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Abstract

In this paper, we investigate an optimal boundary control problem for a two dimen-
sional simplified Ericksen–Leslie system modelling the incompressible nematic liquid crystal
flows. The hydrodynamic system consists of the Navier–Stokes equations for the fluid ve-
locity coupled with a convective Ginzburg–Landau type equation for the averaged molecular
orientation. The fluid velocity is assumed to satisfy a no-slip boundary condition, while the
molecular orientation is subject to a time-dependent Dirichlet boundary condition that cor-
responds to the strong anchoring condition for liquid crystals. We first establish the existence
of optimal boundary controls. Then we show that the control-to-state operator is Fréchet
differentiable between appropriate Banach spaces and derive first-order necessary optimality
conditions in terms of a variational inequality involving the adjoint state variables.

Keywords: Nematic liquid crystal flow, optimal boundary control, first-order necessary
optimality conditions, Navier–Stokes equations.
AMS Subject Classification: 49J20, 35Q35, 76A15, 76D05.

1 Introduction

We consider the following hydrodynamic system for incompressible liquid crystal flows of nematic
type:

∂tv + v · ∇v − ν∆v + ∇P = −λ∇ · (∇d⊙∇d), (1.1)

∇ · v = 0, (1.2)

∂td + v · ∇d = η(∆d− f(d)), (1.3)

in Ω × R+, where Ω ⊂ Rn (n = 2, 3) is a bounded domain with smooth boundary Γ. In the
system (1.1)–(1.3), v stands for the velocity field of the fluid, d represents the averaged macro-
scopic/continuum molecular orientation and P is a scalar function representing the pressure
(including both the hydrostatic and the induced elastic part from the orientation field). The
positive constants ν, λ and η stand for the fluid viscosity, the competition between kinetic energy
and elastic potential energy, and the elastic relaxation time (Deborah number) for the molecular
orientation field. The n× n matrix ∇d⊙∇d denotes the Ericksen stress tensor whose (i, j)-th
entry is given by ∇id · ∇jd, for 1 ≤ i, j ≤ n. The vector valued nonlinear function f(d) is the
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gradient of certain smooth scalar potential function F (d) : Rn → R such that f(d) = ∇dF (d).
In this paper, we take F to be the Ginzburg–Landau approximation, i.e.,

F (d) =
1

4ϵ2
(|d|2 − 1)2, f(d) =

1

ϵ2
(|d|2 − 1)d, ϵ > 0,

which has been used to relax the nonlinear constraint |d| = 1 on the molecule length in the
literature (cf. [36,37]). Besides, we assume that the system (1.1)–(1.3) is subject to the following
boundary and initial conditions

v(x, t) = 0, d(x, t) = h(x, t), (x, t) ∈ Γ × R+, (1.4)

v|t=0 = v0(x) with ∇ · v0 = 0, d|t=0 = d0(x), x ∈ Ω. (1.5)

System (1.1)–(1.3) was firstly proposed in [35] as a simplified approximate system of the
original Ericksen–Leslie model for nematic liquid crystal flows (cf. [13, 34]). Well-posedness of
the autonomous initial boundary value problem of system (1.1)–(1.3) (namely, with the no-slip
boundary condition for v and a time-independent Dirichlet boundary condition for d) was first
analyzed in [37] (see also [38] for the result on partial regularity). Concerning the long-time
behavior of global solutions to the autonomous system, a natural question on the uniqueness of
asymptotic limit as t → +∞ was raised in [37]. This question was answered later in [50], where
it was proven that each trajectory converges to a single steady state by using the  Lojasiewicz–
Simon approach (see [41] for some generalizations). We also refer to [11] for the asymptotic
behavior of system (1.1)–(1.3) in the whole space R3 and to [12,31] for the inhomogeneous case
with non-constant density. Some generalizations of system (1.1)–(1.3) have been considered
in [5, 6, 45,51], where the stretching effects are taken into account.

The technically more challenging case of time-dependent Dirichlet boundary conditions for
d has been recently analyzed in [4,8,9,23,24]. Under proper regularity assumptions of the time-
dependent boundary datum h(x, t), existence of global weak solutions, existence of global regular
solutions under large viscosity, and weak/strong uniqueness were obtained in [9]. Regularity
criteria for local strong solutions in the three dimensional case can be found in [24]. Concerning
the long-time behavior, existence of global and exponential attractors was proven in [4] when
the spatial dimension is two, allowing the presence of a time-dependent external force. Besides,
in [23], stability of local energy minimizers and convergence to a single equilibrium for any
bounded trajectory were established.

With the well-posedness results of [4, 23] at hand, the road is paved for studying optimal
control problems associated with the system (1.1)–(1.5) at least when the spatial dimension is
two. This is the goal of this paper. We note that in this case, the velocity field v = (v1, v2)

tr :
Ω → R2 is reduced to a two dimensional vector, while the molecular director d = (d1, ..., dn)tr :
Ω → Rn (n = 2, 3) is allowed to be either two or three dimensional.

In particular, we are interested in the optimal boundary control problem for system (1.1)–
(1.5). From the physical point of view, nonhomogeneous Dirichlet boundary condition for the
director d corresponds to the strong anchoring condition for liquid crystals. The so-called
anchoring refers to the description of how the molecular director is aligned on the boundary
surfaces, which is an important issue both in theoretic studies and applications of liquid crystals
[44]. One typical type of those anchoring conditions is the strong anchoring that occurs when the
surface energy is sufficiently large. In this case, the molecular orientation on the boundary can
be simply fixed in a preferred orientation determined by proper alignment techniques (see [52]).
Strong anchoring conditions are widely used due to their simplicity. On the other hand, the
well-posedness results in [4, 9, 23] imply that the dynamics of liquid crystal flow in the whole
domain Ω can be determined by its boundary conditions. This motives us to study the optimal
boundary control problem for system (1.1)–(1.5).
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Throughout this paper, we assume that T ∈ (0,+∞) is a given finite final time and we set
for convenience

Q := Ω × (0, T ), Σ := Γ × (0, T ).

Moreover, we make the following basic assumptions:

(A1) βi ≥ 0 (i = 1, 2, 3, 4) and γ ≥ 0 are given constants that do not vanish simultaneously.

(A2) The vector-valued functions

vQ ∈ L2(0, T ;H), dQ ∈ L2(Q), vΩ ∈ H, dΩ ∈ L2(Ω)

are given target functions where the space H is given as in (2.1) below.

Then the optimal boundary control problem under investigation reads as follows:

(CP) Minimize the tracking type cost functional:

J ((v,d),h) :=
β1
2
∥v − vQ∥2L2(Q) +

β2
2
∥d− dQ∥2L2(Q) +

β3
2
∥v(T ) − vΩ∥2L2(Ω)

+
β4
2
∥d(T ) − dΩ∥2L2(Ω) +

γ

2
∥h∥2L2(Σ), (1.6)

subject to the boundary control constraint h as well as the state constraint due to the initial
boundary value problem (1.1)–(1.5).

Here, the vector h plays the role of a boundary control, which is postulated to belong to a suitable
closed, bounded and convex set ŨM

ad in the space of controls Ũ (which will be specified later,
see (3.2), (3.3)). Besides, in the cost functional (1.6), the pair (v,d) is the unique global strong
solution to the state problem (1.1)–(1.5) subject to the time-dependent Dirichlet boundary
condition d|Γ = h(x, t).

The main results of this paper are summarized as follows:

(1) we establish the existence of optimal boundary controls for problem (CP) (see Theorem
3.1);

(2) we show that the control-to-state operator S defined by problem (1.1)–(1.5) is Fréchet
differentiable between appropriate Banach spaces (see Theorem 4.1);

(3) we derive the first-order necessary optimality condition (see Theorem 5.1) and in particular,
in terms of a variational inequality involving the adjoint states (see Theorem 6.1).

Before ending the introduction, we would like to make some comments on the results of this
paper and related literature.

Despite its physical and mathematical interests, to the best of our knowledge, the optimal
control problem (CP) for nematic liquid crystal flows has never been tackled in the literature.
We refer to [16, 17, 19–21] and the references therein for extensive studies on various optimal
control problems of the time-dependent Navier–Stokes equations for single viscous Newtonian
fluids. On the other hand, optimal control problems related to complex fluids have been studied
in the literature (for instance, two-phase flows), but never in the framework of liquid crystal flows.
For example, concerning the coupled Navier–Stokes–Cahn–Hilliard (or Allen–Cahn) system for
two-phase fluids, there exist recent contributions on optimal control problems for the time-
discretized local version of the system (see [25, 26]) and on numerical aspects of the control
problem (see [27]). It seems that a rigorous analysis for the problem without time discretization
has never been performed before until recently a diffuse interface model for incompressible
isothermal mixtures of two immiscible fluids coupling the Navier–Stokes system with a convective
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nonlocal Cahn–Hilliard equation in two spatial dimensions has been analyzed in [18] from the
optimal control point of view. There the control was distributed (i.e., in terms of a body force in
the bulk) and was not located on the boundary. Even for the much simpler case of the convective
Cahn–Hilliard equation, where the velocity is prescribed so that the Navier–Stokes equation is
not present, only very few contributions exist that deal with optimal control problems. In this
direction, we refer to [53,54] for local models in one and two spatial dimensions and to the recent
paper [42], in which the first-order necessary optimality conditions were derived for the nonlocal
convective Cahn–Hilliard system in three dimensions, in the case of degenerate mobilities and
singular potentials. At last, regarding the Allen–Cahn type equations (i.e., the scalar version
of the director equation (1.3) with zero velocity), distributed and boundary optimal control
problems with various types of dynamic boundary conditions have been studied in a number of
recent papers, in particular for the case of double obstacle potentials (see [10, 14,15,30]).

Our control problem (CP) deals with boundary controls of Dirichlet type, which are im-
portant in many practical applications such as the active boundary control of single Newtonian
fluids (see, e.g., [20,21,28]). For instance, in [20] the authors studied optimal boundary control
problems for the two-dimensional time-dependent Navier–Stokes equations in an unbounded
domain, where the control is effected through the Dirichlet boundary condition for the fluid
velocity. They established the existence of optimal boundary controls in a suitable subset of
the trace space for velocity fields with almost minimal regularity. Moreover, they derived the
optimality system from which the optimal states and boundary controls can be determined. We
note that, in the practice, boundary controls with low regularity are excepted to be admissible
since one may be interested in blowing and suction as controls on part of the boundary, which
could possibly allow jumps and satisfy point-wise bounds (see [22]). Thus, one usually works
with very weak solutions of the evolutionary system, see e.g., [3, 33] for examples of Dirichlet
boundary control problems for parabolic equations. However, the situation is different when the
Navier–Stokes equations are concerned. It was pointed out in [20] that an important feature
of the Dirichlet boundary control problem is that one can derive an optimality system only
in spaces of sufficiently smooth functions for which the nonlinear terms of the Navier–Stokes
system are subordinate to the linear terms. For this reason, in [20], the authors worked with
sufficiently regular spaces of boundary data that allow to obtain finite energy weak solutions for
the Navier–Stokes equations. Moreover, in contrast to the classical parabolic boundary control
problems [3, 33], it is necessary to fulfill certain compatibility conditions for the boundary and
initial values in this case (see [20] for further details).

For our current problem (CP) the situation is even more complicated. The state system
(1.1)–(1.5) consists of the Navier–Stokes equations coupled with a convective Ginzburg–Landau
type equation, which involves highly nonlinear multi-scale interactions between the macroscopic
fluid velocity v and the microscopic molecular director d. Different from the simple fluid case
as in [20, 21], the boundary control h is now imposed on the director d, which influences the
dynamics of the fluid through the higher-order nonlinear Ericksen stress tensor (i.e., in terms of a
nonlinear bulk force). We observe that the existence of an optimal boundary control to problem
(CP) could be proven in less regular spaces (see e.g., (2.2)–(2.4) that yield finite energy weak
solutions of system (1.1)–(1.5)). Nevertheless, in order to show the Fréchet differentiability of the
control-to-state operator S, as well as the first-order necessary optimality conditions, we have
to work with more regular trace spaces with a compatibility condition between the boundary
value of the initial datum d0 and the initial value of the boundary control h, which ensure the
existence of a unique global strong solution to the state problem (1.1)–(1.5) (see assumptions
(2.12)–(2.13) with (2.4), see also (3.2)).

On the other hand, the liquid crystal system (1.1)–(1.5) satisfies a weak maximum principle
on the molecular length |d|Rn (see Corollary 2.1) that plays an essential role in the mathe-
matical analysis on its well-posedness and long-time behavior (see [4, 9, 23] and also [37] for
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the autonomous case). However, the validity of the weak maximum principle requires some
additional constraints on the L∞-norms of the boundary and initial data h, d0 (see (2.6) and
(2.7)), which will bring extra difficulties to the study of the control problem (CP). For instance,
the differentiability of the control-to-state mapping S with respect to the boundary control
h should be considered in a certain bounded convex set. Besides, in addition to the control
constraints, a state constraint is also to be respected. In order to avoid these difficulties, the
existing well-posedness and regularity results in [4, 23] must be refined. Here, we shall show
that the constraints (2.6) and (2.7) are indeed not necessary for the well-posedness of problem
(1.1)–(1.5), with a cheap price to be paid on the slightly higher integrability in time for the
time derivative of h (compare (2.3) and (2.5), see also Theorem 2.2). The well-posedness result
obtained in Theorem 2.2 implies that our assumptions on the regularity of trace spaces for the
boundary control h seem to be almost minimal. It will be an interesting problem to reduce the
regularity requirements on h and thus include less regular boundary controls to problem (CP).

Our contribution can be viewed as a first step towards the study on optimal control problems
related to liquid crystal flows. We note that the PDE system (1.1)–(1.3) is highly simplified and
it only keeps some essential properties of the original Ericksen–Leslie system [13,34,37]. It will
be interesting to investigate optimal boundary (and also distributed) control problems for more
comprehensive liquid crystal systems with important physical considerations, for instance, the
Ericksen–Leslie system with rotating/streching effects and the nonlinear constraint |d|Rn = 1
(see, e.g., [32,49]), as well as the Beris–Edwards Q-tensor system (see, e.g., [1,7,40]). These will
be the subjects of our future study.

The plan of the paper is as follows: in Section 2, we present some preliminary results con-
cerning the well-posedness of problem (1.1)–(1.5) under suitable regularity and compatibility
assumptions on the Dirichlet boundary data h. Then we prove some stability estimates for
global strong solutions in higher-order Sobolev norms when the spatial dimension is two, which
are crucial for the analysis of the optimal control problem (CP). In Section 3, we show the
existence of an optimal boundary control over a suitable admissible set. Section 4 is devoted to
the Fréchet differentiability of the control-to-state operator S. In Section 5 and Section 6, some
first-order necessary optimality conditions for the problem (CP) are derived.

2 Preliminaries

2.1 Functional settings

Without loss of generality, throughout the paper, we simply set

ν = λ = η = ϵ = 1,

because the values of those coefficients do not play a role in the subsequent analysis.
Let us introduce the function spaces we shall work with. As usual, Lp(Ω) and W k,p(Ω)

stand for the Lebesgue and the Sobolev spaces of real valued functions, with the convention
that Hk(Ω) = W k,2(Ω). The spaces of vector-valued functions are denoted by bold letters,
correspondingly. We set

H = VL2(Ω)
, V = VH1

0(Ω)
, where V = {v ∈ C∞

0 (Ω,Rn) : ∇ · v = 0} (2.1)

that are the classical Hilbert spaces for the incompressible Navier–Stokes equations subject to
no-slip boundary conditions (see [47, Chapter 1]). Their norms are given by ∥ · ∥L2(Ω) and
∥ · ∥H1(Ω), respectively. For any Banach space B, we denote its dual space by B′. The notations
⟨·, ·⟩B′,B and ∥ · ∥B will stand for the duality pairing between B and its dual B′, and for the
norm of B, respectively. In particular, we denote the dual space of H1

0(Ω) by H−1(Ω). We recall
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that the operator −∆ with homogeneous Dirichlet boundary condition is strictly positive and
self-adjoint in L2(Ω). So that the spectral theorem allows us to define the powers (−∆)s and
the associated spaces D((−∆)s), for s ∈ R. Denote Hs(Ω) = D((−∆)

s
2 ). We know that

D((−∆)1) = H2(Ω) ∩H1
0(Ω), D((−∆)

1
2 = H1

0(Ω), D((−∆)0) = L2(Ω).

If it is not misleading, we will use the shorthand notations ∥ · ∥L2 , ∥ · ∥H1 , . . . to indicate the
norms defined in the domain Ω, that is ∥ · ∥L2(Ω), ∥ · ∥H1(Ω), . . .

We recall here the regularity result for the Stokes problem (see, e.g., [47, Chapter 1, Propo-
sition 2.2]):

Lemma 2.1. Consider the Stokes operator S : D(S) = V ∩H2(Ω) → H defined by

Su = −∆u + ∇π ∈ H, ∀u ∈ D(S),

where π ∈ H1(Ω). Then it holds

∥u∥H2 + ∥π∥H1/R ≤ C∥Su∥L2 , ∀u ∈ D(S),

for some positive constant C only depending on the domain Ω and the spatial dimension n.

2.2 Well-posedness of the state problem (1.1)–(1.5)

We start with an existence result for global weak solutions to problem (1.1)–(1.5) in both two
and three dimensions.

Theorem 2.1 (Global weak solutions). Let n = 2, 3. For any given T > 0, assume that

h ∈ L2(0, T ;H
3
2 (Γ)), (2.2)

∂th ∈ L4(0, T ;H− 1
2 (Γ)). (2.3)

Then for any initial datum (v0,d0) ∈ H×H1(Ω) satisfying the compatibility condition

d0|Γ = h|t=0, (2.4)

problem (1.1)–(1.5) admits a global weak solution (v,d) such that

v ∈ L∞(0, T ;H) ∩ L2(0, T ;V),

d ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

If one considers global weak solutions with L∞-constraint on the length of molecular director
d, it holds

Corollary 2.1 (Global weak solutions with constraint |d|Rn ≤ 1). Let n = 2, 3 and (v0,d0) ∈
H×H1(Ω) such that (2.4) is satisfied. For any given T > 0, assume (2.2) and

∂th ∈ L2(0, T ;H− 1
2 (Γ)), (2.5)

|h(x, t)|Rn ≤ 1 a.e. on Σ, (2.6)

|d0(x)|Rn ≤ 1 a.e. in Ω. (2.7)

Then problem (1.1)–(1.5) admits a global weak solution (v,d) with the same regularity as in
Theorem 2.1. Moreover, d satisfies the weak maximum principle

|d(x, t)|Rn ≤ 1, a.e. in Q. (2.8)
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Remark 2.1. We note that the statement of Theorem 2.1 is different from the existing results
obtained in [4, Corollary 1] or [9, Theorem 7] that are similar to Corollary 2.1. In particular, in
Theorem 2.1, we avoid using the assumptions (2.6)–(2.7) by taking a slightly stronger assump-
tion on ∂th (compare (2.3) and (2.5)). Theorem 2.1 can be proved by using a semi-Galerkin
approximation scheme similar to [4, 9]. However, the argument in [4, 9] cannot be applied di-
rectly, because it essentially relies on the assumptions (2.6)–(2.7) that lead to the weak maximum
principle for d and the estimate (2.8) plays a crucial role in controlling the nonlinear term f(d).
Without these two assumptions, necessary modifications should be made in order to overcome
the difficulty due to the lack of control on ∥d∥L∞(0,T ;L∞(Ω)). The proof of Theorem 2.1 will be
sketched in the Appendix.

Due to the time-dependent boundary condition (1.4), the system (1.1)–(1.5) no longer sat-
isfies the dissipative energy law like the autonomous case in [37]. However, with the help of
a suitable lifting function dE (see (7.2)), one can still derive a specific energy inequality (see
Lemma 7.5). Combining it with Lemmas 7.1, 7.4, we can obtain some uniform estimates for
global weak solutions to problem (1.1)–(1.5) on arbitrary time interval [0, T ]:

Proposition 2.1. Let the assumptions of Theorem 2.1 hold. Then, any global weak solution
(v,d) to problem (1.1)–(1.5) fulfills the following estimate

∥v(t)∥2L2 + ∥d(t)∥2H1 +

∫ t

0
(∥v(τ)∥2H1 + ∥d(τ)∥2H2)dτ ≤ CT , ∀ t ∈ [0, T ], (2.9)

where the positive constant CT depends on ∥v0∥L2, ∥d0∥H1, ∥h∥
L2(0,T ;H

3
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

,

Ω and T .

When the spatial dimension is two, further conclusions can be obtained. First, we can prove
the following continuous dependence result on initial and boundary data in the lower-order
energy space L2(Ω) ×H1(Ω), which easily yields the uniqueness of global weak solutions when
n = 2.

Proposition 2.2 (Continuous dependence in H×H1(Ω)). Let the assumptions of Theorem 2.1
hold. If n = 2, then problem (1.1)–(1.5) admits a unique weak solution (v,d). Moreover, let

(v(i),d(i)) (i = 1, 2) be two weak solutions corresponding to the initial data (v
(i)
0 ,d

(i)
0 ) as well as

the boundary data h(i). Denoting the differences v̄ = v(1)−v(2), d̄ = d(1)−d(2), v̄0 = v
(1)
0 −v

(2)
0 ,

d̄0 = d
(1)
0 − d

(2)
0 and h̄ = h(1) − h(2), then for t ∈ [0, T ] the following estimate holds:

∥v̄(t)∥2L2 + ∥∇d̄(t)∥2L2 +

∫ t

0
(∥∇v̄(τ)∥2L2 + ∥∆d̄(τ)∥2L2)dτ

≤ CT

[
∥v̄0∥2L2 + ∥∇d̄0∥2L2 +

∫ t

0

(
∥h̄(τ)∥2

H
3
2 (Γ)

+ ∥∂th̄(τ)∥2
H− 1

2 (Γ)

)
dτ

]
, (2.10)

where the constant CT > 0 depends on ∥v0∥(i)L2, ∥d0∥(i)H1, ∥h(i)∥
L2(0,T ;H

3
2 (Γ))

, ∥∂th(i)∥
L4(0,T ;H

1
2 (Γ))

,

Ω and T .

Proof. We recall that a similar result was proven in [4, Theorem 2.4] under the additional
assumptions (2.6)–(2.7) that are not valid in our case. Nevertheless, the only difference in the
proof is related to the treatment of the nonlinear term f(d), namely,

∫
Ω(f(d(1))−f(d(2))) ·∆d̄dx.

We take d
(i)
E (i = 1, 2) as the elliptic lifting functions (see Appendix) given by{

−∆d
(i)
E = 0, in Ω × (0, T ),

d
(i)
E = h(i), on Γ × (0, T ).

(2.11)
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Then we set d̂(i) = d(i) − d
(i)
E (i = 1, 2), which satisfy the homogeneous Dirichlet boundary

condition d̂(i)|Γ = 0. Instead of using the weak maximum principle for d (cf. (2.8)), we deduce
from Proposition 2.1, the Sobolev embedding theorem (n = 2), the Hölder, Poincaré and Young’s
inequalities that∣∣∣∣∫

Ω
(f(d(1)) − f(d(2))) · ∆d̄dx

∣∣∣∣
≤ 2(∥d(1)∥2L6 + ∥d(2)∥2L6)∥d̄∥L6∥∆d̄∥L2 + ∥d̄∥L2∥∆d̄∥L2

≤ CT ∥d̄∥H1∥∆d̄∥L2

≤ CT (∥d̂(1) − d̂(2)∥H1 + ∥d(1)
E − d

(2)
E ∥H1)∥∆d̄∥L2

≤ CT (∥∇(d̂(1) − d̂(2))∥L2 + ∥d(1)
E − d

(2)
E ∥H1)∥∆d̄∥L2

≤ CT (∥∇d̄∥L2 + ∥∇(d
(1)
E − d

(2)
E )∥L2 + ∥d(1)

E − d
(2)
E ∥H1)∥∆d̄∥L2

≤ ε∥∆d̄∥2L2 + CT

(
∥∇d̄∥2L2 + ∥h̄∥2

H
3
2 (Γ)

)
,

for certain sufficiently small constant ε > 0. Keeping the above estimate in mind, we can follow
the argument as [4, Theorem 2.4] to prove our conclusion.

Next, if the initial data is more regular, namely, (v0,d0) ∈ V×H2(Ω), we can further prove
the existence of a unique global strong solution to problem (1.1)–(1.5) in two spatial dimensions:

Theorem 2.2 (Global strong solutions in 2D). Let n = 2. For any T > 0, assume

h ∈ L2(0, T ;H
5
2 (Γ)), (2.12)

∂th ∈ L4(0, T ;H
1
2 (Γ)). (2.13)

Let (v0,d0) ∈ V × H2(Ω) such that the compatibility condition (2.4) holds. Then problem
(1.1)–(1.5) admits a unique global strong solution (v,d) such that

v ∈ L∞(0, T ;V) ∩ L2(0, T ;H2(Ω)),

d ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

Moreover, the following estimates hold

∥v(t)∥H1 + ∥d(t)∥H2 ≤ CT , ∀ t ∈ [0, T ], (2.14)∫ t

0

(
∥v(τ)∥2H2 + ∥d(τ)∥2H3

)
dτ ≤ CT , ∀ t ∈ [0, T ], (2.15)

where CT > 0 depends on ∥v0∥H1, ∥d0∥H2, ∥h∥
L2(0,T ;H

5
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

, Ω, and T .

Remark 2.2. The proof of Theorem 2.2 is similar to [4, Theorem 2.6] and [23, Theorem 2.7
(ii)] with some necessary refined estimates without using the weak maximum principle (2.8) (see
Proposition 7.2). A sketch of the proof will be given in the Appendix.

Besides, by exploiting the equations (1.1) and (1.3), one can also verify that in the two
dimensional case the global strong solution (v,d) satisfies the following regularity in time:

∂tv ∈ L2(0, T ;H), ∂td ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

which further implies the continuity property v ∈ C([0, T ];V), d ∈ C([0, T ];H2(Ω)), by means
of the interpolation (see e.g., [43]). Moreover, it holds

∥∂td(t)∥2L2 +

∫ t

0

(
∥∂tv(τ)∥2L2 + ∥∂td(τ)∥2H1

)
dτ ≤ CT , ∀ t ∈ [0, T ], (2.16)

where CT > 0 depends on ∥v0∥H1, ∥d0∥H2, ∥h∥
L2(0,T ;H

5
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

, Ω and T .
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Finally, in the two dimensional case, we can deduce the following continuous dependence
result on initial and boundary data for global strong solutions to problem (1.1)–(1.5) in the
higher-order space H1(Ω) × H2(Ω), which will be crucial to prove the differentiability of the
state-to-control operator S (see (3.5)).

Proposition 2.3 (Continuous dependence in V × H2(Ω)). Suppose that the assumptions of
Theorem 2.2 are satisfied. Let (v(i),d(i)) (i = 1, 2) be two strong solutions corresponding to

the initial data (v
(i)
0 ,d

(i)
0 ) and the boundary data h(i) on [0, T ]. Denoting the differences v̄ =

v(1) − v(2), d̄ = d(1) − d(2), v̄0 = v
(1)
0 − v

(2)
0 , d̄0 = d

(1)
0 − d

(2)
0 and h̄ = h(1) − h(2), then the

following estimate holds:

∥v̄(t)∥2H1 + ∥d̄(t)∥2H2 +

∫ t

0
(∥v̄(τ)∥2H2 + ∥d̄(τ)∥2H3)dτ

≤ CT

[
∥v̄0∥2H1 + ∥d̄0∥2H2 +

∫ t

0

(
∥h̄(τ)∥2

H
5
2 (Γ)

+ ∥∂th̄(τ)∥2
H

1
2 (Γ)

)
dτ

]
, ∀ t ∈ [0, T ], (2.17)

where the positive constant CT depends on the norms ∥v(i)
0 ∥H1, ∥d(i)

0 ∥H2, ∥h(i)∥
L2(0,T ;H

5
2 (Γ))

,

∥∂th(i)∥
L4(0,T ;H

1
2 (Γ))

, Ω and T .

Proof. Let d
(i)
P (i = 1, 2) be the parabolic lifting functions satisfying

∂td
(i)
P − ∆d

(i)
P = 0, in Ω × R+,

d
(i)
P = h(i), on Γ × R+,

d
(i)
P (0) = d

(i)
E0, in Ω,

(2.18)

where the initial data d
(i)
E0 (i = 1, 2) are respectively given by{

−∆d
(i)
E0 = 0, in Ω,

d
(i)
E0 = d

(i)
0 , on Γ.

(2.19)

Then we set
d̄P = d

(1)
P − d

(2)
P and d̃(i) = d(i) − d

(i)
P , i = 1, 2.

In particular, it holds that
d̃(i) = 0 on Γ, i = 1, 2.

Using the estimates (2.14), (2.15) and (2.16) on [0, T ] for the global strong solutions (v(i),d(i))
(i = 1, 2), after performing similar calculations as in the proof of [4, Theorem 4.7, pp. 427-432],
we can obtain the following differential inequality

d

dt
Y(t) +

1

2
Z(t) ≤ CTY(t) + CT

(
∥d̄∥2L2 + ∥h̄∥2

H
5
2 (Γ)

+ ∥∂th̄∥2
H

1
2 (Γ)

)
, (2.20)

where

Y(t) = ∥∇v̄∥2L2 + ∥∆(d̃(1) − d̃(2)) − f(d(1)) + f(d(2))∥2L2 + ∥∆d̄P ∥2L2 ,

Z(t) = ∥∆v̄∥2L2 + ∥∇[∆(d̃(1) − d̃(2)) − f(d(1)) + f(d(2))]∥2L2 + ∥d̄P ∥2H3 ,

and CT > 0 depends on ∥v(i)
0 ∥H1 , ∥d(i)

0 ∥H2 , ∥h(i)∥
L2(0,T ;H

5
2 (Γ))

, ∥∂th(i)∥
L4(0,T ;H

1
2 (Γ))

, Ω and T .

Then, from (2.20) and the Gronwall lemma it follows that

Y(t) ≤ Y(0)eCT t + CT

∫ t

0

(
∥d̄(τ)∥2L2 + ∥h̄(τ)∥2

H
5
2 (Γ)

+ ∥∂th̄(τ)∥2
H

1
2 (Γ)

)
dτ, ∀ t ∈ [0, T ]. (2.21)
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Similar to the estimate (7.5), we have the following bound for the difference d̄P of lifting functions

∥d̄P (t)∥2H1 ≤ ∥d̄0∥2H1 + c

∫ t

0

(
∥h̄(τ)∥2

H
3
2 (Γ)

+ ∥∂th̄(τ)∥2
H− 1

2 (Γ)

)
dτ, (2.22)

which together with the lower-order continuous dependence result in Proposition 2.2 implies,
for t ∈ [0, T ],

∥d̄(t)∥2H1 ≤ 2∥(d̃(1) − d̃(2))(t)∥2H1 + 2∥d̄P (t)∥2H1

≤ C∥∇(d̃(1) − d̃(2))(t)∥2L2 + 2∥d̄P (t)∥2H1

≤ C∥∇d̄(t)∥2L2 + C∥d̄P (t)∥2H1

≤ CT

[
∥v̄0∥2L2 + ∥d̄0∥2H1 +

∫ t

0

(
∥h̄(τ)∥2

H
3
2 (Γ)

+ ∥∂th̄(τ)∥2
H− 1

2 (Γ)

)
dτ

]
, (2.23)

∫ t

0
∥d̄(τ)∥2H2dτ ≤ C

∫ t

0

(
∥∆d̄(τ)∥2L2 + ∥h̄(τ)∥2

H
3
2 (Γ)

)
dτ

≤ CT

[
∥v̄0∥2L2 + ∥∇d̄0∥2L2 +

∫ t

0

(
∥h̄(τ)∥2

H
3
2 (Γ)

+ ∥∂th̄(τ)∥2
H− 1

2 (Γ)

)
dτ

]
, (2.24)

where the constant CT > 0 depends on ∥v0∥(i)L2 , ∥d0∥(i)H1 , ∥h(i)∥
L2(0,T ;H

3
2 (Γ))

, ∥∂th(i)∥
L4(0,T ;H

1
2 (Γ))

,

Ω and T .
Next, using Proposition 2.1, estimate (2.14) and the Sobolev embedding theorem (n = 2),

we obtain that

∥∆(d̃(1) − d̃(2)) − f(d(1)) + f(d(2))∥L2

≤ ∥∆(d̃(1) − d̃(2))∥L2 + ∥f(d(1)) − f(d(2))∥L2

≤ C∥d̄∥H2 + C∥d̄P ∥H2 + CT ∥d̄∥L2 , (2.25)

∥d̄∥H2 ≤ ∥d̃(1) − d̃(2)∥H2 + ∥d̄P ∥H2

≤ C∥∆(d̃(1) − d̃(2))∥L2 + ∥d̄P ∥H2

≤ C∥∆(d̃(1) − d̃(2)) − f(d(1)) + f(d(2))∥L2

+ C∥f(d(1)) − f(d(2))∥L2 + ∥d̄P ∥H2

≤ C∥∆(d̃(1) − d̃(2)) − f(d(1)) + f(d(2))∥L2 + CT ∥d̄∥L2 + ∥d̄P ∥H2 , (2.26)

and

∥d̄∥H3 ≤ ∥d̃(1) − d̃(2)∥H3 + ∥d̄P ∥H3

≤ C∥∇∆(d̃(1) − d̃(2))∥L2 + C∥∆(d̃(1) − d̃(2))∥L2 + ∥d̄P ∥H3

≤ C∥∇[∆(d̃(1) − d̃(2)) − f(d(1)) + f(d(2))]∥L2 + C∥f(d(1)) − f(d(2))∥H1

+ ∥d̄P ∥H3

≤ C∥∇[∆(d̃(1) − d̃(2)) − f(d(1)) + f(d(2))]∥L2 + CT ∥d̄∥H2 + ∥d̄P ∥H3 , (2.27)

where C > 0 is a constant depending on Ω and CT > 0 is a constant depending on ∥v0∥H1 ,
∥d0∥H2 , ∥h∥

L2(0,T ;H
5
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

, Ω and T .

On the other hand, we infer from the estimates (2.18), (2.19) and (2.25) that

Y(0) ≤ ∥∇v̄0∥2L2 + 3∥d̄0∥2H2 + 3∥d(1)
E0 − d

(2)
E0∥

2
H2 + 3C∥d̄0∥2L2 + ∥∆(d

(1)
E0 − d

(2)
E0)∥

2
L2

10



≤ ∥∇v̄0∥2L2 + C∥d̄0∥2H2 , (2.28)

where C > 0 is a constant depending on Ω and the coefficients of the system (1.1)–(1.3).

As a consequence, from (2.21) and (2.24) it follows that, for t ∈ [0, T ],

Y(t) ≤ CT

[
∥v̄0∥2H1 + ∥d̄0∥2H2 +

∫ t

0

(
∥h̄(τ)∥2

H
5
2 (Γ)

+ ∥∂th̄(τ)∥2
H

1
2 (Γ)

)
dτ

]
, (2.29)

while integrating (2.20) with respective to time, we also have, for t ∈ [0, T ],∫ t

0
Z(τ)dτ ≤ CT

[
∥v̄0∥2H1 + ∥d̄0∥2H2 +

∫ t

0

(
∥h̄(τ)∥2

H
5
2 (Γ)

+ ∥∂th̄(τ)∥2
H

1
2 (Γ)

)
dτ

]
. (2.30)

Finally, applying the estimate (7.6) to the difference d
(1)
P − d

(2)
P , which satisfies a linear

parabolic equation similar to (7.3), we get

∥d̄P (t)∥2H2 +

∫ t

0
∥d̄P (τ)∥2H3dτ ≤ ∥d̄0∥2H2 + c

∫ t

0

(
∥h̄(τ)∥2

H
5
2 (Γ)

+ ∥∂th̄(τ)∥2
H

1
2 (Γ)

)
dτ. (2.31)

Then our conclusion (2.17) follows from (2.29) and (2.30) together with the estimates (2.23),
(2.24), (2.26), (2.27) and (2.31).

The proof is complete.

3 The Optimal Control Problem: Existence

In this section we investigate the optimal control problem (CP) with the cost functional J given
by (1.6) when the spatial dimension n = 2.

3.1 Space of control functions and admissible sets

Let T ∈ (0,+∞) be an arbitrary but fixed time. Motivated by the existence and continuous
dependence results on global strong solutions to problem (1.1)–(1.5) (see Theorem 2.2 and
Proposition 2.3), the boundary control h should be measured in a norm that is not weaker than
those required therein. As a result, we introduce the space

U :=
{
h(x, t) | h ∈ L2(0, T ;H

5
2 (Γ)), ∂th ∈ L4(0, T ;H

1
2 (Γ))

}
, (3.1)

whose norm is given by

∥h∥U := ∥h∥
L2(0,T ;H

5
2 (Γ))

+ ∥∂th∥
L4(0,T ;H

1
2 (Γ))

, ∀h ∈ U .

Next, assume that (v0,d0) ∈ V × H2(Ω) is an arbitrary given initial datum. Then we define
the affine space of control functions Ũ (associated with (v0,d0)) such that

Ũ :=
{
h(x, t) | h ∈ U with h(x, t)|t=0 = d0(x)|Γ

}
. (3.2)

Remark 3.1. By the continuous embeddings (n = 2)

L2(0, T ;H
5
2 (Γ)) ∩W 1,4(0, T ;H

1
2 (Γ)) ↪→ C([0, T ];H

3
2 (Γ)) ↪→ C(Γ × [0, T ]),

we see that any h ∈ Ũ is a continuous vector defined on Γ × [0, T ] and thus the compatibility
condition h(x, t)|t=0 = d0(x)|Γ in (3.2) makes sense.
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It is natural that the size of the boundary controls should be constrained from both the
physical and mathematical point of view. To this end, we introduce the admissible set for
problem (CP):

Definition 3.1. Let M ∈ (0,+∞) be a prescribed positive constant. The set of admissible
boundary control functions ŨM

ad is defined as follows

ŨM
ad :=

{
h ∈ U | ∥h∥

L2(0,T ;H
5
2 (Γ))

≤ M, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

≤ M
}
. (3.3)

Remark 3.2. (1) Due to the compatibility condition h(x, t)|t=0 = d0(x)|Γ, the admissible set

ŨM
ad is non-empty, provided that M > 0 is sufficiently large. For instance, if d0|Γ ∈ H

5
2 (Γ), then

h = d0|Γ ∈ ŨM
ad provided that M ≥ T

1
2 ∥d0|Γ∥

H
5
2 (Γ)

.

(2) For any fixed admissible M > 0, the set ŨM
ad is a bounded, convex and closed subset of

the Banach space U .

3.2 The control-to-state operator S

Denote by

H :=
[
C([0, T ];V) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;H)

]
×

[
C([0, T ];H2(Ω)) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ;H1(Ω))

]
(3.4)

the function space for global strong solutions to problem (1.1)–(1.5) (cf. Theorem 2.2 and
Remark 2.2). Then we introduce

Definition 3.2. The control-to-state mapping S associated with the given initial data (v0,d0)
is defined as follows:

S : Ũ → H, h ∈ Ũ 7→ S(h) := (v,d) ∈ H, (3.5)

where (v,d) is the unique global strong solution to problem (1.1)–(1.5) on [0, T ] subject to the
initial data (v0,d0).

The following property for S is a direct consequence of Theorem 2.2, Remark 2.2 and the
continuous dependence result of Proposition 2.3:

Proposition 3.1 (Lipschitz continuity of S). Let n = 2 and T ∈ (0,+∞). Assume that the
hypotheses of Theorem 2.2 are satisfied and M > 0 is sufficiently large. Then the control-to-state
mapping S defined by (3.5) is well-defined and bounded on [0, T ]. Moreover, the operator S is
Lipschitz continuous from Ũ into the space

W :=
[
C([0, T ];V) ∩ L2(0, T ;H2(Ω))

]
×

[
C([0, T ];H2(Ω)) ∩ L2(0, T ;H3(Ω))

]
. (3.6)

3.3 The existence of an optimal boundary control

In what follows, we prove the existence of an optimal boundary control for problem (CP):

Theorem 3.1 (Existence of an optimal boundary control). Let n = 2. Suppose that the assump-
tions (A1)–(A2) are satisfied and (v0,d0) ∈ V × H2(Ω) is a given initial datum. Let M > 0
be sufficiently large. Then the optimal control problem (CP) admits a solution ((v,d),h) such
that h ∈ ŨM

ad and (v,d) = S(h) is the unique global strong solution to problem (1.1)–(1.5) with
initial condition (v0,d0).
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Proof. The proof essentially follows from the convexity/coercivity of the nonnegative cost func-
tional J ((v,d),h) (see (1.6)). To this end, we introduce the reduced cost functional

J̃ (h) : Ũ → [0,+∞) such that J̃ (h) := J ((v,d),h)

for any h ∈ Ũ , where (v,d) = S(h) is the unique global strong solution to problem (1.1)–(1.5)
with initial datum (v0,d0). It is easy to see that the optimal control problem (CP) is equivalent
to the minimization problem (CP)’:

min
h∈ŨM

ad

J̃ (h).

It follows from Remark 3.2 that the admissible set ŨM
ad is non-empty under our assumption.

Then there exists a bounded minimizing sequence {(v(i),d(i),h(i))} (i = 1, 2, ...) of J such that
h(i) ∈ ŨM

ad and (v(i),d(i)) = S(h(i)) ∈ H is the unique strong solution to problem (1.1)–(1.5)
subject to the initial condition (v0,d0) and boundary condition h(i). Moreover,

lim
i→+∞

J̃ (h(i)) = inf
h∈ŨM

ad

J̃ (h). (3.7)

Since ŨM
ad is a bounded subset of U , then there exists a weakly convergent subsequence of

{h(i)} satisfying the compatibility condition h(i)|t=0 = d0|Γ, which is still denoted by {h(i)}
without loss of generality, such that

h(i) ⇀ h♯ in U ,

for some h♯ ∈ Ũ . Besides, since ŨM
ad is convex and closed, it is also weakly closed and we can

infer that h♯ ∈ ŨM
ad .

For the weakly convergent subsequence {h(i)}, we consider (v(i),d(i)) = S(h(i)). From
Proposition 3.1 and the definition of ŨM

ad it follows that S(h(i)) are uniformly bounded (with
respect to the index i) in the space H. Hence, there exists a weakly convergent subsequence of
{(v(i),d(i))}, which is still denoted by {(v(i),d(i))} without loss of generality, such that

v(i) ∗
⇀ v♯ in L∞(0, T ;V),

v(i) ⇀ v♯ in L2(0, T ;H2(Ω)) ∩H1(0, T ;H),

d(i) ∗
⇀ d♯ in L∞(0, T ;H2(Ω)),

d(i) ⇀ d♯ in L2(0, T ;H3(Ω)) ∩H1(0, T ;H1(Ω)),

for some limit functions (v♯,d♯) ∈ H.
Next, we proceed to verify that (v♯,d♯) = S(h♯). By the Aubin–Lions lemma and the

compact embedding theorems for n = 2 (see, e.g., [43]), we have the following strong convergence
results for {(v(i),d(i))} (again up to a subsequence)

v(i) → v♯ in C([0, T ];H1−s(Ω)) ∩ L2(0, T ;H2−s(Ω)),

d(i) → d♯ in C([0, T ];H2−s(Ω)) ∩ L2(0, T ;H3−s(Ω)),

for some s ∈ (0, 1). As a consequence, we also have v(i) → v♯, d(i) → d♯ a.e. in Ω × [0, T ] and
the convergence for the initial data

v(i)(0) → v♯(0) = v0 in H1−s(Ω), d(i)(0) → d♯(0) = d0 in H2−s(Ω).

Using the above strong convergence results we are able to show the following convergence for
nonlinear terms

v(i) · ∇v(i) ⇀ v♯ · ∇v♯ in L2(0, T ;L2(Ω)),
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∇ · (∇d(i) ⊙∇d(i)) ⇀ ∇ · (∇d♯ ⊙∇d♯) in L2(0, T ;L2(Ω)),

v(i) · ∇d(i) → v♯ · ∇d♯ in L2(0, T ;L2(Ω)),

f(d(i)) → f(d♯) in C(Ω × [0, T ]).

The above convergence results easily enable us to pass to the limit (up to a subsequence) in
the weak formulation of problem (1.1)–(1.5) for every (v(i),d(i)) such that the limit function
(v♯,d♯) satisfies the weak formulation of problem (1.1)–(1.5) with initial condition (v0,d0) and
boundary condition h♯. Since (v♯,d♯) ∈ H, we can conclude that (v♯,d♯) = S(h♯).

Therefore, the limit ((v♯,d♯),h♯) is admissible for the control problem (CP). Since the cost
functional J is weakly lower semi-continuous in H × U , by the weak convergent results (up to
a subsequence) obtained before, it holds

lim inf
i→+∞

J ((v(i),d(i)),h(i)) ≥ J ((v♯,d♯),h♯).

Recalling the definition of J̃ (h) and (3.7), we conclude

J ((v♯,d♯),h♯) = min
h∈ŨM

ad

J ((v,d),h),

which yields that ((v♯,d♯),h♯) is a solution to the optimal control problem (CP).

The proof is complete.

4 Differentiability of the Control-to-State Operator S

In this section, we aim to prove the differentiability of the control-to-state operator S with
respect to the boundary control h in Ũ .

4.1 The linearized system

Let h∗ ∈ Ũ be an arbitrary but given vector. We denote by (v∗,d∗) = S(h∗) the associate
unique global strong solution to the state system (1.1)–(1.5) given by Theorem 2.2.

Below we investigate the linearization of the state system (1.1)–(1.5) around ((v∗,d∗),h∗) for
the unknowns denoted by (ω,ϕ) with an arbitrary given vector ξ ∈ Ũ−{h∗} (i.e., a perturbation
with respect to h∗), that is

∂tω − ∆ω + ∇P̂ + (v∗ · ∇)ω + (ω · ∇)v∗

= −∇ · (∇ϕ⊙∇d∗) −∇ · (∇d∗ ⊙∇ϕ), in Ω × (0, T ), (4.1)

∇ · ω = 0, in Ω × (0, T ), (4.2)

∂tϕ− ∆ϕ+ (v∗ · ∇)ϕ+ (ω · ∇)d∗ = −f ′(d∗)ϕ, in Ω × (0, T ), (4.3)

subject to the following boundary and initial conditions

ω = 0, ϕ = ξ, on Γ × (0, T ), (4.4)

ω|t=0 = 0, ϕ|t=0 = 0, in Ω. (4.5)

In (4.3) we have denoted

f ′(d∗)ϕ := 2(d∗ · ϕ)d∗ + |d∗|2ϕ− ϕ.
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Proposition 4.1. Let n = 2. For any ξ ∈ Ũ − {h∗}, problem (4.1)–(4.5) admits a unique weak
solution (ω,ϕ) such that

ω ∈ C([0, T ];H) ∩ L2(0, T ;V) ∩H1(0, T ;V′), (4.6)

ϕ ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)). (4.7)

Proof. Let {ui}∞i=1, {ψi}∞i=1 be the basis of the Hilbert spaces V and H1
0(Ω), respectively, which

are given by the eigenfunctions of the Stokes problem

(∇ui,∇w) = λi(ui,w), ∀w ∈ V, with ∥ui∥L2 = 1,

and the Laplace equation

(∇ψi,∇ζ) = µi(ψi, ζ), ∀ ζ ∈ H1
0(Ω), with ∥ψi∥L2 = 1.

Here λi is the eigenvalue corresponding to ui and µi is the eigenvalue corresponding to ψi. It
is well-known that 0 < λ1 < λ2 < ... ↗ +∞ is a monotone increasing sequence, {ui}∞i=1 forms
a complete orthonormal basis in H and it is also orthogonal in V (see e.g., [47]). Similarly, 0 <
µ1 < µ2 < ... ↗ +∞ is a monotone increasing sequence, {ψi}∞i=1 forms a complete orthonormal
basis in L2(Ω) and it is also orthogonal in H1

0(Ω). By the classical elliptic regularity theory,
we have ui,ψi ∈ C∞(Ω) for all i ∈ N. For every m ∈ N, we denote by Vm = span{u1, ...,um}
and Wm = span{ψ1, ...,ψm} the finite dimensional subspaces of V and H1

0(Ω) spanned by their
first m basis functions, respectively. Moreover, we use Πm for the orthogonal projection from H
onto Vm and Π̃m for the orthogonal projection from L2(Ω) onto Wm.

Given a vector ξ ∈ Ũ − {h∗}, we denote by ϕE the unique solution to the elliptic problem{
−∆ϕE = 0, in Ω × (0, T ),

ϕE = ξ(x, t), on Γ × (0, T ).
(4.8)

It is easy to see that ϕE |t=0 = 0 according to the definition of ξ. Then, for every integer m ≥ 1,
we look for solutions of the form:

ωm =
m∑
i=1

ami (t)ui(x), ϕm = ϕE + ϕ̂m = ϕE +
m∑
i=1

bmi (t)ψi(x),

solving the following approximate problem of (4.1)–(4.5), a.e. in [0, T ] and for i = 1, 2, ...,m:

⟨∂tωm,ui⟩V′,V +

∫
Ω
∇ωm : ∇uidx +

∫
Ω

[(v∗ · ∇)ωm + (ωm · ∇)v∗] · uidx

=

∫
Ω

(∇ϕ̂m ⊙∇d∗) : ∇uidx +

∫
Ω

(∇d∗ ⊙∇ϕ̂m) : ∇uidx

+

∫
Ω

(∇ϕE ⊙∇d∗) : ∇uidx +

∫
Ω

(∇d∗ ⊙∇ϕE) : ∇uidx, (4.9)∫
Ω
∂tϕ̂

m ·ψidx +

∫
Ω
∇ϕ̂m : ∇ψidx +

∫
Ω

[(v∗ · ∇)ϕ̂m + (ωm · ∇)d∗] ·ψidx

+

∫
Ω
f ′(d∗)ϕ̂m ·ψidx

= −
∫
Ω
f ′(d∗)ϕE ·ψidx−

∫
Ω
∂tϕE ·ψidx−

∫
Ω

(v∗ · ∇)ϕE ·ψidx, (4.10)

ωm|t=0 = 0, ϕ̂m|t=0 = 0, in Ω. (4.11)
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From the fact (v∗,d∗) = S(h∗) ∈ H and applying Lemma 7.1 to ϕE , we infer that (4.9)–
(4.11) is indeed a Cauchy problem of a linear ODE system for am(t) = (am1 (t), ..., amm(t))tr and
bm(t) = (bm1 (t), ..., bmm(t))tr with all the coefficients belonging to L2(0, T ). Then it is standard to
conclude that the approximate problem (4.9)–(4.11) admits a unique solution (am(t),bm(t)) ∈
H1(0, T ;R2m).

Next, we derive some a priori estimates for the approximate solutions (ωm,ϕm) that are
uniform with respect to the parameter m. For i = 1, ...,m, multiplying (4.9) by ami (t) and (4.10)
by µib

m
i (t), respectively, and then adding the resultants together we get

1

2

d

dt

(
∥ωm∥2L2 + ∥∇ϕ̂m∥2L2

)
+ ∥∇ωm∥2L2 + ∥∆ϕ̂m∥2L2

= −
∫
Ω

(ωm · ∇)v∗ · ωmdx +

∫
Ω

(ωm · ∇)d∗ · ∆ϕ̂mdx

+

∫
Ω

(v∗ · ∇)ϕ̂m · ∆ϕ̂mdx +

∫
Ω
f ′(d∗)ϕ̂m · ∆ϕ̂mdx

+

∫
Ω

(∇ϕ̂m ⊙∇d∗) : ∇ωmdx +

∫
Ω

(∇d∗ ⊙∇ϕ̂m) : ∇ωmdx

+

∫
Ω

(∇ϕE ⊙∇d∗) : ∇ωmdx +

∫
Ω

(∇d∗ ⊙∇ϕE) : ∇ωmdx

+

∫
Ω

[f ′(d∗)ϕE + ∂tϕE + (v∗ · ∇)ϕE ] · ∆ϕ̂mdx

:=

9∑
k=1

Jk, (4.12)

where we have used the conditions ∇ · v∗ = 0 and ϕ̂m|Γ = ∆ϕ̂m|Γ = 0.
For the sake of simplicity, we shall denote by C the constants that may depend on the global

strong solution (v∗,d∗) ∈ H (cf. (2.14)–(2.16)), Ω and T , but not on m.
Now, we estimate the right-hand side of (4.12) term by term. Using the Hölder inequality,

Young’s inequality and the estimates (2.14)–(2.16) for (v∗,d∗), we obtain

J1 ≤ ∥ωm∥L4∥∇v∗∥L4∥ωm∥L2

≤ C∥v∗∥H2∥∇ωm∥L2∥ωm∥L2

≤ ε∥∇ωm∥2L2 + Cε−1∥v∗∥2H2∥ωm∥2L2 ,

J2 ≤ ∥ωm∥L4∥∇d∗∥L4∥∆ϕ̂m∥L2

≤ C∥d∗∥H2∥ωm∥
1
2

L2∥∇ωm∥
1
2

L2∥∆ϕ̂m∥L2

≤ ε∥∇ωm∥2L2 + ε∥∆ϕ̂m∥2L2 + Cε−3∥d∗∥4H2∥ωm∥2L2 ,

J3 ≤ ∥v∗∥L∞∥∇ϕ̂m∥L2∥∆ϕ̂m∥L2

≤ ε∥∆ϕ̂m∥2L2 + Cε−1∥v∗∥2H2∥∇ϕ̂m∥2L2 ,

J4 ≤ ∥f ′(d∗)∥L∞∥ϕ̂m∥L2∥∆ϕ̂m∥L2

≤ ε∥∆ϕ̂m∥2L2 + Cε−1(∥d∗∥4H2 + 1)∥∇ϕ̂m∥2L2 ,

J5 + J6 ≤ ∥∇ϕ̂m∥L4∥∇d∗∥L4∥∇ωm∥L2
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≤ ε∥∇ωm∥2L2 + ε∥∆ϕ̂m∥2L2 + Cε−2∥d∗∥2H2∥∇ϕ̂m∥2L2 ,

J7 + J8 ≤ ∥∇ϕE∥L4∥∇d∗∥L4∥∇ωm∥L2

≤ ε∥∇ωm∥2L2 + Cε−1∥ϕE∥2H2∥d∗∥2H2

≤ ε∥∇ωm∥2L2 + Cε−1∥ξ∥2
H

3
2 (Γ)

∥d∗∥2H2 ,

J9 ≤
(
∥f ′(d∗)∥L∞∥ϕE∥L2 + ∥∂tϕE∥L2 + ∥v∗∥L4∥∇ϕE∥L4

)
∥∆ϕ̂m∥L2

≤ ε∥∆ϕ̂m∥2L2 + Cε−1(∥d∗∥2L∞ + 1)∥ϕE∥2L2 + Cε−1∥∂tϕE∥2L2

+ Cε−1∥v∗∥2H1∥ϕE∥2H2

≤ ε∥∆ϕ̂m∥2L2 + Cε−1(∥d∗∥2H2 + 1)∥ξ∥2
H

3
2 (Γ)

+ Cε−1∥∂tξ∥2
H

1
2 (Γ)

+ Cε−1∥v∗∥2H1∥ξ∥2
H

3
2 (Γ)

.

Taking ε sufficiently small, from (4.12) and the estimates (2.14) for ∥v∗∥L∞(0,T ;H1), ∥d∗∥L∞(0,T ;H2)

we infer from the above estimates that

d

dt

(
∥ωm∥2L2 + ∥∇ϕ̂m∥2L2

)
+ ∥∇ωm∥2L2 + ∥∆ϕ̂m∥2L2

≤ C(1 + ∥v∗∥2H2)
(
∥ωm∥2L2 + ∥∇ϕ̂m∥2L2

)
+ C

(
∥ξ∥2

H
3
2 (Γ)

+ ∥∂tξ∥2
H

1
2 (Γ)

)
. (4.13)

Besides, it follows from (2.15) that ∥v∗∥L2(0,T ;H2) is bounded. Then, by Gronwall’s lemma and

the condition ∥ωm(0)∥2L2 + ∥∇ϕ̂m(0)∥2L2 = 0, we deduce, for any m ≥ 1,

∥ωm(t)∥2L2 + ∥∇ϕ̂m(t)∥2L2 +

∫ t

0

(
∥∇ωm(τ)∥2L2 + ∥∆ϕ̂m(τ)∥2L2

)
dτ

≤ C

∫ t

0

(
∥ξ(τ)∥2

H
3
2 (Γ)

+ ∥∂tξ(τ)∥2
H

1
2 (Γ)

)
dτ

≤ C∥ξ∥2U , ∀ t ∈ [0, T ]. (4.14)

Furthermore, by means of the linear equations (4.9), (4.10), we obtain the following uniform
estimate for the time derivatives of ωm and ϕ̂m

∥∂tωm∥L2(0,T ;V′) + ∥∂tϕ̂m∥L2(0,T ;L2) ≤ C∥ξ∥U . (4.15)

As a consequence, from (4.14) and (4.15) it follows that there exists a pair (ω, ϕ̂) satisfying

ω ∈ L∞(0, T ;H) ∩ L2(0, T ;V) ∩H1(0, T ;V′),

ϕ̂ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

which is the weak (or weak star) limit of convergent subsequences {ωm}, {ϕ̂m} (not relabelled
for simplicity) in the corresponding spaces in (4.6), (4.7), as m → +∞. Then, by a standard
compactness argument, we are able to pass to the limit as m → +∞ (up to a subsequence) in
the approximate system (4.9), (4.10) and to verify that the pair (ω,ϕ) with ϕ = ϕ̂ + ϕE is
indeed a weak solution to the linearized problem (4.1)–(4.5) satisfying (4.6), (4.7). Here, we also
use the elliptic estimates for ϕE (cf. Lemma 7.1) and the assumption ξ ∈ Ũ −{h∗}. Besides, by
the interpolation theorem (cf. [43]), we conclude that ω ∈ C([0, T ];H), ϕ ∈ C([0, T ];H1(Ω)).
Finally, the uniqueness of weak solutions to the linearized problem (4.1)–(4.5) follows from the
standard energy method, which is omitted here.

The proof is complete.
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Define the lower-order function space (compare with H given by (3.4))

H1 :=
[
C([0, T ];H) ∩ L2(0, T ;V) ∩H1(0, T ;V′)

]
×

[
C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))

]
. (4.16)

We introduce the linear mapping Lh∗ associated with the given vector h∗ as well as (v∗,d∗) =
S(h∗), such that

Lh∗ : Ũ − {h∗} → H1, ξ ∈ Ũ − {h∗} 7→ Lh∗(ξ) := (ω,ϕ) ∈ H1. (4.17)

In particular, in the definition (4.17), (ω,ϕ) is the unique global weak solution to the linearized
problem (4.1)–(4.5) on [0, T ] given by Proposition 4.1.

For the linear parabolic problem (4.1)–(4.5), it follows from the simple energy estimates like
(4.14), (4.15) that

Corollary 4.1. The linear mapping Lh∗(ξ) = (ω,ϕ) is a (Lipschitz) continuous mapping from
Ũ − {h∗} to H1.

4.2 Differentiability of S

First, let us introduce the precise definition of differentiability for the control-to-state operator
S:

Definition 4.1. Let

W1 :=
[
C([0, T ];H) ∩ L2(0, T ;H1(Ω))

]
×

[
C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω))

]
(4.18)

and Ũ and H be defined as in (3.2) and (3.4), respectively. Consider the control-to-state operator
S : Ũ → H associated with a given initial datum (v0,d0) ∈ V × H2(Ω) (see Definition 3.2).
In particular, here we view S as a mapping from Ũ to the weaker space W1. We say that
S : Ũ → W1 is Fréchet differentiable in Ũ if, for any h∗ ∈ Ũ , there exists a linear operator
denoted by S ′(h∗) : Ũ − {h∗} → W1 such that

lim
∥ξ∥U→0

∥S(h∗ + ξ) − S(h∗) − S ′(h∗)(ξ)∥W1

∥ξ∥U
= 0, (4.19)

where ξ ∈ Ũ − {h∗} is an arbitrary (small) perturbation of h∗.

Then we can prove the following result:

Theorem 4.1. Let n = 2. Suppose that (v0,d0) ∈ V ×H2(Ω) is a given initial datum. Then
the control-to-state operator S is Fréchet differentiable in the sense of Definition 4.1. Moreover,
for any h∗ ∈ Ũ , its Fréchet derivative S ′(h∗) is given by

S ′(h∗)ξ = (ω,ϕ), ∀ ξ ∈ Ũ − {h∗}, (4.20)

where (ω,ϕ) is the unique global weak solution to the linearized problem (4.1)–(4.5) obtained in
Proposition 4.1. Namely, we have S ′(h∗) = Lh∗, where Lh∗ is the linear operator defined in
(4.17).

Proof. Let h∗ ∈ Ũ be an arbitrary but fixed vector. We consider any of its perturbation h =
h∗ + ξ with ξ ∈ Ũ − {h∗} such that

∥ξ∥U ≤ κ, (4.21)
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for some fixed constant κ > 0. For the given initial datum (v0,d0) ∈ V ×H2(Ω), we denote

(v,d) = S(h), (v∗,d∗) = S(h∗), (ω,ϕ) = Lh∗(ξ).

It follows from Theorem 2.2, Remark 2.2 and Proposition 4.1 that the following uniform
estimates hold for (v,d), (v∗,d∗) and (ω,ϕ), respectively:

∥(v,d)∥H ≤ K1, ∥(v∗,d∗)∥H ≤ K2, ∥(ω,ϕ)∥H1 ≤ K3∥ξ∥U , (4.22)

where K1, K2, K3 are positive constants that may depend on ∥v0∥H1 , ∥d0∥H2 , ∥h∗∥
L2(0,T ;H

5
2 (Γ))

,

∥∂th∗∥
L4(0,T ;H

1
2 (Γ))

, Ω and T . The constant K1 also depends on κ but it is independent of ξ.

Besides, from the continuous dependence result for global strong solutions to problem (1.1)–
(1.5) (see Proposition 2.3), we infer that

∥v − v∗∥2C([0,T ];H1) + ∥d− d∗∥2C([0,T ];H2) + ∥v − v∗∥2L2(0,T ;H2) + ∥d− d∗∥2L2(0,T ;H3)

≤ K4∥ξ∥2U , (4.23)

where K4 > 0 is a constant depending on ∥v0∥H1 , ∥d0∥H2 , ∥h∗∥
L2(0,T ;H

5
2 (Γ))

, ∥∂th∗∥
L4(0,T ;H

1
2 (Γ))

,

κ, Ω and T .
Set the difference functions

(w, e) := (v − v∗ − ω, d− d∗ − ϕ).

We can easily see that (w, e) ∈ H1, i.e.,

w ∈ C([0, T ];H) ∩ L2(0, T ;V) ∩H1(0, T ;V′),

e ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

and (w, e) turns out to be a weak solution to the following system in Ω × (0, T )

∂tw − ∆w + ∇P̃ + [(v − v∗) · ∇](v − v∗) + (v∗ · ∇)w + (w · ∇)v∗

= −∇ · [∇(d− d∗) ⊙∇(d− d∗)] −∇ · (∇d∗ ⊙∇e) −∇ · (∇e⊙∇d∗), (4.24)

∇ ·w = 0, (4.25)

∂te− ∆e + [(v − v∗) · ∇](d− d∗) + (v∗ · ∇)e + (w · ∇)d∗

= −f(d) + f(d∗) + f ′(d∗)ϕ, (4.26)

subject to the homogeneous boundary and initial conditions

w = 0, e = 0, on Γ × (0, T ), (4.27)

w|t=0 = 0, e|t=0 = 0, in Ω. (4.28)

In (4.24), the pressure is given by P̃ = P − P ∗ − P̂ , with P , P ∗ and P̂ being associated with
(v,d), (v∗,d∗) and (ω,ϕ), respectively. Besides, the right-hand side of (4.26) can be re-written
into the following explicit form:

− f(d) + f(d∗) + f ′(d∗)ϕ

= −|d− d∗|2(d− d∗) − |d− d∗|2d∗ − 2[(d− d∗) · d∗](d− d∗)

− 2(d∗ · e)d∗ − |d∗|2e + e. (4.29)

Testing (4.24) by w, integrating over Ω, and using the incompressibility condition for v∗ as
well as w, after integration by parts, we deduce

1

2

d

dt
∥w∥2L2 + ∥∇w∥2L2
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= −
∫
Ω

[(v − v∗) · ∇](v − v∗) ·wdx−
∫
Ω

(w · ∇)v∗ ·wdx

+

∫
Ω

[∇(d− d∗) ⊙∇(d− d∗)] : ∇wdx +

∫
Ω

(∇d∗ ⊙∇e + ∇e⊙∇d∗) : ∇wdx

:=

4∑
j=1

rj . (4.30)

In a similar manner, testing (4.26) by −∆e, we obtain

1

2

d

dt
∥∇e∥2L2 + ∥∆e∥2L2

=

∫
Ω

[(v − v∗) · ∇](d− d∗) · ∆edx +

∫
Ω

[(v∗ · ∇)e + (w · ∇)d∗] · ∆edx

+

∫
Ω

[|d− d∗|2(d− d∗) + |d− d∗|2d∗ + 2[(d− d∗) · d∗](d− d∗)] · ∆edx

+

∫
Ω

[2(d∗ · e)d∗ + |d∗|2e− e] · ∆edx

:=

8∑
j=5

rj . (4.31)

In what follows, we estimate the remainder terms rj (j = 1, ..., 8) in (4.30) and (4.31), by
means of the uniform estimates (4.22) and the stability estimate (4.23). More precisely, we can
deduce that

r1 ≤ ∥v − v∗∥L4∥∇(v − v∗)∥L2∥w∥L4

≤ C∥v − v∗∥2H1∥w∥
1
2

L2∥∇w∥
1
2

L2

≤ 1

10
∥∇w∥2L2 + ∥w∥2L2 + C∥v − v∗∥4H1

≤ 1

10
∥∇w∥2L2 + ∥w∥2L2 + C∥ξ∥4U ,

r2 ≤ ∥w∥2L4∥∇v∗∥L2 ≤ C∥w∥L2∥∇w∥L2∥v∗∥H1

≤ 1

10
∥∇w∥2L2 + C∥w∥2L2 ,

r3 ≤ ∥∇(d− d∗)∥2L4∥∇w∥L2 ≤ C∥d− d∗∥2H2∥∇w∥L2

≤ 1

10
∥∇w∥2L2 + C∥ξ∥4U ,

r4 ≤ 2∥∇d∗∥L4∥∇e∥L4∥∇w∥L2

≤ C∥d∗∥H2∥∇e∥
1
2

L2∥∆e∥
1
2

L2∥∇w∥L2

≤ 1

10
∥∇w∥2L2 +

1

10
∥∆e∥2L2 + C∥∇e∥2L2 ,

r5 ≤ ∥v − v∗∥L4∥∇(d− d∗)∥L4∥∆e∥L2

≤ C∥v − v∗∥H1∥d− d∗∥H2∥∆e∥L2
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≤ 1

10
∥∆e∥2L2 + C∥ξ∥4U ,

r6 ≤ ∥v∗∥L4∥∇e∥L4∥∆e∥L2 + ∥w∥L4∥∇d∗∥L4∥∆e∥L2

≤ C∥v∗∥H1∥∇e∥
1
2

L2∥∆e∥
3
2

L2 + C∥d∗∥H2∥w∥
1
2

L2∥∇w∥
1
2

L2∥∆e∥L2

≤ 1

10
∥∆e∥2L2 +

1

10
∥∇w∥2L2 + C∥∇e∥2L2 + C∥w∥2L2 ,

r7 ≤ (∥d− d∗∥3L6 + 3∥d− d∗∥2L4∥d∗∥L∞)∥∆e∥L2

≤ 1

10
∥∆e∥2L2 + C(∥d− d∗∥6H1 + ∥d− d∗∥4H1)

≤ 1

10
∥∆e∥2L2 + C(∥ξ∥2U + 1)∥ξ∥4U ,

r8 ≤ C(1 + ∥d∗∥2L∞)∥e∥L2∥∥∆e∥L2

≤ C(1 + ∥d∗∥2H2)∥∇e∥L2∥∥∆e∥L2

≤ 1

10
∥∆e∥2L2 + C∥∇e∥2L2 .

Collecting the above estimates, from the assumption (4.21) and the inequalities (4.30), (4.31)
we infer that

d

dt

(
∥w∥2L2 + ∥∇e∥2L2

)
+ ∥∇w∥2L2 + ∥∆e∥2L2

≤ C
(
∥w∥2L2 + ∥∇e∥2L2

)
+ C(κ2 + 1)∥ξ∥4U , (4.32)

where the positive constant C depends on K1, ...,K4 and Ω.

Taking (4.28) into account, from (4.32) and the Gronwall’s lemma we deduce

∥w∥2C([0,T ];L2) + ∥e∥2C([0,T ];H1) + ∥w∥2L2(0,T ;H1) + ∥e∥2L2(0,T ;H2) ≤ CT ∥ξ∥4U ,

where the constant CT depends on K1, ...,K4, κ, Ω and T . As a consequence, it follows that

∥S(h∗ + ξ) − S(h∗) − (ω,ϕ)∥W1

∥ξ∥U
=

∥(w, e)∥W1

∥ξ∥U
≤ CT ∥ξ∥U → 0, as ∥ξ∥U → 0.

Recalling the fact (ω,ϕ) = Lh∗(ξ), where Lh∗ is the linear operator defined in (4.17), we can
conclude that the control-to-state operator S is Fréchet differentiable at h∗ in the sense of
Definition 4.1. Moreover, its derivative at h∗ is given by S ′(h∗) = Lh∗ . Since h∗ is an arbitrary
vector in Ũ , we arrive at the conclusion of Theorem 4.1.

The proof is complete.

5 The First-order Necessary Optimality Condition

Based on the differentiability of the control-to-state operator S (see Theorem 4.1), it is straight-
forward to derive the first-order necessary optimality condition for the optimal control problem
(CP). By a direct calculation, we have
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Theorem 5.1. Let n = 2. Suppose that the assumptions (A1)–(A2) are satisfied and (v0,d0) ∈
V×H2(Ω) is a given initial datum. Assume that h♯ is an optimal control for problem (CP) in
the admissible set ŨM

ad with the associate state (v♯,d♯) = S(h♯). Then, for any h ∈ ŨM
ad , denoting

by (ω,ϕ) = Lh♯(h − h♯) the unique global weak solution to the linearized problem (4.1)–(4.5)
corresponding to the perturbation h− h♯, we have the following variational inequality

β1

∫
Q

(v♯ − vQ) · ωdxdt + β2

∫
Q

(d♯ − dQ) · ϕdxdt + β3

∫
Ω

(v♯(T ) − vΩ) · ω(T )dx

+ β4

∫
Ω

(d♯(T ) − dΩ) · ϕ(T )dx + γ

∫
Σ
h♯ · (h− h♯)dSdt ≥ 0, ∀h ∈ ŨM

ad . (5.1)

Proof. Recall the reduced cost functional J̃ (h) introduced in the proof of Theorem 3.1 such that
J̃ (h) := J ((v,d),h) for any h ∈ Ũ , where (v,d) = S(h). For the cost functional J ((v,d),h),
here we regard it as J : W1 × Ũ → [0,+∞) with spaces W1 and Ũ being defined in (4.18) and
(3.2), respectively.

From the convexity of the admissible set ŨM
ad and the well-known result [48, Lemma 2.21] on

the necessary condition for optimal control problems, it follows that

J̃ ′(h♯)(h− h♯) ≥ 0, ∀h ∈ ŨM
ad . (5.2)

To determine the operator J̃ ′(h♯), we infer from the chain rule that

J̃ ′(h♯) = J ′
S(h♯)(S(h♯),h♯) ◦ S ′(h♯) + J ′

h♯(S(h♯),h♯). (5.3)

For every fixed g ∈ Ũ , J ′
z(z,g) stands for the Fréchet derivative of J (z,g) with respect to z =

(z1, z2), at z ∈ W1. By the definition of J (see (1.6)), we deduce that, for any y = (y1,y2) ∈ W1,
it holds

J ′
z(z,g)(y) = β1

∫
Q

(z1 − vQ) · y1dxdt + β2

∫
Q

(z2 − vQ) · y2dxdt

+ β3

∫
Ω

(z1(T ) − vΩ) · y1(T )dx + β4

∫
Ω

(z2(T ) − dΩ) · y2(T )dx. (5.4)

In a similar manner, for every fixed z ∈ W1, J ′
g(z,g) stands for the Fréchet derivative of J (z,g)

with respect to g, at g ∈ Ũ ⊂ U , namely,

J ′
h(z,g)ζ = γ

∫
Σ
g · ζdSdt, ∀ ζ ∈ Ũ − {g}. (5.5)

Returning to (5.3), here we take

g = h♯, z = S(h♯) = (v♯,d♯), ζ = h− h♯,

and by Theorem 4.1 we further choose

y = S ′(h♯)(h− h♯) = (ω,ϕ) ∈ W1,

where (ω,ϕ) is the unique global weak solution to the linearized problem (4.1)–(4.5) corre-
sponding to h − h♯. As a consequence, it follows from Theorem 4.1 and the abstract chain
rule [48, Theorem 2.20] that the operator J̃ ′(h♯) in (5.3) is well-defined and then we can deduce
from (5.2)–(5.5) that the variational inequality (5.1) holds.

The proof is complete.
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6 First-order necessary optimality condition via adjoint states

In this section we aim to eliminate the pair (ω,ϕ) from the variational inequality (5.1) and
derive a first-order necessary optimality condition in terms of the optimal solution together with
its adjoint states. For this purpose, we shall first derive the corresponding adjoint system for
the control problem (CP) (also referred to as optimality system) that serves as the basis for
computing numerical approximations of optimal solutions. On the other hand, it turns out that
the adjoint states serve as Lagrange multipliers associated with the state problem (1.1)–(1.5).

Generally speaking, optimality systems and necessary optimality conditions can be directly
deduced from the well-known abstract Lagrange multiplier principle, i.e., the Karush–Kuhn–
Tucker (KKT) theory for optimization problems in Banach spaces (see [2, 29, 48]). However,
as it has been pointed out in [48, Section 2.10], direct application of the KKT theory is rather
difficult in many cases, requiring extensive experience in matching the operators, functionals,
and involved function spaces. More precisely, the given control-to-state operators have to be
differentiable in suitably chosen Banach spaces, the adjoint operators have to be determined, and
the Lagrange multipliers must exist in the right spaces. For instance, we can refer to [20,21] for
its nontrivial applications to optimal Dirichlet boundary control problems for the evolutionary
Navier–Stokes equations.

Since our state problem (1.1)–(1.5) is a highly nonlinear PDE system with strongly coupling
structures, it is rather difficult to apply the above mentioned abstract Lagrange multiplier
principle (see e.g., [2, Section 3.2]) to derive the optimality system and the existence of Lagrange
multipliers. Instead, we shall extend the formal Lagrange method described in [48], which turns
out to be an effective tool for finding the form of the partial differential equations from which
the adjoint operator can be determined. This method is successfully illustrated for various
elliptic and parabolic control problems (see [48, Chapters 2-5] for details). Roughly speaking,
our strategy is as follows: first, we derive the adjoint system by using the formal Lagrange
method, then we prove in a rigorous way the existence of adjoint states in suitable function
spaces and we derive the necessary optimality condition.

6.1 Formal derivation of the adjoint system

For the control problem (CP), we introduce the Lagrange functional G (in a formal way)

G((v,d),h, (p̃, p̃1, P̃ , q̃, q̃1))

:= J ((v,d),h) −
∫
Q

[∂tv + (v · ∇)v − ∆v + ∇P + ∇ · (∇d⊙∇d)] · p̃dxdt

−
∫
Q

(∇ · v)P̃ dxdt−
∫
Q

[∂td + (v · ∇)d− ∆d + f(d)] · q̃dxdt

−
∫
Σ
v · p̃1dSdt−

∫
Σ

(d− h) · q̃1dSdt, (6.1)

for any h ∈ ŨM
ad and (v,d) ∈ H.

Remark 6.1. Here, in the expression of G we only try to eliminate the five constraints due to
the state problem (1.1)–(1.5) with the corresponding Lagrange multipliers being denoted by p̃,
p̃1, P̃ , q̃, q̃1, respectively. The constraint on the boundary control (3.3) is easy to handle by
using variational inequalities.

Let ((v♯,d♯),h♯) be a solution to the optimal control problem (CP) such that h♯ ∈ ŨM
ad ,

(v♯,d♯) = S(h♯) ∈ H. Then, by the Lagrange principle, we expect that (v♯,d♯) and h♯ together
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with the corresponding Lagrange multipliers p̃, p̃1, P̃ , q̃, q̃1 satisfy the optimality conditions
associated with the minimization problem for the Lagrange functional G denoted by (MG):

(MG) minG((v,d),h, (p̃, p̃1, P̃ , q̃, q̃1)), with (v,d) unconstrained and h ∈ ŨM
ad .

In particular, since the pair (v,d) is now formally unconstrained, then it follows that

G′
(v,d)((v

♯,d♯),h♯, (p̃, p̃1, P̃ , q̃, q̃1))(ω,ϕ) = 0, (6.2)

for all smooth functions (ω,ϕ) satisfying

ω|t=0 = 0, ϕ|t=0 = 0, in Ω. (6.3)

Here, the zero initial conditions for (ω,ϕ) in (6.3) follow from the fact that in the control
problem (CP) the initial datum (v0,d0) for the state problem (1.1)–(1.5) is given and fixed.

A direct (formal) calculation yields that the condition (6.2) is equivalent to

β1

∫
Q

(v♯ − vQ) · ωdxdt + β2

∫
Q

(d♯ − dQ) · ϕdxdt

+ β3

∫
Ω

(v♯(T ) − vΩ) · ω(T )dx + β4

∫
Ω

(d♯(T ) − dΩ) · ϕ(T )dx

−
∫
Q

[∂tω + (v♯ · ∇)ω − ∆ω + ∇P̂ + (ω · ∇)v♯] · p̃dxdt

−
∫
Q

[∇ · (∇ϕ⊙∇d♯) + ∇ · (∇d♯ ⊙∇ϕ)] · p̃dxdt−
∫
Q

(∇ · ω)P̃ dxdt

−
∫
Q

[∂tϕ− ∆ϕ+ (v♯ · ∇)ϕ+ (ω · ∇)d♯ + f ′(d♯)ϕ] · q̃dxdt

−
∫
Σ
ω · p̃1dSdt−

∫
Σ
ϕ · q̃1dSdt

= 0. (6.4)

After integration by parts and keeping the constraint (6.3) in mind, we get

β1

∫
Q

(v♯ − vQ) · ωdxdt + β2

∫
Q

(d♯ − dQ) · ϕdxdt

+ β3

∫
Ω

(v♯(T ) − vΩ) · ω(T )dx + β4

∫
Ω

(d♯(T ) − dΩ) · ϕ(T )dx

+

∫
Q
∂tp̃ · ωdxdt−

∫
Ω
p̃(T ) · ω(T )dx +

∫
Q

(∆p̃) · ωdxdt

+

∫
Σ

∂ω

∂n
· p̃dSdt−

∫
Σ

∂p̃

∂n
· ωdSdt +

∫
Q
P̂ (∇ · p̃)dxdt

−
∫
Σ
P̂ (p̃ · n)dSdt +

∫
Q
∇P̃ · ωdxdt−

∫
Σ

(P̃n) · ωdSdt

+

∫
Q

(v♯ · ∇)p̃ · ωdxdt−
∫
Q

[(∇v♯)p̃] · ωdxdt

−
∫
Q
∇i(∇jd

♯
k∇j p̃i)ϕkdxdt−

∫
Q
∇j(∇id

♯
k∇j p̃i)ϕkdxdt

−
∫
Σ

[(∇ϕ⊙∇d♯)n] · p̃dSdt−
∫
Σ

[(∇d♯ ⊙∇ϕ)n] · p̃dSdt

+

∫
Σ

(∇jd
♯
k∇j p̃i)niϕkdSdt +

∫
Σ

(∇id
♯
k∇j p̃i)njϕkdSdt
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+

∫
Q
∂tq̃ · ϕdxdt−

∫
Ω
q̃(T ) · ϕ(T )dx +

∫
Q

(∆q̃) · ϕdxdt +

∫
Σ

∂ϕ

∂n
· q̃dsdt

−
∫
Σ

∂q̃

∂n
· ϕdSdt +

∫
Q

(v♯ · ∇)q̃ · ϕdxdt−
∫
Q

[(∇d♯)q̃] · ωdxdt

−
∫
Q
f ′(d♯)q̃ · ϕdxdt−

∫
Σ
p̃1 · ωdSdt−

∫
Σ
q̃1 · ϕdSdt

= 0, (6.5)

where n = (n1, n2)
tr denotes the unit outer normal vector on Γ.

We hope to determine the Lagrange multiplies, i..e., the adjoint states (p̃, p̃1, P̃ , q̃, q̃1) from
the equality (6.5). To this end, grouping the terms in (6.5) with respect to the test functions
(ω, P̂ ,ϕ) that can be chosen in an arbitrary way, after integration by parts, we (at least formally)
arrive at the adjoint system in terms of partial differential equations.

More precisely, the triple (p̃, P̃ , q̃) satisfies the following linear PDE system in Q

∂tp̃ + ∆p̃ + ∇P̃ + (v♯ · ∇)p̃− (∇v♯)p̃− (∇d♯)q̃ + β1(v
♯ − vQ) = 0, (6.6)

∇ · p̃ = 0, (6.7)

∂tq̃ + ∆q̃ + (v♯ · ∇)q̃− f ′(d♯)q̃− r̃(d♯, p̃) + β2(d
♯ − dQ) = 0, (6.8)

where the vector r̃(d♯, p̃) is given by

r̃(d♯, p̃) = ∇ · [∇trd♯ ⊙ (∇p̃ + ∇trp̃)], (6.9)

while on Γ and at time t = T , we have the following boundary and final conditions

p̃ = 0, q̃ = 0, on Σ, (6.10)

p̃|t=T = β3(v
♯(T ) − vΩ), q̃|t=T = β4(d

♯(T ) − dΩ), in Ω. (6.11)

Moreover, the other two Lagrange multipliers (p̃1, q̃1) corresponding to the boundary con-
straints, can be uniquely determined by (p̃, P̃ , q̃) such that

p̃1 +
∂p̃

∂n
+ P̃n = 0, on Σ, (6.12)

q̃1 +
∂q̃

∂n
= [∇trd♯ ⊙ (∇p̃ + ∇trp̃)]n, on Σ. (6.13)

6.2 Unique solvability of the adjoint system

We proceed to prove the existence of the adjoint states (p̃, P̃ , q̃) that satisfy a proper variational
formulation of problem (6.6)–(6.11).

For this purpose, making the change of variable t → T − t to the adjoint system (6.6)–(6.11)
and denoting the new variables

p(t) = p̃(T − t), q(t) = q̃(T − t), P (t) = P̃ (T − t), (6.14)

we derive the following linear parabolic system for the new variables (p, P,q) in Q:

∂tp− ∆p−∇P − (v♯ · ∇)p + (∇v♯)p + (∇d♯)q = β1(v
♯ − vQ), (6.15)

∇ · p = 0, (6.16)

∂tq− ∆q− (v♯ · ∇)q + f ′(d♯)q + r(d♯,p) = β2(d
♯ − dQ), (6.17)
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subject to the boundary and initial conditions

p|Γ = 0, q|Γ = 0, (6.18)

p|t=0 = β3(v
♯(T ) − vΩ), q|t=0 = β4(d

♯(T ) − dΩ), (6.19)

where in (6.17) we have r(d♯,p) = ∇ · [∇trd♯ ⊙ (∇p + ∇trp)].
Then we can prove

Proposition 6.1. Let n = 2. Suppose that (v♯,d♯) ∈ H and the assumptions (A1)–(A2) are
satisfied. Besides, we assume

vΩ ∈ V, if β3 > 0,

dΩ ∈ H1(Ω) with (d♯(T ) − dΩ)|Γ = 0, if β4 > 0.

Then the linear parabolic problem (6.15)–(6.19) admits a unique weak solution (p, P,q) such
that

p ∈ C([0, T ];V) ∩ L2(0, T ;H2(Ω) ∩V) ∩H1(0, T ;H), (6.20)

P ∈ L2(0, T ;H1(Ω)) with

∫
Ω
Pdx = 0, (6.21)

q ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0(Ω)) ∩H1(0, T ;H−1(Ω)). (6.22)

In particular, (p,q) satisfies the following weak formulation, for a.e. t ∈ (0, t),∫
Ω
∂tp · udx +

∫
Ω
∇p : ∇udx−

∫
Ω

(v♯ · ∇)p · udx

+

∫
Ω

[(∇v♯)p] · udx +

∫
Ω

[(∇d♯)q] · udx

= β1

∫
Ω

(v♯ − vQ) · udx, ∀u ∈ V, (6.23)

⟨∂tq,ψ⟩H−1,H1
0

+

∫
Ω
∇q : ∇ψdx−

∫
Ω

(v♯ · ∇)q ·ψdx

+

∫
Ω
f ′(d♯)q ·ψdx−

∫
Ω

[∇trd♯ ⊙ (∇p + ∇trp)] : ∇ψdx

= β2

∫
Ω

(d♯ − dQ) ·ψdx, ∀ψ ∈ H1
0(Ω), (6.24)

and the initial conditions (6.19). Furthermore, the following additional regularity for q holds,
for some s ∈ (12 , 1),

q ∈ C([0, T ];Hs(Ω)) ∩ L2(0, T ;H1+s(Ω)) ∩H1(0, T ;Hs−1(Ω)). (6.25)

Proof. The proof follows from a similar argument used in Proposition 4.1, by means of the Faedo–
Galerkin method. Therefore, we simply omit the approximation scheme and just perform the
necessary a priori estimates. Here below CT stands for a positive constant that may depend on
∥(v♯,d♯)∥H, β1∥v♯ −vQ∥L2(0,T ;L2), β2∥d♯ −dQ∥L2(0,T ;L2), β3∥vΩ∥H1 , β4∥dΩ∥H1 , Ω and T , while
C denotes a constant depending on Ω.

Testing (6.23) by Sp (S being the Stokes operator) over Ω and then integrating by parts, from
Young’s inequality, Hölder’s inequality, the Gagliardo–Nirenberg inequality and Lemma 2.1, we
infer that

1

2

d

dt
∥∇p∥2L2 + ∥Sp∥2L2
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=

∫
Ω

(v♯ · ∇)p · Spdx−
∫
Ω

[(∇v♯)p] · Spdx−
∫
Ω

[(∇d♯)q] · Spdx

+

∫
Ω
β1(v

♯ − vQ) · Spdx

≤ C∥v♯∥L4∥∇p∥L4∥Sp∥L2 + C∥p∥L4∥∇v♯∥L4∥Sp∥L2

+ C∥q∥L4∥∇d♯∥L4∥Sp∥L2 + Cβ1∥v♯ − vQ∥L2∥Sp∥L2

≤ C∥v♯∥H1∥∇p∥
1
2

L2∥Sp∥
3
2

L2 + C∥p∥
1
2

L2∥∇p∥
1
2

L2∥v♯∥H2∥Sp∥L2

+ C∥q∥
1
2

L2∥∇q∥
1
2

L2∥d♯∥H2∥Sp∥L2 + Cβ1∥v♯ − vQ∥L2∥Sp∥L2

≤ 1

2
∥Sp∥2L2 +

1

4
∥∇q∥2L2 + C(∥v♯∥2H2 + ∥v♯∥4H1 + 1)∥∇p∥2L2

+ C∥d♯∥4H2∥q∥2L2 + Cβ2
1∥v♯ − vQ∥2L2 . (6.26)

Next, testing (6.24) by q and integrating over Ω, and using (6.10), we get

1

2

d

dt
∥q∥2L2 + ∥∇q∥2L2

= −
∫
Ω
f ′(d♯)q · qdx−

∫
Ω
r(d♯,p) · qdx +

∫
Ω
β2(d

♯ − dQ) · qdx

≤ C(∥d♯∥2L∞ + 1)∥q∥2L2 + C∥∇d♯∥L∞∥∇p∥L2∥∇q∥L2

+ Cβ2∥q∥L2∥d♯ − dQ∥L2

≤ 1

4
∥∇q∥2L2 + C∥d♯∥2H3∥∇p∥2L2 + C(∥d♯∥2H2 + 1)∥q∥2L2

+ Cβ2
2∥d♯ − dQ∥2L2 . (6.27)

Then adding (6.26) and (6.27) together, since (v♯,d♯) ∈ H (recall the global estimates (2.14),
(2.15) for (v♯,d♯)), from the Gronwall lemma and Lemma 2.1, it easily follows that

∥p(t)∥2H1 + ∥q(t)∥2L2 +

∫ t

0
(∥p(τ)∥2H2 + ∥q(τ)∥2H1)dτ ≤ CT , ∀ t ∈ [0, T ], (6.28)

and P ∈ L2(0, T ;H1(Ω)). Estimate (6.28) combined with equations (6.23) and (6.24) also
yields uniform estimates for time derivatives of (p,q) such that ∂tp ∈ L2(0, T ;H), ∂tq ∈
L2(0, T ;H−1(Ω)).

Therefore, by the standard compactness argument we can conclude the existence of a weak
solution (p, P,q) to problem (6.15)–(6.19). Besides, the uniqueness is a straightforward conse-
quence of the energy method for the linear parabolic system.

Next, we improve the spatial regularity of q. For s ∈ (12 , 1), by the Sobolev embedding
theorem (n = 2), we see that

H1(Ω) ↪→ L
2

1−s (Ω), H1−s(Ω) ↪→ Lσ′
(Ω), with

1

σ′ =
1

2
− 1 − s

2

and thus

Lσ(Ω) ↪→ Hs−1(Ω), with
1

σ
=

1

2
+

1 − s

2
, i.e., σ =

2

2 − s
.

As a consequence, from the Hölder inequality it follows

∥r(d♯,p)∥Hs−1 ≤ C∥r(d♯,p)∥
L

2
2−s

≤ C∥∇d♯∥
L

2
1−s

∥p∥H2 + C∥∆d♯∥
L

2
1−s

∥∇p∥L2
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≤ C∥d♯∥H2∥p∥H2 + C∥d♯∥H3∥∇p∥L2 , (6.29)

and

∥(v♯ · ∇)q∥Hs−1 ≤ C∥(v♯ · ∇)q∥
L

2
2−s

≤ C∥v♯∥
L

2
1−s

∥∇q∥L2

≤ C∥v♯∥H1∥∇q∥L2 . (6.30)

Then from (6.28), (6.29), (6.30) and the fact (v♯,d♯) ∈ H we infer∫ T

0
∥r(d♯,p)∥2Hs−1dt

≤ C sup
t∈[0,T ]

∥d♯(t)∥2H2

∫ T

0
∥p(t)∥2H2dt + C sup

t∈[0,T ]
∥∇p(t)∥2L2

∫ T

0
∥d♯(t)∥2H3dt

≤ CT , (6.31)

and ∫ T

0
∥(v♯ · ∇)q∥2Hs−1dt ≤ C sup

t∈[0,T ]
∥v♯(t)∥2H1

∫ T

0
∥∇q(t)∥2L2dt

≤ CT . (6.32)

Hence, testing (6.24) by (−∆)sq in Hs(Ω), from the Hölder inequality and Young’s inequality
we obtain

1

2

d

dt
∥q∥2Hs + ∥q∥2H1+s

=

∫
Ω

[(v♯ · ∇)q] · (−∆)sqdx−
∫
Ω
f ′(d♯)q · (−∆)sqdx−

∫
Ω
r(d♯,p) · (−∆)sqdx

+

∫
Ω
β2(d

♯ − dQ) · (−∆)sqdx

≤ C∥(v♯ · ∇)q∥Hs−1∥q∥H1+s + C∥r(d♯,p)∥Hs−1∥q∥H1+s + C∥f ′(d♯)q∥L2∥q∥H2s

+ Cβ2∥q∥H2s∥d♯ − dQ∥L2

≤ 1

2
∥q∥2H1+s + C∥(v♯ · ∇)q∥2Hs−1 + C∥r(d♯,p)∥2Hs−1

+ C(∥d♯∥2L∞ + 1)∥q∥2L2 + Cβ2
2∥d♯ − dQ∥2L2 . (6.33)

From (6.31)–(6.33) and the Gronwall lemma, it follows

∥q(t)∥2Hs +

∫ t

0
∥q(τ)∥2H1+sdτ ≤ CT , t ∈ [0, T ]. (6.34)

Then by a comparison argument in (6.17) we also have ∂tq ∈ L2(0, T ;Hs−1(Ω)), which combined
with the interpolation theory further implies q ∈ C([0, T ];Hs(Ω)).

The proof is complete.

Recalling the change of variables (6.14) and the relations (6.12)–(6.13), we have

Corollary 6.1. Under the same assumptions of Proposition 6.1, the adjoint system (6.6)–(6.11)
admits a unique weak solution (p̃, P̃ , q̃), satisfying the same properties as for the weak solution
(p, P,q) to problem (6.15)–(6.19) stated in Proposition 6.1. Moreover, the Lagrange multipliers
(p1,q1) are uniquely determined by (6.12), (6.13) such that

p1 ∈ L2(0, T ;H
1
2 (Γ)), q1 ∈ L

4
3 (0, T ;H

1
2 (Γ)). (6.35)
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Proof. We only need to prove (6.35). It easily follows from (6.12), (6.14), (6.20), (6.21) and the

trace theorem that p1 ∈ L2(0, T ;H
1
2 (Γ)). Next, by (6.14), (6.22) and the trace theorem we also

have ∂q̃
∂n ∈ L2(0, T ;H

1
2 (Γ)). On the other hand, using Sobolev embedding theorem and Agmon’s

inequality (n = 2), we deduce

∥∇trd♯ ⊙ (∇p̃ + ∇trp̃)∥H1

≤ ∥∇trd♯ ⊙∇p̃∥H1 + ∥∇trd♯ ⊙∇trp̃∥H1

≤ C∥d♯∥W2,4∥p̃∥W1,4 + C∥d♯∥W1,∞∥p̃∥H2 + C∥d♯∥W1,4∥p̃∥W1,4

≤ C∥d♯∥
1
2

H3∥p̃∥
1
2

H2∥d♯∥
1
2

H2∥p̃∥
1
2

H1 + C∥d♯∥
1
2

H3∥d♯∥
1
2

H1∥p̃∥H2 + C∥d♯∥H2∥p̃∥H2 .

As a consequence, we infer from the fact (v♯,d♯) ∈ H and (6.20) that

∇trd♯ ⊙ (∇p̃ + ∇trp̃) ∈ L
4
3 (0, T ;H1(Ω)),

which implies

[∇trd♯ ⊙ (∇p̃ + ∇trp̃)]n ∈ L
4
3 (0, T ;H

1
2 (Γ)).

Therefore, it follows from (6.13) that q1 ∈ L
4
3 (0, T ;H

1
2 (Γ)).

The proof is complete.

Remark 6.2. We can easily see from the regularity of the boundary control h, the state con-
straints (v,d) and the Lagrange multipliers (p̃, p̃1, P̃ , q̃, q̃1) that the Lagrange functional G in
(6.1) is well-defined.

6.3 The first-order necessary optimality condition via adjoint states

Now we are able to eliminate the pair (ω,ϕ) from the variational inequality (5.1) and, alter-
natively, form the first-order necessary optimality condition by the state system (1.1)–(1.5) for
(v♯,d♯) together with the adjoint system (6.6)–(6.13):

Theorem 6.1. Let n = 2. Assume that (A1)–(A2) are satisfied, (v0,d0) ∈ V ×H2(Ω) and

vΩ ∈ V, if β3 > 0,

dΩ ∈ H1(Ω) with (d♯(T ) − dΩ)|Γ = 0, if β4 > 0.

Besides, suppose that h♯ is an optimal boundary control for the control problem (CP) in the
admissible set ŨM

ad with the associate state (v♯,d♯) = S(h♯) as well as the adjoint state (p̃, q̃).

Then, for any h ∈ ŨM
ad , the following variational inequality holds

γ

∫
Σ
h♯ · (h− h♯)dSdt−

∫
Σ

[(∇q̃)n)] · (h− h♯)dSdt

+

∫
Σ

([∇trd♯ ⊙ (∇p̃ + ∇trp̃)]n) · (h− h♯)dSdt

≥ 0, ∀h ∈ ŨM
ad . (6.36)

Proof. Concerning the minimization problem (MG) for the Lagrange functional G, since the
control function h is constrained such that h ∈ ŨM

ad , then, by the Lagrange principle, we have

G′
h((v♯,d♯),h♯, (p̃, p̃1, P̃ , q̃, q̃1))(h− h♯) ≥ 0, ∀h ∈ ŨM

ad . (6.37)

29



A direction calculation yields that

γ

∫
Σ
h♯ · (h− h♯)dSdt +

∫
Σ
q̃1 · (h− h♯)dSdt ≥ 0, ∀h ∈ ŨM

ad . (6.38)

On the other hand, we recall that q̃1 can be uniquely determined by (6.13), i.e.,

q̃1 = −(∇q̃)n + [∇trd♯ ⊙ (∇p̃ + ∇trp̃)]n, (6.39)

where (p̃, q̃) are the adjoint states associated with h♯ that can be obtained in Corollary 6.1.
Hence, from the variational inequality (6.38) and (6.39) we arrive at our conclusion (6.36).

The proof is complete.

Remark 6.3. Based on the Lagrange principle, an alternative proof of (6.36) can be given as
follows. For any h ∈ ŨM

ad , let (ω,ϕ) = Lh♯(h − h♯) be the unique global weak solution to the
linearized problem (4.1)–(4.5) corresponding to ξ = h− h♯. Then from the optimality condition
(6.4) and the facts ω|Γ = 0, ϕ|Γ = h− h♯, it follows that

β1

∫
Q

(v♯ − vQ) · ωdxdt + β2

∫
Q

(d♯ − dQ) · ϕdxdt

+ β3

∫
Ω

(v♯(T ) − vΩ) · ω(T )dx + β4

∫
Ω

(d♯(T ) − dΩ) · ϕ(T )dx

=

∫
Σ
q̃1 · (h− h♯)dSdt, ∀h ∈ ŨM

ad , (6.40)

which together with the variational inequality (5.1) immediately yields our conclusion (6.36).

Finally, we remark that (6.36) allows for the interpretation of the optimal boundary control
via the following projection formula:

Corollary 6.2. Suppose that γ > 0 and h♯ ∈ ŨM
ad is an optimal boundary control to problem

(CP). Then h♯ together with its associated adjoint states (p̃, q̃) satisfies the projection formula

h♯ =
1

γ
PŨM

ad

{[
∇q̃−∇trd♯ ⊙ (∇p̃ + ∇trp̃)

]
n
}
,

where PŨM
ad

is the orthogonal projector in L2(Σ) onto the convex set ŨM
ad .

7 Appendix

7.1 Lifting functions and variable transformation

The natural energy functional of the problem (1.1)–(1.5) consists of the kinetic and elastic
potential energies, which is given by

E(t) =
1

2
∥v(t)∥2L2 +

1

2
∥∇d(t)∥2L2 +

∫
Ω
F (d(t))dx, t ∈ [0, T ]. (7.1)

However, due to the time-dependent boundary condition h(t, x) for the molecule director d, one
cannot expect the total energy E(t) to be decreasing in time as in the autonomous case [37].

In order to overcome this difficulty and obtain proper energy estimates for global weak
solutions, suitable lifting functions were introduced in the literature (see, e.g., [4, 8, 9, 23]). The
first lifting function dE = dE(x, t) is of elliptic type (see, e.g., [4, 8, 9]){

−∆dE = 0, in Ω × (0, T ),

dE = h(x, t), on Γ × (0, T ).
(7.2)
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The second lifting function dP = dP (x, t) is of parabolic type (see, e.g., [23])
∂tdP − ∆dP = 0, in Ω × (0, T ),

dP = h(x, t), on Γ × (0, T ),

dP |t=0 = dE0, in Ω,

(7.3)

where the initial data dE0 can be viewed as a lifting function for the original initial datum d0:{
−∆dE0 = 0, in Ω,

dE0 = d0, on Γ.
(7.4)

Remark 7.1. (i) Since we assume d0|Γ = h|t=0, then the elliptic lifting functions (7.2) and
(7.4) are compatible at t = 0, that is dE |t=0 = dE0.

(ii) The elliptic lifting function dE will be helpful to get uniform lower-order energy estimates
for the solution (v(t),d(t)) in L2(Ω) × H1(Ω) (see Lemma 7.5), which is crucial to prove the
existence of global weak solutions to problem (1.1)–(1.5).

(iii) The parabolic lifting function dP implies the property (∆(d− dP ) − f(d))|Γ = 0, which
enables us to perform integration by parts and derive some higher-order differential inequalities
for problem (1.1)–(1.5) (see Lemma 7.6). We note that the lifting function dP is slightly different
from the one introduced in [4, 9] since they have different initial values. Both choices work for
the existence of strong solutions [4,9,23], while the current definition of dP also turns out to be
convenient for the study of long-time behavior [23].

Below we report some properties of the lifting functions dE and dP that have been used in
the previous sections. Here, we denote by c a generic positive constant which depends on the
spatial dimension n and Ω at most.

From the classical elliptic regularity theory [39,46] it follows (see [4, Lemmas A.8, A.9])

Lemma 7.1. Suppose that h satisfies (2.2) and (2.3), then the lifting problem (7.2) admits a
unique strong solution

dE ∈ L2(0, T ;H3(Ω)) ∩ L∞(0, T ;H2(Ω)) ∩W 1,4(0, T ;H1(Ω))

such that, for t ∈ [0, T ] and k = 0, 1,∫ t

0
∥dE(τ)∥2Hk+2dτ ≤ c

∫ t

0
∥h(τ)∥2

H
3
2+k(Γ)

dτ,∫ t

0
∥∂tdE(τ)∥4Hkdt ≤ c

∫ t

0
∥∂th(τ)∥4

Hk− 1
2 (Γ)

dτ.

Concerning the parabolic lifting problem (7.3), we have the following result (see, e.g., [4,
Lemmas A.2-A.4] and also [23, Lemma 6.2])

Lemma 7.2. (1) Suppose that d0 ∈ H1(Ω) and the assumptions (2.2)–(2.4) are satisfied. Then
the lifting problem (7.3) admits a unique weak solution

dP ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))

such that, for t ∈ [0, T ],

∥dP (t)∥2H1 +

∫ t

0

(
∥dP (τ)∥2H2 + ∥∂tdP (τ)∥2L2

)
dτ
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≤ ∥dE0∥2H1 + c

∫ t

0

(
∥h(τ)∥2

H
3
2 (Γ)

+ ∥∂th(τ)∥2
H− 1

2 (Γ)

)
dτ. (7.5)

(2) If d0 ∈ H2(Ω) and the assumptions (2.12), (2.13) and (2.4) are satisfied, then the lifting
problem (7.3) admits a unique strong solution

dP ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)) ∩W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω))

such that, for t ∈ [0, T ],

∥dP (t)∥2H2 +

∫ t

0

(
∥dP (τ)∥2H3 + ∥∂tdP (τ)∥2H1

)
dτ

≤ ∥dE0∥2H2 + c

∫ t

0

(
∥h(τ)∥2

H
5
2 (Γ)

+ ∥∂th(τ)∥2
H

1
2 (Γ)

)
dτ, (7.6)

∥∂tdP (t)∥2L2 ≤ c

∫ t

0
∥∂th(τ)∥2

H
1
2 (Γ)

dτ. (7.7)

Besides, if (2.6) is fulfilled, then the solution dP satisfies the weak maximum principle such that

|dP |Rn ≤ 1, a.e. in Ω × [0, T ].

The following lemma states the relation between the two lifting functions dE and dP (see [23,
Lemma 6.2]):

Lemma 7.3. Under the assumptions of Lemmas 7.1, 7.2, we have

∥dP (t) − dE(t)∥2Hk ≤ c

∫ t

0
∥∂th(τ)∥2

Hk− 3
2 (Γ)

dτ, k = 1, 2, ∀ t ∈ [0, T ]. (7.8)

Using the lifting functions introduced above, problem (1.1)–(1.5) can be written into different
equivalent forms, which will be convenient to obtain suitable a priori estimates for the solution
via energy method.

Let dE be defined as in (7.2). Set

d̂ = d− dE . (7.9)

Then the system (1.1)–(1.3) can be rewritten into the following form for (v, d̂):

vt + v · ∇v − ∆v + ∇P = −(∇d)tr∆d̂, (7.10)

∇ · v = 0, (7.11)

d̂t + v · ∇d = ∆d̂− f(d) − ∂tdE(t), (7.12)

subject to homogeneous Dirichlet boundary conditions and initial conditions

v = 0, d̂ = 0, on Γ × (0, T ), (7.13)

v|t=0 = v0, d̂|t=0 = d0 − dE0, in Ω. (7.14)

In (7.10) we have used the identity ∇ · (∇d⊙∇d) = 1
2∇

(
|∇d|2

)
+ (∇d)tr∆d and absorbed the

gradient term into the pressure (cf. [37]).

Next, let dP be defined as in (7.3). Set

d̃ = d− dP . (7.15)

32



Then system (1.1)–(1.3) can be rewritten into the following form for the pair (v, d̃):

vt + v · ∇v − ∆v + ∇P = −(∇d)tr∆d, (7.16)

∇ · v = 0, (7.17)

d̃t + v · ∇d = ∆d̃− f(d), (7.18)

subject to homogeneous Dirichlet boundary conditions and initial conditions

v = 0, d̃ = 0, on Γ × (0, T ), (7.19)

v|t=0 = v0, d̃|t=0 = d0 − dE0, in Ω. (7.20)

The following lemma on equivalent norms will be useful in our proofs (cf. e.g., [9])

Lemma 7.4. Let d̂, d̃ be the functions defined in (7.9) and (7.15), respectively. The following
equivalences between norms hold (provided that they are smooth enough)

∥d̃∥H1 ≈ ∥∇d̃∥L2 , ∥d̂∥H1 ≈ ∥∇d̂∥L2 , in H1
0(Ω),

∥d̃∥H2 ≈ ∥∆d̃∥L2 , ∥d̂∥H2 ≈ ∥∆d̂∥L2 , in H1
0(Ω) ∩H2(Ω),

∥d̃∥H3 ≈ ∥∇(∆d̃)∥L2 + ∥∆d̃∥L2 , ∥d̂∥H3 ≈ ∥∇(∆d̂)∥L2 + ∥∆d̂∥L2 in H1
0(Ω) ∩H3(Ω).

Besides, we have

∥∆d∥L2 ≤ ∥∆dP ∥L2 + ∥∆d̃− f(d)∥L2 + ∥f(d)∥L2 ,

∥∆d∥L2 ≤ ∥∆dE∥L2 + ∥∆d̂− f(d)∥L2 + ∥f(d)∥L2 .

7.2 Proof of Theorem 2.1: existence of global weak solutions

Introduce the lifted energy functional (cf. (7.1))

Ê(t) =
1

2
∥v(t)∥2L2 +

1

2
∥∇d̂(t)∥2L2 +

∫
Ω
F (d(t))dx, t ∈ [0, T ], (7.21)

where d̂ is given by (7.15). Then we can derive the following basic energy inequality for problem
(1.1)–(1.5):

Lemma 7.5. Let (v,d) be a smooth solution to problem (1.1)–(1.5) on [0, T ]. The following
differential inequality holds

d

dt
Ê(t) + ∥∇v(t)∥2L2 +

1

2
∥∆d̂(t) − f(d(t))∥2L2

≤ 3

2
∥∂tdE(t)∥2L2 +

1

4
∥∂tdE(t)∥4L4 +

13

3

∫
Ω
F (d(t))dx +

1

4
|Ω|, ∀ t ∈ [0, T ]. (7.22)

Proof. Multiplying (7.10) and (7.12) by v and −∆d̂+ f(d), respectively, integrating over Ω and
adding the results together, we get

d

dt

(
1

2
∥v∥2L2 +

1

2
∥∇d̂∥2L2 +

∫
Ω
F (d)dx

)
+ ∥∇v∥2L2 + ∥∆d̂− f(d)∥2L2

=

∫
Ω
∂tdE · ∆d̂dx. (7.23)
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Here, we have used the facts
∫
Ω(v · ∇)v · vdx = 0,

∫
Ω∇P · vdx = 0,

∫
Ω(v · ∇)d · f(d)dx = 0,

due to the incompressibility condition ∇ ·v = 0. Besides, recalling that F (d) = 1
4(|d|2 − 1)2 (as

mentioned before, we simply set ϵ = 1), and using Young’s inequality, we have

|d|2 ≤ 2

3
F (d) +

1

2
and |d|4 ≤ 16

3
F (d).

As a consequence, the right-hand side of (7.23) can be estimated as follows∣∣∣∣∫
Ω
∂tdE · ∆d̂dx

∣∣∣∣
≤

∣∣∣∣∫
Ω
∂tdE · (∆d̂− f(d))dx

∣∣∣∣ +

∣∣∣∣∫
Ω
∂tdE · f(d)dx

∣∣∣∣
≤ ∥∆d̂− f(d)∥L2∥∂tdE∥L2 +

∫
Ω

(
|d|3 + |d|

)
|∂tdE |dx

≤ 1

4
∥∆d̂− f(d)∥2L2 +

3

2
∥∂tdE∥2L2 +

1

4
∥∂tdE∥4L4 +

1

2

∫
Ω
|d|2dx +

3

4

∫
Ω
|d|4dx

≤ 1

4
∥∆d̂− f(d)∥2L2 +

3

2
∥∂tdE∥2L2 +

1

4
∥∂tdE∥4L4 +

13

3

∫
Ω
F (d)dx +

1

4
|Ω|, (7.24)

which easily yields our conclusion (7.22). The proof is complete.

Proof of Theorem 2.1. We sketch the proof for the existence of global weak solutions to
problem (1.1)–(1.5). It follows from the arguments in [4,9,37] with some necessary modifications.
In particular, here we do not assume the condition (2.6) that yields the weak maximum principle
for d.

Let the family {ui}∞i=1 be a basis of the Hilbert space V as introduced in the proof of
Proposition 4.1. We denote by Vm = span{u1, ...,um} the finite dimensional subspaces of V
spanned by the first m basis functions and by Πm the orthogonal projection from H onto Vm.

Step 1. Semi-Galerkin approximation. For every m ∈ N and T ∈ (0,+∞), we consider the
following approximate problem (AP):

Determine the vectorial functions vm(t, x) =
∑m

i=1 g
m
i (t)vi(x) and dm(t, x) such that

(AP)



⟨vm
t ,w⟩V′,V +

∫
Ω(vm · ∇)vm ·wdx +

∫
Ω∇vm : ∇wdx

=
∫
Ω(∇dm ⊙∇dm) : ∇wdx, ∀w ∈ Vm,

dm
t + vm · ∇dm = ∆dm − f(dm), a.e. in Ω × (0, T ),

dm = h(x, t), a.e. on Γ × (0, T ),

vm|t=0 = vm
0 := Πmv0, dm|t=0 = d0, in Ω.

Proposition 7.1. Let n = 2, 3. Under the assumption of Theorem 2.1, for every m ∈ N, there
is a time Tm ∈ (0, T ] depending on v0, d0, m and Ω such that the approximate problem (AP)
admits a unique solution (vm,dm) on [0, Tm] satisfying

vm ∈ H1(0, Tm;Vm), dm ∈ L∞(0, Tm;H1(Ω)) ∩ L2(0, Tm;H2(Ω)).

Proof. Let us fix an arbitrary vector

ṽm(t, x) =

m∑
i=1

g̃mi (t)ui ∈ C([0, T ];Vm),

where

g̃mi ∈ C([0, T ]), g̃mi (0) =

∫
Ω
v0 · uidx, sup

t∈[0,T ]

m∑
i=1

|g̃mi (t)|2 ≤ L,
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with L = 2 + 2∥v0∥2L2 . It is obvious that

sup
t∈[0,T ]

∥ṽm(t, x)∥2L2 ≤ L, sup
t∈[0,T ]

∥ṽm(t, x)∥2L∞ ≤ L max
1≤i≤m

∥ui∥2L∞ ≤ LCm. (7.25)

(1) We first consider the following semilinear parabolic problem with convection term for
dm, under the given fluid velocity ṽm:

dm
t + ṽm · ∇dm = ∆dm − f(dm), a.e. in Ω × (0, T ),

dm = h, a.e. on Γ × (0, T ),

dm|t=0 = d0, in Ω.

(7.26)

By a standard fixed point argument [4,9,37] one can prove that problem (7.26) is well-posed on
[0, T ] and admits a unique weak solution dm ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)). As in [9],
it suffices to show that under the assumption (7.25) there exists a constant K = K(T,m,L)
depending on ∥d0∥H1 , ∥h∥

L2(0,T ;H
3
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

, Ω, T , m and L such that

∥dm∥2L∞(0,T ;H1(Ω)) + ∥dm∥2L2(0,T ;H2(Ω)) ≤ K(T,m,L). (7.27)

For this purpose, we consider the lifted system for d̂m = dm − dE , where dE is the lifting
function in (7.2) such that

d̂m
t + ṽm · ∇dm = ∆d̂m − f(dm) − ∂tdE , a.e. in Ω × (0, T ),

d̂m = 0, a.e. on Γ × (0, T ),

d̂m|t=0 = d0 − dE0, in Ω.

(7.28)

Multiplying the equation for d̂m by −∆d̂m+f(dm) and integrating over Ω, using similar estimate
as in (7.24), we obtain

d

dt

(
1

2
∥∇d̂m∥2L2 +

∫
Ω
F (dm)dx

)
+ ∥∆d̂m − f(dm)∥2L2

= −
∫
Ω

(ṽm · ∇dm) · (−∆d̂m + f(dm))dx +

∫
Ω
∂tdE · ∆d̂mdx

≤ 1

2
∥∆d̂m − f(dm)∥2L2 + 2CmL(∥∇d̂m∥2L2 + ∥∇dE∥2L2) +

13

3

∫
Ω
F (d)dx

+
3

2
∥∂tdE∥2L2 +

1

4
∥∂tdE∥4L4 +

1

4
|Ω|. (7.29)

From Gronwall’s Lemma and Lemma 7.1 it follows that

1

2
∥∇d̂m(t)∥2L2 +

∫
Ω
F (dm(t))dx

≤
(1

2
∥∇(d0 − dE0)∥2L2 +

∫
Ω
F (d0)dx

)
e(4CmL+5)t

+ 2(CmL + 1)

∫ t

0

(
∥∇dE∥2L2 + ∥∂tdE∥2L2 + ∥∂tdE∥4L4 + |Ω|

)
dτ

≤ C(∥d0∥H1)e(4CmL+5)t + C

∫ t

0

(
∥h∥2

H
1
2 (Γ)

+ ∥∂th∥4
H

1
2 (Γ)

)
dτ + Ct

≤ K1(T,m,L), ∀ t ∈ [0, T ].
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Then, integrating (7.29) with respective to time, we also have∫ t

0
∥∆d̂m − f(dm)∥2L2 ≤ K2(T,m,L) ∀ t ∈ [0, T ].

The above estimates together with Lemmas 7.1, 7.4 and the Sobolev embedding theorem (n =
2, 3) easily yield the estimate (7.27).

Besides, for the semilinear parabolic equation (7.26), it is easy to prove the continuous
dependence on the initial data as well as the given velocity field ṽm. Therefore, the solution
operator defined by problem (7.26) Φm : C([0, T ];Vm) → L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω))
such that dm = Φm(ṽm) is continuous.

(2) Once the solution dm to problem (7.26) is determined, we turn to look for functions
vm(t, x) =

∑m
i=1 g

m
i (t)ui that satisfy the following system, for i = 1, ...,m,
⟨vm

t ,ui⟩V′,V +
∫
Ω(vm · ∇)vm · uidx +

∫
Ω∇vm : ∇uidx

=
∫
Ω(∇dm ⊙∇dm) : ∇uidx,

vm|t=0 = Πmv0, in Ω,

(7.30)

which is equivalent to a nonlinear ordinary differential system for the coefficients {gmi (t)}mi=1.
It is standard to prove that problem (7.30) admits a unique local solution on [0, T∗] such that
vm(t, x) =

∑m
i=1 g

m
i (t)ui ∈ H1(0, T∗;Vm), where T∗ ∈ (0, T ] may depend on L, dm and m.

Similarly to [4, Lemma A.7], we have

sup
t∈[0,T∗]

∥vm(t)∥2L2 +

∫ T∗

0
∥∇vm∥2L2dt ≤ ∥v0∥2L2 + CmT∗ sup

t∈[0,T∗]
∥∇dm∥4L2 . (7.31)

Moreover, it is easy to prove the continuous dependence result for the ODE system (7.30) on
its initial data and the given function dm. As a consequence, the solution operator defined
by problem (7.30) Ψm : L∞(0, T∗;H

1(Ω)) ∩ L2(0, T∗;H
2(Ω)) → H1(0, T∗;Vm) such that vm =

Ψm(dm) is continuous.

(3) We see that the mapping

Ψm ◦ Φm : C([0, T∗];Vm) → H1(0, T∗;Vm), Ψm ◦ Φm(ṽm) = vm

is continuous, where vm is the solution to problem (7.30). The compactness of H1(0, T∗;Vm)
into C([0, T∗];Vm) (because Vm are actually finite dimensional spaces) implies that Ψm ◦ Φm

is a compact operator from C([0, T∗];Vm) into itself. Due to our choice of L and the estimates
(7.27), (7.31), it holds

sup
t∈[0,T∗]

∥vm(t)∥2L2 ≤ L

2
+ T∗CmLK2. (7.32)

Hence, we can take Tm ∈ (0, T∗) to be sufficiently small such that ∥vm(t)∥2L2 ≤ L for all
t ∈ [0, Tm]. Then applying the Schauder’s fixed point theorem, we can conclude that there
exists at least one fixed point vm in the bounded closed convex set{

vm ∈ C([0, Tm];Vm) | sup
t∈[0,Tm]

∥vm(t)∥2L2 ≤ L with vm(0) = Πmv0.
}

such that vm ∈ H1(0, Tm;Vm) and dm ∈ L∞(0, Tm;H1(Ω))∩L2(0, Tm;H2(Ω)). Finally, unique-
ness of the approximate solution (vm,dm) is an easy consequence of the energy method. The
proof of Proposition 7.1 is complete.
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Step 2. Uniform estimates and passage to the limit. One can easily verify that the approxi-
mate solutions (vm,dm) (m ∈ N) obtained in Proposition 7.1 by the semi-Galerkin scheme sat-
isfy an energy inequality like in Lemma 7.5, which yields that ∥vm∥L∞(0,Tm;L2), ∥vm∥L2(0,Tm;H1),

∥dm∥L∞(0,Tm;H1), ∥dm∥L2(0,Tm;H2), ∥∂tvm∥Lp(0,Tm;V′), ∥∂tdm∥Lp(0,Tm;L2) (p = 2 if n = 2, p = 4
3

if n = 3) are uniformly bounded with respect to the parameter m and these bounds only depend
on T , not on Tm. Therefore, all the local approximate solutions (vm,dm) on [0, Tm] can be
extended up to [0, T ]. Moreover, using the same argument as in [4,37], we can pass to the limit
as m → +∞ and prove the existence of global weak solutions to problem (1.1)–(1.5). The details
are omitted here.

Thus, Theorem 2.1 is proved.

7.3 Higher-order estimates for global strong solutions in 2D

The following higher-order energy inequality will be helpful to derive a priori estimates for
global strong solutions to problem (1.1)–(1.5):

Lemma 7.6. Let n = 2. Assume that the assumptions of Theorem 2.2 are satisfied. If (v,d) is
a smooth solution to problem (1.1)–(1.5), then it satisfies the following higher-order differential
inequality

d

dt
AP (t) + BP (t) ≤ CT

(
A2

P (t) + R(t)
)
, (7.33)

with

AP (t) = ∥∇v(t)∥2L2 + ∥∆d̃(t) − f(d(t))∥2L2 ,

BP (t) = ∥Sv(t)∥2L2 + ∥∇(∆d̃(t) − f(d(t)))∥2L2 ,

R(t) = ∥dP (t)∥4H2 + ∥dP (t)∥2H3 + 1. (7.34)

Here, d̃ = d− dP with dP being the parabolic lifting function (see (7.15)), and CT is a positive
constant depending on ∥v0∥L2, ∥d0∥H1, ∥h∥

L2(0,T ;H
5
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

, Ω and T.

Proof. The proof mainly follows from [23, Lemma 2.6]. However, since we do not assume (2.6),
the weak maximum principle (2.8) no longer holds. Therefore, some modifications are necessary
in the proof, which will be sketched below.

Taking the time derivative of AP (t), using the facts ∆d̃ − f(d)|Γ = 0 and
∫
Ω Sv · vtdx =∫

Ω(−∆v) · vtdx, then by a direct calculation we obtain

1

2

d

dt
AP (t) + (∥Sv∥2L2 + ∥∇(∆d̃− f(d)∥2L2)

= −
∫
Ω
Sv · (v · ∇v)dx−

∫
Ω
Sv · [(∇d)tr∆d]dx

−
∫
Ω

[∇(v · ∇)d] : ∇(∆d̃− f(d))dx−
∫
Ω
∂tf(d) · (∆d̃− f(d))dx

:=

4∑
j=1

Ij . (7.35)

Here we also used the fact ∂tf(d) = 2(d · ∂td)d + |d|2∂td− ∂td := f ′(d)∂td.

By means of the Sobolev embedding theorem (n = 2), it is easy to see that (see [23,37])

|I1| ≤ ε∥Sv∥2 + C∥∇v∥2.
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Next, on account of the lower-order estimates for (v,d) in Proposition 2.1 and the facts d̃|Γ =
(∆d̃ − f(d))|Γ = 0, from the Sobolev embedding theorem and Agmon’s inequality (n = 2) we
infer

∥d∥H2 ≤ ∥d̃∥H2 + ∥dP ∥H2

≤ C∥∆d̃− f(d)∥L2 + ∥f(d)∥L2 + ∥dP ∥H2

≤ C∥∆d̃− f(d)∥L2 + ∥dP ∥H2 + C,

∥d∥H3 ≤ ∥d̃∥H3 + ∥dP ∥H3

≤ C∥∆d̃∥H1 + ∥dP ∥H3

≤ C∥∆d̃− f(d)∥H1 + C∥f(d)∥H1 + ∥dP ∥H3

≤ C∥∇(∆d̃− f(d))∥L2 + C(∥d∥2∞ + 1)∥d∥H1 + ∥dP ∥H3

≤ C∥∇(∆d̃− f(d))∥L2 + C∥d∥H2 + ∥dP ∥H3

≤ C∥∇(∆d̃− f(d))∥L2 + C∥dP ∥H3 + C.

As a consequence, we have

∥∇d∥2L4 ≤ C∥d∥H2∥d∥H1

≤ C∥∆d̃− f(d)∥L2 + C∥dP ∥H2 + C,

∥∇d∥2L∞ ≤ C∥∇d∥H2∥∇d∥L2

≤ C∥∇(∆d̃− f(d))∥L2 + C∥dP ∥H3 + C,

∥∆d̃− f(d)∥2L4 ≤ C∥∇(∆d̃− f(d))∥L2∥∆d̃− f(d)∥L2 .

Using the above inequalities, we obtain the estimates for I2 and I3 such that

|I2| ≤
∣∣∣∣∫

Ω
Sv · [(∇d)tr(∆d̃− f(d))]dx

∣∣∣∣ +

∣∣∣∣∫
Ω
Sv · [(∇d)trf(d)]dx

∣∣∣∣
+

∣∣∣∣∫
Ω
Sv · [(∇d)tr∆dP ]dx

∣∣∣∣
≤ ∥Sv∥L2∥∇d∥L4∥∆d̃− f(d)∥L4 + ∥Sv∥L2∥∇d∥L∞∥dP ∥H2

≤ ε∥Sv∥2L2 + C∥∇d∥2L4∥∆d̃− f(d)∥2L4 + C∥∇d∥2L∞∥dP ∥2H2

≤ ε∥Sv∥2L2 + C∥∇(∆d̃− f(d))∥L2∥∆d̃− f(d)∥L2(∥∆d̃− f(d)∥L2 + ∥dP ∥H2 + 1)

+ C∥dP ∥2H2(∥∇(∆d̃− f(d))∥L2 + ∥dP ∥H3 + 1)

≤ ε∥Sv∥2L2 + ε∥∇(∆d̃− f(d))∥2L2 + C∥∆d̃− f(d)∥4L2

+ C∥dP ∥4H2 + C∥dP ∥2H3 + C,

|I3| ≤ ∥∇(∆d̃− f(d))∥L2(∥∇v∥L4∥∇d∥L4 + ∥v∥L∞∥d∥H2)

≤ ε∥∇(∆d̃− f(d))∥2L2 + C∥∇v∥2L4∥∇d∥2L4 + C∥v∥2L∞∥d∥2H2

≤ ε∥∇(∆d̃− f(d))∥2L2 + C∥∆v∥L2∥∇v∥L2(∥∆d̃− f(d)∥L2 + ∥dP ∥H2 + 1)

+ C∥∆v∥L2∥v∥L2(∥∆d̃− f(d)∥2L2 + ∥dP ∥2H2 + 1)

≤ ε∥Sv∥2L2 + ε∥∇(∆d̃− f(d))∥2L2 + C∥∇v∥4L2 + C∥∆d̃− f(d)∥4
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+ C∥dP ∥4H2 + C.

For the term I5,

I5 = −
∫
Ω
f ′(d)d̃t · (∆d̃− f(d))dx−

∫
Ω

(f ′(d)∂tdP ) · (∆d̃− f(d))dx

:= I5a + I5b, (7.36)

then recalling the equation for d̃ (see (7.18)), we have

|I5a| ≤ ∥f ′(d)∥L2∥v∥L4∥∇d∥L4∥∆d̃− f(d)∥L4 + ∥f ′(d)∥L2∥∆d̃− f(d)∥2L4

≤ C∥∇v∥L2∥v∥L2∥∇d∥2L4 + C∥∇(∆d̃− f(d))∥L2∥∆d̃− f(d)∥L2

≤ ε∥∇(∆d̃− f(d))∥2L2 + C∥∇v∥2 + C∥∆d̃− f(d)∥2 + C∥dP ∥2H2 ,

|I5b| ≤ ∥f ′(d)∥L2∥∂tdP ∥L4∥∆d̃− f(d)∥L4

≤ ε∥∇(∆d̃− f(d))∥2L2 + C∥∆d̃− f(d)∥2 + C∥∂tdP ∥2H1 . (7.37)

Collecting the above estimates and taking ε to be sufficiently small, we deduce

d

dt
AP (t) + ∥Sv∥2 + ∥∇(∆d̃− f(d))∥2 ≤ C∥dP ∥4H2 + C∥dP ∥2H3 + C∥∂tdP ∥2H1 + C,

which together with the fact ∂tdP = ∆dP easily yields the inequality (7.33).

Next, recall the following analysis lemma (see [55, Lemma 6.2.1])

Lemma 7.7. Let T be given with 0 < T ≤ +∞. Suppose that y(t) and h(t) are nonnegative
continuous functions defined on [0, T ] and satisfy the following conditions:

dy

dt
≤ c1y

2 + c2 + h,

with
∫ T
0 y(t)dt ≤ c3,

∫ T
0 h(t)dt ≤ c4, where ci (i = 1, 2, 3, 4) are some nonnegative constants.

Then for any δ ∈ (0, T ), the following estimate holds:

y(t + δ) ≤
(
c3δ

−1 + c2δ + c4
)
ec1c3 ,

for all t ∈ [0, T − δ]. Furthermore, if T = +∞, then lim
t→+∞

y(t) = 0.

We can prove

Proposition 7.2. Under the assumptions of Theorem 2.2, it holds

AP (t) +

∫ t

0
BP (τ)dτ ≤ CT , ∀ t ∈ [0, T ], (7.38)

where CT > 0 is a constant depending on ∥v0∥H1, ∥d0∥H2, ∥h∥
L2(0,T ;H

3
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

,

Ω and T .

Proof. From Lemmas 7.1, 7.2 and the basic energy inequality derived in Lemma 7.5 it follows
that ∫ T

0
AP (t)dt ≤ CT ,

∫ T

0
R(t)dt ≤ C ′

T , (7.39)
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where CT > 0 is a constant depending on ∥v0∥L2 , ∥d0∥H1 , ∥h∥
L2(0,T ;H

3
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

,

Ω and T , while C ′
T > 0 is a constant depending on ∥d0∥H2 , ∥h∥

L2(0,T ;H
5
2 (Γ))

, ∥∂th∥
L4(0,T ;H

1
2 (Γ))

.

Taking δ > 0 to be sufficiently small, it is easy to see from the differential inequality (7.33) that
AP (t) is bounded on [0, δ]. On the other hand, using (7.33), (7.39) and applying Lemma 7.7,
we deduce that AP (t) is also bounded on [δ, T ]. Finally, integrating (7.33) with respect to time,
we can conclude that (7.38) holds. The proof is complete.

Remark 7.2. From the definitions of AP , BP , Lemma 7.2 and the lower-order estimates ob-
tained in Proposition 2.1, we can easily prove the conclusion of Theorem 2.2.
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