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ABSTRACT 

 

Background and Aims:  Cholangiocarcinoma (CCA) is a highly malignant and 

extremely heterogeneous adenocarcinoma arising from epithelial cells of bile 

ducts. CCA is currently associated with poor clinical outcome and, together with 

hepatocellular carcinoma (HCC), is the major primitive liver cancer in adults. 

Severity of CCA, lack of good diagnostic markers and frustrating benefit of 

current therapeutic strategies has rendered this disease a major challenge. 

Therapeutically challenging subset, termed cancer stem cells (CSCs) has been 

proposed as a driving force of tumor initiation, dissemination and drug-

resistance, including in liver cancer. CSCs could be responsible for CCA wide 

multi-layered heterogeneity and clinical severity. Although it has already been 

shown that HCC progression is driven by CSCs, little is known about the presence 

of CSCs in human CCA. Similar to normal stem cells, CSCs are believed to reside 

in a specialized microenvironment (“CSC-niche”) within tumor-context that 

supports self-renewal and drug-resistance. Among various immune-subgroups 

within CSC-niche, tumor-associated macrophages (TAMs) represent a poor 

defined but very intriguing immune-subset, whose presence has prognostic 

significance in CCA and other malignancies. Thus, we hypothesized that CSCs 

may actively shape their tumor-supportive immune niche, specifically CCA-

associated macrophages.  

Methods: CCA cells were cultured in 3D-condition to generate spheres (SPH). 

CCA-SPH analysis of in vivo tumorigenic-engraftment in immune-deficient mice 

and molecular characterization was performed as well as evaluation of drug 

responsiveness. In vitro and in vivo effect of CCA-SPH on macrophage-precursors 

was tested after culturing healthy donor CD14+ with CCA-SPH conditioned 

medium (CM). Evaluation of monocyte recruitment as well as macrophage 

markers’ expression and presence of macrophage functional properties. CCA 

cells grown in adherence conditions as monolayer (MON) and matched CM 

used as control. Validation in human specimens. 
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Results: CCA-SPHs engrafted 100% of transplanted mice, revealed a significant 

20.3-fold increase in tumor-initiating fraction (p=0.0011) and a sustained 

tumorigenic potential through diverse xenograft-generations. Moreover, CCA-

SPHs were highly enriched for CSC, liver cancer and embryonic stem cell markers 

both at gene and protein levels. CCA-SPH showed also a higher resistance to 

common chemotherapeutic drugs compared to MON. Analysis of CD14+ 

chemotaxis revealed that SPH-CM acted as a strong monocyte attractor. Next, 

fluorescence-activated cell sorting (FACS)-analysis showed that in presence of 

CCA-SPH-CM, CD14+ expressed key macrophage (MØ) markers (CD68, CD115, 

HLA-DR, CD206) indicating that CCA-SPH-CM was a strong MØ-activator.  Gene 

expression profile of CCA-SPH activated MØ (SPH MØ) revealed unique 

molecular TAM-like features confirmed by high invasion capacity. Also, freshly 

isolated MØs from CCA-resections recapitulated similar molecular phenotype of 

in vitro educated-MØs.  Consistently with invasive features, largest CD163+ set 

was found in tumor-front of human CCA specimens (n=23) and correlated with 

high level of serum CA19.9 (n=17).  Among mediators released by CCA-SPHs, 

only IL13, IL34 and Osteoactivin (OA) were detected and further confirmed in 

CCA patient sera (n=12). Surprisingly, significant association of IL13, IL34 and OA 

with SPH stem-like genes was provided by CCA database (n=104). In vitro 

combination of IL13, IL34, OA was responsible for MØ-differentiation and invasion 

as well as for in vivo tumor-promoting effect.   

Conclusion: CCA-CSCs molded a specific subset of stem-like associated-MØs, 

thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. 
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1. INTRODUCTION 

 

1.1 Cholangiocarcinoma 

Primary liver cancer (PLC) is one of the most common cancers worldwide and 

second leading cause of cancer-related mortality 1, 2. Primary liver tumors are 

grossly classified in hepatocellular carcinoma (HCC) and cholangiocarcinoma 

(CCA) 1, 3-5. HCC accounts for approximately 90% of all PLC 1, 3, while CCA, a rare 

tumor but with an increasing global incidence, is the second most common form 

and accounts for about 5% of all PLC 3-5.   

CCA is a highly heterogeneous disease arising from neoplastic transformation of 

intra- and extra-hepatic biliary epithelial cells (cholangiocytes) and is 

characterized by a very poor prognosis 6, 7. There are several established risk 

factors for CCA, whose frequency mostly differs depending on geographic area. 

For example, infection with liver flukes (Opisthorchis viverrini (Ov) and Clonorchis 

sinensis) is a common risk factor for CCA development in Southeast Asia 5, 8. 

Instead, primary sclerosing cholangitis (PSC) is the most common predisposing 

condition for CCA in the west countries 5. Hepatitis B virus (HBV) or hepatitis C 

virus (HCV) infection and cirrhosis have been also proposed as potential 

etiologies of CCA. Hence, CCA frequently arises under conditions of biliary 

tract’s chronic inflammation, as demonstrated by all these risk factors, 

supporting the idea that inflammation is intimately linked to CCA initiation and 

progression. Indeed, chronic inflammation may support the malignant 

transformation through the release of growth-promoting factors and cytokines as 

well as by local intrahepatic accumulation of bile acids 5.  

The high mortality rate of CCA may depend on its non-specific silent clinical 

features which make it difficult to diagnose 9. Currently, CCA-diagnosis is based 

on a combination of modalities, however no specific markers have been 

identified 10, 11. To date in fact, carbohydrate antigen 19-9 (CA 19-9) and 

carcinoembryonic antigen (CEA) are the only clinically used biochemical 

markers for CCA albeit their low sensitivity and specificity 11.  
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Another fundamental aspect contributing to the very poor CCA survival rate is its 

unresponsiveness to conventional therapies 6, 7. Currently, the standard-of-care 

treatment for CCA is limited to surgical resection, with 5-year survival of 20% to 

40%  1, 5, 10, 12-17. Unfortunately, CCAs are generally asymptomatic in early stages 

and are usually diagnosed at an advanced unresectable stage and although 

chemotherapy improves the patients’ quality of life, it still remains only a 

palliative treatment 5, 8, 16. The majority of patients with unresectable CCA 

undergoes a rapid decline in clinical condition and died within 12 months of the 

onset of symptoms. Moreover, liver failure and sepsis caused by obstruction of 

the bile ducts contributed to increase the rate of mortality 4, 8, 11. To improve the 

outlook for individuals with CCA, both clinical and bench science are therefore 

imperative.  

 

1.2 Heterogeneity of CCA 

Since CCA is highly heterogeneous and comprises a wide spectrum of 

malignancies, several classifications have been proposed, considering different 

aspects of these tumors. According to the anatomical location, CCA can be 

classified as intrahepatic (iCCA), located in large and small bile ducts within 

hepatic parenchyma, and extrahepatic (eCCA). The latter in its turn divided into 

perihilar (pCCA), originating from bifurcation of common bile duct, and distal 

(dCCA) CCA, involving the extrahepatic biliary tree. The second-order bile ducts 

serve as the point of separation between iCCA and pCCA, whereas the cystic 

duct between pCCA and dCCA 3, 5, 17, 18.   

During the past two decades, the iCCA incidence, as well as its mortality rate, 

has been increasing worldwide, leading to the development of a growing 

scientific interest for this dismal malignancy. By contrast, eCCA rate is stable or 

even decreasing 5, 8, 18, 19.  Both iCCA and eCCA, besides showing opposite 

epidemiological behavior, are associated with different risk factors and 

histological features, diverse clinical outcomes and dissimilar background in 

terms of expression profiling, pattern of genetic mutations, and epigenetic 
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changes 5, 17, 18, 20, 21. For example, PSC is a risk factor mainly for pCCA, whereas 

HBV and HCV infections are stronger associated with iCCA than pCCA 5. 

Moreover, while V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) 

and tumor protein p53 (TP53) mutations are relatively common in all subtypes of 

CCA, mutations in isocitrate dehydrogenase (IDH) and v-raf murine sarcoma 

viral oncogene homolog B (BRAF) are considerably more prevalent in iCCA 17, 19, 

22. Next generation sequencing (NGS) of 150 CCAs has revealed that the major-

ity of CCAs shows a driver gene mutation, although anatomically distinct tumors 

(iCCA versus pCCA and dCCA) seem to have different genetic profiles 5, 23. The 

presence of such a large number of genetic abnormalities could lead to the 

occurrence of different subpopulations within the tumor, each of these 

possessing different combinations of genetically derived predispositions for 

growth, survival and dominance in the tumor microenvironment 24.  

 

1.3 CCA Multiple Cells of Origin 

The cellular origin of HCC and CCA has been a subject of intense debate in the 

last decades. For a long time, most HCC and CCA have been commonly 

accepted to derive from hepatocytes and cholangiocytes, respectively, as a 

consequence of genetic and/or epigenetic alterations. Anyway, detailed 

analysis of a wide range of PLC tumor types have reported that a rare form of 

mixed hepatocellular-cholangiocarcinoma (CHC) has intermediate 

characteristics between HCC and iCCA, suggesting that they both could share 

the same stem/progenitor cell origin 25-30. Hepatic progenitor cells (HPCs) act as 

a reserve cell compartment activated when hepatocytes and/or 

cholangiocytes are damaged or inhibited in their replication 18, 31, 32. HPCs 

situated in the canal of Hering are bipotential, thus, they can differentiate into 

hepatocytes or cholangiocytes. During differentiation in malignant cells, 

bipotential HPCs undergoes maturation arrest and give rise to a spectrum of 

tumor phenotypes with varying hepatocellular and cholangiocellular 

differentiation characteristics, such as colangiolocellular carcinoma (CLC) and 
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CHC 21, 31, 33.  More recently a new subtype of CCA-like HCC (CLHCC) has been 

discovered and characterized as HCC expressing CCA-like traits 34. CLHCC co-

expressed embryonic stem cell (ESC) traits and hepatoblast-like genomic 

signatures, suggesting its derivation from bipotential HPCs. These evidences gave 

insights into the heterogeneous progression of liver cancers, which imply a 

common cellular origin from different developmental stages 21, 34, 35. The 

hypothesis of progenitor cell origin has been recently supported by new 

advancement of genome wide analysis. Indeed, it has been suggested that 

iCCA and HCC are closely related at molecular level 18, 20, 26, 31, since both tumor 

types share common copy number variations 6, 36. 

Such phenotypic variability and presence of progenitor cell features in CCA can 

be explained in two ways: either the cell of origin is a progenitor cell or, 

alternatively, tumors dedifferentiate acquiring progenitor cell features during 

carcinogenesis (dedifferentiation theory (reviewed in 37-39) (Figure 1). 

Interestingly, new finding provided direct evidence that any cell in the hepatic 

lineage can be the cell of origin of primary liver cancer 40. At this regard, it has 

been recently suggested the development of iCCA by lineage conversion of 

malignant hepatocytes, through a simultaneous activation of Notch and protein 

kinase B (AKT) signaling, contributing to the acquisition of stem/progenitor cell 

features 41, 42 (Figure 1). Although a marked diversity/plasticity of the underlying 

cells of origin is emerging, current evidence suggests that most CCAs are derived 

from undifferentiated cells with stem-like capabilities. 
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1.4 Understanding the Concept of Cancer Stem Cell  

Extensive heterogeneity in cellular morphologies, genetic fingerprints and 

responses to therapeutic interventions is a cardinal hallmark of cancer. As 

previously mentioned, heterogeneity is also a hallmark of CCA and occurs at 

different layers. Such tumor complexity may reflect the presence of distinct cell 

subtypes with different potentials to self-renew and differentiate 43-45. Unlike the 

stochastic model, which states that every cell within a tumor can equally be the 

responsible for tumor initiation and progression, the hierchical or cancer stem 

cell (CSC) model may explain tumor heterogeneity and provide the potential to 

better understand the stem-like biology that underlies long-term cancer 

propagation 46-49. Hierchical model designates malignant tumor-propagating 

cells as CSC. According to this model, CSCs represent a fraction of cells resident 

in the tumor endowed with stem-like properties such as the ability for self-

renewal and differentiation as well as the resistance to drugs 50, 51. Due to the 

self-renewal capacity, CSCs represent the unit of selection in a tumor, while any 

of the other cells lead to clonal exhaustion 49. More importantly, CSC are thought 

to be the unique cellular subset responsible for tumor initiation, recurrence and 

metastasis showing reduced sensitivity to chemotherapy compared to bulk 

tumor cells 50, 52-54.  So, the concept of cancer-stemness has recently added a 

Figure 1. Different cells of origin of 

CCA. CCA is classically considered to 

arise from malignant transformation of 

cholangiocytes. Despite this, recent 

evidences suggest that CCA has 

multiple cellular origins, including 

differentiating mature hepatocyte 

and bipotential hepatic progenitor 

cells (Modified by 8) . 
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new level of complexity in understanding CCA heterogeneity as well as CCA 

drug resistance and the existence of CSCs represents an entirely distinct 

dimension of intra-tumoral heterogeneity 24. 

This idea that tumor initiation and progression are driven by stem-like cells was 

first proposed >150 years ago 55 and has long been debated. While their 

existence has been confirmed across numerous different tumor entities, including 

acute myeloid leukemia, pancreatic cancer, breast cancer, lung cancer, 

hepatocellular carcinoma, head and neck cancer, colon cancer, prostate 

cancer, melanoma, and glioblastoma, the origin of putative CSCs has long 

been debated and is not fully understood 56. It has been proposed that CSCs 

originate from resident stem cells. The inherent self-renewal capacity and long 

life span of these cells may allow them to accumulate oncogenic and 

epigenetic alterations, resulting in neoplastic transformation (Figure 2). 

Alternatively, CSCs may originate from more differentiated transit-

amplifying/progenitor cells 48, or even from differentiated non-CSCs that have 

been reverted back to a stem-like state by acquiring long-term self-renewal 

capacity after alterations in key regulators of differentiation or stem cell fate 57, 58 

(Figure 2). Thus, tumor hierarchical organization does not imply that it originated 

from normal stem cells, and the CSC model does not address the cell-of-origin, 

that represents the normal cell that acquires the first cancer-promoting 

mutation(s) and is not necessarily related to CSC-concept 59, 60.  

Although, it has already been shown that HCC progression is driven by CSCs 29, 61-

64, very few studies have indicated the presence of CSCs in CCA (reviewed in 65). 

Hence, it’s important to shed light on pathobiological and clinical aspects of 

putative stem-like features in CCA, in order to develop novel targeted strategies. 
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1.4.1 Identification of Liver CSC  

During the last decade there has been a great quantity of studies aimed to 

identify liver CSCs and several attempts have been made to enrich CSCs in 

hepatic tumors. Common strategies for PLC-CSC enrichment, varied from the 

widely used classical antigenic approaches based on the identification of 

surface stem-like markers (e.g., CD133 54, 66, 67, CD44 68, OV6 69, CD90 70, 71, 

epithelial cell adhesion molecule [EpCAM] 29, 64, CD13 72, CD24 73, CD47 74) to 

functional methodologies including Side Population (SP) analysis 61, 75, Aldefluor 

assay 76 and sphere formation coupled with serial sphere passaging 63, 77. In all 

diverse published studies, enriched PLC stem-like subsets were tested in immune-

deficient mice for the in vivo tumorigenic potential 29, 54, 61, 63, 64, 66-77. More 

interestingly, only those putative PLC stem-like subpopulations capable to initiate 

tumor development at low cell numbers, were further tested for 'self-renewal' 

Figure 2. CSC model. According to CSC model, CSC are thought to be the unique cellular 

subset responsible for tumor initiation, recurrence and metastasis and are endowed with stem-

like properties such as the ability for self-renewal and differentiate in more mature cancer cells. 

CSC model does not address the cell-of-origin, that represents the normal cell acquiring the 

first cancer-promoting mutation(s) (yellow bolts), which could be normal stem cell as well as 

transit-amplifying/progenitor cell  or  differentiated non-CSCs (Modified by 60). 



14 

capacity in serial tumor transplantations and at molecular level for presence of 

hepatic stemness-related pathways (e.g., developmental signaling and 

transcription factors, epigenetic regulation including specific miRNAs) 61, 63, 78-108. 

 

The antigenic approach is one of the first methods to isolate CSCs and relies on 

cell-surface markers. Among several cell-surface antigens, CD133 is one of the 

most common markers of stem/progenitor cells in adult tissue (brain, prostate, 

liver and kidney) and is expressed in diverse tumor stem-like subsets, including 

HCC and CCA 45, 109-111. As alternative, CD44, a glycoprotein and receptor for 

hyaluronic acid, is expressed only on CSC 65, 110, 111.  CD24 is a cell adhesion 

molecule associated with tumor motility, invasiveness and poor response to 

chemo- and radio-therapy and is a useful marker for early CCA carcinogenesis 

110, 111. CD90, a cell surface molecule, has been identified in a variety of cells 

including stem and progenitor cells with a function of stemness maintenance 112. 

It has been used to isolate liver tumor cells with stem-like properties 71, 113. EpCAM 

is a hemophilic, Ca2+-independent cell-cell adhesion molecule that is expressed 

in many human epithelial tissues and although has been increasingly recognized 

as an important CSC marker for a variety of tumors, its expression in CCA is not 

well investigated 65, 114. However the antigenic approach has several 

shortcomings, such as lack of clearly defined surface markers specific for 

individual tumor type, and specifically for CCA 77. So, stem cell markers may not 

be specific for liver CSCs, and they are generally not universally expressed in all 

liver CSCs 115. So far, none of stem-like markers is exclusively expressed by normal 

or cancer stem cells (e.g., CD133 is expressed in both liver CSCs and 

hepatocytes 115). In addition, the surface marker expression can vary depending 

on specific context. Thus, marker expression can be drastically altered after 

plating stem cells in culture 77.  

 

In addition to the classical antigenic approach, there are several assays based 

on functional properties rather than the expression of surface markers. Among 
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functional features, resistance to classic chemotherapeutic agent represents a 

key CSC property 116, 117. CSC drug resistance is generally mediated by different 

molecular mechanisms including the well-known ATP-binding cassette (ABC) 

transporters that prevent drug accumulation by its exclusion across the plasma 

membrane 61, 118. Based on this property,  SP analysis allows to select a stem-like 

subset by the exclusion of Hoechst-33342 dye via ABC sub-family G member 2  

(ABCG2) transporter. SP assay was originally developed to isolate a fraction of 

hematopoietic stem cells 119 and it’s widely used for CSC purification from many 

solid tumors, including liver cancer 120-122. However, Hoechst 33342 is cytotoxic 

and unprotected non-SP cells could suffer toxicity, with a consequent inability to 

grown once placed in culture. Thus, the differing tumor-initiation abilities of SP 

and non-SP fractions are most likely due to an artifact of Hoechst 33342 toxicity 

rather than to intrinsic stem-cell properties 123. An additional functional strategy 

for identifying stem-like tumor cells involves the measurement of aldehyde 

dehydrogenase activity; aldehyde dehydrogenase is involved in intracellular 

retinoic acid production and is responsible for stem cell development, 

differentiation and self-protection 124-126.  

 

Another functional approach is tumor-sphere assay, based on long-term self-

renewal capability 63, 127, 128. To enrich cancer stem/progenitor cell population, 

cells are cultured in an anchorage-independent manner in selective serum-free 

medium rich in growth factors. This in vitro technique was developed in 1992 to 

grow undifferentiated multipotent neural cells as neurosphere 129. Similar culture 

systems have been developed for mammary stem cells, and it has been shown 

that mammospheres can be serially passaged to demonstrate self-renewal 

activity in vitro 130, 131. Sphere assay is particularly useful to enrich the potential 

CSC subpopulation when specific CSC markers have not been identified, as the 

case for CCA 123. In this assay, CSC can be serially passaged for many cycles by 

generating tumor spheres resembling the primary spheres. Moreover, tumor cells 

may be passaged directly on plastic or embedded in Matrigel, a substitute for 
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the basement membrane that replicate the stem cell natural environment, to 

evaluate the cell ability to differentiate 123, 130. Moreover, tumor sphere-forming 

cells possess higher tumorigenicity compared to bulk tumor cells 123. Researchers 

have reported the application of sphere culture to isolate, enrich, maintain or 

expand potential CSC population from various types of cancers, including HCC  

61, 63, 123. To our knowledge, there are no reports on CSC isolation by sphere assay 

in human CCA. The in vitro sphere forming assay appears to be the best useful 

surrogate for the in vivo tumorigenic assay in immunodeficient mice and doesn’t 

possess so many shortcomings than those shown by antigenic and SP 

approaches 132. Anyway, it’s important to emphasize that stem cells and 

progenitors cannot be distinguished in these assays.  

 

1.4.2 Regulatory Pathways Involved in CCA-Associated Stemness  

Interestingly, many of the identified CSC regulatory pathways are also known to 

be involved in stem-cell maintenance as well as embryonic self-renewal and 

pluripotency 133, 134. Indeed, several studies have shown that the majority of 

aggressive human cancers are characterized by the activation of embryonic  

stem-associated genes that might serve to sustain the stem-like state of cancer 

cells 135-138.  We will briefly review the key molecular networks that are recognized 

to induce or support stem-like features in the context of liver tumor. 

 

Wingless-type MMTV integration site family member  (Wnt)/β-catenin pathway. 

Increasing evidence has shown that the Wnt/β-catenin canonical signaling 

pathway plays a major role in maintaining stemness in both embryonic and 

cancer stem cells 139, 140. The binding of extracellular Wnt to Frizzled cell surface 

receptors results in increased cytoplasmic β-catenin levels, with the following  

transcription of Wnt target genes, which play important roles in liver 

carcinogenesis 53, 141. Notably, β-catenin is expressed in 58% of CCA, mutated in 

8% of cases and is considered an early determinant in CCA-progression 65. 
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Notch signaling pathway. The Notch canonical signaling is a highly conserved 

pathway controlling cell differentiation, proliferation and apoptosis, and plays an 

important role in the maintenance of stem cells, including HPCs 65, 142, 143. 

Moreover, Notch signaling plays an important role in bile duct morphogenesis 

(reviewed in 144), and dysfunction in this pathway may result in reduced 

detoxification of the liver that ultimately leads to liver damage and iCCA 

development. Interestingly, the expression of Notch receptors 1 and 3 correlates 

with CCA progression and poor survival 65, whereas overexpression of Notch 

receptors 1 and 4 in HCC exert tumorigenic effect 145. Since Notch signaling can 

contribute to either CCA or HCC, it has been suggested that this pathway could 

be deregulated in bipotential HPCs 142. 

 

Hedgehog signaling pathway. The Hedgehog (Hh) pathway is associated to 

embryonic development, cell differentiation, regeneration and stem cell 

biology. The aberrant activation of the Hh pathway has been reported in 

different malignancies 146, and its correlation with prognosis is well described 147. 

Activation of this pathway promotes CCA proliferation and survival in addition to 

HCC carcinogenesis and HPC proliferation 65, 140. Notably, the aberrantly 

activated Hh pathway induces the upregulation of several molecules, such as 

Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), 

vascular endothelial growth factor (VEGF), PDGF receptor A (PDGFR-A) and 

Snail 142.  

 

Hippo signaling pathway. The Hippo-signaling cascade is an evolutionarily 

conserved pathway involved in organ development 148-150. Hippo pathway has 

been implicated in multiple events during tumor onset. Strong evidence also 

points to a significant role of Hippo signaling in regulating stem cells, including 

HPCs 151-153.  Yes-associated protein 1 (YAP1) is a primary effector of the Hippo 

cascade and is frequently expressed in HCC and CHC mixed tumor types, which 

retain stemness-related features 152. Furthermore, it has been proposed that bile 
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duct’s constitutive activation of YAP, in association with AKT, is essential of 

inducing CCA in a murine biliary injury model 154. 

 

Phosphatidyl inositol 3-kinase (PI3K)/AKT signaling. AKT plays a critical role in 

many human cancers, including HCC and CCA 3, 155. AKT signaling can be 

triggered downstream of tyrosine kinase receptors activation, PI3K constitutive 

activation or loss of phosphatase and tensin homolog (PTEN)3. PTEN deletion 

results in a proliferation of CD133+ cell population 65, 156. Notably, the co-

activation of AKT and neuroblastoma rat sarcoma viral oncogene homolog (N-

RAS) oncogenes leaded to development of CHC-like liver tumors, through the 

expansion of HPCs or malignant conversion of hepatocyte into progenitor-like 

cells 41. 

 

Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases 

(ERK) signaling pathway. The MAPK cascade regulates many important cell 

function, such as proliferation, invasion and survival and is critical for HPCs 

proliferation 65. Gain-of-function mutations of KRAS are some of the most 

frequent mutations observed in iCCA, defining a class of patients characterized 

by poor outcome. This poor outcome class was enriched for CCA stem cell-like 

and tumor recurrence predicting signatures. Moreover, these mutations are also 

detected in patients with PSC, so this could an early event that contributes to 

the malignant transformation of cholangiocytes 36.  

 

Transforming growth factor-β (TGF-β) signaling. The TGF-β pathway plays a key 

role in self-renewal and maintenance of undifferentiated stem cell state. Its 

disruption impairs stem cell differentiation and causes deregulated proliferation 

of HPCs, resulting in CCA development 156. TGF-β acts as a tumor suppressor 

early in tumor initiation, whereas at late stages it promotes tumor growth, 

metastasis and epithelial-mesenchymal transition (EMT). It has been 
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demonstrated that TGF-β1/Snail activation induces EMT in CCA both in vitro and 

in vivo, and this is associated with a higher CCA aggressiveness 157.  

 

Janus kinase/signal transducers and activators of transcription (JAK/STAT) 

signaling. Several evidences highlight also the central role of interleukin (IL)-

6/STAT3 signaling in CCA. Binding of IL-6 to the gp130 receptor leads JAK kinases 

(JAK1, JAK2 and TYK2) and subsequent STAT3 activation, inducing the 

transcription of target genes essential for cell growth, differentiation and 

proliferation (reviewed in 18, 158). STAT3 signaling is also involved in maintenance 

of CSC population 159-161 and in EMT-triggering in diverse tumors 162, 163. 

  

1.5 The CSC Niche and Macrophage Component 

Similar to normal stem cells, CSCs require input from the surrounding 

microenvironment to achieve an optimal balance between self-renewal and 

differentiation as well as to protect themselves from immune surveillance, 

apoptosis and chemotherapeutic drugs; this inputs might affect tumor initiation, 

progression and outcome 21, 56, 164-166. More specifically, there is a propensity to 

refer to CSC-associated microenvironment as ‘CSC-niche’. Niches are 

anatomically distinct microenvironments within the overall tumor 

microenvironment (TME) 49, 167. The CSC-niche is enriched in growth factors, 

cytokines, prostaglandins and extracellular matrix (ECM) components. Key 

cellular players include cancer-associated fibroblasts, mesenchymal stem cells, 

immune cells and endothelial cells (Figure 3). Cells within the CSC-niche produce 

factors that stimulate CSC self-renewal, induce angiogenesis, and recruit 

immune and other stromal cells that, in turn, secrete additional factors to 

promote tumor invasion and metastasis 49. The idea that the tumor stroma is not 

only a supportive ‘soil’ but, more importantly, an active participant in 

tumorigenesis, challenges the old paradigm of tumor functional organization 21, 

53, 167. While each cell or environmental component has a particular function on 

its own, together they create a dynamic niche replete with secreted factors that 
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synergize and cooperate to develop a complex communication network known 

as cross talk, with the CSC at center stage 56 (Figure 3). Therefore TME and tumor 

cells, including CSC, create a complex cellular system with reciprocal signaling 

and alterations 168. An area of great interest is the role of inflammatory cells 

within the CSC niche. Indeed, the TME is characterized by chronic inflammation, 

which, instead of inhibiting tumor growth, favors tumor formation by stimulating 

cell proliferation, activating CSCs, and promoting metastasis  56. Among various 

immune-subgroups within CSC-niche (e.g., T cells, neutrophils, granulocytes) 169-

172, tumor-associated macrophages (TAMs) represent a poor defined but very 

intriguing immune-subset and seem to lead tumor inflammatory response 56. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. CSC-niche. CSCs are located within a specialized microenvironment, the so called 

‘CSC-niche’. Key cellular players of CSC-niche include other cancer cells, stellate cells, cancer-

associated fibroblasts (CAFs), and immune cells (T-cells, monocytes, neutrophils, and tumor-

associated macrophages (TAMs)). Cells communicate with one another and directly with the 

CSC via secreted factors, forming a complex and dynamic cellular network 56. 
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1.5.1 Functional Roles of TAMs 

Notably, the TME supports tumor initiation and evolves together with tumor cells 

during progression. Among the immune cells present at the tumor site, 

macrophages are particularly abundant in solid tumors 173. Accumulating 

evidence has validated the critical role of TAMs in immune escape, cancer 

progression and metastasis 174-177. Diversity in TAM functions has led to the notion 

that macrophages are extremely plastic and can assume multiple phenotypes 

depending on their location in the tumor context 178, 179. 

Historical consideration of macrophage function was directed to the idea of two 

main macrophage phenotypes: M1, also called ‘classically activated 

macrophages’, and M2, also called ‘alternatively activated macrophages’. The 

M1-polarized macrophages manifest high levels of pro-inflammatory cytokines 

(IL-1, tumor necrosis factor alpha [TNF-α], IL-6 and IL-23), high production of nitric 

oxide (NO) and reactive oxygen species (ROS) intermediates that promote Th1 

responses and contribute to tumoricidal activity and antitumor immunity. On the 

other hands, M2 macrophages express anti-inflammatory cytokines (IL-10, TGF-β 

and IL-4), suppress T cell proliferation and activity and are the main players 

facilitating parasite containment, tissue remodeling/repair and immune 

tolerance, which may be linked to tumor progression 180-187. TAMs classically have 

characteristics and functions similar to M2 macrophages 182. For example, TAMs 

are inefficient to present antigens and trigger adaptive immune response 188. 

However, in line with the microenvironmental heterogeneity, it has been shown 

that M1 and M2 classes are not discrete and represent a broad phenotypic  

spectrum. It is now believed that different subpopulations of TAMs are found in 

different tumor microenvironments, representing the different functional roles 

that macrophages assume in tumorigenesis 21, 189, 190. Thus, merely classifying 

tumor macrophages as M1 or M2 does not accurately reflect the differentiated 

or biological state of TAMs. Rather, the classification of TAMs should be related to 

the function of the macrophage subpopulation within the tumor (e.g., 

metastasis-promoting macrophage, angiogenic macrophage, and 
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immunosuppressive macrophage) as has been proposed by others 56, 190-193. 

Within tumor invasion areas, TAMs promote cancer cell motility, whereas they 

promote metastasis in perivascular areas and stimulate angiogenesis in 

perinecrotic areas 194-196. Moreover, it has been speculated that dynamic 

changes in TME may occur during the transition from early neoplastic events to 

advanced tumor stages, which result in progressive conversion of TAMs from an 

M1 to an M2 phenotype 182, 197. This seems to correlate with diverse functional 

roles exerted by TAMs during different tumor stages. In pre-tumoral stages, TAMs 

mediate DNA damage, oncogenic transformation, survival of transformed cells 

and cancer- related inflammation through the release of reactive nitrogen 

intermediates/reactive oxygen intermediates, tumor necrosis factor, IL-6 and IL-

1β 198. After the establishment of the tumor, a new wave of factors (e.g., human 

macrophage colony-stimulating factor [M-CSF] and C-C motif ligand 2 [CCL2]) 

may be released to recruit more monocytes/macrophages to the tumor site 199 

(Figure 4). In more advanced neoplasia, the production of several factors (e.g., 

epidermal growth factor [EGF], fibroblast growth factor [FGF], VEGF, PDGF and 

TGF-β) by TAMs may be responsible for promoting the proliferation and survival of 

tumor and stromal cells as well as the process of angiogenesis 199 (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Functional roles of TAMs. The figure shows a summary of different TAM roles in tumor 

initiation and progression 235. 
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TAM with overlapping characteristics between M1 and M2 have also been 

reported in some tumor models 198. Of relevance, tissue macrophages were 

shown to regulate homeostasis in the normal hematopoietic stem cell (HSC) 

niche, thus raising the question of how macrophage plasticity affects CSC 

functions 200. 

  

1.5.2 TAMs in CCA 

Although many studies have shown the contribution of TAMs in tumor 

development and patients’ poor prognosis, the significance of TAM infiltration in 

human CCA is still unclear. Interestingly, an association between the ratio of 

CD68+/CD163+ macrophages, regulatory T (Treg) cells and number of vessels has 

been recently described in iCCA. Specifically, degree of microvascularization 

and Treg cells was more intimately correlated with the number of CD163+ M2 

macrophages rather than CD68+ macrophages. Strikingly, patients with elevated 

levels of CD163+ macrophages had a shorter disease-free survival compared to 

patients with CD68+ 201. Additionally, an association between newly infiltrated 

tumor macrophages and poor prognosis has also been reported in CCA 

patients, highlighting the critical role of tissue macrophages in degrading the 

ECM and facilitating tumor metastasis 202. Other recent studies also supported 

the correlation between macrophage density and poor prognosis as well as  

tumor recurrence in patients with CCA 203, 204. Moreover, the exposure of human 

macrophages to tumor cell-conditioned medium derived from different iCCA 

cell lines resulted in STAT3 activation and macrophage polarization toward the 

M2-phenotype with an increased expression of M2-type factors, such as IL-10, 

VEGF-A, TGF-β, matrix metalloproteinase (MMP)-2 and TNF-α, which in turn was 

associated with an increased migration and invasion potential 201, 205, 206. These 

results suggest that macrophage differentiation into the M2-phenotype together 

with the contribution to angiogenesis and immunosuppression are dependent 

on STAT3-signaling pathway in iCCA.  Macrophages switch towards a M2-

phenotype (CD68+ CD163+) seems to occur at early stage of CCA and 
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contribute to CCA metastasis, likely via activation of EMT processes 207. EMT 

induction in CCA is likely due to various cytokines secreted by activated M2 

macrophages, such as IL-4, IL-6, IL-10, TGF-β and TNF-α, that can modify the 

expression of EMT-related genes. Indeed, addition of macrophage-conditioned 

medium to CCA cells reduced the expression of E-cadherin and cytokeratin 

(CK)19, whereas induced the expression of mesenchymal markers S100 calcium-

binding protein A4 (S100A4) and MMP-9 208, 209.  

Moreover, bile duct tumors generally proliferate surrounded by a rich vascular 

network, which provides an adequate support of oxygen and metabolites to 

malignant cholangiocytes in order to enhance tumor growth. The angiogenic 

potential is favored by overexpression of VEGF-C, that is expressed by 

surrounding mesenchymal as well as malignant cells (reviewed in 15). This 

suggests the existence of an autocrine/paracrine mechanism in the production 

of VEGF by malignant cholangiocytes, and further indicates that TAMs play an 

important role in regulating angiogenesis through VEGF, with important 

consequent implication in pro-fibrotic processes and cholangiogenesis 210. 

 

1.6 CSC–TAM Interplay in Diverse Tumor Models 

Accumulating evidence supports the hypothesis that macrophages interact 

with, and support, normal stem cell as well as CSC functions, thus contributing to 

tissue repair and remodeling as cancer progression, respectively 211. Moreover, 

recent data indicate that CSCs respond differently to antitumor agents in vitro 

and in vivo, reinforcing the hypothesis that the bidirectional interplay between 

polarized macrophages and CSC seems to be a key event affecting tumor-

promoting conditions in TME as well as CSC drug responsiveness. In support of this 

notion, tumor cell products, including ECM components, IL-10, M-CSF and 

chemokines (CCL2, CCL18, CCL17 and chemokine C-X-C motif ligand 4 

[CXCL4]), polarize macrophages toward an M2-like, cancer-promoting 

phenotype 212. On the other hand, emerging evidence indicates a trophic role 

for M2 macrophages on CSCs in various tumors. For example, an increased 
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number of M2-like CD163+ TAMs correlates with poor prognosis and presence of 

CSC in oral squamous cell carcinoma 213. Moreover, the TAM-specific secretion 

of TGF-β promotes CSC-like properties by inducing EMT in HCC 214. Interestingly, 

factors released by cancer stem-like cells from chemoresistant tumors generated 

M2-like immunoregulatory myeloid cells from CD14+ monocytes, thus 

contributing to create a pro-tumor microenvironment 215. 

 

Several recent studies have emphasized the bidirectional TAM–CSC crosstalk in 

different tumor models, rather than the unidirectional interaction between the 

two components.  

Colon and lung cancer. CSC present in murine colon and lung cancer are 

shown to stimulate the release of  milk fat globule-EGF factor 8 protein (MFG-E8) 

and IL-6 from TAM. MFG-E8, in concert with IL-6, in turn promotes CSC 

tumorigenicity and chemoresistance, likely through the activation of STAT3 and 

Hedgehog signaling pathways 216.  

Breast cancer. It has been reported that TAMs promote CSC-like phenotypes in 

murine breast cancer cells through the binding EGF-EGFR, suggesting the 

presence of a positive feedback paracrine loop between TAMs and breast CSC 

The resulting CSC-like phenotype was characterized by increased sex 

determining region Y-box 2  (SOX-2), OCT-4, NANOG, ABCG2, and caspase 3 

(CASP3 or SCA-1) gene expression, in addition to increased drug-efflux capacity, 

resistance to chemotherapy, and increased tumorigenicity in vivo 217. Moreover 

it seems that breast CSC-niche is supported and maintained by juxtacrine 

signaling from macrophages through the physical interaction between CD90+ 

CSC and TAMs, mediated by binding of plasma membrane-associated Ephrin 

ligands to the corresponding EphA4 receptor present on CD90+ CSC 218. 

Pancreatic adenocarcinoma. It has been shown that TAMs can directly induce 

stem-like properties including chemoresistance in pancreatic ductal 

adenocarcinoma through the activation of STAT3 signaling 219. Furthermore, an 
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additional immunosuppressive effect versus cytotoxic T lymphocytes has been 

described only in those macrophages exposed to the CSC compartment 219.  

Glioma. In glioma tissue, CSCs play a pivotal role in recruiting macrophages 

through the production of several chemo-attractants such as CCL2, CCL5 and 

VEGF. In addition CSCs polarize macrophages towards an M2 phenotype, which 

in turn may induce T-cell immunosuppression 220. Moreover, CD133+/CD15+ CSCs 

preferentially express periostin (POSTN), a protein involved in tumor EMT, ECM 

degradation, tumor invasion and metastasis. In turn, POSTN is able to recruit 

peripheral blood monocyte-derived macrophages (C-C motif chemokine 

receptor  2 [CCR2]+/chemokine C-X3-C motif receptor 1[CX3CR1]-) but not 

resident CX3CR1+ macrophages through the binding with TAM-expressed 

integrin αγβ3, leading to the promotion of malignant growth 221.  

HCC. HCC TAMs promote the expansion of CD44+ stem-like hepatocellular 

carcinoma cells in vitro, likely through IL-6-dependent activation of STAT3 

signaling pathway. This statement is validated by CSC enhanced sphere- 

forming ability, expression of stem-like genes and tumorigenic potential in NOD-

SCID/IL2Rγnull (NSG) mice in vivo 222. These results demonstrated the importance 

of targeting the immune component of TME as a strategy to shrink the CSC 

subset in human HCC.  

 

Hence CSCs are able to polarized macrophages towards a tumor-supportive 

phenotype and TAMs may serve as a component of the “immunological niche” 

by which CSC activities are maintained and amplified within TME 223. 

Nevertheless, the investigation of macrophages-CSC interaction in CCA is still 

unexplored.   
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2. AIMS AND EXPERIMENTAL DESIGN 

 

2.1 Hypothesis and Aims 

Due to its desmoplastic nature, CCA is associated with massive presence of 

stromal cells 5, 21. Among various immune-subgroups (e.g., T cells, neutrophils, 

granulocytes) 169-172, CCA-associated macrophages represent a poor defined 

but very intriguing immune-subset. Indeed, high TAM density significantly 

correlated with poor prognosis, unfavorable survival and metastasis tendency in 

CCA patients, suggesting a major role of macrophages in CCA progression 

(reviewed in 5).  

 

Recently, CSCs have been proposed as a driving force of tumor initiation, 

dissemination and drug-resistance, thus representing a primary therapeutic 

target. Although it has been shown that HCC progression is driven by CSCs 61, 63, 

identification of CCA stem-subset is still largely unexplored and limited to 

classical antigenic approaches (reviewed in 5). Similar to normal stem cells, CSCs 

are believed to reside in specialized microenvironment (“CSC-niche”) within 

tumor-context 45, 49, 224 that supports self-renewal and drug-resistance 216, 218, 221, 222, 

225. 

 

Tumor-stroma co-evolves together with cancer cells and plays a critical part in 

both malignancy initiation as well as key steps of growth and metastasis 226. 

Since macrophages show a remarkable degree of plasticity during tumor 

development 180, 182, we assumed that, depending on CSC tumorigenic-state, 

CSCs might actively release soluble mediators that engaged circulating-

monocytes to tumor-initiating niche 24, 225 and prompted macrophage 

differentiation towards an exclusive subset of TAMs, the ‘CSC-associated TAMs’. 

Although bulk tumor cells support TAMs recruitment and activation, specific 

effects of CSCs on TAMs phenotype are still unexplored in human CCA. 
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Hence, the goal of this project is to shed light on the critical interaction between 

CCA stem-like compartment and macrophage component. Specifically the 

current study sought to: 

1. Identify and characterize a functional CSC-subset in human CCA  

2. Verify the existence of a peculiar CSC-associated TAM-compartment as result 

of bioactive CCA stem-like cells. 

 

2.2 Experimental Design 

1. Identification and characterization of a functional CSC-subset in human CCA  

To identify a stem-like compartment in four human CCA cell lines, 3D tumor 

sphere forming assay was used. The term CSC refers to some properties shared 

with normal stem cells, including self-renewal. Based on this concept, non-

adherent 3D sphere assays has been increasingly used as a tool to identify, 

enrich and expand cells endowed with long-term self-renewal capability in both 

normal and tumor tissue 61, 63, 129. To our knowledge, 3D sphere assays has never 

been used to isolate the stem-like subset in human CCA. Obtained spheres (SPH) 

were subjected to a global characterization in terms of tumorigenic potential in  

immune-deficient NSG mice (subcutaneous tumorigenic engraftment with low 

cell number,  limiting dilution and serial transplantation assay), resistance to a 

panel of common chemotherapeutic drugs (cisplatin, 5-fluorouracil, oxaliplatin, 

gemcitabine), molecular activation of key liver cancer-, CSC-, ESC-related 

signaling pathways (use of pathway-focused PCR arrays). Results were 

compared with those obtained with the same CCA cells grown in standard 

adherence condition as monolayer (MON), so not potentially enriched in stem-

like cells. Expression of key significant CSC surface markers were confirmed using 

transcriptome data from CCA patients. 
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2. Confirmation of the existence of a peculiar CSC-associated TAM-

compartment as result of bioactive CCA stem-like cells 

CD14+ obtained from healthy donors were placed in presence of 30% of tumor-

conditioned medium (CM) for 6h to verify SPH-dependent monocyte 

recruitment. Analysis of monocyte migration towards tumor-CM was performed. 

Moreover, the same CD14+ cells were cultured with 30% of tumor-CM for 6 days 

to allow monocyte differentiation towards macrophages. Specifically, tumor-CM 

was derived from CCA-SPH as well as  CCA-MON (as control) in order to highlight 

the effect of conditioned medium presumably enriched in factors released by 

tumor stem-like compartment. End-point analysis concerning the impact on 

macrophage differentiation/activation comprised evaluation of macrophage 

markers’ expression (including surface proteins and gene expression) and 

presence of macrophage functional properties (invasion, adhesion). A global 

investigation of CCA patient-associated TAM distribution and phenotype was 

performed, also in order to validate results of in vitro obtained SPH-specific TAM 

subpopulation. 
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3. METHODS 

 

3.1 Patient Samples 

All patients gave written, informed consent. Study was approved by local 

institutional review boards. CCA samples and peritumoral non-cancerous liver 

were obtained from patients submitted to surgical resections (Department of 

Hepatobiliary Surgery, Istituto Clinico Humanitas). Distinctions between iCCA and 

pCCA were based on clinical records including surgical reports. 

 

3.2 Mice 

The Humanitas Animal Care and Research Advisory Committee approved 

housing and experimental animal procedures. NSG mice (Jackson Laboratory) 

were used in all experiments. The mice were used at 6 weeks of age, in 

accordance with the guidelines and with the approval of the local Experimental 

Animal Committee 225.  

 

3.3 Sphere Assay   

To calculate sphere-forming efficiency, CCA cells were single-cell sorted into 96-

well plates coated with an Ultra-Low Attachment Surface (Corning) using a FACS 

Aria (BD Biosciences). The cells were grown in anchoring-independent conditions 

with selective serum-free DMEM/F12 medium supplemented with 1X B27 

supplement minus vitamin A (Life Technologies), human recombinant EGF 

(hrEGF) (R&D System) (20 ng/mL), and basic FGF (bFGF) (R&D System) (20 

ng/mL). After 10 days, the spheres formed were counted, and the sphere-

forming efficiency (SFE) was calculated by dividing the number of spheres 

formed by the original number of single cells seeded and expressed as a 

percentage. An Olympus IX81 confocal microscope in a closed humidified 

chamber at 37°C in a CO2-enriched atmosphere with a 20x objective was used 

to obtain pictures of sphere morphology 63, 216. 
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Additionally, large-scale sphere cultures were established plating 1.8 x 103 

cells/cm2 into poly (2-hydroxyethyl methacrylate) (poly-HEMA [Sigma Aldrich]) 

coated dishes. To prevent cell aggregation, 1% methylcellulose (R&D System) 

was added to the culture medium.  

 

3.4 Monocyte Isolation and Macrophage Differentiation 

Human monocytes were obtained from healthy blood donor buffy coats by 

gradient centrifugation using a Ficoll gradient (GE Healthcare) and further 

purified from peripheral blood mononuclear cells (PBMC) by magnetic-

activated cell sorting (MACS) using CD14 microbeads (Miltenyi Biotech). After 

MACS purification, two fractions were obtained: the CD14+ fraction and the 

eluate (composed of all PBMC CD14- cells). The purity of CD14+ cells was >90%. 

Macrophages and tumor-conditioned macrophages were obtained by culturing 

1 x 106/mL monocytes for 6 days in RPMI 1640 with 10% FBS supplemented with 

100 ng/mL of recombinant human M-CSF (Peprotech) or in presence of 30% 

CCA sphere- or monolayer-CM.  

M1 and M2 polarized macrophages were obtained by culturing 1 x 106/mL 

monocytes for 6 days in RPMI 1640 with 10% fetal bovine serum (FBS) 

supplemented with 100 ng/mL of recombinant M-CSF. M1 cells were polarized by 

stimulating M-CSF macrophages for 24 h with lipopolysaccharides (LPS) (100 

ng/mL) (Peprotech) and interferon gamma (IFN-γ) (20 ng/mL) (Peprotech). M2 

cells were polarized by stimulating human M-CSF macrophages for 24 h with IL-4 

20 ng/mL (Peprotech). 

 

3.5 Cell Cultures 

HUCCT1, CCLP1 and SG231 cells, from intrahepatic bile ducts, were a kind gift 

from Dr. A.J. Demetris (University of Pittsburgh, Pittsburgh,PA) and were cultured 

as described 227-229. The primary CCA4 cell line (mucinous iCCA, female 50 years 

old) was a kind gift from Dr. D. Alvaro (University La Sapienza, Rome, Italy) 77. 

Human immortalized non-malignant cholangiocyte cell line H69 from Dr. G. J. 
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Gores, Mayo Clinic, Rochester, MN and primary human intrahepatic 

cholangiocyte cell line HiBEC from ScienCell. Experiments were performed using 

cells between passages 2 and 8. All cell lines were incubated at 37°C in a 

humidified chamber supplemented with 5% CO2 227. 

 

3.6 Preparation of Conditioned Medium  

To collect tumor-CM, 1.8 x 103 CCA cells/cm2 were grown as spheres for 7 days, 

while 5.5 x 103 CCA cells/cm2 were grown as monolayer for 5 days. Then, the 

medium was discarded, the plates were rinsed two times with saline solution, 

and the cells were incubated with fresh medium for 24 h. CM was harvested and 

clarified by centrifugation, and the supernatants were filtered at 0.20 µm and 

used fresh or stored at -80°C 181.  

 

3.7 Enzyme-Linked Immunosorbent Assay (ELISA)   

The concentration of 37 molecules (cytokines, chemokines, interleukins and 

other factors described in the Results section) in the sphere- or monolayer-CM 

was measured using commercially available ELISA kits according to the 

manufacturer’s instructions (R&D Systems). RPMI 1640 with 10% FBS, DMEM with 

10% FBS, or serum-free DMEM/F12 was used as a negative control. A seven-point 

standard curve was used to calculate the concentration of the molecules. ELISA 

expression values were log2 transformed and log Fold-change values were 

created by subtracting control from treated log2 intensities, for each molecule 

and each cell line analyzed. When both treated and control Elisa expressions 

were null, then "NA" was used. Molecules with "NA" in all conditions and cell lines 

were excluded from further analysis. A matrix with four columns (cell lines) and 23 

rows (proteins with at least one log Fold-change available) was loaded in TMeV 

(http://www.tm4.org/) 230 and hierarchical clustering with "Euclidean distance" as 

similarity metrics and "average" as linkage method was applied to cluster 

proteins and cells according to their expression profiles upon treatment. 

 

https://owa.humanitasresearch.it/owa/redir.aspx?SURL=JTSKIsnx1RW9l6dao8SdUSG13CajoXpwkZ6_dL8vNiqAIL635-XSCGgAdAB0AHAAOgAvAC8AdwB3AHcALgB0AG0ANAAuAG8AcgBnAC8A&URL=http%253a%252f%252fwww.tm4.org%252f
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3.8 Lymphocyte Reaction Assay 

Human peripheral blood lymphocytes (PBL) were obtained from healthy blood 

donor buffy coats by gradient centrifugation using a Ficoll gradient (GE 

Healthcare) and further purified from PBMC by MACS using CD4+ T cell isolation 

kit (Miltenyi Biotech). CD4+ were collected and labeled with carboxyfluorescein 

succinimidyl ester (CFSE) 2 µM (eBioscience) for 10 min at 37°C. Cells were 

washed extensively and 2 x 105 cells/well were cultured in round-bottomed 96-

well plates in RPMI-1640 with 10% FBS with 30% of sphere- and monolayer-CM for 

5 days. As a negative control we used CD4+ not stimulated. At day 5, cells were 

collected and stained against CD4 using the described conjugated antibody.  

 

3.9 Flow Cytometry 

A total of 1 x 105 purified monocytes, in vitro-differentiated macrophages, CD4+ 

or patient-derived PBMCs were washed and resuspended in fluorescence-

activated cell sorting (FACS) buffer (phosphate buffered saline [PBS] plus 2% 

FBS). The anti-human antibodies used included anti-CD14-PerCP/Cy5.5, anti-

CD45-PB, anti-CD4-PE and anti-CD3-APC (Biolegend); anti-CD206-PE, anti-CD56-

APC, anti-CD68-PE, and anti-HLA-DR-PerCP/Cy5.5 (BD Biosciences); and anti-

CD115-PE (R&D System). Dead cells were excluded using the LIVE/DEAD Fixable 

Aqua or Violet Dead Cell Stain Kit (Life Technologies). The cells were stained for 

20 min at 4°C and detected using an LSRFortessa (BD Biosciences). A 

fluorescence minus one (FMO) sample, containing all antibodies except the one 

of interest, was used as a negative control. Data analysis was performed with the 

FlowJo software (FlowJo, LLC). 

 

3.10 Tube Formation Assay 

The tube formation assay was carried out as described 231, with slightly 

modifications. In brief, 96-well plates were coated with 70 μl of pre-thawed 

growth factor-reduced Matrigel (BD Biosciences). The plate was then kept at 37 

°C for 1 h to allow the matrix solution to gel.  1.5 x 104 HUVEC cells were 
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resuspended in the respective conditioned media, added to each well and 

incubated at 37°C for 24 h. Images were acquired under an inverted 

microscope. Pro-angiogenic activity was quantified by measuring the number of 

tube structures formed between discrete endothelial cells in each well. Each 

experiment was performed in triplicate. 

 

3.11 Cell Migration and Invasion Assay 

CD14+ cells (1.5 x 106/well) were seeded into the upper chamber of 6-well 

transwell supports with a membrane with an 8 µm pore size (Corning) in serum-

free RPMI 1640 (migration assay). Tumor-conditioned macrophages (9 x 104/well) 

were placed into the upper chamber of a 24-well BioCoatTM Matrigel® Invasion 

Chamber with a membrane with a 0.4 µm pore size (BD Biosciences) in RPMI 

1640 supplemented with 10% FBS (invasion assay). The cells were allowed to 

migrate or invade toward the lower compartment of the system, which 

contained either 30% tumor-CM or RPMI 1640 alone. After 6 h (migration assay) 

or 18 h (invasion assay) of incubation at 37°C, the cells that had not penetrated 

the filter were removed with cotton swabs, and cells that had migrated to the 

lower surface of the filter were fixed with methanol, stained with Diff Quick 

solutions, and photographed with an Olympus BX51 microscope with a 20x 

objective. The values for migration/invasion were expressed as the average 

number of migrated/invaded cells per microscopic field (20x) over five fields. 

Each experiment was performed in triplicate 232. 

 

3.12 Gene Expression 

The total RNA was extracted with the RNeasy kit (Qiagen) according to the 

manufacturer’s instructions. The RNA concentration and quality were measured 

using an optical Nanodrop ND1000 spectrophotometer (Thermo Scientific). 

Total RNA (500 ng) from the CCA spheres or monolayer was reverse transcribed 

into cDNA using an RT² First Strand Kit (SabBioscience, Qiagen) according to the 

manufacturer’s instructions. RT2 Profiler™ human cancer stem cell (PAHS-1776Z), 
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human embryonic stem cell (PAHS-081Y) and human liver cancer cell (PAHS-

133Z) 384-well PCR arrays (SabBioscience, Qiagen) were performed for 

quantitative PCR using the ABI ViiA™ 7 System (Applied Biosystems) with the 

following cycling conditions: 10 min at 95°C, 40 cycles of 15 s at 95°C followed by 

1 min at 60°C and a final infinite 4°C hold. Data were centered and normalized, 

and hierarchical clustering of genes/samples using centered correlation metrics 

with complete linkage was performed. The grouping of the genes from top to 

bottom is given for each heatmap. 

Total RNA (500 ng) from tumor-conditioned macrophages was transcribed with a 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). PCR was 

performed on the cDNA with gene-specific primer pairs (see table below). The 

qPCR human primers for CD163 were purchased from Qiagen. Changes in the 

mRNA expression level of target genes were detected using FAST SYBR-Green 

PCR Master Mix and the 7900HT Fast Real Time PCR System (Applied Biosystems). 

The cycling conditions consisted of 20 s at 95°C, 40 cycles of 1 s at 95°C followed 

by 20 s at 60°C, and a final infinite 4°C hold. The mRNA levels of glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) were used for normalization. The fold 

difference (2-∆∆Ct) was calculated using the ∆Ct of monolayer-conditioned 

macrophages as a control. All reactions were performed in triplicate. 
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Table 1. List of Primers 

 

3.13 Adhesion Assay 

Tumor-conditioned macrophages (15 x 104/dish) were seeded onto 60 mm 

dishes coated with fibronectin (FN) (Millipore) in RPMI 1640 supplemented with 

10% FBS and allowed to adhere to the surface. After 10 min, non-adherent cells 

were discarded, and cells that had adhered to the surface were fixed with 
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methanol, stained with Diff Quick solutions, and photographed with an Olympus 

BX51 microscope with a 10x objective. The values for adhesion were expressed 

as the average number of adherent cells per microscopic field (10x) over five 

fields. Each experiment was performed in triplicate 232.  

 

3.14 Drug Treatment and MTT Assay 

The cell viability was measured with the 3-(4,5-dimethylthiazolo-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) (Sigma-Aldrich) assay. CCA cell lines were 

cultured as spheres or monolayers in 96-well plates and then exposed to the 

following drugs or relative vehicles: cisplatin (0-112 µM) (Sigma-Aldrich) for 24 h, 

oxaliplatin (0-500 µM) (Sigma-Aldrich) for 24 h, 5-Fluoruracil [5-FU (0-40 mM)] 

(Sigma-Aldrich) for 48 h and gemcitabine (0-1000 µM) (Axxora) for 72 h. The 

optimal drug concentrations were determined by calculating the 50% inhibitory 

concentration values (IC50) in CCA-monolayer cultures. Five replicates were 

performed for each condition. At the end of the treatments, 20 µL of 5 mg/mL 

MTT solution was added to each well, and the plates were incubated for 3 h at 

37°C. Next, 100 µL of 100% dimethyl sulfoxide (DMSO) per well was added to 

solubilize the precipitate, and the absorbance of each well was measured with 

a VersaMax microplate reader (Molecular Devices Corporation) at a 

wavelength of 570 nm. The percent viability was calculated as follows: (sample 

OD570-blank control OD570)/(control OD570- blank control OD570) x100 . 

 

3.15 Immunohistochemistry (IHC) 

Frozen tissues form SPH and MON derived tumors were cut at 8 µm put on 

SuperFrost slides and stored at -80°C. For Sirius red staining, tissues were fixed in 

4% neutral buffer formalin for 5 min. Tissues were placed in 0.1% of Sirius red 

solution for 1 hour and then washed under tap water for 20 min. Haematoxylin 

were used for counterstaining and then mounted with Eukitt (Sigma-Aldrich). For 

immunohistochemistry tissues were fixed with 4% paraformaldehyde for 15 

minutes, endogenous peroxidase was blocked with H2O2 0.03% for 5 min, then 
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unspecific binding sites were blocked with Rodent Block M (Biocare Medical) for 

F4/80 and alpha smooth muscle actin (α-SMA) while PBS+2% bovine serum 

albumin (BSA) was used for CD31 for 30 minutes. Rat anti mouse F4/80 

(MCA497g, clone Cl:A3-1,  AbD Serotec) were diluted 1:400, goat anti mouse 

CD31 (AF3628, R&D System) were diluted 1:1000 and mouse anti mouse α-SMA 

(A 2547, clone 1A4, Sigma-Aldrich) were diluted 1:200 and then incubated for 1 

hour at room temperature.  As secondary antibody Rat on mouse HRP polymer 

(RT517 L, Biocare Medical) were used for F4/80, goat on rodent (GHP516 L, 

Biocare Medical) were used for CD31, mouse on mouse HRP (MM620H, Biocare 

Medical) were used for α-SMA. Reactions were developed with 3,3'-

Diaminobenzidine (DAB) (Biocare Medical) and counterstained with 

haematoxylin. Slides were then dehydrated through an ascending scale of 

alcohols and xylene, and mounted with Eukitt. 

 

Human CCA specimens were fixed in 10% formalin before being processed in 

paraffin. Hematoxylin and eosin-stained sections from each tissue block were 

evaluated to obtain the diagnosis and the pathological T stage. A 

representative block for each case was selected for immunohistochemical 

analysis with CD68 and CD163 markers. The primary antibodies included anti-

CD163 (Rabbit Monoclonal clone EPR4521 dilution 1:250, Epitomics), anti-CD68 

(Mouse Monoclonal clone PGM-1 dilution 1:60), anti-CD44 (555476, 1:50 dilution; 

BD Pharmingen), anti-EPCAM (clone VU-1D9; 1:1000 dilution; Merck Millipore). 

The chromogen diaminobenzidine (DAB) was used for CD163, CD44 and EPCAM 

whereas FAST RED was used for CD68. The tissue sections were counterstained 

with Mayer’s hematoxylin. The negative control was performed by substituting 

the primary antibody with non-immune serum at the same concentration. The 

control sections were treated in parallel with the samples.  

The ratio between CD163 intensity values evaluated in tumor front and 

intralesion were calculated and log transformed. One sided Student t-test was 

then applied to log ratios in order to compare G1 to G2-G3 and such test 
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yielded a p-value of 0.006, with average G2-G3 values bigger than average G1 

values. Fisher Exact test was applied as well, to test any association between 

grade and CD163 log ratios and this gave a p-value of 0.05, with 1.1 used as cut-

off. 

 

3.16 In Vivo Study 

In vivo experiments were performed in accordance with the guidelines and 

approval of the local Experimental Animal Committee. The following materials 

were used: 1,000 sphere- or monolayer-derived cells to measure the tumorigenic 

potential of CCA cells and 1,000 monolayer-derived cells and 300 macrophages 

for TAMs + CCA monolayer co-injection experiments. The cells were dissociated 

into single-cell suspensions and resuspended in 100 µL of DMEM and reduced 

Matrigel growth factor (BD Bioscience) (1:1), and the mixture was 

subcutaneously (s.c.) injected into the right flank of 6-week-old NSG mice. Tumor 

growth was monitored, and the diameter of the growing tumors was measured 

in millimeters every week using a caliper. The animals were sacrificed when the 

xenografts reached 2.0 cm in diameter 216, 225, 233. The limiting dilution analysis was 

performed by sorting 1,000/100/10 alive cells from dissociated CCA monolayer 

and spheres. Web-based Extreme Limiting Dilution Analysis (ELDA) statistical 

software (http://bioinf.wehi.edu.au/software/limdil/index.html) was used 234. 

 

3.17 TAM Isolation from Human CCA Resections  

Human TAMs were isolated from fresh CCA samples as previously described with 

slight modifications 225. Briefly, the tissues were minced into small (1 to 2 mm) 

pieces and digested with PBS containing 2 mg/ml collagenase D (Roche) at 

37°C for 2 h. The resulting suspension was sequentially filtered through sterile 100- 

and 70-µm nylon cell strainers. The cells were then centrifuged at 1,400 RPM for 

30 min with Ficoll (GE Healthcare). CD14+ macrophages were further isolated by 

MACS using CD14 Microbeads (Miltenyi Biotec) according to the manufacturer’s 

instructions. 
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3.18 Statistical Analysis, CCA Patient Data Base 

Graphpad Prism v5 was used for data analysis. The error bars represent 1+/- SEM. 

The p value was calculated with Student’s t test. The statistical significance and 

p-value are shown when relevant.  

The GSE26566 series matrix containing expression values from Illumina humanRef-

8 v2.0 expression beadchip Array [transcript (gene) version] of 104 CCA samples 

was downloaded from GEO 6. Differences in gene expression of specific genes 

of tumor tissue (T) versus surrounding liver (SL) and CCA epithelial compartment 

(EPI) versus stromal component (S) were evaluated.  

Pearson correlation between gene pairs was calculated using R and the 

"cortest" function, yielding correlation coefficients and p-values. 
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4. RESULTS  

 

4.1 Human CCA-Spheres Retain Stem-Like Tumor-Initiating Features 

CCA-stem like cells were identified by using a functional tool of 3D culture system 

based on defined serum-free medium, as shown in many patient-derived tumors. 

First, established (SG231, HUCCT1, CCLP1) 227-229 and primary human intrahepatic 

CCA-derived (CCA4) cell lines 77 were tested for sphere-forming efficiency (SFE) 

as a representation of tumor stem-like subset. To this end, CCA FACS-sorted 

single cells were cultured in 3D non-adherent condition in a 96-well plate. 

Importantly, single-cell sorting prevents formation of cell-aggregation and avoids 

large fraction of non-stem cells to form clusters. Accordingly, only those cells that 

possessed stem-like properties were able to survive in the selective condition and 

to grow in non-adherent condition as 3D-SPH. As control, immortalized 

cholangiocytes (H69) and human intrahepatic biliary epithelial cells (HiBECs) 

were tested for sphere initiation capacity. As expected, only malignant 

cholangiocytes retained sphere-forming potential in contrast to normal 

counterparts (Figure 5A). However, CCA-SPH revealed a high grade of 

heterogeneity in terms of efficiency (HUCCT1 and CCLP1, approximately 20%; 

SG231 and CCA4, 10%), size and morphology (Figures 5A-6A). 

Next, an extensive characterization, including evaluation of in vivo 

tumorigenicity in immune-deficient NSG mice, drug-responsiveness and gene 

expression analysis of CCA-SPH, was performed.  

 

To assess CCA-SPH ability to generate tumors, spheres formed by HUCCT1, 

SG231, CCLP1 and CCA4 were dissociated and 1,000 cells s.c. injected into NSG 

mice (Figures 5B-D). Consistently with their in vitro SFE (Figure 5A), CCA-SPH were 

highly tumorigenic and engrafted 100% of transplanted mice in all examined cell 

lines albeit with differences in tumor size (Figures 5B-D). In contrast to CCA-MON, 

including H69-MON, CCA-SPH were responsible for early tumor initiation and 

formation (3 weeks for HUCCT1, CCLP1; 5 weeks for SG231; 6 weeks for CCA4) 
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during 13 weeks of observation. In addition, SPH-derived tumors (SPH-T) showed 

a large difference in terms of tumor weight and size compared to CCA-MON 

derived tumors (MON-T) (Figure 5D), indicating that SPH-T retained high 

tumorigenic potential when xenotransplanted in animal hosts and represented 

an important source of de novo tumor growth. The most common method to 

determine frequency of self-renewing cells within tumors is a limiting-dilution cell 

transplantation assay. Thus, due to slight differences in tumor potential between 

SPH and MON in CCLP1, we specifically performed limiting-dilution 

transplantation assay in NSG mice with this cell line. After s.c. injection of 1,000, 

100 or 10 cells of both CCLP1-MON and SPH conditions, data analysis using ELDA 

software revealed a significant 20.3-fold increase in the absolute number of 

tumor-initiating fraction (TIF) within CCLP1-SPH (TIF=1/25) compared to MON 

(TIF=1/505) (p=0.0011, Figure 5E). Indeed, as few as 10 SPH cells produced 

tumors, whereas 1,000 MON cells gave rise to fewer tumors at 13 weeks (Figure 

5E) confirming that SPH were remarkably enriched in self-renewing CCA-

propagating cells. Additionally, since self-renewing stem-like cancer cells have 

an unlimited ability to promote tumor growth, capability for serial transplantation 

was also tested (Figure 5F). in this case cells were re-isolated from CCLP1-T 

established from both 1000 SPH and MON cells, propagated in short-term 

cultures and re-transplanted into secondary recipient mice in order to verify SPH-

capability to generate the same tumors through successive tumor generations. 

Notably, SPH not only sustained tumorigenic potential in serial transplantations 

but also progressively improved in tumor frequency. Conversely, corresponding 

MON showed either dramatic increase in tumor latency and decrease in tumor 

incidence at later generations (Figure 5F). Together these data indicated that, in 

accordance with long-term self-renewal potential, SPHs significantly maintained 

tumorigenic potential through diverse xenograft-generations while MON 

reduced it. 
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Furthermore, because drug-resistance represents a key feature of cancer 

stem/initiating cells, 3D cultures were tested for susceptibility to 

chemotherapeutic agents. Indeed, in presence of common anti-CCA drugs 

such as cisplatin, 5-fluorouracil, oxaliplatin and gemcitabine, CCA-SPH revealed 

a better survival rate compared to parental CCA-MON, as measured by 

proliferation MTT assays and indicated by the IC50 (Figure 6B). Although a 

remarkable heterogeneity in terms of drug-sensitivity, SPH-resistance was a 

common phenomenon observed across all CCA lines.  

 

Next, to corroborate our in vivo and in vitro findings, an extensive molecular 

characterization of CCA-SPH was achieved by PCR-arrays specific for CSC, liver 

cancer and ESC pathways. In accordance with the observed heterogeneity in 

SFE, tumor potential and drug-resistance, clustering analysis of differentially 

expressed genes for each pathway revealed cell line-specific SPH gene-

enrichment as compared to respective MON (Figure 7A-C, Figure 8A). Indeed, 

CCLP1, HUCCT1 and CCA4 SPH presented augmented expression for CSC- (55-

69%) and liver cancer-related (61-77%) genes, whereas SG231-SPH retained the 

highest fraction of ESC-related (37%) genes (Figure 8A). However, a core of 30 

common deregulated genes in all CCA-SPH was identified. Specifically, 

expression of 23 CSC-genes, including key molecules for pluripotency and self-

renewal (SOX2, POU class 5 homeobox 1 [POU5F1], Kruppel like factor 4 [KLF4], B 

cell-specific moloney murine leukemia virus integration site 1 [BMI1], NOTCH1, 

MYC, KIT ligand [KITLG], lin-28 homolog A [LIN28A], mastermind like transcriptional 

co-activator 1 [MAML1], YAP1), drug-resistance and survival (ABCG2, large 

tumor suppressor kinase 1 [LATS1], nuclear factor kappa B subunit 1 [NFKB1], nitric 

oxide synthase 2 [NOS2]), metastasis (TGF-β receptor 1 [TGFBR1], bone 

morphogenetic protein 7 [BMP7], FGF receptor 2 [FGFR2]) and stem-like surface 

markers (CD24, CD44, prominin 1 [PROM1], Thy-1 cell surface antigen [THY1], 

EPCAM), resulted enhanced. Moreover, this common gene-set revealed 

overexpression of 6 hepatic oncogenic drivers (cyclin dependent kinase inhibitor  
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1A [CDKN1A], B-cell lymphoma 2 like 1 [BCL2L1], β-catenin 1 [CTNNB1], insulin like 

growth factor 2 [IGF2], integrin subunit beta 1 [ITGB1], lymphoid enhancer 

binding factor 1 [LEF1]) and key ESC factors such as hepatocyte nuclear factor 4 

(HNF4) (Figure 7B), in addition to the well-described liver CSC markers CD13 and 

LGR5 (not included in the arrays) (Figure 7C). Accordantly, further confirmation 

of stem-cell content was considered at protein level by FACS-analysis. Indeed, 

superior expression of CD13, CD44, THY1 and EPCAM were verified in CCA-SPHs 

from all cell lines (Figures 7D-8B), thus suggesting that 3D cultures were effectively 

enriched for tumorigenic cells endowed with stem-like molecular traits. 

Particularly, presence of the most significant CSC surface markers, such as CD44, 

PROM1, THY1 and EPCAM was validated using CCA transcriptome of 104 patient 

database 6 (Figure 8C).  

 

Whereas gene expression profile was consistent with stem-like traits of SPH-

condition, we also tested the strength of 3D culture system compared to 

antigenic approach. To this end, primary CCA4 was immune-sorted for standard 

stem-related marker THY1 and verified for in vitro sphere-ability. However, no 

significant differences in in vitro self-renewing capability were found between 

THY+ and parental cells as control (Figure 8D, left). Next, we combined 

expression of stem-like markers to sphere-forming capacity, thus THY+ cells were 

grown in 3D condition (THY+ SPH) and tested for tumorigenic potential. Notably, 

in vivo analysis revealed similar TIF subset between THY+ SPH (TIF=1/47.8) and 

parental SPH (TIF=1/35.7) (p=0.2028 Figure 8D, right) also confirmed by expression 

of liver cancer, CSC and ESC-like markers (Figure 8D, down). Rather, parental 

CCA4 cells seem to be even slightly more enriched in stem-like fraction 

compared to THY+ cells. These results indicated that 3D culture system 

potentially represents a reliable tool and valid alternative to the antigenic 

approach for CCA stem-like cell selection and enrichment.  

Altogether, this broad functional and molecular characterization proposed the 

existence of a stem/progenitor-like compartment in human CCA identified by 
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3D culture system. Indeed, CCA-SPH exhibited typical stemness hallmarks, such 

as up-regulated stem-cell biomarkers, augmented drug-resistance and 

enhanced capability to initiate malignancy. 

 

4.2 CCA Stem-Like Compartment Educates Macrophage Precursors Toward 

Acquisition of CSC-Associated TAM Phenotype 

In addition to diverse cellular components and ECM, CSC-milieu is enriched with 

tumor cell products such as growth factors, cytokines, prostaglandins and 

diverse protein factors 235. Thus, to mimic a bioactive CSC-niche, freshly isolated 

healthy donor circulating monocytes (CD14+) were exposed to CCA-SPH-CM 

and tested for 1) monocyte chemotactic recruitment based on migration 

properties and 2) macrophage (MØ) differentiation verified by analysis of marker 

expression and functional properties (Figure 9). First, by using a chemotaxis 

chamber, a higher number of CD14+ migrating towards SPH-CM gradient than 

MON-CM was recorded within 6h, suggesting that SPH-CM acted as a strong 

monocyte attractor (Figure 9A). Hence, greater amount of recruited 

mononuclear cells by CCA-SPH maybe find a potential explanation in creating a 

tumorigenic-niche supporting CSC-maintenance. 

 

It is widely accepted that MØs constitute an extremely heterogeneous 

population, of which the extremes are schematically identified as M1 and M2.  It 

is now generally recognized that TAMs are constituted by MØ differentiating 

from blood monocytes rather than tissue resident MØ and show a M2-like 

cancer-promoting phenotype 236-238. Therefore, to determine the effect of CCA 

stem-like component on MØ-precursors, healthy donors CD14+ were cultured in 

presence of CCA SPH-CM, and after 6 days, investigated for MØ-differentiation 

and polarization. Consistently with observed changes in morphology (data not 

shown), by employing a panel of conventional markers typically used for M0 

classical differentiation (CD115, M-CSF receptor), M1 (HLA-DR, human leukocyte 

antigen and MHC class II) and M2-TAM (CD206, macrophage mannose 
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receptor) polarization (Figure 10A), FACS-analysis revealed that in presence of 

CCA SPH-CM, in vitro-educated CD14+ expressed higher CD115 level in contrast 

to CD14+ exposed to MON-CM or M-CSF, which acted as control for M0 classical 

differentiation (Figure 9B, Table 2). As expected and regardless SPH or MON 

culture conditions, CCA-CM induced MØ-differentiation of human monocytes as 

indicated by the presence of CD14+ CD68+ cells in both MON and SPH–CM 

(Figure 10B-C). Notably, more than 94% of SPH-educated CD14+ expressed 

CD14, CD68 and CD115 markers (Figure 9B, Figure 10B-C). Moreover, 

differentiation towards neutrophil lineage and dendritic cells was excluded by 

CD66b and CD1a staining 181, 239, also confirmed in M0-MØs (Figure 10D-E). 

Furthermore, CCA-SPH activated-MØ (SPH MØ) expressed greater levels of 

CD206 and HLA-DR TAM-like markers in contrast to CCA-MON activated-MØ 

(MON MØ) (Figure 9B, Table 2). All these data indicated that both MON- and 

SPH-CM induced MØ-differentiation, but SPH-CM was responsible for MØ-

acquisition of a specific CSC-dependent phenotype. 

Likewise, in in vitro-educated MØs, expression of genes belonging to M1 (e.g., 

CD80, CCL5, CXCL9, CXCL10), M2 (arachidonate 15-lipoxygenase (ALOX15), 

CCL18, and CCL17) and TAM–like (CD163) categories, including genes involved 

in ECM-remodeling and adhesion such as osteoactivin (OA), fibronectin (FN), 

osteopontin (OPN), metalloproteinase ADAM (AD10, AD17), and MMP-2, were 

determined (Figure 9C). Notably, SPH MØs retained unique molecular features 

with concomitant expression of TAM-like (e.g., CD163), M1-like (e.g., CCL5, 

CXCL9, CXCL10), M2-like (e.g., CCL17, CCL18) and matrix remodeling-related 

(e.g., OA, AD17 and MMP2) genes (Figure 9C). 

 

Consistent with our gene expression data, SPH MØs possessed greater adhesion 

ability on FN-support (Figure 9D) and better invasion capacity as shown by in 

vitro Matrigel-coated transwell assays (Figure 9E) 232 compared to MON MØs. 

Both these features are likely associated with dynamic properties of TAM-like cells 

within tumor-initiating niche because of their incessant and deregulated activity 
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regarding ECM-reorganization and turnover. Owing to their potential ability to 

remodel tumor-stroma, SPH MØs may invade and at the same time adhere to 

the ECM-component, thus providing sustenance to tumor-environment. This 

result showed concordance with the evidence that mononuclear phagocytes 

support stem-cell functions, thus contributing to tissue repair and remodeling 211. 

 

4.2.1 CCA humanized-mice recapitulate in vitro educated-MØ traits 

To translate our in vitro data in a human-like setting, we analyzed the in vivo 

immunological response of human mononuclear cells to CCA stem-like 

component at tumor site. Thus, a co-transplantation of human PBMC (hPBMC) 

and patient derived CCA4-SPH into NSG mice was performed (Figure 11A-B, 

Figure 12A). As already extensively demonstrated, NSG mice bearing a targeted 

mutation in IL2rγ gene (responsible for a severe defective murine immune 

component) support considerably high levels of human hematopoietic and 

lymphoid cell engraftment providing an exciting substitute for human 

immunobiology studies 225. Therefore, CCA4-SPH-T bearing mice (when tumor size 

reached 50 mm3, 51 days after s.c. injection) were engrafted with three 

successive doses of hPBMC (15x106/dose) intravenously (i.v) in the retro-orbital 

sinus. Efficiency of human engraftment was tested 6 days after first hPBMC dose 

and presence of human circulating mononuclear cells (mCD45-hCD45+hCD14+) 

was confirmed in mouse peripheral blood by FACS-analysis. In agreement with 

published data 225, frequency of mCD45-hCD45+hCD14+ circulating cells were 

almost 0,7% indicating an effective human cell-engraftment (Figure 12B-C). 

At the end of experiment, both CCA4-SPH-T and CCA4-MON-T were removed 

and FACS-analyzed for human mononuclear cells presence. Well-matched with 

in vitro data, CCA4-SPH-T retained higher number of human CD45+CD68+ 

(83.55%) in comparison with CCA4-MON-T (70%) (Figure 11A). Again, infiltrated 

human CD45+CD14+ in CCA4-SPH-T displayed enhanced expression of M1-like 

(e.g., CD80, CXCL9), M2-like (e.g., CCL18, CCL17) and matrix remodeling-related 
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genes (e.g., OPN, AD10, AD17, MMP2, full-length FN and oncofetal FN (ED-B)) 

(Figure 11B). 

Collectively, our in vitro and in vivo observations indicated that SPH recruit higher 

amount of mononuclear cells at tumor site and CCA-SPH MØs retain a unique 

phenotype compared to MON MØs.  

 

4.2.2 Mixed phenotype of infiltrating-MØs in CCA patients 

Since a broad analysis of human CCA-TAMs has not been provided yet, we 

corroborated our in vitro data with a global investigation of CCA patient-

associated MØs. Abundance, phenotypes and distribution of MØs residing in 

CCA intratumoral and peritumoral tissue were evaluated via IHC. Paraffin-

embedded tissue samples from 23 CCA patients were tested for tumor-

promoting MØs (CD163) presence. An immunohistochemical analysis of tumor 

sections showed that CD163+ cells were more highly expressed in tumor than 

peripheral tumor region (Figure 13A upper, Table 3). Remarkably, analysis of MØ-

distribution within tumor lesion revealed that the largest proportion of CD163+ 

was located in the tumor front (Figure 13A, lower). On further evaluation of 

relationships between TAM-marker density and clinical pathological features of 

CCA patients, we found that CD163+ cells present in tumor front progressively 

increased along with tumor grade (G2/G3>>G1) and were significantly 

associated with CCA pathological grade (p=0.006,) (Figure 13B, Table 3) as well 

as CA19.9 serum marker levels (Figure 13C). 

Likewise, FACS-profiling of mononuclear subsets from fresh resected CCA 

samples confirmed CD115, CD206 as well as HLA-DR higher expression of 

infiltrating CD68+ cells (Figure 13D, Figure 14A-D) in tumor tissue (T) compared to 

peritumoral counterpart (PT). In addition, isolated CD14+ cells from fresh CCA 

tissue revealed increased expression of M1-like (e.g., CD80, CXCL9) and M2-like 

(e.g., CCL18) markers as well as genes involved in ECM remodeling including 

OA, FN and ED-B (Figure 13E) respect to those present in PT regions.  
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Similarly, transcriptome of laser capture microdissected epithelium (EPI) and 

stroma (S) components from 23 CCA patients revealed a significant 

deregulation of CD115, HLA-DR, CXCL9, MMP2 and CD206 in CCA-S compared 

to CCA-EPI compartment (Figures 13F-14E). Further validation was provided by 

tumor (T) transcriptome versus surrounding liver tissue (SL) in an independent 

data set of CCA patients (n=104) (Figure 14F).  

 

Furthermore, IHC analysis of CCA sections revealed a co-localization of both 

CD163 positive elements together with cells expressing CSC-related markers 

(CD44 or EPCAM), thus strongly supporting the potential relationship of infiltrating 

TAMs with CSC-niche (Figure 13G). 

Therefore, our comprehensive characterization showed that phenotype of CCA 

patient MØs retained mixed M1-M2 features, further strengthening our in vitro 

results. 

 

4.3 CCA-SPH Secretory Profiling Specifically Involved in MØ-Differentiation 

Intriguingly, IHC data revealed that SPH-derived tumors retained a prominent 

and well-defined stromal compartment attested by α-SMA staining (indicative of 

murine fibroblast presence), massive collagen presence (Sirius Red) and 

abundance of tumor-associated CD31-positive vessels as well murine F4/80 

tumor-macrophages (Figure 15A). This evidence suggested that SPH-cells acted 

differentially than MON-cells in creating their associated specific surrounding 

microenvironment.  

 

Furthermore, we tested the diverse functionality of CCA cells on the surrounding 

niche, in particular we verified the effect of both SPH and MON on lymphocytes 

as well as endothelial cells. Thus, CellTrace CFSE labeled CD4+ peripheral blood 

lymphocytes (CD4+ T) were cultured in presence of both MON and SPH-CM. It 

was found that SPH-CM was not able to induce CD4+ T cell proliferation, unlike 
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MON-CM did (Figure 15B), suggesting a more immunosuppressive properties of 

SPH-associated microenvironment 193, 212.  

Since angiogenesis is an important hallmark of tumor progression, we evaluated 

the biological activity of CCA-CM on the induction of in vitro capillary-like 

structures formation 231. By using the well-known matrigel angiogenesis assay, the 

effects of SPH-CM and MON-CM on HUVEC cells in term of capillary tube-like 

formation were examined in vitro. In accordance with IHC data (Figure 15A), 

HUVEC cells treated with SPH-CM for 24h revealed the highest neovascular 

response  in comparison to those subjected to MON-CM treatment (Figures 15C-

16A). 

 

Hence, based on this result, we investigated the presence of specific soluble 

mediators released by SPHs using ELISA profiling of conditioned media, trying to 

understand why SPH could differentially affect macrophage differentiation 

compared to MON. Among 37 tested molecules (chemokines, cytokines, 

interleukins and other molecules) specifically involved in MØ-differentiation, 

activation and recruitment, several factors were secreted at extremely low levels 

(<50 pg/mL), whereas 16 showed significant amount in both CCA MON- and 

SPH-CM (Figure 15D, Table 4). A 3-level analysis identified 1) common SPH and 

MON, 2) MON-specific, 3) SPH-specific released factors. First, we found that both 

SPH and MON produced high VEGF concentrations. Therefore, VEGF role in 

driving MØ-differentiation was in vitro investigated. For that reason, healthy 

donor CD14+ were cultured for 6 days in presence of VEGF added to fresh 

monocyte medium, not tumor conditioned (Figure 16B). Clearly, FACS-profile 

reveals enriched expression of CD68 and CD115 as classical MØ markers (Figure 

16B) suggesting its contribution in CCA MØ-differentiation instead of classically 

described M-CSF. Notably, both SPH and MON MØs overexpressed 

corresponding VEGF receptors (VEGFR1-3) (Figure 16C).  

Nevertheless, a cell line-specific MON secretory profile was identified, with 

altered supernatant levels of granulocyte-macrophage colony-stimulating factor 
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(GM-CSF), M-CSF, TNF-α, TGF-β (HUCCT1), GM-CSF, CCL22, CCL20, CXCL8 

(SG231), CCL2, and CXCL18 (CCLP1 cells), CXCL11 (CCA4) (Table 4). However, 

release of soluble mediators was cell line-dependent and no common 

molecules among CCA-MONs were recognized. 

Crucially, a specific secretory SPH-profile consisting of IL13, OA and IL34 was 

identified in all tested cell lines (Figures 15D-16D) and, more importantly, SPH MØs 

overexpressed receptors for IL13 (IL13Ra1, IL13Ra2, IL4R), OA (CD44, ITGA5, ITGB3, 

SDC1, SDC4) (Figure 15E) as well as for IL34 (CD115) already shown in Figure9B. 

Therefore, these data proposed the potential implication of IL13, OA and IL34 in 

the MØ-acquisition of CSC-specific phenotype.  

 

Surprisingly, elevated levels of circulating IL13, OA and IL34 were significantly 

found in CCA patient group (n=12) compared to healthy control subjects (n=12), 

proposing a potential association with CCA-disease (Figure 15F, Table 5). 

However, due to limited availability of human CCA specimens, important 

question such correlation between serum level and abundance of TAMs as well 

clinical pathological features of CCA patients was not addressed. Nonetheless, 

correlative data were provided by a well-described transcriptome database of 

104 CCA patients 6. Amazingly, Pearson correlation coefficient test showed 

significant associations of specific CCA-SPH released molecules (IL13, OA, IL34) 

with SPH stem-like genes such as BMI1, CTNNB1, CD44, KITGL, KLF4, LEF1, LIN28A, 

MAML1, POUF5, SOX2 and THY1 (Table 6) reinforcing the importance of CCA 

stem-secretory profiling in tumor context in CCA patients. Furthermore, intimate 

connection between CSCs and tumor-MØs in human CCA was also denoted by 

meaningful correlations between stem-like SPH genes and SPH MØ-specific 

molecular traits (Table 7). 

 

4.4 IL13, OA, and IL34 are Required for Acquisition of CSC-like TAM Identity  

To confirm the contribution of IL13, OA, IL34 in shaping molecular and functional 

aspects of SPH MØs, inhibition of these molecules by addition of neutralizing 
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antibodies to SPH-CM (previously in vitro tested, to define an effective and non-

toxic concentration, Figures 17-18A) used in single or in combination, was tested 

in vitro and in vivo. Strikingly, MØ differentiated in presence of SPH-CM added 

with antibodies our showed a down-regulation of CD115, CD206 and HLA-DR 

proteins (Figure 17A, Table 8) as well as SPH MØ-associated genes (CXCL9, 

CXCL10, CCL18, CCL5, CD163, OPN and AD17) (Figure 17B) in addition to loss of 

functional properties such as CD14+ migration, MØ-invasion and adhesion 

(Figure 17C). These results suggested a shift towards a MON MØ-phenotype. 

Particularly, each single IL13, IL34, or OA seemed to be independently and 

likewise involved in CD115 expression (Figure 17A). Interestingly, only OA 

molecule is accountable for CD206 and HLA-DR expression (Figure 17A) as well 

as MØ-invasion and adhesion (not statistically significant) (Figure 17C), whereas 

combination of neutralizing antibodies has a major impact in diminishing the 

expression of M1, M2 and ECM remodeling genes (Figure 17B).  

 

Well-matched with antibodies-dependent inhibition of SPH-CM effect, the 

addition of these three SPH-specific molecules to MON-CM reproduced same 

SPH-CM impact on MØ differentiation. Indeed, IL13, OA, and IL34 were able to 

restore SPH MØ-like profile with overexpression of CD115, HLA-DR and CD206 

markers and presence of an equal amount of CD68 protein (Figure 17A, Figure 

18B-C, Table 8). Remarkably, our data displayed the re-expression of specific 

gene-set (CXCL9, CXCL10, CCL18, CCL5, CD163, OPN and AD17) (Figures 17B-

18D) as well as re-acquisition of functional properties such as monocyte 

recruitment, MØ-invasion and adhesion (Figure 17C, Figure 18E-F). Pertinently, all 

these results pointed to a peculiar contribution of these molecules in driving SPH 

MØ-differentiation. Thus, we concluded that although the underlying 

mechanism needs to be explored, combination of IL13, OA, IL34 directly triggers 

differentiation of monocytes into stem-like TAM-subtype. 
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Furthermore, to investigate the significance of diverse MØ-subsets in supporting 

tumorigenicity, three diverse in vitro-educated MØ-subsets such as 1) SPH MØ, 2) 

MON MØ,  3) MON (+IL13+OA+IL34) MØ, 4) SPH (+single or combination of 

antibodies against IL13, OA, IL34) MØ were co-injected with CCA-MON cells into 

NSG mice. As expected, MON MØs enhanced tumor growth compared to MON 

cells injected alone, as already described in diverse study for TAMs. 

Outstandingly, SPH MØs boosted tumorigenic potential compared to MON MØs, 

indicating that CSC-associated TAMs increased in vivo tumor-promoting effect 

of CCA-CSC. As confirmation, co-injected MON with (+IL13+OA+IL34) MØs 

reproduced similar SPH MØ tumorigenic effect (Figure 17D), proving direct 

functional relationship between CSC-associated TAMs and tumor outcome. 
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4.5 Figures 

 

Figure 5 
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Figure 5. CCA self-renewal capacity in vitro and tumorigenic potential in vivo.  

A) Sphere-forming efficiency (SFE) of CCAs (HUCCT1, SG231, CCLP1, CCA4) and 

normal cholangiocytes (HiBECs,H69) calculated by dividing the sphere number 

by number of single cells seeded and expressed as a percentage. Mean ± SEM 

(n=4, p value versus H69 and HiBECS by Student t test, *** p≤0.001).  

Sphere tumorigenic capacity in NSG mice: B) Tumor growth kinetic (n=5) ,  C) 

frequency and D) weight of generated tumors at 13weeks after subcutaneous 

injection into NSG mice of 1,000 SPH/MON isolated cells as monitored by weekly 

palpation. Mean ± SEM (p value versus MON-T by Student t test). 

E) Self-renewing CCLP1 cells calculated by ELDA program (see Methods section) 

(p value versus MON-tumor initiating fraction (TIF) by Student t test). 

F) Serial transplantations of 1,000 CCLP1 SPH/MON cells into flanks of NSG mice 

(n = 4). 
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Figure 6  

 

 

Figure 6. CCA-derived spheres: morphology and drug-response 

A) Representative images of CCA-derived spheres.  

B) IC50s of CCA monolayers and spheres assayed for sensitivity to oxaliplatin, 5-

fluorouracil, cisplatin and gemcitabine (n=5). Data are mean ± SEM (p value 

versus MON by Student t test). 
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Figure 7 
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Figure  7. Molecular properties of CCA spheres. 

A) Pathway-focused qRT-PCR arrays. Hierarchical clustering distinguished each 

CCA-SPH type based on significant gene expression compared to CCA-MON. 

Data first centered and normalized, then clustered using centered correlation 

metrics with complete linkage. Dendrograms depict similarity of individual genes 

and cases. Right side figure indicates clusters of coordinately expressed genes 

with higher expression levels in CCA-SPH than CCA-MON. Relative gene 

expression level depicted according to the scale bar.  

B) List of commonly up-regulated genes in SPH of all CCA cell lines. Genes 

divided according to pathway of belonging. 

C) Relative expression of CD13 and LGR5 transcript-encoding markers. GAPDH as 

internal control. All mRNA levels are presented as fold changes normalized to 1 

(mean expression of monolayer). Mean ± SEM (n=3, p value versus MON by 

Student t test, * p≤0.05, ** p≤0.01, *** p≤0.001). 

D) FACS-profile of CD44, CD13, THY, EPCAM. 
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Figure 8 
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Figure 8. CCA-derived spheres: molecular features and comparison with THY 

enriched spheres  

A) Up-regulated sphere-specific genes using pathway-focused arrays. Significant 

up-regulated genes compared to monolayers expressed as a percentage of the 

total number.   

B) Mean Fluorescence Intensity (MFI) of CSC surface markers in spheres (SPH) 

and monolayers (MON) by FACS.  

C) Validation of the key significant CSC surface markers (CD44, PROM1, THY and 

EPCAM) in tumor lesions (T) and surrounding liver (SL) using transcriptome data 

from 104 CCA patients. Pearson correlation between gene pairs was calculated 

using R and the "cortest" function, yielding correlation coefficients and p-value 

versus SL.  

 D) Upper left: capacity of spheroid formation by THY+ sorted and Parental 

CCA4 cells. Upper right: limiting-dilution cell transplantation assay. Tumor 

initiating fraction (TIF) of THY+ and Parental CCA4 derived spheres. A web-based 

calculation was performed by the ELDA program (see Methods section). p value 

versus Parental-tumor initiating frequency (TIF) by Student t test. Lower: 

comparison of gene expression of CCA4 THY+ SPH and Parental SPH. All mRNA 

levels are presented as fold changes normalized to 1 (mean expression of 

Parental-SPH). Data are mean ± SEM (p value versus Parental by Student t test, * 

p≤0.05, ** p≤0.01, *** p≤0.001). 
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Figure 9 

 



63 

 

Figure 9. Effect of CCA stem-like cells on MØ-precursors.  

A) Migrated CD14+ towards SPH-CM (6h). Relative migrated CD14+cells 

normalized to migrated CD14+ in presence of MON-CM. Mean ± SEM (n=3, p 

value versus MON) . 

B) FACS-profile of CD115, HLA-DR and CD206 expression in MØs obtained by 

culture of CD14+ with SPH- and MON-CM. Histograms represent three 

independent experiments with MØ from three different healthy donors.  

C) Relative expression of M1/M2 and matrix remodeling-related genes. As 

control MØ-differentiated with M-CSF. GAPDH as internal control. All mRNA levels 

presented as fold changes normalized to 1 (n=3).  

D) Adhesion assay using FN-supports. Cells counted and normalized to MON 

MØs (n=3). E) SPH MØ invasion assay using Matrigel-coated transwells.  Cells 

counted and normalized to migrated MON MØs (n=5). Mean ± SEM (p value 

versus MON MØ by Student t test, * p≤0.05, ** p≤0.01, *** p≤0.001). 
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Figure 10 
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Figure 10. Phenotypic analysis of monocytes cultured with SPH- and MON-CM for 

6 days. 

A) CD115, HLA-DR and CD206 staining of M0 classically differentiated 

macrophages in the presence of M-CSF and in vitro-activated M1 (LPS+INFγ) 

and M2 (IL4) macrophages.  

B) CD14 and C) CD68 profile expression determined by FACS. The dot plots are 

representative of three independent experiments using macrophages from three 

different healthy donors.   

D) CD14, CD68, CD66b, and CD1a expressing monocytes differentiated in the 

presence of M-CSF as a classical control for M0 macrophages. The dot plots are 

representative of three independent experiments using macrophages from three 

different healthy donors.   

E) CD66b and CD1a staining determined by FACS was used to exclude 

differentiation toward granulocytes and dendritic cells. The dot plots are 

representative of three independent experiments using macrophages from three 

different healthy donors. Data are mean ± SEM (p value versus Parental by 

Student t test, * p≤0.05, ** p≤0.01, *** p≤0.001). 
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Figure 11 
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Figure 11. Evaluation of TAM-infiltration in mouse model. 

A) FACS-profile of mouse CD45-, human CD45+ CD68+cells in isolated 

mononucleate subset from CCA4-SPH-T and CCA4-MON-T. Upper, 

Representative dot plots shown. Lower, Table with percent of human CD45 CD68 

double positive cells determined by FACS. Data are mean ± SEM (n=3, p value 

versus MON-injected mice by Student t test). 

B) Relative gene expression of humanCD14+ isolated from CCA4-T. As control, 

human CD14+. Human GAPDH as internal control. All mRNA levels presented as 

fold changes normalized to 1 (mean expression of CCA4 MON-T CD14+ cells). 

Mean ± SEM (n=3, p value versus MON-T CD14+ cells). Student t test, * p≤0.05, ** 

p≤0.01, *** p≤0.001. 
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Figure 12 
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Figure  12. Phenotype of CCA-infiltrated macrophages in humanized mice 

A) Upper: schematic illustration of experimental protocol for human CCA4-SPH 

derived cells and human PBMC co-injection. CCA4-SPH engrafted NSG mice 

were injected with three doses of human PBMC.  At day 71, tumors were 

removed and associated-mononuclear component analyzed.  

B) Presence of human CD45+ and human CD45+ CD14+ cells was assessed in 

mouse peripheral blood 6 days after first human PBMC engraftment in NSG mice 

(day 57) and expressed as percentage. The dot plots are representative of three 

independent experiments, using three different mice.  

C) Presence of human CD45+ and human CD45+CD14+ cells determined by 

FACS. Data are mean ± SEM (n=3, p value versus MON-injected mice by Student 

t test).  
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Figure 13 
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Figure 13. Evaluation of TAM-infiltration in human CCA samples. 

A) Quantification of CD163+ cells in both CCA intratumoral (T) and peritumoral 

(PT) regions. Mean ± SEM (n=23, p value versus PT). Distribution of CD163+ cells in 

CCA lesion (L) and tumor front (F) shown by a representative image and 

corresponding quantification. Mean ± SEM (n=23, p value versus F).  

B) Correlation of %CD163+ cells tumor grade (G) (n=25, TableS2, One sided 

Student t-test applied to log ratios in order to compare G1 to G2-G3), as well C) 

CA19.9 serum levels in CCA patients (n=17, TableS2, Pearson correlation 

between two parameters was calculated using R and the cortest function, 

yelding correlation coefficients and p value). 

D) Expression of CD115, HLA-DR and CD206 in CCA-infiltrated MØs by FACS 

included both CCA T and PT regions. Representative histograms of CCA#23 

patient. 

E) Relative expression of M1/M2 and matrix remodeling-related genes. GAPDH as 

internal control. All mRNA levels displayed as fold changes normalized to 1 

(mean expression of PT-MØs). Histograms represent the average of three 

different CCA patients (#24, #25, #26 patients). Mean ± SEM (n=3, p value versus 

PT). 

F) Gene expression evaluated in a set of CCA patients (n=23) where paired 

intratumoral epithelial (EPI) and stromal compartments (S) obtained by laser 

micro-dissection.  

Student t test, * p≤0.05, ** p≤0.01, *** p≤0.001. 

G) Representative images for IHC analysis of CD163 and CSC-related markers 

(CD44, EPCAM) in CCA sections (20X) (CCA lesion (L) and tumor front (F)). 
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Figure 14 
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Figure 14. Phenotype of CCA-infiltrated macrophages in human samples 

A) Experimental design to isolate mononuclear subset from freshly resected CCA 

tissue.  

B) FACS setting to identify macrophage components associated with CCA 

specimens.  

C) Clinical and pathological parameters of CCA patients used for molecular 

characterization (FACS and RT-PCR).  

D) Mean Fluorescence Intensity (MFI) of CD115, HLA-DR and CD206 in CCA-

infiltrated MØs by FACS, included both tumor (T) and peritumor (PT) regions of 

three CCA patients (#23, #24, #25 patient). Data are mean ± SEM (n=3, p value 

versus MON-injected mice by Student t test). 

E) CD206 gene expression was evaluated in a set of CCA patients (n=23) where 

paired intratumoral epitheIial (EPI) and stromal compartments (S) were obtained 

by laser micro-dissection. Pearson correlation between gene pairs was 

calculated using R and the "cortest" function, yielding correlation coefficients 

and p value versus EPI.  

F) Validation of the key significant markers (CD115, HLA-DR, CXCL9, MMP2) in 

tumor lesions (T) and surrounding liver (SL) using transcriptome data from 104 

CCA patients. Pearson correlation between gene pairs was calculated using R 

and the "cortest" function, yielding correlation coefficients and p value versus SL. 
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Figure 15 
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Figure 15. SPH-specific production of bioactive molecules.  

A) Representative images show immunohistochemistry of αSMA, CD31, F4/80 

and Sirius Red staining for collagen on SPH and MON tumor sections. Scale bar: 

200 μm. 

B) Effect of SPH- and MON-CM on CD4 + cells proliferation. CD4+ without 

stimulation used as control. Data presented as % of proliferating CD4+ cells. 

Mean ± SEM (n=3, p value versus MON-CM by Student t test, * p≤0.05, ** p≤0.01, 

*** p≤0.001). 

C) Effect of SPH- and MON-CM on HUVEC tube formation. HUCCT1 and SG231 

MON- and SPH-CM were added to the medium of HUVEC to assay their effect 

on the tube formation ability of HUVEC.  Data presented as Number of 

branches/well . Mean ± SEM (n=3, p value versus MON-CM by Student t test, * 

p≤0.05, ** p≤0.01, *** p≤0.001). 

D) Heat map representation of soluble mediators released by SPH and MON 

(ELISA). Concentration as pg/mL. Molecules clustered with names shown on right 

of heat map. Each raw corresponds to a single compound, and each column 

represents an independent condition. Heat-map color scale corresponds to 

relative molecule expression (on the top, minimum and maximum of all values). 

Results are average of three independent experiments.  

E) Relative expression of transcript-encoding receptors for IL4 (IL4-R), IL13 

(IL13Ra1, IL13Ra2), OA (CD44, ITGA5, ITGB3, SDC4) and IL34 (SDC1) in SPH and 

MON MØ. CD14+ cells as well M-CSF derived MØ, as controls. GAPDH as internal 

control. All mRNA levels are presented as fold changes normalized to 1 (mean 

expression of MON MØ).  

F) IL13, OA and IL34 levels in CCA patients (n=12) and controls (CTR) (n=12) 

serum levels. Data are mean ± SEM (p value versus MON MØ by Student t test, * 

p≤0.05, ** p≤0.01, *** p≤0.001). 
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Figure 16 
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Figure 16. Biological implication of CCA-SPH released factors 

A) Representative pictures of tubules formed by HUVEC growth in MON and SPH-

CM of both HUCCT1 and SG231 cells. Scale bar: 500 μm. 

B) Effect of VEGF on macrophage differentiation. FACS histograms and 

percentage of positive cells for the CD115, CD206, HLA-DR and CD68 after 

addition of VEGF in fresh medium (in grey), as well as the addition of SPH-CM (in 

red) and MON-CM (in blue). The histograms and dot plots represent three 

independent experiments using macrophages from three different healthy 

donors.  

C) Relative expression of transcript-encoding receptors for VEGF (VEGFR1, 

VEGFR2, VEGFR3) in macrophages differentiated in presence of SPH-CM (SPH 

MØ) as well as MON-CM (MON MØ). Freshly isolated human CD14+ cells used as 

control. GAPDH was used as an internal control. All mRNA levels are presented 

as fold changes normalized to 1 (mean expression of MON MØ). Data are mean 

± SEM (p value versus MON MØ by Student t test, * p≤0.05, ** p≤0.01, *** p≤0.001 

). C) IL13, OA and IL34 levels in SPH and MON conditioned medium (n=3). Data 

are mean ± SEM (p value versus MON MØ by Student t test, * p≤0.05, ** p≤0.01, 

*** p≤0.001). 

D) ELISA test of IL13, OA and IL34 concentration of SPH-CM and MON-CM in all 

tested CCA cells. 
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Figure 17 
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Figure 17. IL13, OA, IL34 combination mimics SPH-like effects on MØ-

differentiation and monocyte recruitment.  

A) FACS-profile of CD115, HLA-DR and CD206 expression in MØs obtained by 

CD14+ cultured in presence of IL13 (80pg/mL), OA (0,9ng/mL) and IL34 

(80pg/mL), added to the MON-CM (in green). Inhibitory impact of human 

antibodies anti IL13 (800ng/mL, 10.000X), OA (2700ng/mL, 3000X), IL34 

(800ng/mL, 10.000X) alone (in brown, dark grey and dark green, respectively) or 

in combination was shown (in violet). Effects of both SPH- (in red) and MON- (in 

blue) CM also shown. Histograms represent three independent experiments using 

MØ from three different healthy donors.  

B) Relative expression of M1/M2 and matrix remodeling-related genes. GAPDH 

as internal control. All mRNA levels displayed as fold changes normalized to 1 

(mean expression of MON MØ) (n=3). Mean ± SEM (p value versus MON- or SPH-

CM by Student t test, * p≤0.05, ** p≤0.01, *** p≤0.001).   

C) Invasion and adhesion assay with FN-supports. Cells counted normalized to 

MON MØs(n=5). Migration assay of monocytes. Monocytes counted and 

normalized to monocyte migrated in presence of MON-CM (n=5). Mean ± SEM 

(p value versus MON- or SPH-CM by Student t test, * p≤0.05, ** p≤0.01, *** 

p≤0.001).   

D) MØ-role in supporting in vivo tumorigenicity. 1,000 MONs (SG231) co-injected 

with 300 in vitro-educated MØs into NSG mice. Tumor growth evaluated. 

Mean±SEM (n=5, p value versus MON or SPH MØ at week 13 by Student t test, * 

p≤0.05, ** p≤0.01, *** p≤0.001). 
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Figure 18 
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Figure 18. Macrophage differentiation induced by the combination of IL13, OA 

and IL34 

A) ELISA test of IL13, OA and IL34 concentration to evaluate the inhibitory effect 

of single antibody or combination (antibodies anti IL13 (800ng/mL, 10.000X), OA 

(2700ng/mL, 3000X), IL34 (800ng/mL, 10.000X)) added to SG231 SPH-CM (in violet, 

brown, dark grey and dark green, respectively). The effect of SPH-CM (in red) 

was also shown.  

B) Representative CD68 dot plots of macrophages derived by culture of CD14+ 

cells in the presence of IL13 (80pg/mL), OA (0,9ng/mL) and IL34 (80pg/mL), 

added to the SG231 MON-CM. Additionally, the inhibitory impact of human 

antibodies anti IL13 (800ng/mL, 10.000X), OA (2700ng/mL, 3000X), IL34 

(800ng/mL, 10.000X)  added alone or in combination  to SG231 SPH-CM were 

shown. The effects of both SPH- and MON-CM are also shown. The dot plots 

represent three independent experiments using macrophages from three 

different healthy donors.  

C) FACS profile of CD115, CD206A and HLA-DR positive cells after addition of a 

combination of IL13 (80pg/mL), OA (0,9ng/mL) and IL34 (80pg/mL) to HUCCT1 

MON-CM (in green). The effects of both SPH- (in red) and MON-(in blue) CM are 

also shown. The histograms represent three independent experiments using 

macrophages from three different healthy donors.  

D) Relative expression of transcript-encoding markers for M1 and M2 features as 

well for genes involved in ECM remodeling, adhesion, invasion in macrophages 

differentiated in presence of: HUCCT1 SPH-CM (in red), MON-CM (in blue), MON 

(+IL13 (80pg/mL)+OA (0,9ng/mL)+IL34 (80pg/mL))-CM (in green). GAPDH was 

used as an internal control. All mRNA levels are presented as fold changes 

normalized to 1 (mean expression of macrophages differentiated with MON-

CM). Data are mean ± SEM (n=3, p value versus MON MØ by Student t test, * 

p≤0.05, ** p≤0.01, *** p≤0.001).  

E) CD14+ cells migrated towards the combination of IL13 (80pg/mL), OA 

(0,9ng/mL) and IL34 (80pg/mL) added to HUCCT1 MON-CM (in green) (6 h). The 
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effects of both SPH- (in red) and MON-(in blue) CM are also shown. The CD14+ 

cells that migrated were counted and normalized to the number of CD14+ cells 

that migrated in the presence of MON-CM. Data are mean ± SEM (n=3, p value 

versus MON-CM by Student t test, * p≤0.05).  

F) Invasion and adhesion assay of macrophages differentiated in presence of a 

combination of IL13 (80pg/mL), OA (0,9ng/mL) and IL34 (80pg/mL) to HUCCT1 

MON-CM (in green). The effects of both SPH- (in red) and MON-(in blue) CM are 

also shown. The cells were counted and normalized to the number of MON-

derived macrophages (MON MØ). Data are mean ± SEM (n=3, p value versus 

MON MØ by Student t test, * p≤0.05).  
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4.6 Tables 

 

Table 2. Expression of CD115, CD206 and HLA-DR by MØ cultured in presence of 

CCA SPH- and MON-CM  as well as in presence of M-CSF, IL4, LPS/INFγ and 

VEGF. 
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Table 3. Clinical and pathological parameters of CCA patients used for CD163 

immunohistochemical staining. 
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Table 4. List of all 37 soluble mediators tested in sphere (SPH) and monolayer 

(MON) conditioned medium (CM) in all CCA cell lines. 
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Table 5. Clinical and pathological parameters of 12 CCA patients used for IL13, 

OA, and IL34 serum quantification. 
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Table 6. Correlation of SPH stem-like genes and OA, IL34 and IL13 in clinical CCA 

(n=104 patient tumors) using a microarray database 6. Pearson correlation 

between gene pairs was calculated using R and the "cortest" function, yielding 

correlation coefficients and p-values. 
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Table 7. Correlation of SPH stem-like genes and SPH MØ in clinical CCA (n=104 

patient tumors) using a microarray database 6. 
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Table 8. Expression of CD115, CD206 and HLA-DR by MØ cultured in presence of 

CCA SPH- and MON-CM  as well as in presence of MON-CM added with 3 

sphere-specific released molecules and SPH-CM added with antibodies for the 3 

sphere-specific released molecules. 
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5. DISCUSSION  

 

Current CCA treatment strategies are largely ineffective, making this tremendous 

aggressive disease an unmet medical need 4, 5, 7. Therefore, understanding the 

pathogenesis of CCA is essential for identifying potential curative targets. The 

recently proposed concept of stemness-driven carcinogenesis highlights the 

existence of a therapeutically challenging cellular subset responsible for tumor 

initiation, dissemination and drug-resistance, termed CSCs 24.  

Our study mainly focused on exploration of stem-compartment in human 

intrahepatic CCA by using a 3D culture system as a well-known functional tool to 

select and enrich for tumor-stem like cells. CSCs represent a still poorly explored 

research line in CCA field, likely because of the absence of CCA-CSC specific 

markers, that strongly limits the use of classical antigenic approach to isolate 

CSCs. Moreover, a recent work showed that CCA-CSCs are extremely 

heterogeneous in terms of marker expression, emphasizing the importance to 

use an alternative tool to isolate CSC subpopulation 77. Specifically, 3D sphere 

assay has never been used to enrich CCA stem-like cells and in our study we 

demonstrated its strenght, even compare to antigenic approach (by using THY1 

as general CCA-CSC marker). Accordingly with our hypothesis, only oncogenic 

transformed cholangiocytes were capable to initiate 3D sphere formation 

compare to the normal counterpart, suggesting a potential existence of stem-

like subset possibly responsible for tumor initiation and progression in CCA. 

Notably, heterogeneity in sphere forming capability is evident across our panel 

of CCA cell lines, as indication of a possible correlation with diverse patterns of 

molecular expression and different grades of tumorigenic potential in vivo. Thus, 

by using in vitro spherogenicity and in vivo tumorigenicity as criteria of stemness 

properties, for the first time we provided extensive molecular and functional 

evidence for CCA stem-like compartment identified by 3D cultures. First, 

although with a certain degree of heterogeneity between cell lines, all CCA-SPH 

displayed an higher drug resistance compare to CCA-MON, stressing the 
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relevance of drug  resistance as a common well known CSC feature. Moreover, 

the extensive molecular characterization of CCA-SPH performed by pathway-

focused PCR arrays showed cell line-specific over-expression of key genes 

associated to CSC-like features, embryonic stem cell signaling and liver 

oncogenic pathways. Despite the cell line-specific gene upregulation, we were 

able to identify a set of 30 common deregulated genes in all CCA-SPH (23 CSC-

genes, 6 liver cancer related markers and 1 ESC factor), suggesting that CSCs 

might maintain a common stemness-related gene expression signature, with a 

clinically potential translational value.  

 

Secondly, here we proposed that tumor stem-like cells might model their 

immunopathological-niche according to their necessities. Indeed, we focused 

on CSC-secretome responsible for infiltrating-monocyte recruitment and MØ-

priming. Pertinently, aim of this study was the exploration of CSC impact on TAM 

traits in CCA. Indeed, we showed that TAMs, as highly plastic population 180, 182, 

are able to acquire a peculiar phenotype dependent on bioactive CSC-

secretome. Since it’s became clear that CSC-TAM crosstalk is bidirectional, 

further studies are required to deepen SPH MØ impact on tumorigenic potential 

and drug-resistance of SPH cells. 

A variety of modulators released by stromal and tumor cells recruit circulating 

monocytes to tumor sites, cause their differentiation into MØs and severely 

affect their functions 226, 240-242. In this respect, we demonstrated that SPH-CM act 

as a potent monocyte-attractor. Moreover, our results showed profound 

molecular and functional differences among MØ activated by CCA-SPH in 

comparison to MON MØs suggesting that different TAM-compartments within 

same tumor may reflect diverse responses to divergent local signals. Indeed, 

tumor stem-like associated-TAMs displayed mixed M1-M2 molecular traits, 

including  the expression of M1-M2 surface markers (CD206 and HLA-DR) as well 

as M1-M2 typical associated genes (e.g., CXCL10, CCL18, CD163). 

Overexpression of CCL5 could be consistent with TAM ability to recruit new 
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peripheral blood circulating monocyte at tumor site, in order to sustain tumor 

growth and progression. Moreover, SPH MØ retained higher invasion and 

adhesion capability, also in accordance with increased expression of genes 

involved in ECM remodeling (e.g., OA, OPN, FN, MMP-2). Hence, a mixed state 

of MØ-subsets reinforced the concept of TAM plasticity. It’s important to note 

that CSC ability to modulate a macrophage dominated inflammatory response 

is similar to the reactive phenotype displayed by cholangiocytes of dysplastic 

bile ducts in a mouse model of congenital hepatic fibrosis 243, a disease with high 

risk of CCA development.  

 

Our in vitro finding were extensively validated in our ‘patient-like’ mouse model 

and human CCA specimen, underlining the strength of our results. Regarding the 

limitations of our ‘patient-like’ animal model, we knowledge that orthotopic 

allograft models for human CCA represent the impeccable tool to recapitulate 

key clinical, cellular and molecular features of this aggressive tumor 244. 

Moreover, mice harboring a human immune system (humanized mice with 

human CD34+ transplantation) could recreate a human-type TME for tumors 

growing as xenografts 225, 245, 246, likely preserving a CSC-niche that is more similar 

to that present in cancer patients, thus facilitating our understanding of the role 

of CSCs in tumorigenesis. Unfortunately, while diverse animal models of CCA 

(including numerous new genetic models) do exist, an effective patient-like CCA 

animal model remains to be established 244. Thus, this lack represents a limitation 

in the understanding the CCA pathogenesis. Nevertheless, in this study we 

alternatively presented a first human CCA–like setting (humanized mice with 

transplantation of hPBMCs) as preclinical platform to investigate mechanisms 

bridging CCA-disease to CCA-infiltrating MØs for synergistic therapies. Notably, 

despite several limitations, our humanized xenograft (s.c. patient CCA-SPH and 

i.v. hPBMC) highlights SPH biological relevance in priming associated-MØs.  
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Of relevance, our findings indicated that CCA-SPH specific released molecules, 

such as IL13, OA and IL34, are responsible for modeling the macrophage 

component associated to CSCs.  

Interestingly, IL34 has recently been identified as a second ligand for 

hematopoietic colony stimulating factor-1 receptor (CSF-1R) together with the 

cytokine CSF1, also known as M-CSF 247. CSF1-R activation establishes signaling 

cascades leading to differentiation and functionality of monocytes, tissue-MØs 

and antigen-presenting dendritic cells 236, 240. Thus, MØ-differentiation may be 

possibly driven by IL34 or alternative mechanisms (e.g., VEGF) proposing new 

clues for CCA-immunotherapy strategies 241. 

Consistently, IL13 has been described as a typical Th2 type cytokine that, 

together with IL4, generated alternatively activated M2-MØs 236, 240. This clearly 

suggested that SPH induced-MØs resemble M2-polarized cells. 

Lastly, OA (also known as glycoprotein non-metastatic melanoma protein b 

[gpnmb]), a type 1 transmembrane glycoprotein, is produced by embryonic 

nervous system, developing nephrons, osteoblasts and osteoclasts. Remarkably, 

OA is overexpressed in patients with glioblastoma multiform and significantly 

correlated with poor outcome 248. Moreover, in breast cancer cells, OA high 

expression levels are required for their enhanced invasiveness and osteolytic 

bone metastases formation .  

Notably, levels of these 3 CCA-SPH specific associated factors were significantly 

found elevated in CCA patients compared to healthy control subjects, 

suggesting their potential crucial role in colangiocarcinogenesis. Future analysis 

with greater sample size are surely needed, in order to validate the association 

of CSC-secreted factors with CCA-disease (e.g., with clinical pathological 

features of CCA patients, tumor stage or grade). 

 

Together our observations pointed to a stem-like secretome (IL13, OA, IL34 

production) and resulting-MØ phenotype in human CCA. Although additional 

studies are warranted to formally dissect molecular mechanisms underlying 
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differentiation of recruited monocytes towards SPH MØ-subset, we provide a 

rationale for IL13, OA and IL34 targeting. Indeed, extra analyses are essential in 

demonstrating the base knowledge for effective prevention and/or treatment of 

malignant SPH MØ-subset, thus leading to exploration of combination therapies 

in CCA patients. 

 

In summary, the current study provides a partial map of the multilayered 

relationship between TAMs and CSCs in CCA. Although at initial level, this work 

offers numerous new insights within somewhat intricate network of CSC-TAM in 

CCA, with potentially future clinical implications. Indeed, since immune plasticity 

represents an important hallmark of tumor and CSCs are able to manipulate 

stromal cells to their needs, a better definition of key deregulated immune 

subtype responsible to cooperate in supporting tumor initiation may facilitate the 

development of new therapeutic approaches. Considering that human CCA 

represents a clinical emergency, it is essential to move to predictive models to 

understand the adaptive process of macrophage component (imprinting, 

polarization and maintenance) engaged by tumor stem-like compartment. 

Hence, a better understanding of CSC-macrophage interplay, partially provided 

here, may be a very clinically helpful adjunct in the context of CCA multi-

targeting strategies. Indeed, reprogramming CSC–TAM crosstalk could also be 

an interesting approach to yield a therapeutic effect. To this end, in the contest 

of nanotechnology medicine, in vivo administration of IL13, OA and IL34 

antibodies combined with chemotherapies, potentially represent a versatile 

biomedical tool to improve CCA outcome.  

More research is warranted in this area to harness the great potential that this 

emerging knowledge offers. 
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7. APPENDIX 

 

Under the editorial permission, several parts of ‘Introduction’ section have been 

used from the following reviews: 

 Raggi C, Mousa H, Correnti M, Sica A, Invernizzi P. Cancer Stem Cells and 

Tumor-Associated Macrophages: a Roadmap for Multitargeting Strategies. 

Oncogene 2015  

 Correnti M and Raggi C. Stem-like plasticity and heterogeneity of 

circulating tumor cells: current status and prospect challenges in liver 

cancer. Oncotarget 2016 

 

In addition, ‘Methods’, ‘Results’ and ‘Discussion’ sections from: 

 Raggi C*, Correnti M*, Sica A, Andersen JB, Cardinale V, Alvaro D, Chiorino 

G, Forti E, Glaser S, Alpini G, Destro A, Sozio F, Di Tommaso L, Roncalli M, 

Banales JM, Coulouam C, Bujanda L, Torzilli G, Invernizzi P. 

Cholangiocarcinoma  Stem-like  Subset  Shapes  Tumor-initiating  Niche  by  

Educating Associated Macrophages. Journal of Hepatology 2016 *first 

authors 

 














