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ABSTRACT
Head and neck squamous cell carcinoma (HNSCC) is a disease with heterogeneous 

clinical behavior and response to therapies. Despite the introduction of multimodality 
treatment, 40–50% of patients with advanced disease recur. Therefore, there is an 
urgent need to improve the classification beyond the current parameters in clinical use 
to better stratify patients and the therapeutic approaches. Following a meta-analysis 
approach we built a large training set to whom we applied a Disease-Specific Genomic 
Analysis (DSGA) to identify the disease component embedded into the tumor data. 
Eleven independent microarray datasets were used as validation sets.

Six different HNSCC subtypes that summarize the aberrant alterations 
occurring during tumor progression were identified. Based on their main biological 
characteristics and de-regulated signaling pathways, the subtypes were designed as 
immunoreactive, inflammatory, human papilloma virus (HPV)-like, classical, hypoxia 
associated, and mesenchymal. Our findings highlighted a more aggressive behavior 
for mesenchymal and hypoxia-associated subtypes. The Genomics Drug Sensitivity 
Project was used to identify potential associations with drug sensitivity and significant 
differences were observed among the six subtypes.

To conclude, we report a robust molecularly defined subtype classification in 
HNSCC that can improve patient selection and pave the way to the development of 
appropriate therapeutic strategies.

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) 
is a heterogeneous set of distinct malignancies. 
Recognized prognostic factors rely on clinical and 
biological features, consisting mainly of stage, site of 
disease, performance status, comorbidities, smoking 
history and human papilloma virus (HPV) status [1]. 
However, patients clustered by these parameters still differ 
in their clinical behavior and therapy response [2, 3].

Advancements in genomic technologies have 
allowed the identification of different genomic and 
epigenomic alterations formed during transformation and 
tumor progression. Eventually, the improvement in our 
understanding of complex heterogeneity of human tumors 
is expected to lead to more individualized therapies and 
targeted drug design. An efficient way to decipher cancer 
heterogeneity is to identify subtypes driven by molecular 
patterns and develop a classifier to predict the subtype 
membership of a new sample.
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Microarray technology has allowed researches to 
exploit the whole transcriptome landscape to define new 
molecular cancer subtypes, undetected by the traditional 
histopathological parameters. According to these 
advancements, numerous studies have dissected gene 
expression profiles to identify clusters of patients with 
common molecular patterns in different tumor types. This 
approach started in breast cancer by the pioneering work at 
Stanford University [4] and after more than a decade it is 
clear that at least five molecular subtypes showing clinical 
relevance are present. In 2001, Sorlie and colleagues 
defined subtype signatures in intrinsic genes identified by 
analysis of before-and-after chemotherapy treatment and 
obtained breast cancer molecular subtypes, which were 
later validated in independent cohorts [5]. Subsequently, 
the signature was refined [6] and its last version, PAM50, 
added prognostic and predictive value to the traditional 
pathologic, histological, and biological parameters [7]. 
After this first approach in breast cancer, the interest in 
subtype discovery has continuously grown and, at present, 
a number of different malignancies including lung [8], 
colorectal [9], brain [10], gastric [11], and pancreatic 
[12] cancer has been investigated. A typical workflow 
involves some key steps such as the identification of 
subtypes through appropriate bioinformatics methods, 
the development of a classifier, and validation in external 
datasets. Since it is unknown the number and the relative 
occurrence of subtypes, the size of initial discovery cohort 
has a paramount importance to be confident in identifying 
even rare subtypes. As a consequence, the most recent work 
includes a training set ranging from 500 to 1000 cases.

The integration of multiple datasets exploiting 
a meta-analysis approach has been reported to offer 
invaluable advantages, improving the reliability of results, 
especially for HNSCC, for which few microarray datasets, 
with frequently a limited number of cases, are publicly 
available. In addition, through meta-analysis it is possible 
to reach an adequate sample size allowing detection of rare 
subtypes unlikely to be seen in small patient series. For 
instance, the merger of gene-expression datasets in ovarian 
cancer [13] in a meta-analysis of approximately 1500 
cases derived from 16 studies enabled the identification of 
five reliable subtypes with unique outcomes.

In the last decade, there has been a continuous 
development in methods for data analysis leading 
to innovative bioinformatics approaches for data 
decomposition. Among them, Disease-Specific Genomic 
Analysis (DSGA) [14] allows defining a Healthy State 
Model (HSM) from the expression data of normal tissues 
and based on that, the disease component is computed as 
the residuals between the tumor and normal components.

Here, we report a genomic approach to dissect the 
heterogeneity of HNSCC. We established a large-scale 
meta-analysis approach followed by data decomposition 
through DSGA to identify HNSCC unique molecular 

subtypes. Our findings were validated in independent 
datasets and our classification reveals the presence of six 
subgroups with distinct biology and clinical outcome.

RESULTS

Figure 1 shows the outline of our study. A systematic 
search in the PubMed database (http://www.ncbi.nlm 
.nih.gov/pubmed) (January 2000 to December 2013) for 
studies on head and neck cancer reporting gene expression 
data was performed. As selection criteria, we impose that 
the studies include: (i) squamous cell carcinoma primary 
lesions; (ii) tumor location including oral cavity, pharynx, 
and larynx (salivary glands, thyroid, and eyes were 
excluded); (iii) gene expression profiling of at least 15 
samples. In this way we were able to select 30 studies. 
Subsequently, among them we focused our attention on 
those that reported: (i) MIAME [15] compliant datasets 
including raw and/or processed microarray data deposited 
on publicly accessible repositories and full gene annotation 
(Gene Bank accession or EntrezID); (ii) clinical data 
associated to microarray data. Based on these selection 
criteria, 20 datasets (Table S1) were retrieved listing 1386 
tumor samples and 138 normal tissue samples. Eight 
datasets, profiled on Affymetrix HG-133_plus_2 arrays 
were used to generate a meta-analysis training set and the 
remaining 12 datasets served as validation sets.

Unsupervised analysis revealed six subtypes in 
HNSCC

To analyze the molecular heterogeneity of HNSCC, 
we established a large meta-analysis of publicly available 
gene-expression datasets. The expression data of 527 
tumor cases along with 138 normal cases belonging 
to eight different datasets were integrated into a single 
unified dataset, hereafter named MetaHNC-A.

First, we applied a data structure decomposition 
approach through DSGA (Figure S1). The expression 
microarray data of normal tissues allows definition of 
the HSM, which reflects the healthy tissue. Based on 
HSM, each tumor tissue is decomposed as the sum of 
two components: (i) the normal component, its linear 
model fit to the HSM; (ii) the disease component, vector 
of residuals, assessing the extent to which each tumor 
deviates from the normal state. The disease component 
was used for the identification of the molecular subtypes.

Consensus unsupervised clustering was applied 
to the disease component, taking into account the 
most variant genes of the MetaHNC-A training set, 
and revealed six clusters of samples (Figure 2A). The 
consensus heatmap provided evidence that the six 
clusters appeared well-defined. In our analysis, although 
a different number of clusters (k) produced reasonable 
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stability, an increase in cluster stability was observed for 
k ranging from 2 to 6 and the CDF becomes stable with 
balanced partitions. When k was > 7, only marginal 
gains were observed (Figure S2).

To assess the accuracy of our classification, a 
Silhouette plot analysis was carried out. As shown in 
Figure 2B, only a minimal number of tumors in the Cl3 
and Cl4 subgroups were not assigned to the cluster, 
indicating the robustness of the classification. This result 
was also supported by cluster significance analysis through 
SigClust (Table S2) and by evaluation of the sample size 
adequacy that reaches enough power for the detection of 
the six subtypes (Figure S3).

Functional annotation of HNSCC subtypes

The biological pathways related to each subtype 
were investigated using gene set enrichment analysis 
(GSEA). The results are displayed in Figure 3 and 
summarized in Table 1. In the C11 subgroup the up 
regulated genes were related to HPV infection and cell 
proliferation (Figure 3A). The Cl2 subgroup showed 
marked enrichment of a number of pathways including 

epithelial mesenchymal transition (EMT), cell motility, 
angiogenesis, and in the genes belonging to WNT and 
Notch onco-signatures (Figure 3A and 3B). The Cl3 
subgroup was showed enhancement in hypoxia, drug 
metabolism pathways, and the genes belonging to beta-
catenin pathway (Figure 3A and 3B). Furthermore, both 
the Cl2 and Cl3 subgroups, compared with the other 
four, showed an up-regulation of genes belonging to 
pathways involving tumor growth factor β (TGFβ), 
rat sarcoma (RAS), epidermal growth factor receptor 
(EGFR), and Cyclin D1 (Figure 3B). The Cl4 subgroup 
showed enrichment in the interferon response pathway 
(Figure 3A), immune response (Figure 3A), and genes 
belonging to ALK onco-signature (Figure 3B).The 
Cl5 subgroup was mainly characterized by increased 
expression of genes related to the smoking related pathway 
(xenobiotic metabolism) (Figure 3A). The Cl6 subgroup 
also expressed up-regulation of all of the immune system 
related pathways and was specifically enriched in cellular 
homeostasis and cellular markers specific of air way 
epithelium (Figure 3A).

Based on the biological features, we defined the 
six subtypes as: HPV-like (Cl1), Mesenchymal (Cl2), 

Figure 1: Study outline. 
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Hypoxia-associated (Cl3), Defense response (Cl4), 
Classical (Cl5), and Immunoreactive (Cl6).

Comparison to previous molecular classifications

We investigated whether and to what extent the 
molecular classification described in the present study 
corresponded to those reported by the two previous 
studies addressing this issue, Chung et al. [16] and 
Walter et al. [17]. By Subclass Mapping, we assessed 
the overall concordance comparing: (i) the classification 
outlined above to that of Walter et al. (Figure 4A); (ii) he 
classification outlined above to that of Chung et al. (Figure 
4B). The subtyping scheme from the previous studies did 
not show a one-to-one match with classification outlined 
above (Figure 4C), providing evidence that our meta-
analysis is able to add a finer distinction not achievable 
with fewer samples (n = 60 for GSE686 and n = 138 
for GSE39368). Whilst the Mesenchymal and Classical 
classifications proposed by Walter et al. and the G2 and 
G4 subtypes proposed by Chung et al. correspond to 
our Cl2-Mesenchymal and Cl5-Classical, the Basal and 
G1 subtypes proposed by Walter et al. and Chung et al. 
respectively showed molecular patterns split between 
our Cl3-Hypoxia associated and Cl4-Defense response 

subtypes. Furthermore, the atypical subtype proposed 
by Walter et al. is split between our Cl1-HPV-like and 
Cl6-immunoreactive subtypes, whereas the G3 subtype 
proposed by Chung et al. corresponds to the Cl1-HPV-
like cluster.

Progression analysis of disease

We applied Mapper [18] a tool able to capture 
topological and geometric shapes in complex 
multidimensional data and included in PAD software, to 
the DSGA-transformed data matrix computed on the 527 
cases in our meta-analysis. Figure S4 shows the output of 
PAD analysis. HNSCC tumors can be associated through a 
linear progression starting from tumors displaying features 
close to the normal state (blue bins) and ending with 
tumors with large deviation from the normal state (red 
bins), suggesting an increase in alterations accumulated 
during different stages of tumor progression. Through PAD 
analysis, 603 genes were found to significantly correlate 
to tumor progression (Figure 5A). The genes negatively 
correlated to PAD (i.e. up-regulated in tumors close to the 
normal state) were enriched in chemokines and cytokine 
indicating a huge communication among tumor cells and 
stroma. As the disease progresses, tumors present genes 

Figure 2: Molecular classification in HNSCC. Results are produced by ConsensusClusterPlus for 527 cases on 4950 most variable 
genes. A. Consensus matrix heatmap imposing six subtypes on the dataset: Cl1 (n = 89; 17%); Cl2 (n = 77; 15%); Cl3 (n = 154; 29%); 
Cl4 (n = 79; 15%); Cl5 (n = 81; 15%); Cl6 (n = 47; 9%). The consensus values range from 0 (white, samples that never cluster together) 
to 1 (blue, samples showing high clustering affinity). B. Silhouette plot analysis. Since the actual number of subtypes in HNSCC is not 
known, we should take into account that the number of subtypes may be greater than six with some subtypes not sufficiently represented in 
our dataset. To ascertain whether some samples are forced to belong to a certain cluster, silhouette plot analysis was carried out. The widths 
indicate a strong similarity of the samples within their subgroup compared with the samples belonging to other subgroups.
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positively correlated to PAD and encode proteins related 
to tumor plasticity, invasion, and metastasis. Functional 
analysis of signaling pathways and network connections 
were performed by IPA. The top molecular functions 
(imposing a score > 30) are illustrated in Figure S5.

Since each tumor can occur in different bins within 
PAD analysis, we established an average position for 
all samples and compared the results to the six subtype 
classification. The subtypes described here summarized 
the tumor progression established by PAD with the Cl6 
subtype displaying a molecular pattern close to the normal 
state, while the Cl2 and Cl3 subtypes were the most distant 
(Figure 5B).

Validation of the subtypes across two 
HNSCC datasets

Eleven independent datasets were retrieved 
from public domains (GEO and TCGA). Two datasets, 
GSE39368 and TCGA, were profiled on Agilent and 
Illumina RNAseq platforms, respectively. The remaining 

nine datasets comprising a total of 358 samples were 
profiled on different types of chips belonging to the 
Affymetrix platform and were computationally integrated 
through a meta-analysis approach to build a unique 
independent validation set, hereafter named MetaHNC-B 
(Figure 1). The subtype membership on these datasets was 
predicted using PAM. First, we developed a prediction 
algorithm based on PAM using 40 ‘core samples’ for each 
subtype as established by Silhouette analysis. A total of 
2843 genes entered into the classifier, yielding a cross-
validation mis-classification rate of 5%. Figure 6 shows 
the heatmap of the classifier genes on MetaHNC-A, 
providing evidence that each subtype has its own distinct 
expression pattern. The list of genes, shrunken centroid 
values for each subtype and the algorithm to classify a 
new sample are reported in Table S3.

This classifier was applied to GSE39368, TCGA 
and MetaHNC-B (Figure 1) datasets and the validation 
sets clearly recapitulate the six cluster classification 
(Figure S6A, S6C, and S6E). Through Subclass Mapping 
we confirmed a good molecular correspondence (p < 0.05) 

Figure 3: Heatmap of pathways enriched in the six subtypes. The molecular pathways and onco-signatures enriched in each 
subtype as investigated through GSEA. A. The relative enrichment of 17 gene-ontology pathways related to biological processes. B. The 
relative enrichment of 11 onco-signatures.
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of our classification in the external datasets (Figure S6B, 
S6D, and S6F).

Association with clinicopathological parameters

The association between the six subtypes and 
tumor characteristics was investigated in the GSE39368 
and TCGA validation datasets that were considered 
as reporting an appropriate number of cases and 
representative of the population in clinical practice. We 
assessed the proportion of cases within each subtype 
in relation to: (i) gender; (ii) alcohol consumption; 
(iii) smoking; (iv) pathologic stage; (v) pathologic T; 
(vi) pathologic N; (vii) tumor site (Figure S7). In both 
datasets, we found an association for tumor site and 
smoking history. The Cl5 subtype showed a significant 
presence of patients with heavy smoking history compared 
to the other subtypes, consistent with the GSEA functional 
analysis; the C11 subtype contained a greater number of 
oropharynx cases (~70%) (Figure S7).

A recursive partitioning approach was applied to 
ascertain to what extent the six subtypes can be predicted 
by exploiting exclusively the data of known clinical and 
pathological parameters. Gender, age, smoking history, 
pathologic stage, and site of primary tumor were included 
to build a classification tree on TCGA and GSE39368 
datasets. The terminal nodes of the tree fail to identify 
unequivocally the six subtypes (Figure S8). Nevertheless, 
an increased occurrence in oropharynx tumors is 
associated to the Cl1 subtype reflecting the high presence 
of HPV positive cases. Altogether, this provides evidence 
that our gene-expression based classification adds a new 
layer of information not captured by the conventional 
clinical/pathological parameters.

Prognostic value of the six-subtype classification

The clinical relevance of our classification was 
investigated and associated to the outcome in the 
three external validation datasets. We found that the 

Table 1: Summary of the main characteristics of the identified HNSCC subtypes
Association to: HNSCC subtypes ordered according to progression of disease

Cluster 6 Cluster 4 Cluster 1 Cluster 5 Cluster 3 Cluster 2

Functional 
pathways

IFN response
Immune 
response
Airway 
epithelium
Cellular 
Homeostasis 
Xenobiotic met.

IFN response
Immune 
response

HPV infection
Cell 
proliferation
Airway 
epithelium

Cell motility
Xenobiotic 
met.

Cell motility
Hypoxia
Drug 
metabolism
Biotic response

Cell motility 
EMT
Angiogenesis

Onco-signatures ALK ALK None

Multiple:
WNT
E2F3
TGF beta

Multiple:
TGF beta
EGFR
Ras
Cyclin D1

Multiple:
WNT
TGF beta
EGFR
Ras
NOTCH

Previously 
reported 
subtypes

AT BA, G1 AT, G3 CL, G4 BA, G1 MS, G2

Clinic-
pathological 
parameters

Oropharynx 
cases Smoking

Outcome Best RFS
Best OS

Worst RFS
Worst OS

Worst RFS
Worst OS

Previously 
reported 
classifiers

Best outcome Worst outcome Worst outcome

Final 
designation Immunoreactive Defense 

response HPV-like Classical Hypoxia Mesenchymal
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six subtype stratification provides useful prognostic 
information. As a matter of fact, the prognostic value 
of the six subtype classifications was significant in 
the TCGA dataset, with better outcome for patients 
belonging to Cl1 subtype and worse for Cl2 and Cl3 
subtypes (Figure 7A) (p = 0.0006). On GSE39368, 
although the prognosis of each of the six subtypes 
differed, it failed to reach a significant value. 
Nonetheless, we confirmed that patients belonging to 
the Cl1 subtype showed a better outcome compared 
with those belonging to the Cl2 or Cl3 subtypes 
(Figure 7B) (2 years RFS proportion of 72.7% for the 
Cl1 subtype compared with 48% and 42.1% for the Cl2 
and Cl3 subtypes, respectively). A significant correlation  

(p = 0.0312) was observed in the MetaHNC-B dataset for 
a positive prognosis of the C11 subtype and a negative 
prognosis for the C12 and C13 subtypes (Figure 7C).

In recent years several gene-expression 
signatures have been reported as promising prognostic 
models in HNSCC. The relationship between the six 
subtypes and four classifiers (radiosensitivity index (RSI) 
[19]; 15-gene hypoxia classifier [20]; 13-gene signature 
for HPV-negative OSCC [21]; 172-gene model [22]) 
demonstrated a significant relationship of our stratification 
to these molecular signatures (Figure S9). Specifically, 
cases belonging to the Cl2 and Cl3 subtypes show the 
highest predicted risk, whereas the Cl1 cases show the 
better clinical outcome.

Figure 4: Comparison of genome-wide molecular pattern between our and previously reported subtype classification.  
The analysis was performed using Subclass Mapping. A. MetaHNC-A is compared with the molecular subtypes defined by Walter et al. 
((48); GSE39368). B. MetaHNC-A is compared to the subtypes reported by Chung et al. ((47); GSE686). Red color indicates high confidence 
for correspondence (p < 0.05); blue color indicates lack of correspondence. BA, basal; MS, mesenchymal; AT, atypical; CL, classical subtypes 
in the study by Walter et al.. G1, G2, G3, G4 refer to the four subtypes identified in the study by Chung et al. C. Table summarizing the 
correspondence between our subtyping classification and those previously published for HNSCC by Chung et al. (47) and Walter et al. (48).
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Drug sensitivity of the six subtypes

The Genomics Drug Sensitivity Project [23] 
includes gene-expression profiling data of hundreds of 
cancer cell lines along with sensitivity data to 130 drugs. 
We tested the possibility that each subtype might have 
specific drug sensitivity, applying a phenotype prediction 
machine learning tool matching cell line chemotherapeutic 
response to baseline tumor gene expression [24]. As proof 
of concept, we restricted our analysis to 46 cell lines 
defined as ‘upper aerodigestive’ and to a list of drugs in 
clinical use or under preclinical investigation in HNSCC 
including Paclitaxel, Rapamycin, Afatinib, Nutlin3a, and 
Z-LLNle-CHO. Our findings demonstrated a statistically 
significant difference in drug sensitivity for patients 
belonging to different subtypes. As example, EGFR 
inhibitors have received great interest in HNSCC but at 
present the response rate is less than 15% [25]. Our results 

reported in Figure 8 strongly suggest that Cl3 subtype 
shows greater sensitivity to Afatinib compared to the 
others and those patients could benefit from the treatment 
(Figure 8A). In addition, Figure 8 reports drug sensitivity 
for Paclitaxel, Z-LLNle-CHO, Nutlin3a, and Rapamycin. 
On this basis it may be predicted the drug potentially more 
effective for each subtype: Paclitaxel for Cl1 subtype 
(Figure 8B); Z-LLNle-CHO for Cl2 subtype (Figure 8C); 
Nutlin3a for Cl4 and Cl6 subtypes (Figure 8D); and 
Rapamycin for Cl5 subtype (Figure 8E).

DISCUSSION

The workflow for cancer subtype identification 
involves some key steps such as application of appropriate 
bioinformatics methods, development of a classifier, and 
validation on external datasets. By applying this workflow 

Figure 5: Progression analysis of disease. The average distance of each tumor from the normal state has been assessed. A. 603 genes 
were identified associated to PAD. The upper bar illustrates to which subtype belongs each tumor sample. B. The box plots show the 
distance from normal state of each tumor was in relation to the six subtypes. Y-axis represents the distance from normal state computed as 
average bin-membership by PAD and depicted in Figure S4.
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Figure 6: Distribution of the PAM classifier genes in the HNSCC subtypes identified in the training dataset. Heatmap of 
the expression values of the 2843 classifier genes.

Figure 7: Survival analysis by Kaplan-Meier for each subtype. The cases entering into the six subtypes identified on both 
validation datasets were used for the Kaplan-Meier analysis. A. TCGA dataset: log rank p = 0.0006; B. GSE39368 dataset: log rank 
p = 0.576; C. MetaHNC-B dataset: log rank p = 0.0312. OS, overall survival; RFS, relapse free survival.
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to a meta-analysis of gene expression microarray datasets 
followed by data decomposition and throughout validation, 
we were able to define a robust genomic classification 
of HNSCC that could potentially identify targetable 
biological pathways, relevant clinical parameters, and 
eventually relate to clinical outcome.

Large datasets are required in order to characterize 
tumor subtypes especially when present at low frequency, 
but in malignancies like HNSCC accounting for about 
5% of adult tumors, only a limited number of MIAME 
complaint datasets are publicly available. In this context, 
a meta-analysis approach combining multiple datasets 
together might help to overcome the issue, improving the 
reliability of results. Taking advantage of the availability of 
expression profiles of the normal counterpart we applied a 
data decomposition approach by DSGA, a proven method 
to improve the understanding of the biology underlying 
a pathologic process, to our training set. Our training 
set, MetaHNC-A, built by a meta-analysis approach, 

enabled the assessment of the disease state computed 
as the deviation of each tumor sample from the normal 
phenotype allowing the identification of six subtypes 
with sample size ensuring that at least 78% of genes 
achieve 90% power. Furthermore, DSGA followed by 
Mapper analysis (PAD analysis) revealed the topological 
connections among samples as a function of the gene-
expression data and it was found that the six molecular 
subtypes summarize the continuous progression from 
samples close (in the Cl6 and Cl4 subtypes) to samples 
distant (in the Cl3 and Cl2 subtypes) to the normal state 
and that 603 genes showed a significant correlation to 
PAD analysis. Finally, the good performance of our 
classification in the validation sets provided evidence 
that our findings are not impaired by technical biases, 
laboratory or sample collection procedures.

The importance in defining molecular subtypes in 
HNSCC lies in their ability to provide new insights not 
captured by the known clinical/pathological parameters 

Figure 8: Prediction drug sensitivity in HNSCC subtypes. Drug sensitivity was predicted for each case entering the MetaHNC-A 
dataset. Five therapeutic agents were investigated: A. Afatinib; B. Paclitaxel; C. Z-LLNle-CHO; D. Nutlin 3a; E. Rapamycin. Box-plots 
depict the predicted drug sensitivity in the six subtypes and the ROC curves estimate prediction accuracy of the more sensitive subtype 
against the others. p = Kruskal-Wallis test; AUC, area under the curve.
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and to identify potentially targetable biological pathways. 
Thus, following the disease progression identified here, 
the main biological and clinical characteristics of each 
subtype (Table 1) and their predicted sensitivity to selected 
drugs under clinical evaluation in HNSCC (Figure 8) are 
hereafter commented in the context of literature data and 
of their potential therapeutic implications.

Cluster 6, the closest to the normal state according 
to the PAD analysis, expressed similarity with the airway 
epithelium and is the only one that maintains an active 
cellular homeostasis. This subtype, at variance to all 
the other ones, is characterized by activation of several 
immune-related pathways and accordingly we gave it 
‘immunoreactive’ as its final designation. Interestingly, 
only the ALK onco-signature was activated compared 
with the multiple onco-signature activation present in 
the subtypes more distant to the normal state. Despite the 
apparently limited alterations of signaling pathways, the 
outcome of patients belonging to this cluster was not as 
good as could be expected. Since the Cl6 subtype is the 
smaller cluster and the only one not reaching 90% power 
for all genes, the analysis of a larger case series is needed 
to confirm the molecular features of this subtype.

Cluster 4, more distant from normal state compared 
with Cl6, as highlighted not only by DSGA but also by 
the loss of normal traits such as the pathways of airway 
epithelium and cellular homeostasis, presented the highest 
activation of the interferon response and high levels of 
immune response and ALK onco-signature. On this basis 
we assigned ‘defense response’ as its final designation. 
The absence of association with known clinical parameters 
and the different outcome of Cl4 patients observed in the 
three datasets analyzed seem to indicate that this new 
biologically distinct subtype required further molecular 
characterization.

However, if the identified Cl6 and Cl4 molecular 
portraits are confirmed, new immunotherapeutic 
modalities and/or ALK targeted therapy [26] that have 
never been analyzed in HNSCC, could be offered to 
patients with high immunoreactivity (Cl6) or defense 
response status and ALK activation (Cl4). Furthermore 
the higher sensitivity to Nutlin 3a, in agreement with 
the deactivated p53 onco-signature (Figure 3), suggests 
considering the patients in these two subtypes as eligible 
to combined treatment with Nutlin 3a as activator of p53-
mediated apoptosis.

Cluster 1 was the only one with activation of HPV 
and proliferation signatures and no onco-signatures. 
Furthermore, cluster 1 maintained the immune systems 
active status and expressed similarity with the airway 
epithelium. When a classification tree based on recursive 
partitioning method was applied to the five available 
clinical parameters (gender, age, smoking history, 
pathologic stage, and site of primary tumor), Cl1 showed a 
significant enrichment in oropharyngeal cases. Even if the 
molecular identification of HPV infection in the analyzed 

MetaHNC-A dataset was not available, altogether the 
observed molecular portrait seemed to reflect a HPV 
positive status therefore resulting in Cl1 being classified as 
‘HPV-like’. In agreement with data related to HPV cases 
[27], Cl1 showed the best outcome and was associated 
with signatures indicating a good prognosis: high radio-
sensitivity [19], high similarity to the ‘less’ hypoxic group 
[20], low 13-gene OSCC [21] and low 172-gene model 
risk score [22]. Interestingly, even if we tested only one 
conventional drug (Paclitaxel) to predict sensitivity, 
the Cl1 subtype had the highest sensitivity (Figure 8), 
consistent with the specific activation of the proliferation 
pathway in this subtype.

Cluster 5 was identified by our approach 
characterized by xenobiotic response associated to 
smoking injury and moderate activation of cell motility, 
WNT, and E2F3 onco-signatures. Compared with the 
other subtypes, cluster 5 showed a significant presence 
of patients with the heaviest smoking history. These data, 
together with the high concordance of this subtype to the 
previous classifications lead to us to classify cluster 5 as 
‘Classical’ for its final designation. The medium level 
of modification in WNT and E2F3 onco-signatures and 
the highest predicted sensitivity to Rapamycin might 
open the way to investigating at pre-clinical level the 
potential therapeutic activity of new oncogene-inhibitors 
and suggest the use of inhibitors of the mTOR pathway, 
whose alteration has been associated to smoke injury [28], 
in patients belonging to Cl5 subtype.

Cluster 3 was characterized by specific activation 
of drug metabolism and hypoxia pathways and according 
to its tumor progression association [29] shared with Cl2 
cell motility; furthermore multiple onco-signatures were 
activated as a result. According to the peculiar activation 
of the hypoxia signature we gave it ‘Hypoxia’ as the final 
designation.

Cluster 2, the most distant form the normal state 
on the basis of PAD analysis, showed the highest cell 
motility expression accompanied by activation of EMT, 
angiogenesis and stem cell signatures. These data, together 
with the high concordance of this subtype to the previous 
classifications, brought us to ‘Mesenchymal’ as its final 
designation.

Both Cl3 and Cl2 showed a poor outcome in 
TCGA and MetaHNC-B datasets and, when analyzed 
with signature/classifiers reflecting poor prognosis, both 
resulted in high radio-resistance [19], showed similarity to 
the ‘more’ hypoxic groups [20], presented a high 13-gene 
OSCC score [21], and a high 172-gene model risk [22] 
score. The continuum in the disease progression identified 
by PAD analysis was demonstrated by the multiple 
alterations observed in Cl3 and Cl2, including seven 
out of 12 different members of the melanoma antigen 
gene family A (MAGEA), previously reported to induce 
growth by inhibition of cell cycle arrest and apoptosis 
[30]. Notably, similarly to MAGEAs, EGFR, an important 
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therapeutic target in HNSCC, is highly expressed in 
tumors distant to the normal phenotype, defining the 
groups of patients that could benefit from EGFR-inhibitors 
[31]. The overall analysis for C2 and Cl3 clearly identified 
specific molecular portraits and predicted drug sensitivity 
that could in future be exploited for evaluating the 
impact of specific targeted therapies. In particular for the 
Cl3 subtype the presence of an EGFR activated pathway, in 
line with the predicted high sensitivity to Afatinib and the 
identification of altered hypoxia pathway, suggest the use 
of EGFR-targeted therapies combined with anti-oxidant 
agents and/or additional strategies exploiting hypoxia, 
as already suggested some years ago [29]; regarding the 
Cl2 subtype, the altered angiogenesis pathway and the 
activation of NOTCH pathway, in line with the predicted 
high sensitivity to Z-LLNle-CHO, supports the clinical 
evaluation of angiogenesis-targeted therapies.

In conclusion, the application of DSGA for the 
first time to pathology other than breast cancer enabled 
the description of a robust transcriptome-based subtype 
classification of HNSCC that improved the current 
clinicopathological and genome-wide stratifications. 
Notably, our meta-analysis study was able to disclose an 
improved molecular stratification in not previously seen 
subgroups characterized by distinct features.

Our comprehensive gene-expression classification 
of HNSCC offers some groundwork to the scientific 
community to improve the knowledge in the molecular 
pathways de-regulated in this disease. Hopefully, upon 
validation in prospective cohorts from clinical trials, 
the new, further refined, classification may result in 
personalized therapies for homogenous groups of patients.

MATERIALS AND METHODS

Data processing

Eight datasets profiled on the same array platform 
were selected to build a uniform training set through 
a meta-analysis approach (MetaHNC-A). Briefly, 
raw microarray data were retrieved from NCBI Gene 
Expression Omnibus (GEO) database [21, 32–36], 
ArrayExpress (The EMBL-European Bioinformatics 
Institute, UK) [37], and MIAME-Vice [38] repositories. 
See Table S1 for details regarding the datasets including 
the accession numbers.

First, signal intensity was normalized within each 
individual dataset using a Robust Multi-Array Average 
(RMA) tool. To reduce the likelihood of systemic non-
biological technical experimental biases causing batch 
effects, the normalizing algorithm ComBat was applied 
[39]. The resulting dataset containing 665 samples was 
used for the analysis. Redundancy of probes mapping 
the same EntrezID was removed by selecting the probe 
having highest variance across samples using collapse 
Row R function [40]. Finally, a decomposition method 

intended to precede any further analysis was applied to 
the dataset. We used DSGA [14], unravelling the disease 
features embedded to the expression data of tumor samples 
(Figure S1); this method defines HSM from the expression 
data of normal tissues through FLAT construction and 
Principal Component Analysis [14]. This method permits 
each tumor tissue to define a model for its own normal 
component allowing modelling of the intrinsic diversity 
of normal tissue. The data matrix corresponding to the 
disease component was filtered in order to exclude the 
genes whose variation is below the 75th percentile of 
the median variance of all genes, yielding 4950 unique 
EntrezIDs.

For validation purposes, 12 datasets profiled in 
different platforms were used (Table S1). GSE39368 
and TCGA, including 138 and 303 samples respectively, 
were used to provide a molecular confirmation of our 
subtype classification along with an evaluation of the 
associations to clinical parameters. TCGA’s level 3 files 
were downloaded along with the clinical annotations in 
June 2013 from the TCGA website (http://cancergenome 
.nih.gov/) and used for the analysis. For GSE39368 and 
GSE686, the processed data matrices available on GEO 
were retrieved and missing values present on GSE686 
were imputed through the ImputeMissingValuesKNN 
module present in GenePattern software (Broad Institute, 
MIT, USA). The remaining nine datasets (GSE2379, 
GSE2837, GSE3292, GSE3524, GSE6631, GSE9349, 
GSE13601, GSE23036, and GSE27020) profiled 
on different versions of Affymetrix array chips and 
including a total of 358 tumor samples, were integrated 
following a meta-analysis approach through virtualArray 
R/BioConductor package [41]. These datasets were 
annotated and redundant probe sets were collapsed by 
EntrezID. Batch effects were removed using ComBat. The 
resulting integrated dataset was named MetaHNC-B.

Unsupervised subtype discovery

Unsupervised tumor subtype identification on the 
MetaHNC-A was performed using k-means clustering 
of the most variant genes (n = 4950) and 1-Pearson 
correlation as distance matrix. In addition, the 
consensus unsupervised method as implemented in the 
R package was used in tumor subtype identification. 
ConsensusClusterPlus [42] has been applied to the data 
through 1000 re-sampling interactions by randomly 
selecting a fraction of the samples. We tested the existence 
of 2 < k < 10 clusters. In order to identify the number 
of clusters giving the maximum stability, empirical 
cumulative distribution function (CDF) plots displaying 
consensus distributions for each k was assessed. As 
stated in Monti [43], the choice of the number of clusters 
depends on the delta area plot and when the increase in 
the CDF area becomes equal to zero. To estimate the 
accuracy of the classification, Silhouette width values [44] 
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for all the samples were calculated (R-package: cluster). 
Significance for each cluster was assessed in a pairwise 
fashion (R-package: SigClust) and reported as p-values 
[45]. An evaluation of sample size adequacy of the 
training set [46] was assessed according to Warnes and 
Liu (R-package: ssize) [47] and computed imposing type 
I error rate (FDR), α = 0.05 and minimum effect size (log 
fold-change), Δ = 1.

Progression analysis of disease

In order to identify the relevant connections 
among the data, we applied Progression Analysis of 
Disease (PAD) [48], a tool able to unravel the topological 
characteristics of the data. This approach is an application 
of Mapper [18] that allows one to recognize local clusters 
within the data and assess the relationships among these 
small clusters. The output of the analysis collapses the 
data into a simple, low dimensional shape that summarizes 
the main features of the data.

Statistical and bioinformatics methods

Statistical analysis was performed using R [49], 
version 2.15, BioConductor [50], release 2.10, and BrB-
ArrayTool developed by Dr Richard Simon and the BRB-
ArrayTools Development Team (v4.2.0; National Cancer 
Institute, USA).

Using Ingenuity Pathway Analysis (IPA 8.5, 
Ingenuity Systems, Qiagen, USA) and genes set 
enrichment analysis (GSEA) [51], we performed gene 
functional characterization. Through the IPA tool, the 
identified genes were associated with a canonical pathway 
in Ingenuity’s Knowledge Base and used to analyze 
the signaling pathways, cellular location, function, and 
network connections. We performed GSEA with 2270 
pathways including curated gene sets from pathway 
databases, publications on PubMed, genes based on Gene 
Ontology annotation and 179 oncogenic signatures present 
on Molecular Signatures Database (Broad Institute, USA).

PAM (Prediction Analysis for Microarrays) [52] 
was applied to identify a classifier in order to project our 
classification to other datasets. The prediction rule was 
computed on a selection of 40 core samples (the 40 cases 
for each subtype with greater positive Silhouette values). 
The classifier was applied to TCGA, GSE39368 and 
MetaHNC-B.

Since GSE686 and GSE39368 report the 
identification of potential molecular subtypes, these 
datasets were used to investigate the correspondence 
between their and our classification. To assess the degree 
of molecular correspondence Subclass Mapping (SubMap 
version 3, GenePattern Software; Broad Institute [53]) 
was applied on the genes entering into the PAM-classifier. 
This algorithm calculates the gene expression enrichment 

in each subtype between the training and the validations 
dataset providing a p-value indicating the significance of 
underlying molecular profiles.

Survival was analyzed in the GSE39368, 
MetaHNC-B, and TCGA datasets according to 
the Kaplan-Meier method and specific endpoints 
reported in each study (relapse free for GSE39368 
and overall survival for TCGA). Differences between 
the six subtypes were assessed using log-rank test and 
R package survival.

The potential association of subtypes to four gene-
expression signatures: radio-sensitivity index (RSI) [19]; 
15-gene hypoxia classifier [20]; 13-gene signature for 
HPV-negative oral squamous cell carcinoma (OSCC) 
[21]; 172-gene model [22], was investigated. The genes 
were mapped using EntrezID annotation and, applying 
the algorithms described in De Cecco et al. [22], a value 
for each case in the TCGA and GSE39368 datasets was 
assessed and compared with the assigned six subtypes.

The association between clinical parameters and 
subtype membership was assessed through the ctree 
function present in party R package [54] using default 
parameters. The analysis was performed on TCGA and 
GSE39368 datasets.

Drug sensitivity was assessed through pRRophetic 
R package [55], following the pipeline established by 
the authors. This tool incorporates the public data from 
the Cancer Genomic Project [23] including baseline 
gene expression data and drug sensitivity on 700 cell 
lines. The analysis was carried out selecting ‘upper 
aerodigestive’ as tissue type. Microarray probes were 
mapped to the official GeneSymbol, cell line and 
MetaHNC-A datasets were homogenized using ComBat 
function and 20% of genes with lowest variability were 
removed. A linear ridge regression model was fitted to 
the homogenized dataset, yielding a drug sensitivity 
estimate for each tumor. ROC curves were estimated by 
pROC R package [56].
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