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Abstract. Isogeometric analysis has been introduced as an alternative to finite element methods
in order to simplify the integration of computer-aided design (CAD) software and the discretization
of variational problems of continuum mechanics. In contrast with the finite element case, the basis
functions of isogeometric analysis are often not nodal. As a consequence, there are fat interfaces
which can easily lead to an increase in the number of interface variables after a decomposition of
the parameter space into subdomains. Building on earlier work on the deluxe version of the BDDC
(balancing domain decomposition by constraints) family of domain decomposition algorithms, several
adaptive algorithms are developed in this paper for scalar elliptic problems in an effort to decrease
the dimension of the global, coarse component of these preconditioners. Numerical experiments
provide evidence that this work can be successful, yielding scalable and quasi-optimal adaptive
BDDC algorithms for isogeometric discretizations.
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1. Introduction. There has recently been considerable effort toward developing
adaptive methods for the selection of primal constraints for BDDC (balancing domain
decomposition by constraints) algorithms, including its deluxe variant. The primal
constraints of a BDDC or FETI-DP (dual-primal finite element tearing and intercon-
nect) algorithm provide the global, coarse part of such a preconditioner and are of
crucial importance for obtaining rapid convergence of these preconditioned conjugate
gradient methods for the case of many subdomains. When the primal constraints are
chosen adaptively, we aim at selecting a primal space, which for a certain dimension of
the coarse space provides the fastest rate of convergence for the iterative method. In
the alternative, we can try to develop criteria which will guarantee that the condition
number of the iteration stays below a given tolerance.

In this paper, we will consider the use of adaptive algorithms to select the primal
constraints and the associated BDDC change of basis for elliptic problems and iso-
geometric analysis. While for lower order finite element approximations one typically
starts out with a small primal space, associated with all the subdomain vertex vari-
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ables, and then adds primal constraints in order to obtain improved iteration counts,
a similar strategy for an isogeometric problem will introduce a primal space that can
be quite large, especially if we have a high polynomial degree and high regularity
inside the patches. This depends on the fact that we have fat vertices, potentially
with many degrees of freedom, as well as fat edges and faces, resulting from the fact
that the basis functions are not nodal and can have large supports; see section 3 for
a definition of these fat interface classes. Therefore, in this study, we will attempt
to reduce this original primal space by developing adaptive algorithms. We will also
consider subspaces of primal variables associated with the subdomain edges and, in
three dimensions, subdomain faces. We note that we made an attempt to shrink the
primal spaces in a previous study [7], but that our results then deteriorated when the
degree of the basis functions grew. At that time, we did not have tools for the au-
tomatic selection of our primal space. We also note that the linear systems resulting
from discretizing the elliptic problems using isogeometric analysis become extremely
ill-conditioned with increasing polynomial degree and high regularity (see [20]), and
therefore the development of preconditioners is quite challenging. For an introduction
to isogeometric analysis, see [12], and for a recent survey of the state of the theory,
see [3]. For earlier work on preconditioned iterative solvers for isogeometric approx-
imations, see [4, 6, 8, 11, 19, 30]; see also [36] for a recent extension of dual-primal
preconditioners to isogeometric discretizations of almost incompressible elasticity and
Stokes problems, partly based on work by Tu and Li [41].

The work on adaptive selection of primal constraints over the last few years has
focused on lower order finite elements, and several of these methods are now fully
justified theoretically and also perform very satisfactorily. Until quite recently, the de-
velopment of the theory has been focused on primal constraints for equivalence classes
with two elements, such as those of subdomain edges for problems defined on domains
in the plane; see, e.g., a recent survey paper by Klawonn, Radtke, and Rheinbach [28].
For other papers on this case, see [15, 22, 25, 26, 27, 34, 37, 39]. Most of these papers
focus on the adaptive selection of two-dimensional (2D) or three-dimensional (3D)
face constraints, i.e., constraints associated with the interface between pairs of subdo-
mains, by solving certain generalized eigenproblems. While it is important to further
study the best way of handling all cases, the basic issues appear to be well settled
when the equivalence classes have no more than two elements. We note that, in our
context, an equivalence class is a set of spline knots, associated with basis functions
the supports of which intersect the same set of subdomains into which the parameter
space has been subdivided; see sections 2 and 3.

For problems in three dimensions, there is, except for quite special subdomain
configurations, a need to develop algorithms and results for equivalence classes with
three or more elements. There is work by Mandel, Soused́ık, and Š́ıstek, who de-
veloped condition number indicators in [34]. Talks by Dohrmann and by Klawonn
at the Twenty-third International Conference on Domain Decomposition Methods
(DD23, July, 2015) reported on considerable progress in giving similar algorithms a
firm theoretical basis and have since resulted in [38] and [24]. A talk by Kim at the
same conference, on joint work with Chung and Wang [23], also reported considerable
progress. Their main algorithm for problems in three dimensions is similar to but not
the same as that of [10]. The main results of the latter paper, which were developed
independently, were also reported at the same DD23 minisymposium by the second
author of [10]. We note that the paper by Pechstein and Dohrmann [38] presents a
unified approach to all of these methods. As we have already noted, for isogeometric
problems, there is a need to consider these issues even for the fat subdomain vertices
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which are associated with more than two subdomains, even for 2D problems.
We note that in the design of a BDDC algorithm we have to choose a primal space

and also an average operator associated with the interface between the subdomains
into which the given domain of the elliptic problem has been subdivided. The choice
of primal constraints is the main issue of this paper, and we will explore a number of
different choices. As for the averaging, based on our experience in a previous study
[7], we will exclusively use the deluxe variant of BDDC; for older, less competitive
algorithms, see [5].

The rest of this paper is organized as follows: A brief overview of isogeometric
analysis is given in section 2. This is followed by a short introduction to BDDC,
including its deluxe variant, in section 3. The subsequent section introduces several
generalized eigenvalue problems with which we can make adaptive choices of primal
constraints for our BDDC algorithms. In section 5, numerical results are provided for
several different adaptive algorithms, which with quite small primal constraint spaces
result in a small number of iterations even for problems based on splines of high order
and high regularity.

2. Isogeometric discretization of scalar elliptic problems. Given a bound-
ed and connected domain Ω Ă Rd, d “ 2, 3, typically generated by a CAD (computer-
aided design) software system, we consider the model elliptic problem

(2.1) ´∇ ¨ pρ∇uq “ f in Ω, u “ 0 on BΩ,

with a scalar coefficient ρ satisfying 0 ă ρmin ď ρpxq ď ρmax @x P Ω. For simplicity,
we describe our problem and preconditioner mostly for the 2D single-patch case.
Comments on extensions to three dimensions and multipatches can be found in [7].

We discretize (2.1) with isogeometric analysis (IGA) techniques based on B-splines
and nonuniform rational basis splines (NURBS) basis functions; see, e.g., [21] for a
general introduction to IGA. The bivariate B-spline discrete space is defined by

(2.2) pSh :“ spantBp,q
i,j pξ, ηq, i “ 1, . . . , n, j “ 1, . . . ,mu,

where the bivariate B-spline basis functions Bp,q
i,j pξ, ηq :“ Np

i pξqM
q
j pηq are defined

by tensor products of 1D B-spline functions Np
i pξq and Mq

j pηq of degree p and q,
respectively; in our numerical experiments, we will consider only the case of p “ q.
An additional important parameter is k ď p ´ 1, the number of continuous deriva-
tives of the basis functions. In the parameter space, there is a tensor product mesh
with rectangular elements associated with the B-spline knots; we will also define our
subdomains in terms of rectangles formed by unions of such elements.

Analogously, the NURBS space is the span of NURBS basis functions defined in
one dimension by

(2.3) Rp
i pξq :“

Np
i pξqωi

řn
k“1N

p
k pξqωk

“
Np

i pξqωi

wpξq
,

with a positive weight function wpξq :“
řn

k“1N
p
k pξqωk P pSh, and in two dimensions

by

(2.4) Rp,q
i,j pξ, ηq :“

Bp,q
i,j pξ, ηqωi,j

řn
k“1

řm
`“1B

p,q
k,` pξ, ηqωk,`

“
Bp,q

i,j pξ, ηqωi,j

wpξ, ηq
,

where wpξ, ηq is the weight function and ωi,j the positive weights associated with a
nˆm net of control points given by Ci,j . The discrete space of NURBS functions on
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the domain Ω is defined as the span of the push-forward of the NURBS basis functions
(2.4) (see, e.g., [21]),

(2.5) Nh :“ spantRp,q
i,j ˝ F

´1, with i “ 1, . . . , n, j “ 1, . . . ,mu,

with F : pΩ Ñ Ω, the geometrical map between parameter and physical spaces, defined
by Fpξ, ηq :“

řn
i“1

řm
j“1R

p,q
i,j pξ, ηqCi,j .

For simplicity, we will consider only the case with a Dirichlet boundary condition
imposed on all of BΩ, and we can then define the spline space in the parameter space
and the NURBS space in physical space, respectively, as

pVh :“ pSh XH
1
0 p
pΩq “ spantBp,q

i,j pξ, ηq, i “ 2, . . . , n´ 1, j “ 2, . . . ,m´ 1u,

Vh :“ Nh XH
1
0 pΩq “ spantRp,q

i,j ˝ F
´1, i “ 2, . . . , n´ 1, j “ 2, . . . ,m´ 1u.

The IGA formulation of problem (2.1) then reads

(2.6)

#

Find uh P Vh such that

apuh, vhq “ xf, vhy @vh P Vh,

with the bilinear form apuh, vhq :“
ş

Ω
ρ∇uh ¨ ∇vhdx and right-hand side xf, vhy :“

ş

Ω
fvhdx.

3. Equivalence classes, Schur complements, and BDDC precondition-
ers. After introducing the equivalence classes relevant for isogeometric approxima-
tions (see also [7]), we will give a short introduction to BDDC algorithms; for more
details, see, e.g., [31]. For an introduction to its deluxe variant, see, e.g., [42].

BDDC algorithms are domain decomposition algorithms based on the decompo-
sition of the domain Ω of an elliptic operator into nonoverlapping subdomains Ωi.
Such algorithms were introduced by Dohrmann in 2003 [14], a few years after the
introduction of the FETI-DP algorithms; see [18]. Important theoretical findings are
given in [32, 33]. In the case of lower order finite elements, each of the subdomains
is often associated with tens of thousands of degrees of freedom. The subdomain
interface Γi of Ωi does not cut through any elements and is defined by Γi :“ BΩizBΩ.

In the isogeometric 2D context, the subdomain Ωi are images of rectangles pΩi in the
parameter space, each a union of rectangular elements defined by four knots, which
form its vertices.

The equivalence classes associated with the subdomains are defined as follows
for 3D problems: We first separate the knots of the interior of these subdomains
and those associated with the interface Γ :“

Ť

i Γi; those in the interior are the
knots with B-spline basis functions supported in individual subdomains. The set of
the remaining interface knots does not form just a skeleton as for low order finite
elements, but forms a “fat” interface due to the large support of the spline basis
functions (see, e.g., [7, Figure 1]). We partition this fat interface into equivalence
classes associated with subdomain vertices, edges, and faces. We first separate off
the fat vertex equivalence sets, which are given by the knots with B-spline basis
functions with a subdomain vertex inside their support. We next identify the fat
edge equivalence classes among the remaining interface knots with B-spline basis
functions with supports that intersect a subdomain edge. Finally, the remaining fat
interface knots, which have basis functions with supports intersecting a subdomain
face, are separated into subsets associated with the individual subdomain faces. Once
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these equivalence classes have been identified, we will find many similarities with the
development of BDDC algorithms for finite element problems.

Given the stiffness matrix Apiq of the subdomain Ωi and its part of the fat in-
terface, we obtain a subdomain Schur complement Spiq by eliminating the interior
variables, i.e., all those associated with basis functions with supports confined to
Ωi. We will also work with principal minors of these Schur complements associated
with a subdomain vertex, subdomain edge, and subdomain face, denoting them by

S
piq
V V , S

piq
EE , and S

piq
FF , respectively.

The interface space is then divided into a primal subspace of functions which are
continuous and a complementary, dual, subspace for which we will allow multiple val-
ues across the interface during part of each iteration step. The BDDC and FETI-DP
algorithms can be described in terms of three product spaces of functions associated
with sets of interface knots:

xWΓ Ă |WΓ ĂWΓ.

WΓ is built as a product space of the spaces associated with the Γi, without any
continuity constraints across the interface. Elements of |WΓ have common values of
the primal variables but allow multiple values of the dual variables, while the elements

of xWΓ are continuous at all knots of Γ. We can change variables, explicitly introducing
the primal variables and complementary sets of dual variables. This simplifies the
presentation and also appears to make the methods more robust; alternative ways of
implementing the algorithms are also possible (see, e.g., [14]). After eliminating the
interior variables, we can then write the subdomain Schur complements as

Spiq “

˜

S
piq
∆∆ S

piq
∆Π

S
piq
Π∆ S

piq
ΠΠ

¸

.

We will partially subassemble the Spiq, obtaining qS, enforcing the continuity of
the primal variables only. Thus, we then work in |WΓ. In each step of the iteration,
we solve a linear system with the coefficient matrix qS. In the alternative, we could
also work with a linear system with a matrix obtained by partially subassembling
the subdomain stiffness matrices Apiq. We note that solving these linear systems will
be much faster than if we work with the fully assembled system if the dimension of
the primal space is modest. At the end of each iteration, the approximate solution
is made continuous at all knots of the interface; continuity is restored by applying a
weighted averaging operator ED, which maps |WΓ into xWΓ.

In each iteration, we first compute the residual of the fully assembled Schur com-
plement. We then apply ET

D to obtain a right-hand side of the partially subassembled
linear system, solve this system, and then apply ED. This last step changes the values
on Γ, unless the iteration has converged, and can result in nonzero residuals at interior
knots next to Γ. In a final step of each iteration step, we eliminate these residuals
by solving a Dirichlet problem on each of the subdomains. We always accelerate the
iteration with the preconditioned conjugate gradient algorithm.

3.1. BDDC deluxe. When designing a BDDC algorithm, we have to choose
an effective set of primal constraints and also a good recipe for the averaging across
the interface. This paper concerns the choice of the primal constraints, while we will
always use the deluxe recipe in the construction of the averaging operator ED.

In work on 3D problems formulated in Hpcurlq, it was found that traditional
averaging recipes did not work uniformly well; cf. [16, 17]. The same is true for
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problems in Hpdivq; see [35]. This occasional failure has its roots in the fact that
there are two sets of material parameters in these applications. The deluxe variant
that was then introduced has proven quite successful in a variety of applications; see,
e.g., [42] and, in particular, [7].

A face component of the average operator ED, for a problem in three dimensions,
across a subdomain face F Ă Γ, common to two subdomains Ωi and Ωj , is defined in

terms of that face equivalence set of variables and principal minors S
pkq
FF of the Spkq,

k “ i, j. The deluxe averaging operator, for F , is then defined by

w̄F :“ pEDwqF :“
`

S
piq
FF ` S

pjq
FF

˘´1`
S
piq
FFw

piq
F ` S

pjq
FFw

pjq
F

˘

.

Here w
piq
F is the restriction of wpiq to the face set, F (and analogously for w

pjq
F ). By

replacing F by E, we obtain the formula for an edge for a 2D problem.

The action of pS
piq
FF `S

pjq
FF q

´1 can be implemented by solving a Dirichlet problem,
with zero boundary values, on Ωi Y F Y Ωj , where F is the face between the two
subdomains and with a right-hand side which vanishes in the interior of the two
subdomains. This can add significantly to the cost. In the economic version (e-
version), we replace this large domain by a thin domain built from one or a few layers
of elements next to the face, and this often results in very similar performance; see,
e.g., [17].

Deluxe averaging operators are also developed for subdomain edges and subdo-
main vertices for problems in three dimensions and for subdomain vertices alone for
problems in two dimensions. Given the simple geometry of the parameter space that
we are considering, we find that in all these cases the equivalence classes will have four
or eight elements for any subdomain vertex or edge in the interior of Ω. Thus, for an
interior subdomain vertex V in two dimensions, shared by subdomains Ωi,Ωj ,Ωk,Ωl,
we will use the formula

w̄V :“
`

S
piq
V V ` S

pjq
V V ` S

pkq
V V ` S

p`q
V V

˘´1`
S
piq
V V w

piq
V ` S

pjq
V V w

pjq
V ` S

pkq
V V w

pkq
V ` S

p`q
V V w

p`q
V

˘

.

The core of any estimate for a BDDC algorithm involves the norm of the average
operator ED. By an algebraic argument known, for FETI-DP, since 2002 (cf. [29]),
we know that

(3.1) condpM´1
BDDC

pSq ď }ED} qS ,

where M´1
BDDC is the BDDC preconditioner and pS is the Schur complement of the

stiffness matrix A of the discrete problem (2.6). We recall that FETI-DP and BDDC
methods with the same set of primal constraints have essentially the same spectrum,
except for possible 0 and 1 eigenvalues; see [33, 31, 9].

4. Condition number bounds and generalized eigenvalue problems. We
will base our discussion, in part, on results recently developed in [10]. But we will
first follow Dohrmann and Pechstein closely; cf. [15, 37]. They managed to simplify a
relevant expression for the case of equivalence classes with two elements and also found
an interesting old reference [1] in which parallel sums were introduced; these ideas have
also been explored by Klawonn et al. [25] and by Kim, Chung, and Wang [23].

For any two symmetric positive definite matrices A and B, we define their parallel
sum as

(4.1) A : B :“ pA´1 `B´1q´1.
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This is relevant for a face in three dimensions (or an edge in two dimensions) since,
for equivalence classes with two elements, the relevant generalized eigenvalue problem
will, as is convincingly argued in [38, subsection 5.2], be

(4.2) rS
piq
FF : rS

pjq
FFφ “ λS

piq
FF : S

pjq
FFφ.

Here the matrix on the right, built from principal minors of Spiq and Spjq, respectively,
will be strictly positive definite. The matrices on the left of (4.2) represent the minimal
energy extension of the values on the face F onto the rest of Γi. Writing a subdomain
Schur complement as

Spiq “

˜

S
piq
F 1F 1 S

piq
F 1F

S
piqT
F 1F S

piq
FF

¸

,

where F 1 :“ ΓizF , we find that

(4.3) rS
piq
FF :“ S

piq
FF ´ S

piqT
F 1F S

piq´1
F 1F 1 S

piq
F 1F .

These matrices are only positive semidefinite for subdomains in the interior of
the domain Ω if there are no existing constraints. We can handle any such singular
matrices by modifying the definition of the parallel sum using generalized inverses
or by adding to the Schur complements Spiq and Spjq the term εI, with ε ą 0 small
compared with the eigenvalues of Spiq and Spjq. Any existing constraint, e.g., a no-
net-flux condition for the Darcy flow or for almost incompressible elasticity, can also
be incorporated, and additional constraints can be obtained by projecting (4.2) onto
the space orthogonal to the existing constraints [46]. For additional insight, see [38].

Instead of developing an estimate for ED, we will work with PD :“ I´ED. Thus,

we estimate the Spiq-norm of RT
F pw

piq
F ´ w̄F q, instead of pRT

F w̄F q
TSpiqRT

F w̄F . Here
RF denotes the restriction to the face F . By simple algebra, we find that

w
piq
F ´ w̄F “

`

S
piq
FF ` S

pjq
FF

˘´1
S
pjq
FF

`

w
piq
F ´ w

pjq
F

˘

.

More algebra gives, by using that S
piq
FF :“ RFS

piqRT
F ,

`

RT
F pw

piq
F ´ w̄F q

˘T
Spiq

`

RT
F pw

piq
F ´ w̄F q

˘

“ pw
piq
F ´ w

pjq
F qTS

pjq
FF pS

piq
FF ` S

pjq
FF q

´1S
piq
FF pS

piq
FF ` S

pjq
FF q

´1S
pjq
FF pw

piq
F ´ w

pjq
F q.

Adding a similar contribution from Ωj , we obtain, following Pechstein and Dohrmann
[37], that the relevant expression of the energy is

`

w
piq
F ´w

pjq
F

˘T `
S
piq´1

FF `S
pjq´1

FF

˘´1`
w
piq
F ´w

pjq
F

˘

“
`

w
piq
F ´w

pjq
F

˘T `
S
piq
FF : S

pjq
FF

˘`

w
piq
F ´w

pjq
F

˘

,

which can easily be bounded by

(4.4) 2w
piqT
F∆

`

S
piq
FF : S

pjq
FF

˘

w
piq
F∆ ` 2w

pjqT
F∆

`

S
piq
FF : S

pjq
FF

˘

w
pjq
F∆.

Here w
piq
F∆ :“ w

piq
F ´ wΠ, etc., and wΠ is an arbitrary element of the primal space.

There now remains to estimate w
piqT
F∆ pS

piq
FF : S

pjq
FF qw

piq
F∆ by the energy of wpiq. We

do so by establishing a bound for

(4.5) w
piqT
F∆ pS

piq
FF : S

pjq
FF qw

piq
F∆ by w

piqT
F∆ p

rS
piq
FF : rS

pjq
FF qw

piq
F∆.
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This will be accomplished by considering the related Rayleigh quotient restricted to a
subspace given by a span of eigenvectors of the generalized eigenvalue problem (4.2).
We will finally show that

w
piqT
F∆ p

rS
piq
FF : rS

pjq
FF qw

piq
F∆ ď wpiqTSpiqwpiq,

where wpiq is an arbitrary extension of the values of w
piq
F on the face F to the rest

of Γi.
In standard BDDC theory, the estimate related to (4.5) can be obtained by using

a face lemma; cf. [40, subsection 4.6.3], where such a result is established for low order
finite elements, constant coefficients in each subdomain, and polyhedral subdomains.
For an adaptive algorithm, such a result is replaced by using the generalized eigen-
value problem (4.2). Thus, we generate elements of the primal and dual spaces for
F by solving the generalized eigenvalue problem (4.2). Primal constraints are then
generated by making the eigenvectors of a few of the smallest eigenvalues of (4.2)

orthogonal to prS
piq
FF : rS

pjq
FF qpw

piq
F ´ w

pjq
F q; see section 4.2 below for more details and

two possible strategies. The dual space can be defined by the span of the remain-
ing eigenvectors making the primal and dual spaces orthogonal in the inner product

defined by rS
piq
FF : rS

pjq
FF . This orthogonality condition allows us to conclude that

w
piqT
F∆ p

rS
piq
FF : rS

pjq
FF qw

piq
F∆ ď w

piqT
F prS

piq
FF : rS

pjq
FF qw

piq
F .

We now use that, trivially, rS
piq
FF : rS

pjq
FF ď

rS
piq
FF and find that

w
piqT
F prS

piq
FF : rS

pjq
FF qw

piq
F ď w

piqT
F

rS
piq
FFw

piq
F ď wpiqTSpiqwpiq

for any wpiq which coincides with w
piq
F on F . Here we use the fact that rS

piq
FF provides

the minimum energy extension of the values of w
piq
F .

A bound can now be obtained in terms of the smallest eigenvalue with an eigenvec-
tor not used in deriving the primal constraints. Thus, if λtol is the smallest eigenvalue
of (4.2) ignored when we select the primal variables, we obtain the bound

(4.6) }pPDwq|F }
2
qS
ď

2

λtol
pwpiqTSpiqwpiq ` wpjqTSpjqwpjqq.

We note that the factor 2 originates from (4.4), and the other factor from the bound
related to (4.5).

4.1. Generalized eigenvalue problems for equivalence classes with more
than two elements. We will now attempt to derive primal constraints by using gen-
eralized eigenvalue problems for equivalence classes with four elements; this is relevant
for our special application since a subdomain vertex is common to four subdomains
in two dimensions, as is a subdomain edge in three dimensions. We note that in three
dimensions an interior subdomain vertex is common to eight subdomains. We also
note that the case of equivalence classes with three elements is discussed in detail
in [10], and that there are no essential differences in the development of theory and
practice for equivalence classes with three or more elements.

Let us focus on the case of a subdomain vertex V in two dimensions. We will
consider a number of algorithms built from S

piq
V V and rS

piq
V V , where i will take on the

values of the indices of the four subdomains, which have V in common. We will first
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derive an algorithm that can be fully justified and which works well for 3D lower order
finite element problems; see [10].

An expression for the norm of RT
V pw

piq
V ´ w̄V q can be borrowed from [10]. We

find that the sum of the squares of the Spiq-norms of RT
V PDw, for the four relevant

indices, can be estimated from above by the sum of four terms, the first two of which
are

4w
piqT
V S

piq
V V :

`

S
pjq
V V ` S

pkq
V V ` S

p`q
V V

˘

w
piq
V

and
4w

pjqT
V S

pjq
V V :

`

S
piq
V V ` S

pkq
V V ` S

p`q
V V

˘

w
pjq
V .

Thus, with four subdomains in the equivalence class, there are four operators

T
piq
V :“ S

piq
V V : pS

pjq
V V ` S

pkq
V V ` S

p`q
V V q, T

pjq
V :“ S

pjq
V V : pS

piq
V V ` S

pkq
V V ` S

p`q
V V q (and anal-

ogously for T
pkq
V , T

plq
V ). These operators are symmetric positive definite, and they

appear directly in our estimate of the energy of pPDwq|V . We can now use the trivial
inequality

w
piqT
V T

piq
V w

piq
V ď w

piqT
V

`

T
piq
V ` T

pjq
V ` T

pkq
V ` T

p`q
V

˘

w
piq
V

and very similar bounds for the other terms and arrive at the generalized eigenvalue
problem

(4.7)
´

rS
piq
V V : rS

pjq
V V : rS

pkq
V V : rS

p`q
V V

¯

φ “ λ
´

T
piq
V ` T

pjq
V ` T

pkq
V ` T

p`q
V

¯

φ.

Suitable primal constraints can now be obtained from the eigenvectors associated
with the smallest eigenvalues of (4.7) in the same way as in the previous subsection.
The resulting primal space will be denoted by VT below (see (4.10)) and in the nu-
merical tests. A justification for this algorithm can then be obtained by developing
a bound of the same nature as (4.6) and combining these two sets of bounds. The
result will involve integer factors depending on the square of the maximal number
of vertices and edges of the subdomains. We note that in many cases the condition
numbers actually observed in numerical experiments are much smaller than what can
now be established theoretically.

4.2. Alternative generalized eigenvalue problems. In addition to the al-
gorithm derived in the previous subsection, we have also experimented with several
alternative generalized eigenvalue problems. They are all defined in terms of the
Schur complements Spiq and rSpiq introduced early on in section 4, and we will build
the matrices of the generalized eigenvalue problems from these matrices, their sums,
and their parallel sums. These alternative algorithms cannot, so far, be justified to
the same extent as the algorithm of subsection 4.1.

In order to simplify the description of our strategy, we will consider the case
of an equivalence class related to four subdomains, such as for a fat vertex in two
dimensions or a fat edge in 3D structured hexahedral subdomain meshes.

Generalized eigenproblem V1:

(4.8) rS
pkq
V V φ “ λS

pkq
V V φ,

where k is any of the indices of the subdomains sharing the edge. This is a minimal
choice involving only a pair of associated Schur complements instead of several pairs
as in the choices below.

Generalized eigenproblem Vpar:

(4.9)
´

rS
piq
V V : rS

pjq
V V : rS

pkq
V V : rS

p`q
V V

¯

φ “ λ
´

S
piq
V V : S

pjq
V V : S

pkq
V V : S

p`q
V V

¯

φ.
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This choice is the natural extension to four subdomains of the parallel sum eigenprob-
lem (4.2) defined in the case of two subdomains; this recipe has been shown to produce
robust primal spaces for heterogeneous Hpcurlq problems in three dimensions with
tetrahedral meshes [44, 45].

Generalized eigenproblem VT :

(4.10)
´

rS
piq
V V : rS

pjq
V V : rS

pkq
V V : rS

p`q
V V

¯

φ “ λ
´

T
piq
V ` T

pjq
V ` T

pkq
V ` T

p`q
V

¯

φ,

where T
piq
V “ S

piq
V V :

`

S
pjq
V V `S

pkq
V V `S

p`q
V V

˘

, . . . , T
p`q
V “ S

p`q
V V :

`

S
piq
V V `S

pjq
V V `S

pkq
V V

˘

. This
is the same as (4.7) in the previous section, and it is motivated by the theoretical
analysis presented in section 4.1, which we were able to carry out only for this specific

choice of T
piq
V operators.

Generalized eigenproblem Vmix:

(4.11)
´

rS
piq
V V `

rS
pjq
V V `

rS
pkq
V V `

rS
p`q
V V

¯

φ “ λ
´

S
piq
V V : S

pjq
V V : S

pkq
V V : S

p`q
V V

¯

φ.

This choice replaces the parallel sums in the left-hand side of Vpar by a standard sum,
motivated by an attempt to reduce the cost of building the generalized eigenproblems.

In order to construct the BDDC primal space, for each of the previous four algo-
rithms, we can select a threshold 0 ă θ ă 1 and use the following strategy, consisting
of two sequential steps:

STEP 1: Select the eigenvectors tv1, v2, . . . , vNcu of the chosen eigenproblem that
are associated with the eigenvalues tλ1, λ2, . . . , λNcu that are smaller than θ.

STEP 2: Perform a BDDC change of basis to introduce the selected eigenvectors
as new primal constraints.
We now propose two different techniques to perform this change of basis, called in
the following AEIG and QR, respectively:

(i) AEIG: This change of basis involves all the eigenvectors of the chosen gen-
eralized eigenvalue problem. Therefore, if two different algorithms lead to the same
choice of the primal space in STEP 1, the BDDC preconditioners will differ if some of
the other eigenvectors differ. The columns of the matrix realizing the BDDC change
of basis (see, e.g., [14], [7, eq. (3.16)] for the matrix form of the BDDC preconditioner)
are formed by all the eigenvectors.

(ii) QR: This change of basis depends only on the eigenvectors selected in STEP
1 as new primal constraints; thus, in contrast to the AEIG method, it leads to the
same BDDC preconditioner when the eigenvectors selected in STEP 1 are the same.
The QR method involves the following steps:

1. denoting by rSV φ “ λSV φ any of the eigenproblems (4.8), (4.9), (4.10), or
(4.11), compute the matrix

AV “ SV rv1v2, . . . , vNc
s P RnˆNc ,

with n the size of the vi, i “ 1, . . . , Nc, and Nc ď n the number of primal
constraints selected;

2. compute the SVD decomposition of AV , i.e., the matrices U,Σ, V such that

AV “ UΣV T ,

and denote by CT the matrix formed by the first Nc columns of U ;
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3. compute the QR factorization CT “ QR, where

Q “ rQrange Qnulls P Rnˆn,

with Qrange P RnˆNc and Qnull P Rnˆpn´Ncq spanning the range and the
kernel of CT , respectively, and

R “

„

rR
0



P RnˆNc ,

with rR P RNcˆNc upper triangular;
4. construct the matrix Φ realizing the BDDC change of basis as

Φ “ rQrange
rR´T Qnulls.

In our 2D tests, we have used the AEIG change of basis, except when otherwise
stated, whereas, in our 3D test, only the QR approach has been employed because
the AEIG has not yielded a robust 3D BDDC preconditioner.

5. Numerical results. In our numerical experiments we have worked with the
generalized eigenvalue problems V1 (4.8), Vpar (4.9), VT (4.10), and Vmix (4.11) intro-
duced above and compared the performance of the associated BDDC deluxe precondi-
tioners. The model problem (2.1), with homogeneous Dirichlet boundary conditions,
is discretized on a 2D quarter-ring domain and on a 3D twisted domain (see Figure
1) using isogeometric NURBS spaces with a mesh size h, polynomial degree p, and
regularity k. The domain is decomposed into K nonoverlapping subdomains of char-
acteristic size H, as described in section 3. The Schur complement problems are solved
by the preconditioned conjugate gradient (PCG) method with one of the isogeometric
BDDC deluxe preconditioners, with a zero initial guess and and a stopping criterion
of a 10´6 reduction of the Euclidean norm of the PCG residual. In the tests, we
study how the convergence rate of the BDDC preconditioner depends on h, K, p, k,
and jumps in the coefficient of the elliptic problem. In all tests, the BDDC condition
number is essentially the maximum eigenvalue of the preconditioned operator, since
its minimum eigenvalue is always very close to 1. The 2D tests have been performed

(a) 2D quarter-ring for (b) 2D quarter-ring for (c) 3D twisted domain.
central jump test. checkerboard test.

Fig. 1. Computational domains used in the numerical tests.
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Fig. 2. Performance summary of BDDC deluxe preconditioner with minimal primal spaces V1

(o), Vpar (+), VT (˛), and Vmix (*). Scability plot (left): Condition number (cond) as a function of
the number of subdomains K. Quasi-optimality plot (right): Condition number (cond) as a function
of the ratio H{h. Quarter-ring domain, p “ 3, and k “ 2.

with a MATLAB code based on the GeoPDEs library [13]. The 3D parallel tests have
been performed using the PETSc library [2] and its PCBDDC preconditioner (con-
tributed to the PETSc library by Zampini; see [43]) and run on the parallel machine
Shaheen of KAUST (http://www.hpc.kaust.edu.sa/content/shaheen-ii).

In all the following results, we denote by NV
c the number of primal variables

for each fat vertex, by NE
c the number of primal variables for each fat edge, and

by NF
c the number of primal variables for each fat face. We call a primal space

minimal when it includes only one primal variable for each fat object. Thus, the
“minimal V1 coarse space” uses NV

c “ 1 primal variables for each fat vertex, and the
“minimal VE1 coarse space” employs NV

c “ 1 primal variables for each fat vertex and
NE

c “ 1 primal variables for each fat edge. In some tests, we also explore adaptive
primal spaces with more primal vertex variables, i.e., NV

c ą 1. We remark that,
with the AEIG change of basis, even if the first eigenvector of the generalized vertex
eigenproblem turns out to be the same (coinciding often with the average over the fat
vertex), irrespective of the kind of eigenproblem considered, the other eigenvectors
differ for different choices of primal spaces and give rise to different BDDC changes
of basis, and different preconditioners with different performance.

Number of total and primal degrees of freedom (dofs). In the following, we denote
by iV the set of interior subdomain vertices, by iE the set of interior subdomain
edges, and by iF the set of interior subdomain faces.

Then in the 2D tests, we have
‚ # total dofs = p1{h` p´ 2q2,
‚ # primal dofs = NV

c p#iV q `N
E
c p#iEq,

and in 3D tests, we have
‚ # total dofs = p1{h` p´ 2q3,
‚ # primal dofs = NV

c p#iV q `N
E
c p#iEq `N

F
c p#iF q.

5.1. 2D results. Before considering the results for each primal choice in detail,
we note, in summary, that our numerical results indicate that all primal choices
considered are scalable in the number of subdomains K and quasi-optimal in the
ratio H{h; see Figure 2 (two plots in the left panel have fewer points because their
generalized eigenproblem broke down for the larger meshes). The performance with
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Table 1
BDDC deluxe preconditioner with the minimal V1 coarse space for a quarter-ring domain:

condition number, cond, and iteration counts, nit, as functions of (a) the number of subdomains K
and mesh size h for p “ 3, k “ 2; (b) the polynomial degree p for fixed K “ 4ˆ4, H{h “ 16 (* means
that the preconditioner breaks down; see text). (c) Condition number of the unpreconditioned IGA

stiffness matrix A and its Schur complement pS as functions of the polynomial degree p for B-splines
on a square domain with mesh size 1{h “ 64, number of subdomains K “ 4ˆ 4, maximal regularity
k “ p´ 1, and regularity at the subdomain interface kΓ “ 1.

(a)
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2ˆ 2 1.45 7 2.00 8 2.72 8 3.57 8 4.52 8
4ˆ 4 10.06 15 13.90 16 18.66 18 23.92 21
8ˆ 8 12.13 24 17.42 27 24.85 32

16ˆ 16 12.79 24 18.96 29
32ˆ 32 13.04 24

(b) (c)

k “ p´ 1 k “ 2 k “ 1
p cond nit cond nit cond nit

2 7.09 14 n/a 7.09 14
3 18.66 18 18.66 18 7.59 15
4 233.81 26 19.74 20 8.31 15
5 8.42e3 56 22.22 19 9.06 15
6 * 25.37 21 9.81 16
7 * 29.05 22 10.52 16
8 * 33.08 23 11.24 17
9 * 37.64 24 11.90 17
10 * 39.89 26 12.59 18

p Unprec. Schur

condpAq condppSq
2 311.46 72.57
3 366.81 75.99
4 477.38 90.27
5 1.78e3 114.56
6 1.49e4 338.43
7 1.27e5 1.00e3
8 1.11e6 2.98e3
9 1.01e7 8.77e3

10 9.42e7 2.56e4

respect to the polynomial degree p degenerates in case of maximal regularity k “ p´1
for the primal choices V1 and VT with the minimal primal spaces with NV

c “ 1, but
good performance can be recovered by the minimal coarse space using richer primal
spaces with NV

c ą 1. We do not consider richer primal choices for Vpar and Vmix

since the minimal coarse space for each fat vertex already yields good performance in
p independently of the regularity k. Some tests marked by ˚ in the following tables
could not be run since either the MATLAB generalized eigensolver broke down due
to the extreme ill-conditioning of the Schur complement involved, returning spurious
complex eigenvalues and eigenvectors, or the local problems after the BDDC change
of basis were almost singular, causing the local solvers to break down.

Minimal V1 primal space (NV
c “ 1). Table 1 reports on the BDDC condition

numbers and iteration counts with the minimal V1 primal space using only one primal
constraint for each fat vertex (NV

c “ 1) for a quarter-ring domain. Table 1(a) shows
the results for varying the number of subdomains K and the fine mesh size h for
fixed p “ 3, k “ 2. Moving along the diagonal of the table, the subdomain to
element mesh size ratio H{h remains constant, and we see that this primal choice is
scalable for an increasing number of subdomains K and is quasi-optimal with respect
to the ratio H{h. We have also plotted the condition numbers in Figure 2 for greater
clarity. Table 1(b) reports the BDDC condition numbers and iteration counts for an
increasing polynomial degree up to p “ 10 for low regularity k “ 1 (right column),
k “ 2 (middle column), and maximal regularity k “ p ´ 1 (left column) for fixed
K “ 4 ˆ 4, H{h “ 16. We see that the minimal V1 primal space performs well for
k “ 1 and 2 but very poorly for k “ p ´ 1, since the condition numbers seem to

D
ow

nl
oa

de
d 

05
/0

3/
17

 to
 1

59
.1

49
.2

.1
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Table 2
BDDC deluxe preconditioner with the minimal VE1 coarse space for a quarter-ring domain:

Condition number, cond, and iteration counts, nit, as functions of (a) the number of subdomains K
and mesh size h for fixed p “ 3, k “ 2; (b) the polynomial degree p for fixed K “ 4ˆ 4, H{h “ 16
(* means that the preconditioner breaks down; see text).

(a)

h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128
K cond nit cond nit cond nit cond nit cond nit

2ˆ 2 1.44 7 1.97 7 2.65 8 3.46 8 4.37 8
4ˆ 4 5.09 13 4.65 13 5.31 14 5.99 15
8ˆ 8 6.20 17 5.34 15 6.00 16

16ˆ 16 6.66 18 5.73 16
32ˆ 32 6.83 18

(b)
k “ p´ 1 k “ 2 k “ 1

p cond nit cond nit cond nit

2 2.91 11 n/a 2.91 11
3 5.31 14 5.31 14 2.80 11
4 41.17 24 4.85 21 2.88 11
5 1598.65 67 4.77 14 3.00 11
6 * 4.93 15 3.13 11
7 * 5.16 16 3.27 12
8 * 5.67 17 3.40 12
9 * * 3.53 13
10 * * 3.71 13

grow exponentially in p and the generalized eigenproblem/change of basis V1 breaks
down for p ě 6. We remark that the unpreconditioned discrete problem is very ill-
conditioned: Table 1(c) reports the condition number of the unpreconditioned IGA

stiffness matrix A and its Schur complement pS as functions of the polynomial degree
p for B-splines on a square domain with mesh size 1{h “ 64, number of subdomains
K “ 4 ˆ 4, maximal regularity k “ p ´ 1, and regularity at the subdomain interface
kΓ “ 1. Additional 2D and 3D results for unpreconditioned IGA problems can be
found in our previous paper [5].

Minimal V E1 primal space (NV
c “ 1, NE

c “ 1). Table 2 reports analogous tests
for the minimal VE1 primal space where edge primal constraints are added to the
vertex ones (NV

c “ 1, NE
c “ 1). In Table 2(a), we now consider only the classical

p “ 3, k “ 2 case. As expected, adding the edge constraints to the primal space
improves all the results (see the corresponding results of the previous Table 1). The
method remains scalable in K, quasi-optimal in H{h, and performs well for increasing
p and low regularity k “ 1 and 2, but still degenerates for increasing p for k “ p´ 1.

Adaptive V1 primal space. In Table 3, we then study the adaptive primal space
V1 on a square domain to see the effect of adding more vertex primal constraints in
addition to the minimal choice of just one. We consider both the minimal choice
of NV

c “ 1 primal vertex constraint and a richer choice of NV
c “ 4 primal vertex

constraints for each subdomain vertex. In case of increasing polynomial degree p, we
also consider a lower threshold θ “ 10{11 that leads to a richer choice of approximately
NV

c “ 2p primal constraints for each subdomain vertex. The results in (a) show that
this BDDC deluxe preconditioner is scalable, since cond and nit appear to be bounded
from above by a constant independent of K, and the results in (b) indicate that the
preconditioner is quasi-optimal, since cond and nit appear to grow polylogarithmically
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Table 3
BDDC deluxe preconditioner with an adaptive choice of the V1 coarse space on a square domain,

with NV
c selected primal constraints for each fat vertex. Condition number cond and iteration counts

nit as functions of (a) the number of subdomains K for fixed p “ 3, k “ 2, H{h “ 8; (b) the ratio
H{h for fixed p “ 3, k “ 2, K “ 4ˆ 4; (c) the polynomial degree p for fixed K “ 4ˆ 4, H{h “ 16,
k “ p´ 1 (* means that the preconditioner breaks down; see text).

(a) (b)

NV
c “ 1 NV

c “ 4
K cond nit cond nit

2ˆ 2 1.81 7 1.66 8
4ˆ 4 12.74 14 6.74 13
8ˆ 8 14.74 24 7.48 18

16ˆ 16 15.67 26 7.78 18
32ˆ 32 16.13 24 7.87 17

NV
c “ 1 NV

c “ 4
H{h cond nit cond nit

4 8.75 12 4.84 12
8 12.74 14 6.74 13

16 17.40 17 8.91 14
32 22.31 18 11.16 15
64 27.49 20 13.50 17

(c)

NV
c “ 1

p cond nit cond nit NV
c

2 6.09 13 3.55 11 3
3 17.40 17 5.34 14 5
4 230.9 21 5.74 15 8
5 7545.9 39 12.25 18 10
6 * 73.08 31 12

Table 4
BDDC deluxe preconditioner with the minimal Vpar coarse space for a quarter-ring domain:

Condition number, cond, and iteration counts, nit, as functions of (a) the number of subdomains K
and mesh size h for fixed p “ 3, k “ 2; (b) the polynomial degree p for fixed K “ 4ˆ 4, H{h “ 16
(* means that the change of basis is performed by the QR approach).

(a)
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2ˆ 2 1.45 7 1.61 7 1.94 7 2.31 8 2.71 8
4ˆ 4 3.24 11 4.19 12 5.20 13 6.32 13
8ˆ 8 4.07 13 5.36 12 6.77 17

16ˆ 16 4.67 15 6.21 16
32ˆ 32 *5.01 15

(b)
k “ p´ 1 k “ 2 k “ 1

p cond nit cond nit cond nit

2 5.54 13 n/a 5.54 13
3 5.20 13 5.20 13 6.01 13
4 6.02 14 5.54 13 6.47 13
5 5.77 14 5.96 14 6.89 14
6 6.35 16 6.39 14 7.27 14
7 *6.32 16 6.86 16 7.62 15
8 *9.34 21 7.36 17 7.93 15
9 *21.6 31 8.04 20 8.23 16
10 *53.7 61 9.26 22 8.50 17

in H{h. The results in (c) confirm that the minimal choice NV
c “ 1 does not perform

well for an increasing p, while with the richer choice with increasing number of vertex
primal variables, we observe only a mild performance degradation for p ď 6.

Minimal Vpar primal space. Table 4 shows that the results improve considerably
with the minimal Vpar primal space for a quarter-ring domain. Again we observe scal-
ability and quasi-optimality in Table 4(a) (see also Figure 2) and a good performance
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A296 BEIRÃO DA VEIGA, PAVARINO, SCACCHI, WIDLUND, ZAMPINI

Table 5
BDDC deluxe preconditioner with the minimal and adaptive choice of VT coarse space for a

quarter-ring domain, with NV
c primal constraints for each fat vertex. Condition number, cond, and

iteration counts, nit, as functions of (a) the number of subdomains K and mesh size h for fixed
p “ 3, k “ 2 and the minimal NV

c “ 1; (b) the polynomial degree p for fixed K “ 4ˆ 4, H{h “ 16
and both the minimal and adaptive of NV

c (* means that the preconditioner breaks down; see text).

(a)
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2ˆ 2 1.45 7 2.15 7 3.05 8 4.12 8 5.36 8
4ˆ 4 12.49 14 16.18 16 19.74 17 23.32 17
8ˆ 8 18.17 24 21.81 26 26.39 28

16ˆ 16 22.83 30 26.09 31
32ˆ 32 *

(b)

NV
c “ 1 Adaptive NV

c
k “ p´ 1 k “ 2 k “ 1 k “ p´ 1

p cond nit cond nit cond nit cond nit NV
c

2 5.53 13 n/a 5.53 13 4.33 12 3
3 19.74 17 19.74 17 6.00 13 9.09 15 5
4 499.95 24 20.92 16 6.46 13 10.62 14 10
5 1.65e+4 31 23.03 19 6.89 14 10.62 15 15
6 * 25.57 18 7.27 14 9.39 17 25
7 * 28.50 21 7.61 15 21.95 20 34
8 * 31.48 22 7.93 15 *

in p in Table 4(b) even in case of maximal regularity k “ p´1 up to p “ 8. Note that
in case of maximal regularity for p ě 7, the AEIG generalized eigenproblems/change
of basis break down, while the QR change of basis allows us to reach convergence.
Figure 2 shows that the minimal Vpar primal space yields the best performance among
the choices of primal constraints that we have considered.

Minimal and adaptive VT primal space. The results of Table 5 show that the
minimal VT primal space for a quarter-ring domain is still scalable in K and quasi-
optimal in H{h (Table 5(a) and Figure 2) but with slightly larger condition numbers
and iteration counts than the previous primal choices. The performance in p in
Table 5(b) for maximal regularity k “ p´ 1 using only the minimal VT primal space
(left columns) degenerates again with increasing p as for the minimal V1 and VE1

primal spaces, with an analogous breakdown for p “ 6, but good performance can be
recovered for low regularity k “ 2 and 1 (middle columns). A good performance can
also be recovered in the maximal regularity case k “ p ´ 1 by adaptively increasing
the number NV

c of vertex primal constraints to about 70% of the total number, p2,
of possible vertex constraints for each fat vertex (last columns).

Minimal Vmix primal space. Table 6 shows that the minimal Vmix primal space for
a quarter-ring domain yields the second-best performance among the choices of primal
constraints considered. Indeed, Table 6(a) shows scalability and quasi optimality with
quite small condition numbers and iteration counts; see also Figure 2. Table 6(b)
reports much better results than the previous coarse space choices for increasing p,
even in case of maximal regularity k “ p ´ 1 (left column) up to p “ 8, with the
eigenproblem/change of basis breakdown occurring only for p ě 9.

Robustness with respect to jumping coefficients. We also study the robustness of
the BDDC deluxe preconditioner with respect to jump discontinuities of the coefficient
of the elliptic problem ρ. Due to space limitation, we report the results only for the
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Table 6
BDDC deluxe preconditioner with the minimal Vmix coarse space for a quarter-ring domain:

Condition number, cond, and iteration counts, nit, as functions of (a) the number of subdomains K
and mesh size h for fixed p “ 3, k “ 2; (b) the polynomial degree p, for fixed K “ 4ˆ 4, H{h “ 16
(* means that the preconditioner breaks down; see text).

(a)
h = 1/8 h = 1/16 h = 1/32 h = 1/64 h = 1/128

K cond nit cond nit cond nit cond nit cond nit

2ˆ 2 1.63 7 1.99 7 2.37 8 2.77 8 3.20 8
4ˆ 4 4.43 12 5.43 13 6.53 14 7.74 15
8ˆ 8 5.54 15 6.91 17 8.33 18

16ˆ 16 6.34 17 7.99 19
32ˆ 32 6.84 17

(b)
k “ p´ 1 k “ 2 k “ 1

p cond nit cond nit cond nit

2 5.39 13 n/a 5.39 13
3 5.43 13 5.43 13 6.01 13
4 5.91 13 5.76 13 6.47 13
5 6.13 14 6.41 14 6.89 14
6 6.27 14 7.20 14 7.27 14
7 7.29 18 7.33 16 7.62 15
8 9.33 24 7.36 17 11.41 16
9 * 8.33 20 8.23 16
10 * 9.47 22 8.50 17

minimal VT and Vpar primal choices and three different classical tests, which we call
“central jump,” “checkerboard,” and “random mix” for a 2D quarter-ring domain
decomposed into 4 ˆ 4 subdomains; cf. also [7]. In the central jump test (see Figure
1(a)), the coefficient ρ varies by 8 orders of magnitude (from 10´4 to 104) in the
2 ˆ 2 central subdomains, while it equals 1 in the surrounding subdomains. In the
checkerboard test (see Figure 1(b)), ρ is 104 or 10´4 in the white subdomains and 1
in the black subdomains. In the random mix test, ρ has random values varying by 8
orders of magnitude between the different subdomains. We fix h “ 1{64, H{h “ 16,
and we test different splines spaces: p “ 2, k “ 1; p “ 3, k “ 1; p “ 3, k “ 2. Tables
7 and 8 report the condition number of the preconditioned system and the conjugate
gradient iteration counts. The results show clearly the robustness of BDDC, for both
choices of primal spaces.

5.2. 3D results. In Figure 3, we report results of parallel numerical experiments
on a 3D NURBS domain shown in Figure 1(c) and using the PCBDDC PETSc objects
(see [43]) to implement BDDC deluxe with the VEFpar coarse space, i.e., with primal
constraints for vertices (V), edges (E), and faces (F). We study only this primal choice
because Vpar was the algorithm attaining the best performance in our 2D results. Let
us denote by Nc the maximum number of constraints among all equivalence classes,
i.e., Nc “ maxpNV

c , N
E
c , N

F
c q. The coarse space is minimal, i.e., Nc “ 1, for the

scalability test in panel (b) and the quasi-optimality test in panel (c), while it is both
minimal and adaptive, i.e., Nc ě 1 in panel (d). The number of processors used in
each test equals the number of subdomains K. The scalability test (b) shows that
condition numbers and iteration counts are bounded from above when the number of
subdomains K is increased for fixed p “ 3, k “ 2, H{h “ 6. The results of the quasi-
optimality test (c) are less clear, initially showing almost constant condition numbers
and iteration counts for 6 ď H{h ď 9 and then a modest growth up to H{h “ 12 (the
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Table 7
Robustness with respect to jumping coefficients: Central jump, checkerboard, and random mix

tests for BDDC deluxe preconditioner with the minimal VT coarse space for a quarter-ring domain.
The reported quantities are the condition number, cond, of the preconditioned system and the con-
jugate gradient iteration counts, nit. The spline spaces considered are p “ 2, k “ 1; p “ 3, k “ 1;
p “ 3, k “ 2. Fixed mesh size h “ 1{64, number of subdomains K “ 4 ˆ 4, subdomain size
H{h “ 16.

VT coarse space

ρ p “ 2, k “ 1 p “ 3, k “ 1 p “ 3, k “ 2
cond nit cond nit cond nit

Central jump test
1e` 4 6.26 12 6.42 13 30.76 14
1e` 2 6.37 13 6.55 13 33.53 16
1e` 0 5.53 13 6.00 13 19.74 17
1e´ 2 8.70 13 8.90 12 48.24 16
1e´ 4 9.10 14 9.23 14 47.56 16

Checkerboard test
1e` 4 8.41 14 7.87 13 40.99 17
1e´ 4 8.61 13 8.25 13 44.97 18

Random mix test
3.17 10 3.15 11 13.85 14

Table 8
Robustness with respect to jumping coefficients: central jump, checkerboard and random mix

tests for BDDC deluxe preconditioner with the minimal Vpar coarse space in a quarter-ring domain.
Same format as in Table 7.

Vpar coarse space

ρ p “ 2, k “ 1 p “ 3, k “ 1 p “ 3, k “ 2
cond nit cond nit cond nit

Central jump test
1e` 4 10.63 12 11.40 12 16.38 13
1e` 2 10.31 13 11.06 13 14.56 13
1e` 0 5.54 13 6.01 13 5.20 13
1e´ 2 4.82 14 4.89 14 7.03 15
1e´ 4 4.90 15 4.94 14 7.54 16

Checkerboard test
1e` 4 7.75 13 8.35 14 33.59 15
1e´ 4 7.08 13 7.60 14 27.75 16

Random mix test
5.28 12 5.65 13 22.19 17

other parameters are fixed at p “ 3, k “ 2, K “ 4 ˆ 4 ˆ 4). The last test (d) for
increasing polynomial degree p (and fixed K “ 4ˆ 4ˆ 4, H{h “ 8, k “ p´ 1) shows,
besides an unexpected decrease of the condition numbers when increasing p from 2 to
3, a more than linear growth for p ě 3 with the minimal choice Nc “ 1. This growth
can be considerably improved by adaptively increasing Nc ě 1 as shown in the table.

6. Conclusions. We have developed several algorithms for the adaptive selec-
tion of primal constraints in BDDC deluxe preconditioners applied to isogeometric
discretizations of scalar elliptic problems. These new algorithms allow us to signifi-
cantly reduce the coarse space dimensions compared with those of previously devel-
oped BDDC isogeometric preconditioners. For one of the proposed algorithms, the VT
choice, we have derived a theoretical estimate implying the quasi optimality and scala-
bility of the associated BDDC preconditioner. Two- and three-dimensional numerical
tests demonstrate the quasi optimality, scalability, and robustness of our algorithms
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(a) Minimal VEFpar. (b) Minimal VEFpar.
K cond nit

2ˆ 2ˆ 2 2.2 8
3ˆ 3ˆ 3 10.1 16
4ˆ 4ˆ 4 13.4 22
5ˆ 5ˆ 5 15.4 24
6ˆ 6ˆ 6 16.8 25
7ˆ 7ˆ 7 17.8 26
8ˆ 8ˆ 8 18.5 26
9ˆ 9ˆ 9 19.8 27

10ˆ 10ˆ 10 19.6 27

H{h cond nit

6 13.4 22
7 12.8 21
8 12.8 21
9 12.9 21
10 13.1 21
11 13.3 22
12 13.6 22

(c) Minimal and adaptive VEFpar.
Minimal Adaptive

p cond nit Nc cond nit Nc cond nit Nc

2 31.9 25 1 31.8 24 1 17.4 19 2
3 12.8 21 1 12.8 21 1 11.5 20 2
4 19.2 23 1 14.7 22 4 14.2 21 16
5 44.1 32 1 21.0 26 18 15.3 22 40

NUMBER OF SUBDOMAINS (PROCESSORS) K
0 200 400 600 800 1000

T
IM

E
 (
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)

0

0.5

1

1.5

2

2.5
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3.5

4

4.5

IGA SETUP
BDDC SETUP
PCG SOLVE

(d) Parallel timings for the scalability test of table (a).

Fig. 3. 3D parallel tests with BDDC deluxe preconditioner with VEFpar coarse space on a 3D
NURB domain shown in Figure 1(c). Number of processors = number of subdomains K. Condition
number cond and iteration counts nit as functions of (a) the number of subdomains K for fixed
p “ 3, k “ 2, H{h “ 6; (b) the ratio H{h for fixed p “ 3, k “ 2,K “ 4 ˆ 4 ˆ 4; (c) the polynomial
degree p for fixed K “ 4 ˆ 4 ˆ 4, H{h “ 8, k “ p ´ 1, with both the minimal and adaptive choices
of primal constraints (Nc “ maxpNV

c , N
E
c , N

F
c q is the maximum number of primal constraints for

each equivalence class); (d) Parallel timings for the scalability test of table (a).

with respect to the spline polynomial degree and the presence of discontinuous elliptic
coefficients. The numerical results have shown that the most effective primal spaces
for our deluxe BDDC algorithms are Vpar and Vmix, particularly for isogeometric dis-
cretizations with high polynomial degree and regularity. In future work, we plan to
study how to extend these adaptive primal spaces to isogeometric discretizations of
the linear elasticity system, where we expect the adaptive selection of primal con-
straints for vector fields to be more challenging than in the scalar case. In particular,
composite and almost incompressible materials might require new adaptive strategies
in order to retain the BDDC scalability and robustness. An alternative approach for
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isogeometric discretizations of almost incompressible elasticity and Stokes problems,
partly based on work by Tu and Li [41] has been recently explored in [36].
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