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Abstract

Real-world complex networks describe connections between objects; in reality, those objects are
typically endowed with properties and attributes (hereby called features). How does the presence
or absence of such features interplay with the network link structure? Although this situation
is truly ubiquitous, literature on the subject is rather sparse. Moreover, of those who dealt
with this kind of feature-rich graphs, many considered homophily as the only possible gear of
transmission between nodes and features; others, instead, devised very complex models, unfit
to scale to the size of common real-world networks. In this work, we focus on a model where
interactions between features can foster or discourage link formation. The idea is to be able to
represent a wide range of scenarios — not only homophily and heterophily, but a more general
approach on how the interplay between all the features of two nodes can determine the link

between them.

To this aim, we first define and analyze an ad-hoc statistical model for features. Features
evolve through a modified Indian buffet process: every new node introduces new features, while
also copying the popular ones from previous nodes, in a rich-get-richer fashion. The rich-get-
richer effect is here moderated by the presence of a fitness parameter attached to each node:
the idea is that some nodes are supposed to be more effective than others in transmitting their
features. Directed links are then formed as a consequence of the features they bear. We show
how this model displays the same global topological properties of a real-world complex network,

in terms of degree distribution, distance distribution, connectivity, etc.

As a further type of experiment, we will assume to know the directed graph and which features
characterize each node — we will show how this is the case in many real-world networks. From
this data, we provide estimators to evaluate the parameters of our model; moreover, we show
how the model can naturally define a likelihood-based technique to gain some information about

which nodes were more successful in transmitting their features.

Streamlining the model, then, we devise a simple yet fast algorithm to build the feature-
feature latent matrix describing the way features interact; in such a matrix W, the element W; ;
is positive if feature i tends to connect to feature j. Specifically, we propose two algorithms, one
assuming the independence of features and based on a Naive Bayes approach; the other relaxes
this assumption and is based on perceptron-like learning techniques. The latter (called Liama,

Learning LAtent feature-feature MAtrix) can process hundreds of millions of links in minutes.

Finally, we propose an approach to solve a somehow dual problem: if a node in the network

has unknown features, but we know its links, how can we discover the feature it may have? We
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will show how the same feature-feature latent matrix can be the core of a shallow neural network
which can help solve this problem.

We then proceed to employ these techniques in some concrete use cases, to show how they
can help concretely in some graph-mining tasks. Many scenarios can be indeed described by a
directed network with feature-rich nodes. We will take into consideration networks of different
types: semantic networks and citation networks.

For the first kind of network, we will look at the Wikipedia link graph. Wikipedia is commonly
used as an open knowledge base in many applications; the links from an entity to other entities
are often of fundamental importance (e.g., in named entity disambiguation). Wikipedia provides
a full taxonomy that ascribe entities to a set of Wikipedia categories; since this categorization
is user-generated and extremely noisy, we propose a general technique to cleanse it, in order to
consider only the k “most important” categories, and re-categorize the entities accordingly. Such
cleansed categories will then serve as features for the nodes in the link graph. We investigate how
much k features can explain the links, and discover that they provide an excellent way to mine
“surprising” (a.k.a., unexpected) links between entities, much better than text-based approaches.
We call this approach LlamaFur, Learning LAtent feature-feature MAtrix to Find Unexpected
Relations.

For the second kind of network, we consider a citation network between papers: here, each
paper can be described by many possible types of characteristics — e.g., its keywords and the
affiliations of its authors. Each of these types have a different power of description with respect

to the network: we show how our framework can be used to evaluate it.



Chapter 1

Introduction

1.1 Motivation

The necessity to model networks has been addressed by many works in the last decades. Its
impact on many practical matters — from epidemiology [36] to financial stability [20] — has been
invaluable. However, there has been, in comparison, far less work devoted to model networks
where nodes present a set of properties of their own, despite this being the natural state of many
real datasets: economical networks usually are accompanied with some data about each economic
actor (e.g., the sectors in which it operates); social networks often have some indication about
the interests of each user; in the interactome—i.e., the network describing interactions between
genes—many properties for each gene are available, and so on.

In many tasks, empirical evidence has shown that the interconnection between the network
and some property of its nodes is of primary practical importance. In epidemiology, it is common
practice in recent years to study contact networks (i.e., networks of physical contacts among
people) and to include, for each person involved, some of its social characteristics (for example,
gender, age group 93| or profession [98]). Studying how these features interact with the physical
contacts—and, therefore, with the spread of a disease—has lead to the so called “Who Acquires
Infection From Whom” matrices [140]. However, connecting the presence of links in a network
to some feature of its node has a longer history, that traces back to sociology; the way in which
features (e.g. ethnicity or gender) intertwine with social connections has been called and studied
as “mizing pattern” |[131]. We will see a more complete review of these studies in section

Many of these real cases backed with empirical data the role of node features in in the
formation of links in a network; also, they showed that in many cases there are different features
that interact within each other, fostering the creation of links. In other words, homophily—that
is, similar features bring connections—is not the only valid mechanism behind link formation.
Nonetheless, many models and data mining techniques for networks with feature-rich nodes
assumed that links resonates with similarity between features. There is a need, therefore, for
models able to represent interactions between different features; where pairs of different features
could result in fostering or discouraging a link.

Moreover, many of the models and the techniques able to represent this scenario are tailored
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to small and medium-sized networks. In this information age, instead, many datasets consist
in very large networks, with millions or tens of millions of nodes—we will see some examples
throughout this work. Our goal is therefore to develop models and data mining techniques able
to work with large networks, considering the features their nodes may have, and representing

interactions between pairs of features.

1.2 Problem and hypotheses

The problem we are going to deal with in this work is therefore that of modeling large networks
with feature-rich nodes, with a model able to handle overlapping features (a node can have
multiple features, as it is often the case in reality) and non-homophiliac relations (different
features can foster the formation of the links). In order to simplify this scenario, we will assume
that features of nodes are binary—that is, we are interested in cases where it is the presence
or absence of features that influences the network. This assumption is analogous to the choice
of dealing with unweighted graphs—in fact, the association between nodes and features can be
represented exactly with an unweighted, bipartite graph. We will show that this assumption can
give us algorithms that can scale to large networks, while capturing a plethora of scenarios—
namely, all the examples we mentioned before, and many others we will see in this work.

We will show through numerical simulations and real data how such characteristics in a
model can help in giving helpful insights in practice, leading to algorithms able to give us new
information on many real cases of complex networks. Particularly, we will show how a simple
feature-rich model of graphs is consistent with machine learning algorithms able to scale up to
very large networks; moreover, we will show its practical significance in some different context,
from network analysis—where we will use them to assess which types of features can explain the
links in a network—to anomaly detection—where surprising information in a corpus of documents
can easily be found as deviation from this model.

Our main hypothesis can therefore be summarized as follows: the analysis of networks can
benefit from considering the features associated with the nodes, even in the case the network is
of large size (up to tens of millions of nodes) and if the relations between features and links goes

beyond simple homophily.

1.3 Main contributions and related publications

Now that we have clearly defined our playing field, let us sketch briefly the novel contributions
of this work in this field.

Our first contribution is a refinement over previous models for feature-rich network models.
In particular, we will conceive an innovative model for the evolution of features, by keeping in
consideration the fact that different nodes can have different abilities to spread their features in
time. We will use this fact to propose (and compare) different algorithms to estimate this ability
for each node. Then, we will see how this model for feature evolution can lead to a graph model,
by analyzing the global properties of the produced graphs. We will show how such an approach

can lead to networks that resemble a given real-world complex network in terms of their global
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properties (mainly, their degree distribution and their distance distribution). Such considerations

resulted in a journal publication [30].

As we will see across this work, a natural framework for networks with feature-rich nodes
can efficiently be connected to machine learning and data mining algorithms: connecting those
two realms is one of the main contributions of this work. In particular, we will trace a formal
link between perceptron-like algorithms and the estimation of parameters in our model for such
networks. Such a connection is then exploited in different ways. First, it give us simple algorithms
that are fast and can scale; second, it give us formal guarantees with respect to our model for
such algorithms, by allowing us to reuse previous analysis in this context.

We will then see how similar frameworks can be applied on link prediction and on feature
prediction, first by seeing the links as prediction targets when features are completely known,

and then by seeing features as such when links are completely known.

Applying these algorithms to real world use cases is then another contribution of this work,
explored in its last part. We will see how useful information can be extracted from citation
networks, by applying our model. For example, we will be able to compare the ability of different
types of characteristics of scientific works in predicting the citations they make. We present this
example mainly as a showcase of how our model and techniques could be applied, in principle,
to a wide range of social network (and content network) analysis. Determining the impact of
features on the links of a network could be employed in many different applications: social
scientists can have more scalable and well-tested tools to measure how social features determines
our friendships, tracking with precision the phenomenon of “filter bubbles”. Applying these
tools on biological networks, like the aforementioned interactome, could give biologists clues on
which properties a certain gene could have, basing on its interaction with other genes. These
applications are promising future directions for our work.

Much of our attention will then be, in this work, devoted to semantic networks, exemplified
by the case of the Wikipedia Link Network. Our technique for deriving a clean categorization
of concepts within Wikipedia has enabled us to have a low amount of noise in the features we
use, and has resulted in a conference paper [31]. The technique we propose is rooted in network
analysis, and it is well-suited as a preprocessing phase to all the data mining tasks that make
use of categories for Wikipedia articles.

The usage of such features, combined with our model, gives rise to an application in anomaly
detection: that is, we analyze how our model can be read as a way of finding surprising links
in a semantic network. We will see how our method outperforms both standard link prediction
approaches and textual-based ones in this task. This result has been described in a conference
paper [8].

We wish to highlight, finally, how a main contribution of this work is how many data mining al-
gorithms for graphs—Ilink prediction, label prediction, social network analysis, and node ranking—
can be read in a unified way, thanks to a proper complex network model, able to represent feature-
rich nodes. The link between modeling complex networks and designing learning techniques to

mine information from them is, we believe, an exciting and promising field.
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1.4 Organization

The present work is organized in three parts, of different nature.

In part [ we will devote our attention to mathematical models for networks and features.
We first describe network models and particularly feature-rich network models already present in
literature (chapter 7 highlighting their contributions, as well as their drawbacks, from our point
of view. Then (chapter |3)) we carefully describe the theoretical framework employed throughout
this work, by detailing the mathematical relations we will assume to exist between links and
features in a feature-rich network. Finally, we will have a closer look on a formal model for the
generation of features (chapter , that in the end will give us a way to simulate from scratch
realistic feature-rich networks.

In the second part of this work, we will describe algorithms that can be fruitfully applied to
our model, and specifically to finding latent and unknown variables of the model given a set of
available data; all the algorithms we propose in this part will be tested on synthetic data, thanks
to the capability of our model to generate realistic feature-rich networks. By showing that these
algorithms can be successfully applied to synthetic data, we can be confident in applying them
(as we will see later) to a real case that our model can fit. Specifically, we will first look at
how to infer the relation between all the pairs of features in chapter [} we will see how this
problem can be recast as a machine learning problem, and how it is fundamentally linked to
link prediction. Then, we will look at the prediction of unknown features in chapter [6] and see
how neural networks can be applied to this task to solve the issue of estimating non-homophiliac
relations.

In the third part of this work, we will apply our model and our mining algorithms to real-
world examples. In chapter [7] we will look at citation networks, and see how their adherence to
our model heavily depends on the chosen set of features. In chapter [§] instead, we will analyze
the case of semantic networks, and prove how our techniques can be efficiently applied to this
case, even if their size is very large.

Finally, in the last chapter, we will outline the conclusions of this work.
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Chapter 2

State of the art

2.1 Introduction

Complex networks are a unifying theme that emerged in the last decades as one of the most
important topics in many areas of science; the starting point is the observation that many net-
works arising from different types of interactions (e.g., in biology, physics, chemistry, economics,
technology, on-line social activity) exhibit surprising similarities that are partly still unexplained.
The quest for a model that is able to explain, describe, analyze and simulate those real-world
complex networks is of uttermost practical, as well as theoretical, interest.

The general idea of a network model can be seen as a function that, given a set of param-
eters, returns a probability distribution over graphs. The most classical random graph is the
Erdgs-Rényi model [67]. In this model, the parameters are n € N and p € [0, 1], respectively
the number of nodes and the probability of an edge. Then, the model considers a set N of n
vertices, and creates each edge (x,y) with z € N,y € N, independently, with probability p. This
model was developed by Paul Erdés-Rényi and Alfred Rényi in 1959; a very similar model was
proposed in the same year by Edgar Gilbert [81].

This classical probabilistic model, however, soon revealed itself unfit to describe complex
networks because, for example, it fails to produce a power-law degree distribution. The general
approach of the subsequent attempts is to produce probabilistic frameworks (typically with one
or more parameters) giving rise to networks with statistical properties that are compatible with
the ones that are observed in real-world graphs: degree distribution is just one example; other

properties are degree-degree correlation, clustering coefficients, distance distribution, etc. [99)].

2.2 Complex networks models

The Barabasi-Albert model. The Barabéasi-Albert model [17] was one of the first attempts to
try to obtain more realistic models, where the idea of preferential attachment was first introduced:
nodes tend to attach themselves more easily to other nodes that are already very popular, i.e.
with an high number of links.

The idea is that nodes come to the network each at a different time step; then, when a new
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node joins the network, it is more likely to do so by linking to a well-connected node. Barabési
and Albert assumed that, in fact, the probability of linking a certain node is directly proportional
to its degree. Thinking to a web graph, for example, it means that when a new page is created, a
link on that page is selected uniformly among existing links, leading thus to this proportionality
assumption. This rule establishes a “rich-get-richer” effect.

To express formally this basic model, let us consider the formation of the network as a
sequence of discretized time steps 0,1,...,¢t. At time step 0, the graph Gy is composed by a
fully-connected clique of ng nodes: its set of edges Ly contains all the possible edges among the
ng nodes contained in the initial set of nodes Ny. The number ng is a parameter of the model:
we can assume e.g. ng = 2, and start with two connected nodes. At every time step, we add a

new node. We will therefore define the set of nodes at time step (¢t + 1) as:

Nis1 = Ny U {ig}

At time step (¢t + 1), the set of edges L;;1 is obtained by adding to the set of edges at the

previous time step, L., a set of new edges incident to the new node i; with this probability:

deg(j, 1)
ZjeNt deg(j, )

Where we indicated with the function deg(j,t) the degree of node j at time step t.

P((it,j) € Lt+1) =

This model results in a power-law distribution of degrees, and in a significantly more realistic

average distance than the Erdgs-Rényi model.

Many other models were developed to study and analyze graphs with a power-law distribution
of degrees. Among the first, Aiello et al. [4] and Kumar et al. [119] both studied this class of
graphs. Many described different strategies to obtain a small-world, realistic complex network;
for example Kleinberg [118] and Kumar et al. [120] devised networks that evolved by “copying

nodes”.

The Jackson-Rogers model. We will now describe a similar strategy, showcasing well the ap-
proach dubbed “friends of friends”. This model was developed in 2007 by Jackson and Roger [100].
Their model obtains a “rich-get-richer” effect by observing what happen in a real social network:
when a new person is introduced to the network, it will form some connections for random
causes—i.e., external to the social graph, an aspect they summarize in the phrase “meeting
strangers”—and some other connections by getting introduced by a friend to their own friends—
i.e., a “friend of friends” aspect.

The friend-of-friends aspect naturally leads to the preferential attachment behavior of the
Barabasi-Albert model. However, this model is richer: the amount of positive feedback mecha-
nism with respect to degrees is in fact tunable, by means of controlling the amount of “strangers
met” over the amount of “friends of friends”.

Let us encapsulate this decision in the parameter a € [0,1]. This model as well can be seen as
a sequence of discretized time steps. Again, we add one node at a time, so that the set of nodes

at time step (¢ + 1) is Ngp1 = Ny U {i¢}. Let us then define a parameter k, that will represent
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the number of arcs that will be added at each time step. Then, when a node i; joins the set of

nodes Ny, it will add to the set of links L; the following connections:

e k-a links of the form (i, j), where j is chosen from Ny uniformly at random (the “strangers

met”).

e k- (1 — a) links of the form (i, j), where j is chosen uniformly at random from the set
{j | A st. (j,1) € Ly} (“friends of a friend”).

As Jackson and Roger [100]| point out, this model leads to an exponential degree distribution
when a = 1, and to a power law distribution when a = 0; in this sense, it permits a finer-grained
fit to data. This is particularly useful when considering that recent works are increasingly showing
that, despite being so-called “fat-tails” distribution, many complex networks fit other distributions

(e.g., log-normal) better than the classical power law [83,99].

In the past two decades, many other models of complex network (dynamic or not, and directed
or not) have been proposed in literature. A complete and accurate overview was authored by
Jackson [99]. However, in this work we wish to focus on a different type of graphs models: models

for feature-rich networks.

2.3 Feature-rich complex networks

Complex networks arise, in reality, between concrete objects, not characterized solely by their
connections — as in the pure graph models we have seen — but also by some kind of properties and
attributes. In the past, this fact has been long neglected in the literature of graph models, for
computational reasons and for the absence of such large and rich dataset. Nowadays, however,
when a graph is emerging from data, very often some kind of information is also available for
its nodes. For example, social networks originating from virtual communities can mark their
user with locations, with interests or with some content they generated; network obtained from
academic works (e.g., citation networks) can describe each node with keywords, affiliations of
authors, and so on. The same consideration can be done for many biological networks: the
interactome among molecules can be enriched by chemical properties, or metabolic information.

We will see many other examples throughout this work.

Empirical evidence. The interplay between such features and links has been investigated
separately in different fields. In many cases, interpreting links in a network as a result of features
of each node has in fact a solid empirical background. For example, the dualism between “persons
and groups” as an underlying mechanism for social connections was investigated by Breiger [35] in
1974. Within sociology, the simple phenomenon of homophily — “similarity breeds connection” —
has received a great deal of attention: McPherson et al. [131] presented evidence and investigated
the role of homophily in social ties; considered features included race and ethnicity, social status,
and geographical location. Bisgin et al. |25] studied instead the role of interests in online social
media (specifically, Last.fm, LiveJournal, and BlogCatalog), finding however that the role of

interests as features is weak on those online networks—at least when considering homophily.
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In some fields, more complex behavior than homophily has been studied as well. Tendencies
of such kind, where nodes with certain features tend to connect to other type of nodes, are
called mizing patterns in sociology and are often described by a matrix, where element (i, j)
describe the relationship between a feature ¢ and a feature j. In epidemiology, they have proven
to be greatly beneficial in analyzing the spread of contagions. For example, they appeared to
be a crucial factor in tracking the spread of sexual diseases |12| as well as in modeling the
transmission of respiratory infections [140]. For this reason, such matrices are also called “Who
Acquires Infection From Whom” (WAIFW) matrices, and have been empirically assessed in the
field through surveys [93] and with wearable sensors |98|. In biology and bioinformatics, a seminal
study by Menche et al. [133] highlighted the connections between the interactome, the network
of the physical and metabolical interactions within a cell, and the diseases each component was
associated with, observing a clustering of disease-associated proteins.

The empirical evidence presented in various fields, combined with the availability of large
datasets in the web, and the increase of computational resources, fostered some investigation of

models of graph endowed with features.

Fitness models. Earliest models incorporating some kind of features characterized each node
with a single, real-valued feature. This feature was variously called the “fitness” of nodes, or more
generally a “hidden variable” of each node. An early example is the Bianconi-Barabasi model [24]
from 2001. This model sparkled from the necessity to fix a behavior of the Barabési-Albert
model that did not match common experience |55]: in the BA model, only the first nodes have a
chance to become hubs (i.e., nodes with a high degree), while in many practical examples (e.g.,
the World Wide Web) many of the largest hubs have joined the network late in time. To fix
this, Bianconi and Barabasi introduced the fitness value into the BA model: the fitness value
acts as a multiplier in the previous model, and the effect is that a node with a high fitness value
will prevail (in terms of degree) on the others, also if it joined the network later. According to
Pastor-Satorras and Vespignani [150], this behavior takes inspiration from evolutionary models:
the intrinsic fitness value that is assigned to each node embodies all the properties other than
the degree.

However, this BB model still relies on the BA model principle (rich-get-richer) in order to
generate a small-world network; the additional feature of the nodes is grafted on it. In 2002,
Caldarelli et al. |39] proposed a model entirely based on the fitness values, where the entirety of
links are caused by the feature of the nodes; this means removing the Preferential Attachment
from the previous models and relying only on a “good-get-richer” principle. They propose to
consider the probability of a link between two nodes 7 and j as the result of a function ¢(z;, x;)
of their fitness values z; and z;. We will see how such a function will be similar to our context,
of multiple features appearing in each node.

One of the main results of this work was that, surprisingly, even when fitness values do not
follow a power-law, the model can generate scale-free networks. In other words, the feature-based
model is sufficient per se in emulating the degree distributions of real networks. In this light,
the Bianconi-Barabasi model model can be therefore thought of as a hybrid model, between the

classic scale-free models and the new feature-based one.
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Garlaschelli and Loffredo [75] applied the model to the World Trade Web, a weighted, di-
rected graph describing commercial relationship between countries: a striking result is that using
the GDP of each country as its real-valued feature fits the data for this network. It was also
showed [74] that the same model can also fit a network of large market investments between
shareholders.

A recent application of this model [51] proposed a mathematical framework which, assuming
to know each node fitness values, and the in- and out-degrees of a small subset of nodes, it is
able to reconstruct global properties of the network. Building upon the previously investigated
good fit between the fitness model and the World Trade Web, they use their framework to show
how different properties of this network can be estimated in this way. Notably, they are able
to estimate the DebtRank [20], a measure proposed by Battiston et al. to evaluate system risk

caused by financial leverage in an economical system.

Class models. However, in many contexts a single real-valued feature is not the most natural
choice to represent existing data. A popular framework has been that of latent class models:
there, every node belongs to exactly one “categorical” class, and this class influences the links
it may have. The best-known example is the stochastic block model |147|171]: it assumes each
pair of classes has a certain probability of creating a link, and in the work they study how to
infer those probability; they also investigate how to determine the class assignments, leading to
a sort of community detection algorithm. Hofman et al. [97] devised a variation of this schema,
by specifying only within-class probabilities and between-class probabilities. Another useful
variation involve sharing only the between-class probability and specifying instead the within-
class probabilities separately for each class, allowing to characterize each with a certain degree
of homophily. Both these approaches exemplify the need to reduce the number of parameters
of the original block model, in order to facilitate the estimation of its parameters. Kemp [111]
and Xu [192] studied and applied a non-parametric generalization of the model which allows for
an infinite number of classes (therefore called infinite relational model). It permits application
on data where the information about class is not provided directly. They use a Gibbs sampling
technique to infer model parameters. Among the examples they cite, Kemp et al. [111] put a
strong focus on semantic networks, a topic which we will treat carefully in Chapter [§

A well-known shortcoming of the class-based models is the proliferation of classes |136], since
dividing a class according to a new feature leads to two different classes: if we have a class for
“students” and then we wish to account for the gender too, we will have to split that class in
“female students” and “male students”. This approach is impractical and in many cases it leads
to overlook significant dynamics. To overcome this limitation, classical class-based models have
been extended to allow mixed membership [5|. Here, the model of classes remains, but with a
fuzzy approach: each node can be “split” among multiple classes, and in practice represents class

assignments become a probability distribution.

Feature models. Contrary to class-based models, feature-based models propose a more natural
approach for nodes with multiple attributes: in those models, each node is endowed with a whole

vector of features. Therefore, they can be seen as a generalization of class-based models: in fact,
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in the special case where all the vectors have exactly one non-zero component, the model has the
same expressive power of class-based ones. Features can be real-valued — as in the latent factor
model [96] — or binary, where the set of nodes exhibiting a feature is sharp, and not fuzzy [132].

Many works in this direction proposed models that only allow for homophily, forbidding any
other interaction among features. A seminal example are affiliation networks [122| by Lattanzi
and Sivakumar; in that work, a social graph is produced by a latent bipartite network of actors
and societies; links among actors are fostered by a connection to the same society. Gong et al
[83] analyzed a real feature-rich social network — Google+ — through a generative, feature-based
network model based on homophily.

Our attention will be focused instead on models able to grasp more complex behavior than
homophily, following the aforementioned empirical evidence from social networks, epidemiology

and bioinformatics.

MAG model family. Within this realm, an important line of work has been explored by
Kim, Leskovec and others [112], under the name of multiplicative attribute graphs. There, every
feature is described by a two-by-two matrix, with real-valued elements. Those elements describe
the probabilities of the creation of a link in all the 4 possible cases of that feature appearing or
not appearing on a given pair of nodes. An example would be the following: let us think of a
citation network, where each node (author) is tagged with some features (the fields she is working
in); let us suppose the total number of tags is m. This model describes the interaction between
those features with m different matrices of size 2 x 2; one of these matrices could be related for
example to the feature “sociology”; the elements of this matrix would represent the probability
of a link going from a sociology paper to another sociology paper; the probability of one from a
sociology paper to a non-sociology paper; and so on.

Because of this description made by a number of so-called “link affinity matrices”, this model
can be thought of as a feature-rich special case of their previous Kronecker model [124]. A
very expressive model, it has been further extended to include many other factors; notably, they
modify it to be a dynamic model |9]: features can be born and die, and only alive features can have
effects. However, the complexity of this model — and its large number of parameters — prevents it
from being used on large-scale networks. They have proposed [113] an expectation-maximization
algorithm to estimate the parameters of their base model; reported experiments are on graphs
with thousands of nodes. In the dynamic version, they report examples on hundreds of nodes;
e.g., they find that by fitting the interactions of characters in a Lord of the Ring movie, their
features effectively model the different subplots. Instead, in our work we wish to treat networks
of much larger cardinality: in the experimental part, we will show examples with many millions

of nodes, for which we wish to estimate model parameters in minutes.

MGJ model family. In 2009, Miller, Griffiths and Jordan [136] proposed a feature-based
model to describe the link probability between two nodes by considering interactions between
all the pairs of features of the two nodes. In the same example of the last paragraph, we would

2

have one matrix of size m=; one of these elements would correspond, for example, to the feature

pair “sociology” and “statistics”, expressing how likely would be a link from a sociology paper to
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a statistics paper. We will explore this theme in depth in the rest of this work.

The authors show how by inferring features and their interactions on small (hundreds of
nodes) graphs, they are able to predict links with a very high accuracy (measured through the
Area Under ROC curve). The estimate technique they propose is not exact (since it would be
intractable [86]), but it is based on a Markov Chain Monte Carlo method [79).

Their model can be interpreted as a generative model; they chose, however, not to investigate
its structural properties in terms of the resulting network structure. Subsequent work [152]
focused on this goal, being able to generate feature-rich graphs with realistic features, but they
will not try to estimate the latent variables of the model necessary to predict links. In this work
we will use the same model to do both (in particular, we will evaluate both purposes empirically
in Chapter [7)).

Despite the capabilities of the model, however, the choice of using a MCMC technique revealed
itself inadequate to work on datasets larger than some hundreds of nodes. As noted by Griffiths
et al. in 2010 |86], there is a need for computationally efficient models as well as reliable inference
schemas for modeling multiple memberships. Menon et al. [134] noted how the inadequacy in
handling large graphs underpinned this work, and many similar ones, and ascribed this flaw to
the MCMC method.

There has been, since, a certain amount of work on how to apply this model on larger graphs.
The two aforementioned works, for example, tried to solve this problem in different ways. A
simpler model was described by Griffiths and Ghahramani [86]: they removed from the original
model [136] the ability to describe negative interaction between features; also, they fixed the
activation function of the model (a component which we will carefully explain in Chapter ; in
this way, they obtained a more computationally efficient model, able to run on graphs of about
ten thousand nodes.

Menon et al. [134] slightly enriched the model, by introducing a bias term for each node;
then, they propose a new estimation technique, based on stochastic gradient descent. A main
focus is on avoiding undersampling non-links to overcame class imbalance, since despite it being
“the standard strategy to overcome imbalance in supervised learning” it has the “disadvantage of
necessarily throw|ing] out information in the training set”. To overcome this problem (that we
solved instead in the standard way of undersampling, see chapter , they design a sophisticated
approach centered on the direct optimization of the area under the ROC curveE| With this
technique, they can handle graphs with several thousands of nodes. Similar results [63] were
obtained, with a different approach, on graphs of the same cardinality of nodes, where the
authors propose an SVM-based estimation of parameters, and report it being able to run on
graphs as large as two thousands of nodes in 42 minutes.

In this work, we too will propose a model fundamentally identical to the Miller-Griffiths-
Jordan model, that we will thoroughly describe in Chapter 3] There we will also propose some
further considerations on that model. In the subsequent chapters, then, we will propose in a
single framework a generative model, able to generate realistic, feature-rich complex network,

and estimation techniques for its parameters, able to run on graphs of millions of nodes. In

IRecent works [193] have indicated empirically as well as theoretically how employing this measure in link
prediction leads to severely misleading results.
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particular:

e In chapter [4 we will outline a generative model for features and for the graphs, and we will

test how realistic are the graphs it can generate.

e In chapter [5| we will propose various techniques (mostly based on online learning and per-
ceptrons) to estimate the main parameter of the model, i.e., the feature-feature matrix.
Across the experimental part (specifically, chapters [7| and [8)) we will show how these tech-
niques are able to work on graphs of millions to about ten million nodes in less than 10

minutes.

e In Chapter[6] we will propose a neural-network method to infer features if they are partially

known.

e We will integrate our framework for feature-rich graphs within the context of node ranking
in section

Finally, across chapters [7] and [§] we will try our methods on real networks whose size is

unmatched by previous literature.



Chapter 3

Our framework

3.1 Introduction

As a member of the feature-based family, our model of choice stems from the observation that,
in reality, complex networks are typically endowed with features on their nodes: since networks
describe links among real-world objects, those indeed have properties and attributes. Very often,
those attributes can be simply treated as a set of features a node can have or not, without any
middle ground; therefore, we choose to consider features with binary values. This assumption
allows for better tractability, both computational and mathematical, while still covering a vast
number of concrete scenarios. Examples include friendship networks with topics of interest for
each person; semantic relations with categories of each concept; economic exchanges between
agents with the products produced by each; and — as we will see throughout this work — many
others.

In many scenarios, a reasonable hypothesis is that the links in a network arise in some way
from a complex interweaving of some features of the nodes. For example, in a co-authorship
network, a link stems more easily between authors with similar interests; similarly, in a genetic
regulatory network, links are affected by the different biological functions of the regulators.

In this regard, we would like our model to be able to capture not only homophily — where a link
stems between nodes sharing the same features — but also more complex behaviors. For example,
feature h could foster links to feature k also with h # k: e.g., in the case of semantic relations,
categories “Movies” and “Directors” will often link to each other. If we consider directed networks,
we would like this relationship to be directed as well: feature h could foster links towards feature
k but not the other way around. For example, in a citation network, we could easily expect a
paper within the sociology realm to cite a statistics paper, but a link in the opposite direction will
be much harder to find. Finally, a pair of features could inhibit link formation: as “Romeo and
Juliet” narrates, belonging to rival families could discourage the creation of a link in a long-term
romantic relationship graph.

In section [3.2| we will detail a statistical model for building a graph structure from feature-
rich nodes. In section [3.3] we will present alternatives for it by hybridizing it with well-known

small-world graph models.

15
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3.2 Feature-Feature probability model

The model we are going to describe here is able to represent all the aforementioned kinds of
behavior, while at the same time being simple enough to be computationally useful and scalable,
as we will show in the second part of this work. It is fundamentally the model proposed by
Miller, Griffiths and Jordan [136]; however, we will use it extensively as a common frame of
reference throughout this work, presenting new techniques — scalable methods for its parameters
estimation, insights and experiments about the kind of graphs it is able to generate by simulation,
concrete application in graph mining tasks, and so on.

Let us briefly present the main actors in our model. We will typically think, throughout this

thesis, of the following objects as (at least partially) observable:

e The (possibly directed) graph G = (N, L), where N is the set of n vertices, while L C N x N

is the set of links.
o A set of m features F'.

e A node-feature association Z C N x F.

We will often treat these objects through their matrix equivalent representation. More pre-
cisely, G = (N, L) will be represented as L € {0,1}"*"™; Z as Z € {0,1}"*™ using an (arbitrary
but fixed) ordering for nodes and features. Moreover, A; ; will refer to the element in the i-th
row and j-th column of the matrix A.

The — typically unobservable — objects that will define our network model will be the following;:

e A matrix W € R™*™ that represent how features interact with each other. The idea is
that a high value for W}, ;, means that the presence of feature h in a node i and of feature
k in node j will foster the creation of a link from i to j. Conversely, a negative value will
indicate that such a link will be inhibited by h and k. Naturally, the magnitude of |Wh7k|

will determine the force of these effects.

We will refer to W as the latent feature-feature matriz.

e A monotonically increasing function ¢ : R — [0, 1] that will assign a probability to a link
(,7), given the real number resulting from applying W to the features of ¢ and j; we will

call such a function our activation function, in analogy with neural networks [95].

The relationship between those actors is described formally by the following equation, that

fully defines our model:

]P’((i,j) € L) = ¢(Z > Zi,hWh,ij,k> (3.1)
hok

In other words, the probability of a link is higher when the sum of W}, ;, is higher, where h, k
are all the (ordered) pairs of features appearing in the considered pair of nodes. We will carefully
analyze this equation in the following sections. The rest of this work will deal with how this

framework can be useful in modeling a real network and in extracting useful information from it.
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Figure 3.1: The activation function ¢ as a sigmoid, with different choice for K. K regulates its
smoothness, and for K — oo it approaches a step function.

3.2.1 Model parameters

Analysis of the latent feature-feature matrix. Let us point out how different construction
for W can lead to many different kinds of interplay between links and features. The simplest
case is W = I (the identity matrix). Since its only non-zero elements are those in the form
(k, k), the only non-zero elements in the summation are those with Z; , = Z; , = 1. Therefore,
the behavior of the model in this case is of pure homophily: the more features in common, the
higher the probability of a link (remember that ¢ is monotonic).

More generally, elements of W like W}, ;. > 0 will indicate a positive influence on the formation
of a link between nodes with feature h and nodes with feature k. For example, we could reasonably
expect a high Wi ations,capitals fOr a semantic graph. In the particular case of an undirected graph,
we will have a symmetric matrix — that is, Wy, = Wy, for all h and k.

W can be used to express also other concepts. If >, W}, i, is high, this fact will indicate that
nodes with feature h will be highly connected — specifically, they will have a large number of
out-links. A large sum for a column of W, that is a large value for ), W}, 5, will cause instead

nodes with feature h to have many in-links.

Choice of the activation function. The activation function ¢ will regulate how the real
numbers resulting from >, >, Z; W}, 1. Z; 1, will be translated into a probability for the event
{(i,j) € L}.

Since we require ¢ to be monotonically increasing, its role is just to shape the resulting distri-
bution — the “responsibility” for the outcome of {(z, j) € L} will heavily lie on W. Nonetheless,
we will show in section that the specific distribution shaped by ¢ will have an impact on the
link structure of the resulting graph.

Throughout this work, we will focus on activation functions that can be expressed as a sigmoid:

¢(z) = (K0=0) 4 1) (3.2)

¥ € R is the center of the sigmoid; K € (0,00) regulates its smoothness. Figure depicts
how K influences the resulting probabilities (when ¥ = 0). We will look at both these quantities as
a priori parameters of the model. The choice of ¥ affects the number of created links: we will see
in section [£.5 how the density of the resulting graph can be controlled with a good approximation

by controlling ¥, thus shifting the assumption we make on 1 to an easy-to-interpret assumption
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on the number of links we want to create. In section we will also show the effect of different
K on the resulting network, for the specific case of pure homophily. We will see that in that
case, a larger K results in more disconnected graph, and also in a cleaner power-law of the degree

distribution.

For many applications, we will also extend the domain of K to the special value K = oo,
for which ¢ is the step functiorﬂ X(9,00)- This will make our model fully deterministic—all the
probabilities become either 1 or 0. We will see how this simplification can become an important

framework for mining information from a complex network.

3.2.2 An algebraic point of view

For some applications, it will be useful to consider the model expressed by (3.1) as a matrix

operation. As introduced in the previous section, Z is the n x m node-feature indicator matrix.

With this notation, we can express (3.1 as

P = ¢(ZWZT) (3.3)

Where ¢ here denotes the natural element-wise generalization of our activation function —
i.e., it simply applies it to all the elements of the matrix. The resulting matrix P is a matrix
that describe the probabilities of L: that is, its element F; ; define the probability that L; ; =1
or equivalently that (,5) € L.

While this view is simple and concise, it may be of little use from a computational perspective.
In concrete applications n will be very large; also, algorithms that could be of use in dealing
directly with this representation do not run in linear time—the most notable example being

matrix factorization (e.g., computing the SVD [183]).
It is useful, however, to view (3.3|) separately for each row of the matrix. In practice, this

means computing the set of out-links of a single node. This operation allows us to treat a single
node at a time, permitting the design of online algorithms, requiring a single pass on all the
nodes.

Moreover, this interpretation renders W a (possibly asymmetric) similarity function: if we
represent nodes 4 and j through their corresponding rows in Z — indicating them as z; and z;
— then our feature-feature matrix can be seen as a function that given these two vectors then
returns a real number representing a weight for the pair (¢,7). In the special case of W = [
this is the standard inner product (z;,z;); in this case the similarity of those two vectors is just
the number of features they share, thus implementing homophily. Instead, for a general W this
similarity is (z;,z;)w (although W is not necessarily symmetric or positive definite). In this
sense W can be seen as a function W : 2F x 2 — R, that acts as a kernel for sets of features.

We will embrace this perspective for some algorithm in the second part of this work.

1We will use the notation



3.2. FEATURE-FEATURE PROBABILITY MODEL 19

3.2.3 Intrinsic dimensionality and explainability

Fixing a specific graph G, it is obvious that the adherence of this model to it heavily depends
on Z; that is, on the choice of the features that we associate with every node, and ultimately on

the set of features F' we choose.

Different choices for F' will bring the graph from being perfectly explained by these features
to not being explained at all. We could then say that the explainability is a property of a set of
feature F' for a certain graph G. We will measure it in practice in many scenarios in the third,

experimental, part of this work.

For the moment, let us point out that the cardinality |F'| can be seen as an intrinsic dimen-
sionality of the graph G: if the graph could be explained by our model without any error at all,
then the same information of G could be contained by Z and W. In that case, we could say that
the out-links of node i — described in the graph by ¢;, the i-th row of the adjacency matrix L
— could be equally represented by z;, thus with a much smaller dimension: specifically, with a

vector of |F'| elements.

In fact, |V| is a natural upper bound for |F|. If we set F' = V and associate to each node
i €V only a feature i € F' —so that Z,; =1 iff i = 2 and Z = I — then the graph will be always
perfectly explained by these features: it would be enough to set ¢ as the step function x(g,0)

and W = L to make the results of our model identical to the graph, since

1if (i,5) € L

0 otherwise

P((i,j) S L) = ¢(Z Z Zi,sz,ij,j) = o(Wi) =

Naturally this choice of F' is not very useful; in practice, we obviously want F < V. For
this, we allow for the introduction of some degree of approximation; some links will be falsely
predicted by our model, because it will expect their categories to link each other. We shall call
this effect our generalization error. We will see in experiments how it can be measured and how

it is intimately connected with the explainability of a set of features in a graph.

3.2.4 Adding normalization

Let us now present some interesting variations of the proposed model. In many real scenarios, we
can speculate that not all features are created equal. For example, in the forming of a friendship
link between two people, discovering that they both have seen “Gone with the Wind”, the highest-
grossing film ever madeEL may not give us much information; knowing instead that they both have
seen the underground cult movie by Kevin Smith “Clerks” could give to their friendship link a
more solid background. Similarly, in a network of economic exchanges, a computer manufacturer
will form a more solid link with one of the few agents which develop operating systems, than
with a specific screw factory out of all in the world. In other words, for some cases rarest features

matter more.

2 Adjusted for inflation.
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Column normalization. Translating this to our model realm, what we want is that the impact
of a feature k in the establishing of a link to be inversely weighted by the number of nodes with
that feature—that is ), Z; x. To implement this effect, we just need to use the row-normalized

version of Z in our equation:

o Z;
Zin= —uh
> 21k
where we used the notation (Z since it is a left stochastic matrix (i.e., column-normalized).

Each column can be seen as a probability distribution among nodes, uniform on nodes having
that feature and zero on the others. If we employ E in place of Z in (3.1]), we obtain

IP’((Z}j) € L) = ¢<; ; ?i,hWh,lej,k> = ¢<; ; (Z?Z];I:;’E%lezklk)) (3.4)

thus reaching the effect we wanted: inside the summation, rare features will bear more weight,
and common features will be of lesser importance. This can also be seen as an adaptation of
a tf-idf-like schema [191] to our context, where nodes are documents and features are words:
connecting documents containing the word “avuncologratulazione”is more certain than connecting

documents containing the word “the”.

Row normalization. It comes natural to ask what happens when we normalize by row instead

of by column; that is, by using

71‘ _ Zin
" Zqzivq

Here we used the notation 7 since it is a right stochastic matrix. This time, each row defines
a distribution, uniform on the features possessed by that node. By substituting ? in our main

equation, we get:

p((i,j) c L) = (b(%jzk:?i,hWh,k?j,k) = ¢(Z(:Zh:§:zkj;(h£th]Z;)k> (3:5)

Thus, the effect we get is that a node with a high number of features will require a higher

sum to form a link. If two pairs of nodes have the same value for »°, >, Z; W}, 1.Z; 1., the pair
with less features will be more likely to form a link than the other one. This behavior is natural
in many contexts: a higher number of features will set a higher bar for the sum of their effects;
in other words, nodes belonging to few categories provide stronger signals than those that belong

to many categories.

?-norm. In both cases, we can also use the £2-norm instead of the ¢! we just presented, to
obtain a smoother effect. In the row-normalization case, e.g, nodes with many features will have

lower weight, but it would be slightly higher than in the previous ¢! case, since the normalization
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would b3}

A
iWh = T ——
Zq Zivq
This normalization is in fact a compromise between the non-normalized case Z and the pre-

vious normalization 7, since their normalization factors are in the order

1< \/>2, Ziq < X2, Zi,g- Our model in this case is almost the same:

o) o TET ) (B o

We will employ it in practice in some learning algorithms presented in the second part of this

work.

In principle, there are many other forms of normalization that are applicable to our model.
In fact, every well-defined norm could lead to a well-defined model. Beside the most obvious
choices of 2,3, ...-norm or max-norm, we wish to highlight that also the normalization proposed

by Adamic and Adar [1] for link prediction, that in our case would be

Zih

Zih=—=2th
logzq Ziq

could be of interest in practical applications of our model. This could constitute an interesting

approach, and it is left as future work.

3.3 Hybrid graph models

Let us conclude this chapter by presenting some hybrid models. The idea is to crossbreed our
model with some small world models already known from literature; specifically, we will look at
the two models presented in section the Barabasi-Albert model [17] and the Jackson-Rogers
model [100]. The idea of hybridizing a small world model with a feature-based one is not new: as
we mentioned in section [2.3] one of the first hidden variables model, the one designed by Bianconi
and Barabasi [24], was itself grafting hidden features (in that case, a single real-valued number
for each node) into the BA model.

We will test how our own hybrid models behave in simulation, with respect to our main

model, in section

3.3.1 Feature-feature Barabasi-Albert model

Our first variant of the feature-feature probability model takes into account the fact that some
edges exist independently of the features that the involved nodes exhibit, but they are there

simply because of the popularity of a node, as in the traditional “preferential attachment” model

3Please note that Z; , = Z; 42 since Z; 4 € {0,1}
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by Barabasi and Albert [17]. To take this into consideration, instead of using (3.1), we define
(for 1 <j<i<n):

d;(i —1)

P(Gij=1)=00 | Y ZinWiaZix | +(1-0) 2D(i — 1)’

h.k

(3.7)

where d;(k) and D(k) are, respectively, the degree of node j and the overall number of edges just
after node k was added. The parameter § controls the mixture between the pure feature-feature
model and the preferential-attachment model (degenerating to the former when 6 = 1, and to
the latter when 6 = 0).

3.3.2 Feature-feature Jackson-Rogers model

Finally, Jackson and Rogers [L00] observed that preferential attachment can be induced also
injecting a “friend-of-friend” approach in the creation of edges. Their behavior can be mimicked
in our model as follows: we first generate a graph with adjacency matrix G’ using the pure FF
model, as expressed by .

After this, every node i looks at the set of the neighbors of its neighbors, according to G'. If
this set is not empty, it then selects one node from the set uniformly at random; the resulting
node is chosen as an “extra” friend of ¢ with some probability 1 —¢ (for suitably chosen ¢ € [0, 1]).
The adjacency matrix obtained in this way is A. Once more, if § = 0 we have G = G’ so we get
back to the pure version of our model.

We will analyze those models by simulation in the next chapter.

3.4 Discussion

In this chapter, we outlined the framework in which we will operate throughout this thesis. In
particular, we explored and motivated how our complex network model works.

In section[3:1]} we motivated the necessity for a model for feature-rich graphs, highlighting that
explaining links through features in nodes could be a promising assumption in many contexts.
We sketched the behaviors that such a model should implement: homophily (i.e., the presence of
the same feature in different nodes can foster links between them), of course, but also heterophily
(different features could foster links) and their opposites (some pairs of features could prevent
links).

Then, we presented our model in section [3.2] by defining its ingredients, dividing them in
the observable and latent ones, and by presenting its equation . This equation essentially
connects the probability of a link between two nodes with the sum of all the elements of a
(latent) feature-feature matrix relative to the pairs of features possessed by those nodes. To
connect this sum and the probability, the model postulates an activation function ¢, assumed to
be monotonically increasing: higher sums will mean higher probabilities, no matter the specific
shape of the chosen function.

In section [3:2.1] we analyzed the different aspects of the model: we understood how the latent

feature-feature matrix operates, and we described the role of the activation function, as well as
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indicating the sigmoid as the most common choice for such a function. We then reformulated
our model as a pure linear algebra equation in section [3.2.2] and we discussed possible application
of this view.

In section [3:2:3] we showed how the number of features in our model for a certain graph can be
thought as the intrinsic dimensionality of that graph. In other words, if a correct feature-feature
matrix exists, then the features of the nodes become a compact representation of their links.

We discussed then how different normalization heuristics could be implemented naturally in
our framework: in section we saw how both node-based normalization (nodes with fewer
features have stronger effects) and feature-based normalization (rare features matter the most)
can be though as a normalization layer on the node-feature matrix. Also, different norms can be
used in practice to implement this behavior.

Finally, we also described how our model can be also be crossbred with previous small-world
models, in order to produce different complex network models that incorporate both previously
known dynamics with a feature-rich aspect.

After having outlined how our model can trace a link between features and graphs, in the
next chapter we will focus on how can we model the features themselves, and how it affects the

resulting network.
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Chapter 4

Modeling the evolution of features

4.1 Introduction

In this chapter, we will detail how we can model the creation of the node-feature matrix Z and
how the proposed model for Z affects the creation of the graph G.

This model, inspired by a generalization of the Indian buffet process, is simple and contains
a small number of parameters, with a clear and intuitive role. Each node is characterized by a
number of features and the probability of the existence of an edge between two nodes depends
on the features they have; the number of possible features is not fixed a priori and can grow
indefinitely. Moreover, a random fitness parameter is introduced for each node in order to
determine its ability to transmit its own features to other nodes; this behavior is added for the
first time on top of a process of Indian-Buffet type. Because of the fitness property, a node’s
connectivity does not depend on its age alone, so that also “young but fit” nodes are able to
compete and succeed in propagating their features and acquiring links. We also show how,
considering the resulting bipartite node-feature matrix, it is possible to gain some insight about
which nodes were originally the most “fit”.

Our model for the evolution of features depends on few parameters, that are characterized
by their straightforward interpretation and by the availability of proper estimators. We provide
some theoretical as well as experimental results regarding the power-law behavior of the model
and the proposed tools for the estimation of the parameters. We also show, through a number of
experiments, how the proposed model naturally captures most local and global properties (e.g.,
degree distributions, connectivity and distance distributions) real networks exhibit.

The rest of the chapter is organized as follows. In section [f.2] we will review relevant literature.
In section we will present a statistical model for the generation of the node-feature matrix
Z from a small set of parameters, for which we will provide theoretical results, estimators, and
analysis. These methods are then tested by simulations in Section [£:4] The properties of the
generated graphs are studied experimentally in section In section [£.6] we will discuss how
to rank nodes from the influence they had on the evolution of features, within our model. In
section [.7] finally, we will discuss the work presented in this chapter, with respect to the state
of the art.

25
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The contents of this chapter were published in the journal “Information Sciences” |30] (with
minor differences in notation and form). Some parts were expanded, after further investigation

on this matter.

4.2 Related works

As we have seen in chapter [2] the task of modeling a network is often undertaken directly, but
recently some authors proposed to split it into two steps |121,[122]. This proposal stems from the
observation that many complex networks contain two types of entities: actors on one hand, and
groups (or features) on the other; every actor belongs to one, or more, groups (or can exhibit
one, or more, features), and the common membership to groups (or the sharing of features)
determines a relation between actors. Among the many different families of feature-rich network
models we described, we found the one proposed by Miller, Griffiths and Jordan [136] to be
the most useful for describing large scale real data, and on that we developed our framework,
described in chapter

A natural model for the evolution of such binary bipartite graphs comes from Bayesian statis-
tics and it is known as the Indian Buffet process, introduced by Griffiths et al. |10L80}/86] and,
subsequently extended and studied by many authors |2337,/181,/182]. The process defines a plau-
sible way for features to evolve, always according to a rich-get-richer principle: because of this,
it represents a promising model for affiliation networks. Since the Indian Buffet process provides
a prior distribution in Bayesian statistics, these models have been used to reconstruct affilia-
tion networks, with an unknown number of features, from data where only friendship relations
between actors are available [136].

In this paper we propose and analyze a model that combines two characteristic characterizing
the evolution of a network: first, behind the adjacency matrix of a network there is a latent
attribute structure of the nodes; second, not all nodes are equally successful in transmitting their
own attributes to the new nodes, but each node n is characterized by a random fitness parameter
describing its ability to transmit the node’s attributes. We refer to this aspect as competition.

We were inspired by the recent generalization of the Indian buffet process [23]. However, the
model presented here is in some sense simpler since the parameters (that will be introduced and
analyzed in the next sections) play a role that is clearer and more intuitive. Specifically, we have
two parameters (o and ) that control the number of new attributes each new node exhibits
(in particular 8 > 0 tunes the power-law behavior of the overall number of different observed
attributes), whereas the random fitness parameters R; impact on the probability of the new
nodes to inherit the attributes of the previous nodes. With respect to previous models [23], we
lose some mathematical properties, but we will show that some important results still hold true
and they allow us to estimate the parameters and, in particular, the exponent of the power-law
behavior.

Regarding the use of fitness parameters, we recall the work by Bianconi and Barabasi [24]
that introduced some fitness parameters describing the ability of the nodes to compete for links.
In this work, we integrate this behavior into a feature-based model. While in previous work [24]

the fitness parameters appear explicitly in the edge-probabilities, in our model they affect the
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evolution of the attribute matrix and then play an implicit role in the evolution of the connections.

4.3 A model for feature generation

Let us assume that the nodes enter the network sequentially so that node i represents the node
that comes into the network at time i. Let X be an unbounded collection of possible features
that a node can exhibit. (This means that we do not specify the total number of possible features
a priori.) Each node is assumed to have only a finite number of features.

Let us represent Z as the set of its rows zq, ..., z,; specifically, z,, represents the features of
the node n: Z; ;, = 1 if node 7 has feature k, Z; , = 0 otherwise. We assume that each z; remains
unchanged in time, in the sense that every node decides its own features when it arrives and then

it will never change them thereafter. This assumption is quite natural in many contexts.

In all the sequel of this chapter we postulate that Z is left-ordered. This means that in the
first row the columns for which Z; ; = 1 are grouped on the left and so, if the first node has
N, features, then the columns of Z with index k € {1,..., N1} represent these features. The
second node could have some features in common with the first node (those corresponding to
indices k such that k = 1,..., Ny and Zy; = 1) and some, say N, new features. The latter
are grouped on the right of the sets for which Z;; = 1, i.e., the columns of Z with index
k€ {N1+1,..., Ny} represent the new features brought by the second node. This grouping

structure persists throughout the matrix Z.

Here is an example of a Z matrix with n = 4 nodes; observe that, for every node i, the i-th
row contains 1’s for all the columns with indices k € {N; +---+ N;_1 +1,..., Ny +--- + N;}
(they represent the new features brought by i); moreover some elements of the columns with
indices k € {1,...,N1 +---+ N;_1} are also 1’s (features that were brought by previous nodes
and that also node 4 decided to adopt):

1110 0000 O0O
101 1100000
0111011100
1110110111

Explanation of the model. We will describe the dynamics using a culinary metaphor (sim-
ilarly to what some authors do for other models, see Chinese Restaurant [153], Indian Buffet
process |10[86L[181] and their generalizations [19}|23]). We identify the nodes with the customers
of a restaurant and the features with the dishes, so that the dishes tried by a customer represent
the features that a node exhibits; therefore, in the matrix above Z; ; = 1 means that customer
i tried dish j. The general idea in this metaphor is that a customer will try both some new
dishes (precisely, N; new dishes), but also some dishes already tasted by previous customers.
More popular dishes will have larger probability to be tasted again, with the proviso that, in

establishing the “popularity” of a dish, some people are naturally better influencers than others.

Let us explain the model formally, through this metaphor. Fix o« > 0 and 8 € (—o0, 1]. Also,
let Poi(A) denote the Poisson distribution with mean A > 0. Customer (node) n is attached
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a random weight (that we call, in accordance with the usage in network science [23|, fitness
parameter) r,. We assume that each r, is independent of 71, ..., 7,_1 and of the dishes (features)
experimented by customers 1,...,n. The fitness parameter r,, affects the choices of the future
customers (those after n), while the choices of customer n are affected by the fitness parameters
and the choices of the previous ones. Indeed, it may be the case that different customers have
different relevance, due to some random cause, that does not affect their choices but is relevant
to the choices of future customers (i.e., their capacity of being followed).

The dynamics is as follows. Customer (node) 1 tries N7 dishes (features), where Ny is Poi(a)-

distributed. For a customer n + 1 after the first one, we have that:

e They select a number of dishes already tried by others. The inclusion probability of dish &

1S

Yo riZig
P, (k) = &=L 12k 4.1
) = S (41)
where Z; ;, = 1 if {customer ¢ has selected dish k} and Z; , = 0 otherwise. It is a preferential
attachment rule: the larger the weight of a dish k at time n (given by the numerator of
(4.1), i.e., the total value of the random variables r; associated to the customers that have
chosen it until time n), the greater the probability that it will be chosen by the future

customer n + 1.

Please note that we can further generalize our model by introducing another parameter

¢ > 0 in the inclusion probabilities so that

P (k) = ZsL ik

o c+ Z:‘L:l T
In other words, the bigger c, the smaller the inclusion probabilities and so the sparser the
features. This can allow to obtain feature matrices Z that are sparser. For the moment —

and through the rest of this chapter — we set ¢ = 0.

e In addition to the dishes already tried by others, customer n+1 also tries N,, ;1 new dishes,
where N, 11 is Poi(A,)-distributed with

Ap=— (4.2)

(Cr )

Note that we assume that, for each single customer, each choice is made independently from
the others. Besides this assumption of independence, we also assume that the random parameters
r, are identically distributed with r,, > v for each n and a certain number v > 0, and E[r2] <
+oo. The particular distributions for which E[r,] = 1 allow for a simplification of the following

formulas; however, we will not require this assumption for generality.
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Role of the parameters. We set E[r,] = m, — ie., the expected values for the fitness
parameters; then, let us define L, = Y/ | N;, i.e. the overall number of different observed
features for the first n nodes (i.e., customers).

The meaning of the parameters is the following. The random fitness parameters r, funda-
mentally control the probability of transmitting the features to the new nodes. The main effect
of B is that it regulates the asymptotic behavior of the random variable L,, (see Theorem . In
particular, 8 > 0 is the power-law exponent of L,. The main effect of a is the following: the
larger a, the larger the total number of new tried dishes by a customer. It is worth to note that g
fits the asymptotic behavior of L,, (in particular, the power-law exponent of L,,) and, separately,

« fits the number of observed features.

Choice of the Poisson distribution. The Poisson distribution is common in modeling counts
in stochastic processes [L09}[156]; examples include the number of decays in radioactive substance,
or the number of mutations in in a strand of DNA of given length. In a number of circumstances,
this is the case also for human processes: a well-known example is phone calls arriving in a call
center [156|, but recent results include also scores in sports [108§].

In the case of Indian Buffet Processes, the choice is also motivated by a particular ease in
mathematical analysis of the Poisson distribution [10]. It is in fact characterized by a range of
convenient mathematical properties, which makes it particularly suited for modeling the building
blocks of the process (e.g., when dealing with sum of Poisson random variables). However, other
authors |103| have tried to generalize the Indian Buffet Process to cases where the number of
new dishes is not Poisson-distributed, but follows—for example—a negative binomial.

In its study of models of human dynamics, Barabasi [16] pointed out that in a number of
cases, human processes are better modeled by a power-law distribution than by the classic Poisson
distribution; one of his main examples is the time distribution of the emails sent by a given user.
His point is that, while the underlying choices (e.g., in the case of emails, the priority of the single
email) may be distributed in a non-power-law fashion, the emerging behavior will be, nonetheless,
a power-law, as a consequence of how these choices are carried out as a whole.

As we will see in the next sections, this is also what happens with the Indian Buffet Process:
while the single choices—the number of new dishes to try—are not distributed with a power-law
(but instead with a Poisson distribution), the resulting total number of features (see section[4.3.1]
or fig. , or the number of nodes per feature (see experiments in fig. , ends up following
a power-law distribution. Previous works |181] have shown that, also in the Indian Buffet Pro-
cess, the power-law is an emerging properties of the system, and it can explain the power-law
distribution of features in real phenomena.

It is, however, intriguing to ask ourselves what would happen if we would employ a power-law
to model, from the beginning, the number of new features per node. For sure, the model would
be dominated by a small number of nodes. In fact, what would happen is that a few nodes would
introduce a very large number of new features. In particular, since the sum of two power laws
with the same exponent tends towards a power-law with the same exponent [190], we can see
that in the end the total number of features will be again distributed as a power-law, but in

that case almost all of the appearing features will be introduced by a small number of nodes.
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Since these nodes will have a very large number of features, the computational aspect of such
a model would be more difficult to handle. However, it would have the effect of introducing
implicitly the competition dynamics that we have introduced explicitly with the fitness values
r1,...,Tn. Whether it would lead to a better model to fit empirical data is a matter that needs

more investigation.

4.3.1 Theoretical results about estimation of o and

In this section we prove some properties regarding the asymptotic behavior of L,,. In particular,
the first result shows a logarithmic behavior for § = 0 and a power-law behavior for 8 € (0, 1].
These results allow us to define suitable estimators for § and «.

The mathematical formalization of the above model can be performed by means of random
measures |114] with atoms corresponding to the tried dishes (observed features), similarly to
previous works |23371{182]. More precisely, besides the sequence of positive real random variables
(rn), we can define a sequence of random measures (M,,), such that each M, is, conditionally
on the past (M;,r; : ©« < n), a Bernoulli random measure with a hazard measure v, having a
discrete part related to the features k belonging to a node and their weights P, (k) and a diffuse

part with total mass equal to A,,.

Theorem 1. Using the previous notation, the following statements hold true:
e a)sup, L, =L < 400 a.s. for f<0;
e b) L,/In(n) &% a/m, for B =0;
e c) L,/n® X% a/(Bml=P) for 3 € (0,1].

Proof. Let us prove assertion a), first. Let F; be the natural o-field associated to the model
until time 7 and set Ag = a. Since, conditionally on F;, the distribution of N;;1 is Poi(A;), we

have
P(Niz1 > 1) = E[P(N;41 > 1| F;)] < E[A4].

Since r; > v > 0, we obtain
P(N;z1>1) < 1
Z (Nig1 2 )_QZW<+OO
7 K3

(where the convergence of the series is due to the assumption 8 < 0). By the Borel-Cantelli

lemma, we conclude that
P(Ni > 0 infinitely often ) = P(Ni > 1 infinitely often) =0.

Hence, if 5 < 0, there is a random index N such that L, = Ly a.s. for all n > N, which
concludes the proof of a).
The assertion c) is trivial for § = 1 since, in this case, L,, is the sum of n independent random

variables with distribution 7(«) and so, by the classical strong law of large numbers, L, /n *% a.
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Now, let us prove assertions b) and c) for 5 € [0, 1). Define

A(ﬂ):m% if 3=0 and )\(5):677;%
R

an(B) =logn if B=0 and a,(8)=n" if g€ (0,1).

if Be€(0,1),

We need to prove that

Ly,

an(B) =HAB)-

First, we observe that we can write

SiA (S (R)T

an(B) an(B) ’

where, by the strong law of the large numbers,

Z;:1 Ty a8,

2

Ti= -

Therefore, since 22‘;11 i#~1/a,(B) converges to 1 when 3 = 0 and to 1/3 when 8 € (0,1), we get

%—_(15;\ “2% \(B). (43)

Next, let us define

" N; — E[N; | Fi_1]
To=0 and T, = =
’ ; ai(P) :

Then, (7,,) is a martingale with respect to (F,) and

=1 =1

o0 E[Ai_l]

Since 7; > v > 0, it is easy to verify that E[A;] = O(i~1=#)) and so sup,, E[T?] = "7, TRGL

oo. Thus, (T},) converges a.s., and the Kronecker’s lemma implies

<

1 = (Nz - Azfl) a.s
R DA o
so finally
. Ln . Zn— Nz . Zn— Az—l . AO + En__l Ai
lim = lim ==L = Jim ==L = lim i=1 =AB) a.s. 4.4
P a® W ® W R R )
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The above result entails that In(L,,)/In(n) is a strongly consistent estimator of 8 € [0, 1]. In
fact:

e if 3 =0 then L, < - In(n) as n — +o0; hence In(Ly,) C In(a/m,) +1In(In(n)), therefore
In(L,)/In(n) < In(a/m,)/In(n) + In(In(n))/In(n) “3 0 = B;

a.s

e if > 0, we have L, < A(B)n? as n — 400 so In(Ly,) < In(A(B)) + S1n(n), hence
In(Ly)/ In(n) < W(A(8)/ In(n) + 5 5 5.

Remark 4.3.1. In practice, the value of In(L,)/In(n) may be quite far from the limit value
B when n is small. Hence, it may be worth trying to fit the power-law dependence of L,, as a
function of n with standard techniques 53| and use the slope Bn of the regression line in the

log-log plot as an effective estimator for 5.

Finally, assuming that 5 € [0, 1] and m,. are known, we can get a strongly consistent estimator
of a, as:

L,
forB=0 and mlTPB=E for0<pB <1

m
T r nﬂ

Ly,
In(n)
In practice, we assume (3 equal to the estimated value ﬁn (as defined before) and we take
m, equal to the estimated value 7, = Z?:l r;/n, if the random parameters r; are known. In

Section [£.6.3] we will discuss the case when the random variables r; are unknown.
Remark 4.3.2. Once more, it may be better in practice to estimate « as

Qy = My Y, when 8 =10
7 (4.5)
anzﬁm}n_ﬁﬁn when 0 < 6 < 1,

where 7,, is the slope of the regression line in the plot (ln(n), Ln) or in the plot (nﬁ, Ln) according
to whether 3 =0 or 8 € (0, 1].

We complete this section with a central-limit theorem that gives the rate of convergence of
L, /an(B) to A(B) when 38 € [0,1].

Theorem 2. If 8 € [0, 1], then we have the following convergence in distributioﬂ:

Ly
an(B)

d
an(B) {2 = A(B) |~ N (0, M(8))-
Proof. The result for 8 = 1 follows from the classical central limit theorem, since, in this case,
L,, is the sum of n independent random variables with distribution P(«). Assume now 3 € [0, 1)
and set Ag = a. We first prove that

W {Z2 A} Do (1.6

L Actually, the convergence is in the sense of the stable convergence, which is stronger than the convergence in
distribution. Indeed, stable convergence is a form of convergence intermediate between convergence in distribution
and convergence in probability.
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By some calculations, condition (4.6) is equivalent to

n—1 i B-1 NB—1
i ACSar)” —me) Poo. (4.7)
an(ﬁ)

Since r; > v > 0, we have m, > v > 0 and we obtain

B—1

B|(Simm)' ™" = (meiy 7]

(vi)20-P)

E (mTi)ﬁ_l— er
=1

1 1-8 ! .
< 0i2EB (v3)P E erj —m1

<

This proves condition (4.7) (and so (4.6)). Indeed, we have

1 n—1 i Pt
—F rj — (my4)P7t <
an(B) ; ;
) B-1
E | |(mpi)"~" — 5 <
an(B) = j=1

(1= 8)y/Varlr] 1 = 1
2B 1 m; e O

Next, define

Ln 7-1_ Ai_ ;L_ N1 — Ai_
T, = a (@) { Lo Zam iy 2 i),
an(B) an(f) an(B)
In view of (4.6)), it suffices to show that T, BN N(0, A(B)).
To this end, forn > 1 and ¢ = 1,...,n, define

Ny — Ay

Tni =
’ an(B)

, Gno=7Fo and G,;=7F;,

where F; is the natural o-field associated to the model until time ¢. Then, we have E[T),; |
Gni-1] =0, Gn,iCGny1,; and T,, = Y i | Ty, ;. Thus, by a martingale central limit theorem [88],
T, i>J\f(0, A(B)) provided

. = 2 P .. 0P 2
<o;nﬁﬂww<mg%mmm,wm?E@%nJ<m
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Figure 4.1: The Z matrix for n = 500, two different values of @ (¢ = 3 and « = 10) and a fixed
B8 = 0.5. The random variables r; are uniformly distributed on the interval [0.25,1.75].

Let

Y {Di — E[Di | Fial} Y0, (Di = Aizy)
an(B) an(B) '

Di = (N, — Ai—1)2 and Un =

By the same martingale argument used in the proof of the previous theorem and by Kro-
necker’s lemma, U,, =% 0. Then, by li

- " Di 7‘1— Ai— a.s,
ZT&%‘@) Un+Z;1(6) - 25 A(8).

i=1

This proves condition (i). As to (ii), fix £ > 1 and note that

maxXi<;< D; D; maxXi<;< D; D;
max 172, < 1sisk 7% > 1Sisk 2 sup —- for n > k.

ST S T3 RGBS T m®) ek wd)

Hence, lim sup,, maxi<i<p Tii < limsup,, aD—("m and condition (ii) follows since

D" _ Z?:l D’L _ Z?;ll Dz a.s,
an(B) ~ an(B) wip) Y
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alpha = 3, beta = 0.75 alpha = 3, beta = 0.5 alpha = 10, beta = 0.5
1000 - estimate for beta: 0.746 estimate for beta: 0.542 estimate for beta: 0.557

100 -

Ln

Figure 4.2: Correspondence between the parameter 5 and the power-law exponent of L,, as a
function of n. The estimate of S is the slope of the regression line. Here, we have 500 nodes and
the random variables r; are uniformly distributed on the interval [0.25,1.75]. Values for « and g
are indicated above; we can see how different values for o do not affect the power-law behavior.

Finally, condition (iii) is a consequence of

max T2 2i=1 E[Di] _ > i1 BlAi—1] _
b L<i<” Tn’z] : an(B) an(B)
_dorss ey o (L EE 007
RN 1) R ——

4.4 Simulations for the evolution of features

In this section, we shall present a number of simulations we performed in order to illustrate the
role of the parameters of the model for Z and also to see how good the proposed tools turn out
to be.

4.4.1 Estimating o and

Firstly, we aim at pointing out the role played by the model parameters o and . Therefore, we
fix a distribution for the random fitness parameters with E[r,] = 1 and we simulate the matrix
7 for different values of @ and f (fixing one and making the other one change). More precisely,
we assume that the random variables r,, are uniformly distributed on the interval [0.25, 1.75].

In Figure we visualize the effect of a: a larger « yields a larger number of new features
per node.

In Figure [£:2] instead, we visualize how different positive values of 3 yield a different power-
law (asymptotic) behavior of L,. Indeed, in this figure, we have the log-log plot of L, as a
function of n. In the first two panels, we present two different positive values of 5 (0.75 and 0.5),

showing the correspondence with the power-law exponent of L, estimated by the slope of the
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B=0.5 B =0.75

count

Estimated values for beta Estimated values for beta

Figure 4.3: Distribution of the estimator Bn of 8 over 10000 experiments, each with n = 2000
and o = 3. The random variables r; are uniformly distributed on the interval [0.25,1.75]. The
red line indicates the true value of 5.

regression line. Moreover, in the third panel, we point out that the parameter o do not affect
the power-law exponent of L,,.

Figure underlines that the estimator proposed in remark works better (i.e. with
more precision) for large values of §; in fact, L,, reaches the power-law behavior more quickly
for larger values of 5. We can see, in fact, that the estimator shows a small bias for 5 = 0.5, but
the bias becomes negligible for § = 0.75.

Similarly, we evaluated the estimator @, of «, obtained by using the slope of the regression
line in the plot of L, as a function of n”, as sai in Remark Results are illustrated in
Figure 1.4

We also checked how the shape of the matrix Z is influenced by the distribution of the random
parameters r,. More precisely, we analyzed the effect of € on the shape of Z when the random
variables r; are uniformly distributed on the interval [e,2 — ], with 0 < ¢ < 1; in this way, for
every € we have that E[r;] = 1 and the variance of r; is Var[r;] = (1 — £)?/3, which goes to zero
as ¢ — 1. Hence, when ¢ is smaller, the variance of the r,’s is larger, so that also a “young”
node i have some chance of transmitting their features to the other nodes (recall that a larger r;
makes ¢ more successful in transmitting its own features). This is witnessed (see Figure by
the number of blackish vertical lines, that are more or less widespread in the whole spectrum of
nodes; whereas for larger ¢ they are more concentrated on the left-hand side (i.e., only the first

nodes successfully transmit their features).

4.5 Simulations for the graph structure

The purpose of the following collection of experiments is to determine the topology of a graph gen-
erated with the models described above. We will examine through simulations a more restricted

case than the general model expressed in section [3.2] by making the following assumptions:

?Note that we have E[r,] = 1 and so « coincides with o’
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a=3

count

; . ] 9 0
Estimated values for alpha Estimated values for alpha

Figure 4.4: Distribution of the estimator &, of o over 10000 experiments, each with n = 2000
and § = 0.5. The random variables r; are uniformly distributed on the interval [0.25,1.75]. The
red line indicates the true value of a. Please note we employed the true value of 8 in order to
estimate a.

e We consider undirected graphs: a link (4, j) will exist if at least one link among (4, j) and

(j, 1) exist.

e We will focus, in this section, on pure homophily: therefore we will set W = I. In this way

the only pairs of features that affect the existence of a link will be those in the form (&, k).
e We also omit self-loops, i.e., edges of type (i,1).

We fix a priori the number of nodes n and the (approximate) number of edges m (i.e., density)

we aim at; then, every experiment consists essentially in two phases:

e generating a node-feature matrix Z for n nodes (with certain values for the parameters «

and f and with r; uniformly distributed on the interval [e,2 — ¢] for a certain ¢);

e building the graph according to one of the models described in Sections [3.2] and

The second phase needs to fix some further parameters: W (the feature-feature influence
matrix), the function ¢ and, for the mixed models (FFBA and FFJR, section, the parameter
J.

As said above, throughout this section we will assume that W = I for the sake of simplicity.
Regarding the activation function, we take ¢ as a sigmoid function given by:

o@) = (KO- £ 1),

In other words, the existence of an edge (i, j) depends simply on the number of features that
¢ and j share (this is an effect of choosing W = I). More features in common induce larger
probability: the sigmoid function smoothly increases (from 0 to 1) around a threshold ¢, and
K > 0 controls its smoothness; when K — oo we obtain a step function and edges are chosen

deterministically based on whether the two involved nodes share more than 1 features or not.
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Figure 4.5: Here n = 500, a = 3, 8 = 0.5 and the random variables r; are uniformly distributed
on the interval [¢,2 — ¢] (so that m, = 1 and Var[r;] = (1 — €)?/3), for different values of ¢
(¢ =0.25 and € = 0.75). The figure shows how ¢ affects the shape of Z.

In the experiments, we fix K and determine ¢ on the basis of the desired density of the
graph (or, equivalently, the desired number of edges m); in practicﬁ this is obtained by solving

numerically the equation

E Z Aij| = Z 0] Zzi,hWh,ij,k =m

1<j<i<n 1<j<i<n h.k

for the indeterminate ¥ (using, for example, Newton’s method). Since W = I the equation

in fact simplifies into

Z (EK(z%Zh ZinZjn) 4 1)71 =m.

1<j<i<n

With these assumptions, every experiment depends on the parameters used for generating Z
(i.e., o, B and €), on K (that controls the smoothness of the sigmoid function), on 9 (ultimately
responsible for the graph density) and on § (for the mixed models). In the graphs produced by
each simulation, we took into consideration the degree distribution, the percentage of reachable
pairs (i.e., the fraction of pairs of nodes that are reachable) and the distribution of distances

(lengths of shortest paths); the latter data are computed using a probabilistic algorithm m

3The described method needs some (obvious) adjustments when applied to the mixed models, to take into
account the edges generated by preferential attachment.
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Figure 4.6: Properties of graphs generated by our model. We show the degree distribution in a
log-log plot and the fraction of pairs at distance at most k; in the latter, we highlight the peak
value (fraction of mutually reachable pairs).
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Figure 4.7: Properties of graphs generated by mixed models with K =1 and § = 0.75. We show
the degree distribution in a log-log plot and the fraction of pairs at distance at most k; in the
latter, we highlight the peak value, indicating how many pairs of nodes are mutually reachable.
The parameters of the underlying node-feature matrix model are a = 3 and 8 = 0.75 and the
r;’s are uniformly distributed on [0.75, 1.25].

Some of the results obtained (for n = 2000 an(ﬂ m = 4000) for the FF model are shown
in Figure For those experiments, the underlying node-feature matrix is generated with
B = 0.75 and r; uniformly distributed on the interval [0.75,1.25]; we compare o = 3 (resulting in
~ 1200 features) with a = 10 (= 4000 features). Results regarding mixed models are reported
in Figure [£.7]

The properties of the obtained graphs can be summarized as follows:

e the pure FF model exhibits a behavior that strongly depends on the smoothness parameter
K (see Fig. [4.6):

— for K =1, the degree distribution is power-law only when « is large (e.g., a = 10),
whereas the distribution is often non-monotonic for smaller a’s, especially on large

graphs; the fraction of reachable pairs is quite large (between 40% and 90%);

— for K = 4, degrees are always distributed as a power-law (with exponents around 3),
but the graph becomes largely disconnected (the reachable pairs are never more than
20%): this is because nodes with the same degree tend to stick together (assortativity),

forming a highly connected component and leaving the remaining nodes isolated;

— for K — o0, the power-law distribution of degrees is even more clear-cut, but the
number of reachable pairs becomes smaller (no more than 10%); the exponent of the
power-law distribution depends on «, with larger a’s yielding larger absolute values

of the (negative) exponents;

4We observed analogous phenomena also for larger and denser networks; we hereby report only the smaller
case for the sake of readability of the pictures.
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e the FFBA model (see Fig. [£.7), presented in section increases slightly the number of
reachable pairs in all cases; the shape of the power-law distribution is essentially unchanged

with respect to the pure FF model;

o finally, for the FFJR model (see Fig. |4.7)), presented in section we observe a reduced
connectivity; this is due to holding the expected number of edges as a constant, while
devoting some of them to closing triangles — an operation that cannot increase connectivity.

The degree distribution seems closer to a power-law with respect to the pure FF model.

4.6 Ranking from features

One of the most important notions that researchers have been trying to capture in complex
networks is “node centrality”: ideally, every node in the graph has some degree of importance
within the network under consideration, and one expects such importance to surface in the
structure of the social network; centrality is a quantitative measure that aims at revealing the

importance of a node.

It was noted [32] that the most used centrality measures can be broadly categorized into
geometric measures (e.g., closeness centrality [21], Lin’s index |125] or harmonic centrality |32]),
path-based measures (e.g., betweenness |[11]) and spectral measures (e.g., PageRank [148| or
Katz’s index [110]).

In this section, we will consider only features in nodes (without the links they carry) in order
to rank nodes. The purpose of this section is limited to show how the model for the evolution of

features presented in section [£.3] can naturally lead to a node ranking.

Indeed, in section [£.3] we introduced a new version of the Indian Buffet process to explain
how the node-features matrix Z can be generated. As in the classical Indian Buffet process,
nodes arrive in a sequence {0,...,n — 1}, and node i selects a set of new features not selected
by nodes {0,...,i— 1} and also a set of features already selected by others; the latter are chosen

accordingly to the popularity of those features (in a rich-get-richer way).

Our work there was innovative in two main ways:

e We provided parameters with a clear semantics and their unbiased estimators.

e We introduced competition: not all nodes are created equals, but each one is equipped with

a fitness value R; that express how influencing is that node in popularizing its features.

This second point is the key of this section: since our model for the evolution of features
described formally how the fitness of nodes impact the likelihood of a given Z, we can employ
this to extract in a rigorous way a node ranking from a node-feature association. In doing this, we
will in fact first maximize the likelihood of the node-feature matrix we are seeing (employing the
estimators for o and 8 we provided in section , and then we will provide a naive algorithm,

which work surprisingly good for this task.
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4.6.1 Likelihood of fitness values of nodes

Now our purpose is to find, under the assumption of our model, a procedure to get information
on the random variables r; from the data, that typically are the values of zq,...,z,, i.e., n rows

of the matrix Z, where n is the number of the observed nodes.

We are going to develop a maximum log-likelihood procedure to find a plausible realization
T1y...,Tg, of ri,..., 7, , for a suitable k,, < n. Note that we ideally would like to find a probable
realization for all the fitness parameters of the observed nodes (not only for the first &, nodes),
but we do not possess the same amount of information about all r;: in particular, while rq
influences all the subsequent observed rows of the matrix Z, r,_; has only influence over z,,, and
the value r,, has no influence at all. So we cannot expect to find good values for all the random

variables.

With the above purpose in mind, we now give a general expression for the conditional prob-

ability of observing z1 = Z1,...,2, = 2z, given 71, ...,7,_1.

The first row z; is simply identified by L; = N7 and so

P(Zl :/Z\l) :P(Nl =N = ‘{k‘:Zl,k = 1}|

o™t

= Poi(a){n1} =e™* PR

Then the second row is identified by the values Z5 ,, with k =1,...,L; = N; and by Ny and

SO
P(Zz 222|Z1,7“1) =

P(ZQJ€ = Eg,kfor k= 1,...,L1, N2 =Ny = ‘{k‘ > L1 : 227k = 1} |Z1,’/’1) =
Ly
[T Pe(k)?25 (1 = Py(k)' 7% x Poi(Ar){ns},
k=1
where P (k) is defined in (4.1)) and A; is defined in (4.2)).
The general formula is

P(Zj+1 :/Z\j-t,-l‘zlyrla-"azjarj) =

P (Zj+17k = Z\j-&-l,k for k = 1, cee ,Lj,

Nj+1 =MNjt1 = ‘{k’ > LJ : Zj+1)k: = 1} |Z1,T1,...7Zj,’l"j) =
L;
[1 2k (1 = Py(k)) =%+ x Poi(Aj){nj41},
k=1

where P;(k) is defined in (4.1) and A; is defined in (4.2).

Hence, for n nodes, we can write a formula for the conditional probability of observing z; =

Zi,...yZp =Zp GIVENN T'1,...,Tp—1:
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P(z1 =%1,...,2, =2,|11,...,Tn—1) =
ot R (4.8)
P(Zl = Z1) H P(Zj+1 = Zj+1|Z1,T1, e ,Zj,’/‘j).
Jj=1

4.6.2 Ranking through Gibbs sampling

The algorithm we applied is essentially a MCMC (Markov Chain Monte Carlo) method [79],
which uses the basic principle of Gibbs sampling |43]: fix all components of a vector except one

and compare the different values of the likelihood obtained for various values of the non-fixed

component.

The method employs the aforementioned formula for the conditional probability of
observing z; = z1, ..., 2, = Z, given the values of r1,...,7,_1. Precisely, using the symbol Z in
order to denote the matrix with rows z1,...,2, and the symbol T in order to denote a vector of
component 71, ...,7,, set

P(Z=Zvr =7) = P(21 =21, ..., % = Zp|r1 = T1,...,Tn = 7). (4.9)

We want to find a vector T that is a point maximizing the likelihood function (4.9) corre-
sponding to the observed Z.
The basic algorithnﬂ is described in Alg. [1] Tt is regulated by these parameters:

e r’ € R” is the initial guess for T;

e J € N7 is the number of jumps, i.e., the number of the new values analyzed for a certain

component 7; at each step;

e o € RT is the standard deviation of each “jump”.

To check for convergence, we keep track of all the increments of the log-likelihood obtained
in each one of the last n steps; as a stopping criterion, we check when the maximum of these
increments is under a certain threshold ¢: if it is, we stop the algorithm.

It is worth to note that, given L£(r;), it is possible to find £(h) without re-doing the whole
computation. In fact, let us consider the product in : a change from r; to h must be
taken into account only from the i-th factor onward — that is, for the factors that come after
P(z; = Z;|z1,r1,...,2;—1,7,_1). In particular, let 6 = h —7; — i.e. the update to add to the
estimated fitness 7; of node . Then, for each j-th factor with j > ¢ in —i.e., how likely are
the features chosen by node j — we have to:

e add ¢ to the term Zgzl r;, inside A; and P;(k); that is, as defined in (4.1]) and (4.2)), the

denominator normalizing each r; to their total sum.

5We point out that our algorithm can not be considered a proper statistical estimation procedure for the
fitness parameters. It resembles the Bayesian Mazimum a posteriori probability (MAP) estimation when the a
priori distribution is a uniform distribution, but the number of parameters in our case increases with the number
of observations.
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Algorithm 1 Basic Monte Carlo algorithm to find .

INPUT:
Z1,...,2,, the observed rows of the node-feature matrix Z
OUuTPUT:

T, a maximum point for the likelihood function associated to the input data
DESCRIPTION:

1. T+« 1rd

2. Repeat the following loop until convergence:

(a) Choose a random node i € {1,...,n}
(b) Extract J values hy, ..., h; from the normal distribution N (r;,0?); re-sample each h;
until ; > 0.

(c) For each value h;, compute

E(hj) = P(Z:Zl’l‘l :?1?"'7Ti:hj,---,7"n

|

<
9
N

(d) 7+ argmax L(h)
he{ri,h1,....,hs}

o add § to the numerator of P;(k) when k is s.t. Z; ;, = 1; that is to say, change the global

weight of a feature only if the node we changed has that feature.

Every other term in the equation remains unchanged and does not need to be computed

again. This remark allows us to speed up the implementation considerably.

Figure [4.8 confirms that the algorithm moves toward a vector Z maximizing P(Z = Z|r =)
and shows that the algorithm effectively converges. The obtained outputs will be discussed in
details in Section 6.3

As already said, one point that we need to keep in mind is that we do not possess the same
amount of information about all the random variables r;: in particular, while r; influences all the
subsequent rows of the matrix Z, r,_1 has only influence over the last one. So we cannot expect
the output values to be very accurate for the last segment. For this reason, we also implemented a
variant of the algorithm that considers only the first &, nodes. Thus, we have another algorithm
parameter k, so that the choice of the jumping node at step 2(a) is restricted to i € {1,...,k,}
and, finally, the output will be the corresponding segment of T, i.e., 71,...,7, . This variant
converges faster and moreover it allows to use larger values of the algorithm parameter J.

Another relevant point is that the parameters o and § enter the expression . Therefore,
in practice, before applying the algorithm, we need to estimate them. As shown in Remark
we are able to estimate [ starting from the observed values of the matrix Z. On the other hand,
as shown in Remark [£:3.2] the estimation of o presupposes the knowledge of the mean value m,.
of the fitness parameters r; (except for the special case § = 1). Hence, we are in the situation
in which, in order to get information on the fitness parameters by the proposed algorithm, we

need to estimate a and S, but, in order to estimate «, we need to know the mean value m,..
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R; sampled from a uniform R; sampled from a uniform discrete
distribution on the interval [0.5, 1.5] distribution on the two values {0.25,1.75}
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Figure 4.8: Value of the log-likelihood during the execution of the algorithm, for different
distributions of r;. The chosen algorithm parameters are 02 = 1, J = 4 and r° = 1 (the vector
with all 1’s). The matrix Z has 2000 rows (nodes) and it was generated with o = 3 and 8 = 0.9.

This problem can be partially solved as follows. Since the term P(Z; = z1) does not contain the
r;’s, the research of a vector T that maximizes (4.9)) is equivalent to the research of a vector T

maximizing the product
n—1

I Pzjr1 =21 21,71, % m))

j=1
in formula (4.8). On the other hand, each term of the above product contains the inclusion
probabilities P;(k), that are invariant with respect to the normalization of the r;’s by their mean

value mpg, and the A;’s that have the property

Aj = f(e, B,1) = f(e/(mp)' 7, B,x/m,)

(where r/m, denotes the vector with components r;/m,). Consequently, starting from the ob-

served values of the matrix Z, we can

e first, estimate 3 by Remark

e then estimate o’ = a/(mg)*~” by Remark (i.e., @), equal to 7, or 87, according to

the estimated value of §);

e finally, extract a plausible realization ¥ = T/m, (of the random variables 7} = r;/m,) as a
maximum point of the corresponding expression of the likelihood with the estimated value
of 8 and o'.

Therefore, the output of the algorithm will be o/, 8 and a plausible realization T’ of the

random variables r; = r;/m,..

Finally, we highlight that it is possible to experiment other variants of the algorithm, for
example, by using a distribution different from the normal for the jumps, or changing o during
the execution (e.g., reducing it according to some “cooling schedule”, as it happens in simulated
annealing [76]). Additionally, instead of looking for the values on the whole positive real line, we

could restrict the research on a suitable interval (guessed for the particular real case).



46 CHAPTER 4. MODELING THE EVOLUTION OF FEATURES

in natural order ordered by the value

Figure 4.9: The extracted realization T (in red) versus the true realization r (in blue), with two
different orderings, in the case of uniform distribution on the interval [0.5,1.5]. The empirical
mean of the first § extracted values is 1.18.

4.6.3 Experiments

We proceeded to test empirically how the Monte Carlo method performs in recovering the infor-
mation on the fitness parameters r;. We tested its behavior against various distributions of r;;
specifically, a uniform distribution on an interval, a two-class uniform distribution, and finally a
discrete power-law distribution with 10 classes. In the following of this section we illustrate the
details of such experiments, while, in the next section, we will try to measure the performance

of the proposed technique.

In every experiment, the matrix Z has n = 2000 nodes and it was generated with o = 3 and
B =0.9. The Monte Carlo algorithm parameters were set as follows: 02 =1, J =4 and r’ = 1
(the vector with all 1’s).

For the first experiment, each r; is sampled from the uniform distribution on the inter-
val [0.5,1.5]. We used the previously discussed techniques to find the estimates of o and j3: the
estimated values are @ = 3.095 and B = 0.893 (note that we have m, = 1 and so @ = o’ and
T =7'). Then, we tried the proposed Monte Carlo algorithm with the stopping threshold ¢ = 1/4.
Results are visualized in Figure [£.9] according to two different orderings of the nodes:

i) in the natural order, so that we confirm that our predictions are better for the first (i.e.,

the oldest) nodes than for the last (i.e., the youngest) ones;

ii) ordered by their true fitness values, so that we can show that we are, more or less, able to

reconstruct the relative order of the fitness parameters (this fact will be made clearer in

Section [4.6.4)).

In the second experiment, we applied our algorithm to a discrete case: we sampled the fitness
parameters r; from a set of only two values, {0.25,1.75}, each with probability % We left the
parameters of the model and the ones of the algorithm unaltered, except for moving the stopping
threshold ¢ from 1/4 to 1. The estimated values for « = 3 and 8 = 0.9 are, respectively, @ = 2.922
(again m, =1 and so a = o and T =7’) and B = 0.903. The results of this second experiment

are more encouraging (we will see precise measurements in Section [4.6.4). In this case, the
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in natural order ordered by value of r;

Figure 4.10: The extracted realization T (in red) versus the true realization r (in blue), with two
different orderings, in the case of the uniform discrete distribution on the two values {0.25,1.75}.
The empirical mean of the the first 5 extracted values is 1.33.

in natural order ordered by the value

Ak
A

Fpheindle
N2 OT A,

Figure 4.11: The extracted realization T (in red) versus the true realization r (in blue), with
two different orderings, for the normalized discrete Zipf’s distribution with exponent 2 and 10
values. The empirical mean of the the first § extracted values is 1.25.

output values of the algorithm are closer to the true ones (see Figure 4.10). Moreover, we can
still observe the same phenomena, i) and ii), described above.

Finally, we applied the algorithm to a third case: we sampled r; from a normalized power-law
discrete distribution, with 10 possible values — specifically, a normalized discrete Zipf’s law with
exponent 2 and number of values 10. We left both algorithm and model parameters unaltered

and we used 1 as the stopping threshold .

The estimated values for & = 3 and 8 = 0.9 are, respectively, @ = 3.595 (again m,. = 1 and

soa=a and T=7) and 3 = 0.868.

Results for this case show that — despite the fact that we have now a discrete distribution

with more than two values — our approach can recover information (especially for larger fitness
values), as can be seen in Figure and in Section

We conclude this section noting that, for each of the experiments, the Monte Carlo algorithm
looks for the values of the fitness parameters on the whole positive real line — not on a suitable

interval for each case.
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Algorithm 2 NAIVE heuristic to find T.

INPUT: the node-feature matrix Z

OUTPUT: T

DESCRIPTION:

For each node 4, from 1 to n, do the following:

2. Let u=0
3. For each k € F;:

(a) Let Spefore =0

(b) Let jmin =1

(c) For each node js.t. 1 <j<iand Z;; =1:
i. Spefore = Sbefore T 1
. Jmin ¢ MIN(Jmin, J)

(d) Let Safter =0

(e) For each node j s.t. i <j<mnand Z;; =1:
i. Satter = Satter + 1

Shefore /(1 —Jmin)
(0) = pt gy

4.6.4 Results in ranking

In a real application, we may content ourselves in finding not the realized fitness parameters
themselves but rather their ordering, that is, the ordering of the nodes from larger to smaller
values of the fitness parameter. As mentioned before, the ordering induced by the fitness values
can be thought, in fact, as a ranking, ordering nodes from the “most influential” to the least.
To resolve this task, we can easily add some baselines, that could be able to obtain similar
results. The algorithm we introduced is in fact able to properly maximize the likelihood defined
by our model; however, if we content ourselves in finding the ordering, some easier alternatives
could be both faster and easier to implement. Therefore, we will now propose two different
naive baselines for finding the ordering induced by the fitness values, that we will compare

experimentally to the Monte Carlo algorithm.

Baseline. Since the final effect of a fitness value r; on the development of the matrix Z is that
the features displayed by a node i with a large r; should be more popular than those displayed
by a node j with a low r;, this suggests a very simple baseline to compare our algorithm to:
to estimate r;, we just measure how popular the features k s.t. Z;,k = 1 are. Formally, if we
indicate with F; = {k‘Zi,k = 1} the features displayed by node i, then:

TBASELINE 7/ ‘ | Z J Z+1 (410)

n—1
keF;
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Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value

kn=|vn] =44 0.281 0.206 0.463
kn = 5 = 1000 0.229 0.188 0.337
kn = n = 2000 0.150 0.139 0.155

Table 4.1: Comparing orderings induced by the true realization r versus the ¥ found by MONTE
CARLO in the case of the uniform distribution on the interval [0.5, 1.5].

Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value

kn=|vn) =44  0.676 0.593 0.713
k,=2=1000  0.586 0.585 0.625
ke = n = 2000 0.438 0.477 0.434

Table 4.2: Comparing orderings induced by the true realization r versus the ¥ found by MONTE
CARLO the case of the uniform discrete distribution on the two values {0.25,1.75}.

Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value

kn=|yn) =44 0735 0.762 0.772
k,=2=1000  0.453 0.516 0.803
ke = n = 2000 0.313 0.402 0.543

Table 4.3: Comparing orderings induced by the true realization r versus the T found by MONTE
CARLO in the case of the normalized discrete Zipf’s distribution with exponent 2 and 10 values.

This formula gives us a rough measure of how popular the features displayed by 4 turns out to
be. We will refer to it as BASELINE.

Naive. Furthermore, we will employ a slightly more sophisticated heuristics. In fact, the effect
of a large r; is not to make features popular in general, but to make them more popular after
node i acquire them. Therefore, we need to compare how the popularity of a feature k adopted
by i changes before and after it has been adopted by i. To do that, we also need to take into
consideration the fact that such feature may be born with an arbitrary node j s.t. 1 < j < i.
We took care of these considerations, and use them to present a naive algorithm, for which we
provide the pseudocode in Algorithm [2] We also note that this algorithm can also be efficiently
parallelized. We will refer to this heuristic as NAIVE.

Experimental results. To evaluate if we can extract values 7; that respect this ordering, we
decided to compare the drawn vector T with the true realization r by the use of Kendall’s 7 and
some variants of it.

To keep track of the fact that, as said before, the first nodes contain more information than
the last ones, we evaluated Kendall’s 7 not only on the whole vector but also on a short initial
segment of size k,, = n/2 or k,, = /n. Besides this, we tried to use a variant of Kendall’s 7 [186],

that we apply in two separate and different ways:

1. inducing a hyperbolic decay based on the position of the nodes — that is, weighting more
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Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value
k,=|vn] =44  -0.068 -0.020 -0.212
kn = 5 = 1000 -0.009 0.011 -0.016
kn, =n = 2000 0.009 0.021 -0.095

Table 4.4: Comparing orderings induced by the true realization r versus the T found by BASELINE
in the case of the uniform distribution on the interval [0.5,1.5].

Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value
k,=|vn] =44  -0.180 -0.196 0.132
kn = 5 = 1000 -0.018 -0.068 0.237
kn, =n = 2000 -0.030 -0.068 0.247

Table 4.5: Comparing orderings induced by the true realization r versus the T found by BASELINE
the case of the uniform discrete distribution on the two values {0.25,1.75}.

Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value
k,=|vn] =44  -0.019 -0.028 0.074
kn = 5 = 1000 0.027 0.010 0.217
kn, =n = 2000 0.026 0.011 0.215

Table 4.6: Comparing orderings induced by the true realization r versus the T found by BASELINE
in the case of the normalized discrete Zipf’s distribution with exponent 2 and 10 values.

the first (the oldest) nodes, and less the last (the youngest) ones;

2. inducing a hyperbolic decay based on the true realized values r; — that is, assigning a higher

weight to the nodes with a greater fitness parameter r;.

The results of these measures are reported in tables [4:4] and [£7] for the experiment with
the uniform distribution on an interval, in tables [£.2] [£.5] and [4.8] for the experiment with the
uniform discrete distribution on the two values {0.25,1.75}, and in tables and [4.9|for the
discrete Zipf’s distribution with 10 values and exponent 2. The tables show that, although we
are unable to reconstruct the actual realized values of the fitness parameters, MONTE CARLO
actually recovers some information about node ranking (and that, as already seen before, the
output of the Monte Carlo algorithm is better for the discrete cases), while BASELINE is not able
to recover any information about node ranking (very often it is anti-correlated with the actual
ordering).

Most surprisingly, however, is that the results obtained by NAIVE are instead strikingly good,
and it often outperforms MONTE CARLO in experiments. As testified by the summarizing plot in
Figure MONTE CARLO obtains much worst performances in the uniform-distributed case,
and similar performances in the discrete-distributed cases. This insight can be helpful in some
settings: the fitness vector obtained by NAIVE can in fact be thought as a good (order-wise)

approximation of our fitness values.
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Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value

kn = |Vn) =44  0.852 0.877 0.978
ko= 2=1000  0.619 0.677 0.953
ke = n = 2000 0.603 0.660 0.953

Table 4.7: Comparing orderings induced by the true realization r versus the ¥ found by NAIVE
in the case of the uniform distribution on the interval [0.5,1.5].

Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value

kn=|Vn) =44 0438 0.321 0.694
k,= 2 =1000  0.434 0.382 0.630
ke = n = 2000 0.428 0.384 0.680

Table 4.8: Comparing orderings induced by the true realization r versus the T found by NAIVE
the case of the uniform discrete distribution on the two values {0.25,1.75}.

Considered nodes Kendall’s 7 7 weighted by position 7 weighted by value

kn=|vn) =44  0.629 0.572 0.883
k,= 2 =1000  0.470 0.489 0.907
ke = n = 2000 0.427 0.464 0.910

Table 4.9: Comparing orderings induced by the true realization r versus the T found by NAIVE
in the case of the normalized discrete Zipf’s distribution with exponent 2 and 10 values.

4.7 Discussion

In this chapter we proposed and analyzed a model that combines two aspects characterizing the

evolution of a network:

1. Behind the adjacency matrix of a network there is a node-feature association, in the sense
that each node is characterized by a number of features and the probability of the existence
of an edge between two nodes depends on the features they have. Such a scheme can be seen

in many real cases (e.g., interests in a network of friends, or topics in a citation network).

2. Not all nodes are equally successful in transmitting their own features to the new nodes.
Each node n is characterized by a random fitness parameter r, describing its ability to
transmit the node’s features: the greater the value of the random variable r,, the greater
the probability that a feature of node n will also be a feature of a new node; this fact
typically translates into a greater probability of the creation of an edge between n and the
new node. Consequently, a node’s connectivity does not depend on its age alone (so also
“young” nodes are able to compete and success in acquiring links). We called this aspect

competition.

This assumption in many cases offers not only realism (“not all web pages are equal", e.g.),

but also useful insights: as we have seen in Section allowing for this degree of freedom
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Figure 4.12: A summarizing plot of tables to plotting the Kendall’s 7 weighted by
value on the x-axis and weighted by position on the y-axis. The different colors represents our
different algorithms (BASELINE, NAIVE, and MONTECARLO). For each algorithm, we display a
different line plot for the various distributions of the fitness values we tested it against; for each
distribution, we plot the three different values we obtained when testing on y/n, § and n nodes.

to the model means gaining information about it from how different nodes behaved, and

even identifying “fittest” nodes among the oldest ones.

We shaped the first aspect by the definition of a model which connects the pair of feature-
vectors of two nodes, say ¢ and j, to the probability of the existence of an edge between 7 and
j. Other examples, which are related to the Bayesian framework based on the standard Indian
Buffet model, can be found in previous literature .

We modeled the second aspect by the definition of a stochastic dynamics for a bipartite “node-
feature” network, where the probability that a new node exhibits a certain feature depends on
the ability (represented by some random fitness parameter) of the previous nodes possessing that
feature in transmitting it. It is worthwhile to underline that in our model, as in the standard

Indian Buffet process, the collection of features is potentially unbounded. Thus, we do not need
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to specify a maximum number of latent features a priori.

The proposed approach is a simple and natural integration of various ideas: it is a feature-
based model — like the original Miller-Griffiths-Jordan model |136] — and therefore it can represent
well any network whose relationships are based on the features of its nodes; the features are ruled
by a process of Indian-Buffet type [80] allowing them to grow boundlessly in time and avoiding
model selection problems. On top of it, we considered different abilities from each node in
propagating its own features and acquiring links, importing the notion of competition dynamics
into the feature-based realm. It is the first time, to our knowledge, that these aspects are
combined in a unique model. Such a model is at the same time very expressive and easy-to-tune,
due to the natural interpretation of the involved parameters. Finally, we have provided some
theoretical, as well experimental, results regarding the power-law behavior of the model and
the estimation of the parameters, showing how the proposed model for the feature generation
naturally leads to a complex network model.

As we will see in the third, experimental, part of this thesis (section, the comparison with
real datasets can cast more light on this model: in fact, this model seems to be able to produce
quite realistic feature matrices while at the same time capturing most local and global properties

(e.g., degree distributions, connectivity and distance distributions) real networks exhibit.
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Chapter 5

Inferring feature-feature interaction

5.1 Introduction

In our model, a special role is played by the feature-feature matrix W. In Chapter [3] we
highlighted how this matrix can express various kinds of interplay between features and links;
we mentioned that we usually consider it as latent: an unobservable element of our model, that
can compactly explain the links we are observing.

The question is therefore the following: assuming to know L and Z, how can we reconstruct
a plausible W? That is, knowing the links of our network and the features every node bears,
how can we estimate how features interact with each other?

This question has a lot of practical implications. In a semantic graph endowed with cate-
gories, W, 1, describes how two categories h, k relate to each other: it summarizes if they interact
positively, negatively and how much; it can be therefore used for measuring their semantic con-
nection. In a linguistic graph (maybe obtained from a large corpus of text) linking words used
as subjects to those used as objects for a certain verb, W describes the semantic areas this verb
can connect. In a scientific network (e.g., a citation network) where features are academic fields,
the set S, = {h|W}, x, > 0} contains the fields for which the field k is useful, and so forth.

Furthermore, if we have complete knowledge of Z and an estimate of W, we can assign to
every pair of nodes a score representing how much our model expects that pair to form a link.
Since in our model ¢ is monotonically increasing, in fact, if we know W and Z we do not need
any further assumption on it: the higher the score, the more likely the presence of a link is. Such
a score can therefore be used in practice in many ways. For example, in section [8.5| we will show
how its opposite can be used to catch serendipity in links among a large corpus. The accuracy
of these predictions will give a measure of how well a set of features can explain a graph, as we
will show in section [7.4]

Many other examples are possible; it is however important to note how many of these ap-
plications require to deal with a huge number of nodes and links. Experiments we will see in
the third part of this work will run on graphs with millions (or tens of millions!) of nodes, and
hundreds of millions to billions of links. Operating at this scale demands new techniques; we will

see in section [5.2] how many of the existing techniques are not able to scale up to this size.

o7
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A first idea, that we will describe in section [5.3] is to just estimate the probability of a link
from the category pairs we see in the data. We will derive formally this approach, showing
that it can be ascribed to the family of Naive Bayes learning. In particular, we will see that it
requires independence assumptions that are particularly unrealistic in practice in many cases. For
example, consider the semantic link between the entity “Ronald Reagan” and the 1954 Western
film “Cattle Queen of Montana” ; such an approach will increment, in consequence of this link,
the element of W corresponding to (films, U.S. presidents), regardless of the fact that this link
could be already well explained by (films, actors).

For this reason, we will need to simplify our model by setting ¢ as the step function ¢(z) =
X(9,00)(2), and thus making our model deterministic. As we will describe in section this
fact allow us to see our model equation as the prediction rule of a perceptron — a very simple
shallow neural network — and in the end to develop a more sophisticated approach based on online
machine learning. What we will do is to see L (the links in the graph) as partially unknown
and to be learned; we will show that in this way the internal state of the perceptron will tend
to W. This approach, that we will call Llama — Learning LAtent MAtrix — will overcome the
naive assumptions of the previous model; in the third part of this thesis we will see how it can
be applied to the very large networks we are interested in.

In section [5.5| we will test this approach to our model, by simulating a graph with the tech-
niques described in the previous chapter and then observing how this way of reconstructing W
behaves.

Finally, we would like to point out how a similar result for the construction of W could be
obtained by assuming a partial knowledge of Z instead of L, and learning from it. We will explore
this possibility in the next chapter.

Section (and a part of section contains contents published in a conference paper at
“Web Science 20167 [8].

5.2 Related works

The goal of this chapter is to develop methods able to recover the latent feature-feature matrix,
knowing links and features of each node, in order to apply them to the large networks available
in real data (e.g., the web).

As we mentioned in section [2.3] this task has strong empirical foundations: a feature-feature
matrix has been used to model the tracking of diseases, from sexual diseases [12] to respiratory
infections [140|. In this area, they involve small datasets; there such matrices are defined as “Who
Acquires Infection From Whom” (WAIFW) matrices; they have been empirically assessed in the
field in various ways (surveys [93] and wearable sensors [98]).

The task we are defining ultimately falls back into the realm of latent variable models [6§],
since we are trying to explain a set of manifest variables — links and features — through a set of
latent variables — the feature-feature interaction weight, expressed by the elements Wj, ;. of the
matrix W. If] like in our case, manifest variables are categorical, they are usually called latent
structure models, and have been studied as such by statisticians and social scientist since the

1950’s. Lazarsfeld started studying the statistics behind these models in an effort to explain peo-
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ple answers to psychological questions (in first works [175], answers from World War II soldiers)
through quantifiable, latent traits |[123|. These techniques were improved by later studies [84L92];
however, these techniques—since conceived for traditional social studies—were designed for small
groups; the use cases described there does not usually involve more than a hundred of nodes.
We require our techniques to work with millions of nodes, and hundreds of millions of links. We
also point out even if some of the approaches presented in section [2:3] could be able to represent
a matrix describing all feature-feature pairs (W), they were not able to handle data this large.

In recent years, computer science modeled relationships between hidden and visible random
variables through probabilistic graphical models [26], and especially Bayesian networks [13]. Such
models have been applied successfully to a plethora of different areas, since they allow for param-
eter learning, usually through the application of the Expectation-Maximization algorithm [60].
A very successful case for graphical models has been Latent Dirichlet Allocation (LDA) [28]. The
problem we are defining — explaining links through features of each node — can be cast as an
instance of it. Previous literature has treated linked document corpora, where features are the
words contained in each document [48,|127]. In previous works, authors build a link prediction
model obtained from LDA, that considers both links and features of each node. However, the
largest graphs considered in these works have about 10® nodes (with ~ 10* possible features), and
they do not provide running time. Henderson et al. [91] developed an LDA approach explicitly
tailored for “large graphs” — but without any external feature information for nodes; the largest
graph they considered has about 10* nodes and 10° links, for which they report a running time
of 45 — 60 minutes. The algorithm we are going to propose in section although simpler,
requires 9 minutes to run on a graph three orders of magnitude larger (about 10 nodes and 108
links).

5.3 A naive approach

Let us describe a naive approach to construe the latent feature-feature matrix W. We shall use
a naive Bayes technique [26], estimating the probability of existence of a link through maximum
likelihood and assuming independence between features; that is, we are going to assume that the
events {Z; , = 1} and {Z; , = 1} are independent Vh, k.

Let us introduce the following notations, that we will use throughout this chapter:

o Let Ni C N be the set of nodes with the feature k, i.e. Ny ={i € N|Z;, =1}.

e Reversely, we will call F; the set of features exhibited by a node i, that is
F; = {:ZC S F|Z,’7]€ = 1}

o Let us also use Z; i to denote the event {Z; , = 1}.

Now, fixing two features h and k, let us consider the probability pj ; that there is a link

between two arbitrary nodes with those features, such as i € NV}, and j € Ni:

Phk = P((%]) S L‘Zi)h n Zj’k)
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This quantity can be estimated as the fraction of pairs (i, j) such that both Z;;, and Z ik are

true, that happen to be links. In other words,

|{Nh X Nk) QLH
|Nn| - | Nk|

Phk =

For a specific pair of nodes (4,j), the probability of the presence of a link under the full
knowledge of Z is given by

B(G.d) € L|( () 2e0) 0 () Z0))

heF; heF;

Let us naively assume that Z; ;, and Z; ;, are independent for all ¢, j, h, k with ¢ # j and h # k;
we also assume the they are independent even under the knowledge that (i,j) € L. Then, under

these naive independence assumptions, the last probability can be expressed as

I 11 ]P’((i,j) € L‘zi7hmzj,k) = 11 I vos

heF; keF; heF; keF;

Next, we will estimate our matrix W as:

W — tog {0 x M) 1 L)

5.1
’ RAREA (5-1)

Finally, let us check that such a matrix is correct. Taking back the definition of our model
(3.1) and inserting such a W, we obtain, in virtue of the previous definitions:

(o er) <o 3 32 W) =o(ioe T TT 70141 -

heF; kEF; heF; kEF;
= <i>(10g 1T 11 ph,k) = ¢(10gp((i,j) er|( () zn)n (N Zjﬁ))) =
hEF; kEF; heF; heF;

- ¢<logP((i,j) e L|z)) (5.2)

Confirming that, for a certain choice of ¢ (namelyEl, ¢(x) = min(l,e*) ) and under the

previously mentioned independence assumptions, this estimate of W is correct for our model.

5.4 A learning approach

As we said before, the naive approach has its drawbacks. Its independence assumptions are not
tenable in practice. Because of them, it sees a link as explained in equal parts among all the
involved features. As we said in the introduction, consider a semantic link between two entities:
the entity for “Ronald Reagan”, and the one for “Cattle Queen of Montana”, a 1954 Western film

starring Ronald Reagan. The naive approach will count the link between the two as a member

1We need the min in this formula to respect our assumption that ¢ only has values in [0, 1]. However, it does
not change anything in practice, since in (5.2]) the argument of the logarithm is a probability, and therefore it is
forced to be in [0, 1].
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of the set {(Npresidents X Nmovies) N L}, and thus incrementing the corresponding value in the
feature-feature matrix, namely Wpyresidents, movies- We would rather have an algorithm that is
able to recognize the fact that this link is probably already well explained by the (supposedly
already high-valued) matrix element Woctors, movies; and, since it is already sufficiently explained
by that, not enforcing a false association between politicians and western movies. In other words,
we want our algorithm to perceive if some feature is already explaining a link, or — if it does not
— to update its estimate of W. In this perspective, how can we properly cast our problem to

learning theory?

A deterministic model. In order to obtain this result, let us simplify our framework by fixing

a simple ¢, the step function x (g ), that is:

1 ifz >0,
P(x) =

0 otherwise

This can be also seen as a sigmoid (see (3.2)) whose parameters are ¥ = 0 and K — oo.
As such, we have studied its effects in our model through simulations in section (see for
example fig. ; there we found that, even if it produces a more disconnected network, its degree
distribution tends even more to the classic power law of complex networks. Such experiments
suggest that this choice of ¢ is reasonable for our model.

It is important to note that this choice will make our model fully deterministic. In other
words, given the complete knowledge of Z and W, the model per se does not allow for any
missing or wrong links. For this reason, with this model we can not measure the likelihood of a
real network; instead, we will just separate its links in explained and unezrplained by the model

with respect to a certain set of feature F'.

A decision rule. Now, by using this deterministic activation function, the equation of our

model (3.1)) becomes:

(,4) €L <= >3 ZinZ;Way >0 (5.3)
h k

Let us indicate the i-th row of Z with z;, the outer product with ® and with o the Hadamard

product. Then, we can alternatively write the above rule in one of these two equivalent forms:

(i,j) € L < z! Wz; >0
or
(hj) €L < Y [(zi®zj)oW}h >0 (5.4)

k
h.k

5.4.1 A perceptron

This equation — shown pictorially in Figure [5.1] - reveals itself to be a special case of the decision

rule of a simple neural network classifier, the perceptron [158]. The idea here is that by learning
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’zj (features of node j) ‘
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l Latent feature-feature matrix W ‘

Figure 5.1: Relationship between the binary vectors z; and z;, representing the features in node
i and j, their outer product z; ® z;, and the corresponding feature-feature latent matrix W. The
prediction of the perceptron — and of the deterministic version of our model — will be given by
sgn ((zl ® zj) 0 W)

how to separate links from non-links (in fact a form of link prediction, see page , the classifier
must infer W as its internal state.

Let us define the standard perceptron formally; its internal state w € R™ is initialized
randomly, and then it operates like this on a sequence of pairs numbered by ¢ € T with
T=1{01,...,t —1}:

1. observes an example such as x; € R™;
2. emits a prediction §; = sgn(w - X;);

3. receives the true label y; € {—1,1};

e

if y; # §;, it updates its internal state with w = w + y;A\x;, where A € (0, 1] is a parameter

called learning rate.

The key point here is that the decision rule for emitting a prediction can be cast to be
fundamentally the same as in our model. Specifically, if we view the latent feature-feature matrix
W as a m?-length vector, and we do the same for z; ® z;, then we can see that the decision rule
sgn(w - x;) = 1 corresponds to , if we set W as the vector w and z; ® z; as the example x.

Namely, in our case, an ezample for the perceptron will be a pair of nodes (i, j), represented
not by a vector but by the m xm matrix z; ®z;: this is a matrix where the element [z; ®z;]s x is 1
iff the first node has feature h and the second k. This trick is sometimes called the outer product
kernel: we are transforming a pair of vectors of size 2m into a high-dimensional representation

2 2

of size m*. This m x m-matrix in fact can be alternatively thought of as a vector of size m~,
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z; and z; Z; RZ;

— (i,j) €L

Figure 5.2: A neural-network view of our perceptron, for the case of m = 3 features. We
indicate fixed weights with double lines, with min those nodes activating only iff both input
nodes are active (that is, the min of their inputs), and with sgn the sign function. The only
non-fixed weights (learned by the perceptron update rule) are those from the z; ® z; layer to the
>~ neuron: they correspond to the matrix W appearing in our model.
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allowing us to use them as training examples for the perceptron, where the label is y = 1 iff
(i,j) € L, and y = —1 otherwise. The learned vector w will be, if seen as a matrix, the desired
W appearing in (5.3]), as we are going to analyze next.

To recap, the perceptron we are going to use operates like this, on a sequence T'C N x N:
1. observes a pair of nodes (¢, j) € T, through their binary feature vectors (z;, z;);

2. computes a prediction on whether they form a link, according to (5.4); that is, g;; =
segn(zl Wz,)

3. receives the ground-truth: y; ; = 1 iff (¢,4) € L, or y; ; = —1 otherwise;

4. if the prediction was wrong, it updates its internal state by adding (if the pair was a link)

or subtracting (if it was not) to W the quantity \(z; ® z;).

In doing this, we are using m? features, in fact a kernel projection of a space of dimension 2m
onto the larger space of size m?. Similarly the weight vector to be learned has size m?. Positive
examples are those that correspond to existing links. We can view this as a shallow, simple

neural network, as pictured in Figure [5.2

Connection with link prediction. As we anticipated at the beginning of this section, the
technique we are going to employ is in fact a form of link prediction. In fact, we wish to highlight
that, in the light of 7 whenever our model fits a graph, then the problem of estimating its
latent feature-feature matrix is fundamentally equivalent to the problem of assigning a probability
to every link knowing each node features. As we saw in this section, however, by fixing a
parameter of our model — specifically, by setting the function ¢ to a step function — we can trace
a formal link between predicting links with the perceptron algorithm and estimating W within
our model.

This connection with link prediction grant us three gifts:

1. It give us an algorithm — actually, a family of algorithms, as we will see in section -
able to estimate W by training them to predict links.

2. It allow us to employ previous analysis done for the perceptron in order to have formal
guarantees about the ability of such algorithms to estimate the feature-feature matrix, as

we will show in the remaining part of this section.

3. It permits us to adopt a link prediction test setting to evaluate our algorithms: we can
evaluate not only how close the estimated matrix is to the original one (a difficult evaluation
problem per se, e.g., since W could be scaled), but instead apply the standard machinery

developed to correctly evaluate link prediction algorithms, as we will do in section [5.5]

Because of these considerations, we believe that correctly connecting the concepts of feature-
rich graph models and link prediction through online machine learning algorithms was instru-

mental in our understanding of the former.
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Interpretation of the error bound. The perceptron algorithm, since its conception in 1957
by Frank Rosenblatt (who built it as an ad-hoc machine, where weights were potentiometers,
updated by electric motors!) has been subject to many analysis. In particular, some bounds on its
number of errors were found. Let us take into consideration the bound discussed by Cesa-Bianchi
and Lugosi [46, p. 337], in its standard caseﬂ Considering our definitions, it is just a matter of

rewriting it to state the following bound for the number of errors M = [{(¢,j) € T s.t. §; ; # vi;}|:

M< inf (H(U)+(R||UH)2+RHU||\/H(U)) (5.5)

UeRme

Where
e H(U) =3 jjer max (0,1 — 2] Uz;) is the sum of the hinge losses.
o R =max(; jjer [|2i ® 2| is the radius of the examples.

Let us interpret this bound for our case.

First, the matrix U can be thought as an ideal latent feature-feature matrix W. In particular,
we would like it (in order for this bound to be low) to be a good W with the lowest possible norm
(considering that the predictions of the model according to remain the same if we multiply
W by a positive constant). The appearance of the norm ||U]|| in this bound is explained by the
fact that a model with a large norm is — apart from scaling — more complex: e.g., a very sparse
W — meaning that only a few pairs of features interact — will have a very low norm.

H(U) is a measure of how good is the model on these instances. For example, if the sequence

of input pairs T is set to be equal to the links L, then let us consider the set:

Ey ={(i,j) € L | z] Uz; < 1}.

Those are the links for which the model, with this ideal U, cannot obtain a value in ([5.4)
(that should be positive for links) that is at least 1. Considering again that we can multiply U
by a positive constant, those are the links that cannot be fully expected by our model. H(U)

becomes then:

H(U) = |Ey| - Z z] Uz;
(i,j)€Eu

That is, we are counting how many links are in Fy and then adding how far was our model
from expecting these links. Specifically, zI Uz; will represent a small “discount” for links that
were predicted correctly but with a small (i.e., < 1) value; instead, for the links that were not
predicted as such, it will represent a cost, depending on how far from 0 they were. We can
therefore see how H(U) is a measure of how well our model could fit (in the best case) this
particular feature-rich graph.

Finally, R? can be rewritten as

= max ZZZ”“”ZJ’“_ max |Fi| - | Fj]
(i.5)eT J)ET

2In fact, we are considering only Euclidean norm and standard hinge loss for simplicity.
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In other words, it measures how many pairs of features we need to consider in our set of
examples. Again, if T = L, this is the number of possible pairs among the features of each
predecessor and each successor. This number is limited by the number of total features m —
i.e., R < m: this means that the bound is smaller if we need less features to explain the graph.
Moreover, it is smaller if there is little overlapping of features (i.e., if max;c |F;| is low). This

bound tells us that they are all factors affecting the number of errors of this algorithm.

Finally, in case the feature-rich graph can be perfectly explained by a latent feature-feature
matrix W, according to our deterministic model, we have H(W) = 0 and so the bound becomes
M < (RHWH)2 As noted by Cesa-Bianchi and Lugosi [46] in the general case, this bound is the
same result proved in 1961 for the perceptron [7] (the convergence theorem); in our case, it tells

us that if such a perfect W exists, the perceptron will converge to it.

5.4.2 A passive-aggressive algorithm

Online learning. In general, what we did was to recast our goal in the framework of online
binary classification. Binary classification, in fact, is a well-known problem in supervised machine
learning. Online classification simplifies this problem by assuming each example is presented in

a sequential fashion; the classifier operates by repeating this cycle:

1. observes an example;
2. tries to predict its label;
3. receives the true label

4. updates its internal state consequentially, and moves on to the next example.

An online learning algorithm, generally, needs a constant amount of memory with respect to
the number of examples, which allows to employ these algorithms in a situation where a very
large set of voluminous input data is available. Many surveys are available in literature [44].

A well-known type of online learning algorithms are the so-called perceptron-like algorithms.
They all share the same traits of the perceptron: each example must be a vector x; € R™; the
internal state of the classifier is also represented by a vector w € R"™; the predicted label is
y; = sign(w - x;). The algorithms differ on how w is built. However, since their decision rule
stays the same, they all lead back to the decision rule of our model . Therefore, it allow us
to employ any perceptron-like algorithm for our purpose.

Perceptron-like algorithms (for example, ALMA [77] and Passive-Aggressive [57]) are usually
simple to implement, provide tight theoretical bounds, and have been proved to be fast and

accurate in practice.

A Passive-Aggressive algorithm. Among the existing perceptron-like online classification
frameworks, we will heavily employ the well-known Passive-Aggressive classifier, characterized by
being extremely fast, simple to implement, and shown by many experiments [42}[138] to perform

well on real data.
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Algorithm 3 LrLAMA, the passive-aggressive algorithm to build the latent feature-feature matrix
W.
INPUT:
The graph G = (N, L), with L C N x N
Features F; C F for each node i € N
A parameter K > 0
OvuTpPUT:
The feature-feature latent matrix W

DESCRIPTION:
1. W+0
2. Let (i1,41),.-., (iT,jr) be a sequence of elements of N x N.

3. Fort=1,...,T
(a) p |E1| : |FJ7

(b) 1= her, Zner, Whk

(c) If (it,j:) € L
1 0 + min(K, max(0, p(1 — p)))
0 + —min(K, max(0, p(1 + p)))

(d) For each h € F;,, k € Fj,:
Whi < Whi + 1)

Le us now describe the well-known Passive-Aggressive algorithm [57], while showing how to

cast this algorithm for our case. To do this let us consider a sequence of pairs of nodes

(i17j1)7"'7(iT7jT) e NxN

(to be defined later). Define a sequence of matrices WY, ..., WT and of slack variables
&1,...,&r >0 as follows:

e W0 =0

e Witl is a matrix minimizing |[W*! — W!|| + K& 1 subject to the constraint that

Vit Y, Y, Wikl =1 =&, (5.6)

hEF;, keFy,

where, as before

Yiyge = . )

|| — || denotes the Frobenius norm and K is an optimization parameter determining the
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amount of aggressiveness.

The intuition behind the above-described optimization problem, as described in the original

work where the Passive-Aggressive algorithm [57] was presented, is the following:

e the left-hand-side of the inequality (5.6)) is positive iff W1 correctly predicts the pres-
ence/absence of the link (i, j;); its absolute value can be thought of as the confidence of

the prediction;

e we would like the confidence to be at least 1, but allow for some error (embodied in the

slack variable & 1);

e the cost function of the optimization problem tries to keep as much memory of the previous
optimization steps as possible (minimizing the difference with the previous iterate), and at

the same time to minimize the error contained in the slack variable.

By merging the Passive-Aggressive solution to this problem with our aforementioned frame-
work, we obtain the algorithm described in Alg. We will refer to this algorithm as Llama:
that is, Learning LAtent MAtriz.

We wish to remark how the obtained algorithm, despite being non-naive, is amazingly fast
and scale up very well with the size of data; e.g., as we will see in section to run on 2.2 - 108
node pairs, considering a set of 2 - 10* features, it took 9 minutes on an Intel Xeon CPU with
2.40GHz.

Normalization. For perceptron-like algorithms, normalizing example vectors (in our case, the
matrix z; ® z;) often gives better results in practice |58]. This is equivalent to using the ¢2-row-
normalized version of our model, presented in section The assumption behind that model
is in fact that nodes with less features provide a stronger signal for the small set of features
they have; nodes with many features bear less information about those features. To use this

normalization in the algorithm, we just need to change the point (c) in Alg. (3| to:

0+ % min (K, max(0,1 — %))
else:
d —ﬁ min(K, max(0,1 + %))

Sequence of pairs. Finally, let us discuss how to build the sequence of examples. We want
W to be built through a single-pass online learning process, where we have all positive examples
at our disposal (and they are in fact all included in the training sequence), but where negative
examples cannot be all included, because they are too many and they would produce overfitting.

Both the Passive-Aggressive construction described above and the Perceptron algorithm de-
pend crucially on the sequence of positive and negative examples (i1, j1), ..., (iT, jr) that is taken

as input. In particular, as discussed by Japkowicz et al. [104], it is critical that the number of
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Avg. features per node Avg. degree Mean harmonic distance
S X exp S X exp S X exp

B 382 551 5.66 B 44796 51.90 17.90 B 168 280 1.89

N 421 457 594 N 91.05 27.56 15.53 N 195 4.28 1.82

Table 5.1: Properties of the synthetic feature-rich graphs. The 6 generated graphs are indicated
according to the ¢ function used (S is the sigmoid, y is the step function, and exp is the
exponential) and to the distribution of the values of W (Bernoullian or normal). The listed
properties are: the average size of the set of features owned by each node, the average degree,
and the mean distance (computed with the harmonic mean to keep track of infinite distances).

negative and positive examples in the sequence is balanced. Taking this suggestion into account,
we build the sequence as follows: nodes are enumerated (in arbitrary order), and for each node
i € N, all arcs of the form (¢, e) € L are put in the sequence, followed by an equal number of pairs
of the form (i,e) ¢ L (for those pairs, the destination nodes are chosen uniformly at random).
Of course, if t = |L| is the number of links, then T' = 2¢ and the sequence contains all the ¢ links
along with ¢ non-links.

Obviously, there are other possible ways to define the sequence of examples and to select
the subset of negative examples. However, we chose to adopt this technique — single pass on a
balanced random sub-sample of pairs — in order to define and test our methodology with a single,

natural and computationally efficient approach.

5.5 Simulations

In this section, we will test how these methods will perform on graphs generated by our model.
In the third, experimental part of this work, we will see instead how the same algorithms behave
on real-world data. However, we have seen in section how our model is able to synthesize
feature-rich networks with the same traits of typical real complex network (i.e., a power-law degree
distribution). In section we will see in particular how we can carefully generate a given real
feature-rich graph; in fact, estimating the latent parameters of a real node-feature matrix Z and
of the graph GG, our model can produce feature-rich networks with similar properties to the given
one. These experiments allow us to use these synthetic graphs as a test bed for the algorithms

presented in this section.

5.5.1 Synthetic networks

To generate each network, we first produced its node-feature association Z as explained in sec-
tion [4:3] using the same parameter values adopted there: a = 3, B = .5, ¢ = 0. Then, we fed
these matrices Z to our model equation (3.1) to generate a number of graphs. For the graph

model, we employed the following parameters:

e We used n = 10000 nodes.
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o We applied three different types of activation function ¢, to compare their results:

1. The classic sigmoid function S(z) = (eK(ﬁ_r) + 1)_17 cited in section as well
as in [30] as the standard approach; we set ¥ = 0 and K = 5. Please note that this
function does not respect the assumptions for which we derived LLAMA, nor those of

NAIVE.
2. The step function x(g ), characterizing the model behind LLAMA.

3. The exp function, which characterizes the model behind NAIVE.

e The latent matrix W was generated assuming that its entries are i.i.d., with the following

two value distributions:

1. A generalized Bernoulli distribution W, i, ~ B(p) that assumes the value 10 with prob-
ability p = 22 and —1 with probability 1 — p. This choice was determined through
experiments, with the purpose of obtaining graphs with a realistic density indepen-

dently from the number of features m.

2. A normal distribution Wy, ~ N (i, o) with mean and variance identical to the

previous Bernoulli distribution.

3. We had to slightly modify these distributions for the case ¢ = exp, in order to obtain
realistic graphs also in that case: in particular, when ¢ = exp we used a Bernoulli
distribution with value 1 with probability p = % and —1 with probability 1 — p,
and a normal distribution that had the same mean and variance as the just-described
Bernoulli distribution. In the following, when we say that ¢ = exp we imply that we

used one of these two modified distributions to generate W.

With these 3 choices for ¢ and 2 choices for W, we generated 6 different feature-rich graphs.
The properties of these networks are summed up in Table They represent a wide range of

realistic traits we could actually observe in complex networks.

5.5.2 Evaluation of estimates

We will first direct our attention to measuring how the estimated W matrix is similar to the
original W matrix used to produce the graph. In this section, we are going to generate 100
different graphs for each of the 6 graph families we described above. Each graph was generated
with a different matrix W. For each of these graphs, we run the Llama and the Naive algorithm,
obtaining from each algorithm a different estimate W of the original W, employing only the
knowledge of the graph G and the binary node-feature matrix Z.

A first, unsophisticated method to perform this comparison would be just to measure the Mean
Squared Error [29], i.e. MSE = %Z” (V[//Z\] — Wi j)?. However, as mentioned in section
there is a whole family of matrices W that would be isomorphic for our model point of view;
that is, two matrices that would generate, given two nodes i and j and their features z; and
z;, the same probabilities for a link P(¢,j). An obvious example is that, when ¢ is the step

function, W and AW would be isomorphic for any A > 0. To overcome this obstacle, a first idea
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Figure 5.3: Mean squared error of the estimated matrix, with respect to the original, over 100
experiments for each graph type, with a = 3.
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R

is to normalize the two matrices W and ‘/7\\7, and then computing the MSE. In other words, our
measure will be NMSE = MSE(%, %)

Results with this measure are reported in Figure Average results for both the Naive and
the Llama algorithm are around 1.9 - 1075; for comparison, a random matrix would result in a
mean error of 1- 107> (we do not report that in the plot since it would be out of scale). We
can say, therefore, that the algorithms seem to extract some information about W, but we do
not get a clue of which one does a better job, nor a sense of how much these estimates could be
useful in practice.

Some answers come out of a different question. We then asked ourselves, in fact, how the
specifics of the node-feature association influence these results. That is: what would happen with
a lower number of features? In order to obtain that, and recalling the role of the parameters
delineated in section [4.4] we lowered the parameter « of the model from 3 to 0.5. In this way,
the number of generated features goes from an average of 594 features (and a matrix of 353597
elements on average) to an average of 99 features (and a matrix of 9851 elements on average).
The number of nodes is still 10000. We report results in fig. Here, the average result of
a random estimate is 2.7 - 107%; the average result of Naive is 1.3 - 10~%; the average result of

Llama is 8.3 - 1075. The difference in absolute values from the previous case (e.g., the random
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Figure 5.6: Pearson correlation between the original and the estimated matrix, over 100 exper-
1

iments for each graph type, with a = 3.
estimate going from an error around 10~* to 10~°) is caused by the fact that we are dealing with
matrices of different size, and this is affecting our measureﬂ However, the improvement of Llama
over Naive is evident in the plots for the Bernoulli-generated W, and especially for the sigmoid
and step-like activation function. However, it is still difficult to compare these results with the
previous case of a = 3.

To overcome this problem, we turn to the usage of the Pearson’s r as a measure of comparison
between the two matrices. Pearson’s » measures the linear dependence between two series of
values (in our case, the sequences Wy o, . .., Wy, m and Wo,o, ey /Wmm); in this way, the measure
is indifferent to scaling, and in general to any linear transformation, solving in a better way the
problem of isomorphic matrices. Pearson’s r ranges from —1 (perfect inverse linear correlation)
to 1 (perfect linear correlation).

We report results with Pearson’s r in Figure for the case of @ = 3 and in Figure for
the case of @ = 0.5. We remind that, while the previous measure is a measure of error, this is a

measure of correlation (so the higher the values, the better). A random estimate would obtain,

3In particular, because we are dividing each matrix by its norm; if the matrix size is m X m, then the norm

of a random matrix with the same size will grow with m ; for this reason, our measure NMSE on a random

matrix of size m will grow like m=2.
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by definition, a value of 0.

We can see that results are generally positive (the estimates correlates linearly with the
original values), and that results for Llama are generally better than those of Naive. The worst
case is the exponential activation function, that is very unnatural for the Llama algorithm. We
can see that a lower number of features results again in generally better results. The best results
appear to be in the sigmoid activation function and Bernoulli-generated W, where the average

Pearson’s r for the case of = 0.5 is 0.72.

5.5.3 Evaluation of predictions

The previous measures of how good the estimates are, however, still do not tell us much about
how useful is our model in practice. Our goal is in fact to find a feature-feature matrix for which
our model works. For this reason, we will now devote our attention to measuring directly how
accurate our methods are in terms of predicting if a node pair (7,j) forms a link, given their
features. To keep this evaluation meaningful, our algorithms will not be allowed to see the whole
graph: we will use the standard approach of 10-fold cross-validation; we will divide the set of
nodes NN in ten folds of equal size, and for each we used the other nine to train the algorithm
and that fold only for testing the results.

Our evaluation closely resembles link prediction. There are of course some differences: first of
all, we are using an external source of information (node features); second, our aim is to evaluate
our model and our algorithms to find W through link prediction. That is, we are not interested
in finding the best existing link predictor, but in measuring if our algorithms can correctly fit
our model on a specific instance of feature-rich graph G,Z. However, we kept in consideration

the guidelines for link prediction recently stated by Yang et al. [193]:

o We will evaluate how accurate are our algorithms in prediction by showing precision /recall
curves, as they suggest; in fact, they find that other measures, such as the ROC curve, are

heavily biased after undersampling negatives and can represent misleading results.

e To do this, we avoided fixed threshold between “link”/“not link”. It is important, in fact,
to evaluate the scores themselves; on the contrary, by choosing a threshold ¥ and then
converting each score = to a binary event x > 1 would make the comparison unfair. Instead,
we used directly the score computed by our model (the argument of ¢ in , since the
higher this score, the most probable that link should be). The use of precision /recall curves

allow us to do this.
e We used the same testing set instances for all the tested algorithms.

e Although in our case it was necessary to undersample negatives (the total number of node
pairs would be unmanageable), we took care of sampling uniformly the edges missing from
the test network: for each node 4, we chose other nodes j such that ¢ # j and (¢,5) ¢ L

until we had a number of non-successors equal to the number of successors, if possible.

Since our methods are not influenced by the distances of the considered node pairs (contrarily

to standard link prediction approaches), we avoided to divide our results by geodesic distance.
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Figure 5.7: Precision-recall curves for each fold in the network x, B.
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Figure 5.8: Precision-recall curves for each fold in the network y, .

With these considerations in mind, we proceeded to evaluate through precision-recall curves
our approaches. For each simulated network and for each fold, we gave the training graph to
our algorithm and obtained an estimated matrix W. This matrix is defined by for the
Naive method and by Alg. 3| for LlamaEI Each method then assigned its score to the testing set,
according to our model (i.e., the argument of ¢ in )

5.5.4 Experimental results

Results of these experiments are reported in figs. [5.7] to Let us discuss these results, dividing

them by the activation function employed to generate the graph.

Step activation. First, let us consider the case of the network generated with a step activa-

tion function. Note that by using x(p,) as the activation function we are making our model

4We also considered two variations: first, since the Naive approach need a lower bound on Wik if Ly, =0 in
the training graph, we also tried to adopt add-one smoothing , i.e. using log(z+1) in place of log(z). Second,
we tried out also the normalized version of Llama expressed in , leaving the model unchanged. However,
these approaches consistently got the same results of their respective original algorithms (despite not having the
same formal guarantees), and thus we are not depicting their precision-recall curves.
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Figure 5.9: Precision-recall curves for each fold in the network exp, B.
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Figure 5.10: Precision-recall curves for each fold in the network exp, .

deterministic (a pair forms a link if and only if their score is positive) and thus simpler. Fur-
thermore, it is precisely the model for which we have formal guarantees on the Llama algorithm
performance. It is therefore natural that its results are remarkably good. For the Bernoullian
distribution, Llama performance peaks at a 94% precision with a 94% recall; also, the precision
can be 99.97% with a recall as high as 70%.

The Naive algorithm, despite taking advantage of this clean activation function, behaves much
worse than Llama; when recall is higher than 60% its performances quickly degrade toward a
random classifier.

The same results can be also obtained with a normal distribution on the original W. Here
Llama reaches a 91%-91% precision-recall level, while the Naive algorithm obtains results similar

to before, although more stable.

Exponential activation. Then, let us look at the exponential activation function, for which we
have formally derived the Naive algorithm. Despite this, its results are still not satisfying: even
its highest scores do not have a precision consistently higher than 65%, for both the Bernoullian
and the Gaussian cases. Llama get its worst performance on this simulation, due to the furthest

activation function from its natural one, and in the Bernoullian case its performance are around
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Figure 5.11: Precision-recall curves for each fold in the network S, B.
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Figure 5.12: Precision-recall curves for each fold in the network S, \.

a 65% precision for all recall levels. In the normally-distributed case, instead, with low levels of

recall (10%) it is able to reach a precision of 90%, despite this unnatural activation function.

Sigmoid activation. Finally, let us look to the results obtained when the activation function
is a sigmoid (see (3.2)) with K = 5. We highlight how this activation function is not the same
of neither Lliama (which assumes a step function) nor the Nalve algorithm (which assumes an
exponential).

We report in fig. [5.11] the precision-recall curves for the network obtained with the standard
sigmoid as ¢ and W), j, distributed on the discrete values {—1,10}. We can see how the Naive
approach is able to get a reasonable precision only in the range of recall between 20% and 40%;
instead, the non-naive approach of Llama behaves extremely better, and it is in fact able to learn
a model whose precision and recall lie both around 90%.

In fig. @ we show the precision-recall curves when Wj ; is distributed on all the real
numbers, with a normal distribution. This W obviously introduces more noise and it is harder
to retrace for our methods. The Naive approach, in particular, has a high variance, and it is not
able to give scores with a high precision at all (that is why we have not precision-recall values

in the left corner). Llama instead is able to do that and it can obtain a precision of 99% at the
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S, B SN x, B x, N exp, B exp, N

Naive 0.64+0.01 0.70+£0.06 0.71£0.02 0.76+0.01 0.68£0.05 0.67=+0.04
Llama 0.97+£0.01 0.92£0.02 0.98=£0.00 0.96+0.01 0.65+0.03 0.78+0.01

Table 5.2: Area under the precision-recall curve of the Naive baseline and of the Llama algorithm.
For each of the simulated graph, we report the mean and the standard deviation across the ten
folds.

price of a low (20%) recall, or it can balance the two at around 80%.

Area under curve. To recap all the above results, we report in Table the area under the
precision-recall curve for each one of the curves pictured above. Following Yang et al. [193], we
use this area as an overall measure of the goodness of our approach. We can see how the results
of the Llama algorithm are consistently above 0.9 for both the step function and the sigmoid.
For the exp function its results are less favorable; they are however comparable to the Naive

baseline in the Bernoulli case, and definitely above it for the Gaussian case.

5.6 Discussion

In this chapter, we put ourselves in the following scenario: assume to have complete knowledge
of a node-feature association matrix — i.e., to know for every node, the features it exhibits; also,
assume to have an (at least partial) knowledge of the links between these nodes. These objects
corresponds to Z and G in our model . Our goal in this chapter was, given these elements,
to find the latent interaction between features that governs link formation in the graph Gj i.e.,
to discover the latent matrix W of our model. This estimate alone allow us to use our model as
a possible way to predict which pair of nodes form a link.

We then presented some methods able to learn this latent feature-feature matrix W. To
develop these methods, we restricted ourselves to techniques able to consider a (positive or
negative) interaction between all possible pairs of feature, discarding methods considering only
homophily. At the same time though, we considered only methods able to operate on large-scale
graphs (millions of nodes).

To be able to accomplish both of these goals, we tried to adopt different simplifying as-
sumptions. First, we developed a Naive technique with the usual assumptions of Naive Bayes
approaches: the independence of probabilities of features, even under the knowledge that there
is a link. This assumption gave us a very simple algorithm (described by ) which allow
us to estimate W; this algorithm also needed to assume an exponential activation function ¢.
However, we pointed out how its naive assumptions can cause problems in practical applications,
and for this reason we developed a different, more sophisticated, approach.

To do this, we streamlined the model by assuming it to be deterministic: all links should
have a positive score. This corresponds to set the activation function ¢ to be the step function
X(0,00)- This simplification allow us to align our model equation to a perceptron decision rule;

it is enough to apply an outer product kernel to the binary vectors z; and z; representing the
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features in nodes 7 and j, and to make the perceptron predict whether they form a link or not. In
this way, the internal state of the perceptron converges to the latent feature-feature matrix W.
We described this learning approach, and analyze what a classical bound on the number of errors
of a perceptron means in our case. Then, since any perceptron-like algorithm can be adapted
for our purposes we chose the simple and fast Passive-Aggressive algorithm [57] to concretely
implement this approach (Alg. .

Finally, we tested how this algorithm behaves on simulations. We generated graphs and node-
feature associations according to the model presented in section under different assumptions:
in particular, we employed the ¢ assumed by the Naive algorithm (that is, the exponential
function), the one assumed by the perceptron-like algorithm (i.e, X(0,00)), and a third one, a
classic sigmoid. To evaluate our methods, we showed to each algorithm just a part of the
graph nodes, and we tested its scores on the remaining part; in other words, we employed a full
knowledge of Z and a partial knowledge of G to estimate W, which in turn was used to make
predictions on the unseen part of G. We did this through a 10-fold cross-validation. In measuring
the outcomes, we took care of the caveats recently stated for link prediction [193]. Results of
these experiments showed how our learning approach outperforms the Naive baseline in all the
analyzed cases. Moreover, our algorithm turns out to be able to carefully make predictions on
these simulated graphs, both in the case the activation function is the deterministic step function

and in the case the graph was generated with a non-deterministic sigmoid.



Chapter 6

Discovering features

6.1 Introduction

As we have seen, a feature-rich graph can be represented by two matrices: one, that we call
Z, represent the associations between nodes and features; the other, L, is the proper graph:
associations among nodes. In the previous chapter, we showed how by predicting parts of L
from Z — that is, predicting links in the network knowing each node features — we can assess the
feature-feature matrix W, the main latent factor of our model.

In this chapter, we will focus on the dual problem: how can we predict features, knowing
the links? More precisely: given a full knowledge of the links, and a partial knowledge of the
features — i.e., knowing the features possessed by a subset of the nodes — can we predict the
features of unseen nodes? The method we have in mind is the following: after we trained our
model on features of known nodes, it will be shown a new node and be informed of the features
of its neighborhood; from that, it must be able to have a sense of what features that node should
display.

We would like to see this task as an information retrieval problem: we want to assign a rank
to all the existing features, so that relevant features — that is, the ones actually belonging to
the node — are ranked higher than irrelevant features. So formally, our model will learn to rank

features by taking the following inputs:
e the full graph G = (N, L);
e a subset of nodes T' C N, i.e. the training set

e for those nodes, their features: {z; | i € T}.

Then, the output of this training phase is a function that for a certain node i € N can provide

a ranking function x; : FF — R able to identify its possible features.

Possible applications for this problem are copious. In the context of a linked corpus of
documents, each tagged with tags defining its content, this problem translates to assigning tags

to an unknown document just by knowing its links. For a semantic network which connects
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related concepts, each tagged with a set of types, it is equivalent to identifying the types of a
new concept, basing on its semantic connections; e.g., it means being able to understand that a
concept linked from a director, and linking to a bunch of actors, could very well be a movie (or

a TV series, and so on).

Our weapon of choice in this chapter will be neural networks. In the last years, neural networks
proved to be very accurate in many different pattern recognition tasks, outperforming previous
literature and in some cases outperforming human performance [52|. Similar problems have in
fact been proposed in the literature — we will review some examples in section [6.2} but, to the best
of our knowledge, they have never been tackled through neural networks. The versatility of these
techniques—whose applications range from image classification to reinforcement learning—has
in fact proven beneficial in our problem as well. In fact, the problem can indeed be cast naturally
and painlessly into the neural network framework. As we will detail in section [6.3] the features
appearing in the neighborhood of a node can be easily encoded as the input layer of the network;
the desired output—a vector of real numbers, one per each feature—is the typical output layer
of a multiclass classification problem. By describing our algorithm as a neural network we do
not lose—and in fact we strengthen—the relationship to W, which as we will see will be the
backbone of the network. We will show how—similarly to the case of the previous chapter,
where the unknowns were some of the links—the task of forecasting features naturally leads to
an estimate of the latent feature-feature matrix W. However, as we will see in our experiments
with synthetic data in section[6.4] the reconstruction of W will be less effective, since the features
are a noisier element; we will however be able to give an effective ranking of the features, able to

discern relevant from irrelevant ones. Finally, we will sum up our findings in section [6.5

6.2 Related works

In the last years, label prediction on graphs has received a great deal of attention. Many tech-
niques, within various communities, have emerged. In the machine learning community, however
almost all of them focused on a single (binary) label: it is usually assumed a partial labeling on
nodes, with just positive or negative labels. Furthermore, they considered only the case where
pure homophily regulates the behavior of the labels. The amount of homophily in the graph
is referred to as the regularity of the labels in graph, and it is usually measured through the
cut-size: the fraction of arcs between labeled nodes where the labels are the same.

Most algorithms for label prediction assume to deal with a regularly labeled network. Exam-
ples include the Label Propagation Algorithm [196]: it works by propagating labels in the graph
in order to minimize the cut-size —i.e., obtaining the most regular graph possible from the known
labels. Another well-studied algorithm is the Laplacian Kernel for the perceptron [94], for which
formal bounds on the number of errors are available. It embeds each node from a graph with n
nodes in a n-dimensional space, through of the Laplacian of the graph. However, this technique
can not scale with reasonably sized graphs, and thus the graph needs to be transformed in a
spanning tree. A similar strategy is used by the Weighted Tree Algorithm 45|, which transforms
the graph into a weighted tree, and then predicts labels basing on Nearest Neighbors.



6.2. RELATED WORKS 81

Ali, Zappella, De Bie, and Cristianini [6] proposed an empirical comparison among these
techniques. They generate networks by using news articles as nodes, their main topic as labels,
and co-occurrence of names (precisely, of named entities) as links. Their goal is to generate
feature-rich networks characterized by a high regularity (i.e., where labels display homophily).
The resulting networks have around 3000 nodes, and they show a cut-size which ranges from
4.4% and 16.8% (i.e., the fraction of links which connects nodes with a positive label to nodes
with a negative one). Their most surprising finding is that a simple baseline — majority voting,
where labels are predicted as equal to the majority of the labeled neighbors — performs better
in every network. Furthermore, they find that Label Propagation obtains slightly worst results;
since the main difference between the two methods is that the latter consider non-local effects,
they conjecture that considering non-neighbors might be a source of noise, due to the small-world
effect. However, we remark how all the examined algorithms only considered one label at a time,

without dealing with inter-label interaction, nor multi-label prediction.

The focus on homophily and single-labels has been overcome in different areas and communi-
ties. In the specific field of functional genomics, label prediction on networks is needed to assign
biological functions to (DNA and RNA) reading frames, a key problem in modern biology. Since
this task can be framed as a multi-label prediction on graphs, it has sparkled interest in the
problem, seeing (biological) functions as labels. In particular, Barutcuoglu, Schapire, and Troy-
anskaya [18] in 2006 wrote that “existing prediction approaches typically formulate the problem
on a per-function basis”, since it is “a convenient form for common machine learning algorithms”.
To solve this problem, authors proposed to consider existing ontologies for biological functions,
viewing them as a tree-based relationship among the labels. This hierarchical structure forms the
basis for an ensemble of Support Vector Machines |178]. They show that this enhances predic-
tions for their task. Among the works that followed this line, we mention Schietgat et al. |[163],
where they highlight how a tree-based classifier can offer accurate and readable results, since it

permits to visualize the learned relationship among labels.

Finally, we wish to highlight how the problem we are proposing presents strong similarity to
those treated in the last fifteen years in the area of Statistical Relational Learning (SRL): works
from this community try to model logic relationship between data, for example by considering
directly entities as they are represented as tables in a relational model database, or as objects in
an Object-Oriented paradigm. For an introduction, we refer to the one authored by Getoor et
al. |78]. Typical statistical tools used in this area are Markov Random Fields [180] and Bayesian
Networks [90], or graphical models such as LDA [27]. Kemp et al. [111] developed a powerful
model able to make inference on arbitrarily complex systems of attributes, entities and relations.
They obtain striking results on sets of related entities, whose size is at most in the hundreds of
nodes; for example, their model inferred geo-political blocs from a database of 14 countries, 54

interactions between countries, and 90 features.

We wish to propose a model able to obtain results on much larger networks. The synthetic
data we will use in this chapter will be of 10000 nodes, on which our method will work in
seconds. Nonetheless, we wish to deploy fully the modeling capabilities of our framework; without
restricting ourselves to homophily, our approach could work in those scenarios (like ontology

construction, or bioinformatics) where assuming a complex interaction among labels can be
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highly valuable.

6.3 A neural network approach

Our goal is to train a model able to see the features appearing in the neighborhood of a given
node in a large network, and from them infer its own possible features. We will try to investigate
this problem from a purely neural network perspective. First, because in recent years they
have been shown to be incredibly versatile and powerful at the same time (see for example the
survey by Schmidhuber et al. [164], or other recent works [137,[168] for popular and interesting
applications). Mikolov |135] proved how shallow neural networks can be of extreme interest in
learning for knowledge representation. Secondly, contrarily to Bayesian models, they can scale
up easily to very large datasets. Finally, a good reason is that, to the best of our knowledge,

their use for the prediction of overlapping features in networks is novel.

Let us now describe the architecture of the network we used for this task. In Fig. [6.1] we

report a visual depiction of the network.

Input layer. Our neural network essentially mimics the inference that is predicted by our
model. For this reason, we split the neighborhood of a node ¢ in its two directions: the in-
neighborhood of i (i.e., N~ (i) = {j | (j,4) € L}), and its out-neighborhood (N (i) = {j | (4,7) €
L}). For each, we considered two alternatives for the representation of feature k in the neigh-

borhood. One way is the most natural vector representation, the count:

(i)=Y oz, c(i)i= > oz (6.1)
JENT (i) JEN=(3)
That is, a pair of vectors where the k-th element is the number of occurrences of the feature

k in the in- (or out-) neighborhood of the node i:

cH(ih = [{j | (i) € LA G ) € 2} (6:2)

Continuing the previous example of a semantic network, if one of the unknown categories of 4
is a movie, one could expect the vector ¢ (i) to have a high value corresponding to the category
“Actor”, since ¢ will probably link to many nodes tagged as actors.

Another choice is the ratio between nodes with feature k which appears in the neighborhood
and those that are outside of it. Reminding the notation introduced in section we will call
Ny, the set of nodes displaying feature k; then, the ratio we will useEI is:

n practice we employ a small € > 0 in the denominator in order to avoid numerical errors:

) ‘NkmNJr(z')}

(@)

k= —
EARSOIEE
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Input layer Hidden layer Max pooling  Output layer

WT

Figure 6.1: The main architecture of our neural network, for the case of m = 3 features. The
input function f could be either the count or the ratio vectors, described respectively by equations
and We indicate with max the node resulting in the max of its inputs, while W and W7
are matrices that multiply their input vector. See section @ for details.
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These two representations of the neighborhood, ¢ and r, differ in the information they capture.
While ¢ considers only information locally available in the neighborhood, r captures also some
global information about features: a feature k which has a couple of nodes in the neighborhood
of ¢ will be highly represented by 7 if it is a rare feature, and lowly represented if it is a very
common one. This behavior is natural considering how our model works. Instead, any node
without feature k£ will not influence neither ¢ nor r.

This raw representation (that could be either c or r) is directly fed into the neural network.
The input layer is divided in two parts, which correspond to the two “local fields” of the considered
node i: the features of the in-neighborhood and those of the out-neighborhood. We use the term
“local field” in analogy with the local receptive fields of convolutional neural network in computer
vision, which considers only a subregion of the input image. Exactly as in that case, also our

neural network behavior is linked across these two fields.

Hidden layer. In fact, the main component of this network is, once again, the feature-feature
latent matrix W. For the in-neighborhood vector ¢~ (i), the network will compute ¢~ (i)? - W for
the out-neighborhood vector ¢* (i), the computation will be W-c™ (i) or equivalently ¢t (i) - W7
(so that the form stay the same of the in-neighborhood, but using W7 instead of W). The sense
of this transpose-based symmetry follows from the fact that the probability of a link (4, 7) is higher
when the value zl Wz; is higher. Therefore, a node in the input layer representing feature k in
the in-neighborhood will be multiplied by the k-th column of W; the node for feature k in the
out-neighborhood is multiplied by the k-th row. In this way, the parameters (i.e., the elements
of the multiplying matrix) of the two different local fields are the same.

After this layer, the outputs of these two halves are merged through a max pooling layerEI
The advantage of using a max-pool operation, instead of a sum-pool, is that the output gives
more importance to the appearance of features and therefore to the activation of an output cell,
than to a missing feature (since an appearing feature should be treated as an event more rare).
However, experimentally we did not see any change in using a sum-pooling instead.

The output of this layer is the output vector x, i.e. a ranking of the features of the node 4

such that a feature h that is likely to belong to ¢ will correspond to a larger value in 7.

Loss function. The estimate of the parameters is carried out through the classic backprop-
agation algorithm [159]. The backpropagation algorithm updates all the weights in the neural
network (in our case, W), following the gradient descent of a global error function. As a global

error function, we employed the multi-label sigmoid cross entropy; Nam et al. [144] recently

2 A max pooling layer is an operation that, given n vectors aj,...,a, (in our case, n = 2), returns a vector b
such that b; = maxj’_, a;. A sum pooling layer, instead, returns b such that b; = Z?:o a;.
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showed how such a loss function can replace more complex measures previously adopted, gaining
in efficiency and retaining or improving performances. Let us consider an input node i, and the
output of our neural network x* € RIF! (i.e., a vector ranking each feature); let us refer to the
set of actual features of i as Y; := {k || (i,k) € Z} and to its complementary set V; := F \ Y;
finally, let us recall the standard sigmoid function ¢(x) = (e=® + 1)~!. Then, the cross entropy

loss function is:

H(x'Y;) =Y log (¢(x)) + Y —log (1 — ¢(a})) (6.4)
keY; keY;

According to Zhang et al. [195], this is classified as a first-order error function, since it
only considers output features (labels, according to the usual terminology) separately, instead of
considering them pair-wisely as other learning-to-rank error functions do. However, cross-entropy
presents several advantages. First, it is obviously highly more efficient. Second, Dembczynski
[61] proved that minimizing cross-entropy is consisent with minimizing rank loss (i.e., the number
of misordering between a pair of correct and incorrect labels)ﬂ Finally, recent experiments from
Nam et al. [144] showed how it works very well in practice on multi-label classification through
neural networks.

To this loss function, we also add the 2-norm of the W matrix in the hidden layer, as a

regularization factor. Therefore, the loss function we minimize is

Ux"Y;) = H(x'",Y;) + AW (6.5)

for asmall X € (0,1). Other regularization methods, such as the widely employed dropout [174],
turned out to be less effective in our experiments.

To minimize this function ¢ we used the recently described AdaGrad [64], which significantly
simplifies setting the learning rate parameter, resulting in a more robust algorithm. Duchi et
al. |64] showed the improvement both theoretically and experimentally; AdaGrad is now widely

used in neural network training.

6.4 Results

In this section we are going to describe the results we obtained with this learning approach on
feature-rich graphs synthesized by our model. The method we used is described in section .5}
we are going to use, in fact, the same network we employed in the experiments described in
section[5.5] As we summed up there, traits of these network closely resemble typical real complex
networks (i.e., a power-law degree distribution). Details of the parameters used for the process
were described in section There, the reader can also find the main properties of these
networks (average number of features per node, average degree, and mean harmonic distance).
We will not consider the networks generated by the exp function, since we employed them only

to test the Naive algorithm described in section [5.3]in its most favorable setting.

3Directly minimizing rank loss is practically unfeasible, for computational reasons and since it is a non-convex
function.
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Figure 6.2: Mean average precision on 10-fold cross-validation. Red line is the median over the 10
folds, the edges of the box are the lower hinge (defined as the 25th percentile) and the upper hinge
(the 75th percentile), the whiskers extend to minimum and maximum. Each box represent one
of the graphs described in section vectorialized through the count-based strategy (equation
or the ratio-based one (equation |6.3).

For each of these networks (of 10 000 nodes) we computed the input vectors representing each
node, according to our two schemas: count (equation and ratio . For each dataset
we used 10-fold cross-validation, so that the test set nodes were unknown to the trained neural
network. For each fold, we computed the Mean Average Precision (MAP).

We will also show results for a trivial baseline, feature-wise majority voting: according to
this schema, the score attributed to feature k in node i is the fraction of the neighborsEI of i
(considering only those nodes included in the training set) which display feature k. Ali et al. 6]
showed how this simple baseline outperforms, in their experiments, all the more sophisticated
techniques for label prediction. As mentioned in section however, this baseline and the other
techniques they tested considered only one label at a time: our graph model centers instead on
how pairs of label could foster links. Our technique, in fact, is focused precisely on understanding
how different labels interact between them. The aim of this comparison is therefore to show how
considering this point — inter-label interaction — could well be crucial in some data.

Seeing our goal as an information retrieval task, MAP is one standard measure. Consider to

have a node for which no features are known, but its links to other feature-rich nodes are; our

4For simplicity, we will consider only the symmetrized graph.
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goal is to provide a list of features so that the most likely features are on top. Take the following
scenario as an example: we may have a linked document corpora of online newspaper articles,
linking each other and displaying tags describing their content; the writer may want to have the
system suggesting possible tags for a new article basing only on the related ones she provided.
Average precision (AP) is the average of precision values at all ranks where relevant items are
found; MAP is the mean of AP for all queries (that is, for all nodes in the test set).

First, we are going to use the 10-fold MAP to evaluate results for the ratio and count strategies.
Results are reported in Table [6.1] and Fig. [6.2] We remind that these synthetic feature-rich
networks have hundreds of features (they range from 545 to 658 features), and that each node
has, on average, between 3.8 and 5.94 features, a very small part of F'; therefore, an AP around
0.5 means that, on average, one can find all the correct features of the node in the top 10 features
suggested by the neural network. In some cases — the Bernoullian W, characterized by a simpler
latent matrix, and the step activation function, which provide more information in this task —
the ratio-based vectors are able to reach a MAP just below 70%. In other graphs — more noisy,
since generated with a Gaussian W — the count vectors behave better, but with a much smaller
advantage.

Furthermore, we employed a typical measure for evaluating classifier scores, the Receiver
Operating Characteristic (ROC) curv Since this is a multilabel classification — moreover,
with labels possibly overlapping — we have to choose how to aggregate curves; we chose to use
the weighted macro-average, a common measure when labels are not uniformly distributed in
the dataset [145,/193]. In weighted macro-average, results are aggregated by label, weighting
each label accordingly to how popular it is in the dataset. In Table [6.2] we provide the Area
Under Curve values for these averaged ROC with this weighted macro-average. We also provide,
in Table the unweighted macro-average, where features appearing in hundreds of nodes and
features appearing in a couple nodes are weighted equally. Both these methods provide a different
perspective than the MAP, which aggregates results by item, and not by label.

These measures confirm that the Ratio vectors perform much better. To give a more complete
overview of its results, we also plot the ROC of each label individually. The reader can find the
plots for the different networks in figs. [6-3] to [6.6]

5The considerations made in section [5.5.3] developed by Yang et al. [193], do not apply here, since this is a
classification task and not a link-prediction one; for example, there is no undersampling in our test set.

S, B SN X, B x. N

Ratio 0.682 +0.010 0.552 +0.012 0.503 £0.009 0.494 £ 0.009
Count 0.524 +£0.010 0.659 +0.010 0.417 +£0.016 0.514 + 0.012
Baseline 0.248 £ 0.006 0.290 £ 0.007 0.208 = 0.003 0.291 £ 0.010

Table 6.1: Mean average precision on 10-fold cross-validation. Each column represent one of
the graphs described in section [5.5.1} the first two rows represent our different vectorialization
methods: the count-based strategy (equation , or the ratio-based one (equation ; the
third row represents the baseline, feature-wise majority voting. For each MAP value we report
the mean and the standard deviation across the 10 folds.



88 CHAPTER 6. DISCOVERING FEATURES

S, B S, N x; B XN

Ratio 0.839 £0.005 0.754+0.009 0.759+0.005 0.678+0.009
Count 0.678 £ 0.008 0.747 £ 0.009 0.623 £ 0.004 0.652 £ 0.012
Baseline 0.374 £ 0.007 0.423 £ 0.006 0.420 £ 0.004 0.467 £ 0.007

Table 6.2: Area under ROC curve, aggregated by weighted macro-average, on 10-fold cross-
validation. Each column represent one of the graphs described in section [5.5.1} the first two
rows represent our different vectorialization methods: the count-based strategy (equation ,
or the ratio-based one (equation ; the third row represents the baseline, feature-wise majority
voting. For each AUC-ROC we report the mean and the standard deviation across the 10 folds.

S, B S, N x. B XN

Ratio 0.678 £0.011 0.687+0.014 0.609+0.012 0.636+0.013
Count 0.611 +£0.016 0.673 £0.013 0.589 +£0.012 0.631 £ 0.010
Baseline 0.447 &£ 0.006 0.481 + 0.003 0.481 £ 0.004 0.488 £ 0.002

Table 6.3: Area under ROC curve, aggregated by unweighted macro-average, on 10-fold cross-
validation. Each column represent one of the graphs described in section the first two
rows represent our different vectorialization methods: the count-based strategy (equation ,
or the ratio-based one (equation ; the third row represents the baseline, feature-wise majority
voting. For each AUC-ROC we report the mean and the standard deviation across the 10 folds.

By looking at the individual ROC plots, we can get more insights on the performance of
our classifier. Darker curves — representing more popular features — constantly outperform the
lighter, less popular, features. In other words, the classifier is much better at correctly predicting
features that are more common in the network, while it makes many errors for quasi-unseen
features. This behavior is quite obvious, considering that the rarest features in each dataset
appear in 1 or 2 nodes, making it very hard for the classifier to generalize their effects.

From the ROC curve for the different networks, it also possible to notice different behaviors
depending from the parameters of the network, confirming what we observed with the MAP.
First of all, when W is Bernoulli-distributed on two possible values it is easier to fit it than
when it is normally distributed. Second, the networks generated by a sigmoid activation function
obtained much better results than those obtained with step-function-generated network. For the
LLAMA algorithm (section , the sigmoid function represented an obstacle, since it meant
that for the same inputs the outcome (i.e., the presence of a link) could be different; instead, for
this task the non-determinism means that the classifier can distinguish when a feature pair cause
a high score from when it causes a low score. In other words, the uncertainty leads to a more

rich representation of possible outcomes.

6.5 Discussion

In this chapter, we confronted ourselves with a somehow dual problem with respect to link

prediction (covered in chapter [5)): given the links of a network where most of the features are



6.5. DISCUSSION 89

known, can we infer the remaining features? We saw this task as an Information Retrieval one,
considering possible use cases (e.g., automatic suggestion of tags in a corpus of linked documents);
for this reason, and since we expect this target to be affected by noise, we focused on obtaining
a good ranking of the features of un-labeled nodes, thus using Mean Average Precision (the most
common IR measure) as our main evaluation method.

To solve this task, we decided to design an ad-hoc neural network. Their use is novel in this
area; they have proved to be powerful instruments when predicting labels in large datasets; also,
they are a good way to infer knowledge from raw data. In our case, the network has as input a
simple representation of the in-neighborhood and the out-neighborhood of a node; as output, a
vector of real numbers, one for each existing feature. The hidden layer contains, once again, a
latent feature-feature matrix W (for the in-neighborhood) and W' (for the out-neighborhood).

We experimented this layout on the same synthetic data we used in chapter [5| Results are
very encouraging: the obtained MAP ranges from 0.49 to 0.68, meaning that the top 2k features
according to the output ranking are enough to find all the relevant results (where in our data
2k is orders of magnitude less than the total number of features). We also used the ROC and
AUC-ROC measure, commonly employed in pattern recognition; the average of the AUCROC of
every class, weighting each according to its importance, is around 0.75.

However, a great amount of future research is still needed: first of all, slight changes in
our implementation choices — e.g., by introducing non-linearities in the network — could further
improve our results. Secondly, a proper theoretical analysis of why this technique works would
be beneficial to the understanding of both neural network and feature-rich graphs. Furthermore,
it would be intriguing to mix this approach with auto-encoders for de-noising and dimensionality
reduction [187]: by inserting another hidden layer between the input and W / W7 and another
one, reversed, between the max-pooling and the output, one could easily train a function to
reduce the dimensionality of the features of the nodes, making the actually employed feature-
feature matrix much smaller, and thus allowing to treat larger feature spaces in data.

Finally, a forthcoming goal of our endeavors will be to employ this technique on real networks:
possible fields of application include both ontology construction and bioinformatics, where graphs

equipped with many, intertwined, features are the primary source of information.
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Figure 6.3: ROC curves for the first fold, in the network S, B, using the Ratio vectors and the
baseline, feature-wise majority voting. Black lines represent the ROC of each single feature in
the feature-rich network; darker lines represent most popular features, lighter the less popular
ones. The red line represent the weighted macro-average ROC among all features.
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Figure 6.4: ROC curves for the first fold, in the network S, N, using the Ratio vectors and the
baseline, feature-wise majority voting. Black lines represent the ROC of each single feature in
the feature-rich network; darker lines represent most popular features, lighter the less popular
ones. The red line represent the weighted macro-average ROC among all features.
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Figure 6.5: ROC curves for the first fold, in the network y, B, using the Ratio vectors and the
baseline, feature-wise majority voting. Black lines represent the ROC of each single feature in
the feature-rich network; darker lines represent most popular features, lighter the less popular
ones. The red line represent the weighted macro-average ROC among all features.
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Chapter 7

Citation networks

7.1 Introduction

In this chapter, we will use citation networks as test beds for our model. Citation networks are a
kind of information networks |146]. Specifically, they involve relations between scientific papers.
There is, in fact, a tradition dating back at least to the nineteenth century of citing, inside one’s
work, previous works that treated similar subjects; referencing other scientific works is supposed
to “identify those earlier researchers whose concepts, methods, equipment, etc. inspired or were
used by the authors in developing his or her own article” |65].

Thanks to those references, it is possible to build a citation network: each node represents a
scientific work, and a directed edge (i, j) represents the fact that the article ¢ contains a citation
to the article j. The importance of such networks in the field of bibliometry is well-known, and
we will see how our model can give valuable insights.

In section we will see first how our node-feature model (section can be used to
estimate parameters of a real node-feature association, where nodes are scientific papers and
features are the (uncommon) words they use. We will also see how these parameters can then
be used to simulate a different but realistic (i.e., globally similar to the given one) node-feature
matrix. Then, we will show how this matrix can be used to produce a network, according to
our model. Such a network — we will illustrate — has global topological properties that closely
resemble those of a citation network. Specifically, we will look at their degree distribution — a
classic fingerprint of social and information networks — but also at their distance distribution
— a more complex, geometric attribute of a graph. These observations will qualify our model
as a plausible way to simulate a realistic complex network. Then, in section [7.4] we will define
the explainability of a specific feature set for a network as a measure of how good our model is,
using it to predict the links by looking only at the features. We will see how the Llama approach
presented in section [5.4.2] is able to grasp such a relationship better than a Naive approach on
a scientific network with tens of millions of nodes; with these tools, we will investigate which
features can adequately explain a citation network. In doing so, we will also replicate with real,
citation network data what we experimented on synthetic data in section [5.5

Section contains content previously published in “Information Sciences” |30].

95
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7.2 Related works

The first author to study citation networks was Derek Price in 1965 |59]. He studied and defined
a citation network in the modern sense; among its results, there is one of the first empirical
observations of the appearance of a power law in the degree distribution of a complex network.

These first studies initially employed hand-curated sources of data to build citation net-
works. In this category, the first seminal example is the Science Citation Index [|72]; other ex-
amples of hand-curated sources include Scopus, still widely employed in bibliometry. In the last
decades, however, a new dimension of such analysis was made possible by the automatic crawl-
ing of scientific works, which lead to larger data sources, such as Citeseer and Google Scholar.
In 2015, Microsoft released a very large dataset for academical purposes, the Microsoft Academic
Graph |170]—that we are going to employ and describe later in this chapter.

It was noted already in the 1970’s that the citation network can be used to assess the impor-
tance of journals [73]. Different metrics were developed basing on this graph, including the simple
number of citation (i.e., the in-degree) and the well-known H-index. Although self-citations and
different motives for citing a paper makes it difficult to assign a precise meaning to citations,
nonetheless citation analysis has become a standard tool in bibliometry [65].

Beside citation networks, it is worth mentioning that other networks can be defined regarding
citations of scientific works: Newman [146] describes two network types that can be derived from
a citation network, that are co-citation networks, where ¢ and j are connected if there is a paper
k that cites both ¢ and j, and its dual, the bibliographic coupling network, where ¢ and j are
linked if there is a paper k that is cited by both i and j.

Citation networks, since they describe connections between papers, are often associated with
features characterizing each paper; those features interconnect in singular ways with their links.
They will be our main focus in this work.

Kiss et al. |116] described how an epidemiology model can be used in tracking information
spreading on a citation network; they found that this approach can achieve better agreement with
empirical data (they employed a dataset of 4021 biology papers) when each node is characterized
with the categories it belongs to.

Jo et al. [106] found that citation links and text from papers can produce, when their use
is combined, a more powerful way to perform topic modeling on research papers. The same
authors [105] also provided a way to model the latent interaction between topics, from the
citation network—a technique in fact related to the Naive Bayes baseline we derived for our
model in chapter Then, they observed how this topic-topic interaction network evolves in

time, using as a dataset the ACM corpus, comprising 129 544 papers.

In this chapter, we will perform an analysis of how features of scientific works interplay with
the links, by using the techniques we derived for our model in the previous chapters. In particular,
we will analyze how such techniques work when features are uncommon words appearing in the
paper, affiliations of the authors in the paper, and topics categorizing each paper.

We will first show how our model can properly simulate a node-feature matrix in this case.

Then, for the last two set of features, we will estimate how much they are interconnected with
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estimate for beta: 0.671

Ln

Figure 7.1: Correspondence between the parameter S and the power-law exponent of L,, as a
function of n. The estimate of 3 is the slope of the regression line.

the citation networks, by measuring the accuracy of the algorithms we presented in chapter
We will do so on a network of 18939 155 papers in section [7.4]

7.3 Simulating a feature-rich network

To simulate our model on a real dataset, we considered a sample of scientific paperﬂ (originally
released as part of the 2003 KDD Cup) consisting of 27 770 papers from the “High energy physics
(theory) arXiv” database. For each paper (node), we considered as features the words appearing
in its title and abstract, excluding those that are dictionary WordSEI The papers were organized
in order of publication date. These papers form a citation network, where papers (i, 7) form a
link if one cites the other.

What we want to do with such a dataset is to validate both our models: the one for Z and

the one for G. Specifically, we will do the following:

1. We will try to generate a node-feature association that resemble the original one; that is,
we will try to estimate the parameters of Z through the estimators presented in sec. [£.3] in
order to generate another simulated node-feature matrix. This matrix will be supposedly
drawn from the same distribution (the one defined by our model); then, we will compare

the simulated one with the original.

2. We will then use the generated node-feature matrix to simulate a graph with a density
similar to that of our network. In doing this, we want to test empirically the simulations
we have done in sec. for this reason, we will consider W = I as we did there. We
will then compare the global properties of this simulated network with those of the citation

graph we are trying to emulate.

The dataset is available within the SNAP (Stanford Large Network Dataset Collection) at
http://snap.stanford.edu/data/cit-HepTh.html.
2 According to the Unix words dictionary.
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Figure 7.2: Comparison of the real matrix Z extracted from the data (on the left) with the one
simulated by our model (on the right).

The model we have in mind is the following: when a paper is published, it can be characterized
by a set of scientific terms; of these terms, some are introduced ex novo by that paper; others
are acquired from previous papers. The attribute matrix Z for this case has Z; ; = 1 iff paper
i contains the term j. As we explained, our model assumes that some papers have a larger
capability to transmit their terms to future papers, making them popular. In this real matrix,
the overall number of features is 21933, with a matrix density of 0.35 - 102 (there are 214510

ones in the matrix).

Estimating the parameters. First, we estimate o’ and 8 with the tools presented in sec-
tion in particular by using Remarks and we recall that § is the power-law
exponent of the asymptotic behavior of L,,, i.e. the overall number of distinct attributes.

The estimated values of o’ and § are 15.038 and 0.671, respectively. We show the estimate
for this real case in Figure This regression plot confirms how our estimators fit the real data;
it is also very close to the analogous, simulated plots of Figure [4.2

Then, we proceed to find an approximate value for ¢ via Simulated Annealing [115], obtaining
¢ ~ 175. Finally, we use the Gibbs sampling algorithm presented in section for the fitness

values of the nodes, finding a plausible realization of r = rq,--- ,7,.

7.3.1 Simulating the node-feature association

We proceed to use the estimated parameters to generate a different node-feature association ma-
trix Z. The point here is to simulate a different set of feature-rich nodes, with similar properties
to the real ones. Possible applications include, for example, testing an algorithm for feature-rich
graphs on many instances of a problem. We do not expect the simulated Z to be close in its values
(that is the reason why we will not compare them using distance between matrices), but to have
similar global properties. In fact, what we are going to do is extracting a different particular item

from the distribution that — we hypothesize — is behind the real data we are seeing. We chose to
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Figure 7.3: Comparison restricted to the first 1000 nodes and the first 1000 features of the real
matrix Z (on the left) with the simulated one (on the right).

restrict our analysis to one simulated matrix (instead of a sample of simulations) in order to get
a deeper analysis, to keep the comparison simple and depictable, and for better computational
tractability.

The simulated matrix Z has 22 179 different features, with a matrix density of 0.37-10~3 (there
are 228 328 ones in the matrix). We remind that the real matrix has a density of 0.35-1072. We
show a summary plot comparing the real matrix and the simulated one in Fig.[7.2] We can see
how they fundamentally represent the same phenomenon; in particular, also, the progression of
L,, (the number of different feature in the first n nodes) is the same. We depict a closer look in
Fig.[7-3

Then, we measure if the number of nodes per feature — i.e., how many nodes possess a certain
feature — behaves in a similar way among the two matrices. We compare the distribution of it in
the real data and in the simulation in Figure except for some missing peak in the long taiEl,
the simulation behaves once again in a very realistic way.

Finally, we do the opposite analysis, by plotting the number of features per nodes in Fig.
Here we see a similar distribution but with slightly different parameters; in particular, the average

number of feature per node is 9.8 in the real data and 10.3 in the simulation.

7.3.2 Simulating the graph

Finally, let us compare the graph produced by our graph model applied to the simulated Z matrix
we analyzed in the previous section. We are going to show how, topologically, the produced graph
is very similar to the citation network we are considering—and, more in general, how its global
properties resemble those typical of a social network.

We will make the same assumption we used for simulations in section [£.5}

e We consider symmetrized (i.e., undirected) graphs.

3Note that the missing peaks correspond to a very small number of features appearing in a large number of
nodes in the real matrix.
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Figure 7.4: Comparison of the distribution of the number of nodes per feature, in the real data
(on the left) and in the simulation (on the right).
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Figure 7.5: Comparison of the distribution of the number of features per node, in the real data
(on the left) and in the simulation (on the right).

o We will set W = 1.
e We also omit self-loops, i.e., edges of type (i,1).

With these assumptions, we fed the Z matrix we simulated into our graph model. The Newton
method we described in section [£.5] to estimate ¥ found that, in order to obtain a graph with the
density of the real citation graph, we have to set ¢ ~ 2.105. Moreover, results depend also on
the choice of the parameter K: after some experiments, we observed that we can obtain a good
fit with K = 5.

This model produces a quite similar degree and distance distribution, as shown in Figure
From that figure, we can note how our model can be able to replicate not only classical power-law
degree distribution—as we saw in section [L.5}—but also those closer to a log-normal distribution,
a trait that has been recently noted in social networks .

As a matter of fact, the two graphs — the one obtained from our model, and the original
citation graph — share a number of global topological properties. We report them in table [7.1}

There, we can see that the density of the graph was correctly approximated by our method, and
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Property Real data Simulation
Density 9.13-107* 9.39-107¢
Avg. degree 254 26.0
Reachable couples 95.0% 95.2%

Mean harmonic distance 4.12 3.54

Table 7.1: Comparison of the cit-HepTh dataset versus a graph generated by our model.
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Figure 7.6: Comparison of the cit-HepTh dataset versus a graph generated by our model. We
show the degree distribution in a log-log plot, and the fraction of pairs at distance at most k;
in the latter, we highlight the peak value, indicating how many pairs of nodes are mutually
reachable.

it is in fact around 9 - 10~* for both the real and the simulated network. Therefore, also the
average degree results in very similar values (around 26). By looking at the plot, however, it is
clear that not only the average degree is close: also the degree distribution is very similar to that

of the citation network we are considering.

Also more complex attributes of the network — i.e., distances between nodes — are quite close.
In particular, the fraction of reachable pairs — that is, pairs (4, j) for which there is a path between
1 and j — is around 95% in both cases. From Figure [7.6] we can see how these distributions look
quite similar, but — like highlighted in table — the resulting mean distance is of 4.12 in the
real network and of 3.54 in the simulation. We think this shrinking effect of the simulation could
be an artifact of our use of W = I and thus considering homophily as the only way for features
to interact. We will explore concretely how to reconstruct a proper W from citation network
data in the next section. However, it is still striking to observe that the two graphs have such a

strong similarity in their topology, albeit having positively no direct relation with each other.
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7.4 Explaining a network through its features

In this section, we will focus on how our framework — and especially the Llama algorithm (Alg.
3) — can be used to evaluate the relationship between a network and a particular set of features
for its nodes. In particular, we will consider the fitness of our model as a measure of how much

a certain set of feature can explain the links in such a graph.

Explainability. Given a graph G = (N, L) and a particular set of features F' that can be
associated to its nodes (with Z C N x F), we can define the explainability of F for G to be the
area under the precision-recall curve obtained by our model scores; with “score” we mean the
argument of ¢ in , where the matrix W is the one found by Alg. [3| when inputted with G
and F. The use of the AUPR (Area Under Precision-Recall curve) as a measure of the fitness of
our model is due to the theoretical and experimental properties of such a measure analyzed by
Yang et al. [193], as we described in section [5.5.3]

With this tool in our suitcase, we can take a network, and measure how much a particular

property of its nodes can explain their links; this is what we are going to showcase in this section.

7.4.1 Experimental setup

We are going to consider a scientific network recently released by Microsoft Research, and known
as the Microsoft Academic Graph [170]. It represents a very large (tens of millions), heterogeneous
corpus of scientific works. For every scientific work, some metadata is available in the dataset.
We will consider the citation network formed by these works: that is, a (directed) arc (i,j) € L
will correspond to the paper i citing the paper j. As for the features, we will consider the following

sets of features for our nodes/papers:

e Their affiliations: for each paper, all the institutions that each author of the paper claims
to be associated to. For example, “University of Milan” and “Google” appear in our list of

affiliations.

e Their fields of study: the field of study associated to the keywords of the paper. For
example, “Complex network” and “Vertebrate paleontology” appear in our list of fields a

paper can be associated to.

Those features fully respect all the assumptions we made: they are attributes of the nodes,
they are binary (a node can have a feature or not, without any middle ground), they are possibly
overlapping (a paper can have more than one affiliation/field).

Our goal now is to compare the explainability—as defined above—of these two sets of features
for the citation network. Since we want to compare them fairly, we reduced the dataset to those
nodes for which the dataset specifies both these features: that is, papers for which both the
affiliations and the fields of study are reported. In this way we obtained:

e A graph G = (N, L) where N is a set of 18939155 papers, and L is all the 189465 540

citations between those papers.
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Same affiliation Different affiliation

Total 48.7% 51.3%
Same field 38.6% 18.7% 19.9%
Different field 61.4% 30.0% 31.3%

Table 7.2: A measure of homophily in this dataset, obtained on a sample of 50 000 links. In this
table, we say two nodes have the “same” feature if they share at least one feature.

o A set F, of 19834 affiliations, and the association Z, between papers and affiliations. Each

paper has between 1 and 182 affiliations; on average, we have 1.36 affiliations per paper.

o A set Fy of 47269 fields, and the association Z; between papers and those fields of study.
Each paper involves between 1 and 200 fields; on average, we have 3.88 fields per paper.

We proceeded then to evaluate the explainability of Fi, and Fy for G' with the same approach

presented in section [5.5.3
1. We divide the set N in ten folds Ny, ..., Ng.

2. For each fold N;:

a) We apply Alg. |3|to the part of L and Z related to the training set U;.; N;.

(
(b) We obtain a matrix W.

(¢) We compute the scores of our model with W on the test set N;.

)
)
)
(d) We measure the precision-recall curve for these scores.

In order to validate on real data the results we obtained in section for synthetic data, we
also carried out the same procedure also with the W matrix found by the Naive approach. As a
further type of test, we also performed the same experiment on a third set of features: F, U FY,
that is the union of affiliations and fields. As a result, we obtained 2 ten-folded precision-recall

curves for each of the 3 considered set of features: Fj,, Fr and F, U F}.

Measuring homophily. In order to assess how much homophily alone is present in the dataset,
we measured the fraction of links (4, j) where ¢ and j share at least one feature. We performed this
measure for our two feature sets, on a subsample of 50000 links. We report results in Table
where we also report how correlated the homophily among fields of research is correlated with
homophily among affiliations. These results show (1) that the correlation between these two
kinds of homophily seems to be practically non-existent; and (2) that homophily alone is not
sufficient to explain links: 31% of citation links happens to be between nodes which do not share
any affiliations nor fields of research. The adoption of our model, which consider interactions

between different features in order to explain links, seems therefore justified.
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Figure 7.7: Precision-recall curves of the Naive baseline and of the Llama algorithm, when
explaining the citation network using the affiliation of authors as features.
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Figure 7.8: Precision-recall curves of the Naive baseline and of the Llama algorithm, when
explaining the citation network using the fields of study of each paper as features.

7.4.2 Results

We report in Fig. [7.7] the precision-recall curves for the Naive and for the Llama algorithms for
the affiliations feature set; in Fig. [7.8] for the fields of study feature set; in Fig.[7.9] for the joined
feature sets F, U F'y. Finally, in Table we report the explainability we obtained — that is, the
area under the said curves.

In this table, we can see that the explainability of the fields of study for the citation network
is much higher than that of the authors’ affiliations: the first is above 0.91, while the second is
0.59. In this sense, our model allows us to say that the fields of study of a paper explains very
well its citations, while the affiliations of the author do not. This might not come as a surprise—
the relationship between the fields a paper belong to and its citations is quite natural—but
our contribution here is the formal framework which allow us to back this assertion with solid
numbers, through and Alg. [3] We can further validate this affirmation by looking at the
explainability for both fields and affiliations, joined: its value of 0.921 is just faintly over the
value of 0.9175 obtained for fields alone, implying that the gain obtained by including this whole
new set of 19834 features is practically negligible.
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Algorithm  Affiliations Fields of study Both

Llama 0.593 £0.005 0.918 £ 0.000 0.921 £ 0.001
Naive 0.552£0.000  0.632 £ 0.000 0.635 £ 0.000

Table 7.3: Area under the precision-recall curve of the Naive baseline and of the Llama algorithm.
For each of the considered feature sets, we report the mean and the standard deviation across
the ten folds. We highlight the explainability for the citation network of the affiliations and of
the fields of study, respectively.

Algorithm  Feature set Number of random features AUPR

Naive Fields of study 100 0.631 £ .000
Naive Fields of study 1000 0.628 £+ .000
Naive Affiliations 100 0.551 4+ .000
Naive Affiliations 1000 0.547 4+ .000
Llama Fields of study 100 0.918 £ .000
Llama Fields of study 1000 0.917 +.001
Llama Affiliations 100 0.588 4+ .006
Llama Affiliations 1000 0.592 +.003

Table 7.4: Area under the precision-recall curve of the Naive baseline and of the Llama algorithm,
in the case of an extra number of random features added. For each of the considered feature sets,
we report the mean and the standard deviation across the ten folded cross-validation.

We can grasp more details by looking at the specifics of the precision-recall curves. By
comparing the Llama curve for affiliations in Fig. and the one for fields in Fig. we can see
immediately that the latter depicts a valid classification instrument; there, precision and recall
break-even point is around 83%. Also, we can see some specific aspect of the affiliation feature
set: it is in fact able to reach a high precision, but only in the very low range of recall. Here, a
precision of 83% is possible only with a recall lower than 7%: the reason behind this is that an
author’s affiliation is effectful in encouraging a citation link in a very limited set of circumstances;

we can conjecture that homophily within small institutions could be an example.

We performed an additional experiment to evaluate how much our algorithms are prone to
overfitting. For each of the two considered feature sets, F;, and F, we added r random features.
Each one of these features had a probability p to be associated with a given node 4; in other words,
each z; , is a Bernoulli variable with parameter p. Each of these associations is independent, and it
is independent also from any link present in the network, making those features, for all purposes,
noise. As a probability p we used the average probability of each feature set (i.e., the density of
the matrix Z); this meant a p = 0.00008 for fields of studies and p = 0.00006 for affiliations; such
a probability results in an average of 1515 nodes displaying each added random feature in FY
and of about 1326 nodes for each random feature in F,,. We tested how our algorithms perform
in this setting, in the case of r = 100 and r = 1000 random features added. We report results
in Table[7.4 By comparing these results with those in Table we can see that—although the

added noise, and the amount of added noise, is in general detrimental to the performance of the
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Figure 7.9: Precision-recall curves of the Naive baseline and of the Llama algorithm, when
explaining the citation network using both the affiliations and the fields, together, as features.

algorithm—the difference is almost negligible: for example, the Llama algorithm on the fields
of study has an AUPR of 0.918 without noise, and of 0.917 with m = 1000 random features;
for the Naive algorithm, a performance of 0.63 degrades only to 0.62. While it is obvious that
introducing a much greater amount of noise would start to ruin the performance, we think that
this experiment proves that the proposed algorithms are not too sensible to noise.

Finally, let us remark how the results we obtained on synthetic data in section [5.5.3| are
fully confirmed by the real data we presented here: the Llama algorithm, in all the three cases,
behaves much better than the Naive baseline. This is especially true for the feature set that
actually explains the network: for the fields of study, Llama is able to get a 0.91 area under
the precision-recall curve, while the W matrix found by Naive approach can get only 0.63. In
particular, precision-recall curves look similar to the one pictured in Fig. |5.11] corresponding
to the simulation obtained with ¢ set to a sigmoid and W discretely-distributed; real data is
actually less shaky, due to the fact that we have 18 millions nodes instead of the 10000 we
simulated. Besides confirming the validity of the Llama approach, this observation also confirms

the goodness of our model for simulations.

7.5 Discussion

In this chapter we tested our techniques, described in the first parts of this work, on a particular
kind of complex network: citation networks. Citation networks are representative of how works
of different groups of people interconnect and influence each other. Their importance in the field
of bibliometry is well-known since the early 1970’s.

Firstly, we tested how our model, described in the first part of this thesis, can be used to
simulate a citation network and its features. As features, we employed the non-common words
that appear in each paper title and abstract. The dataset we employed is the High Energy
Physics arXiv dataset, consisting of 27 770 papers.

On this dataset, we made use of the methods described in chapter @] First, we used the esti-

mators and the heuristics we developed for our model in order to estimate the latent parameters



7.5. DISCUSSION 107

that lead our model of co-evolution between nodes (papers) and features (words). We estimated
the o and § parameters of our model through unbiased statistical estimators; the ¢ parameter
through Simulated Annealing; the fitness parameters through our Gibbs-sampling algorithm.
After having done so, we used those latent factors to kickstart the model, which produced a
new feature-rich complex network, close—in its global properties—to the original one, but with
different local values. In other words, we found the distribution governing the matrix Z that we
were looking at, and used this distribution (and its parameters) to extract a different matrix.
We showed how the original and the synthetic matrices displayed similar global metrics: they
displayed very similar density, progression of the number of features in time, and final number
of nodes per feature. We believe this justifies our usage of such a process to synthesize realistic
datasets.

Finally, we employed this newly generated Z to synthesize a graph: the result is a network

with degree and distance distribution close to the typical values we find in citation networks.

We considered then the Microsoft Academic Graph, extracting a citation network comprising
18939 155 papers and 189 465 540 citations, that we used as a test bed for some of the mining
techniques we saw in the second part of this work, specifically those we derived for estimating
the feature-feature matrix.

The goal was duplex: first, to see how well these algorithms perform on real data, since
in previous chapter we focused on synthetic data; second, to define and test a measure of the
explainability of features with respect to a network: with this term, we indicate how much a
certain set of features in the nodes of a network can explain the links we see. We employed the
area under precision-recall curves, the usage of which we previously described and motivated, to
assess the explainability of the different feature sets we considered. The first feature set was the
affiliations of the authors of each paper; the second was composed by the “fields of studies” each
paper has been associated to.

Our results first confirmed the results we got on synthetic data: the Llama algorithm works
definitely better than the Naive baseline; this suggests that the sigmoid activation function is
probably the one closer to reality, and also indicates that the naive independence assumptions
are not tenable in practice.

Our second empirical result was observing a difference in the explainability of the two feature
sets: we showed that the ability of predicting links is definitely higher when considering fields of
study, with respect to affiliations: our algorithm in fact could obtain an area under precision-recall

curve of 0.92 for the first set of features.
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Chapter 8

Semantic networks

8.1 Introduction

In this chapter, we will apply our model (chapter [3) and the data mining tools we described in
chapter [b]to a real, large-scale, open-accessed semantic network: the Wikipedia Link Graph. Our
aim here is double-sided: first, we want to show if our model can properly fit semantic networks,
by studying which features should be used in this regards, and how large this feature set needs
to be; second, we want to show how our approach can give useful insights in the analysis of
such networks: for this reason we will propose an anomaly detection approach to mine surprising
connections between concepts in a semantic network.

The rest of this chapter is organized as follows. First, in section [8.2| we will review previous
works on semantic networks, and we will frame the Wikipedia graph in this context. Then, in
section [8:3.1] we will focus on how a feature-rich semantic network is extracted from Wikipedia:
there, we will describe how previous works defined it and employed it, and then we will propose a
novel approach to extract meaningful categorization from Wikipedia, allowing us to use categories
as features for Wikipedia entities. Next, in section [8.4] we will lay our model on this dataset,
defining our set of nodes, links and features with precision and measuring how good our model
is in this case. Finally, in section we will describe how our model can be employed to
find unexpected relations in a semantic network: we will review related literature, describe our
approach, and compare it by experiments. Finally, in section [B.6] we will discuss the results
obtained in this chapter.

This chapter (especially section is largely based on a work presented as a conference
paper in “Web Science 20167 [8]. Section instead, was published in the Wikipedia Workshop
during WWW 2016 |31].

8.2 Related works

Semantic networks are graphs where nodes are concepts and links are semantic relationship. The
term “concept” can in some cases be replaced by “entity”; Richard H. Richens in [157] called

them “naked ideas”. There, the author gave the first description in computer science of semantic
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networks: the author proposed semantic networks as a way to provide a common knowledge for
machine translation. The will to represent something as vague as “concepts” came from the need
of “an interlingua in which all the structural peculiarities of the base language are removed”; the
semantic net, however, “bear some obvious resemblances to the linguistic configurations”. After
this first application in machine translation, semantic networks were heavily employed to build
systems able to infer and to draw logic conclusions from facts [130], a field called “automatic
reasoning”. Shapiro [167] used instead the term “computational philosophy” while analyzing
SNePS [166], or “Semantic NEtwork Processing System”. Semantic networks are now very often
used as a common type of Knowledge Representation [49], a sub-field of Artificial Intelligence
studying formalisms to aid computational reasoning about facts and reality. They form the
basis of Semantic Web [22], where nodes and links are supposed to be manually curated by web
masters, but they are also employed to store information derived automatically from human-
readable sources [14].

Sowa et al. [172] discussed many types of semantic networks. Among the most prominent we
find definitional networks, where the links between concepts describe sub-type relations, usually
called “is-a”. This type of network makes it possible for propositions to talk about properties of
classes of objects. Another important type of semantic networks are assertional network; here,
links are propositions, stating a factual relationship that exists in reality. Authors [172] also
described hybrid network, where links can be of various types.

Nowadays, hybrid semantic networks are widely employed, often as an overlapping of a def-
initional network with an assertional one. Knowledge graphs, introduced by van der Vos [185],
often belong to this category. It is worth to mention the Google Knowledge Graph [169], used
by Google Search to enrich its results with semantic, contextual information; in a public post,
Google stated that in 2012 their Knowledge Graph had 570 million concepts. Other companies,
such as Microsoft, Yahoo and Yandex have developed their own knowledge graphs as well, for

similar purposes.

The vast majority of these knowledge graphs drain information from Wikipedia, the largest
free-access collaborative Internet encyclopedia. Since Wikipedia is the largest open encyclopedia
in the world, in fact, it has been helpful in creating countless knowledge bases; among the
openly accessible ones, we can cite for example DBPedia [14], YAGO [177], and Freebase [|34]. In
many of these, Wikipedia articles are used as concepts, and the relationships between them are
usually derived from the “infoboxes” they contain (infoboxes are a schematic way to represent
information, intended for human readers) or even, sometimes, from the natural language itself.

Many researchers, however, used the link structure of Wikipedia directly as a semantic net-
work [71}143L|176L|179]. Wikipedia link structure offers in fact a very simple yet effective way to
provide meaning and context to entities: to know to which entities “Barack Obama” is seman-
tically related, it is sufficient to look at the Wiki-links in his article — e.g., “African American”,
“Operation Freedom Falcon”, and “Obamacare”; the original article also provides different names
for the same entity, such as “/4th President of the United States”. From this point of view, the
link structure of Wikipedia presents all the properties of a semantic network and can be seen as

such [15,/85[89]. Common application for Wikipedia links as a semantic net are found in named
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entity resolution [87] and to measure semantic distance [143].

8.3 Wikipedia categories

Folksonomies are collaborative attempts to categorize items of some type, with the aim of helping
users in their searches (e.g., to have information on related items or to cluster items that are
similar under some viewpoint). Wikipedia is itself endowed with a folksonomy, that takes the
form of a category hierarchy: each Wikipedia article is tagged with one or more categories, that
are themselves structured in a collaborative hierarchical framework.

Under this point of view, Wikipedia can be seen as a knowledge graph with an explicit,
human-authored form of entities classiﬁcatimﬂ (the “is-a” relationships, derived from definitional
semantic networks). Users interested in mining data from Wikipedia can naturally rely on cat-
egories as a further, precious information source [14,/165,(179]. In our case, we will use the
categories of Wikipedia articles as our features, while considering the Wikipedia links as our
main graph.

Nonetheless, using Wikipedia categories without filtering is problematic, at best: the category
hierarchy is extremely sparse and noisy, it contains duplications, errors and oversights, and it is
more often than not too fine-grained to be directly employed.

In this section, we will propose an easy, tunable, endogenous technique to cleanse and prune
the category hierarchy. After briefly discussing the problems that the hierarchy exhibits, we focus
on the usage of centrality measures to identify important categories and show how harmonic
centrality [32] outperforms other alternative measures. The method we propose will define a
new, cleaner set of features for the entities in the Wikipedia semantic network, to which we will
apply our techniques. However, the method explained in this section is general, and can be used
fruitfully as a preprocessing phase in every algorithm that wants to exploit categories in mining
Wikipedia data.

All throughout this chapter, we will employ the enwiki snapshotﬂ of February 3, 2014 of the
English Wikipedia, and in particular:

e the Wikipedia Link graph, composed by 4514662 Wikipedia entities, with as many as
110699 703 arcsE|; every redirect was merged to its target page;

e the full categorization of pages: a map associating every page to a subset of the 1134715

categories;

e the category pseudo-tree: the graph built by Wikipedia editors, with the aim of assigning

each category to one or more “parent” categories; it contains 2215 353 arcs.

LAt the time the work described in this chapter was completed, a new project called “Wikidata” [189] was
getting a foothold inside the Wikimedia community, in order to build directly a community-curated knowledge
graph. In 2016, in particular, Pellissier et al. [151] described the development of a tool to import Freebase [34],
and other sources, into Wikidata.

2This dataset is commonly referred to as enwiki-20140203-pages-articles according to Wikipedia naming
scheme.

3Self-loops were removed.
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Figure 8.1: Preliminary analysis of Wikipedia categories.

As a preliminary analysis of this dataset, we assessed two global properties of this category
structure. In fact, we report in fig. the distribution of the number of pages per category, in a
log-log scale; in fig. we report the out-degree distribution in the category pseudo-tree; please
note that the out-degree of a category in this graph is the number of its sub-categories, so this
distribution is equivalent to the distribution of the number of sub-categories per category. Both

these properties seem to follow power-law distributions, confirming previous analysis [40L[41].

8.3.1 Related works

Wikipedia articles are endowed with categories, intended to group together articles related to
similar subjects; categories serve many purposes, like enabling users to browse sets of related
articles, or enhancing the automated production of inclusion and navigation boxes.

Many of the works cited in the introduction of this chapter have shown how valuable the
category tagging and the Wikipedia Category Graph can be, especially in data mining [70}/102,
107,/165,/176,/179]. The former is the bipartite graph where Wikipedia articles are tagged by
(“belong t0”) one or more categories; if we identify categories as features, it corresponds to the
matrix Z in our model. The latter instead is a new element, and it is the hierarchy specifying how
categories are organized in subcategories (i.e., there should be a link between 2 and y whenever
“z is a subcategory of y”). Both of these graphs are completely user-generated and in continuous
evolution.

Indeed, the category graph is far from perfect: since the very notion of “subcategory” is fuzzy
and no universal policy is strictly enforced, the resulting hierarchy is not a forest, and not even
a directed acyclic graph, as pointed out by Kittur et al. |[117]. The category graph has been
described instead as a thesaurus that combines collaborative tagging and hierarchical subject
indexing [188] and as an overlay between different trees [161].

In fact, although many works heavily employed categories and the graph they form, all au-
thors had to cope with the extreme level of noise one can find in them. In particular, the fact

that the subcategory graph actually contains cycles forces users to take a cleansing step into
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Problem solving — Artificial intelligence — Cybernetics — Applied mathematics —
Mathematical problem solving — Problem solving

Table 8.1: A cycle in the category pseudo-forest.

careful consideration. Diverse techniques have been tried to do that. Common examples include
considering only a tree based in a root category (from a global root [107] or a local one [161L{194]);
others have arbitrarily removed cycles [70]. However, to the best of our knowledge, there was no

previous work comparing different techniques for this de-noising operation.

8.3.2 Noise in Wikipedia categories

The Wikipedia Category Graph expresses a category hierarchy, that reflects the notion of “being
a subcategory of”; according to the guidelines, the category hierarchy should correspond to a

partial ordeIEL and should therefore be acyclic.

Nonetheless, like the rest of the Wikipedia effort, categories are created and edited collab-
oratively by users: as a result, the categorization process in Wikipedia is quite noisy and, in
fact, a continuous work-in-progress: most importantly, the absence of cycles is neither enforced
nor guaranteed. In fact, the category pseudo-forest (the directed graph whose nodes are the
Wikipedia categories and with an arc from z to y whenever z is a subcategory of y) does contain
cycles. Most of them are either consequence of a factual error by the Wikipedia editors or, more
commonly, of the fact that the very notion of “being a subcategory” is not precisely defined. An
example of a cycle is shown in Table An excerpt of the Wikipedia Category Graph, showing
20 categories and the links between them, is pictured in Fig.

The presence of cycles is not the only form of noise that we find in the Wikipedia category
pseudo-forest. Duplications, misplaced eponymous categories, excessive fragmentation are other
problems that make a direct use of the hierarchy difficult at best. This was also highlighted in

many previous works [69}/70].

While a very large majority of categories (1125823, amounting to 99.22%) lie in a strongly
connected component (SCC) of their own, there are some non-trivial SCCs, the largest one
composed by 6833 categories, and the second largest by 105. Let us point out that it means
that from each category ¢ belonging to this strongly connected component to any other category

j inside it, there is a path of “is a subcategory of” arcs from i to j and from j to !

On the other hand, the graph itself is reasonably connected in the weak sense, with 952 833
(83.97%) nodes belonging to one single weakly connected component (WCC); most of the re-
maining categories (171889, amounting to 15.15%) are isolated nodes (the 45% of these nodes
are related to specific years, like “1833 births” or “Populated places established in 1864”).
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Figure 8.2: Sample from the Wikipedia Category Graph, highlighting the presence of cycles.

8.3.3 Cleansing Wikipedia categories

It is natural to try to employ the Wikipedia articles belonging to each category as a mean to
obtain a cleaner category hierarchy; for example, one may forget about the hierarchy structure
altogether and try to reconstruct (a less noisy version of) it from the sets of articles belonging to
each category. This approach, besides throwing away a large amount of human-cured data, has
a quite serious (theoretical and practical) limitation: if one wants to use the category hierarchy
to enrich the information on articles, using articles to get the category hierarchy is by all means
a catch-22. In our case, specifically, we would like to select the set of features of our graph
independently from the nodes they will apply to, in order to cleanly test our model about the
node-feature association on a well-defined set of features.

For these reasons, in fact, our cleansing technique is completely endogenous (i.e., it uses only

the information contained in the category pseudo-forest), and it consists of three phases.

Phase 1: Milestones determination. In the first phase, we select the m topmost categories
that we want to preserve (called milestones). Since this set of categories will be, in the end, the set
of features F’ of our feature-rich graph, we use the notation m to indicate its cardinality, as we did
in the previous chapters. For the moment, here, m is a parameter that determines the granularity
of the output hierarchy, and can be set arbitrarily. Categories are then ranked according to their
centrality in the category pseudo-forest. The choice of which centrality measure [32] should be
adopted will be discussed below. While selecting the m topmost categories, we expunged utility

categories such as “Categories by country” and “Main topic classifications”.

4“Categories are organized as overlapping “trees”, formed by creating links between inter-related categories (in
mathematics or computer science this structure is called a partially ordered set).” [In https://en.wikipedia.
org/wiki/Wikipedia:Categorization|
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Figure 8.3: The number of categories depending on the distance from the root category “Article”.
56% of the categories are at distance 6 or 7.

Note that the milestones determined in this way have a natural hierarchy, that is the one
induced from the original pseudo-forest, throwing away the hierarchical arrows that do not match
the centrality score chosen (a supercategory cannot be less important than its subcategories). In
other words, given two milestone categories x and y, we postulate x is a subcategory of y iff it
was marked as a subcategory in the original pseudo-forest and the centrality score of x is smaller

than that of y. This reconstruction process guarantees that the resulting hierarchy is acyclic.

Phase 2: Category remapping. Once the milestones categories have been determined, each
category is mapped to the closest reachable milestone (i.e., to the milestone category that is
the more specific generalization of the category under examination). Categories for which no
milestone is reachable are orphan, and they in fact disappear. The (partial) map from categories

to milestones «(—) is called the category remapping.

Phase 3: Article categorization. At this point, each Wikipedia article is re-assigned to
the remapped categories it belongs; more precisely, if an article was marked as belonging to
categories ¢1,...,ck it is now mapped to the milestone categories ¢(¢;) (i = 1,...,k) for which
t(—) is defined. If all the categories it belonged to are orphan, the article itself remains an orphan.
This phase is not strictly part of the category-hierarchy cleansing, but it is necessary to use the

cleansed categories as features for Wikipedia articles.



116 CHAPTER 8. SEMANTIC NETWORKS

Root
Lin Harmonic  PageRank  Katz Indegree  distance  Closeness Popularity
Lin 0.6102 0.4010 0.1356
Harmonic 0.3665 0.1127

PageRank 0.5345 0.4575 0.1683
Katz 0.6200 0.4222 -0.0786

“Tndegrec  |LOIOMOR 00490 00899 00094 000N 05646 04461 0.0770
Root dist. 0.6102 _ 0.5345 0.6200 0.5646 _ 0.5810 0.3014
Closeness 0.4010 0.3665 0.4575 0.4222 0.4461 0.5810 _ 0.3842

Popularity  0.1356 0.1127

0.1683 -0.0786  -0.0770 0.3014 0.3842

Table 8.2: The weighted Kendall’s 7 between the centrality measures under comparison.
Darker shades of gray indicate higher Kendall’t 7 correlation.

Centrality measures. The most important step in our cleansing procedure, that crucially
determine its output, is the selection of the centrality score to be used. Note that we are here
sticking to our principle of endogeneity and want therefore to avoid selecting important categories
based on notions that are not internal to the category hierarchy itself.

Therefore, we took into consideration the network centrality measures that more widely used
and appear to be better-behaved for these kinds of problems , namely, indegree (number of
incoming arcs), closeness centrality, Lin’s index, harmonic centrality, PageRank (with damping
factor a = 0.85), Katz’s index (with parameter 3 = (2X\)~! where X is the spectral radius). To
compute geometric centralities in an efficient way, we employed HyperBall .

For comparison, we also considered the non-endogenous metric defined by category popularity
(i.e., number of articles belonging to that category).

A further, widely used, endogenous measure that was sometimes proposed for Wikipedia
categories is their distance from the root category (“Articles”) . Albeit simple and natural,
this measure has a number of drawbacks: first of all, it has a very limited granularity and a huge
number of ties (see Figure . Moreover, the distance from the root is easy to spam and not
very robust: one single misplaced subcategory link is enough to make a category more (or less)
important than it should be. While the latter observation is probably irrelevant for the very top
levels of the hierarchy (where errors and inconsistencies are easily spotted and corrected), the

more crowded lower levels are certainly problematic.

Experimental comparison. The availability of many different ways to rank the categories
immediately raises two problems: the first is whether (and how much) those ranking techniques
differ in choosing the topmost categories; the second, in case the rankings are significantly dif-
ferent, is to understand which one is more suitable for our needs.

In order to answer the first question, we compared the various rankings using a variant of the
classical Kendall’s 7 that treats differently discordances depending on whether they happen
at the top or at the bottom of the rankings, still handling ties in a proper way.

As Table shows, there is a group of measures (Lin’s index, harmonic centrality, PageRank,
indegree and Katz’s index) that strongly correlate to one another especially at the top, but
appear to be much uncorrelated to the “Distance from the root” and, even more evidently, from

“Closeness” and “Popularity”.

These differences make it urgent to answer the second question raised above, that is, which
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Centrality AP NDCG AUC
Lin’s index 0.14641 0.71230 0.94324
Harmonic centrality 0.13914 0.70149 0.94444
PageRank 0.07411 0.64503  0.95001
Distance from the root 0.05339 0.60720 0.92983
Katz’s index 0.01606 0.53651 0.92708
Indegree 0.00917  0.50636  0.91532

Category popularity 0.00491  0.47994  0.90082
Closeness centrality 0.00083  0.40392  0.65134

Table 8.3: Comparison of various rankings in retrieving the golden-truth categories from the
Library of Congress Classification, highlighting the best two rankings for each metric. We re-
peated the computation with many different shuffles of the tied scores, to see how ties influenced
the result: it turned out that ties do not impact on the relative ordering of the measures; in fact
the variance of the accuracy scores computed is quite limited, except for “Distance from root”
(where, for example, the average precision ranged from 0.050686 to 0.056097).

measure seems more “correct”; to answer this question, though, we need some ground truth on
which categories are ‘“relevant” in a broad sense.

Following Salah et al. [161] we decided to use an expert-curated bibliography classification.
We decided to make use of the Library of Congress Classiﬁcatiorﬂ (LoCC) through the outline
(main classes and sub-classes) available from within Wikipedia. This choice allowed us to employ
Wikipedia itselﬁ to map LOCC classes to Wikipedia categories in the following way.

For each listed LOCC class (e.g., “Philosophy”), we followed the hyperlink (if any) to the
related Wikipedia article (dropping the word “Outline” if needed; e.g., for the category tag “Phi-
losophy” we ended up to the “Philosophy” article of Wikipedia); then, we joined all the categories
of the articleﬂ (“Philosophy”, “Academic disciplines”, “Humanities” etc.). This process resulted
in a set of 682 golden-truth categories assumed to be high-ranked, and we computed for each
ranking the average precision (AP), the Normalized Discounted Cumulative Gain (NDCG), and
the Area Under ROC curve (AUC) [129] in retrieving these categories; the results are displayed
in Table showing that Lin’s index and harmonic centrality appear to be the best techniques

under this viewpoint.

From the discussion so far we can conclude that harmonic centrality and Lin’s index are the
best centrality measures to identify milestones categories; we hereby preferred the former over the

latter because harmonic centrality is more natural and it enjoys better theoretical properties [32].

8.3.4 Cleansing results

As justified above, harmonic centrality is apparently the most powerful among all centrality
measures we tried. To give an idea about the effectiveness of harmonic centrality in capturing

the generality of categories, we report in Table B.4] the first and the last categories on our list,

Shttp://www.loc.gov/aba/cataloging/classification/

Shttps://en.wikipedia.org/wiki/Library_of_Congress_Classification

7As a more restrictive alternative, we only considered the category whose name matched that of the article,
provided that it was present; this alternative approach produced a much smaller, less noisy, set of categories (205
instead of 682) but yielded essentially the same results.


http://www.loc.gov/aba/cataloging/classification/
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Rank Category Rank Category

1 Countries 19981  Maldives

2 Society 19982  Government buildings...

3 Nationality 19983  Illinois waterways

4 Political geography 19984  Bodies of water of Illinois

5 Culture 19985 2002 in association football

6 Humans 19986  Electronica albums by British artists
7 Social sciences 19987  Visitor attractions in Arkansas by county
8 Structure 19988  Years of the 20th century in Europe
9 Human-geographic territorial entities 19989  Commonwealth Games events

10 Contents 19990  Albums by English artists by genre
11 Geographic taxonomies 19991  American football in Pennsylvania
12 Fields of history 19992  Ethnic groups in Poland

13 Places 19993  Card games

14 Humanities 19994  Central African people

15 Continents 19995  Deaths by period

16 Political concepts 19996  Visitor attractions in Vermont

17 Human geography 19997  Ancient roads and tracks

18 Subfields of political science 19998  People in finance by nationality

19 Articles 19999  Populated places in Greater St. Louis
20 Subfields by academic discipline 20000  Religion in Poland

Table 8.4: Topmost and bottommost twenty Wikipedia categories (with m = 20000) according
to their harmonic centrality in the Wikipedia category pseudo-forest.

Original category c

Substitution milestone ¢(c)

Southern Tang poets

Antsiranana Province

Fellows of Magdalen College, Oxford
Actresses from Greater Manchester
Guyanese slaves

Swiss manuscripts

Wilson Pickett songs

Baroque architecture in Austria

Eastern Collegiate Roller Hockey Association
Art schools in Washington (state)

Rivers of Kostroma Oblast

Flamenco compositions

Oil fields of Gabon

Basketball teams in Georgia (U.S. state)
2004 in Australian motorsport

Populated places established in 1821
Elections in Southwark

Permanent Representatives of Norway to NATO
Basketball in Turkey

Balli Kombétar

Poets by nationality

Country subdivisions of Africa
University of Oxford

Greater Manchester

History of South America

Swiss culture

Songs by artist

Baroque architecture by country
]

Washington (state) culture
Rivers by country

Spanish music

Geology of Africa

Basketball teams in the United States by state
2004 in sports

]

Local government in London
Ambassadors of Norway
Basketball by country

#

Table 8.5:

An excerpt of the category remapping process (using harmonic centrality with

m = 20000 milestones). We write 7 if there is no milestone category reachable from c.
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Quality of life
Philosophy of science Philosophy of life Philosophy of logic Philosophical movements
Philosophy by field Philosophical theories History of ideas

Figure 8.6: Sample from the cleansed category hierarchy.

when m = 20000. In Table B.5] we show some examples of the induced category remapping:
on average, each article belongs to 4 categories. As the examples show, this cleansing process
yields very clean remapped features. Figure shows the rank-size distribution of the number
of categories remapped to each milestone category for various choices of m.

The choice of m depends on the level of granularity we desire in the final output. Depending
on the application, we may want different levels of aggregation among categories. This number
will end up to be the number of features in our feature-rich graph; as we said in section [3.2.3] it
will represent a candidate intrinsic dimensionality for the graph. We will consider various choice
of m = |F| for our model in section

Although not directly relevant to our goals, we also tested the cycle-removing procedure that
we explained in Section B:3.3} by combining the original pseudo-forest with the total order given
by our rank, we can obtain a Directed Acyclic Graph. In Figure we show how many arcs

Philosophy images

Philosophy by region

Philosophical concepts

Philosophy portals

Philosophical literature

Philosophers

Figure 8.7: For comparison, sample from the cleansed category hierarchy if “distance from the
root” was used to select milestone categories.
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Figure 8.8: F-Measure of Alg. [3|in 10-fold cross-validation, with different number of considered
categories. On the X-axis, we report both the cardinality of the considered categories set, and the
size required to store an explicit, dense representation of W. The depicted error bars represent
two standard deviations measured on the ten folds.

are discarded by our approach, with respect to the number m of categories to preserve. The
plot indicates that with m < 10000 categories, the fraction of discarded arcs is approximately
between 30% and 40%; increasing m, we discard fewer and fewer arcs. In other words, for the
top thousands of categories removing cycles means discarding a significant amount of arcs: the
difference between the cleansed and the original hierarchy is not trivial.

In Figure we depict a sample extracted from the cleansed category hierarchy, showing the
first (in order of harmonic centrality) ten direct or indirect subcategories of “Philosophy”. For
comparison, Figure 8.7 shows how the same sample would appear if we had used “Distance from

the root” as measure of centrality.

8.4 Latent category interaction

We are now ready to bring into play our model (section [3.2]) on this Wikipedia dataset. In

particular:

e our nodes N will be the 4514 662 Wikipedia entities;
e our graph G will be the Wikipedia Link graph (110699 703 links);

e our feature set ' will be the cleansed set of categories — whose number will be reduced
from 1134715 to m (to be defined later);
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Measure Results

Accuracy  87.3% 4 0.06
Precision 90.0% £ 0.05
Recall 84.0% +0.14
F-Measure 86.9% =+ 0.07

Table 8.6: Average and standard deviation of results from a 10-fold cross-validation of Alg. |3|on
the links of Wikipedia, with m = 20 000.

e our node-feature matrix Z will be the cleansed categorization of pages described before,

associating every Wikipedia article i € N to a set F; C F of (cleansed) categories.

Now, we want to fix m in order to obtain a good fit for our model. In order to do this, let
us employ our Llama algorithm (Alg. [3) to find W, for some different values for m. On this
dataset, W will represent how Wikipedia categories link to each other: we expect, for example,
a high value for Wiy s governors, U.S. states (but maybe not the other way around). As in all our
real-world examples, W can be only estimated, since it is not directly observable.

We will also employ the row-normalized version of our model we have described on page
in this case in fact it is quite natural, since it corresponds to articles belonging to fewer categories
providing stronger signals than those that belong to many categories. This kind of normalization
often gives better results in practice for learning [58]. We will therefore adopt the corresponding
version of Llama, described by .

In order to choose a value of m (the number of categories we are going to employ) let us
remind that we can see our deterministic model (described by in section as a binary
classifier: we are making it learn a matrix W on a set of node pairs, and then measuring how well
the model is behaving in predicting if a new node pair (i, ) forms a link. In doing so, we used
a 10-fold cross-validation technique to assess how well the algorithm is generalizing: specifically,
we divided in 10 folds the space of node pairs N x N. We report the results of this experiment
for different values of m in Fig.[8.8] There, we also report how much space we need in practice
to store explicitly a dense representation of the learned matrix W.

From these results, we see that we have a jump in the robustness of our model by setting
m = 10000 and an even better behavior with m = 20000. Larger values of m still slightly
increase the fitness of the model, but for them the space needed becomes hardly manageable,
since it grows with m?2. For this reason, we chose m = 20000 as a good compromise between the
significance of these categories and the needed resources.

Further results for this set F' of 20000 categories, reported in Table [B.6] are consistent with
our expectations. In particular, the average of F-Measure on unknown node pairs is 86.9%,
showing that the model we have learned is robust and not threatened by overfitting. Learning
on the whole graph, the ratio |L N L*|/|L| — that is, how many existing links are explained by
W — is equal to 86%. With this set of features, on average, each Wikipedia article belongs to 4
categories.

Let us remark how the Llama algorithm scales very well with the size of data: running it on

the whole Wikipedia graph (110699 703 arcs, plus an equal number of non-linking pairs) with
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Figure 8.9: Two fragments of the latent category graph induced by Llama matrix W, representing
the 18 closest neighbors of categories “Science Fiction Films” and “Keyboardists”, respectively.
The width of the arc from ¢ to ¢’ is proportional to W, ./, and arcs with W, .- < 1 are not shown.
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the categorization we chose (20000 categories) required only 9 minutes on an Intel Xeon CPU
with 2.40GHz.

The matrix W we extracted in this way can be as well seen as a weighted, directed graph
among categories (a latent graph, behind the observable link graph). In this way, we illustrated
in Fig. [8:9] some fragments of W. In the picture, we display the 18 neighbors closer to two
starting categories (“Science Fiction Films” and “Keyboardists”); the width of the arc from ¢ to
' is proportional to W, ./, and arcs with W, . < 1 are not shown. For example, from the picture
it is clear that a link from a page of a science-fiction film to a page of a science-fiction novel is
highly expected, as it is one from a page of a keyboardist to one of a British progressive rock
album. From these representations we can catch a glimpse of how this method is able to build a
model for the graph, capturing meaningful relations between categories.

The rougher version of the same neighborhood as induced by the Naive Bayes algorithm
presented in section [5.3]is shown in Figure[8.10} even from this small example, it is clear that the
naive version introduces more noise (epitomized by the inclusion of “Language of the Caribbean”
and “Languages of Singapore” among the 18 closest neighbors of “Science fiction films”).

Cathedrals— Federal c;ns;iuti;nal rep;m G,a 'T“aﬁons

Occupations in music

Swédish-spéaking countries ...
Rhythm and blues music'genres ./ / /
Finnish-speaking countries ...

5~ ~\\ s\ “‘
T North American music
Broadcastingloccupations 1 [

Canada

Music production [ d
~States and territories esta...
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Instrumental-and vocal genres |

Keyboard instruments |
Necked'lutes Irish'musicallinstruments

Languagesiof Malaysia
Languages ofi{Hong Kong

Languages ofithe_Caribbean

Languages of,South America Languages'of Singapore

Film location,shooting _
Screenplays

Federal constitutional republics
Science fiction films

United:States Eilmmaking
G8 nations Media occupations “\storage'media

Economy of Ecuador Media'formats

Music and video

Entertainment’companies

Film theory

Figure 8.10: Two fragments of the latent category graph induced by our Naive approach matrix
(section , representing the 18 closest neighbors of categories “Keyboardists” and “Science
Fiction Films”, respectively. The width of the arc from ¢ to ¢’ is proportional to W, ./, and the
lighter arcs are not shown. For comparison with the Llama algorithm, see Figure @
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8.5 Finding unexpected relations

Besides finding trends and unveiling typical patterns, modern information retrieval is increasingly
more interested in the discovery of serendipity and surprising information in textual datasets. In
this section, we will focus on finding unezxpected links in hyper-linked document corpora when
documents are assigned to categories, using Wikipedia as our case study. We will show that our
model provides better accuracy in finding surprising information than most existing text-based
techniques, with higher efficiency and relying on a much smaller amount of information.

In general, data mining (text mining, if the data involved take the form of textual docu-
ments) aims at extracting potentially useful information from some (typically unstructured, or
poorly structured) dataset. The basic and foremost aim of data mining is discovering frequent
patterns, and this problem attracted and still attracts a large part of the research efforts in this
field. Nonetheless a quite important and somehow dual problem is that of finding unexpected
(surprising, unusual, new, unforeseen. .. ) information; it is striking that this line of investigation
did not receive the same amount of attention. Albeit there is some research on the determination
of surprising information in textual corpora (most often based on the determination of outliers in
the distribution of terms or n-grams) there is essentially no work dealing with unexpected links.
Even if some of the previous proposals exploiting text features can be adapted to this case, a
simpler (and, as we here show, more effective) way to approach this problem is by using link
prediction algorithms [128|, stipulating that a link that is difficult to predict is unexpected.

We will prove that the availability of some form of features of linked documents can signifi-
cantly improve the techniques described, leading to algorithms that are extremely efficient, use
much less information than text-based methods, and offer better precision/recall trade-offs also
compared to link prediction; we will also show that the two methods are in fact orthogonal to
each other, and can be fruitfully combined.

It is worth noting that the discovery of unexpected links offers a chance to find unknown
information: given a certain document, we can highlight text snippets containing unexpected
links. Furthermore, in the case of knowledge graph (such as the Wikipedia link structure),
it means finding unexpected relations in reality itself (or at least in the part modeled by the

knowledge graph under consideration).

8.5.1 Related works

The most standard way to find unexpected links would be to employ an algorithm of link predic-
tion [128] to identify links that are expected: the expectedness of a link e in a network G is the
likelihood of the creation of e in G — {e}. In this sense, the problem of finding unexpected links is
in some sense the dual of link prediction: any algorithm that aims at solving link prediction can
be used to find unexpected links. In fact, we will later show that state-of-the-art link prediction
algorithms [1] are very good at evaluating the (un)expectedness of links.

However, while a link prediction algorithm typically employ only the information coming
from the network, other approaches—more explicitly tailored for the retrieval of unexpected

information—could exploit other sources. Many approaches employed textual information; our
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goal will be instead to make use of the categorical information we obtained, together with the

model we presented.

Among the first authors trying to consider the problem in the context of text mining we cite
Liu, Ma, and Yu [126]. In their work, two supposedly similar web sites are compared (ideally, two
web sites of two competitors). The authors first try to find a match between the pages of the two
web sites, and then propose a measure of unexpectedness of a term when comparing two otherwise
similar pages. All measures are based on term (or document) frequencies; unexpected links are
also dealt with but in a quite simplistic manner (a link in one of the two web sites is considered
“unexpected” if it is not contained in the other). Note that finding unexpected information is
crucial in a number of contexts, because of the fundamental role played by serendipity in data
mining (see, e.g., [141}/155]).

This unexpectedness measure is taken up by Jacquenet and Largeron [101]|, with the aim
of finding documents that are similar to a given set of samples and ordering the results based
on their unexpectedness, using also the document structure to enhance the measures previously
defined [126]. Finding outliers in web collections was also considered by other authors [3]; dis-

similarity scores are computed based on word and n-gram frequency.

Some authors approach the strictly related problem of determining lacking content (called
content hole in [142]) rather than unexpected information, using Wikipedia as knowledge base.
A similar task is undertaken by [66], this time assuming the dual approach of finding content

holes in Wikipedia using the web as a source of information.

More recently, |[184] considers the problem of finding unexpected related terms using Wikipedia
as source, and taking into account at the same time the relation between terms and their cen-
trality.

To our knowledge, no algorithms explicitly employing categorical information was previously
employed for this task. As we will show, it turns out that the signal obtained from the latent
category matrix is even better and partly orthogonal to the one that comes from the graph alone
(through state-of-the-art link prediction), and combining the two techniques greatly improves

the accuracy of both.

8.5.2 Using our model to find outliers

Our idea is that if the documents within a linked corpora are tagged with features, one can learn
how the feature-feature pairs influence the presence of links, and as a consequence determine
which links are unusual (in the sense that they are not “typical”). This corresponds to applying
our model to this scenario, and then marking the outliers with respect to the model as unexpected.
In this way, the model found by our classifier will be used to detect anomalies [2].

Precisely, we will use the matrix W found by Llama (as shown in the previous section) to
assign an expectedness score to each link, following the equation of the model behind the Llama
algorithm (section . In fact, since equation should give us a positive value for pair of
nodes (4, 7) predicted to be links, and a negative value for those who should not, we can use it

as an expectedness score:
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expectedness(i, j) := Z Z Wh.k (8.1)
heF; keF;

And, obviously, we can use its opposite as an unexpectedness score. We will call this approach
LlamaFur, “Learning LAtent MAtrix to Find Unexpected Relations”. We will also call the same
approach but with the matrix learned in the naive way (section Naive LlamaFur.

The intuition behind this method is that we hypothesize our model can capture what a human
reader would consider “usual” and what would be considered “surprising” in a better way than
other methods: that, in other words, what is unexpected by our model in a semantic network,
would be unexpected as well for a human. For example, documents of the category “Actor” often
contain links to documents of the category “Movie”. The fact that George Clooney used to own
Max, a 300-pound pig, for 18 years, presents itself as a link from an “Actor” to an entity belonging
to the category “Pigs”/“Coprophagous animals”, which is atypical in the sense above. We will
put this assumption under test in the next section.

We wish to remark that the LlamaFur approach could be in principle applied to a plethora
of different kinds of objects. The only assumptions on the input are the same of our model: a
(possibly directed) graph, and meaningful features on its nodes; features can be overlapping as
well, so in fact they may just be some observed properties of each object. These assumptions are
quite general, and could be useful in many real-world use cases, from the detection of unexpected
collaborations between grouped individuals to finding surprising travel habits from geo-tagged
data. Other possible applications include finding unusual patterns for fraud detection [54] and

data forensics |154].

8.5.3 Experimental results

We therefore proceeded to evaluate the unexpectedness of links in Wikipedia with LlamaFur. For
example, for each page, we can find the most unexpected links it contains: we conjecture that
these links will represent surprising information. An example of the largest and lowest scores for
two Wikipedia articles is provided in Table 88 & [B7]

Evaluation methodology. Now, we want to evaluate the effectiveness of LlamaFur in mining
unexpected links using a standard approach commonly adopted in Information Retrieval. In
our context, a query is a document, the possible results are the hyperlinks that the document
contains, and a result is relevant for our problem if it represents an unexpected link. The scenario
we have in mind is that of a user wishing to find surprising links in a certain Wikipedia page.
What we are trying to assess is how well LlamaFur can identify an unknown set of unexpected
links, having full knowledge of graph and categorization of nodes.

In order to compare the results obtained by LlamaFur with the existing state-of-the-art for
similar problems, we performed a user study based on the same pooling method adopted for
many standard collections such as TREC (trec.nist.gov): we considered a random sample
of 237 queries (i.e., Wikipedia documents); for each query we took, among its ¢ possible results

(i.e., links), the top-|« - | most unexpected ones according to each system under comparison (see
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Links of Kim JOIlg-ll (supreme leader of North Korea from 1994 to 2011)
Most Unexpected Most Expected

Elvis Presley In a 2011 news story, The George W. Kim’s regime argued the
Sun reported Kim Jong-il Bush secret [nuclear] production
was obsessed with Elvis was necessary for security
Presley. His mansion was purposes — citing the pres-
crammed with his idol’s ence of United States-owned
records and his collection nuclear weapons in South
of 20,000 Hollywood movies Korea and the new tensions
included  Presley’s titles with the United States under
— along with Rambo and President George W. Bush.
Godzilla. He even copied
the King’s Vegas-era look of
giant shades, jumpsuits and
bouffant hairstyle.

Michael Jor- Kim reportedly enjoyed bas- Kim Il-sung He succeeded his father and
dan ketball. Former United founder of the DPRK, Kim
States Secretary of State Il-sung.

Madeleine Albright ended
her summit with Kim by pre-
senting him with a basket-
ball signed by NBA legend
Michael Jordan.
Table 8.7: Most expected and most unexpected links in the Wikipedia article Kim

according to LlamaFur.

Jong-il,

Links of Jupiter

Most Unexpected

Most Expected

Inquisition [Observation  of Jupiter Galileo Galilei Galilean moons were first

moons| was a major point discovered by Galileo Galilei
in favor of Copernicus’ in 1610.
heliocentric theory of the
motions of the planets;
Galileo’s outspoken support
of the Copernican theory
placed him under the threat
of the Inquisition.

Proto-Indo- [Jupiter] name comes from E. E. Barnard In 1892, E. E. Barnard [an

European the Proto-Indo-European American astronomer| ob-

language vocative compound *Dyeus- served a fifth satellite of
pater (nominative: *Dyeus- Jupiter with the 36-inch (910
pater, meaning “O Father mm) refractor at Lick Obser-
Sky-God”, or “O Father vatory in California.
Day-God”).

Gan De Gan De, a Chinese as- Ptolemy [Ptolemy] constructed
tronomer, made the discov- a geocentric planetary
ery of one of Jupiter’s moons model based on deferents
in 362 BC with the unaided and epicycles to explain
eye. Jupiter’s motion relative to

the Earth.

Fish In 1976, before the Voy- Jupiter The Romans named the
ager missions, it was hy- (mythology) planet after the Roman god

pothesized that ammonia or
water-based life could evolve
in Jupiter’s upper atmo-
sphere. This hypothesis is
based on the ecology of ter-
restrial seas which have sim-
ple photosynthetic plankton
at the top level, fish at lower
levels feeding on these crea-
tures, and marine predators
which hunt the fish.

Jupiter.

Table 8.8: Most expected and most unexpected links in the Wikipedia article Jupiter, according

to LlamaFur.
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below); all the resulting links were evaluated by human beings. We set o = 0.1, and obtained
about 3698 links.

The human evaluators were asked to categorize each link into one of four classes (“totally ex-
pected”, “slightly expected”, “slightly unexpected” and “totally unexpected”). They were provided
with the first paragraph of the two Wikipedia pages, and a link to the whole article if needed.
The resulting dataset of 3698 evaluated links is available for downloacﬂ and inspection. (To ob-
tain a sufficiently large number of evaluated links in a short amount of time, there was virtually
no overlap between the links that the evaluators worked on; however, we manually inspected the
dataset to find that the labels produced are quite robust—we invite the reader to do the same.)
After the human evaluation, we only considered the queries that have at least one irrelevant
(“totally/slightly expected”) and one relevant (“totally/slightly unexpected”) result according to
the evaluation, obtaining a dataset with 117 queries. In this dataset, on average each query has
3.48 relevant results over 20.9 evaluated links. About 58.1% of the links were labeled as “totally
expected", only 2.2% were “totally unexpected" and about 8.8% were labeled as “unexpected".

Tt is evident how unexpected links are very sparse (many pages did not present any unexpected
link at all); this motivated us to employ bpref 38|, a well-suited information retrieval measure.
To compute it, we followed TREC speciﬁcationﬂ in a nutshell, bpref computes an index of how

many judged relevant documents are retrieved ahead of judged non-relevant documents.

Baselines and competitors. In our comparison, LlamaFur is tested in combination and
against a number of baselines and competitors. In particular, we considered LlamaFur and
its naive variant, Naive-LlamaFur, along with some of the other (un)expectedness measures pro-
posed in the literature.

All of those methods try to measure the unexpectedness of a document d among a set of
retrieved documents R. In our application, we are considering a link (d’,d) and taking R to be

the set of all documents towards which d’ has a hyperlink.

o Text-based methods. In the literature, all of the measures of unexpectedness are based on

the textual content of the document under consideration.

— The first index, called M2 by its authors |[101] (a better variant of M1, the measure
previously proposed the same authors [126]), is defined as:
Zt U(da t7 R)

M2(d) = =2

where m is the number of terms in the dictionary, and U(d,t, R) is the maximum
between 0 and the difference between the normalized term frequency of term ¢ in
document d and the normalized term frequency of ¢t in R (the set of all retrieved
documents). The normalized term frequency is the frequency of a term divided by the

frequency of the most frequent term.

— The second index, called M4 [101] (and proved to works better than M2 in previous
work), is the

Shttp://git.io/vmChm
9http://trec.nist.gov/pubs/trec16/appendices/measures.pdf
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Algorithm Average bpref Input data

AA 0.286 graph

M2 0.179 bag of words
M4 0.293 bag of words
Naive-LlamaFur  0.251 graph, categories
LlamaFur 0.343 graph, categories
LlamaFur + AA  0.350 graph, categories

Table 8.9: Average values for bpref.

|R|
df(t)

M4(d) = max tf(¢) - log

where tf(¢) is the normalized term frequency of term ¢ in d, and df(¢) the number of

documents in R where ¢ appears.

e Link-prediction methods. A completely different, alternative approach to the problem is

based on link prediction: how likely is it that the link (d’, d) is created, if we assume that it
is not there? Among the many techniques for link prediction [128], we tested the well-known
Adamic-Adar index |1] (AA, in the following), deﬁnedﬂ by

1

A
A= e ST
d"" €T (d)nT(d’)

where T'(d) is the set of documents which d links to.

Combinations. Besides testing all the described techniques in isolation, we tried to combine
them linearly. Since each unexpectedness measure exhibits a different scale, we first need
to normalize each measure by taking its Studentized residuaﬂ |56]. It is worth mentioning
here that other previous methods [96,/136] could also be used as link-prediction algorithms,
and would apparently fit better our approach because they predict links based on binary
node features, but the crucial difference is that in those models features are latent and need

to be reconstructed, whereas in our scenario features (categories) are readily available.

Results. In the following, we are only going to discuss the best algorithms and combinations,

besides some of the most interesting alternatives. The raw average bpref values are displayed in

Table [R.91

Some complementary information about the behavior is provided by the precision-recall graph

of Figure first of all, LlamaFur, AA, M4 and their combinations have larger precision than

the remaining ones at almost all the recall levels; on the other hand LlamaFur+AA is the best

10The formula is applied to the symmetric version of the graph, in our case; note that this (like LlamaFur) is a
measure of expectedness, whereas M2 and M4 are measures of unexpectedness.

1'The (internally) Studentized residual is obtained by dividing the residual (i.e., the difference from the sample
mean) by the sample standard deviation.



8.5. FINDING UNEXPECTED RELATIONS

0.45
viov M2
A M4
0.40 e o AA i
Naive-LlamaFur
LlamaFur
035 o

Precision
w
o
T

LlamaFur+AA

1.0

131

-‘,,’
’,.,-““‘\‘\
025} R
b =
020} ve
v Vv \% v
015 v L L L L
0.0 0.2 0.4 0.6 0.8
Recall
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Figure 8.12:

(8.1))) over the different labels obtained from human evaluation.

Comparison of the unexpectedness evaluated by LlamaFur (i.e., the opposite of
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method for recall values up to 50%, and LlamaFur has definitely better precision than AA until
30% of recall.

In fact, M4, AA and LlamaFur seem to be complementary to one another; in some sense,
this is not surprising given that they stem from completely different sources of information: one
is based on the textual content, another on the pure link graph and the latter on the category
data.

Some further clue on the behavior of LlamaFur is provided by Figure where the dis-
tribution of LlamaFur expectedness values is shown for each of the four labels provided by the
human evaluation. The red line is the median and the upper/lower hinge represent the 75th/25th
percentile.

Finally, let us remark that in order to enhance reproducibility and to foster further research
on this problem, we are sharing all code and data needed to replicate our findings on http:

//git.io/vmzjm.

8.6 Discussion

In this chapter, we tested our methods on semantic networks; specifically, we chose the Wikipedia
Link Graph as an archetypal example of open-access semantic network, widely employed in
literature. In fact, as we have seen, categories in Wikipedia have been used as a type system
when considering Wikipedia articles as concepts in a semantic network. Unfortunately, however,
they are organized in a very noisy category graph, which is a pseudo-hierarchical graph that
should describe which categories are a subset of the others.

We presented therefore a technique to prune and cleanse the Wikipedia category hierarchy.
This method uses only the hierarchical information available within the category structure itself,
making it particularly well-suited as a preprocessing phase to all the Wikipedia data mining
tasks that benefit from a (clean) categorization of the Wikipedia articles. For example, our
results suggest that building an ontology from Wikipedia categories would be more accurate and
require less human fine-tuning if the cleansing procedure we propose is applied first.

The choice of the centrality measure to be used in the selection of milestones is crucial for
our method; determining which centrality index gives the best performance is an arduous task.
In this work we used a small excerpt of the Library of Congress Classification as ground truth,
but we definitely think that this point needs more investigation, to be performed with a larger
set of samples.

Thanks to this result, however, we were able to use the cleansed categories as features for
our feature-rich network model. We employed therefore the 20000 categories selected by our
centrality measure as the features which describe the 4514 662 articles in the English Wikipedia.
With this set of categories, our algorithm runs in less than 10 minutes and it is able to reach
a precision of 90% with a 84% recall, when measured on a balanced set of links and non-links,
showing that our algorithm can process graphs with 108 links or more without effort.

We showed then that our model can be employed to find unexpected links in hyper linked
document corpora, through the determination of the latent category matrix; the latter is built

using the perceptron-like technique we previously presented. We demonstrated that our method
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provides better accuracy than most existing text-based techniques, with higher efficiency and
relying on a much smaller amount of information.

It would be easy to build, basing on our technique, a service able to show unexpected links
for a given Wikipedia page. The matrix W should stay approximately the same over short
periods of time, and therefore could be computed at periodic intervals. When the user requests
a certain Wikipedia page, we could return the Wikipedia page highlighting the sentences that
surround the unexpected links, since tables [8.7] and [B-8] show that those sentences often offer
surprising information. For example, we might highlight the 10 links/sentences with the highest
unexpectedness according to , and color them in different shades of red according to how
unexpected they are. Such a service would be useful as a tool to explore unexpected facts
contained in Wikipedia, as well as a tool for Wikipedia editors to check the correctness of those
links. This tool, like our model, could be applied also to other scenarios: for example, in a
social network, it could identify the friendship links that defy the social characteristics (political,
ethnical, professional...) of the people involved, allowing the user to be more conscious about

friends situated outside its filter bubble. We leave such experiments as future works.
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In this thesis, we investigated large, feature-rich complex networks. With this name, we
indicated the class of datasets representable as a graph whose nodes are also part of a bipartite
graph (often known as an affiliation network). One can think of the whole data as being composed
by a set of nodes, a set of links between them, and for each node, a collection of attributes, hereby
called features.

Many different scenarios can be cast to this model. Among the one we directly applied, we can
find semantic networks—where nodes are concepts, links are semantic relations, and features are
(overlapping) categories of concepts; or many real-world social networks—e.g. in co-authorship
network, features can be institutions or fields of research. However, many other examples can
be found in bioinformatics, where biological functions of open reading frames of RNA and DNA
can be viewed as features in the network of their interactions. Economic relations, or tagged web
contents, could give us more examples.

Our ambition was to overcome the special role occupied by homophily in previous analysis of
large feature-rich networks: the idea that the only way two nodes could form a link is by showing
near-identical features in many cases might not be of much use. Instead, we wanted to analyze
a model where nodes with diverse features can, as a result of them, form a link. This hypothesis
is reasonable in many scenarios: in a semantic network, a movie will not be linked just to other
movies (if any), but it will for sure form links with actors, directors, and so on. In an academic
network, results from mathematics and statistics are often used and cited in data mining works;
biology papers might in turn cite data mining, or physics, et cetera.

However, as we saw in chapter [2| (as well as in section , many of the previous works in
literature were focusing on homophily; in machine learning, e.g., much more attention was devoted
to the prediction of single labels on graphs than on predicting multiple, possibly interconnected
features.

We tried, however, to recap the previous work done in dealing with networks where features
of the nodes can interact between them, and be the reason a link is formed. Of the work dealing
with such network models, we found that many of the proposed models and techniques that were
able to explain possible connections between features of nodes were very complex and not able
to scale to the size of many interesting real world and web-scale networks; for examples, current
literature on multiplicative attribute graph models report examples ranging from dozen to a
few thousands of nodes; methods based on graphical models, and Markov Chain Monte Carlo
methods, treated even smaller network. This way of modeling networks resulted however in very
accurate models, able to deal with features interactions beyond simple homophily, modeling also
complex interactions between different features, or negative interactions as well.

For this reason, we chose to adopt the model developed by Miller, Griffiths and Jordan as our
starting point. We described our framework in detail in chapter Our wish in this work was
to use this model as an instrument to build tools able to scale, moving the area of operations of
this model to feature-rich networks whose size is in the range of millions—or tens of millions—of

nodes.

First, we investigated how to simulate realistically feature-rich networks. To do this, we
expanded in different ways the model, as we saw in chapter [d] We first provided a way to model

the evolution of features, basing on the known strategy of Indian Buffet Process; in this way, nodes
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evolve by copying features one from each other, propagating them in a rich-get-richer fashion.
On top of this behavior, we added a way to model competition between nodes in spreading their
features, by introducing a fitness parameter for each node, that summed up how able is that
node in spreading its features. In this way, older nodes might not be the only successful nodes in
this propaganda of features, but young-but-fit nodes could well “defeat” them. We also showed
how this new parameters can be seen as a new way to rank nodes on a feature-rich network,
by inferring how fit this node was in spreading its features. We have shown a Gibbs sampling
algorithm attempting to do that, and we saw in which cases it can distinguish fit from unfit
nodes.

After having defined this model, we provided proper statistical estimators able to carefully
measure all the others parameters of our model. In this way, given a real complex network, we are
able to reconstruct its parameters and construe a different network with similar characteristics
(i.e., drawing a different network from the plausible distribution of the original).

Then, we showed how our model is able, when given the right set of parameters, to generate
synthetic feature-rich networks with realistic features. Its degree distribution can easily reflect
classical power laws distributions (but also different ones, like the log-normal distribution many
networks seems to display, as we saw in section. Also its distance distribution, a more complex
network property, presents striking similarities with real ones. In the end, our investigation
validated this tool as a good way to experiment with feature-rich networks, with all the advantages
of practicing on synthetic datasets, before trying our techniques on real data. That was our
modus operandi in the second part of this work, where we presented data mining instruments

and algorithms based on this model, and able to scale to large networks.

The first problem we dealt with, in chapter |5, was how to infer the latent feature-feature
matrix. This matrix is the main unknown of the model; it determines how features interact
between each other. For example, a positive value for its entry h, k indicates that it is likely that
nodes with feature h form links towards nodes with feature k. To estimate this matrix means
getting a representation of the deep, latent motives that form the network. Possible applications
include dimensionality reduction of the features, measuring semantic distance, discovering hidden
relationships, and so on. While many possible methods are available in literature for this problem,
they all dealt with small to medium sized network, while we are interested in large-scale networks.
Our first approach was guided by a Naive Bayes scheme. We demonstrated that a very simple
equation to estimate the matrix can be derived by assuming (naively) independence between
features, and by making a few assumptions to restrict our model equation (specifically, we fix its
activation function to be the exponential). However, it is apparent that the naive assumptions
could not hold in many real cases, and that could impact the results of this algorithm.

For this reason, we proposed a second algorithm. Incidentally, this algorithm can also be
seen as a possible way to predict links in our model. In fact, by restricting our model to be
deterministic (once again, fixing its activation function as the step function), the rule governing
the model becomes identical to the prediction rule of a perceptron classifier. This fact means
that by learning to predict links with a perceptron, fed with the outer product of the feature

vectors of a pair of nodes, the internal state of the perceptron has to converge to the correct
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feature-feature matrix of our model. We showed how to interpret classical bounds on the number
of errors of the perceptron in this case; particularly, we saw which factors increase this bound,
and we saw that if a perfect latent feature-feature matrix exists, the perceptron will find it. Then,
we employed state-of-the-art perceptron-like classifiers, and in particular the Passive-Aggressive
algorithm, to design a very fast and accurate algorithm to estimate the feature-feature matrix
by means of predicting links. Finally, we employed our simulation tools to show how accurate
this estimate can be, showing that when used on synthetic data generated by our model (with or
without determinism), its prediction are usually beyond 90% in both precision and recall. The
synthetic data we used was composed by 10000 nodes, for which the algorithm required seconds
to run; as we will recap later, we also showed experiments dealing with more than 10 millions
nodes, for which it it required minutes.

In chapter [6] we dedicated ourselves to the dual problem with respect to link prediction: how
to predict features basing on the links. In order to be scalable and to offer a novel point of view
on multi-label prediction on graphs, we chose to design a neural network for this task. The neural
network operates by considering one node at a time, receiving as input the features appearing
in its in- and out-neighborhood, and returning a ranking of the features in a way that plausible
features are high-ranked and implausible ones are low-ranked. We show that, also in this task,
the latent feature-feature matrix appears as the hidden layer of the neural network. As in the
previous case, we tested this algorithm on synthetic data, observing a Mean Average Precision of
the output ranking between 0.49 and 0.68. We also measured the weighted average of the AUC
ROC, obtaining values between 0.68 and 0.84, depending on the complexity of the latent matrix
used for the synthetic data.

In the final part of this thesis, we applied the techniques we developed to real datasets and
use cases. First, in chapter [7} we experimented those techniques on citation networks.

To test our simulation approach, we took a citation network, consisting of 27 770 papers, and
used as features the non-common words that appear in each paper title and abstract. Our goal on
this dataset was to use our estimators and, in turn, our simulation process in order to obtain a new
feature-rich complex network that looks overall similar in its global properties to the original one,
despite being different in its actual values. This means identifying the distribution this network
might come from, and drawing another network from the same distribution, thus validating our
process as a good way to generate realistic data. Then, we used this newly generated synthetic
matrix to generate a network, obtaining a graph with a distance and degree distribution close to
the one we found in real complex network.

Then, we conducted a different kind of experiment on a different citation network, composed
by 18939 155 nodes and 189 465 540 links. We used the tools we developed for estimating the
feature-feature matrix in order to: (1), validate their performance on real data, and (2), to show
how they can be used to assess which feature set can be more useful in explaining the links of
a network. In fact, we considered different feature sets: one composed by the institutions of the
authors of each paper; the other one, by the fields of studies each paper has been associated
to. First, we observed that, also on real data, our perceptron-like algorithm works definitely

better than its Naive Bayes counterpart—indicating that naive independence assumptions are
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detrimental. Second, we observed a great difference in the prediction abilities of the two feature
sets; our approach can show that the ability to predict citation links is much higher for fields of
study than for institutions. In particular, we obtained an area under Precision-Recall curve of

our algorithm of 0.92 for fields of studies.

Finally, in chapter [8| we experimented with semantic networks; in particular, we considered
the Wikipedia link graph and the category graph. The categories in Wikipedia are associated
to each article; they have been used as a type system when considering Wikipedia articles as
concepts in a semantic networks. The category graph is a very noisy, pseudo-hierarchical graph
that should describe which categories are a subset of the others. First, we used network centrality
measures to prune this graph, obtaining a clearer version of it, leading to a clear-cut association
between articles and categories. By comparing different ranking with a standard, human-curated
bibliographical classification system, we showed how harmonic centrality in this graph is able to
capture the importance of each category, with an AUC ROC of 0.94.

Then, we were able to use the cleansed category system for our graph. We employed only
20000 categories (the most important according to our centrality measure) as features, for the
4514662 articles in the English Wikipedia. With this set of categories, our algorithm runs in
less than 10 minutes and it is able to reach a precision of 90% with a 84% recall.

As a use case of these results, we employed the reconstructed latent feature-feature matrix
to find unexpected relations among the semantic relations described by Wikipedia. Catching
serendipity in documental corpus is an area of growing interest in Information Retrieval, and we
found out that our approach could be of help. In fact, by simply using the scores computed by
our model (when fed with the feature-feature matrix found by our algorithm), one can obtain
a score of (un-) expectedness for each link. For example, the most unexpected relation found
by our method relating to “Kim Jong-il”, former dictator of North Korea, is “Elvis Presley”.
We therefore compared our technique with previous approaches, based on different sources of
information: text-based approaches, and classical link prediction. As a golden truth, we obtained
human evaluations of how surprising each link in the test set was. To determine the test set and
how to conduct the evaluation, we followed the same specifications of the TREC challenge, a
classical Information Retrieval confrontation, and thus we used their same evaluation measure,
bpref. Our method obtained the highest bpref among all considered methods.

To sum up, in this thesis we have showed how considering features in complex networks
might be highly valuable for their understanding. The scenarios in which (overlapping) features
are available for nodes seem almost endless. Our ambition was to provide tools able to scale up
to the size of the largest of these networks. Many believe complexity and networks are keys to
reach a greater comprehension in many areas of vital importance — from cancer research [50],
to tracking the spread of epidemics |36, or even to predict the stability of ecosystems under
climate change [62}/82] or to reach more trustworthy economical structures [20]. We hope that
the theoretical framework of large scale feature-rich networks, together with the tools we designed

and analyzed, could provide novel, attractive insights in research on these much needed matters.
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