU

c2 =
vr
KV

c3 =
u2r

K∗U KU

c4 =
v2r

K∗V KV

c5 =
uvr

K∗U KV

c6 =
uvr

K∗V KU

d1 = MU
ur
KU

d2 = MV
vr
KV

d3 = M∗U
u2r

K∗U KU

d4 = M∗V
v2r

K∗V KV

d5 = M∗U
uvr

K∗U KV

d6 = M∗V
uvr

K∗V KU

p = FU
r0

u2r
K∗U KU

+ FV
r0

v2r
K∗V KV

+ FU
r0

uvr
K∗U KV

+ FV
r0

uvr
K∗V KU

(9.8)

so the conservation law can be rewritten as

r0 = r+ c1 + c2 + c3 + c4 + c5 + c6 +d1 +d2 +d3 +d4 +d5 +d6 =

r+
ur
KU

+
vr
KV

+MU
ur
KU

+MV
vr
KV

+
u2r

K∗U KU
+

v2r
K∗V KV

+
uvr

K∗U KV
+

uvr
K∗V KU

+

M∗U
u2r

K∗U KU
+M∗V

v2r
K∗V KV

+M∗U
uvr

K∗U KV
+M∗V

uvr
K∗V KU

=

r+
ur
KU

+
vr
KV

+MU
ur
KU

+MV
vr
KV

+

(
u

K∗U
+

v
K∗V

)(
ur
KU

+
vr
KV

)
+(

M∗U
u

K∗U
+M∗V

v
K∗V

)(
ur
KU

+
vr
KV

)
=

r
[

1+
u

KU
+

v
KV

+MU
u

KU
+MV

v
KV

+

(
u

K∗U
+

v
K∗V

+M∗U
u

K∗U
+M∗V

v
K∗V

)(
u

KU
+

v
KV

)]
The following equation is hence turned to find the equation for receptor r
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r =
r0

1+ u
KU

+ v
KV

+MU
u

KU
+MV

v
KV

+
(

u
K∗U

+ v
K∗V

+M∗U
u

K∗U
+M∗V

v
K∗V

)(
u

KU
+ v

KV

)
(9.9)

We simplify the equation of the product p (see eq. 9.8)

p =

(
FU

r0

u2

K∗U KU
+

FV

r0

uv
K∗V KU

+
FU

r0

uv
K∗U KV

+
FV

r0

v2

K∗V KV

)
r =(

FU

r0

u
K∗U

+
FV

r0

v
K∗V

)(
u

KU
+

v
KV

)
r (9.10)

Next, we replace the eq. 9.9 into the eq. 9.10, so obtaining

p =

(
FU
r0

u
K∗U

+ FV
r0

v
K∗V

)(
u

KU
+ v

KV

)
r0

1+ u
KU

+ v
KV

+MU
u

KU
+MV

v
KV

+
(

u
K∗U

+ v
K∗V

+M∗U
u

K∗U
+M∗V

v
K∗V

)(
u

KU
+ v

KV

)
(9.11)

By assuming that v = ρu and x = u+ v, we obtain u and v as function of xu = x
1+ρ

v = ρx
1+ρ

(9.12)

We replace the eq. 9.12 into the eq. 9.11

p=

(
FU

1
K∗U

+FV
ρ

K∗V

)(
1

KU
+ ρ

KV

)(
x

1+ρ

)2

1+
(

1
KU

+ ρ

KV
+MU

1
KU

+MV
ρ

KV

)
x

1+ρ
+
(

1
K∗U

+ ρ

K∗V
+M∗U

1
K∗U

+M∗V
ρ

K∗V

)(
1

KU
+ ρ

KV

)(
x

1+ρ

)2

which is then simplified as follow

p=
FU

1
K∗U

+FV
ρ

K∗V(
1

K∗U
+ ρ

K∗V

) 1

(1+ρ)2(
1

K∗U
+ ρ

K∗V

)(
1

KU
+ ρ

KV

)
x2
+

(
1

KU
+ ρ

KV
+MU

1
KU

+MV
ρ

KV

)
(1+ρ)(

1
K∗U

+ ρ

K∗V

)(
1

KU
+ ρ

KV

)
x

+

(
1

K∗U
+ ρ

K∗V
+M∗U

1
K∗U

+M∗V
ρ

K∗V

)
(

1
K∗U

+ ρ

K∗V

)
=

FU
1

K∗U
+FV

ρ

K∗V
1

K∗U
+ ρ

K∗V

1

(1+ρ)2(
1

K∗U
+ ρ

K∗V

)(
1

KU
+ ρ

KV

)
x2
+

(
1

KU
+ ρ

KV
+MU

1
KU

+MV
ρ

KV

)
(1+ρ)(

1
K∗U

+ ρ

K∗V

)(
1

KU
+ ρ

KV

)
x

+1+
M∗U

1
K∗U

+M∗V
ρ

K∗V
1

K∗U
+ ρ

K∗V

=

FU
1

K∗U
+FV

ρ

K∗V
1

K∗U
+ ρ

K∗V

1

1+ρ

1
K∗U

+ ρ

K∗V

1+ρ

1
KU

+ ρ

KV

1
x2 +

1+ρ

1
K∗U

+ ρ

K∗V

(
1+

MU
1

KU
+MV

ρ

KV
1

KU
+ ρ

KV

)
1
x +1+

M∗U
1

K∗U
+M∗V

ρ

K∗V
1

K∗U
+ ρ

K∗V
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We call its parameters

FUV =
FU

1
K∗U

+FV
ρ

K∗V
1

K∗U
+ ρ

K∗V

K∗UV =
1+ρ

1
K∗U

+ ρ

K∗V

KUV =
1+ρ

1
KU

+ ρ

KV

MUV =
MU

1
KU

+MV
ρ

KV
1

KU
+ ρ

KV

M∗UV =
M∗U

1
K∗U

+M∗V
ρ

K∗V
1

K∗U
+ ρ

K∗V

so obtaining

p =
FUV

K∗UV KUV
x2 +

K∗UV
x (1+MUV )+1+M∗UV

(9.13)

Finally, we have tested our model against the experimental data reported in

Marasco et al. (2016) [36]. We have test whether our model fits the experimental

data. This is shown in Fig. 9.1

For fitting, we have used a genetic algorithm that finds a configuration of param-

eters for equations of U and V that minimize the square errors for both equations of

U and V , and their mixture X .

9.3 Discussion

In this chapter, we have shown our kinetic that describes the ORN dose-response.

This is based on classic mechanisms and incorporate both competition and allosteric

interactions.

The previous kinetic [128, 129, 130] of ORN dose-response assumed the re-

versibility of the product P which grades the ORN response. This implies the odor

ligand can rebind with free receptor after reaction. In addition, an extended version

of this kinetic was empirically defined by constraining the exponent of the odor mix-
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Fig. 9.1 Our model fits the experimental data.

ture, but destroying its relation with kinetic. However, this does not take into account

recent suggestions that demonstrate how no synergy or inhibition should be mod-

eled through the exponents [132], since allostery does not seem to rely on multiple

binding with a single receptor. The origin of allostery should be rather researched

in the structure of the kinetic itself [133]. We have therefore addressed these is-

sues by building an extended version of Michaelis and Menten kinetic [131]. Our

kinetic thus incorporates the features of both competitive and cooperative phoenom-

ena, so it predicts both synergistic and inhibitory interactions between different odor
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components within a mixture. Our model performs a better qualitative fitting of the

experimental data (see Fig. 9.1) compared to previous models [36].

Further extensions, such as the total steady state approximation, may improve

our model. The total steady state approximation was demonstrated to significantly

improve the fitting of dose-response curves, especially with competitive kinetic

[134]. However, this makes a very complicate equation set that is hard to be in-

terpreted.

Finally, we will aim to a better characterization of the stability of our kinetic to

extract the conditions that lead to synergistic and inhibitory interactions.





Chapter 10

Glomerular and Granule cells Layers coordinate

temporal and spatial odor representation

A network of neurons in the OB implements information processing functions that

are necessary for odor recognition. The network is organized into two layers. In

the first layer, the olfactory nerves end in modules called glomeruli, where they

connect to the dendrites of M/Ts, and interneurons called juxtaglomerular cells. At

the second level, the M/Ts connect to GCs which are modulated by dSACs. The

M/Ts connected to a given glomerulus form what we call a GU, that is obviously

central to processing the olfactory input.

The results obtained with our 3D model of OB [38] suggest that a complex input

signal is processed by the OB in a multistage manner. Each processing layer is

independently needed but not sufficient to operate on the input in a specific way

in order to obtain an output that will be further decorrelated and recombined over

space and time at the next stage, in the OC.

10.1 The microcircuit of Glomerular Layer

There are different neuron populations at the GL level [8]. The current view is that

they interact among themselves and with an odor input to implement two major

mechanisms: (1) an olfactory bulb-wide odor input normalization, and (2) con-

trast enhancement generated by a local (intra-glomerular) lateral inhibition [14].

There are not enough experimental constraints to implement a biophysically real-

125
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istic model for each neuron type. The glomerular circuitry in this work was thus

represented in terms of a GU that carries out input normalization and lateral inhi-

bition between the glomeruli, rather than in terms of explicit cells and synapses. In

practice, we closely followed the approach and equations suggested by experimental

and computational findings [14, 32]. A schematic representation of the equivalent

microcircuits is presented in Fig. 10.1.

To take into account the olfactory bulb-wide normalization, we normalized the

dose-response curves GLi for glomerular input i (see section 5.5.2) with respect to

the mean over all inputs for a given odor using the transformation:

∗
GLi (c) =

GLi (c)−GLi (c), if GLi (c)> GLi (c)

0, otherwise
(10.1)

where GLi (c) = 1
NG+1 ∑

NG
i=0 GLi (c) and

∗
GLi (c) ∈ [0,1.5] for all c.

To model the CE effect, we assumed that the effective activity of the PGs pro-

jecting to glomerulus i, PGi , can be represented as

PGi (c) =


a

1+b

(
1
∗

GLi(c)
−1

) , if
∗

GLi (c)> 0

0, otherwise

where a and b are positive constants that are 0.6 and 0.01, respectively, the PGi (c)

value will be in the range
[

0, a
1− b

3

]
∀c.

The resulting excitatory signal on MC tufts dendrites was finally calculated as

∗∗
GLi (c) =


∗

GLi (c)−PGi (c) , if
∗

GLi (c)> PGi (c)

0, otherwise
(10.2)

The synaptic conductance in each MC described by the eqs. 5.4 and 5.5 takes

into account only the (presynaptic) ORN response to a given odor concentration

(eq. 5.6). To take into account the (postsynaptic) modulation due to the GL (eq.

10.1-10.2), these equations has been then extended by replacing the term GL(c) of
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eq. 5.5 with
∗∗

GLi (c):

g(t) = g̃+gmax ·
∗∗

GLi (c) ·SORN (t) (10.3)

where all terms were already explained in the section 5.5.1.

Fig. 10.1 Modeling how juxtaglomerular circuits transform natural odor inputs [105].

Based on these assumptions about the inputs, we next focused on competing

mechanisms acting on the several neuron populations at the GL level [32]. In Fig.

10.2A we schematically summarize their actions. The olfactory bulb-wide odor in-
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put normalization is obtained through the combined action of eTCs, SAs, and the

PGs network (implemented by eq. 10.2). The CE is generated by a local (intra-

glomerular) lateral inhibition mediated by periglomerular (PG) cell dendrodendritic

interactions (implemented by eq. 10.2).

To illustrate the consequences of each mechanism on the input, we start with the

complex input by the ORN activation levels of 127 glomeruli [53] at one arbitrary

concentration (c = 1) of mint (top panels) and onion (middle panels). For the pur-

pose of this analysis, a third (artificial) odor was built by randomly redistributing

the mint inputs over all glomeruli (bottom panels). It should be noted that, in all

panels of Fig. 10.2B, each glomerulus is color-coded using the average normalized

synaptic input on the tuft dendrites of the 5 MCs belonging to it.

Their overall effect is to implement a kind of winner-take-all effect (Fig. 10.1B,

right panels). The actual value of the peak synaptic conductance was chosen in such

a way that the activation of the strongest input in our data (GLmint
i ), during an odor

presentation at a relatively high concentration, was able to elicit APs in the MCs at

a firing rate consistent with experimental observations (up to ≈100Hz). The same

effect also occurs at a ten-fold higher odor concentration (Fig. 10.1C). Note that this

contrast-enhancement effect is at the GL input level, and it will be reflected in the

MC output.

Taken together these results support the hypothesis that GL processing gener-

ates a non-topographic contrast enhancement [14]. The spatial distribution of inputs

from natural odors ends up in a configuration of MC inputs in which most of the

glomeruli are inhibited below threshold, with a winner-takes-all effect that tends

to isolate very few strongly active glomeruli. In agreement with experiments [49],

stronger inputs (corresponding to higher odor concentrations) will progressively ac-

tivate additional glomeruli, which will still be bulb-wide normalized by the GL cir-

cuit action. Note that, under these conditions, a random divergent input will not

activate any glomerulus even at a relatively high concentration (Fig. 10.1 B and C,

bottom panels).
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Fig. 10.2 The role of glomerular and granule cells layers in contrast enhancement [105].

In Fig. 10.2 we show the different effects of the two layers. Learning natural

odor inputs with the GCL alone (Fig. 10.2A), i.e. without the GL mechanisms,

would lead to a diffuse and rather uniform distribution of inhibitory GCs weights

with practically no CE effect (Fig. 10.2A, right panel). This occurs because natu-

ral odors exhibit a spatially dense glomerular activation [53]. It is easy to see that,
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in addition to generating a distribution of inhibitory synapses inconsistent with ex-

perimental findings [58], this spatially diffuse network configuration would prevent

an effective CE action on MCs output. The GL alone would transform a dense odor

representation into a sparse and contrast-enhanced one (Fig. 10.2B), but cannot gen-

erate GCL columns; both layers (Fig. 10.2C) will finally result in narrow, sparse, and

segregated columns, in agreement with experimental findings [58, 29].

10.2 Natural odor learning and its consequence on the mitral

cells firing

In the previous sections we have studied the interactions between isolated glomeru-

lar units. Complex odors however require interactions among many units. We have

therefore used our full model, which has led to new insights into mechanisms related

to learning of natural odors.

We first note that, since a column can form only below the glomeruli which are

strongly active during odor training [80], the presence of a column in a particular

spatial location in the olfactory bulb can be related to odor identity and concentra-

tion. Furthermore, a column can also affect information propagation and decorrela-

tion of other columns [39]. Experimentally, the most important mechanism from this

point of view seems to be the decorrelation that an odor pattern undergoes after a

few hundred milliseconds from a sniff onset [42]. It is therefore important to explore

this issue in more detail, starting from the process of column formation following

training with different odors in the full model.

For each natural odor we fixed a concentration level to have at least one glomeru-

lar unit sufficiently activated to form a column. Odors mint, kiwi, and cloves were

thus sequentially presented as inputs. In all simulations, every odor lasted for 7 and

5 sec during the learning or testing phase, respectively, whereas all glomeruli were

activated every second to reproduce a sniffing frequency of 1 Hz. The column con-

figuration after each odor presentation is illustrated in Fig. 10.3, where we plot the
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spatial distribution of the inputs on the MC tufts (Fig. 10.3, top), the network con-

figuration in terms of GCs with strong synapses (Fig. 10.3, middle), and the column

distribution that would be observed with different slices (Fig. 10.3, bottom). Inter-

estingly, the shape, size, and distribution of the columns reproduce the same features

observed in experiments [58, 29]; new, relatively well-demarcated, columns were

formed after every odor learned.

Fig. 10.3 Mitral-granule cell network configuration after learning different odors [105].

To see how this network configuration affects unknown odor inputs, we studied,

with and without the GL, the MC firing pattern and evoked by three odors: mint

(known), pineapple (unknown), and chocolate (unknown). The results are shown in
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Fig. 10.4 Learning increases spatial decorrelation of inputs [105].
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Fig.10.4. We chose these odors because of their somewhat overlapping glomerular

activation, schematically represented in the left panels of Fig. 10.4A. Training with

both layers (Fig. 10.4A, center panels), resulted in most glomeruli responding with

different patterns for different odors, and well defined columns (Fig. 10.4A, plot be-

low control panels). This effect was clearly correlated with both lateral and feedback

inhibition. Although MCs not involved in the training period (e.g. 1 and 10, activated

by Pineapple and Chocolate) did not show any significant change, as they did not

have any associated column, most of the other MCs showed some sign of interac-

tion, in the form of change in the spiking temporal distribution. From this point of

view, an entire repertoire of features can be distinguished already with this relatively

simple configuration, from complete inhibition of glomerular unit activity (e.g. 12,

59, 41) to characteristic bursting properties (e.g. 12, 38, and 72) that depend on the

specific spatial interaction among active glomerular units and could be used to iden-

tify an odor input. Overall, these patterns were similar to what has been observed

experimentally [47]. Moreover, those MCs associated with a column exhibited a

burst-like activity during the ORN stimulus time course, due to the feedback inhi-

bition evoked from the connected GCs. This is consistent with experimental results,

which show a burst-like activity when a current was injected during the simulated

ORN response pattern [13]. Without the GCL (Fig. 10.4A, right panels), all odors

evoked a rather strong activity. Many glomerular units were more or less activated

by all three odors, with spiking patterns that lasted for the entire time course of the

MC tuft response to ORN activation (see section 5.5.2 and fig. 5.8). Without the

GL processing, odor presentation evoked a dense glomerular activity (Fig. 10.4B,

left panels). Under this condition, training formed a diffuse cloud of inhibitory GCs

weights (Fig. 10.4B, bottom left) that resulted in all glomerular units substantially

responding to all odors in a similar way (Fig. 10.4B, right panels). Taken together,

these results demonstrate why both layers are needed to process natural odors.
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10.3 Spatio-temporal odor representation after learning

10.3.1 The spatial overlap over time

For a more quantitative measure of the effects on glomerular unit interactions dur-

ing a sniff, we analyzed how the spatial activity patterns were affected by training

at different time windows from the sniff onset (0-40, 40-80 and 80-120 ms). For

this purpose, we calculated the spatiotemporal overlap, between any given odor pair

(Fig. 10.5, bottom), as the cosine between the vectors formed by the average spike

number of the MCs belonging to each glomerulus within each time window. Be-

cause glomeruli have a fixed spatial location, these vectors can represent the spatial

activity pattern of the olfactory bulb. Each pair exhibited a distinct level of spatial

overlap, depending on their spatial and temporal activation.

Before training (Fig. 10.5A), odors exhibited more or less overlap that depended

on the spatial distribution of the active glomeruli. Chocolate was relatively less over-

lapping with mint with respect to pineapple during the entire observed period (com-

pare overlap table for mint-choc and pine-choc in Fig. 10.5A). Mint and pineapple

instead exhibited a time dependent overlap that was maximum in the 40-80 ms win-

dow. These values were entirely dependent on the relative strength and time course

of the glomerular input for each odor. It should be noted that this configuration

corresponds to an OB in which there are only GL circuits.

Training (Fig. 10.5B) resulted in an overall activity reduction in nearly all

glomeruli, especially those activated by an odor already known to the network (such

as mint), and thus with well-formed columns (see the right panel of Fig. 10.2C and

the left panels of Fig. 10.3). Although this reduction was already evident in the time

window just after the stimulus onset, the overlap among odor pairs (especially for

those unknown to the network) was not affected during the same period. However, it

was systematically reduced in all odor pairs during the time course of the stimulus.

It should be stressed that this effect cannot be obtained without the GL circuit (Fig.

10.6). These results suggest that the GCs can strongly change the spatiotemporal
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Fig. 10.5 Spatial mitral cell activity decorrelates over time after learning [105].
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structure of the MC spikes in such a way as to disambiguate similar input patterns.

The overall effect is consistent with experimental findings [6, 42], and our model

predicts that it will be stronger for odor pairs containing a known component (mint,

in this case) and lower for unknown odors.

Fig. 10.6 GCL alone cannot decorrelate mitral cell activity over time [105].

In summary, odor learning reduced the relative overlap between each odor cou-

ple, therefore enhancing the differences between the related spatial activity patterns

and the odor discrimination abilities of the olfactory bulb. This is in accord with

cognitive testing that has revealed that odor learning gives significantly improved

discrimination accuracy in rats [19, 44, 22].

The overlap reduction is dependent on the presence of well-formed columns,

which are essential for this mechanism to work. Columns with an inhibitory action
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that is not spatially segregated or strong enough will not work well to reduce the

input overlap. A columns size, shape, and overall effect on action potential back-

propagation depend on the peak inhibitory synaptic conductance [39] and, more

generally, on the balance between excitation and inhibition [62]. The control condi-

tions used in our model can be considered as balanced, from this point of view.

Fig. 10.7 After learning, the spatial overlap in average firing rate decreases over time [105].

We then tested how a column can change the input overlap using peak inhibitory

conductance values half or double compared with control. After training, the same

odors were presented to compare the relative overlap average between each odor

couple. The results reported in Table 1 show how significant deviation from a bal-

anced (control) condition results in a worse and less stable reduction of the overlap

between input patterns, suggesting an impaired discrimination of odors.

The average change in the overlap, obtained after testing the model trained with

3 odors, was calculated from all possible pairs of 19 natural odors (Fig. 10.7). Be-

fore training (Fig. 10.7, red symbols), the overlap was relatively high and constant

throughout the sniff. After training, it was significantly reduced within 80 ms (p <

0.001) within all time windows for each odor couple. This was observed for many

(but not all) pairs, as shown in the middle and right panels of Fig. 10.7.

In summary, these results show what computations are performed by the GCs

during odor learning. GCs decorrelate the odor representation by glomerular units

over time. For this to occur, well-formed columns are necessary. These results help
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to explain why the olfactory cortical representation of odors exhibits a reduced over-

lap compared to the GL [48], and why zero-noise correlation occurs between the

neurons of the anterior pyriform cortex during odor recognition [41].

Table 1 Overlap in average firing rate for different peak inhibitory conductances.

0-40 (ms) 40-80 (ms) 80-120 (ms)

Control 0.57 ± 0.15 0.40 ± 0.25 0.42 ± 0.19

half inh. 0.57 ± 0.15 0.47 ± 0.21 0.44 ± 0.18

double inh. 0.56 ± 0.14 0.37 ± 0.30 0.46 ± 0.18

10.3.2 The relative spatial overlap between odor pairs

We finally consider that with learning of an increasing number of odors, it may be

predicted that the columns will gradually merge into a large, structurally undefined,

set of strongly potentiated synapses. This could be especially true for complex nat-

ural odors, as those explored in this work.

To study this effect, the difference in the correlation between odor pairs before

and after training with different odors was calculated (Fig. 10.8B). Brighter pixels

indicate a progressively larger decorrelation. As can be gathered by the increasing

number of brighter pixels, odors were more and more decorrelated with training.

However, after training with all 19 odors the decorrelation appeared to be much

reduced or absent. In Fig. 10.8C we plot the average change in correlation between

any two odors as a function of the number of trained odors. Taken together these

results suggest that there may be an optimal number of odors on which the olfactory

bulb can operate at any given time.
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Fig. 10.8 Odor learning affects the relative spatial overlap between odor pairs [105].

10.4 Discussion

The overall picture emerging from the results of this study is one in which a com-

plex odor signal is processed in a multistage manner, at the GL and GCL. Each

processing layer is independently needed (but not sufficient) to operate on the input
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in a specific way. We summarize the findings and their interrelation with regard to

contrast enhancement in the GL and temporal decorrelation in the GCL.

To begin, an initial preparatory stage takes place in the olfactory neuron input. As

summarized in Fig. 10.9, natural odor molecules have a dense input representation

in terms of populations of activated glomeruli [53], even at relatively low concen-

trations. In contrast, monomolecular odor molecules activate only few glomeruli.

Representing this natural odor distribution is novel in our 3D model [38]. We show

here that it is key to the sequence of operations.

Fig. 10.9 Schematic representation of the functional consequences of glomerular and granule cell

layers in the olfactory bulb [105].
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At the next stage (Fig. 10.9, second layer), the fundamental role of the GL is to

make the input spatially decorrelated and sparse. This is accomplished through a

winner-takes-all processing that selects only strongly active glomeruli (Fig. 10.1).

We have shown that this process cannot be implemented by the GCL in the presence

of the dense input activated by natural odors (Fig. 10.2 and 10.3B). The effect of

this mechanism, mainly operating through juxtaglomerular cells, was shown in a

reduced network of the GL with simplified artificial inputs [33]. Here we extended

its validity and scope by applying it in our realistic 3D model.

At the final stage (Fig. 10.9) in the GCL we show that several critical operations

take place. GCL processing is needed for column formation and interaction, during

learning, and to add temporal processing and additional spatial decorrelation, during

odor presentation. These mechanisms operate following the odor-dependent activa-

tion of the MCs and their reciprocal synapses within the GC network; according to

the columns present at any given time, the MC output in the presence of different

inputs is spatially sparse and decorrelated over time (Fig. 10.5B). We show that the

process cannot be properly implemented without a GL preprocessing (Fig. 10.6).

The model suggests that this interaction can be especially important during odor

learning, which relies on synaptic plasticity at the mitral-granule circuit level. We

stress that, although synaptic plasticity has not been directly observed in the recip-

rocal mitral-granule cell synapses, there are several indirect experimental findings

suggesting its occurrence in the olfactory bulb [35] and in the mitral [17, 34] and

GCs [20, 7]. This is an important issue, and we plan to investigate alternative hy-

potheses in a future work.

Our approach makes it possible to put into this same framework a number of

theoretical and experimental findings. Juxtaglomerular cells in the GL act through

interglomerular and local interaction with the mitral cells [32, 14]. By contrast, GCs

in the GCL operate on MCs through feedback and lateral inhibition over time and a

larger spatial domain. This temporal processing and synchronization was predicted

in the original description of the dendrodendritic interactions [87, 86]. Their con-

current action is such that, within ≈150 ms from the stimulus onset [51], the output
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of the olfactory bulb is temporally morphed [42] and spatially organized to form a

code that is theoretically sufficient to explain all of the human and rodent abilities

to discriminate odors [30].

The model results especially highlight the fundamental role of GL circuits for

processing natural odors. Under the evoked dense spatial activation of glomeruli

[53], the GCs cannot form the narrow and well-defined columns that are needed

to decrease the relative overlap between odor representations after learning. The

overall picture is consistent with experimental findings suggesting that the lateral

inhibition relies more on the GL circuits, whereas the relatively lower GC inhibition

is likely to implement MC synchronization [57].

An interesting prediction of the model is the limitation on the number of odors

that can be learned by the olfactory bulb before reaching its computational limit.

Although we did not test low odor concentrations, which can result in column era-

sure [40], it should be clear that presentation of a number of odors at concentrations

high enough to form a column will eventually overwhelm the sparse and distributed

glomerular column organization. We hypothesize that external mechanisms, such as

neurogenesis, cortical feedback [43], or neuromodulatory inputs from other brain

regions, may help to expand this limit. These results have all been obtained with a

model based on the glomeruli in the dorsal region representing approximately 10%

of the olfactory bulb. Obviously the rest of the olfactory bulb greatly expands the

numbers of odors that can be discriminated.

Finally, the model results in decorrelation of odor pairs, suggesting the behavioral

prediction that specific odors pair may be discriminated according to individual re-

cent odor experience. The direct use of experimental data on natural odors allows

specific predictions, assuming that the distribution of the inputs in the dorsal part

of the olfactory bulb is a good representation of the odor. Thus, for example, in

the model, recent odor learning of mint, kiwi, and cloves should result in a better

discrimination between pear and coffee, and a much more confused discrimination

between ginger and lemongrass. The next step will be to extend this approach to the

entire olfactory bulb.
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Appendix A

The algorithm for generating synthetic neurons

initialize the list L of dendritic extremities that would be grown

for i = 0 to ITERATIONS do

if length(L) = 0 then

break

end if

for each l in L

for j = 0 to MAXGROWTHATTEMPTS do

φi+1, θi+1 = bias(pi, φi, θi)

φi+1 = φi+1 +∆φ

θi+1 = θi+1 +∆θ

pi+1 = xyz(φi+1,θi+1, pi)

if feasible(pi+1, φi+1, θi+1) then

l.extends(p, φi+1, θi+1)

break

end if

end for

if l.canBeDeleted() or j > MAXGROWTHATTEMPTS then

155



156 A The algorithm for generating synthetic neurons

l.delete()

else if l.canBifurcate() then

e1, e2 = l.bifurcate()

L.append(e1, e2)

l.delete()

end if

end for

end for
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