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SUMMARY

A hallmark of aging is an imbalance between produc-
tion and clearance of reactive oxygen species and
increased levels of oxidatively damaged biomole-
cules. Herein, we demonstrate that splenic and nodal
antigen-presenting cells purified from aging mice
accumulate oxidatively modified proteins with side-
chain carbonylation, advanced glycation end prod-
ucts, and lipid peroxidation. Furthermore, we show
that the endosomal accumulation of oxidatively
modified proteins interferes with the efficient pro-
cessing of exogenous antigens and degradation of
macroautophagy-delivered proteins. In support of
a causative role for oxidized products in the ineffi-
cient immune response, a decrease in oxidative
stress improved the adaptive immune response to
immunizing antigens. These findings underscore
a previously unrecognized negative effect of age-
dependent changes in cellular proteostasis on the
immune response.
INTRODUCTION

Reactive oxygen species (ROS) are molecules in which the outer

electron orbital holds one or two unpaired electrons. Among

these, hydrogen (H,), hydroxyl radical (OH,), transition metals

(copper and iron), oxygen (O, and RO,), diatomic oxygen (O2
,,

H O2
,, R O2

,), and its superoxide (O2
,�) are the most abundant

species (Halliwell, 2009; Hamanaka and Chandel, 2010; Wellen

and Thompson, 2010; Cannizzo et al., 2011). ROS are physiolog-

ically produced by all cells and mostly derived from leakage of

the electron transport chain in mitochondria (Barja and Herrero,

2000; Dufour et al., 2000; Starkov et al., 2004; Lin andBeal, 2006;

Chandel, 2010; Cannizzo et al., 2011). In inflammatory cells

a second important source of ROS production is the ‘‘oxidative

burst,’’ where the NADPH oxidase complex catalyzes the forma-

tion of diatomic oxygen, and the enzymes myeloperoxidase and
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bromoperoxidase catalyze the formation of hypochlorite (ClO�),
hypochlorous acid (HOCl), and hypobromous acid (HOBr) as an

innate immune mechanism to eradicate pathogens (Park, 2003;

Cathcart, 2004; Klebanoff, 2005; Dale et al., 2008). Because ROS

are unstable molecular species that can readily induce the non-

enzymatic oxidation of biomolecules, cells are equipped with

a series of enzymes that include different isoforms of superoxide

dismutase, catalase, peroxiredoxin, and glutathione peroxidase,

to readily dispose of ROS (Johnson and Giulivi, 2005; Roberts

and Sindhu, 2009; Chandel, 2010; Haigis and Yankner, 2010;

Wellen and Thompson, 2010; Cannizzo et al., 2011). In aging

cells an imbalance due to increased ROS production and

a decrease in the levels and activity of the ROS-converting

enzymes leads to the nonenzymatic oxidation of proteins, carbo-

hydrates, lipids, and nucleic acids, a process generally known as

oxidative stress (Broadley and Hartl, 2008; Alexeyev, 2009;

Halliwell, 2009; Roberts and Sindhu, 2009; Hamanaka and

Chandel, 2010; Wellen and Thompson, 2010; Cannizzo et al.,

2011; Durieux et al., 2011).

The mechanism(s) for clearance of oxidized proteins depends

on the subcellular localization of the protein, the level of oxida-

tion, and the nature of the specific oxidized amino acid. Mildly

oxidized cytosolic proteins are degraded by the proteasome

system in a ubiquitin-dependent or -independent fashion or by

a selective form of lysosomal degradation known as chap-

erone-mediated autophagy (CMA) (Dunlop et al., 2009; Cuervo,

2010; David et al., 2010; Tyedmers et al., 2010). For these

proteins the low degree of oxidation still allows for the protein

to be unfolded, which is a requirement for entry into the narrow

catalytic chamber of the proteasome or the translocation

channel that mediates substrate internalization into lysosomes

via CMA (Dunlop et al., 2009; Cuervo, 2010; David et al., 2010).

In contrast, proteins with extensive oxidative damage that

cannot unfold are often organized into cytosolic insoluble protein

aggregates that are no longer amenable for degradation through

these systems. Two distinct aggregating compartments have

been described in yeast: one for proteins that can disaggregate

and be delivered to the proteasome for degradation, and

a different compartment for those that are irreversibly aggre-

gated (Kaganovich et al., 2008; Kopito, 2000). The generally
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accepted mechanism for the degradation of these irreversibly

aggregated protein inclusions is macroautophagy, a high-capa-

bility pathway that delivers cytosolic material to lysosomes

inside double-membrane vesicles or autophagosomes (Cuervo

et al., 2005). Cargo-recognition molecules such as p62 and

NBR1 sequestrate aggregated proteins inside autophagosomes

through a selective form of macroautophagy known as aggreph-

agy (Lamark et al., 2009). For other types of protein aggregates,

recruitment of cytosolic chaperones to the aggregate acts as

a trigger for their degradation through amacroautophagy variant

known as chaperone-assisted selective autophagy (CASA)

(Arndt et al., 2010). Late endosomes and lysosomes are the final

destination of these aggregate materials after fusion with the

autophagosome carriers (Cuervo et al., 2005). In addition extra-

cellular aggregates organized as amyloid-like structures can

also reach late endosomes and lysosomes of tissue-resident

macrophages and dendritic cells (DCs) after being phagocy-

tosed (Chiti and Dobson, 2006; Alavez et al., 2011; Devitt and

Marshall, 2011).

In endosomes/lysosomes most of the damaged biomolecules

are degraded to their constitutive basic components by acidic

hydrolases (Stern et al., 2006). However, the nature of the

oxidized amino acid has an impact on protein turnover in

that o- and m-tyrosines increase protein catabolism, whereas

proteins with DOPA modifications are inefficiently degraded

and tend to generate high-molecular weight (MW) SDS-stable

aggregates (Dyer et al., 1993; Oliver et al., 1987; Requena

et al., 2001; Dalle-Donne et al., 2003; Isom et al., 2004; Dunlop

et al., 2008, 2009; Madian and Regnier, 2010). These aggregates

can then enlarge by entanglement with nonoxidatively damaged

proteins, furthering cellular toxicity (Squier, 2001; Cowan et al.,

2003; Terman, 2006).

The increased level of free radicals reported in aging cells

includes cells of the immune system (de la Fuente et al., 2004;

Larbi et al., 2004; Nomellini et al., 2008). Additionally, a

decreased level/functionality of the enzymes involved in clear-

ance of free radicals, including catalase and glutathione peroxi-

dase, has also been reported in aged immune cells (Fujimoto

et al., 2010). The oxidative posttranslational modifications occur-

ring on several proteins have been associated with compro-

mised phagocytosis, proteasomal activity, and TLR signaling

(Ponnappan et al., 2007; Shaw et al., 2010; West et al., 2010).

In aging T cells, oxidative stress has been linked to increased

protein carbonylation and glutathionylation of several cytoskel-

etal, ribosomal, and enzymatic proteins, with overall decreased

cell functionality (Preynat-Seauve et al., 2003; Larbi et al.,

2007; Hung et al., 2010). Finally, oxidative damage to adaptors

of the TCR signal transduction machinery has been associated

with a decrease in the intensity and length of the activation

signal following TCR engagement in aging T cells (Larbi et al.,

2004, 2007).

An aspect of immunosenescence that has not been investi-

gated is whether age-related oxidative stress also compromises

the biological functions of DCs and in particular, the ability of

DCs to process and present MHC class II-restricted antigens.

As such, the goal of our analysis was 2-fold: first, to qualitatively

and quantitatively analyze the presence of oxidatively damaged

proteins in DCs from aging mice; and second, to investigate
whether oxidative stress interferes with MHC class II-restricted

presentation and the overall ability to mount an effective immune

response.

RESULTS

Accumulation of Oxidatively Damaged Proteins in DCs
from Aging Lymphatic Organs
A hallmark of aging is an imbalance between production and

clearance of ROS, as well as the intra- and extracellular accumu-

lation of their by-products, namely oxidized proteins, advanced

glycation end (AGE) products, and lipid oxidation products

(Oliver et al., 1987; Dyer et al., 1993; Barja and Herrero, 2000;

Dufour et al., 2000; Dalle-Donne et al., 2003; Starkov et al.,

2004; Lin and Beal, 2006; Terman, 2006; Halliwell, 2009; Chan-

del, 2010; Hamanaka and Chandel, 2010; Madian and Regnier,

2010; Wellen and Thompson, 2010; Cannizzo et al., 2011).

Oxidatively damaged biomolecules have been shown to

compromise cellular functions in several dividing and nondi-

viding cells (Preynat-Seauve et al., 2003; de la Fuente et al.,

2004; Larbi et al., 2004, 2007; Ponnappan et al., 2007; Nomellini

et al., 2008; Fujimoto et al., 2010; Hung et al., 2010; West et al.,

2010). However, whether by-products of oxidative stress accu-

mulate in primary and secondary lymphatic organs and whether

their possible accumulation affects the ability of DCs tomount an

adaptive immune response are currently unknown.

To address this question, we isolated CD34+ bone marrow

precursors: the progenitor cells that give rise to several of the

hematopoietic cell lineages including DCs. CD11c+ conventional

DCs were also isolated from different lymphatic organs, in-

cluding bone marrow, spleen, and peripheral lymph nodes, or

cultured from bone marrow precursors derived from 3-, 12-,

and 22-month-old mice. The presence of oxidative damage in

CD34+ cells would indicate that DC precursors are already

compromised in their cellular proteome and likely give rise to

functionally less efficient DCs.

To test for the presence of oxidatively damaged proteins, total

cell lysates were incubated with 2,4-dinitrophenylhydrazine

(DNPH), which selectively binds to carbonyl groups (ketone or

aldehyde) that are added to amino acids side chains as an oxida-

tive irreversible modification. Lysates were run on a 4%–15%

gradient SDS-PAGE and the blottedmembrane developed using

an anti-DNPH mAb. Oxidatively carbonylated proteins could be

detected in cells derived from all agemice groups, albeit at much

higher levels in aging mice (Figures 1A–1F and S1). Interestingly,

increased age-related protein carbonylation was observed in

CD34+-isolated bone marrow cells and conventional DCs

cultured from bone marrow precursors, indicating that in aging

mice even precursor cells or newly differentiated DCs accumu-

late biomarkers of oxidative stress (Figures 1A and 1B). Besides

carbonylation, an increased amount of lipoxidation was also

observed in old mice, as detected by probing for malondialde-

hyde, a highly reactive compound derived from the oxidative

degradation of polyunsaturated lipids (Figure 1F).

In order to qualitatively analyze protein carbonylation, DNPH-

bound proteins were immunoprecipitated from splenic CD11c+

DCs purified from 22-month-old mice, and MS/MS analysis

was employed to map oxidized proteins (Figure 1G). As
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Figure 1. Detection of Oxidatively Modified Proteins in DCs Purified

from Primary and Secondary Lymphatic Organs

(A–E) Western blot analysis of carbonylated proteins detected in (A) purified

CD34+ bone marrow precursors, (B) bone marrow dendritic cells (BMDC)

cultured in GM-CSF for 7 days, and (C–E) conventional CD11c+ DCs freshly

purified from primary and secondary lymphatic organs from 3-, 12-, and

22-month-old mice is shown. Lanes marked as ‘‘d’’ report derivatized proteins

and ‘‘nd’’ report nonderivatized proteins (specificity control). One represen-

tative experiment out of four is shown.
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anticipated, oxidized proteins were derived from both intracel-

lular and extracellular sources (Figure 1G; Tables S1 and S2).

The former originated from oxidatively damaged organelles,

nuclear proteins, cytosolic proteins, and the plasma membrane.

The latter derived from phagocytosed oxidatively damaged

extracellular matrix proteins (Figure 1G; Table S1). Ingenuity

pathway analysis (IPA) was performed to determine the major

networks associated with the oxidized proteome. Major path-

ways included enzymes involved in glycolysis, lipolysis, DNA

repair, mitochondrial oxidative phosphorylation, extracellular

tissue damage, and immunological functions. Taken together,

the data indicate that the oxidative proteome could potentially

interfere with several cellular biological functions.

Accumulation of Oxidatively Damaged Proteins
in Endosomal Compartments of Aging DCs
We then mapped the modifications of amino acid side chains

generated by ROS because it is known that individual oxidized

species can target proteins for premature degradation or accu-

mulation. For example hydroxyl or carbonyl modifications on

some amino acids generate stable carbonylated proteins that

are targeted for proteolysis, whereas hydroxyl attack on tyrosine

or phenylalanine generates DOPA, which is a reactive species

capable of further modifications including amplification of the

oxidative damage to neighboring molecules (Dyer et al., 1993;

Requena et al., 2001; Guptasarma et al., 1992; Sacksteder

et al., 2006; David et al., 2010; Toda et al., 2010). Amino acids

from the immunoprecipitated proteins fragmented by MS/MS

(Table S1) were analyzed for oxidative posttranslational modifi-

cations. Only residues known to be primary targets of oxidation

were analyzed (Table 1). Oxidative moieties comprised a large

range of hydroxyl and carbonyl modifications (aldehyde and

ketonic groups) and AGE products (Table 1). Additionally, 18%

of phenylalanines and 7%of tyrosines weremodified to generate

DOPA, a moiety known to induce protein aggregation and accu-

mulation into misfolded, protease-resistant high-MW aggre-

gates (Table 1). Tryptophan, methionine, and cysteine have

also been reported to undergo oxidation during aging (Requena

et al., 2001; Squier, 2001; Guptasarma et al., 1992; Dalle-Donne

et al., 2003; Madian and Regnier, 2010; Toda et al., 2010), and

our results for DCs derived from 22-month-old mice were

consistent with these finding. Tryptophan was found to be

oxidized to hydroxykynurenin (4%), oxolactone (16.5%), and

kynurenin (13.5%), in addition to the hydroxyl and dihydroxy

species (40%), showing that more than 70% of this amino acid

was in the oxidized state. Methionine was oxidized tomet-sulph-

oxide (30.1%) and sulfones (20.1%). Cysteine underwent oxida-

tion to cysteine sulfinic acid (dioxidation) (34.7%) and cysteic

acid (trioxidation) (31.5%). Thus, more than 60% of tryptophan,

methionine, and cysteine was shown to be in the oxidized forms.

Other oxidations on arginine, lysine, proline, and histidine were
(F) Western blot analysis of lipoxidated proteins (probing for malondialdehyde)

detected in conventional CD11c+ freshly purified splenic DCs is presented.

Loading controls are reported in Figure S1.

(G) Pie chart reporting the subcellular distribution of the oxidative proteome

immunoprecipitate from conventional CD11c+ splenic DCs purified from

22-month-old mice is demonstrated.



Table 1. Quantification of the Number of Amino Acids with

Posttranslational Oxidative Modifications

Amino Acid Chemical Modifications %

Serine Unmodified 91.5

Glucuronyl 8.5

Cysteine Unmodified 32.8

Dioxidation (cysteine sulfinic acid) 35.7

Trioxidation (cysteic acid) 31.5

Lysine Unmodified 53.6

Oxidation (hydroxy-Lys) 26.4

Dioxidation (dihydroxy-Lys) 17.0

Glucosylgalactosyl 3.0

Arginine Unmodified 58.5

Oxidation 21.6

Dioxidation (hydroperoxide) 11.8

3-deoxyglucosone (AGE derivative) 8.1

Tryptophan Unmodified 30.0

Oxidation (hydroxy-Trp/oxindolylalanine) 22.5

Dioxidation (dioxindolylalanine/

N-formylkynurenine)

13.5

Kynurenin 13.5

Oxolactone 16.5

Hydroxykynurenin 4.0

Methionine Unmodified 49.8

Oxidation (Met-sulphoxide) 30.1

Dioxidation 20.1

Tyrosine Unmodified 87.2

Oxidation (meta- or ortho-hydroxy

phenylalanine)

5.8

Dioxidation (3,4 dihydroxy-

phenylalanine [DOPA])

7.0

Phenylalanine Unmodified 64.8

Oxidation (meta- or ortho-Tyrosine) 17.2

Dioxidation (DOPA) 18.0

Proline Unmodified 38.2

Oxidation (hydroxy-proline) 37.6

Dioxidation (dihydroxy-proline) 24.2

Aspartate Unmodified 78.5

Oxidation (hydroxy aspartic acid) 21.5

Histidine Unmodified 85.0

Oxidation (2-oxo-histidine) 15.0

Asparagine Unmodified 81.9

Oxidation 18.1

Calculated from proteins listed in Table S1.

Figure 2. Accumulation ofMicroaggregates of Oxidatively Damaged

Proteins in Splenic DCs Purified from Aging Mice

(A) FPLC separation of microaggregates of carbonylated proteins derived from

CD11c+ splenic DCs purified from 3-, 12-, and 22-month-old mice is illus-

trated. One preparation out of two is shown.

(B) Western blot analysis of the FPLC high-MW fractions to detect micro-

aggregates of oxidized proteins is shown. Total cell lysates were prepared

from CD11c+ splenic DCs purified from the spleen of 3-, 12-, and 22-month-

old mice. One preparation out of two is shown.

(C) Western blot analysis of carbonylated proteins detected in late endosomal

compartments, gradient purified from splenic DCs of 3-, 12-, and 22-month-

old mice is presented. LAMP1 immunoblot is shown as a loading control.

(D) Ultrastructural morphology of late endosomal multivesicular bodies (MVBs)

from CD11c+ splenic DCs purified from a 22-month-old mice is demonstrated.

Immunogold labeling for MHC class II molecules (Ab clone AF120.6 is 5 nm

gold, and Ab clone M5-114 is 10 nm gold) is illustrated.
found to be between 50% and 60%. Histidine and asparagine

displayed a lower level of oxidation (15%–20%) (Table 1). Alto-

gether, the data support advanced oxidation of the DCproteome

in 22-month-old mice.

Often, protein aggregates can form covalent bonds through

Schiff base formation, which involves the interaction of a side-

chain amine groupwith a carbonyl group. To determine the pres-
ence of high-MW protein aggregates, lysates of CD11c+ splenic

DCs from 3-, 12-, and 22-month-old mice were fractionated by

gel filtration (Figure 2A). Before separation, proteins were incu-

bated with DNPH to label the oxidized moieties. This procedure

involves incubation in 6% SDS at pH 2, which can disentangle

protein aggregates unless they have formed covalent bonds.

Because our goal was to detect possible high-MW protein

aggregates, the samples were run on an S-300 HR Sephacryl

gel column. Dextran blue (MW of 2 3 106 kDa) was run as

a high-MW marker (Figure 2A). Protein microaggregates could

be detected around 1–3 million kDa (Figures 2A and 2B). Frac-

tions collected before and around the dextran blue elution time

were run on an SDS-PAGE and blotted for protein carbonylation.

In all age groups oxidized proteins formed microaggregates in

the high-MW range. However, in young mice the aggregates
Cell Reports 2, 136–149, July 26, 2012 ª2012 The Authors 139



weremostly transient andwere solubilized by SDS, which did not

occur in older mice (Figure 2B).

Most oxidatively damaged proteins present in the cytosol are

processed through the proteasome or byCMA. However, heavily

oxidized proteins that cannot unfold in order to enter the catalytic

chamber of the proteasome or the translocation complex at

the lysosomal membrane are transported to endosomal/

lysosomal compartments by macroautophagy (Kopito, 2000;

Kaganovich et al., 2008; Cuervo, 2010). Likewise, oxidatively

damaged extracellular proteins, amyloid-like aggregates, and

oxidatively damaged apoptotic cells are normally phagocytosed

by tissue-resident macrophages and DCs (Chiti and Dobson,

2006; Alavez et al., 2011; Devitt and Marshall, 2011). Thus, we

determined whether accumulation of oxidatively damaged

proteins could be observed in endosomal compartments of

DCs. To this end, splenic CD11c+ DCs were generated from

3-, 12-, and 22-month-old mice (previously injected with B16-

FLT3-L to expand the DC populations) and late endosomes

separated over a 27:10 Percoll gradient. As described above,

endosomal proteins were incubated with DNPH to label the

oxidized moieties, before separation over a 4%–15% SDS-

PAGE. Increased amounts of oxidatively damaged proteins

could be observed in the endosomes of old mice compared

with 3-month-old mice (Figure 2C).

Accumulations of lipofuscin aggregates are often observed

with age in the endosomes of nondividing cells such as neurons,

cardiomyocytes, and endothelial cells. To determine whether lip-

ofuscin accumulation occurred in aging DCs, ultrastructural

analysis of MHC II immunogold-labeled late endosomes was

performed using two different antibodies (Abs) specific for I-Ab

(Figure 2D). No lipofuscin deposits could be observed in these

compartments in aging mice (Figure 2D). This is consistent

with the notion that large aggregates only form in nondividing

cells or cells with a very long life span, such as neurons, endothe-

lial cells, and cardiomyocytes, where protein/lipid/carbohydrate

aggregates form black lipofuscin inclusions, often of consider-

able size. DCs, even in old mice, have a turnover of 7–14 days;

thus, accumulation of protein aggregates following oxidative

stress does not result in the formation of visible lipofuscin inclu-

sions (Figure 2D).

Altered Autophagy in Aging DCs
The accumulation of oxidatively damaged proteins in endosomal

compartments of aging DCs prompted us to determine whether

the sequestration and degradation capability of these compart-

ments could be compromised. To this goal, we determined the

rates of intracellular proteolysis in splenic DCs (CD11c+) from

3-, 12-, and 22-month mice after labeling for 2 days with [3H]

leucine. During the 20 hr chase, cells were maintained in the

presence or absence of a combination of ammonium chloride

and leupeptin to block total lysosomal degradation (Figure 3A),

or the PI3K inhibitor 3-methyladenine (3MA), widely used to

inhibit macroautophagy (Figure 3B). These studies revealed

a statistically significant decrease in total lysosomal degradation

as well as basal 3MA-sensitive degradation in aging cells

(Figures 3A and 3B).

To analyze further changes in macroautophagy activity with

age in DCs, we directly measured the total amount and overall
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processing efficiency of the light-chain protein type 3 (LC3),

a structural component of autophagosomes that undergoes

degradation when these compartments fuse with lysosomes

and late endosomes. Immunostaining for LC3 in CD11c+ DCs

purified from the spleen of 3-, 12-, and 22-month-old mice was

used to visualize autophagosomes as LC3-positive fluorescent

puncta by fluorescence microscopy with deconvolution. As

shown in Figures 3C and 3D, the number of autophagosomes

per cell was significantly increased in DCs in an age-dependent

manner. An increase in autophagosome content can result from

enhanced formation or decreased clearance of these compart-

ments. To discriminate between these possibilities, we analyzed

the LC3 flux by comparing levels of LC3-II, the autophagosome-

associated form of the protein, in cells maintained in the pres-

ence or absence of inhibitors of lysosomal proteolysis. Immuno-

blot analysis of LC3-II in these experiments confirmed higher

steady-state content of autophagosomes in old DCs (levels of

LC3-II in untreated cells) (Figures 3E and 3F). In contrast,

LC3-II flux was severely compromised in DCs from both 12-

and 22-month-old mice, suggesting inefficient clearance of

autophagosomes (Figure 3G). Consistent with the reduced rates

of LC3 degradation, we also observed a moderate increase in

total cellular levels of p62, a common autophagic cargo,

although only at the most advanced ages (Figure S2). Levels of

beclin 1, involved in initiation of autophagosome formation,

and of Atg5, an essential component for the elongation of the

autophagosome membrane, markedly increased with age in

DCs (Figure S2). These results support the conclusion that

induction and formation of autophagosomes are preserved until

a late age in DCs and that one of the major steps altered in this

process is the clearance of the autophagocytosed material.

Degradation of the autophagosome content can occur

through fusion to both late endosomes and lysosomes. Under

normal conditions most cells favor autophagosome fusion with

secondary lysosomes because this compartment has a higher

proteolytic capability; however, different reports support the

conclusion that cells respond to compromised lysosome-auto-

phagosome fusion by increasing fusion of autophagosomes

with late endosomes to form a compartment described as am-

phisome. Analysis of the colocalization of cytosolic autophagic

cargo (mitochondria) or structural autophagosome components

(LC3) with the endocytic compartment (by assessing endocy-

tosis of fluorescently labeled BSA) revealed a higher coincidence

of these autophagosome and late endosomal markers in DCs of

older animals (Figures 3H and 3I). These results indicate a higher

macroautophagy-mediated transfer of cytosolic material, likely

including oxidized microaggregated proteins, to the endosomal

compartment of DCs with age and slower degradation of the

cytosolic cargo in these compartments.

DCs from Aging Mice Have a Decreased In Vitro and
In Vivo Ability to Process Exogenously Administered
Antigen
In the next series of experiments, we set to determine whether

cellular oxidative stress and accumulation of oxidatively dam-

aged proteins in endosomal organelles compromised MHC

II-restricted immune responses. To determine whether the

reduced proteostasis would compromise adaptive immune



Figure 3. Decreased Endosomal/Lysosomal Degradation and Compromised Macroautophagy in DCs from Aging Mice
(A and B) CD11c+ splenic DCs purified from 3-, 12-, and 22-month-old mice were labeled for 2 days with [3H]leucine. During the chase, cells were maintained for

24 hr in the presence or absence of NH4Cl/leupeptine (A) or 3MA (B) to block all lysosomal proteolysis ormacroautophagy, respectively. Proteolysis rates for long-

lived proteins after a 20 hr chase are shown. Values are the mean ± SD of three different experiments with triplicate wells. *p < 0.05.

(C) Immunofluorescence analysis of LC3 distribution in CD11c+ splenic DCs from 3-, 12-, and 22-month-old mice is shown. Scale bar above the picture

represents 10 mm; scale bar below the inset represents 2 mm.

(D) Quantification of the number of LC3-positive puncta per cell is presented. *p < 0.05.

(E–G) LC3 flux in CD11c+ splenic DCs from 3-, 12-, and 22-month-old mice is demonstrated. Cells were incubated in the presence or absence of lysosomal

protease inhibitors (PI) for 2 hr, collected and subjected to SDS-PAGE, and immunoblotted for LC3. (E) Representative immunoblot is illustrated. (F) Quantification

of steady-state levels of LC3-II (content of autophagic vacuoles [AV]) and (G) LC3 flux (ratio of LC3-II in the presence and absence of protease inhibitors) is shown.

*p < 0.05.

(H and I) Immunofluorescence of CD11c+ splenic DCs from 3-, 12-, and 22-month-old mice (H) incubated with BSA-Alexa 647 and MitoTracker or (I) incubated

with BSA-Alexa 647 and immunostained for LC3 is presented. Panels show individual channels andmerged images. Arrows indicate points of convergence of the

different fluorophores.

Insets in (C) and (I) are high magnification of cells depicted inside the dotted square. Scale bar above the picture is 10 mm; scale bar below the inset is 2 mm.

Western blots for additional autophagy-relevant proteins are reported in Figure S2.
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responses, 3-, 12-, and 22-month-old C57BL/6 (I-Ab) mice were

injected in the flanks with 50 mg of Ea-RFP protein. Six or 12 hr

later, CD11c+ DCswere purified from the inguinal-draining lymph

nodes of each age group, and the amount of MHC class II (I-Ab)

was loaded with the Ea 52-68 peptide analyzed by surface stain-

ing using the conformational Ab Y-Ae (Figure 4A). A significant

decrease in the amount of MHC class II/Ea 52-68-loaded

complexes was observed on the plasma membrane of DCs

from 22- and 12-month-old mice as compared to 3-month-old

mice, even when normalized to the total amount of MHC II mole-

cules and MHC II-CLIP-loaded molecules (Figures 4A–4C).

To determinewhether such differences in antigen presentation

could also be observed following immunization, 3-, 12-, and

22-month-old C57BL/6 (I-Ab) mice were injected in the flanks

with 100 mg of Ea-RFP protein in complete Freund’s adjuvant

(CFA). Two weeks later, CD11c+ DCs were purified from the

draining lymph nodes of each age group, and the amount of

MHC class II (I-Ab) loaded with the Ea 52-68 peptide was

analyzed by surface staining using the conformational Ab Y-Ae

(Figure 4D). Again, a significant decrease in the number of DCs

displaying MHC class II/Ea 52-68-loaded complexes was

observed on DCs from 22- and 12-month-old mice as compared

to 3-month-old mice (Figure 4D). As expected, a decreased

surface amount of I-Ab loadedwith the Ea-RFP 52-68 peptide re-

sulted in a diminished T cell proliferative response (Figure 4E).

Supporting an intrinsic defect in DC functions in old mice,

decreased proliferation was also observed when DCs from 12-

and 22-month-old mice were incubated with 3-month-old

T cells (Figure S3). To further quantify the Ea-RFP 52-68 peptide

loaded on I-Ab from nodal DCs, MHC II-eluted peptides were

subjected to MS analysis (Figures 4F and 4G). Quantification of

the eluted peptides was achieved by spiking the samples with

known amounts of monoisotopic-labeled Ea-RFP 52-68 peptide

(Figures 4F and 4G). The Ea-RFP 52-68 peptide envelope was

easily detected in the mixture of peptides eluted from DCs puri-

fied from 3-month-old immunized mice (Figure 4F). MS/MS frag-

mentation confirmed the correct peptide sequence (Figure 4G),

and a comparison with the standard peptide allowed us to quan-

tify its amount, varying between 31 and 125 femtomoles in

2 separate experiments (Figure 4F). The amount of Ea-RFP

52-68 eluted from 22-month-old mice was below our level of

detection.

To confirm these results in an additional antigen system,

CD11c+ splenic DCs were purified from 3-, 12-, and 22-month

old CBA mice and pulsed for 1.5 hr with 40 mg of FITC-conju-

gated hen egg lysozyme (HEL) (HEL-FITC). Processing of

phagocytosed HEL-FITC was monitored by FACS analysis, as

disappearance of the FITC fluorescence and by appearance of

positive staining for a conformational Ab (AW3.1), specific for

I-Ak loaded with the HEL 48-61 peptide (Figure 5A). A lower

amount of AW3.1 staining was observed in both 12- and

22-month-old mice at each time point as compared to

3-month-old mice (Figure 5A). On the other hand, a higher

amount of unprocessed HEL-FITC was also observed in aging

mice as compared to the 3 month old (Figure 5A).

Differences observed in the amount of Ea-RFP processing

among the three age groups could be partially related to a differ-

ential rate of protein phagocytosis or endosomal trafficking. To
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control for this possibility, late endosomes were prepared from

splenic DCs purified from 3-, 12-, and 22-month-old mice (previ-

ously injected with B16-FLT3-L to expand the DC populations)

using a 10:27 Percoll gradient (Figure 5B). Purified organelles

were then incubated with 5 mg of Ea-RFP, and the amount of

overall processing was analyzed by silver staining at different

time points (Figure 5C). In agreement with the antigen-process-

ing and presentation assay on intact cells, an increased amount

of nonprocessed protein following digestion was observed for

organelles prepared from 12- and 22-month-old mice as

compared with 3-month-old mice (Figures 5C and 5D). Mass

spectrometry analysis performed on Ea-RFP peptides isolated

from the organelles following protein digestion confirmed a

decreased number of Ea-RFP-specific peptides in 12- and 22-,

as compared to 3-month-old mice (Figure 5E). As expected

from the equal surface amount of MHC class II among the three

age groups, no differences in peptide loading were observed

when the preprocessed peptide was added exogenously (Fig-

ure 5F). Taken together, the data indicate a compromised ability

of antigen processing and presentation in DCs purified from

aging mice.

In the next series of experiments, we asked whether de-

creased proteolytic activity could be the reason for decreased

antigen processing observed in aging DCs. Total cell lysates

from splenic CD11c+ DCs purified from 3-, 12-, and 22-month-

old C57BL6 mice were analyzed by western blotting for

cathepsin L and S, and the interferon-g-inducible lysosomal thiol

reductase (GILT). No differences were observed in the total

amount of enzymes among the three groups of mice as

compared to the LAMP-1 loading control (Figure S4A). When

endosomal proteolytic activity was quantified by flow cytometry,

using a cysteine protease-specific probe (cathepsin B, L, and S)

that only targets the active form of these enzymes, a similar

amount of fluorescence was observed in 12- and 22-month-

old DCs, as compared with the 3 month old (Figure S4B). These

data indicate that the altered endosomal proteostasis observed

in aging DCs is not related to impaired level or activity of endo-

somal cathepsins. Data are consistent with that previously

observed in aging neurons, where engorgement of endosomal

compartments with oxidatively damaged proteins induced

a decrease in processing activity, despite an increase in the

amount of active cathepsins (Takahashi et al., 2007).

In Vivo Decrease of Oxidative Stress Ameliorates MHC
Class II-Restricted Immune Response to Immunizing
Antigen
In the final series of experiments, we aimed to determinewhether

a cellular decrease in oxidative stress would increase the ability

of DCs to process and present the immunodominant Ea-RFP

52-68 peptide following in vivo immunization with Ea-RFP. To

this end, 22-month-old mice were immunized subcutaneously

with 100 mg of Ea-RFP and treated with one intraperitoneal

(i.p.) injection of the antioxidant pyrrolidine dithiocarbamate

(PDTC) at the time of immunization as well as daily in the drinking

water for 14 days. Two weeks following immunization, CD11c+

DCs were purified from the draining lymph nodes and total

proteins run on an SDS-PAGE. A decreased amount of high-

MW microaggregates was observed in the treated samples



Figure 4. Decreased In Vivo Endosomal Processing andMHCClass II-Restricted Presentation in Conventional CD11c+ DCs fromAgingMice

(A) FACS analysis of CD11c+ splenic DCs, purified from 3-, 12-, and 22-month-old C57/Bl6 mice, following in vivo injection of Ea-RFP protein is demonstrated.

Mice were injected with 50 mg/ml of Ea-RFP. CD11c+ DCs were purified from the popliteal node and analyzed at different time points for RFP fluorescence, to

quantify Ea-RFP processing, and Y-Ae staining to quantify I-Ab loading with the processed Ea 52-68 peptide. One representative experiment out of three is

shown.

(B and C) Bar graph of the mean fluorescence index and SD of (B) total surface MHC class II protein (I-Ab) and (C) CLIP detected on the same CD11c+ DC

population is illustrated.

(D) Bar graph and SD of the percentage of CD11c+ cells, which stained with the Y-Ae Ab (specific for I-Ab/Ea 52-68 complex), are shown. *p < 0.05. Lymph nodal

CD11c+ DCs were purified from 3-, 12-, and 22-month-old mice, immunized with 100 mg of Ea-RFP in CFA, 2 weeks earlier.

(E) T cell proliferative response from lymph nodes harvested from 3-, 12-, and 22-month old mice, previously immunized with 100 mg of Ea in CFA (one out of four

experiments is shown) is presented.

(F) Quantitative MS scan of the immunodominant Ea 52-68 peptide eluted from nodal CD11c+ DCs purified from 3-month-old mice previously immunized with

100 mg of Ea-RFP in CFA is demonstrated. Isotopically labeled Ea 52-68 peptide was spiked in the eluate for comparative quantification. One out of two

quantifications is reported.

(G)MS/MS fragmentation of Ea 52-68 peptide eluted from nodal CD11c+DCs purified from 3-month-oldmice previously immunizedwith 100 mg of Ea-RFP in CFA

is illustrated.

Additional data on T cell proliferation are presented in Figure S3.
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Figure 5. Decreased In Vitro Endosomal Processing andMHC Class

II-Restricted Presentation in Conventional DCs from Aging Mice

(A) FACS analysis of CD11c+ splenic DCs purified from 3-, 12-, and 22-month-

oldCBAmice, followingphagocytosis ofHEL-FITCprotein, is shown.DCswere

incubatedwith 20mg/ml of HEL-FITCprotein (time 0). Cells were then chased at

different time points for FITC fluorescence to quantify HEL-FITC processing

and AW3.1 staining to quantify I-Ak loading with the processed HEL 48-62

peptide.One representative experiment out of four is shown.NoAg, noantigen.

(B) Ultrastructural analysis of MVBs purified from CD11c+ splenic DCs by

a 10:27 Percoll gradient is presented. Scale bar represents 2 mm.

(C) Silver-stained SDS-PAGE of gradient-purified late endosomal com-

partments (3-, 12-, and 22-month-old mice) incubated for the indicated time

points with 5 mg of recombinant Ea-RFP protein is demonstrated. Bands

correspond to the amount of undigested Ea-RFP at the indicated time points.

(D) Bar graph and SD of the densitometric analysis of three independent

endosomal-processing experiments as reported in (C) are illustrated. Data

indicate the amount of Ea-RFP protein still unprocessed at different time

points, calculated as percentage of total Ea-RFP (time 0).

(E) Peptide sequences, identified by MS/MS analysis, following endosomal

Ea-RFP in vitro processing is shown. Data are collected from two sets of

separate mass spectrometry analyses.

(F) Bar graph of the mean fluorescence index of Y-Ae surface staining of

CD11c+ splenic DCs harvested from 3-, 12-, and 22-month-old mice following

incubation with or without Ea 52-68 peptide is presented. One experiment out

of three is shown.

Additional data on endosomal cathepsin activity and western blot analysis of

endosomal resident proteins are presented in Figure S4.
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(Figure 6A). Similarly, a decreased amount of DNPH-detectable

oxidized proteins could be observed following the in vivo treat-

ment (Figure 6B). Importantly, the decrease in the overall amount

of oxidative stress upregulated the amount of surface Y-Ae

staining (specific for I-Ab-Ea-RFP 52-68) in 22-month-old mice

(Figures 6C and 6D). Similarly, T cell proliferative responses

were partially restored, as indicated by an increase in the stimu-

lation index, in immunized PDTC-treated mice when compared

to the untreated controls (Figure 6E).

Importantly, because it has been reported in different systems,

whereas the antioxidant activity of PDTC restored biological

functions in aging cells, it had the opposite effects on cells

from young mice (Figure S5). This suggests that in aging cells

the accumulated amounts of oxidized proteins are the major

target for the redox activity of PDTC, whereas in young cells

where there is a much lower amount of oxidized molecular

targets, PDTC interferes with the cellular redox system that is

pivotal to several biological activities (Figure S5).

DISCUSSION

Oxidative stress is a biological phenomenon that follows

a biochemical imbalance between the formation and clear-

ance/buffering of free radicals (Roberts and Sindhu, 2009; Haigis

and Yankner, 2010). Oxidative stress is a common occurrence in

cell biology; as such each organism is equipped with a variety of

enzymes that specifically dispose of free radicals (Halliwell,

2009; Chandel, 2010; Hamanaka and Chandel, 2010; Wellen

and Thompson, 2010; Cannizzo et al., 2011). However, in aging

an increased production of ROS coupledwith a decreased ability

of the cell to dispose of them will often induce a chronic level

of oxidative stress (Barja and Herrero, 2000; Dufour et al.,

2000; Lin and Beal, 2006; Roberts and Sindhu, 2009; Haigis

and Yankner, 2010; Cannizzo et al., 2011). The increased amount

of highly reactive free radicals induces oxidative protein modifi-

cations, including direct amino acid oxidation with formation of

carbonyl derivatives (aldehyde and ketonic groups on amino

acid side chains), or indirect amino acid modifications by addi-

tion of peroxidated lipids or products from glycation and glyco-

xidation (Requena et al., 2001; Guptasarma et al., 1992; Sack-

steder et al., 2006; Hung et al., 2010; Toda et al., 2010).

Oxidative modifications often result in protein fragmentation,

dissociation, unfolding, exposure of hydrophobic residues and

aggregation, and an overall loss of protein function (Dunlop

et al., 2009; David et al., 2010; Tyedmers et al., 2010). When

the oxidative damage is too extensive and irreversible, proteins

are targeted for degradation. Two major factors determine the

clearance of oxidized proteins: the overall amount of oxidized

molecules, and their level of oxidation. Mildly oxidized cytosolic

proteins are almost entirely degraded by the proteasome system

andCMAbecause a low degree of oxidation still allows protein to

unfold and enter the narrow proteasome catalytic chamber or

the translocation lysosomal complex (Kopito, 2000; Kaganovich

et al., 2008; Cuervo, 2010). In contrast extensively oxidized

proteins aggregate to form an ‘‘inclusion-like’’ body, the aggre-

some, which is located in the cytosol at the microtubule-orga-

nizing center and which actively sequesters insoluble proteins

(Kopito, 2000; Kaganovich et al., 2008). These aggregates can



Figure 6. In Vivo Antioxidant Treatment Ameliorates MHC Class

II-Restricted Immune Response to Immunizing Antigen

(A) Silver staining of protein microaggregates present in CD11c+ DCs purified

from the inguinal lymph nodes of 3- and 22-month-old mice untreated (�) or

treated (+) with the antioxidant agent PDTC is demonstrated. One out of three

experiments is reported.

(B) Western blot analysis of carbonylated proteins present in CD11c+ DCs

purified from the inguinal lymph nodes of 3- and 22-month-old mice untreated

(�) or treated (+) with the antioxidant agent PDTC is illustrated. One out of three

experiments is reported.

(C) Y-Ae surface staining of CD11c+ splenic DCs harvested from 22-month-old

mice untreated (�) or treated (+) with the antioxidant agent PDTC for 2 weeks is

shown. After purification DCs were pulsed for 1 hr with 20 mg of Ea-RFP and

chased overnight before staining with Y-Ae. Arrows indicate the histograms for

each of the reported treatments. Ctr, control.

(D) Bar graph depicting the average and SD of Y-Ae staining collected as in (C)

by four independent experiments is presented. *p < 0.05.

(E) T cell proliferative response from inguinal lymph nodes harvested from

22-month-old mice, previously immunized with 100 mg of Ea in CFA, untreated

(�) or treated (+) with the antioxidant agent PDTC for 2 weeks following

immunization is demonstrated. One of four experiments is shown.

PDTC treatment in young mice is reported in Figure S5.
be sequestered into the nascent autophagosome by a series of

cargo-recognition proteins and cytosolic chaperones, and are

then transported to the late endosomes and lysosomes by mac-

roautophagy (Kopito, 2000; Kaganovich et al., 2008; Lamark

et al., 2009). Additionally, extracellular-oxidized matrix and

aggregates from apoptotic cells (apoptotic bodies) are delivered

to endosomal compartments following phagocytosis by tissue-

resident macrophages and DCs (Chiti and Dobson, 2006; Alavez

et al., 2011; Devitt and Marshall, 2011).

In the endosomes, oxidatively damaged biomolecules are

degraded to their constitutive amino acids by acidic endopepti-

dases. However, heavily oxidized proteins, crosslinked by disul-

phide bonds, aggregate into a mixture of protein lipid deposits

that are often inaccessible to lysosomal hydrolases (Chiti and

Dobson, 2006; Dunlop et al., 2009; David et al., 2010; Tyedmers

et al., 2010). These aggregates can further enlarge over time by

the addition of newly oxidizedmolecules, and induce endosomal

destabilization and cytotoxic cell death (Dunlop et al., 2009).

Immunosenescence is characterized by a decreased ability of

the immune system to respond to foreign antigens, as well as

a decreased ability to maintain tolerance to self-antigens. This

results in an increased susceptibility to infection and cancer,

and reduced responses to vaccination (Linton and Dorshkind,

2004; Agrawal et al., 2007; Pawelec et al., 2010; Shaw et al.,

2010). Innate immune responses such as phagocytosis, ROS

production, and TLR function are generally compromised during

immunosenescence (Bruunsgaard et al., 2001; de la Fuente

et al., 2004; Nomellini et al., 2008; Agarwal and Busse, 2010;

Fujimoto et al., 2010). Likewise, adaptive immune responses

are hindered by a decrease in the variety of the B and T cell

repertoires, as well as their ability to clonally expand following

antigen stimulation (Fratelli et al., 2002; Larbi et al., 2007).

Some controversy exists as to the capacity of DCs from aging

mice to stimulate T and B cells. In mice there is a general agree-

ment that splenic and nodal common DCs are impaired in their

capacity to stimulate a proliferative response or to induce an

antitumor immune response (Sharma et al., 2006). However, in

aging subjects there is more disagreement. Some authors report

a normal ability of DCs to stimulate T cells (Grewe, 2001),

whereas others report that DCs purified from elderly subjects

can activate memory, but not naive T cells (Agrawal et al.,

2007). With regard to cytokine and chemokine production,

several reports indicate a general dysregulation with aging,

with a low-level chronic production of proinflammatory cytokines

associated with decreased responsiveness to cytokine produc-

tion following specific stimuli (Bruunsgaard et al., 2001; de la

Fuente et al., 2004; Nomellini et al., 2008; Cannizzo et al., 2011).

In this report, using biochemical and biophysical techniques,

we present evidence that in DCs purified from aging mice, the

exogenous and endogenous antigen-processing and presenta-

tion pathways are impaired. Two major biochemical mecha-

nisms can explain the impaired antigen-processing and presen-

tation ability of DCs from aging mice: (1) the overall oxidative

proteome could compromise the functionality of membrane

organelles and cellular pathways associated with the antigen-

processing and loading machinery; or (2) the overloading of

endosomal compartments with oxidatively damaged proteins

and protein/lipid microaggregates could interfere with efficient
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endosomal proteostasis (Stadtman, 1992, 2004; Cloos and

Christgau, 2004; Dunlop et al., 2008, 2009; Tyedmers et al.,

2010). In favor of the first hypothesis are the data derived from

the MS/MS mapping of the cellular oxidative proteome, which

indicates that, indeed, proteins associated with many cellular

pathways involved in protein trafficking, mitochondrial ATP

generation, and overall cellular basic functions are oxidized. A

question still lingering is the relationship between amino acid

oxidation and protein loss of biological activity (Stadtman,

1992, 2004; Cloos and Christgau, 2004; Dunlop et al., 2008,

2009). In principle the number of oxidative moieties on a protein

directly correlates with the loss of biological function because

carbonylation is an irreversible posttranslational modification,

and the higher the oxidation state, the higher is the likelihood

that the protein would irreversibly unfold and lose its biological

function. Additionally, oxidized proteins are targeted for degra-

dation, and specific oxidations on specific amino acids can

have a different impact on protein proteolysis directly increasing

or decreasing the protein half-life. For example L-DOPA-modi-

fied proteins generate high-MW aggregates that are SDS stable

and resistant to proteolysis, and upregulate the transcription and

activity of endosomal cathepsins (S and L) (Rodgers et al., 2004).

On the other hand, hydroxylation of the same amino acids results

in increased protein catabolism (Dunlop et al., 2009). Currently,

we do not know the level of oxidation, the half-life, and the

residual biological activity for each of the proteins we identified

by MS/MS as oxidatively modified and that are involved in

antigen processing and presentation. However, we present

evidence that a decrease in their level of oxidation increases

the overall ability of DCs to process and present immunizing

peptides (Rudensky et al., 1991; Murphy et al., 1992; Itano

et al., 2003).

The second hypothesis is that overloading of endosomal

compartments with oxidatively damaged proteins as well as mi-

croaggregates could interfere with efficient antigen processing.

In favor of this hypothesis, we demonstrate that MHC class II-

positive late endosomes do indeed accumulate protein microag-

gregates, which are greatly diminished by in vivo treatment with

antioxidant. At the present time, we do not favor any of the two

hypotheses, andwe actually consider it more likely that oxidative

stress compromises both the functionality of proteins involved in

antigen processing and presentation as well as interferes with

endosomal proteostasis following accumulation of insoluble

protein aggregates, which hijack cathepsin activity as previously

shown in other aging cells (Rodgers et al., 2004).

Finally, conventional DCs have a short half-life and are

constantly replaced by bone marrow-derived circulating

elements. Herein, we demonstrated that in aging mice, despite

their short life span, these cells accumulate products of oxidative

damage, likely because they are derived from an ‘‘aging bone

marrow’’ that contains precursor elements already compro-

mised by oxidative stress. This hypothesis is supported by our

results indicating increased presence of carbonylated proteins

in CD34+ bone marrow cell precursors, freshly purified from

22-month-old mice. Additionally, the increased amount of

aging-associated ROS in each parenchymal organ could further

the cellular damage of newly generated DCs. The short life span

of DCs could also be the main reason of why the in vivo therapy
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with antioxidant scavengers proved to be so effective. In fact by

treating the mice for 2 weeks with an antioxidant, we could

reduce the amount of carbonylated proteins in the newly gener-

ated DCs and increase the cells’ overall biological performance,

something that could not be attainable in cells with a much

longer life span.

Taken together, our analysis reports in a qualitative and quan-

titative manner the presence of increased protein carbonylation,

glycation, and lipoxidation in DCs purified from lymphatic organs

of aging mice. Microaggregates of oxidatively damaged proteins

were found in endosomal compartments likely transported by

autophagic pathways (Cuervo, 2010; Sahu et al., 2011). The

data support the conclusion that age-related oxidative stress

interferes with the ability to mount an MHC class II-restricted

immune response and that this function can be partially restored

following in vivo antioxidant therapy.

EXPERIMENTAL PROCEDURES

Mice and Mice Treatments

C57BL/6J and CBA mice (3, 12, and 22 months old) were purchased from

Harlam as part of the age-controlled NIH mouse colony program. All animal

procedures were carried out according to a protocol approved by the Institu-

tional Animal Care of Albert Einstein College of Medicine. In some experiments

mice were injected in the flanks with 50 mg of Ea-RFP protein, and inguinal

lymph nodes were collected after 6 or 24 hr. In other experiments mice were

immunized in the flanks and nape of the neck with 100 mg of Ea-RFP protein

in CFA, and axillary and inguinal lymph nodes were harvested 2 weeks later.

In other experiments following immunization mice received a single i.p. injec-

tion of ammoniumPDTC (Sigma-Aldrich, St. Louis) (50mg/kg), followed by oral

PDTC treatment (5 mg/ml in drinking water) for 2 weeks. In some experiments

(Figures 4F and 4G), splenic DCs were expanded in vivo to obtain a sufficient

number of cells for MHC II peptide elution. Mice were injected subcutaneously

with the B16-FLT3L line. Spleens were collected after 2 weeks.

Preparation of Ea-RFP and HEL-FITC

Ea-RFP (Itano et al., 2003) protein expression plasmid was generously

provided by Denzin Lisa (Memorial Sloan Kettering, New York). Protein

production was induced with 1 mM IPTG for 48 hr, and the Ea-RFP protein

was purified from the bacterial lysate using a Ni 2+-charged His-Bind resin

column (Novagen; EMD Chemicals, Gibson, NJ, USA) followed by FPLC

purification. Protein expression and purity were assessed by SDS-PAGE fol-

lowed by silver staining. Five milligrams of HEL (>98% purity; Sigma-Aldrich)

was incubated with 200 ml of FITC solution (stock 10 mg/ml in DMSO) in

sodium bicarbonate buffer (pH >8.0–9.0) at room temperature for 1 hr. The

free dye was removed from the labeled protein by dialysis. The total amount

of labeled protein was calculated with the following formula: (moles/liter =

[A280 � (A494 3 0.3)] 3 dilution factor)/38,940, where 38,940 is the molar

extinction coefficient (moles � 1 cm � 1) for the dye. On average five to ten

FITC molecules/protein were incorporated.

T Cell Proliferation

Inguinal and axillary lymph nodes were harvested 2 weeks after immunization,

and 6 3 105 cells were seeded in a 96-well plate with or without titrated

amounts of the immunizing antigen for 72 hr. Thymidine (1 mCu) was added

18 hr before cell harvesting. Cells were harvested on a Tomtec harvester

(Model 94-3-468), and incorporated thymidine was counted on a liquid scintil-

lation counter (1450 MicroBeta Wallac TriLux).

Flow Cytometry

Nodal or splenic purified DCs were incubated for 30 min on ice with saturating

amounts of anti-Y-Ae Alexa 647 (gift from Lisa Denzin, Memorial Sloan Ketter-

ing), AW3.1-FITC (gift from Emil Unanue, Washington University), rat anti-

mouse IA/IE (clone M5114; PharMingen), or I-Ab-CLIP (gift from Paul Roche,



NIH) in staining buffer (PBS, 0.1% BSA, 0.01% NaN3). Following washing in

staining buffer, samples were analyzed with the FACScan flow cytometer

(Becton Dickinson, Franklin Lakes, NJ, USA).

Antigen-Processing Assay

CD11c+ DCs, purified by magnetic bead immunoselection (Miltenyi Biotec),

were pulsed with 20 mg of Ea-RFP or HEL-FITC for 1 hr. Cells were then

washed in PBS and chased for different time points. After collection DCs

were analyzed by FACS to detect processing of Ea-RFP or HEL-FITC proteins

as well as MHC class II-loading I-Ab/Ea 52-68 and I-Ak/HEL 48-61.

Western Blot Analysis

A list of Abs and procedures are reported in Extended Experimental

Procedures.

Fluorescence Microscopy

CD11c+ DCs were grown on coverslips, fixed for 10 min in either ice-cold

methanol or 4% formaldehyde in PBS, blocked and permeabilized (1% BSA,

2% newborn calf serum, 0.01% Triton X-100), and then incubated with the

primary LC3 and corresponding Alexa 488 or cyanine 5-conjugated secondary

Abs as described previously by Kaushik et al. (2006). After immunostaining,

cells were rinsed with PBS and mounted for microscopy using Fluoromount-

G (Southern Biotech). Images were collected using an Axiovert 200 fluores-

cence microscope (Carl Zeiss) equipped with a 363 objective, 1.4 numerical

aperture, and ApoTome. Quantification was performed on images with

maximum projection of all z stack sections using ImageJ (NIH) after threshold-

ing. Particle number was quantified with the ‘‘analyze particles’’ function in

thresholded images with size (pixel R2) settings from 0.1 to 10 and circularity

0–1. Where indicated, cells were incubated with MitoTracker (Molecular

Probes) for 15 min, or BSA-Alexa 647 for 30 min, rinsed with PBS, and pro-

cessed for immunofluorescence as detailed above.

Endosomal Subcellular Fractionation and Ea-RFP In Vitro

Processing

Splenic CD11c+ DCs purified from 3-, 12-, and 22-month-old mice, previously

injected with the B16-FLT3L line, were collected, homogenized, and then

fractionated on consecutive Percoll gradient (27% and 10%) as previously

described by Sahu et al. (2011). Ten micrograms of late endosomes, from

each age group, was incubated with 5 mg of Ea-RFP in 120 mM Na-acetate

(pH 5) at 37�C. After 30 min, samples were collected and run on a 12%

SDS-PAGE. Ea-RFP digestion was monitored by silver staining (Pierce Silver

Staining Kit; Thermo Scientific).

LTQ-Tandem MS/MS Sequencing

Three sets of experimental samples were analyzed by MS/MS: (1) DNPH

immunoprecipitate of oxidized proteins (Figures 1G, 1H, and 2A; Tables S1

and S2); (2) samples derived from Ea-RFP processing by purified endosomal

compartments (Figure 5E); and (3) samples eluted from surface MHC II

proteins from DCs of 3-, 12-, and 22-month-old mice immunized with Ea-RFP

(Figures 4F and 4G). Following incubation at 37�C with purified endosomal

compartments, the reaction was stopped with 0.5% TFA. Processed and

MHC class II-eluted peptides were retrieved by filtration through 10 kDa

Millipore devices and subjected to MS/MS peptide sequencing. Purified

splenic DCs from 3-, 12-, and 22-month-old mice were lysed and subjected

to DNPH immunoprecipitation of carbonyl-modified proteins. The eluted

samples were run on a 10% SDS-PAGE. The gel was silver stained, and the

proteins were excised from both the stacking and the resolving part of the

gel. LTQ-MS/MS sequencing was performed using a Nanospray LC-MS/MS

on a LTQ linear ion trap mass spectrometer (LTQ; Thermo Scientific, San

Jose, CA, USA) interfaced with a TriVersa NanoMate nanoelectrospry ion

source (Advion BioSciences, Ithaca, NY, USA).

Statistical Analysis

Numerical results are reported as mean + SE. Data are derived from

a minimum of three independent experiments unless stated otherwise. Statis-

tical significance of the difference between experimental groups, in instances

of multiple means comparisons, was determined using one-way ANOVA,
followed by the Bonferroni post hoc test. Differences were considered signif-

icant for p < 0.05.
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