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AIM OF THE PhD THESIS 

The aim of  this PhD work was to establish the synthetic procedures for new families of  

biocompatible and biodegradable and/or bioeliminable biomaterials that can be dif f erently 

processed to obtain nanoparticles, core-shell nanof ibres and hydrogel slabs or conduits, 

respectively. Depending on composition, size and morphology, these biomaterials may be 

intended for applications as drug delivery systems and/or tissue regeneration.  

Specif ically, the research project has been developed along two main lines: 

 Synthesis of  poly(lactic-glycolic acid)-g-poly(1-vinylpyrrolidin-2-one) (PLGA-g-PVP) 

copolymers whose architecture consisted of  a long PLGA backbone with oligomeric PVP 

pendants. These were obtained by the radical polymerisation of  1-vinylpyrrolidin-2-one  

in molten PLGA 50:50, acting as chain transf er agent. The procedure was a single pot 

- single step one. Copolymers were characterized by FTIR, 1H- and 13C-NMR and 

thermal analyses. They were saponif ied giving, besides PLGA degradation products, 

also un-degraded PVP. This was isolated and analysed by size exclusion 

chromatography, to evaluate the molecular weights of  graf ted PVP chains. MALDI-

TOF analysis allowed identif ying the chemical structure of  PVP terminals and 

unambiguously establishing that PVP chains had been graf ted onto PLGA backbone 

PLGA-g-PVP with dif f erent PVP content  were formulated as drug nanocarriers by 

dif f erent procedures. Doxorubicin-loaded nanoparticles were prepared by the solvent 

dif fusion method and fully characterised. In vitro drug release kinetics were studied and 

in vitro biological activity evaluated on several antitumoral cell lines.  

PLGA-g-PVP were also used as coatings of  lipid nanocapsules for the delivery of  

curcumin and artemisinin as antimalarials. Drug loaded-lipid micro-dispersions were  

f irst prepared by oil in water emulsion. The lipid drops were converted into nanometric 

ones by high pressure homogenization and f inally surface coated by adding a 

DMSO/acetone PLGA-g-PVP solution. Growth inhibition assay were conducted on 

plasmodium falciparum (3D7) cultures. Haemoltic assays were conducted on healthy 

red blood cells. 

PLGA-g-PVP- and PLGA-based scaf folds consisting of  nanof ibrous mats were  

produced by electrospinning. Starting materials were electrospun and their morphology 

was evaluated by scanning electron microscopy and wettability by contact angle 

measurements. Coaxial electrospinning of  two materials, in which PLGA formed the 

core and PLGA-g-PVP the shell of  f ibres, were also conducted and compared with those 

obtained by mixed solutions of  staritng materials. Chemical composition was evaluated 
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by TGA, morphology by scanning electron microscopy  and wettability by contact angle 

measurements. Nanofabric scaf fold produced will be evaluated for drug release and tissue 

engineering applications. 

 

 Synthesis of  a new classes of  poly(saccharide)-poly(aminoamine)s 3D-network intended 

as scaf folds for the regeneration of  liver.  

In particular, hyaluronic acid-polyamidoamine and hyaluronic acid-gelatin- 

polyamidoamine hydrogels were synthesised by amidation reaction between the carboxylic 

acid group of  hyaluronic acid and amine groups of  gelatin and or an NH2-functionalized 

PAA, promoted by 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium 

chloride (DMTMM) as coupling agent. Chemical-physical characterization were carried 

out on hydrogels. In order to promote hepatic cell prolif eration serotonin was bonded to 

both hydrogels, adding it to the initial recipe, exploiting the above reaction between 

carboxylic acid group of  hyaluronic acid and amine group of  serotonin . Serotonin-loaded 

hydrogels were tested in vitro to evaluate biological ef f icacy.  

 

In “Introduction” the broad def initions, classif ication and roles of  biomaterials have been 

discussed. In the following chapters, chapter is launched with a brief  and more narrow 

introduction on the chapter matter. 
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1.1 BIOMATERIALS: DEFINITION 

“A biomaterial is a nonviable material used in a medical device, intended to interact with 

biological systems.”i 

David Franklyn Williams, 1987 

The increase in global average life expectancy, particularly in industrialised 

countries, a more active lifestyle and the onset of a large number of diseases, 

have generated a rising demand of medical devices, allowing to return the 

recovery of functionality of compromised body parts resulting in patient's 

survival. In order to build effective medical devices capable to perform these 

functions, the constituting materials must have the ability to interact with 

biological systems. These materials are named biomaterials. A number of 

definitions has been developed for this term.  

At Consensus Conference of the European Society for Biomaterials (1987, 

Chester, England), D.F. Williams gave the most famous and used definition, 

reported at the begin of this paragraphs. These definition do not include 

materials for controlled drug and biological active molecules deliveries, as much 

as, all material-cell combinations.ii,iii,iv The currently accepted broader definition 

of biomaterial, always defined by D.F. William in 1991, is: i 

“A biomaterial is a man-made or man-modif ied viable or non-viable material intended to 

interface with biological systems to evaluate, treat, augment, or replace any tissue, organ, or 

function of  the body.” 
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1.1.1 Generations of biomaterials 

As for the definition of biomaterials, also their purpose has changed over time, 

leading to three different generations. These three generations are not only a 

chronological sequence, but, mainly a conceptual evolution carrying change of 

requirements and properties of the materials involved. A first generation of 

biomaterials was developed starting from 1960-1970s, with the goal of “achieve a 

suitable combination of  physical properties to match those of  the replaced tissue with a min imal 

toxic response in the host”.v They consisted in implanted prostheses that must be 

biological inert or have a minimal interaction with its surrounding tissue once 

putted in the body. By the mid-1980s, a second generation of biomaterials was 

reported with the peculiarity to be bioactive, meant as the ability to interact with 

the biological environment through the establishment of tissue-biomaterial 

surface bonding in order to enhance a specific biological response. During those 

years various compositions of bioactive glasses, ceramics, glass-ceramics and 

composites underwent clinical trials. The third generation biomaterials 

combined bioactivity with progressive and controlled chemical breakdown and 

resorption. This generation was created to aid both regeneration or restoration,  

and not simply replacement, of injured or lost tissues or body functions and 

delivery of biochemical factors and drugs. Thus, temporary structures that 

stimulate cellular invasion, attachment and proliferation fall in this area.vi,vii,viii 

It is important to underline that new generation biomaterials do not necessarily 

override the use of those of a previous generation, but have only a different 

“modern” application. For example, bioinert materials are used to build 

temporary urinary catheter, bottles or body fluid containers and needles;  

bioactive materials for body implants and grafts; bioresorbable one are used in 

drug delivery and tissue engineering. 

1.1.2 Biocompatibility 

Bioinertness, bioactivity and bioresorbability are features describing how the 

host tissue interacts with an implanted or injected biomaterial, and how it 

impacts the biomaterial. Host response and how the host response impact 

biomaterials are two subjects of a single matter: biocompatibility.iv,ix,x 
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Biocompatibility is the most important property of a biomaterial and also the 

essential one to define a material as biomaterial. It is defined as “the ability of  a 

material to perform with an appropriate host response in a specif ic application”.xi  

For a lay person this definition is very general and so self-evident that it is not 

of any real help in advancing knowledge of biocompatibility concept, but it is 

the only one always true and that takes in account all specific and different 

mechanisms involved in the interaction between biomaterials and tissues.  

Table 1.1. Host response and host variables influence host response 

Major characteristic of the generic 

response to biomaterials 

Most material variables that could influence 

the host response 

Protein adsorption and desorption 

characteristics 

Generalized cytotoxic effects 

Neutrophil activation 

Macrophage activation, foreign body giant 

cell production, granulation tissue formation 

Fibroblast behaviour and fibrosis 

Microvascular changes 

Tissue/organ specific cell responses  

Activation of clotting cascade 

Platelet adhesion, activation, aggregation 

Complement activation 

Antibody production, immune cell responses 

Acute hypersensitivity/anaphylaxis 

Delayed hypersensitivity 

Mutagenic responses, genotoxicity 

Reproductive toxicity 

Tumour formation 

Bulk material composition, micro-(or nano)-

structure, morphology 

Crystallinity and crystallography 

Elastic constants 

Water content, hydrophobic-hydrophilic 

balance 

Macro-,micro-, nano-porosity 

Surface chemical composition, chemical 

gradients, surface molecular mobility 

Surface topography 

Surface energy 

Surface electrical/electronic properties 

Corrosion parameters, ion release profile, metal 

ion toxicity (for metallic materials) 

Degradation profile, degradation product form 

and toxicity (for polymeric materials) 

Leachable, additives, catalysts, contaminants 

and their toxicity (for ceramic materials) 

Wear debris release profile 

These specific mechanisms and the consequent host response depend on the 

general application and specific context. As an example, for long term bone 

implants, where the goal is bone integration of biomaterials, biocompatibility 

needs to take in account the rate of release of corrosion or degradation products 

and the tissue response to them, the rate of wear debris release and the tissue 

response to this debris. For systems injected in the bloodstream, host response 

may be acute, sub-acute and chronic inflammation, partially due to the 

mechanical injury of injection, but mainly to the presence of foreign substances 
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in blood that activate immunological response, leading high concentration of 

monocytes and macrophages in circulation. In the above cited examples , the 

main requirements of biomaterials is that they do not generate negative effects ,  

that is, do not generate release of chemical substance, debris formation, 

inflammation phenomena and immune response, or that these phenomena are 

minimised. Major generic host response and major biomaterial variable 

influencing the host response are listed in Table 1.1 (A and B) and some test to 

evaluate biocompatibility depending on body tissue contact and contact  

duration, regulated by ISO 10993·1, are listed in Table 1.2.xii,xiii 

Table 2. ISO 10993·1. Biocompatibility testing selection criteria. 
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a) The “X” indicates data endpoint that can be necessary for a biological safety 

evaluation, based on a risk analysis. The “o” indicates data endpoint that can be 

advisable for a biological safety evaluation. Where existing data are adequate,  

additional testing is not required. b) A= limited (≼ 24h); B= prolonged (from > 

24h to 30d); C= permanent (> 30d). 

1.2 MATERIALS USED AS BIOMATERIALS 

The majority of biomaterials are classifiable into three main classes: metals, 

ceramics and polymers. All others are composites and biologically-derived  

materials.  

 

Figure 1.1. Biomaterial market by composition. Figure adapted from 

reference.xiv 

The worldwide biomaterials market is poised to reach USD 130.57 Billion by 

2020, growing at a CAGR (Compounded Average Growth Rate) of 16% during 

the forecast period between 2015 and 2020.xv As shown in Figure 1.1, the 

metallic segment accounted for the largest share of the market in 2014. The 

growth of this segment is driven by the benefits of metal biomaterials, such as 

strength and resistance to breakage, which makes them suitable for usage in 

various medical applications requiring strength and toughness. However,  

polymeric biomaterials form the fastest-growing segment in the coming years  
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owing to continuous research and advancements for highly biocompatible 

polymers and the increasing application areas of these biomaterials.  

1.2.1 Polymeric biomaterials 

Strong points of polymeric biomaterials compared to metal or ceramic materials  

are ease of manufacturability to produce various shapes (latex, film, sheet, fibres,  

etc.), reasonable cost and availability with desired mechanical and physical 

properties. These benefits have been evident since the dawn of polymer science.  

Virtually every new synthetic polymer found its way into biomedical 

experimental studies soon after its invention.xvi,xvii Nylon sutures were reported  

in the early 1940s, after only 5 years from the invention, by Wallace Hume 

Carothers.xviii 

Polymers are macromolecules composed of a combination of many small units 

that repeat themselves along the long chain. The small starting molecules are 

called monomers, and unit, which repeats itself along the chain is called the 

repeating unit. Polymeric biomaterials can be produced by polymerization of 

one or more monomers, used to impart desirable chemical, physical, and 

biological properties to biomaterials. It is possible to produce polymers 

containing specific hydrophilic or hydrophobic entities, biodegradable repeating 

units, or multifunctional structures that can become points for three-

dimensional 3D network. Moreover, many properties the chemical structure of 

the bulk polymer is unable to impart can be reached by chemical or physical  

modification of polymer surface.xix,xx,xxi 

Considering the multitude of available polymers and of their applications, it may 

be useful to classify them into categories that highlight important aspects for 

their practical application. 

In this section, polymers will be classified based on the presence or absence of 

degradation phenomena in a biological environment, that is , depending on their 

belonging to the second or third generation biomaterials (see section 1.1.2).  

Non-degradable polymers have been extensively used in medicine as fillers,  

orthopaedic implants, ocular lens, heart valves, bone cements, vascular grafts, 

and tissue engineering scaffolds for long term devices.xiii,xxii Degradable 
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polymeric biomaterials are preferred candidates for developing therapeutic 

temporary devices such as prostheses, resorbable three-dimensional porous 

structures as scaffolds for tissue engineering and as drug delivery vehicles with 

controlled/sustained release.xv,xxiii,xxiv,xxv  

1.2.2 Degradation and erosion of polymers in biological environment 

According to the International Union of Pure and Applied Chemistry (IUPAC), 

polymer degradation is defined as “changes in the values of  in-use properties of  the 

material because of  macromolecule cleavage and molar mass decrease”. In contrast, erosion 

refers to “degradation that occurs at the surface and progresses f rom it into the bulk”. xxvi 

Prefix bio- is added to both terms when degradation is due to cell-mediated or 

bacteria-mediated phenomena.xxvii,xxviii,xxix 

In biological environment, hydrolysis is the most common chemical process by 

which polymers degrade, but degradation can also occur via oxidative, 

photodegradative, and enzymatic mechanisms. iii Hydrolytically degradable 

polymers are generally preferred because they are not affected by site-to-site and 

patient-to-patient variations, compared to enzymatically degradable ones.xxx  

1.2.3 Hydrolically degradable polymers 

Hydrolytic cleavage is dictated by the nature of the chemical bonds that make 

up the polymer backbone. In general, a carbon-carbon bond is chemically and 

biological inert. The C-C bond inertia can be decreased by oxidation of the 

carbon backbone. Therefore, an ester and urethane bond is easier to degrade 

than a ketone or a sulfone bond, which is easier to degrade than an ether bond. 

Other important factors are molecular weight, porosity and morphology 

(crystalline, amorphous forms). In particular, degradation phenomena slow 

down increasing the molecular weight and crystallinity of polymer and 

decreasing its porosity (a low ratio of exposed surface area to volume).xlix,xxxi 

In extracellular fluids hydrolysis are promoted by the presence of ions, such as, 

H+, Na+, K+, Mg2+, Ca2+, OH−, Cl−, HCO3−, PO43−, and SO42−. It has been 

shown that certain ions are effective hydrolysis catalysts, enhancing, for 

example, reaction rates of polyesters by several orders of magnitude.xxxii Ion 

catalysis can be enhanced increasing hydrophilicity percentage of the polymer. 
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Very hydrophobic polymers absorb negligible concentrations of ions. Whereas  

hydrogels, absorbing large amounts of water, act as ions sieves with consequent 

bulk hydrolysis via acid, base or salt catalysis. iii  

1.2.4 Enzymatically degradable polymers 

Enzymatically degradable polymers are materials possessing bonds that are 

hydrolytically sensitive, but require catalysis to degrade in physiological 

conditions. Most of the naturally occurring polymers undergo enzymatic 

degradation, like protein (e.g. silk, collagen, gelatin, fibrinogen), polyaminoacids 

(e.g. poly-γ-glutamic acid) and polysaccharides (cellulose, hyaluronic acid,  

dextran, alginate). Most of these polymers contain ether, amide or glycosid ic 

bonds, which have hydrolytic degradation rates much lower than the polymers 

discussed before.xxxiii As an instance, polyurethanes biodegradation degree in the 

presence of cholesterol esterase enzyme is about 10 times higher than in the 

presence of buffer alone.xxxiv Hydrolytic reactions may be catalysed by enzymes 

known as hydrolases. These include proteases, esterases, glycosidases, and 

phosphatases, among others. 

Enzymatically induced hydrolysis is a heterogeneous process, affected by the 

mode by which enzymes and polymeric chains interact. It typically involves four 

steps: (1) diffusion of the enzyme from the bulk solution to the polymeric 

surface, (2) adsorption of the enzyme on the surface with the following 

formation of the enzyme-polymer complex, (3) occurrence of the hydrolysis 

reaction, and (4) diffusion of the soluble degradation products from the solid 

surface to the solution.xxxv The slowest step controls the reaction rate. 

In order to affect the enzymatic degradation rate, chemical modifications of 

polymers (crosslinking, removal, or introduction of chemical groups in the 

polymer chain) are usually done. Practically these modifications may 

compromise the ability of the enzyme to recognize the modified substrate. For 

instance, lysozyme (enzyme responsible for the degradation of peptidoglycan 

and also chitin materials) exhibited low activity toward chitosans with high 

degrees of deacetylation or crosslinked chitosan.xxxvi,xxxvii,xxxviii 

The hydrolitically and enzimatically degradable polymers employed in this PhD 

work are briefly described below. 
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1.2.3.1 Poly(α-esters) 

Due to the relative ease of their synthesis (via ring-opening or condensation 

polymerization)xxxix,xl and commercial availability, poly(α- esters)xli,xlii have been 

the most researched degradable polymers. They contain aliphatic bonds in their 

backbone. Only polymer having short aliphatic chains can be utilized as 

degradable polymers for biomedical applications. 

Poly(glycolic acid)xliii,xliv(PGA), poly(lactic acid)xlv,xlvi,xlvii (PLA), poly(lactic-co-

glycolic acid)xlviii,xlix,l (PLGA) and poly (caprolactone)li,lii,liii (PCL) are the most 

common poly(α- esters) used (Figure 1.2). 

PGA’s rapid degradation and insolubility in many common solvents limited 

research for drug delivery devices. Typical application field that involving PGA 

is the short-term tissue engineering, in which it acts as filler material coupled  

with other degradable polymer networks.liv The additional methyl group in PLA 

causes polymer to be much more hydrophobic and stable against hydrolysis than 

PGA. PLA is extensively utilized in drug delivery and in tissue engineering 

applications ranging from scaffolds for bone, cartilage, tendon, neu ral, and 

vascular regeneration.lv,lvi PLGA is the most investigated degradable polymer for 

biomedical applications and has been used in sutures, drug delivery devices and 

tissue engineering scaffolds.lvii,lviii,lix,lx PCL has very low in vivo degradation rate 

and high drug permeability, it has found favour as a long-term implant delivery 

device.lxi 

 

Figure 1.2. Structure of the most common poly(α-esters) used as biomaterials. 

1.2.3.2 Polysaccharides 

The term polysaccharides refers to a class of compounds consisting of 

monosaccharide units linked together by glycosidic linkages.lxii,lxiii They are 



CHAPTER 1 

INTRODUCTION TO BIOMATERIALS 

18 

normally obtained by biosynthesis in plants (including algae) or in 

microorganisms. Therefore, they are produced by extraction and purification  

from renewable sources.lxiv A great share of polysaccharides constitutes a source 

of biomaterials for the most varied applications, especially in the domain of 

tissue engineering,lxv,lxvi drug delivery,lxvii,lxviii visco-supplementation lxix. The list 

of polysaccharides commonly used for biomedical applications include 

cellulose,lxx chitin/chitosan,lxxi starch,lxxii alginate,lxxiii hyaluronic acid, lxxiv 

pullulanlxxvand glycosaminoglycanlxxvi (Figure 1.3). Many natural polymers are 

found in the extracellular matrix components of organisms, including humans, 

and participate in inter and intracellular cell signalling, contributing to cell 

growth.lxxvii Thanks to these features, polysaccharides are often used to impart 

materials biological recognition ability, biocompatibility, and bioactivity. In spite 

of many benefits, they suffer from several drawbacks, including variation in 

material properties based on source, microbial contamination, uncontrolled  

water uptake, poor mechanical strength, and unpredictable degradation 

pattern.lxxviii Many polysaccharides have been chemically modified to achieve 

consistent physicochemical properties including mechanical stability, 

degradation, and bioactivity and processed into microparticles, hydrogels, and 

3D porous structures for tissue regeneration applications. lxxix,lxxx 
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Figure 1.3. Structure of the most common polysaccharides used as biomaterials. 

1.2.3.3 Polyamidoamines  

PAAs are a family of biodegradable and biocompatible polymers with 

recognised potential in the pharmaceutical field. lxxxi,lxxxii,lxxxiii,lxxxiv, PAAs are 

obtained by stepwise Michael type polyaddition reaction of primary or bis -

secondary amines to bisacrylamids (Figure 1.4). The polymer obtained presents 

tert-amino and amido groups regularly arranged along the main chain.  

Polymerization reaction takes place in protonated solvents, such as water and 

alcohols, without catalysts. Amphoteric PAAs can be prepared using starting 

monomers, carboxyl groups not influencing the polyaddition reaction. lxxxv,lxxxvi 
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Figure 1.4. Reaction scheme of linear PAAs. Reaction was conducted in inert 

atmosphere to avoid radical polymerization of acrylamides. 

It is possible to obtain cross-linked PAAs using polyfunctional monomers, such 

as bis-primary amine, by totally or partly replace the bis-functional amine 

monomer during the reaction (Figure 1.5). An alternative crosslinking method 

consists of triggering the radical polymerization of vinylic terminated PAA by 

UV irradiation, water soluble diazocompounds, or redox systems. In both cases  

crosslinked scaffolds were obtained, mostly used as inorganic pollutants 

adsorbents for water purification, lxxxvii,lxxxviii,lxxxix as optical dyes for metals 

detection,xc for the release of bioactive moleculexci and as scaffold for cell  

proliferation in tissue engineering application.xcii,xciii,xciv Conversely, linear PAAs 

were used as DNA,xcv proteinxcvi carriers, in drug delivery for anticancerxcvii and 

antimalarialxcviii treatments, and also as macromolecular drug for 

antimetastaticxcix and antiviral applicationsc. Linear PAAs showed complex 

forming properties versus metallic ions dissolved in aqueous solutions.  

 
Figure 1.5. Reaction scheme of crosslinked PAAs. Reaction was conducted in 

inert atmosphere to avoid radical polymerization of acrylamides.  
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All PAAs are degradable in aqueous solution. The mechanism seems to be 

purely hydrolytic as no vinyl groups, such as those which would have derived  

from a β-elimination reaction, could be determined. Degradation rate in aqueous 

media is strongly influenced by pH and temperature. Degradation seems not to 

be affected by the presence of isolated lysosomal enzymes at pH 5.5.ci,cii,ciii 

1.3 BIOMATERIALS: APPLICATIONS 

The main applications of biomaterials can be classified into the categories ,  

depending on the tissue or organ that they repair or, more generally, with which 

they come in contact. Each category has a different weight on global market 

(Figure 1.6). In particular, cardiovascular and orthopaedic application segments 

are the most revenue-bearing fields. The first dominates the global biomaterials 

market in terms of share due to the high prevalence rates of cardiovascu lar 

diseases, above all in rich countries like USA. The orthopaedic segment is the 

second largest market thank to health problems due to advancem ent of 

population average age.xli,xlii 

 
Figure 1.6. Biomaterials market by applications. 

Typical applications in these fields are related to substitution, scaffolding or 

splinting of tissues that are not able to self-renew. In this way, a great number 

of implants and grafts have been produced.civ,cv,cvi Examples are heart valves, 

endovascular stents, vascular grafts, stent grafts, reconstructive implants, 
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fracture management products, arthroscopy products, electrical stimulation 

products for cardiovascular and orthopaedic application areas.cvii,cviii,cix,cx 

Adhesive and sealant biomaterials are used to fill a space, replacing some part of 

lost natural tissue, as bone cements in orthopaedics, or to protect surfaces or 

prevent leakage, as pit and fissure sealants in dentistry.cxi,cxii,cxiii 

Biomaterials are not only intended for internal body applications but also as 

device constituents for external body applications. They are used for drugs, 

organs and blood packaging, but also for many disposable medical devices, such 

as syringes, injection pipes, surgical gloves, lancets, cotton pads , and in vitro 

biological devices, such as pipette, micropipette, well-plates, test tubes.cxiv 

A broad class of biomaterials is used to provide bioelectrodes and 

biosensors.cxv,cxvi,cxvii Bioelectrodes are sensors used to transmit information into 

or out of the body. Surface or transcutaneous electrodes used to monitor or 

measure electrical events that occur in the body, like in electrocardiography,  

electroencephalography, and electromyography. A biosensor is a sensor that 

uses biological molecules, tissues, organisms or principles to measure chemical 

or biochemical concentrations. Biosensors can work by changes in pH, ions, 

blood gases (O2, CO2 and etc.), drugs, hormones, proteins, viruses, bacteria. 

1.3.1 Tissue engineering and regenerative medicine 

When tissues and/or organs fail, their replacement is usually the only solution. 

Regrettably, the number of compatible donors and the consecutive number of 

organs is really limited. For these reason, artificial prostheses are essential to save 

and improve lives of millions of patients.  

At first, implants were made of materials well known in the technological field, 

but not in origin thought for biomedical applications. Stainless steel, alloys and 

high-density polyethylene were used for bone implant, methacrylate polymers as 

bone cement in dental medicine, polyethylene tetraphthalate fibres for the 

production of grafts for blood vessel reconstructions. These materials had initial 

problem with integration of host tissues, by triggering a host immune response 

compromising the healthy tissue around the implant.cxviii 
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By modifying the chemical composition of either the bulk or the surface of 

implants, tissue-implant interactions are improved with a remarkable reduction 

of inflammations, immune responses, systemic toxicity and imminent infection.  

On the other hand, due to the normal cellular and tissue activity, materials are 

subject to continue stress that over time produces damage in the implant, 

eventually leading to its failure. Fatigue fracture and wear combined with the 

formation of debris, have been identified as some of the major problems 

associated with implant failure in long term. These events force patients to 

frequent substitution of implanted prostheses, resulting in a great bother.  

A solution for this problem may be developing procedures that do not replace 

the damaged tissue/organ but favour their regeneration. 

The goal of regenerative medicine is the healing (or at least partially restoring) 

of damaged tissue, supporting the regeneration of diseased or injured organs. 

Regenerative medicine usually takes advantage of tissue engineering 

materials.cxix,cxx,cxxi,cxxii 

Tissue engineering is defined as: “the creation (or formation) of  new tissue for the 

therapeutic reconstruction of the human body, by the deliberate and controlled stimulation of  

selected target cells through a systematic combination of  molecular and mechanical signals”.i 

Tissue engineering takes advantage of 3D structures, named scaffolds, that 

provide a template for cells to attach, proliferate, maintain their differentiated  

function and organize in order to restore structure and function to damaged 

tissues. Essentially, scaffolds act as a synthetic analogue of the natural 

extracellular matrix. cxxiii 

Two main strategies have been used in tissue engineering: transplantation of a 

in vitro grown tissue, and in situ tissue regeneration. The first consists of in vitro 

cultured cells on an artificial scaffold in presence of growth factors until forming 

a natural tissue followed by transplantation. The second is a combination of an 

artificial scaffold and growth factors used as a template to induce host cell  

regeneration of the tissue in vivo. In this case the host’s body works as a 

bioreactor to construct new tissues.  
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In general, an ideal scaffold should have: i) three-dimensional highly porous 

structure with an interconnected pore network to facilitate cell/tissue growth 

and diffusion of nutrients, metabolic waste, and paracrine factors; ii) a 

biodegradable or bioresorbable network with degradation and resorption rates  

that match tissue growth both in vitro and in vivo; iii) a suitable surface 

chemistry for cell attachment, proliferation, and differentiation; iv) mechanical 

properties similar to those of tissues at the site of implantation; v) easy 

manufacturing, in order to be able to produce a variety of shapes and 

sizes.cxxiv,cxxv 

1.3.1.1 Types of scaffolds 

Large numbers of scaffolds from different biomaterials are available for clinical 

use with the aim of repair and regenerate lost or damaged tissue and organs. 

These scaffolds include porous scaffold, fibrous scaffold, hydrogel scaffold and 

solid free form one. The fabrication technique for scaffolds depends almost 

entirely on the bulk and surface properties of the biomaterial and the proposed 

function of the scaffold (Figure 1.7). 

As before mentioned, the formation of a highly porous structure is the main 

goal of scaffold fabrication. Most usual methods used to made porous scaffolds,  

including particulate leaching,cxxvi freeze drying,cxxvii gas infusion,cxxviii and phase 

separation.cxxix Porous are developed by introducing particles or gas bubbles 

when the scaffold is in a fluid form and are later removed by solvent action 

(organic one, water) or under vacuum after scaffold solidification, leading an 

interconnected network of pores. The porosity and pore structure is dependent 

on the amount of porogen the size of porogen dissolved in the material, and the 

diffusion rate of it through the material.cxxx Phase separation is based on 

thermodynamic demixing of a homogeneous polymer-solvent solution into a 

polymer-rich phase and a polymer-poor phase, by exposure to an immiscible 

solvent or by cooling the solution below a binodal solubility curve. Solvents are 

removed by freeze-drying, leaving behind the polymer as a foam. These 

techniques are relatively simple but suffering of uncontrolled pore size and 

connectivity, poor mechanical strength, and residual solvent/porogens. cxxxi 
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Figure 1.7. Snapshot of techniques for preparing porous polymer scaffolds for 

tissue engineering. Figure from reference.cxxxii 

Fibre-based scaffold are highly studied due to the possibility to have high surface 

area to volume ratio, leading to a microporous structure that favours cell  
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adhesion, proliferation, migration, and differentiation. All of these features are 

highly desired ones for tissue engineering applications.cxxxiii Three techniques are 

mostly used for them synthesis: electrospinningcxxxiv, self-assembly,cxxxv and 

phase separationcxxxvi. Of these, electrospinning is the most widely studied 

technique, at contrary, nanofibres synthesized by self-assembly and phase 

separation have had relatively limited studies. By electrospinning of polymers, 

continuous micro- or nanoscale diameter fibres can be generated. In addition, it 

is possible to control orientation of fibres. However, it is difficult to control the 

distance between fibres and impossible to produce scaffold with volume and 

usually mechanical properties of collected scaffolds are poor.cxxxvii  

Solid free form fabrication techniques are based on computerized modelling to 

produce highly complex three-dimensional physical objects.cxxxviii The result is a 

porous scaffold with enhanced control over its three-dimensional organization. 

Specifically, a two-dimensional image of a target specimen was acquired by a 

non-destructive imaging, then was later developed in a three-dimensional 

architecture with software and finally fabrication of the three-dimensional 

matrix with highly precise and automated layer-by-layer SFF processes. cxxxix 

Typical processes include laser-based, ink-jet type printing-based, and nozzle-

based approaches. These methods offer precise control of the three-dimensional 

structure of the scaffolds; however, they are associated with higher costs and 

require more complex equipment compared to classical methods. 

Hydrogels are hydrophilic polymer networks which may absorb up to thousands 

of times their dry weight in water. Hydrogels are formed when the network is 

covalently crosslinked.cxl In general, polymers with reactive moieties are 

polymerized into three-dimensional networks in the presence of cross-linkers .  

Photo-crosslinkable or thermo-crosslinkable hydrogels are the most frequently 

used.cxli Hydrogel properties can be tuned in order to satisfy a range of 

application needed by controlling the structure with defined cross-linking 

density, mechanical properties, mass transport, and degradation characteristi cs .  

In particular the degradation rates of hydrogel scaffolds must be matched to the 

rate of various cellular processes in order to optimize tissue regeneration.cxlii, cxliii 

Hydrogels are appealing scaffold because they are structurally similar to the 

extracellular matrix of many tissues, can often be processed under relatively mild 

conditions, and may be delivered in a minimally invasive manner.cxliv 
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Furthermore, hydrogels can be chemically modified to improve cell adhesion 

and proliferation on the gel matrices through inclusion of adhesion peptides. 

However, major problems with using hydrogels include structural instability and 

overall inferior mechanical properties for placement within dynamic 

environments.cxlv 

1.3.2 Drug delivery systems 

Delivery systems are mainly intended to achieve either a temporal or spatial 

controlled delivery of some pharmacological interesting molecules, such as 

drugs, proteins, DNA, RNA, growth factors and hormones. Delivery systems 

offer numerous advantages compared to conventional dosage forms, in 

particular when they have a “sustained” or “prolonged” molecule release.  

1.3.2.1 Type of delivery systems 

Different types of drug delivery systems have been developed with a wide range 

of sizes from tens of micrometres to tens or hundreds of nanometres. cxlvi,cxlvii 

Drug carriers can be divided in three categories by its composition: lipid carriers ,  

polymeric carriers and inorganic ones as also depicted in Figure 1.8. Lipid and 

polymeric carriers are below examined. 

Liposomes, micro/nano-emulsions, solid lipids nanoparticles are the most 

frequently used lipid carriers. Liposomes are spherical structures composed of a 

phospholipid bilayer surrounding an aqueous reservoir. Liposome vesicles are 

composed of unilamellar or multilamellar lipid bilayers which alternate aqueous. 

In general, hydrophobic compounds are well entrapped in liposomes compared  

to hydrophilic compounds.cxlviii Micro/nano-emulsions consist in oily drops 

dispersed in an aqueous surfactants solution, leading to a milky suspensions. cxlix 

Solid lipid nanoparticles (SLN) are similar to liposome, but they have only a 

single membrane and are based on solid lipids stabilized by surfactants. SLN 

have a mean particle size of 50-1000 nm. Different types of solid lipids such as 

glycerides, waxes, and fatty acids have been used in the fabrication of SLN.cl 

Polymeric carriers count several types of micro or nanosized particles with 

different structures. Nanocristals (nanotized particles), drug-polymer 
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conjugates, solid micro or nanoparticles, micelles, layer by layer conjugates,  

dendrimers and polymersomes are the most famous.  

Nano-crystals consist in large insoluble drug crystals are milled to form nano-

sized particles with less than 2 µm. To prevent particle aggregation, surfactants  

such as surface active agents and polymers are normally required for 

stabilization.cli Polymer-drug conjugates are based on drug molecules linked on 

hydrophilic polymers. The drugs remain attached to the polymer and are not 

activated until the enzymes associated with the diseased tissue are present.clii 

Nanoparticles consist in polymeric aggregates in a solid state suspended in water 

solution, in presence or not of surfactants. Two kind of nanoparticles are usually 

described: nanosphere and nanocapsules. Nanospheres have a homogeneous 

structure in the whole particle, in which the drug is dissolved.  Nanocapsules are 

nano-vesicular systems that exhibit a typical core-shell structure; the drug is 

confined to a reservoir or a cavity.cliii Micelle are organized self-assembled 

aggregates composed of amphiphilic macromolecules, in general amphiphilic di- 

or tri-block copolymers made of hydrophilic and hydrophobic blocks. Micelles  

are characterized by critical micellar concentration, (CMC), that is the minimum 

concentration of polymer in solution to reach micelle structure. Therefore,  

micelle formation and stability are concentration-dependent.cliv Dendrimers are 

monodispersed macromolecules with highly branched structures around an 

inner core. The terminal groups of dendrimers mostly control the dendrimer 

interactions with the molecular environment. The interior of a dendrimer can 

show hydrophilic characteristics while the exterior surface of a dendrimer is 

hydrophobic or vice versa.clv Polymersomes are made using amphiphilic block 

copolymers to form the vesicle membrane, with radii ranging from 50 nm to 5 

µm or more. Most reported polymersomes contain an aqueous solution in their 

core and are useful for encapsulating and protecting sensitive hydrophilic drugs. 

They are the polymeric alternative to liposomes.clvi 
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Figure 1.8. Nanosized carrier mainly used in drug delivery. Figure take from 

reference.cxlvi 

A significant technological and medical breakthrough in the evolution of drug 

carriers is the shift in size from tens of micrometres to tens or hundreds of 

nanometres. Thanks to their sub-cellular and sub-micron size, nanocarriers can 

penetrate deep into tissues through fine capillaries, cross the fenestration present 

in the epithelial lining and are generally taken up efficiently by the cells. clvii, clviii 

For instance, nanoparticles 100 nm in size showed 2.5-fold higher uptake in 

Caco-2 cells compared to 1 µm particles and 6-fold higher compared to 10 µm 

particles.clix  

1.3.2.2 Drug loading 

A successful carrier should have a high drug-loading capacity in order to reduce 

the number of administrations. Drug can be loaded or be conjugated into the 

carrier. Drug conjugation allows high degree of incorporation. Physical 

incorporation of drugs may take place on nanoparticle preparation obtained by 

incubating them with a concentrated drug solution; c) by chemical conjugation 
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of drug into carriers. It is evident that a larger amount of drug is entrapped  

passing from method to incorporation one to conjugation one.clx,clxi,clxii 

Drug loading depends on the solid-state drug solubility in polymeric matrix 

(solid dissolution or dispersion), which is related to polymer composition, 

molecular weight, drug polymer interaction (hydrophobic/hydrophilic 

interaction and ionic interaction)clxiii,clxiv, and presence of end-functional 

groups.clxv,clxvi,clxvii 

1.3.2.3 Time control 

These systems are related to all devices able to maintain a desired tissue (blood) 

concentration within the molecule therapeutics index (TI) for long periods of 

time. Focusing upon drugs, TI is the ratio of two concentrations limits: the 

higher one, above which the drug produces undesirable (e.g., toxic) side-effects ,  

and the lower one, below which it is not therapeutically effective. Drug delivery 

systems with prolonged release are able to release drugs for long periods of time 

without reaching a toxic level or dropping below the m inimum effective level 

(Figure 1.9).clxviii,clxix 

 

Figure 1.9. Kinetic profiles of standard dose forms (green line), sustained 

release systems (purple line). 

Drug solubility and diffusion and biodegradation of the matrix materials govern 

the release process. clxx In the case of nanospheres, where the drug is uniformly 
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distributed, the release occurs by diffusion or erosion of matrix under biological 

conditions. If the diffusion of the drug is faster than erosion, the release 

mechanism is largely controlled by diffusion. The rapid initial release or ‘burst’ 

is mainly attributed to weakly bound or adsorbed drug to the large surface of 

nanoparticles. 

1.3.2.4 Spatial control  

Spatial controlled release is achieved thanks to two targeting mechanisms, i.e. 

passive and active. Passive targeting is dependent on the physicochemical 

properties of the drug-carrier system. Tailoring delivery system properties, it is 

possible to profit of physiological properties of target tissues, minimizing uptake 

into undesired tissues. Surface charge, hydrophobicity, size and shape of the 

carrier system are usually take in account.clxxi For instance, large macromolecule-

drug conjugates and nanoparticles take advantage of the enhanced permeability 

and retention (EPR) effect, usually present in solid tumours. EPR is due to the 

presence in blood vessels of poorly aligned defective endothelial cells with wide 

fenestrations and the absence of effective lymphatic drainage that allow 

accumulation of drug carrier in the tumour tissue much more than in normal 

tissues.clxxii,clxxiii 

Active targeting is achieved by conjugating a tissue- or cell-specific ligand to the 

carrier.clxxiv,clxxv The ideal active targeting is attained when the target receptor is 

not expressed in significant quantities anywhere else in the body or is over-

expressed in diseased cells. Targeting ligands are either monoclonal antibodies 

(mAbs) and antibody fragments or non-antibody ligands (such as peptidic 

one).clxxvi Usually after internalization, nanocarriers escape the endo-lysosomes 

and enter the cytoplasm. Other organuli can be reached adding specific ligand, 

as, for example, by conjugating NLS (nuclear localization signal) for nuclear 

compartment cell. clxxvii 

1.4 BIOMATERIALS: PROPERTIES 

Properties (physical, mechanical and surface properties) of biomaterial are 

designed and modelled as a function of the application and of the host tissue. 

Examples of biomaterial properties affecting their performance in drug delivery 

and tissue engineering are reported in Figure 10.  
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Figure 10. Physical, mechanical and surface requirements. 

1.4.1 Size and shape 

In the field of drug delivery, size and shape of carriers are fundamental for 

several in vivo functions. These include circulation times, extravasation, targeting,  

immunogenicity, internalization, intracellular trafficking, degradation, flow 

properties, clearance and uptake mechanisms (Figure 1.11, panel 

A).clxxviii,clxxix,clxxx,clxxxi A problem usually observed during intravenous injection of 

some kind of drug carriers is the phagocytosis by macrophages of the reticulo -

endoplasmatic system (RES). Phagocytosis represents an immunological 

response of body that recognises as foreign these carriers and eliminate them 

from the bloodstream. To promote long persistence in the blood, phagocytosis  

must be avoided. Some carrier properties are modified to reach this target.  

Phagocytosis mechanism is influenced by particles size instead of particle shape 

influences phagocytosis outcomes and kinetic. Particles greater than 500 nm can  

be phagocytised by macrophages. Instead, smaller particles can be endocytosed  

by phagocytic or non-phagocytic cells.clxxxii,clxxxiii Encountering a fully pointed 

end of an elliptical particle, macrophage internalizes the particle in a few 

minutes, while if it hits the flat region of the same elliptical particle, phagocytosis  

does not occur for over 12 hrs. As shown in Figure 1.11-panel B, the local shape 

of the particle, characterized by an Ω angle, influences the start of phagocytosis  

(Figure 1.11-panel C).clxxxiv In particular, phagocytosis velocity decreased with 

increasing Ω. 
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Figure 1.11. A) In vivo functions influenced by particle size. B) A schematic 

diagram illustrating how membrane progresses tangentially around an elliptical 

particle. T represents the average of tangential angles from θ = 0 to θ = π/2. Ω 

is the angle between T and membrane normal at the site of attachment, N. (C) 

Membrane velocity (distance traveled by the membrane divided by time to 

internalize, n ≥3; error bars represent SD) decreases with increasing Ω for a 

variety of shapes and sizes of particles. Figure adapted from reference.clxxxiv 

A) 

B) C) 
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1.4.2 Mechanical properties 

In tissue engineering, mechanical properties represent important features.clxxxv,  

To help in selecting biomaterials, mechanical property maps, known as Ashby 

maps, are used to compare a large amount of physical properties from various 

material groups and compared with those of biological systems (Figure 1.12, A 

and B panels).clxxxvi,clxxxvii Human tissues have a wide range of modulus values, 

from soft materials (brain, about 0.5 kPa), to moderately stiff (skin and muscles, 

around 10 kPa) to stiff ones (precalcified bone, >30 kPa). Scaffold s for 

regenerative medicine should ideally have the same strength and Young’s 

modulus of the tissue they will restore.clxxxviii,clxxxix This general law is valid for all 

the kinds of mechanical moduli. As shown in Figure 1.13, the scaffold elasticity 

drives lineage specification of mesenchymal stem cells (MSCs).cxc 

 

A) 
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Figure 1.12. A) Young’s modulus and tensile strength of engineering material;  

B) Young’s modulus and tensile strength of natural material on exactly the same 

axes of panel A. Figure take from reference.clxxxvi 

 

B) 
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Figure 1.13. (A) Solid tissues exhibit a range of stiffness, as measured by the 

elastic modulus, E. B) Naive MSCs of a standard expression phenotype are 

initially small and round but develop increasingly branched, spindle, or 

polygonal shapes when grown on matrices respectively in the range typical of 

Ebrain(0.1–1 kPa), Emuscle(8–17 kPa), or stiff crosslinked-collagen matrices (25–

40 kPa). Scale bar is 20 mm. Figure adapted from reference.cxc 

1.4.3 Surface properties 

Surface is the biomaterial section in contact with neighbouring tissues and, 

subsequently, it greatly influences biological responses in all applications. cxci,cxcii 

Therefore, the evaluation of surface properties of biomaterials is of paramount 

important. Surfaces have free energy associated with the discontinuity and 

asymmetry of the interface that tends to actively minimize through continual 

processes of molecule adsorption, restructuring, and chemical reactions. When 

an object is inserted in a biological environment, the first molecule it comes in 

contact is water with. Wetting is the ability of water (or in general of a liquid) to 

maintain contact with a solid surface. The balance between adhesive and 

cohesive forces determines the degree of wetting (wettability). Adhesive forces  

compel a water drop to spread across the surface (hydrophilic surfaces) .  

Cohesive forces compel the drop to ball up and avoid contact with the surface 

(hydrophobic surfaces). Wettability influences interaction with biological 

materials.cxciii,cxciv,cxcv  

In tissue engineering, wettability influences the interaction between surface 

scaffold and cell adhesion protein (transmembrane glycoproteins) that are the 

first to attach the surface and promote cell adhesion. Adhesion proteins include 

selectins, integrins, syndecans, and cadherins. In Figure 1.14 Panel A, the 

influence of siloxane-coated polystyrene wettability on osteosarcoma cells  

(MG63) is reported. Increasing hydrophobicity of the surface (increasing 

contact angle) cell adhesion decreases.cxcvi 
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Figure 1.14. Influence of siloxane-coated rough surface PS water contact angle 

on MG63 cell adhesion. B) Attachment of Enteromorpha zoospores on 

patterned CH3/OH SAMs of varying wettabilities (𝛉AW) Figures take from 

references.cxcvi,cxcvii 

Wettability influences also bacteria adhesion (Figure 1.14, Panel B), but in this 

case increasing hydrophobicity of surfaces adhesion is favoured.cxcvii If bacteria 

spread on scaffold surface, an infection is developed with the consequent 

rejection of the scaffold from the host tissue. For this reason, bacteria adhesion 

and proliferation must be avoided (Figure 1.15).cxcviii Also other properties are 

tuned to obtain antifouling activity, such as roughness, topography, surface 

tension, surface charge etc. For example, bacterial membranes are generally 

negatively charged and so, in general, a negatively charged biomaterial surface 

could reduce adhesion, due to repulsion forces.cxcix 

B) 

A) 
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Figure 1.15. Main stages of bacteria biofilm formation. 

Wettability influences the in vivo fate of micro- and nanoparticles. Hydrophobic 

particles are normally recognized by the host immune system  (RES). To 

minimize opsonization, hydrophobic particles are coated with hydrophilic 

polymers/surfactants or bonded to them, obtaining amphiphilic copolymers. 
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CHAPTER 2 

SYNTHESIS AND CHARACTERIZATION OF PLGA-g-PVP 

COPOLYMERS  

 

“The purpose of  this research is to establish the synthetic procedures to  obtain a new family of  

amphiphilic biodegradable and bioeliminable biomaterials for the construction of  drug 

nanocarriers, core-shell nanof ibres for tissue regeneration. These new biomaterials are based on 

PLGA-g-PVP copolymers, where PLGA forms a linear backbone on which short arms of  

PVP are randomly distributed. PLGA-g-PVP copolymers were synthesised by the one-step 

one-pot radical polymerization of  1-vinylpyrrolidin-2-one (VP) in molten PLGA that acted 

as chain transf er agent . Modulating the initial VP/PLGA ratio dif f erent graf ting degrees of  

PVP chains having dif f erent molecular weights were obtained. Saponif ication of  PLGA-g-

PVP gave, besides PLGA degradation products, also un-degraded PVP. This was isolated 

and analysed by size exclusion chromatography (SEC), to evaluate the molecular weights of  

graf ted PVP. MALDI-TOF analysis allowed identif ying the chemical structure of  PVP 

terminals and unambiguously establishing that PVP chains were originally graf ted onto 

PLGA backbone. PLGA-g-PVP spontaneously formed nanoparticles when dispersed in 

water, irrespective of  PVP content .  

2.1 POLY(LACTIC-CO-GLYCOLIC) ACID 

In the last twenty years aliphatic polyester-based polymeric structuresi,ii,iii have 

been receiving special attention because they are sensitive to hydrolytic 

degradation and their physical and mechanical properties can be tailor-made by 

tuning the chemical structure of the repeating unit. Among polyesters, the most 

extensively studied one in the biomedical field is the copolymer poly(lactic-co-

glycolic) acid (PLGA). Different copolymers have been commercially developed  

and are usually identified in regard to the monomer ratio (for instance PLGA 

75:25 identifies a copolymer containing 75% lactic acid and 25% glycolic acid). 
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Two general reaction mechanisms are used to synthesize PLGA and all other 

poly (α-hydroxyesters): condensation polymerization and ring opening 

polymerization. The condensation of hydroxyl-acids monomers or mixtures of 

diacids and diols is usually conducted at high temperatures for long reaction 

times, usually leading limited molecular weight chains of few tens of thousands 

(𝑀𝑛 30 kDa) and often subjected to side reactions, such as racemization.iv 

High-molecular weight aliphatic polyesters can be prepared by ring opening 

polymerization (ROP) (in melt or in solution, emulsion or dispersion) of 

lactones of different ring-size, with or without (protected) functional groups. 

Reactions are carried out in presence of a catalyst or a initiator. Depending on 

the initiator, the polymerization proceeds according to three different major 

reaction mechanisms, i.e. cationic, anionic or coordination-insertion 

mechanisms.v 

PLGA’s properties depend on lactic/glycolic acids monomer ratio. For instance,  

PLGA 75:25 is amorphous, PLGA 80:20 semi-crystalline. The degree of 

crystallinity and melting point of PLGA copolymers are also related to their 

molecular weight. In addition, unlike poly(lactic) acid and poly(glycolic) acid  

homopolymers, PLGAs are soluble in wide range of solvents including 

chlorinated solvents, tetrahydofuran, acetone and ethyl acetate.ii 

PLGAs degrade by hydrolysis of its ester linkages, through bulk erosion, in 

aqueous environments. Lactic acid rich PLGAs are more hydrophobic than 

glycolic acid reach ones and absorb lower amounts of water and degrade more 

slowly, also due to the superior steric hindrance effect. As a rule, higher glycolic 

acid contents lead to faster degradation rates with the exception of PLGA 50:50, 

which exhibits the fastest degradation, due to a less crystallinity present in the 

copolymer.vi  

PLGA is approved by Food and Drug Administration and is mainly proposed 

as component of drug delivery systems,vii,viii as scaffold for tissue engineering ix, x 

and as structural material for hard tissue reparation.xi PLGA has been used for 

preparing nano- or microsized particles as carriers of hydrophobic drugs, but 

also DNA, RNA, vitamins, and proteins, in different parts of the body and for 

different applications.xii 
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As already described in Chapter 1 Paragraph 1.4.3, hydrophobic nanoparticles .  

are cleared by phagocytes from the circulation, PLGA nanoparticles exhibit the 

same behaviour. They are usually be taken up by the liver, followed by the spleen 

and lungs.xiii Coating strategies with hydrophilic polymers and amphiphilic 

copolymers are extensively present in literature. In particular the synthesis of 

linear PEG-PLGAxiv di-block and PEG-PLGA-PEGxv tri-block copolymers 

have been widely used in drug delivery. In both kinds of copolymers PEG is 

oriented to the external aqueous phase, instead PLGA is in the internal part of 

a micelle. PEG layer acts as a barrier and do not allow the interactions with 

foreign molecules by steric and hydrated repulsion, resulting in an enhanced  

shelf stability.xvi. Faster release kinetics from formulations of di-block 

copolymers have been observed in comparison to PLGA alone. Various 

mechanisms of targeted delivery of drugs from di-block PEG-PLGA- 

nanoparticles have also been reportedxvii xviii xix 

Despite of abundance of studies that demonstrate the positive effects of PEG 

on biocompatibility of hydrophobic nanoparticles, PEG leads to some adverse 

reactions. Indeed PEG induced blood clotting and clumping of cells, leading to 

embolism.xx It is also reported to activate complement (C),xxi leading to 

hypersensitivity reactions and ultimately to anaphylactic shock.xxii,xxiii,xxiv 

Pegylated surfaces exhibited also the accelerated blood clearance (ABC) 

phenomenon.xxv Monomethyl-PEG liposome concentration in rats was 

drastically decreased after a second injection performed after 4h the first injected  

dose (from 52.6% to 0.6% after the second injection).xxvi ABC phenomenon also 

occurred when the second injection was administered after five days.xxvii These 

results indicated that a recurring injection of Pegylated liposomes can alter the 

circulation time, affecting bioavailability of the drug. Also passive targeting is 

decreased, in fact the second dose was shown to preferentially accumulate in 

Kupffer cells of the liver, due to the action of immunological system. In liver 

accumulation could cause severe liver damage, particularly in the case of highly 

toxic therapeutics.  

A study on the ABC phenomenon induced by different hydrophilic coating on 

PLA nanoparticles showed that ABC phenomenon was not induced upon 

repeated injection of PVP-coated nanoparticles at various time intervals,  
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dosages, or frequencies, whereas it was elicited by PEG-coated nanoparticles  

(Figure 2.1).xxviii 

 

Figure 2.1. Induction of the ABC phenomenon upon injections of 

prostaglandin (PGE1)-loaded PEG/PLA NPs and PVP/PLA-NPs. A) 

PEG/PLA NPs: blue line, first dose; red line second dose administered 7 d after 

the first injection. B) PVP/PLA NPs: blue line, first dose; red line second dose 

administered 7 d after the first injection 

2.2 POLY(VINYLPYRROLIDONE) 

Poly(vinylpyrrolidone) (PVP) have been used in this work to modulate the 

hydrophobicity of PLGA. 

PVP was first reported in 1938 by Reppe.xxix PVP has excellent physiological 

compatibility, low chemical toxicity, and good solubility in water and most 

organic solvents.xxx PVP forms complexes with numerous low molecular weight 

compounds as well as with many polymers, acting as solubilizer.xxxi,xxxii It has 

adhesion properties of pharmaceutical materials,xxxiii and in general it is used as 

glue on glass, metal and plastics, paper, fabric surface and as pressure-sensitive 

adhesive.xxxiv It is not biodegradable and for this reason the parenteral 

administration of high molecular weight PVP is not practiced. Only PVP chains,  

able to be eliminated by renal clearance, can be used. In particular PVP having 

molecular weights below 30 000, has diameter below 7 nm, the same of 

capillaries of human kidney, and is able to pass through the kidney and to be 

excreted.xxxv In low molecular weight form is widely used in many industries 

such as pharmaceuticals, cosmetics, beverages, adhesives, detergents, paints, 

electronics, and biological engineering materials. xxxvi,xxxvii,xxxviii,xxxix 
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PVP having molecular weights from 2500 to about 1 million is mainly obtained 

by radical polymerization of 1-vinyl-2-pirrolidone (VP) in aqueous solution. 

Obtained polymers have hydroxyl and carbonyl end groups. More stable end 

groups can be obtained by polymerization in solvents, which may act as chain  

transfer agents and which produce low molecular weight products.xl Different 

techniques allow synthesizing PVP in a controlled manner, tuning precisely 

number-average molar mass, dispersity, end-groups, and architecture. Organo-

cobalt-mediated radical polymerization (OCMRP)xli, organo-heteroatom-

mediated radical polymerization (OHMRP)xlii, reversible addition–

fragmentation chain transfer polymerization using xanthates 

(RAFT/MADIX)xliii, and atom transfer radical polymerization (ATRP)xliv 

allowed controlled radical polymerization of VP. 

2.3 PVP-POLYESTERS COPOLYMERS AND BLENDS 

PVP was bonded to other polyesters by different reaction mechanisms. Linear 

PVP block copolymers with polyesters such as poly-ε-caprolactone (PCL) or 

PLA have been extensively reported.xlv,xlvi,xlvii,xlviii,xlix,l,li,lii,liiiMost of these 

copolymers were prepared by ROP of ε-caprolactone or lactides with end-

hydroxylated PVP oligomers, which are obtained by conventional radical 

polymerization of N-VP in the presence of hydroxylated compounds, as for 

instance 2-isopropoxyethanol(Figure 2.2-A).livVice-versa, starting from end-

functionalized PCL and PLA oligomers that were respectively employed as 

ATRP or RAFT macroinitiators for PVP polymerization (Figure 2.2-B). PLA-

b-PVP copolymers were also synthesised by polymerization of N-VP in the 

presence of mercapto-terminated PLA (Figure 2.2-C).lv Surface-grafted PVP 

chains onto PLLA films were obtained by physical methodslvior by radical 

copolymerization of NVP with ω-methacryloxy-PLLA.lvii 

Nevertheless the ability to obtain well-tuned copolymers, reactions listed above 

have a number of flaws that limit their use, in particular in industrial field. The 

use of very complex and expensive macroinitiators, requiring very long synthetic 

procedures, at least of 3,4 steps, with a reduction of the final yield, and the use 

of heavy metal derivates, really difficult to isolate and expensive to dispose of, 

are some examples on this issue. 
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Figure 2.2. A) Synthesis of PVP-b-PLA by ring opening polymerization stating 

from hydroxylate- terminated PVP, obtained by radical polimerization of N-VP 

in the presence of 2-isopropoxyethanol, followed by KH treatment; B) Synthesis 

of PCL-b-PVP by RAFT polymerization starting from a PLA macroinitiator; C) 

Synthesis of PLA-b-PVP by radical polimerization of N-VP in presence of 

mercapto-terminated PLA; D)PLGA-b-PVP synthesis by click reaction between 

azide-terminated PVP and alkyne-terminated PLGA. 

In literature one example of linear di-block PLGA-b-PVP copolymer was 

reported, obtained by click reaction between alkyne-terminated PLGA and 

azide-terminated PVP (Figure 2.2- D).lviii Synthetic procedure consisted in three 

steps, one of which use a metallic compound as catalyst, and each step needed 

purification of product from the initial monomers and by-products, using a great  

amount of solvents. As result a really expensive process is obtained with the 

unlikelihood of easy industrial scale-up.  

Several examples of blends (PLGA/PVP) are also reported to form fibres and 

particles. PLGA/PVP fibres were prepared by coaxial electrospinning of PLGA 

and PVP.lix PLGA/PVP microparticles and nanoparticles were formed when 
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PVP acts as surfactant of PLGA particles lx or by spray-dried.lxi These systems, 

providing the only physical interaction, have a narrow stability over time, due to 

separation of the two blocks in aqueous matrix. 

Previous researches conducted by this group have discussed on ester-terminated  

PVP oligomers prepared by radical polymerization of N-VP in the presence of 

aliphatic esters, acting in the meantime as solvents and chain transfer 

agents.lxii,lxiii,lxiv,lxv,lxvi,lxvii,lxviii,lxix 

The purpose of this thesis research is to use, not aliphatic ester molecules, but 

polymeric esters, as instance PLGA, as chain transfer agents. By using of 

initiator, radicals are generated in α to the ester function on the PLGA main 

backbone, and consequently, VP monomers are radically polymerized on. This 

provides a simple and direct one-step synthesis of PLGA-g-PVP comb like 

copolymers.lxx PVP side chain molecular weight can be modulated modulating 

the initial ratio of monomer and chain transfer agents. The great benefit of this 

procedure is the easy scale up of the synthesis, thank you the absence of solvents 

and of really expensive reagents and the quantitative yield of product, that make 

useless any further purification steps. The aim of this research is to report on 

this issue, with a focusing on properties and application in drug delivery and 

tissue engineering. 

2.4 EXPERIMENTAL PART 

2.4.1 Materials 

1-Vinylpyrrolidin-2-one (VP) (99%, Sigma Aldrich) was purified by vacuum 

distillation (bp100 °C/15 tor) just before use. 2,2’-Azobis(2- 

methylpropionitrile) (AIBN) (98%, Sigma Aldrich) was recrystallized from 

methanol just before use. Ester-terminated poly(lactic-co-glycolic) acid (PLGA) 

50:50 𝑀𝑛= 45000-55000 was purchased from PolySciTech (Indiana, USA) and 

used as received. NMR analysis showed that the lactide/glycolide ratio was 

actually 52:48, meaning that the average molecular weight of the repeating units 

was 65:35. Poly(1-vinylpyrrolidin-2-one) (PVPK40, 𝑀𝑤 = 40000), anhydrous 

N,N-dimethylformamide (DMF, 99.9%) (obtained in sealed glass bottles over 

molecular sieves), diethyl ether, chloroform, deuterium oxide (D2O, 99.9 atom 

D%), hydrochloric acid (HCl, 37% w/w), sodium hydroxide (NaOH, 98.5%), 
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dithranol MALDI-MS >98%, dichloromethane (99.9%) CHROMASOLV Plus 

and methanol (99.9 %) CHROMASOLV Plus were purchased from Sigma 

Aldrich and used as received. 

2.4.2 Instruments and methods 

1H and 13C NMR spectra and 2D Heteronuclear Single-Quantum Correlation 

(HSQC) experiments were run at 25 °C on a Brüker Avance 400 spectrometer 

operating at 400.132 and 100.623 MHz, respectively. 

Size exclusion chromatography (SEC) traces of PVP samples were obtained 

using a Knauer Pump 1000 equipped with a Knauer Autosampler 3800, TKS 

gel G4000 PW and G3000 PW Toso Haas columns connected in series, light 

scattering/viscometer Viscotek 270 Dual Detector and refractive-index detector 

Waters 2410. The combination of these detectors gave a triple low-angle light 

scattering, right-angle light scattering and refractive index detector. The mobile 

phase was a 0.1 M Tris buffer pH = 8.1 ± 0.05 with 0.2 M sodium chloride. The 

sample concentration was 2% (w/v) and the flow rate 1 mL min−1.  

IR spectra were obtained with an FT-IR 4100 Jasco spectrometer on films cast  

from dichloromethane solutions onto KBr plates. 

MALDI-TOF mass analyses were obtained with a MALDI TOF-TOF 

AUTOFLEX III Brüker Daltonics instrument on samples prepared as follows: 

a 10 mg mL-1dithranol chloroform solution (20 mL) was mixed with a 7 mg mL-

1 chloroform solution (20 mL) of the polymer sample. Aliquots of the final 

solution (20 μL) were cast onto stainless steel targets and dried.  

Differential scanning calorimetric (DSC) analyses were carried out with a Mettler 

Toledo DSC823 (Mettler Toledo, Italy) equipped with the STAR Software and 

the FRS5 Mettler Toledo ceramic sensor. The instrument was calibrated with 

indium for melting point and heat of fusion. Tests were performed using 

standard aluminium pans with an empty pan as reference. Samples (5-10 mg) 

underwent a four-step thermal cycle: a) heating from 0 °C to 100 °C at 10 °C 

min−1; b) 10 min isocratic step at 100 °C; c) cooling from 100 °C to 0 °C at 10 

°C min−1; d) heating from 0 °C to 250 °C at 10 °C min−1. All tests were carried  

under 20 mL min-1 nitrogen flow. 
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TGA analyses were performed with a Perkin Elmer TGA 4000 on 10 mg 

samples in the range 30 – 600 °C, with 30 °C min-1 heating rate and under 50 

mL min-1 nitrogen flow. 

Dynamic light scattering (DLS) and ζ-potential analyses were carried out using 

a Malvern NanoZS instrument (Malvern Instruments, Worcestershire UK) with 

a laser fitted at 532 nm and fixed 173° scattering angle.  

2.4.3 Synthetic procedures 

2.4.3.1 Synthesis of PLGA-g-PVP10:1 

PLGA (2.012 g) and VP (0.203 g, 1.83 mol) were added to dichloromethane (30 

mL) in a two-necked 100 mL flask equipped with a stir bar. The resultant 

solution was purged 5 min with nitrogen and AIBN (2.1 mg, 0.013 mmol) was 

added. Dichloromethane was then eliminated at room temperature and 0.2 tor. 

After three nitrogen-vacuum cycles, the reaction mixture was heated to 100 °C, 

maintained at this temperature under nitrogen for 2.5 h, cooled to room 

temperature and dissolved in dichloromethane (100 mL). The solution was 

poured drop-wise in diethyl ether (1 L) under vigorous stirring and the resultant 

slurry stirred for further 2 h. The precipitated product was finally retrieved by 

filtration, washed with fresh ether (200 mL) and dried under vacuum. Yield: 

96.4%. This product was identified as the “main product” (MP), according to 

the fractionation scheme (Fig. 13) reported below in “Results and discussion”. 

The mother liquors were evaporated to dryness in vacuo and the small residue, 

identified as “unidentified by-products and impurities” (UBPI), analyzed by FT-

IR and NMR. It contained a little residual VP, lactic acid, glycolic acid and some 

residual tin catalyst present in the starting PLGA.  

PLGA-g-PVP10:2 and PLGA-g-PVP10:3 were prepared by the same procedure.  

The amounts of PLGA, VP and AIBN used were 2.013 g, 0.408 g, 4.2 mg and 

2.016 g, 0.6134 g, 6.1 mg, respectively. Yield: 93.0% for PLGA-g-PVP10:2 and 

95.2% for PLGA-g-PVP10:3. 

2.4.3.2 Saponification of PLGA-g-PVP MP samples (typical procedure) 
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PLGA-g-PVP10:1 (0.999 g) was suspended in a 1 M NaOH solution (22 mL) and 

stirred 30 days at room temperature. The polymer gradually dissolved. The 

resultant solution was neutralized with 1 M HCl solution and then ultrafiltered  

through a membrane with nominal molecular weight cut-off 500. The retained  

fraction was freeze-dried giving PVP as a yellowish solid. Yield: 0.093 g; 𝑀𝑛  = 

2700, 𝑀𝑤= 5600, PD = 2.07. PLGA-g-PVP10:2 and PLGA-g-PVP10:3 were 

similarly treated yielding 0.176 g and 0.234 g PVP of 𝑀𝑛= 12100,𝑀𝑤  = 31000, 

PD 2.56 and𝑀𝑛 = 28000, 𝑀𝑤= 49500, PD 1.77, respectively. 

2.4.3.3 Fractionation of PLGA-g-PVP (MP samples) 

PLGA-g-PVP (2 g) was dissolved indichloromethane (20 mL) and added drop-

wiseto a stirred 1:1 methanol/water mixture (200mL). The resultant white 

suspension wascentrifuged at 7500 rpm for 20 min and the insoluble fraction 

(F2) retrieved, re-suspended in the same solvent mixture (10 mL), centrifuged  

and retrieved again, and finally dried to constant weight at 0.2 tor. The soluble 

fraction (F1) was filtered through a 0.2 μm HPLC filter, the solvent evaporated  

and the residue dried as above. Two equal aliquots of F2 fraction were extracted  

with methanol (50 mL) and ethyl acetate (50 mL), respectively. The obtained 

suspensions were vigorously stirred for 2 h and then centrifuged at 7500 rpm 

for 30 min. The insoluble fractions (F4 and F6, respectively) were retrieved , 

extracted with fresh solvent (25 mL) and dried to constant weight. The methanol 

and ethyl acetate phases (F3 and F5, respectively) were separately evaporated to 

dryness and the resultant solids retrieved. 

2.4.3.4 Preparation and fractionation of PLGA/PVPK40 blends  

Measured volumes of chloroform PLGA and PVP solutions containing 0.2 g 

polymer in 6 mL solvent were mixed and poured in 50 volumes diethyl ether.  

After drying to constant weight, the precipitate was extracted either with ethyl 

acetate or methanol, leaving an insoluble portion that, in turn, was completely 

soluble either in methanol or in ethyl acetate, respectively.  
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2.4.3.5 Synthesis of low molecular weight PVP in DMF solution (PVPDMF) 

A 500 mL two-necked flask, equipped with a stir bar and a thermometer, was 

charged with VP (5.713 g, 0.052 mol) and DMF (136.78 g, 1.871 mol). The 

solution was purged with nitrogen for 5 min at 75 °C, then AIBN (57.1 mg) was 

added and the reaction mixture allowed reacting for 2 days. After cooling to 

room temperature, the mixture was added drop-wise to diethyl ether (1 L) under 

vigorous stirring and left under stirring for 2 h. The reaction produ ct was 

recovered by filtration, extracted overnight with fresh ether (150 mL) and dried 

to constant weight at room temperature and 0.2 tor. Yield: 5.35 g.𝑀𝑛 = 4500, 

𝑀𝑤= 7300, PD = 1.62. 

2.4.3.6 Preparation of PLGA/PVP blends (PLGA/PVPDMF 10:1) 

PLGA (1.016 g) and PVPDMF (0.103 g) were dissolved in dichloromethane (2 

mL), precipitated in diethyl ether (30 mL), centrifuged 5 min at 7500 rpm, the 

supernatant discarded, the precipitate extracted with a fresh portion of diethyl 

ether, centrifuged again, retrieved and dried to constant weight under vacuum. 

PLGA/PVPDMF 10:2 and 10:3 w/w blends were prepared following the same 

procedure and the amounts of PLGA and PVPDMF were 1.020 g and 0.200 g, 

1.103 g and 0.334 g, respectively.  

2.4.3.7 Fractionation of PLGA/PVPDMF blends 

PLGA/PVPDMF blends (0.12 g) were dissolved in dichloromethane (2 mL) and 

precipitated in a 1:1 methanol/water mixture (30 mL), obtaining white 

suspensions that were centrifuged 10 min at 7500 rpm. The insoluble portion 

was extracted with the same methanol/water mixture, centrifuged again, 

retrieved and dried to constant weight at 0.2 tor. The remaining solutions were 

filtered through a 0.2 µm HPLC filter, evaporated to dryness in vacuo and the 

residues brought to constant weight at 0.2 tor.  

2.4.3.8 Synthesis of PVP in water 

In a round bottom flask VP (3.000 g, 0.027 mol) was dissolved in water (10 mL). 

The solution was purged 3 min with nitrogen, then AIBN (20.0 mg, 0.122 mmol) 

was added. The solution was then immersed in an oil bath pre-heated to 100 °C 
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and allowed to polymerize 2 h. The product was finally recovered by 

liophilization: 𝑀𝑛  =128200, 𝑀𝑤 =197000, PD 1.54. 

2.4.3.9 Determination of the IR calibration curve relevant to the 

ester/amide C=O stretching  

The FT-IR spectra of PLGA/PVP blends with compositions ranging from 9:1 

to 0.5:1 w/w were obtained by casting onto KBr plates 300 µL aliquots of mixed 

PLGA/PVP dichloromethane solutions prepared by dissolving the relevant 

amounts of PLGA50:50 and PVPK40 in 4 mL solvent (Table 1). These spectra 

were analyzed in the absorption mode, and the areas of the C=OPLGA and 

C=OPVP bands, centered at 1760 cm -1 and 1660 cm -1 respectively, obtained using 

the valley-to-valley method to determine the peak baselines. (Figure 2-A). All 

band area measurements were performed in triplicate on spectra obtained from 

at least two distinct PLGA/PVP films. The calibration curve (Figure 2-B) was 

obtained by plotting the PLGA/PVP weight ratio against the corresponding 

C=OPLGA/C=OPVP band area ratio. 

2.4.3.10 PLGA-g-PVP-based aqueous nanodispersions 

All fractions of PLGA-g-PVP copolymer were tested to form nanoparticles in 

water, without using of stabilizers or surfactants. In details, 3 mg of each 

fractions were dissolved in acetone (1% w/v) and diluted with 10 volumes of 

water. Later, acetone was removed by flashing for 30 min at room temperature.  

Obtained nanodispersions (NDS) were stored at room temperature (about 

22°C) or 4°C. 

The same procedure was followed with native PLGA, 10:1, 10:2 and 10:3 w/w 

native PLGA/PVPDMF blends, and 8:2 w/w PLGA/PLGA-g-PVP10:1, PLGA-

g-PVP10:2 and PLGA-g-PVP10:3 blends. Particle size, ζ-potential, stability on time 

(1h, 24h, 7d) and re-dispersion in water after lyophylization of the resultant NDS 

were assessed. 
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2.5 RESULTS AND DISCUSSIONS 

2.5.1 Synthesis 

End-functionalized PVP oligomers were previously prepared by radical 

polymerization of VP in presence of aliphatic esters acting as both solvents and 

chain transfer agents. In the present study, it was found that running the reaction 

at 100 °C and substituting PLGA for the esters provided a one-step procedure 

to PLGA-g-PVP copolymers. At that temperature, the reaction mixture was in 

the fluid state. The reaction scheme is reported in Figure 2.3. Three batches were 

performed with 10:1, 10:2 and 10:3 w/w PLGA/VP ratios and 1% w/w (based 

on VP) AIBN as initiator. As the AIBN decomposition rate at 100 °C is kd= 

1.5 x 10-3 s-1, with less than 10 min half-life, the reaction was considered  

completed within 2.5 hours. All reaction mixtures were homogeneous, highly 

viscous liquids that solidified on cooling. After cooling, they were dissolved in 

dichloromethane and re-precipitated with ether for eliminating residual VP. No 

dichloromethane-insoluble fractions were noticed, indicating absence of cross-

linked byproducts. 

 

Figure 2.3. Synthesis of PLGA-g-PVP copolymers by radical polymerization of 

NVP in molten PLGA. 

Evaporating to dryness the mother liquors and drying the residue at room 

temperature and 0.1 tor yielded small amounts of unidentified by-products and 

impurities (UBPI) that were no further processed. 
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The precipitate main products, henceforth collectively named PLGA-g-PVP MP 

or individually PLGA-g-PVP10:1, PLGA-g-PVP10:2 and PLGA-g-PVP10:3, were 

extracted several times with ether and dried to constant weight at room 

temperature and 0.1 tor. Their FT-IR spectra, reported in Figure 2.4, clearly 

showed both ester and amide C=O bands. The composition of all PLGA-g-PVP 

samples were determined after these band ratio using a calibration curve 

obtained from PLGA/PVP blends of known composition as reported in Table 

2.1 and Figures 2.5 (A and B). The found values for PLGA-g-PVP10:1, PLGA-g-

PVP10:2 and PLGA-g-PVP10:3 expressed as PVP wt % were, respectively, 6.7, 18.8 

and 23.5. 

The 1H and 13C NMR spectra of the MP samples were consistent with the 

presence of both PLGA and PVP portions. The NMR spectra of PLGA-g-

PVP10:3 MP samples are shown in Figure 2.6. 

 

Figure 2.4. Infrared spectra of PLGA-g-PVP MP samples. 

 

 

PLGA-g-PVP10:1 

PLGA-g-PVP10:2 

PLGA-g-PVP10:3 

(a
.u

.)
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Table 2.1. PLGA50:50/PVPK40 blends for IR calibration. 

PLGA50:50 

(mg) 

PVPK40 

(mg) 

PLGA/PVP 

(w/w) 

C=OPLGA/C=OPVP 

band area ratio 

22.0 44.0 0.50 0.54 

36.6 41.1 0.89 1.07 

46.6 20.0 2.33 2.38 

82.0 22.0 3.73 3.74 

100.0 19.8 5.05 5.10 

140.0 21.0 6.67 6.87 

154.4 18.0 8.33 8.65 

 

 

Figure 2.5. A) FT-IR spectra of PLGA/PVP blends with different w/w ratios 

in the 2000 - 1500 cm -1 range.(--) PLGA/PVP 0.50; (--) PLGA/PVP 0.89;(--)  

PLGA/PVP 2.33;(--) PLGA/PVP 3.73; (--) PLGA/PVP 5.05; (--) PLGA/PVP 

6.67; (--) PLGA/PVP 8.33. B) FT-IR calibration curve. 

A B 
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Figure 2.6. (a)PLGA-g-PVP copolymer’s structure and assessments.(b) 1H-

NMR and (c) 13C-NMR spectra of PLGA-g-PVP10:1in CDCl3. (d) 1H-NMR and 

(e) 13C-NMR spectra of PLGA-g-PVP10:2in CDCl3. (f) 1H-NMR and (g) 13C-

NMR spectra of PLGA-g-PVP10:3in CDCl3. 

a) 

b) c) 

d) e) 

f) g) 
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2.5.2 Thermal analysis 

The DSC thermograms of PLGA-g-PVP10:1, PLGA-g-PVP10:2 and PLGA-g-

PVP10:3 MP samples were compared with those of virgin PLGA and PVPK40 

(Figures 2.7a and 2.7b, respectively). The glass transition temperatures, Tg, of 

the PLGA and PVP portions of PLGA-g-PVP MP and of virgin PLGA and 

PVP are reported in Table 2.2. It may be noticed that the Tg of the PLGA 

portion was higher than that of virgin PLGA and steadily increased with the 

PVP content following the same trend of PLGA/PVP mixtures, as previous ly 

observed and attributed to partial phase miscibility of the two components. lxxi 

 

Figure 2.7.(a) DSC traces of PLGA-g-PVP MP samples and (b) of PLGA 50:50 

and PVPK40. Second heating cycle, heating rate: 10 °C min -1. 

The Tg of the PVP portions were hardly detectable in the spectra of PLGA-g-

PVP10:1 and PLGA-g-PVP10:3, whereas the spectrum of PLGA-g-PVP10:2 showed 

a barely detectable inflection roughly corresponding to the Tg of pure PVPK40. 

The TGA thermograms of PLGA-g-PVP10:1, PLGA-g- PVP10:2 and PLGA-g-

PVP10:3 (MP samples) are reported in Figure 2.8. All thermograms showed two 

distinct zones, ascribed to the degradation of the PLGA and PVP portions, with 

a decomposition temperatures at 5% weight loss of 308 °C and 387 °C, 

respectively, in line with the values normally reported for the virgin 

polymers.lxxiilxxiii 

Passing from PLGA-g-PVP10:1 to PLGA-g-PVP10:2 and PLGA-g-PVP10:3 the 

thermograms showed the expected increase of the PVP-related portions. The 

TGA estimates of the wt% PVP, namely 5.0, 13.2 and 21.9 were fairly consistent 

with the IR assessments. 
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Figure 2.8. TGA thermograms of PLGA-g-PVP10:1, PLGA-g-PVP10:2 and 

PLGA-g-PVP10:3 (MP samples). 

Table 2.2. Glass transition temperatures, Tg, of the PLGA and PVP portions 

of PLGA-g-PVP10:1, PLGA-g-PVP10:2 and PLGA-g-PVP10:3 (MP samples) as 

well as those of virgin PLGA and PVP 

Sample Tg-PLGAa) (°C) Tg-PVPb) (°C) 

 onset offset onset offset 

PLGA-g-PVP10:1 38.3 58.3 ndc) ndc) 

PLGA-g-PVP10:2 45.0 58.3 ~180.0 ~190.0 

PLGA-g-PVP10:3 49.2 55.0 ndc) ndc) 

PLGA 50:50 33.0 50.0 - - 

PVPK40 - - 162.4 185.6 

a) Tg-PLGA = Tg of the PLGA portion. b) Tg-PVP = Tg of the PVP portion. c)nd = 

not detected. 

2.5.3 Estimate of the average Chain Transfer Constant of PLGA repeating 

units 

The PLGA main chains of PLGA-g-PVP MP samples were saponified with 

dilute aqueous sodium hydroxide at room temperature (~20 °C) and the side 



CHAPTER 2 

SYNTHESIS AND CHARACTERIZATION OF PLGA-g-PVP COPOLYMERS 

66 

PVP chains isolated by acidifying the reaction mixture to pH ~ 3, ultrafiltering 

the resultant clear solution through a membrane with nominal molecular weight 

cut-off 500 and lyophilizing the retained portion. The molecular weights of the 

PVP side chains were then determined by SEC-LALS (Table 2.3). 

The average chain transfer constant (CT) of the PLGA units under the adopted 

conditions was estimated by means of Eq. 2.1, previously developed and 

successfully employed for determining the CT values of low molecular weight 

aliphatic esters employed as both solvents and chain transfer agents in VP 

polymerizations aimed at obtaining end-functionalized PVP oligomers.lxxiv 

𝐶𝑇 =  

log (1 −
[𝑀 ]𝑜 𝑌𝑡

[𝑇]𝑜𝑋̿𝑛,𝑡

)

log(1 − 𝑌𝑡)  
                     𝐸𝑞. 2.1 

Where 𝑋n,t= cumulative number average polymerization degree at t time; [M]o 

and [T]o = initial monomer and chain transfer agent concentrations; Yt= 

monomer conversion at t time. Eq. 2.1 was obtained from the well-known Lewis  

and Mayo equation (Eq. 2.2) by a mathematical elaboration of its simplified 

version reported in Eq. 2.3: 

1

𝑋𝑛

= 
1

𝑋𝑛,𝑜

+  𝐶𝑇

[𝑇]

[𝑀]
                   𝐸𝑞. 2.2 

𝑋𝑛 =  
1

𝐶𝑇

[𝑀]

[𝑇]
                                𝐸𝑞. 2.3 

where 𝑋𝑛 is the instantaneous number averagepolymerization degree and 𝑋𝑛 ,𝑜is 

theinstantaneous number average polymerizationdegree in the absence of the 

chain transfer agent. 

Eq. 2.3 is valid if 1/𝑋𝑛,𝑜 is negligible compared with 1/𝑋𝑛  , that is, if a 

sufficiently high [T]o/[M]o ratio (which depends on CT) renders chain  

termination much less frequent than chain transfer. Bulk VP polymerization was 

ruled out as a mean to estimate the 𝑋𝑛 ,𝑜value of PVP under the same 

polymerization conditions, since at medium -high conversions the so-called  

“gel” effect was likely to occur and, in the meanwhile, it was difficult to stop the 
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reaction at low conversions. A PVP sample prepared by polymerizing N-VP at 

100 °C as 30% aqueous solution had 𝑋𝑛= 1200. This was considered as a 

reasonable approximation of 𝑋𝑛 ,𝑜. By comparing this value with the 𝑋𝑛values 

of the PVP side chains of the three PLGA-g- PVP MP samples (Table 3), it 

appeared that the validity condition of Eq. 2.1 was fulfilled for PLGA-g-PVP10:1,  

whereas PLGA-g-PVP10:2 was borderline and PLGA-g-PVP10:3 was off limits. All 

considered, it was reasonably concluded that the average CT of the PLGA units 

at 100 °C was approximately 1 x 10-3, that is, fell in the 1 x 10-2 ÷ 5 x 10-4 range 

of the CT values of low molecular weight esters previously determined at 70 - 

80°C.lxxv The grafting degree, that is, the average number of PVP side chains per 

PLGA main chain of PLGA-g-PVP MP samples (calculated from the number 

average molecular weight of the PLGA main chain, the number average of the 

PVP pendants and the PLGA/PVP w/w ratio) were 1.5, 1.1 and 1.0. The 

grafting degree was proportional to the [T]/[M] ratio, therefore decreased by 

increasing the VP content in the feed. By contrast, the molecular weight of the 

PVP side chains was inversely proportional to the [T]/[M] ratio, hence the 

PVP/PLGA w/w ratio in the resultant PLGA-g-PVP increased. 

Table 2.3. Molecular weights of the PVP side chains and average CT of the 

PLGA repeating units 

Sample 

PLGA 

RUa)/VP 

(mol/mol) 

PVP 

𝑴̅𝒏 

PVP 

𝑴̅𝒘 

PVP 

𝑿̅𝒏
b) 

Yt
c) 

CT x 

103 

Grafting 

degreed) 

PLGA-g-PVP10:1 17.0 2700 5600 24 0.88 1.02 1.5 

PLGA-g-PVP10:2 8.5 12100 31000 109 0.69 0.64 1.1 

PLGA-g-PVP10:3 5.7 28000 49500 252 0.79 0.36 1.0 

a)PLGA repeating units. b) Number average polymerization degree. c) Monomer 

conversion, see Table 2.4. d) Average number of PVP side chains per PLGA 

main chain. 

2.5.4 MALDI-TOF analysis of PVP side chains 

The PVP samples obtained by saponification of the PLGA-g-PVP MP samples 

were analyzed by MALDI-TOF mass spectrometry. This allowed gaining 

unquestionable evidence of grafting occurrence by determining the nature of the 

PVP terminal groups. The spectra of the saponification products of all samples 
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were much similar notwithstanding the different PVP content and the different 

average molecular weight of the PVP portions. This reflected the identity of all 

fractions in the same m/z range as well as the obvious flying limits of the 

polydisperse PVP under the adopted conditions. The whole spectrum of PLGA-

g-PVP10:1 saponification product in the 800-5000 m/z range is reported in Figure 

2.9, together with its expanded 1420-1530 m/z spectral range. The 

corresponding spectral regions of the saponification products of PLGA-g-

PVP10:2 and PLGA-g-PVP10:3 are shown in Figures 2.10 and 2.11.  

 
Figure 2.9.(a) MALDI-TOF spectrum of the saponification products of 

PLGA-g-PVP10:1 MP. (b) Expanded 1420-1530 m/z spectral range. 

 
Figure 2.10. MALDI-TOF spectra of the saponification products of PLGA-g-

PVP10:2 in the ranges (a) 800 – 5000 m/z and (b)1400 – 1800 m/z.  
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Figure 2.11. MALDI-TOF spectra of the saponification products of PLGA-g-

PVP10:3 in the ranges (a) 800 – 5000 m/z and (b)1400 – 1800 m/z. 

The whole spectra of all samples consisted of a succession of ten-peak motifs 

of four moderately intense peaks followed by a single peak of paramount 

intensity and five weakly intense peaks. The m/z difference of the corresponding 

peaks belonging to consecutive motifs was constantly 111.1, that is, the mass of 

the VP unit. 

The m/z values of the recovered PVP, including terminals, was expressed by Eq. 

4: 

𝑚
𝑧𝑃𝑉𝑃⁄ = 111.1×𝑋𝑛 ,𝑃𝑉𝑃 + 𝑚𝑇2

+  𝑚𝑐𝑎𝑡𝑖𝑜𝑛     𝐸𝑞. 4 

where 111.1 is the mass of the VP unit, 𝑚𝑇1
and 𝑚𝑇2

are the masses of the chain  

terminals, and 𝑚𝑐𝑎𝑡𝑖𝑜𝑛 is the mass of the cation(s), mainly H+ or Na+. It may be 

noticed that T1is hydrogen, as the abstraction of a different PLGA atom by the 

propagating PVP radical could hardly be imagined. The consequent peak 

assignments are reported in Table 2.4. They were consistent with the presence 

at one chain end of residues from lactic acid (L), and glycolic acid (G), all their 

dimers (LG), the lactic-lactic-glycolic trimer (LLG), and the lactic-lactic-glyco li c-

glycolic tetramer (LLGG). No PVP homopolymer and PLGA-PVP-PLGA 

traces in MALDI-TOF spectra were highlighted. 

Table 2.4. Terminal groups of PLGA-g-PVP10:1 saponification product, 

corresponding to 𝑋𝑛  = 12. 
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a) For 𝑋𝑛  = 11. 
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2.5.5. Fractionation of PLGA-g-PVP copolymers 

The PLGA-g-PVP MP samples were fractionated to assess their compositional 

dispersion. To this purpose, preliminary tests were performed on PLGA and 

both low - and high -molecular weight PVP (the former purposely prepared by 

polymerizing VP in DMF solution). It was found that ethyl acetate and methanol 

were selective extraction solvents from blends (the IR spectra of the recovered  

solids were superimposable to those of PLGA and PVP, respectively, Figure 

2.12, while the 1:1 (v/v) water-methanol mixture was a selective precipitation 

medium from mixed dichloromethane solutions (Figure 2.13). In both cases, the 

original PLGA and PVP components were quantitatively recovered. 

 

Figure 2.12. IR spectra of the fractions retrieved from the extraction 

fractionation of PLGA/PVP blends with ethyl acetate and methanol. a) 

PLGA/PVP blend; b) ethyl acetate soluble fraction; c) methanol soluble 

fraction. 
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Figure 2.13. IR spectra of the products of PLGA/PVPDMF precipitation from 

DCM into a 1:1 methanol/water mixture. a) Methanol/water insoluble portion; 

b) methanol/water soluble portion. 

The same treatments were adopted for fractionating the PLGA-g-PVP MP 

samples. The whole fractionation scheme adopted for each PLGA-g-PVP 

copolymer is reported in Figure 2.14, which encompasses the previously 

mentioned precipitation from dichloromethane with ether of the crude reaction 

mixture, leading to the main product (MP) and leaving unidentified impurities 

and byproducts (UBPI) in the mother liquors. 

 

Figure 2.14. Fractionation scheme of PLGA-g-PVP copolymers. 
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All PLGA-g-PVP MP samples were dissolved in dichloromethane and re-

precipitated with 1:1 water-methanol. The mother liquors contained a small 

soluble fraction (F1). The insoluble fraction (F2) was further fractionated by 

selective extractions with ethyl acetate and methanol. On the whole, each 

PLGA-g-PVP copolymer was subdivided in two intermediate (MP and F2) and 

six terminal (UBPI, F1, F3, F4, F5, F6) fractions. Their compositions are 

evaluated by FTIR (Figure 2.15) reported in Table 2.5. The grafting degrees of 

the terminal fractions, defined as the number of PVP chains per PLGA chain,  

are reported in Table 6. The above results demonstrate that the fractionation 

process effectively separated PLGA-rich and PVP-rich fractions, but failed to 

isolate either PLGA or PVP. As reported in Table 2.3, the grafting degrees of 

PLGA-g-PVP10:1, PLGA-g- PVP10:2 and PLGA-g-PVP10:3 were 1.5, 1.1 and 1.0, 

respectively. 

 

 

Figure 2.15. IR spectra of F3-F6 fractions of PLGA-g-PVP copolymers. 

 

PLGA-g-PVP10:1 PLGA-g-PVP10:2 PLGA-g-PVP10:3 
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Table 2.5. Weight and composition of PLGA-g-PVP fractions 

PLGA-g-PVP10:1 PLGA-g-PVP10:2 PLGA-g-PVP10:3 

Code 
PLGA 

(%) 

PVP 

(%) 
Code 

PLGA 

(%) 

PVP 

(%) 
Code 

PLGA 

(%) 

PVP 

(%) 

UBPI 

(0.090 g) 
64.1 35.9 

UBPI 

(0.095 g) 
66.0 34.0 

UBPI 

(0.105 g) 
70.6 29.4 

MP 

(2.119 g) 
93.3 6.7 

MP 

(2.299 g) 
81.2 18.8 

MP 

(2.560 g) 
67.8 32.2 

F1 

(0.046 g) 
60.8 39.2 

F1 

(0.059 g) 
42.2 57.8 

F1 

(0.093 g) 
25.5 74.5 

F2 

(1.962 g) 
nda) nda) 

F2 

(2.186 g) 
nda) nda) 

F2 

(2.457 g) 
nda) nda) 

F3 

(0.079 g) 
42.1 57.9 

F3 

(0.090 g) 
41.2 58.8 

F3 

(0.195 g) 
35.9 64.1 

F84 

(1.003 g) 
94.9 5.1 

F4 

(1.004 g) 
92.5 7.5 

F4 

(1.093 g) 
94.4 5.6 

F5 

(0.867 g) 
99.8 1.6 

F5 

(0.933 g) 
95.5 4.5 

F5 

(0.815) 
91.6 8.4 

F6 

(0.051 g) 
42.0 58.0 

F6 

(0.070 g) 
38.8 61.2 

F6 

(0.202 g) 
37.5 62.5 

Recovery 

(%) 
97.3 87.7 

Recovery 

(%) 
97.9 68.5 

Recovery 

(%) 
100.3 78.5 

a)Not determined. b) Regarded as the VP conversion. Probably, most wanting 

VP in respect of the feed was unreacted monomer remaining in the 

dichloromethane mother liquors of the main products (MP) precipitation and 

subsequently lost while retrieving the UBPI fraction by high vacuum solvent 

elimination. 

As shown in Table 2.6, the PVP chains were not evenly distributed. All PLGA-

g-PVP MP samples contained minority PVP-rich fractions (F1, F3,F6) with 

grafting degrees ranging from 13 to 28 (PLGA-g-PVP10:1), 6.5 to 7.5 (PLGA-g-

PVP10:2) and 3 to 6 (PLGA-g-PVP10:3), together with major PLGA-rich fractions 

(F2, F4, F5) with grafting degrees ranging from 0.3 to 1.1 (PLGA-g- PVP10:1),  

0.2-to 0.4 (PLGA-g-PVP10:2) and 0.1 to 0.2 (PLGA-g-PVP10:3). It is apparent that 

the fractions of the latter group contained significant amounts of virgin PLGA. 

A possible explanation of this uneven distribution is that PVP grafting on a 

PLGA chain facilitated further grafting on the same chain. The first step of the 

chain transfer reaction was hydrogen abstraction from a PLGA chain by a PVP 
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macroradical, which preferentially approached an already PVP-grafted PLGA 

for which it had greater affinity than for virgin PLGA. 

Table 2.6. Grafting degree of PLGA-g-PVP fractions 

Grafting degree a) 

Code PLGA-g-PVP10:1 PLGA-g-PVP10:2 PLGA-g-PVP10:3 

UBPI 11.6 2.4 0.8 

F1 13.4 6.3 5.8 

F2 ndb) ndb) ndb) 

F3 28.5 6.6 3.6 

F4 1.1 0.4 0.1 

F5 0.3 0.2 0.2 

F6 28.6 7.4 3.3 

a) Average number of PVP side chains per PLGA main chain. 

b) Not determined. 

2.5.6 PLGA-g-PVP-based aqueous nanodispersions 

In preliminary experiments, all PLGA-g-PVP MP samples gave nanodispersions 

(NDS) by diluting their 1% acetone solutions with 10 volumes water and then 

getting rid of acetone by nitrogen flushing at room temperature. For comparison 

purposes, the same procedure was followed with native PLGA, 10:1, 10:2 and 

10:3 w/w native PLGA/PVPDMF blends, and 8:2 w/w PLGA/PLGA-g-PVP10:1,  

PLGA-g-PVP10:2 and PLGA-g-PVP10:3 blends. Particle size, ζ-potential, stability 

on time and re-dispersion in water after lyophylization of the resultant NDS 

were assessed. 

The properties of native PLGA NDS were recorded as formed and after 1 and 

2 days standing at room temperature. As formed, PLGA NDS had large 

dimensions (>250 nm) and highly negative surfaces (-40 mV). Their size rapidly 

increased and sediments were produced within after 1-2 days (data not shown). 

They were no further considered. 

In all other cases, the NDS size and ζ- potential were recorded after standing 1 

h, 24 h and 7 days at room temperature. The results are shown in Figure 2.16. 

The PLGA-g-PVP MP NDS were smaller (150 - 180 nm) than those of PLGA, 
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their size did not strictly depend on PVP content, remained constant and formed 

no sediments throughout the observation time. Moreover, in the absence of 

added cryoprotectors they could be lyophilized and subsequently re-dispersed  

in water with a moderate increase of size to 300-400 nm and a significant 

reduction of their negative surface charge, possibly due to structural 

rearrangement (Figure 2.17). PLGA-PVP blends gave somewhat larger NDS 

(220-350 nm) that within 48 h produced sediments and if treated with water 

after lyophilization gave a solid cake (Figure 2.18). 

 

Figure 2.16.Particle size and ζ-potential of nanodispersions from (a,b) MP 

fractions; (c,d) PLGA/PVP; (e,f) PLGA/MP blends. 
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Figure 2.17. (a) Particle size and (b) ζ-potential of pristine and lyophilized MP 

nanodispersions. 

 

Figure 2.18. PLGA/PVP 10:3 blend and PLGA-g-PVP10:3 MP sample re-

dispersed in water after lyophilization of the pristine nanodispersions.  

Interestingly, NDS of 8:2 PLGA/PLGA-g-PVP10:3 blends behaved exactly as 

those of PLGA-g-PVP, apart from the formation of little sediment by re-

dispersing after lyophilization. These results suggest that in all NDS PVP 

protruded in the aqueous phase. However, it was only loosely bound to - and 

easily extracted from PLGA/PVP blends, but stably bound to- and hardly 

extractable from both PLGA-g-PVP and PLGA/PLGA-g-PVP blends. 

The ζ-potentials of both PLGA-g-PVP and PLGA/PLGA-g-PVP blend NDS 

were the same as those of native PLGA, that is ~ - 40 mV. They did not depend 

from the PVP content and remained constant throughout the observation 

period. The ζ-potential of PLGA/PVP blend NDS was also negative, ranging 

from - 30 to - 40 mV, but depended on the PVP content and did not remain 
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constant with time, but within the observation period halved to -15- -20 mV, 

possibly owing to the gradual PVP migration to the surface. 

Size and ζ-potential of fractions F3-F6 NDS are shown in Figure 2.19 (a and b). 

Confirming the above observation, higher PVP contents did not lead to better 

performances under the experimental conditions adopted, notwithstanding 

most of the F4 and F5 fractions grafting degrees ranged in the range 0.1 - 0.4. 

Therefore, they contained significant amounts of virgin PLGA and were, in fact ,  

PLGA/PLGA-g-PVP intimate blends similar to the purposely prepared ones 

reported above. Logically, they performed similarly. 

 

 

Figure 2.19. (a) Particle size and (b) ζ-potential of nanodispersions from F3-F6 

fractions. 

For all cases, particle size and ζ-potential were collected after standing at 1h, 24h 

and 7 days at 4°C (Figure 2.20). Generally, particle sizes are smaller and less 

sensitive to spending time than those of room temperature. Also in this 

condition, NDS obtained from MP are the smallest (less of 160 nm) and 

independent on PVP content, only ζ-potential changed, in particular moduli 

decrease increasing PVP portion. PLGA/PVP NDS presented sizes of about 

a) 
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200 nm and as ζ-potentialmoduli of about -35 - -40 mV. These values did not 

vary during the observation time and respect to PVP content, on the contrary 

of room temperature standing NDS. Probably the lower temperature slows 

down agreement mechanisms in which PVP covers PLGA surface of NDS.F3-

F6 NDS confirmed the trend and values observed at room temperature. 

 

Figure 2.20. Particle size and ζ-potential of nanodispersions from (a,b) 

PLGA/PVP; (c,d) MP fractions; (e,f) from F3-F6 fractions at 4°C. 
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2.6 CONCLUSIONS 

The results reported in this paper demonstrate that the radical polymerization 

of VP dissolved in commercial medical grade PLGA at 100 8C provides a one-

step straightforward preparation of hitherto undescribed PLGA-g-PVP 

copolymers by a chain-transfer mechanism. The saponification of the PLGA 

portion allowed determining the molecular weight of the PVP side chains as a 

function of the PLGA/VP ratio in the reaction feed. This allowed estimating 

the chain-transfer constant (CT) of PLGA repeating units to be 1 x 10-3, that is, 

within the range of those previously determined for non-polymeric aliphatic 

esters, notwithstanding the PLGA high molecular weight. The resultant 

copolymers consisted of a long PLGA main chain and PVP pendants whose 

molecular mass could be kept well below the renal elimination threshold by 

adjusting the PLGA/VP ratio in the feed. Thus, they are entirely bioeliminable 

if employed as injectable drug delivery systems. 

The MALDI-TOF spectra of the PVP obtained by saponification of the PLGA-

g-PVP main products were consistent with oligomeric PVP chains terminated 

at one end by hydrogen and at the opposite end by L-, G-, LG-, LLG, and 

LLGG residues. This unequivocally demonstrated the occurrence of PVP 

grafting onto PLGA. On average, PLGA-g-PVP10:1, PLGA-g-PVP10:2, and 

PLGA-g-PVP10:3 carried, respectively, 1.5, 1.1, and 1.0 PVP side chains per 

PLGA main chain. The fractionation by the orthogonal solvent pair ethyl-

acetate/ methanol, whereas able to quantitatively separate in a pure state the 

PLGA and PVP components of PLGA/PVP intimate blends, if used to 

fractionate crude PLGA-g-PVP failed to isolate either pure PLGA or pure PVP. 

However, it separated PLGA- and PVP-rich fractions with widely different 

compositions, demonstrating that the PVP grafting was unevenly distributed. 

The mass balance of the fractions showed that one or more PVP chains grafted  

onto a PLGA chains probably facilitated further grafting on the same chain.  

Moreover, the PLGA-rich fractions probably contained some native PLGA. All 

main PLGA-g-PVP products and single fractions gave stable nanodispersions 

in water by the solvent evaporation technique, irrespective of the PVP content.  

Similar results were obtained with PLGA/PLGA-g-PVP intimate blends, but 

not with PLGA/PVP blends. Admittedly, these preliminary results need to be 
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substantiated by further, specifically addressed research. However, they suggest 

that the new PLGA-g-PVP copolymers reported in this article, notwithstanding 

the uneven distribution of PVP grafting among the PLGA chains, have a 

potential as bioeliminable nanodispersed drug delivery systems. 
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CHAPTER 3 

FORMULATIONS OF PLGA-g-PVP COPOLYMERS  

 

“The purpose of this piece of work is to establish the best formulation technologies to 

transform PLGA-g-PVP copolymers into nanosized carriers, namely nanoparticles and lipid 

nanocapsules, for the delivery of anticancer and antimalarial drugs” 

 

3.1 NANOPARTICLES  

Polymeric nanoparticles (NPs) are colloidal structures composed of natural, 

synthetic or semi-synthetic polymers with sizes generally around 5-1000 nm, 

more centred on 100-500 nm. Depending on the process used for NP 

preparation, nanospheres or nanocapsules can be obtained (Figure 3.1).i 

Nanospheres have a homogeneous structure in the whole particle, the drug is 

dissolved, entrapped, encapsulated or uniformly attached to polymer matrix.ii 

Nanocapsules are nano-vesicular systems that exhibit a typical core-shell 

structure where the drug is confined to a reservoir or within a cavity 

surrounded by a polymer membrane or coating. The reservoir can be a liquid 

oily core or in a solid form.iii 

 
Figure 3.1. Nanosphere and nanocapsule structures.  
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3.2 NP PREPARATION METHODS  

NPs are usually prepared by bottom-up procedure, mainly based on two 

methods: solvent evaporation and solvent displacement.iv All the other 

methods proposed in the literature are derived from them, with little 

difference. 

Solvent evaporation method: the polymer and drug are dissolved in an organic 

solvent such as dichloromethane, chloroform and ethyl acetate, and then 

emulsified into an aqueous solution to make oil (O) in water (W) (O/W 

emulsion) by using a surfactant or an emulsifying agent. After the formation of 

a stable emulsion, the organic solvent is evaporated either by increasing the 

temperature under pressure or by continuous stirring. A similar procedure is 

adopted for (W/O)/W method, usually used for preparing water-soluble drug-

loaded NPs. This approach consists in two consecutive emulsions: the former 

useful to solubilise the drug in the polymer solution, and the latter to form the 

NPs.v 

Solvent displacement method/ nanoprecipitation: a water-soluble solvent with 

intermediate polarity, such as acetone, ethanol or methanol, is used to initially 

solubilise both polymer and drug. This phase is thus injected into a stirred 

aqueous solution in the presence or not of surfactants. Polymer deposition on 

water/organic solvent interface, caused by the fast diffusion of solvent, leads to 

the instantaneous formation of a colloidal suspension. The solvent 

displacement technique allows for preparing nanocapsules when a small 

volume of nontoxic oil is incorporated in the organic phase. 

Emulsification/solvent diffusion method: this is a modified version of solvent 

evaporation method. The encapsulating polymer is dissolved in a partially 

water-soluble solvent, such as propylene carbonate and saturated with water. 

The polymer-water saturated solvent phase is emulsified in an aqueous 

solution, already containing a stabilizer, leading to solvent diffusion to the 

external phase and the formation of nanospheres or nanocapsules, according to 

the oil-to-polymer ratio. Finally, the solvent is eliminated by evaporation. 

Salting out method: it is a modification of the solvent displacement method, in 

which the separation of a water miscible solvent from aqueous solution is via a 

salting out effect. Polymer and drug are initially dissolved in a solvent such as 

acetone, which is subsequently emulsified into an aqueous gel containing the 
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salting-out agent (electrolytes, such as magnesium chloride, calcium chloride, 

and magnesium acetate, or non-electrolytes such as sucrose) and a colloidal 

stabilizer such as polyvinylpyrrolidone or hydroxyethylcellulose. This oil/water 

emulsion is diluted with a sufficient volume of water or aqueous solution to 

enhance the diffusion of acetone into the aqueous phase, thus inducing the 

formation of nanospheres. 

Dialysis: polymer is dissolved in a water miscible solvent and placed inside a 

dialysis tube with proper molecular weight cut off. The displacement of the 

solvent inside the membrane is followed by the progressive aggregation of 

polymer, due to a loss of solubility and the formation of homogeneous 

suspensions of nanoparticles. The solvent used in the preparation of the 

polymer solution affects the morphology and particle size distribution of the 

nanoparticles obtained. 

Supercritical fluid technology: polymer is dissolved in a supercritical fluid to form a 

solution, followed by the rapid expansion of the solution across an orifice or a 

capillary nozzle into ambient air or in an aqueous solution. The high degree of 

super saturation, accompanied by the rapid pressure reduction in the 

expansion, results in homogenous nucleation and, thereby, the formation of 

well-dispersed particles. 

Even top-down methods have been developed taking advantage of instruments 

such as desktop or high-pressure homogenizers or ball-milling equipment able 

to reduce the particle size from micrometres to nanometres.vi 

3.3 ANTITUMOUR DRUGS  

Cancers are a large family of diseases that involve abnormal cell growth with 

the potential to invade and/or spread to other parts of the body. All tumour 

cells show the five hallmarks: a) cell growth and division in absence of the 

proper signals or in presence of contrary ones; b) avoidance of programmed 

cell death; c) limitless number of cell divisions; d) promoting blood vessel 

construction; and e) tissue invasion and metastasis formation.vii 

Cancers figure among the leading causes of morbidity and mortality worldwide, 

with approximately 14.0 million new cases and 8.2 million cancer related deaths 

in 2012.viii  
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Research aims at developing ever more potent treatments, able to get definitive 

ablation of the disease. 

3.3.1 Doxorubicin 

Doxorubicin hydrochloride (Adriamycin®)ix, is one of the most potent 

antineoplastic agents approved by the Food and Drug Administration, effective 

against a wide range of cancers, including breast cancerx,xi, myelomaxii, lung 

cancerxiii, gliomaxiv, leukaemiaxv, and lymphomaxvi. 

Its cytotoxic role is explicated in nuclear compartment of cells, by binding 

DNA associated enzymesxvii and intercalating the base pairs of the DNA’s 

double helix with consequently inhibition of both DNA replication and RNA 

transcription. xviii,xix  

Doxorubicin in form of hydrochloride salt (Dox) achieves a high degree of 

solubility in water; conversely, doxorubicin in the free base form (DoxB) is 

hydrophobic. Dox has a high biodistribution, it is quickly accumulated into 

many tissues (like liver, kidney, bone marrow), leading to a rapid extinction in 

the blood stream.xx,xxi It is not selective against tumour cells, therefore it results 

toxic for the healthy cells, in particular is considered cardiotoxic.xxii  

Modification of biodistribution and reducing of toxicity toward healthy cells 

can be achieved by entrapping the drug in carriers.  

Dox-loaded PLGA carriers are intensively studied in the literature. These 

systems include PLGA microparticles,xxiii,xxiv,xxv,xxvi,xxvii PLGA 

NPs,xxviii,xxix,xxx,xxxi,xxxii,xxxiii,xxxiv PLGA-PEG micelles,xxxv,xxxvi,xxxvii,xxxviii covalently 

bounded PLGA-Dox NPs,xxxix PLGA-Dextran micelles,xl [P(NIPAAm-co-

DMAAm)-PLGA micelle,xli hyaluronic acid NPs coated with PLGA-PEI,xlii,xliii 

magnetic NPs coated with PLGA,xliv,xlv,xlvi PLGA-Vitamin E TPGS NPs,xlvii 

PLGA-laponite-F68 nanocomposite (PNC) vesicles,xlviii magnetic NPs coated 

with PLGA-PEG,xlix PEG-PLGA-porphirin NPsl.  

3.3.3 Aim of research 

In this research work PLGA-g-PVP NPs are prepared by solvent displacement 

method to be used in antitumor treatment.  

Despite great benefits obtained by using above carriers in Dox delivery, they 

suffer of some drawbacks in term of efficacy and stability over time, as already 
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mentioned. Microparticles cannot reach tumour and need to be in situ 

implanted. Micelles are prone to dilution phenomenon that occurred when 

intravenous injected, leading to premature drug release.li Hydrophobic NPs 

coated by hydrophilic had poor affinity, sometimes leading to separation of the 

two blocks over time. NPs based on amphiphilic copolymers, like those 

obtained from PLGA-g-PVP copolymers, should not be prone to these pitfalls. 

Modulating PVP content in the initial PLGA-g-PVP copolymer, it was possible 

to vary the hydrophobicity degree of NPs matrix and, thus, affinity of 

nanocarrier with drugs with different lipophilicity. Drugs used to study NPs 

properties were Dox and its basic analogue doxorubicin base (DoxB).  

Chemical-physical characterizations of NPs were conducted by evaluation of 

sizes, morphologies, ζ-potentials, pH and osmolarities. Over time stability and 

drug release kinetics were studied. To highlight efficacy against tumour cells 

Dox-loaded NPs and DoxB-loaded-NPs, 2D and 3D in vitro studies were 

carried out. 

3.4 ANTIMALARIAL DRUGS  

Malaria is the most prevalent parasitic disease in the world. By 2015, it was 

estimated that the worldwide number of malaria cases is 214 million and the 

number of deaths to 438 000.lii It is caused by the apicomplex protozoan of the 

Plasmodium genus and transmitted to humans by the bites of the female 

mosquito vector of the Anopheles genus.liii,liv P. falciparum is the most dangerous 

of the four malarial parasites that can infect humans and is most prevalent on 

the African continent. P. falciparum resists to rigorous climate and has 

developed resistance to several drugs.lv  

Nanosized carriers have been receiving special attention with the aim of 

minimizing the side effects of drug therapy, poor bioavailability and drug 

resistance. Particularly lipid-based carriers (e.g., liposomes,lvi,lvii,lviii,lix solid lipid 

nanoparticleslx,lxi,lxii and nano or microemulsionslxiii,lxiv,lxv) and polymeric 

nanocarriers lxvi,lxvii,lxviii,lxix have been already studied. All these nanocarriers are 

currently used to fight the disease with good results.  
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3.4.1 Artemisinin as antimalarial drug 

Artemisinin (Art) is a sesquiterpene lactone peroxide, extracted from the 

wormwood Artemesia annua Longa. Usually used as anti-malarial drug, anticancer 

activity of Art was discovered by Woerdenbag et al in 1990.lxx Art and its 

derivatives (dihydroartemisinin, arthemeter, and artesunate) are the most used 

antimalarial drugs together with quinine derivatives (chloroquine, primaquine 

and mefloquine). Artemisinin has a very fast action and parasite clearance times 

are shorter when compared with other malarial drugs. Cytotoxicity of Art is 

explicated by the endoperoxide moiety present in its structure that reacts with 

Fe2+ ions present in haem (Figure 3.2).lxxi  

 
Figure 3.2. Mechanism of interaction of Art with Fe2+ present in haem, 

leading to radicals. 

The malaria parasite is rich in haem-iron, derived from the proteolysis of host 

cell haemoglobin. This could explain why artemisinin is selectively toxic to 

parasites.lxxii In parasite cultures treated with Art, adducts of haem and Art have 

been isolated.lxxiii Free radicals formed by the reaction alkylate protein and 

damage the microorganelles and membranes of the parasites.lxxiv Drawbacks of 
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Art are low water and oil solubility, poor bioavailability, and a short half‑life in 

vivo (~2.5h).lxxv,lxxvi For these reasons, it is usually loaded in several drug 

delivery systems, such as nanoparticleslxxvii and liposomeslxxviii,lxxix. Liposomal 

formulation of Art for antimalarial treatments is reported.lxxx,lxxxi 

Cyclodextrinslxxxii,lxxxiii,lxxxiv and albumin-Art conjugatedlxxxv are other typical 

nanocarriers. Only one formulation study of Art-loaded PLGA NPs was 

described in the literature.lxxxvi Art derivatives loaded in PLGA carriers are 

reported, e.g. artesunate-loaded and chitosan-coated PLGA NPs,lxxxvii 

dihydroartemisinin-loaded and PLGA-coated phospholipidic NPslxxxviii.  

3.4.2 Curcumin 

Curcumin (Cur) is a polyphenolic compound derived from turmeric, Curcuma 

Longa rhizomes, possesses diverse pharmacologic effects including anti-

inflammatory,lxxxix antioxidantxc and anticancer activitiesxci,xcii In addition, 

curcumin possesses activities against bacteria,xciii fungi,xciv,xcv and protozoaxcvi. 

Cytotoxic effects of Cur on protozoan parasites have been demonstrated in 

cultures against Leishmania,xcvii Trypanosoma,xcviii and Giardiaxcix. Cur antimalarial 

effects was demonstrated against Plasmodium falciparumc,ci and Plasmodium 

Bergheicii (the latter in combination with Art). Parasitical effect is due to the 

generation of reactive oxygen species and histone acetylation.ciii An excellent 

property of Cur is its safety even at very high doses when administrated to 

various animal modelsciv and humanscv,cvi. In spite of its efficacy and safety, Cur 

has not yet been approved as a therapeutic agent, due to its low solubility and 

low bioavailability.cvii To overcome these problems several carriers have been 

developed, among which nanotized Cur,cviii liposomal carrier,cix chitosan NPs,cx 

nanoemulsion,cxi lipid based systems,cxii sodium dodecyl sulphate (SDS) 

micelles,cxiii PMMA-PHEMA nanospherescxiv, PLGA-coated magnetic 

microspherescxv and PLGA NPscxvi,cxvii,cxviii.  

3.4.3 Aim of research 

Even if a current decrease of mortality and morbidity due to malaria is reached, 

improvements are always requested, especially in formulations of monodose, 

not expensive treatments with prolonged permanence in bloodstream and 
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sustained release of drugs. This route is possible only developing carrier with 

real high drug entrapping degree and modified surface.  

Lipid nanocapsules consisting of an oily core and PLGA-g-PVP surface were 

used as delivery systems of Cur and Art. The oily core chose to dissolve great 

amounts of drug was prepared by oil in water emulsion leading to microdrops 

in aqueous solution. Nanometric sizes were reached by using of high-pressure 

homogenizer. PLGA-g-PVP copolymers with two different PVP contents were 

deposited on, employing solvent displacement method. Modified surfaces were 

useful to modulate interactions between nanocapsules and cellular membranes 

of infected red blood cells in order to favour endocytosis inside. Chemical and 

physical characterizations of Art-loaded nanocapsules and Cur-loaded 

nanocapsules were carried out. Growth inhibition assay were conducted on 

plasmodium falciparum (3D7) culture. 

3.5 ANTITUMORAL PROJECTS EXPERIMENTAL PART 

3.5.1 METHODS 

3.5.1.1 Materials 

PLGA-PVP10:1 and PLGA-PVP10:2 were prepared according to the procedure 

reported in Chapter 2, Paragraphs 2.3.4.1. Poly(lactic-co-glycolic) acid (PLGA) 

50:50 ( ̅ = 45000-55000) was purchased from PolySciTech (Indiana, USA) 

and used as received. Doxorubicin hydrochloride salt (Dox) was purchased 

from Pharmacia & Upjohn; doxorubicin base (DoxB) was prepared as 

following described and used without further purification. Pluronics F68 (Plu), 

Tween 20, Tween 80, poly(vinyl alcohol) (PVA), mucin from porcine stomach, 

bovine serum albumin (BSA) and other chemicals and solvents were supplied 

by Sigma- Aldrich (Italy) at reagent grade and used without further purification.  

For in vitro tests: 

4T1 (mouse breast cancer), MDA-MB231 and CRL-2335 (human breast 

cancer) cells were obtained from the American Type Culture Collection 

(ATCC; Manassas, VA, USA). Human HCC1806 Breast Carcinoma cell line 

was purchased from LGC Standards, Sesto San Giovanni, Italy. Dulbecco's 

Modified Eagle Medium (DMEM), penicillin-streptomycin and foetal calf 
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serum were purchased by Invitrogen, Burlington, ON, Canada. MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide, thiazolyl blue 

tetrazolium bromide, RPMI medium and ultra-low attachment (ULA) 96-wells 

flat-bottom plates were supplied by Sigma- Aldrich St Louis, MA, USA. 

Colorimetric WST-1 test was obtained from Dojindo Europe, Germany. 

3.5.1.2 Preparation of doxorubicin base 

A saturated solution of Na2CO3 (1.4 g/mL) was added in deionized water Dox 

solution drop by drop. The precipitate was recovered by filtration and washed 

several times with cold deionised water. After drying, DoxB was stored at room 

temperature in the dark. 

3.5.1.3 Preparation of PLGA-PVP10:1, PLGA-PVP10:2 blank NPs and Dox-
or DoxB-loaded NPs 

Doxorubicin-loaded and blank nanoparticles were prepared using a solvent 

displacement method. Briefly, different amount of Dox or DoxB (1, 2 or 3 mg) 

were dissolved in benzyl alcohol (15 mg/mL) and added to a solution of 21 mg 

of PLGA-PVP10:1 (or PLGA-PVP10:2) in 800 μL 85:15 v/v acetone DMSO 

solution. This solution was drop-wise added to 7 mL of a 0.1 % (w/v) 

Pluronics F68 aqueous solution heated at 40°C under vigorous magnetic 

stirring. Following acetone was removed by 30 min of magnetic stirring and the 

suspension was kept under stirring overnight. Then the suspension was 

dialyzed against water using a dialysis tube with MW cut-off of 3500 for 1 h to 

remove any not encapsulated drug, benzyl alcohol and DMSO and lastly 

lyophilized.  

Blank nanoparticles were similarly prepared. A 70:30 v/v acetone/DMSO 

polymeric solution (21 mg in 400 μL) was dripped in a 0.1 % (w/v) Pluronics 

F68 aqueous solution under vigorous magnetic stirring at 40°C. The latter was 

stirred for 30 min to remove acetone and kept under stirring overnight to form 

nanoparticles and eventually lyophilized. 



CHAPTER 3 

FORMULATION OF PLGA-g-PVP COPOLYMERS 

 

95 
 

3.5.1.4 Physical-chemical characterization of NPs 

Particle size and polydispersion index (PDI) were determined by photon 

correlation spectroscopy (PCS), employing a 90 PLUS Particle Size Analyzer at 

a fixed angle of 90° and a temperature of 25 °C. The laser light (He/Ne) 

wavelength was 678 nm. Two drops of sample were diluted directly into the 

cuvette sample holder with previously filtered water. All determinations were 

carried out in triplicate and the results were expressed as the average diameter 

(expressed in nm) and PDI as measure of the distribution width. 

Differential scanning calorimetric (DSC) analyses were performed by a Mettler 

Toledo DSC823 (Mettler Toledo, Italy), equipped with the STAR Software and 

the FRS5 Mettler Toledo ceramic sensor. The instrument was calibrated with 

indium for melting point and heat of fusion. Tests were performed using 

standard aluminium pans with an empty pan as reference. Samples (5-10 mg) 

underwent a single heating step from 0 °C to 100 °C at 10 °C min-1 under 50 

mL min-1 nitrogen flow. 

Zeta potential measurements were determined using 90 PLUS Particle Size 

Analyzer. Nanoparticle solution was diluted with few drops of a 1 mM KCl 

solution. A minimum of five runs was obtained per sample. 

Transmission electron microscopy (TEM) analysis was performed using a 

Philips CM10 instrument. Nanoparticle solution was stained with a 2% 

solution of osmium tetraoxide. 

Optical microscopy analysis was carried out using a Motic AE 31inverted 

microscope equipped with Motic MHG – 100B using Ex D350/50x, DM 

400DCLP and BA D460/50m. Magnification LWD 600x. 

Osmolarity was measured using Semi-micro osmometer K-7400 with 

measuring head for glass vessels. 300 mOsmol solution of sodium chloride 

used for reference standard. 

The pH was determined at 25°C by a calibrated pH meter 420 A (Orion). 

3.5.1.5 Assay of doxorubicin loaded into NPs 

The doxorubicin loading within NPs was determined by HPLC. HPLC system 

consists of a Shimadzu LC-9A pump C equipped with a Cromopack 

fluorescence detector and a Kinetex® 5 µm EVO C 18 100 Å column (250 

×4.6 mm2). Methanol-acetonitrile-phosphate buffer solution (10:25:65 v/v/v) 
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was used as eluent, in which buffer was a 0.01 M pH=1.4 phosphate aqueous 

solution. The flow rate was 1.0 mL min-1. The column effluent was monitored 

at excitation and emission wavelengths of 480 and 560 nm, respectively.  

A known amount of freeze-dried nanoparticles was completely dissolved in 

DMSO solution and after diluted in HPLC eluent. Drug concentration was 

calculated from the area using a calibration curve previously established.  

For the calibration curve Dox was dissolved directly in HPLC eluent, DoxB 

was firstly dissolved in DMSO and after diluted with HPLC eluent. The 

experiment was performed in triplicate for both types of drugs.  

Drug loading (DL) was calculated on the percentage amount of drug present 

per mg of nanoparticles, as follows: 

 

       
                                                      

                       
              

(Equation 1) 

 

Encapsulation efficiency (EE) was calculated based on the percentage ratio of 

the amount of doxorubicin incorporated into nanoparticles with respect to the 

initial amount used, as follows: 

 

       
                           

                      
                   (Equation 2) 

3.5.1.6 In vitro release of doxorubicin from nanoparticles 

In vitro drug release studies were performed at two different pHs by using a 

physiological solution (0.9% NaCl, pH = 5.55) and phosphate buffer solution 

(0.1 M, pH = 7.40). 1 mL of Dox-loaded and DoxB-loaded nanoparticle 

suspensions (donor solutions) were kept in contact with 1 mL of physiological 

solution or buffer solution (receiver solutions) by a dialysis membrane with 

MW cut-off 12-14K. At specific time, the receiver solution was collected for 

analysis and replaced with fresh one. The amount of released doxorubicin was 

evaluated by HPLC as previously described.  
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3.5.1.7 Determination of bovine serum albumin (BSA) adsorption on NP 
surface  

Interactions of BSA with selected NPs were monitored using a UV visible 

spectrophotometer. Lyophilized blank NPs were suspended in water (1.6 

mg/mL) and diluted with a 10 mg/mL phosphate buffer BSA solution (0.1 M, 

pH = 7.4) in 20:80 volume ratio. Solution was stirred for 90 min, centrifuged 

(7500 rpm, 10 min) and then the supernatant was collected. The amount of 

BSA adsorbed on nanoparticles surface was evaluated using Uv-visible analysis 

at 278 nm taking into account the difference between BSA concentration 

present in the supernatant and a blank BSA solution at the same dilution. Each 

sample was assayed in triplicate. 

3.5.1.8 Cell and culture conditions  

4T1 (murine breast cancer), MDA-MB231 (human breast adenocarcinoma) and 

CRL-2335 (basal-like human breast carcinoma) cell lines were grown in culture 

dishes as a monolayer in DMEM supplemented with 10% penicillin-

streptomycin and 10% foetal calf serum in a humidified atmosphere with 5% 

CO2. 

3.5.1.9 Cell proliferation test  

MTT analysis was performed in 96-well plates incubated at 37 °C, 5% CO2, for 

72 h. Briefly, 1000 cells/well were seeded in 100 µL of complete medium and 

treated with different concentrations of Dox-loaded NPs (0.002-0.2 mM) and 

compared to those treated with blank NPs and free drug solutions at the same 

dilution. Subsequently, cells were supplemented with 11 µl of 5mg/ml thiazolyl 

blue tetrazolium bromide for 2 h. Later, the medium was removed and cells 

were lysed with 100 µl of DMSO. Absorbance was recorded at 570 nm by a 96-

well-plate reader (PerkinElmer, Waltham, MA, USA). 

3.5.1.10 Data analysis 

Data concerning inhibition percentage as function of drug concentration are 

reported as average ± experimental error. A statistical analysis was performed 

with GraphPad Prism 3.0 software (San Diego, CA, USA) using the one-way 
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ANOVA and Dunnett test. IC50 (half maximal inhibitory concentration) has 

been investigated using the two tailed unpaired T test with Welch correction. 

The significance cut-off was p-value below 0.05. 

3.5.1.11 Spheroids cultures  

The human HCC1806 Breast Carcinoma cell line was grown in RPMI medium 

supplemented with 10% foetal bovine serum (FBS), 1% L-glutamine and 1% 

penicillin-streptomycin.  

For spheroids formulation, at ∼80% confluence, monolayer cells were 

dissociated with trypsin-EDTA (Ethylenediaminetetraacetic acid) into single-

cell suspensions. The cells were then seeded on ultra-low attachment (ULA) 

96-wells flat-bottom plates, at different initial concentrations, starting from 

2500 to 50000 cells per well. Optimal seeding density was established such that 

HCC1806 spheroids fell within a size range of 200 to 500 µm in diameter on 

day 5. The initial concentration of 7500 cells/well was then considered 

appropriate for experimental studies.  

After treatments with the different drug formulations, morphology was 

analysed under light microscope and cell viability by colorimetric WST-1 test.  

3.5.2 RESULTS AND DISCUSSIONS: DOXORUBICIN LOADED 

NPs 

3.5.2.1 Blank nanoparticle preparation 

PLGA-PVP blank nanoparticles (PLGA-PVP Blk NPs) were successfully 

prepared using an solvent displacement method by dissolving copolymer (26 

mg/mL) in organic solvent mixture (85:15 %v/v acetone:DMSO) and 

precipitating it as nanoparticles in an aqueous phase, having 0.1% w/v 

Pluronics F68 as a stabilizer, at 40°C (Figure 3.3). PLGA blank nanoparticles 

were similarly prepared.  

This procedure was the result of a study performed for correlating the 

relationship between formulation parameters (namely, solvent composition, 

surfactant type and concentration, copolymer concentration, pH of aqueous 
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solution and temperature) and NP diameters. The collected data corresponding 

to PLGA-PVP10:1 and PLGA-PVP10:2 NPs are summarized in Tables 1 and 2. 

As results, NP size was highly influenced by solvent composition with a 

reduction of about 30 and 200 nm for PLGA-PVP10:1 and PLGA-PVP10:2, 

respectively, passing from pure acetone (DMC in Tables 3.1 and 3.2) to 

85:15%v/v acetone:DMSO solution. This reduction can be ascribed to the 

higher solubilisation of PVP portion copolymer in DMSO. Poly(vinylalcohol) 

(PVA), glycerol, glucose and Pluronics F68 (Plu) were chosen as preferred 

surfactants; among them, Plu gave the smallest NPs with both copolymers in 

comparison with those prepared with the other surfactants in the same 

experimental condition. In addition, Plu concentration in water has proven to 

slightly affect the size distribution of PLGA-PVP10:2 NPs, but highly influence 

those of PLGA-PVP10:1 NPs. In particular, PLGA-PVP10:1 precipitated in total 

absence of surfactant and formed particles of about 1 μm in presence of 

0.5%w/v Plu solution, instead of 166 nm using 0.1%w/v one. PLGA-PVP10:2 

was able to form NPs even in absence of surfactants with formation of a thin 

film close adherent to vial walls and 134 nm particles in presence of the more 

concentrated Plu solution, minimum (131 nm) was also in this case fulfilled in 

0.1%w/v solution. Finally, temperature of aqueous Plu solution influenced the 

rate of displacement and evaporation of solvents, resulting in a decreased NP 

diameter at 40°C instead of those obtained at room temperature, but 60°C 

heated solution favoured precipitation for both copolymeric compositions. 

High-pressure homogenizer was not able to a further reduction of NPs, 

conversely 426 and 335 nm were the final diameters of PLGA-PVP10:1 and 

PLGA-PVP10:2 NPs, respectively, after 30 min of treatment. 
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Figure 3.3. Preparation of PLGA-PVP Blk NPs and DoxB loaded and Dox 

loaded NPs by solvent displacement method. Chemical structure of Dox and 

DoxB. 

Table 3.1. Formulation parameters affecting PLGA-PVP10:1 NPs size 

distribution. 

PLGA-PVP10:1 

(mg) 
Solvent /(μL) 

Surfactant (%w/v)/ 

Vol (mL) 
Size (nm) PDI 

10 DMC/ 200 Plu 0.1 / 5 222.2 ± 1.4 0.043 ± 0.013 

10 DMC/ 200 Glycerol 2.4 / 5 280.6 ± 6.9 0.061 ± 0.029 

10a DMC/ 400 Plu 0.1 / 7 107.8 ± 0.9 0.153 ± 0.017 

10b DMC/ 400 Plu 0.1 / 7 109.3 ± 1.8 0.148 ± 0.021 

21 DMC/ 800 Plu 0.1 / 7 210.4 ± 2.1 0.125 ± 0.016 

21 DMC/ 800 PVA 0.3 / 7 216.0 ± 3.3 0.064 ± 0.013 

21 DMSO:DMC 1:2/800 Plu 0.1 / 7 184.1 ± 5.9 0.061 ± 0.028 

21c DMSO:DMC 1:2/800 Plu 0.1 / 7 426.4 ± 15.7 0.194 ± 0.031 

21d DMSO:DMC 1:10/800 Plu 0.1 / 7 181.4 ± 6.1 0,105 ± 0,024 

21d DMSO:DMC 15:85/800 Plu 0.1 / 7 166.7 ± 0.8 0.115 ± 0.028 
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21d DMSO:DMC 15:85/800 Plu 0.5 / 7 897.3 ± 28.7 0.086 ± 0.046 

21d DMSO:DMC 15:85/800 only water/ 7 precipitate -- 

21d DMSO:DMC 15:85/800 NaCl 0.9 / 7 precipitate -- 

21d DMSO:DMC 15:85/800 Glucose 5 / 7 260.4 ± 9,7 0.142 ± 0.043 

21e DMSO:DMC 15:85/800 Plu 0.1 / 7 304.9 ± 7.5 0.231± 0.051 

a) Dialysis against water milliQ; b) dialysis against 0.01M PBS buffer solution at 

pH=7.4; c) after 30 minutes of high pressure homogenization; d) temperature= 

40°C; e) temperature= 60°C.  

Table 3.2. Formulation parameters affecting PLGA-PVP10:2 NPs size 

distribution. 

PLGA-PVP10:2 

(mg) 
Solvent /(μL) 

Surfactant 

(%w/v)/Vol(mL) 
Size (nm) PDI 

10 DMC/200 Plu 0.1 / 5 363.9 ± 4.2 0.141 ± 0.013 

10 DMC/200 Glycerol 2.4 / 5 348.4 ± 10.7 0.238 ± 0.032 

10a DMC/400 Plu 0.1 / 7 216.0 ± 15.2 0.286 ± 0.011 

10b DMC/ 400 Plu 0.1 / 7 239.5 ± 2.5 0.274 ±0.001 

21 DMC/ 400 Plu 0.1 / 7 318.1 ± 4.7 0.105 ± 0.039 

21 DMC/ 400 PVA 0.3 / 7 329.2 ± 6.9 0.152 ± 0.022 

21 DMSO:DMC 1:1/400 Plu 0.1 / 7 168.0 ± 2.6 0.115 ± 0.028 

21c DMSO:DMC 1:1/400 Plu 0.1 / 7 335.6 ± 3.2 0.098 ± 0.047 

21d DMSO:DMC 2:8/400 Plu 0.1 / 7 160.4 ± 1.7 0.093 ± 0.039 

21d DMSO:DMC 3:7/400 Plu 0.1 / 7 161.7 ± 0.6 0.064 ± 0.008 

21d DMSO:DMC 3:7/400 Plu 0.5 / 7 164.0 ± 2.0 0.066 ± 0.022 

21d DMSO:DMC 3:7/400 only water/ 7 166.2 ± 1.0 0.046 ± 0.023 

21d DMSO:DMC 3:7/400 NaCl 0.9 / 7 187.9 ± 5.2 0.034 ± 0.029 

21d DMSO:DMC 3:7/400 Glucose 5 / 7 204.4 ± 6.8 0.068 ± 0.019 

21e DMSO:DMC 3:7/400 Plu 0.1 / 7 153.4 ± 2.9 0.157 ± 0.042 

a) Dialysis against water MilliQ; b) dialysis against 0.01M PBS buffer solution at 

pH=7.4; c) after 30 minutes of high pressure homogenization; d) temperature= 

40°C; e) temperature= 60°C. 
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3.5.2.2 Drug loaded nanoparticle preparation and drug assay 

Next step was the preparation of PLGA-PVP NPs loaded with doxorubicin 

hydrochloride salt (Dox) and doxorubicin free base (DoxB). Several water 

miscible solvents (namely, acetone, methanol, ethanol, N-methylpyrrolidone, 

and benzyl alcohol) were tested to solubilise drugs. In detail, both forms of 

doxorubicin have proven to be practically insoluble in acetone. Methanol and 

ethanol were not compatible with copolymers causing their partial 

precipitation. When drugs are solubilised in N-methylpyrrolidone and 

subsequently added to copolymer, a clear solution was obtained. Unfortunately, 

this solution became a microemulsion when dripped in water. At the end, 

benzyl alcohol has proven as the best drug solvent; indeed, 15 mg/mL Dox 

and DoxB solutions in benzyl alcohol were prepared and separately added to 

copolymeric acetone/DMSO ones giving a transparent orange and red 

solutions, respectively. These recipes were slowly added to a 0.1% Plu aqueous 

solution in order to formulate drug-loaded NPs. 

In order to assess the drug loading percentage (D.L.%) and encapsulation 

efficiency percentage (E.E. %), three drug loadings (1, 2 or 3 mg) were tested 

for each copolymer composition and drug. To this aim, samples were dialyzed, 

lyophilised and analysed by HPLC. 

As reported in Table 3.3, D.L. % of Dox was found to be between 0.73 and 

3.32% w/w depending on copolymer type, resulting in a E.E. % ranged 

between 21.16 and 55.89% w/w. PLGA-PVP10:2 always showed at least one 

percentage point more than PLGA-PVP10:1 regardless of initial Dox amount. 

This finding can be attributed to the enhanced hydrophilicity of the PLGA-

PVP10:2 copolymer, resulting to a higher affinity with hydrophilic Dox. On the 

other hand, in the case of DoxB, D.L. % varied from 0.11 to 3.20 % w/w and 

E.E.% from 19.11 to 36.24 % w/w. Save for 1mg case, in all other ones, 

PLGA-PVP10:1 showed a better affinity with DoxB than PLGA-PVP10:2. 

For comparison, Dox- and DoxB- loaded PLGA NPs and blank PLGA NPs 

were similarly prepared as control. 3 mg of initial amounts of drugs were used. 
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Really low D.L. % and E.E.% were obtained for Dox-loaded PLGA NPs, 

instead of DoxB loaded PLGA NPs that showed the greater D.L.% value 

(3.69%) among others. 

 

Table 3.3. Drug loading percentage and encapsulation efficacy varying 

doxorubicin amount initially added in solution.  

Sample 
Doxorubicin 

 initial amount (mg) 
D.L. % (w/w) E.E %(w/w) 

Dox-PLGA-PVP10:1 NPs 

1 0.73 21.2 

2 1.67 22.6 

3 2.55 21.3 

Dox-PLGA-PVP10:2 NPs  

1 1.93 55.9 

2 2.76 38.7 

3 3.32 30.9 

DoxB-PLGA-PVP10:1 NPs 

1 1.14 33.0 

2 1.30 21.5 

3 2.27 24.2 

DoxB-PLGA-PVP10:2 NPs 

1 0.65 19.1 

2 1.36 21.2 

3 3.20 36.2 

Dox-PLGA NPs 3 0.06 4.13 

DoxB-PLGA NPs 3 3.69 24.0 

Physical state of the drug in PLGA-PVP NPs were investigated by DSC. 

Thermograms of Dox, DoxB, copolymers alone, Plu, black NPs, and drug-

loaded NPs were depicted in Figure 3.4 (Panel A-C). In blank NP 

thermograms an endothermic peak is present at 40-55°C corresponding to Plu 

melting point that partially covered PLGA glass transition temperature ranged 

at 45-53°C in copolymer thermograms. In all, PVP glass transition temperature 

was not visible. Dox exhibited a single endothermic melting peak at 236°C with 

onset at 180°C. DoxB showed an exothermic peak at 220°C with onset at 

170°C, due to its degradation. 
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Figure 3.4. DSC thermograms of A) copolymers alone, pluronics, black 

PLGA-PVP NPs B) DoxB free and DoxB-loaded PLGA-PVP NPs and C) Dox 

free and Dox-loaded NPs. 
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In DSC thermograms of Dox-loaded and DoxB-loaded PLGA-PVP NPs, Dox 

melting peak disappeared, as well as the degradation one of DoxB, regardless to 

them initial loading. In addition, Plu melting point was always present. This 

indicated the absence of drug free in the delivery system and, thus, it was 

totally incorporated inside nanoparticles. Therefore, 3 mg of Dox and DoxB 

were subsequently used as the standard concentration to prepare drug-loaded 

NPs.  

3.5.2.3 Characterization of PLGA-PVP NPs 

The physicochemical properties of NPs, in terms of their average diameter, 

polydispersity index, ζ potential, morphology, pH and osmolarity were 

evaluated and listed in Table 3.4 and Figure 3.5 and 3.6. The effect drug 

incorporation on such properties was also studied by comparing the results 

obtained with those for blank NPs, whose size and polydispersity index are 

also reported in order to facilitate result interpretation.  

With respect to particle size analysis, all prepared PLGA-PVP systems were 

nanometric (average diameter <500 nm) and exhibited a narrow size 

distribution (polydispersity index <0.2). Freshly prepared blank NP 

suspensions showed unimodal size distribution having the average values in the 

range of 160 - 170 nm (Figure 3.6). PLGA Blk NPs similarly prepared had 

greater dimensions than PLGA-PVP ones and showed an aggregate at 5 μm. 

Thus, a downtrend in the particle size was observed as PVP content in 

copolymer increased. Lyophilized PLGA-PVP blank NP formulations showed 

larger particle size in the range of 300-450 nm compared to freshly prepared 

particles; lyophilisation process might induced particle aggregation. NP size 

after freeze-dry indicates that either a cryoprotectant or sonication is needed 

for maintaining the original size of the particle suspension. Sonicating for 10 

min of a suspension of lyophilized NPs in MilliQ water was successfully able to 

break the aggregate and reduce the size of the particles to almost its original 

size before lyophilisation. PLGA Blk NPs were not able to be resuspendable. 
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Table 3.4. Physiochemical characterisation of PLGA-PVP NP and PLGA NP 

suspensions. 

NPs Size ± (nm) PDI± 
Zeta potential 

± (mV) 
pH 

Osmolarity 

(mOsmol) 

PLGA-PVP10:1 Blk 166.7 ± 0.8 0.115 ± 0.028 -28.71 ± 2.28 4.26 320 

After 

lyophilisation 
450.3 ± 10.2 0.136 ± 0.026 N.E. N.E. N.E. 

After sonication 175.9 ± 5.6 0.125 ± 0.012 N.E. N.E. N.E. 

PLGA-PVP10:1 Dox 406.2 ± 2.09 0.053 ± 0.037 -12.33 ± 2.77 4.76 302 

PLGA-PVP10:1 

DoxB 
223.1 ± 15.5 0.162 ± 0.006 -20.12 ± 2.76 4.96 327 

PLGA-PVP10:2 Blk 161.7 ± 0.6 0.064 ± 0.008 -17.03 ± 2.50 4.10 318 

After 

lyophilisation 
312.7 ± 6.4 0.067 ± 0.023 N.E. N.E. N.E. 

After sonication 172.0 ± 2.3 0.103 ± 0.056 N.E. N.E. N.E. 

PLGA-PVP10:2 Dox 180.9 ± 2.8 0.065 ± 0.031 -9.88 ± 4.20 4.64 254 

PLGA-PVP10:2 

DoxB 
196.4 ± 9.4 0.121 ± 0.027 -12.56 ± 2.30 4.69 347 

PLGA Blk 240.1 ± 2.0 0.146 ± 0.026 -39.09 ± 5.40 5.09 201 

PLGA Dox 860.9 ±162.4 0.005 ± 0.003 -37.26 ± 2.61 5.82 365 

PLGA DoxB 183.3 ± 8.4 0.197 ±0.018 -40.74 ± 4.10 5.40 446 

Blk = Blank; N.E. Not evaluated 

 
Figure 3.5. Size distribution by DLS of NPs before and after lyophilisation. 
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The drug addition to the formulations caused an increase of polymer particle 

size; despite this, such increase is considered acceptable for parenteral use. Its 

extent was affected by copolymer composition and drug form. With both 

drugs, PLGA-PVP10:1 copolymer formed nanoparticles in solution always 

greater than those obtained using PLGA-PVP10:2. This finding may be 

explained taking into account that a higher copolymer amount and relative 

higher PVP density are required by the system in order to completely cover all 

nanoparticles. PLGA-PVP copolymers formed NPs having different size in 

relation to the PVP content and drug form: indeed, PLGA-PVP10:1 generated 

smaller NPs with the DoxB, while the PLGA-PVP10:2 with the Dox, 

accordingly to the drug hydrophilicity. The significant increment occurred in 

the case of Dox-loaded PLGA-PVP10:1 NPs (three times respect to the 

reference, blank NPs), is likely due to a substantial change in their form, not 

observed elsewhere. In order to confirm this hypothesis, DLS data were 

supplemented with TEM observations (Figure 3.7). Dox-loaded PLGA-PVP10:1 

NPs showed rod-like morphologies with diagonals of 510 and 70 nm, 

respectively. Conversely, the other NPs exhibited approximately spherical 

morphologies with diameters consistent to those assessed by DLS. 

  
Figure 3.6. TEM images of a) Blk-PLGA- PVP10:1 NPs; b) Dox-loaded 

PLGA- PVP10:1 NPs; c) DoxB-loaded PLGA- PVP10:1 NPs; d) Blk-PLGA- 

PVP10:2 NPs; e) Dox-loaded PLGA- PVP10:2 NPs; f) DoxB-loaded PLGA- 

PVP10:2 NPs. 

For a suspension system, zeta potential is an important index that reflects the 

intensity of repulsive forces among particles and the dispersion stability. Higher 

zeta potential modulus corresponds to higher repulsive forces.  
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Zeta potential of nanoparticles was negative due to the presence of terminal 

carboxylic groups in copolymers. Blank PLGA-PVP NPs zeta potential values 

ranged between −29 and −17 mV (PLGA-PVP10:1 and PLGA-PVP10:2, 

respectively) and were less negative than PLGA ones, namely, -39.9 mV. 

Probably, the lower negative value was due to the higher PVP density of 

copolymers, absent in PLGA NPs. The possibility that Plu chains on NP 

surface can also played a role in masking the surface charge of PLGA was also 

evaluated. No significant differences in the zeta potential values of PLGA NPs 

found in this work and typical ones reported in the literature (-40 mV) were 

observed. This showed that the residual Plu on the NP surface did not affect 

the real contribution of PVP density to surface charge reduction, hence surface 

properties of particles were only due to copolymer composition. The presence 

of Dox and DoxB in NPs always reduced the negative zeta potential value; 

probably, there was an additional masking effect of the superficial carboxylic 

groups by the drug in proximity of surface. This effect was intensified in the 

case of Dox due to the positive charge of quaternary ammonium group. 

In order to determine whether nanoparticle suspensions may be incubated in 

cell cultures, pH and osmolarity were measured. The pH values of all 

suspensions were acidic, probably due to PVP protonation in water, ranging 

from 4.1 to 5.8. The osmolarity of PLGA-PVP suspensions were close to the 

isotonicity value (300 mOsmol), instead of PLGA suspensions that resulted 

ipertonic and, thus, requiring dilution. In conclusion, PLGA-PVP NP 

suspensions could be injected and kept in contact with cell cultures without 

further modifications. By this way, these systems were proven suitable for in-

vitro tests. 

3.5.2.4 In vitro drug release 

It is well documented that the extracellular pH of tumours is slightly more 

acidic than the blood and normal tissue.cxix In addition, hypothesizing that 

nanoparticles are taken up by cells via an endocytosis process, pH drops to 5.5-

6.0 in endosomes and approaches pH 4.5-5.0 in lysosomes.cxx 

Therefore, in vitro release studies were performed in PBS (0.01 M, pH 7.4) and 

in physiological solutions (NaCl 0.9 %, pH 5.5) in order to evaluate the release 

kinetic of Dox or DoxB loaded NPs at the two different pHs. The cumulative 

release of drugs is shown in Figure 3.7. In Figure 3.8, release over 6 hours of 
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both drugs from Dox- and DoxB-loaded PLGA NPs is reported. For all kinds 

of nanoparticles, the drug release followed a two-phase kinetics. In the first 

phase, the amount of drug released rapidly increases (burst effect). The second 

phase corresponds to a pseudo steady-state for which the release rate is 

constant and very slow.  

 
Figure 3.7. In vitro release profile of drug loaded in PLGA-PVP nanoparticles 

at different pHs. 

 

Figure 3.8. In vitro release profile of drug loaded in PLGA nanoparticles at 

different pHs. 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

D
ru

g 
re

le
as

e
 %

Time (h)

Doxo Base - PBS 5.5 Doxo Base - PBS 7.4

Doxo HCl - PBS 5.5 Doxo HCl - PBS 7.4

PLGA-DoxB pH=5.5                 PLGA-DoxB pH=7.4
PLGA-Dox pH= 5.5                  PLGA-Dox pH= 7.4



CHAPTER 3 

FORMULATION OF PLGA-g-PVP COPOLYMERS 

 

110 
 

At pH 7.4 both drugs were released in a lesser extent from different PLGA-

PVP and PLGA NPs compared to those studied at pH 5.5. Specifically, within 

6 h only about 10 - 20% of the doxorubicin was released; after 24 h the release 

rose to 25% as maximum, in the case  of PLGA-PVP NPs. Lower amounts of 

drug released were detected, increasing PVP grating densities onto PLGA. PVP 

chains are easily oriented towards the NP surface, leading to effective surface 

coverage in the case of PLGA-PVP NPs, thus reducing the premature 

diffusion of drug towards the buffer aqueous phase. This might indicate the 

ability of the PLGA-PVP NP formulation to efficiently entrap and control 

Dox and DoxB release over a prolonged period of circulation time, enough to 

reach tumour cells.  

At pH 5.5, release percentage ranged between 30 and 65 % after 6 h for 

PLGA-PVP NPs, instead of 15-55 % in the case of PLGA NPs. The high 

extent of drug release was obtained in the case of DoxB-loaded PLGA-PVP10:2 

NPs, in opposition to DoxB-loaded PLGA NPs that released only the 15% of 

total amount of encapsulated drug. Other drug-loaded NPs had intermediate 

trend. 

In literature, several mathematical models were developed in order to 

investigate the mechanism of drug release from 

nanoparticles/microparticles.cxxi The drug release depends on: i) adsorption or 

diffusion through the NP matrix, ii) particle erosion, iii) a combined erosion 

and diffusion process and iv) polymer degradation (chemical or enzymatic 

hydrolysis). The application of the correct mathematical model allowed for 

having informations about the release rate and mechanisms of drug 

release.cxxii,cxxiii  

To study the mechanism of doxorubicin release from PLGA-PVP NPs, five 

mathematical models were taken in consideration: zero-order (F=kt)cxxiv, first-

order (ln(1-F)= -kt)cxxv, Higuchi´s model (F=kt1/2)cxxvi, Hixon-Crowell´s model 

(1-(1-F)1/3= kt)cxxvii and Korsmeyer-Peppas model, or “the power law”, 

(F=ktn)cxxviii. The squared correlation coefficients (R2) and slope (rate constant, 

k) obtained after linear regression by mathematical models considering drug 

release fraction (F) and time (t), as respectively y and x variables, are listed in 

Table 3.5.  
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In zero-order model, drug release would be directly proportional at time and 

totally independent of drug concentration; this means that release proceeds 

until the drug is totally consumed. Zero order release is typical of several types 

of delivery systems loaded with drugs with low solubility in water.cvliii In a first-

order process, the rate of diffusion is directly proportional to concentration of 

the drug. First-order model describes the release profile from the delivery 

systems containing hydrophilic drugs dispersed in porous matrices.cxxix Hixon-

Crowell model can be applied to the delivery systems whose drug release rate is 

proportional to the surface area of the system such as the erosion-dependent 

release systems. This model is used to describe the release profile keeping in 

mind the surface of the drug particles is diminished during the drug 

dissolution. 

Using these three models to fit release curve of doxorubicin from PLGA-PVP 

NPs, the obtained squared correlation coefficients, that indicates how much 

the regression equation truly represent the set of data, is low. In particular, R2 

obtained with the zero-order model was ranged between 0.6 and 0.7. First-

order kinetics gave a R2 of 0.6-0.8. Hixson-Crowell’s cube root model provided 

a R2 of 0.6-0.8. Hence, these models cannot be used for describing the release 

from PLGA-PVP systems. A possible explanation was that DoxB solubility in 

water is higher than the released amounts from NPs, thus it not represents the 

only threshold to diffusion of drug. In addition, PLGA-PVP NPs had not a 

porous matrix and this matrix were not prone to erosion, at least in the time 

interval of analysis. 

Table 3.5. Squared correlation coefficient (R2) and coefficients obtained after 

linear regression of the release data utilizing mathematical models for all drug-

loaded PLGA-PVP NPs. 
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St.Error =Standard error 

Higuchi´s model provided the highest values of R2 (0.8 to 0.97). Higuchi’s 

model has been based on the Fick’s Law, where the release occurs by the 

diffusion of drugs within the delivery system. In this case, the cumulative 

released amount of the drug is proportional at square root of time. Under some 

experimental conditions, the release mechanism can deviate from Fickian 

diffusion, following an anomalous transport (no-Fickian release). In these 

Sample 

Mathematical model (Part A) 

F=kt ln(1-F)=-kt F=kt1/2 

k R2 k R2 k R2 
Value St.Error Value St.Error Value St.Error 

PLGA-g-PVP10:1- Dox pH 5.5 0.028 0.004 0.776 0.040 0.005 0.841 0.130 0.007 0.957 

PLGA-g-PVP10:2-Dox pH 5.5 0.021 0.003 0.799 0.027 0.003 0.849 0.099 0.004 0.974 

PLGA-g-PVP10:1- DoxB pH 5.5 0.033 0.007 0.618 0.051 0.009 0.706 0.166 0.016 0.887 

PLGA-g-PVP10:2-DoxB pH 5.5 0.037 0.007 0.639 0.062 0.010 0.735 0.182 0.016 0.898 

PLGA-g-PVP10:1- Dox pH 7.4 0.013 0.002 0.659 0.015 0.003 0.685 0.065 0.005 0.911 

PLGA-g-PVP10:2-Dox pH 7.4 0.010 0.002 0.670 0.011 0.002 0.688 0.047 0.004 0.917 

PLGA-g-PVP10:1- DoxB pH 7.4 0.010 0.002 0.686 0.011 0.002 0.705 0.050 0.004 0.925 

PLGA-g-PVP10:2-DoxB pH 7.4 0.008 0.001 0.711 0.009 0.001 0.725 0.038 0.003 0.935 

Sample 

Mathematical model (Part B) 

1-(1-F)1/3=kt F=ktn 

R2 k R2 k n R2 
Value St.Error Value St.Error Value St.Error 

PLGA-g-PVP10:1- Dox pH 5.5 0.957 0.012 0.001 0.820 0.168 0.906 0.402 0.046 0.906 

PLGA-g-PVP10:2-Dox pH 5.5 0.974 0.008 0.001 0.833 0.128 0.955 0.400 0.030 0.955 

PLGA-g-PVP10:1- DoxB pH 5.5 0.887 0.015 0.003 0.676 0.309 0.874 0.254 0.031 0.874 

PLGA-g-PVP10:2-DoxB pH 5.5 0.898 0.017 0.003 0.701 0.319 0.859 0.280 0.037 0.859 

PLGA-g-PVP10:1- Dox pH 7.4 0.911 0.005 0.001 0.676 0.113 0.903 0.281 0.030 0.903 

PLGA-g-PVP10:2-Dox pH 7.4 0.917 0.003 0.001 0.682 0.080 0.895 0.294 0.033 0.895 

PLGA-g-PVP10:1- DoxB pH 7.4 0.925 0.004 0.001 0.699 0.081 0.900 0.308 0.034 0.900 

PLGA-g-PVP10:2-DoxB pH 7.4 0.935 0.003 0.000 0.720 0.058 0.895 0.335 0.039 0.895 
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cases, Korsmeier-Peppas model based on a more generic equation can be used. 

This mathematical model relates the exponential drug release versus the elapsed 

time. The model used the release exponent (n) in order to characterize 

different release mechanism. If the n value is 0.5 or less, as in PLGA-PVP NPs 

cases, the release mechanism follow Fickian diffusion (Higuchi model), and 

higher values 0.5 < n < 1 for mass transfer follow a non-Fickian model 

denominates anomalous transport.cxlii 

Thus results obtained with the Korsmeyer-Peppas model corroborated the data 

obtained with the Higuchi model. The result suggests that the release of 

doxorubicin from PLGA-PVP NPs is controlled only by diffusion.  

3.5.2.5 Plasma protein adsorption 

Phagocytosis is mainly initiated by the attachment of the foreign nanoparticles 

to the surface receptors of the phagocytic cells.cxxx This phenomenon, leading 

to nanoparticle elimination, is facilitated by the adsorption of plasma proteins 

to the particle surface.cxxxi Therefore, possibility of plasma protein adsorption 

onto the NP surface was investigated and also the influence of different 

copolymeric matrix on it. Bovine serum albumin (BSA) is the most abundant 

protein in serum and for this reason was chosen for plasma protein adsorption 

study.  

To estimate the potential interaction of BSA with nanoparticles, blank NPs 

were incubated with BSA (10 mg/mL in PBS) under physiological conditions 

for 1 hour, subsequently centrifuged at 7500 rpm for 10 min and supernatant 

recovered. UV-visible spectroscopy at 500 nm was used to determine percent 

adsorbed BSA on PLGA-PVP blank NPs. PLGA blank NPs was also included 

for comparison. Collected data are reported in Table 3.6. As expected, the level 

of protein adsorption gradually reduced along with the density of PVP chain in 

the copolymers. PLGA-PVP10:2 blank NPs did not practically interact with 

BSA molecules. While PLGA showed a clear BSA adsorption tendency with 

average value of about 80%. 

Table 6: Percentage of bovine serum albumin (BSA) adsorbed on PLGA-PVP 

blank NPs and PLGA blank NPs after incubation with BSA physiological 

solution. 
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Sample Percentage of BSA adsorbed 

PLGA Blk NPs 81.6 ± 2.5 

PLGA-PVP10:1 Blk NPs 25.0 ± 2.4 

PLGA-PVP10:2 Blk NPs 3.87 ± 1.6 

3.5.2.6 Proliferation cell inhibition in vitro. 

To test the response of cells to both Dox and DoxB loaded NPs, cell viability 

was assessed by MTT assay, after an exposure of 72 h, and compared with 

blank NPs and free drugs. Figure 3.9, 3.10 and 3.11 show the inhibition of 

MDA-MB-231 cells induced by drug loaded PLGA-PVP and PLGA 

formulations. In general, Dox was more ablative against tumour cell respect of 

DoxB. This trend was confirmed in drug loaded NPs. Analyses revealed for all 

that inhibition trend was dose dependent. Inhibition of 30-35% was reached in 

cases of DoxB-loaded PLGA and PLGA-PVP NPs, in contrast with the only 

7% of free drug, at 0.2 M concentration. A maximum of activity was reached 

by DoxB-loaded PLGA NPs.  

A significant difference in inhibition between Dox-loaded PLGA-PVP10:2 NPs 

and drug in free form was evident at all concentrations used. In particular in 

the case of 0.02 μM, Dox-loaded PLGA-PVP10:2 NPs showed a high inhibition 

of vitality, more than 75%, instead of Dox free showed a moderate inhibition 

of vitality, less than 45%. At same concentration, Dox-loaded PLGA-PVP10:2 

NPs was significantly more ablative also respect to Dox-loaded PLGA-PVP10:1 

NPs and Dox-loaded PLGA NPs that showed an inhibition trend and values 

similar to those explicated by Dox in free form. The blank NPs did not show 

any toxicity even at highest doses, and the MTT values were similar to those 

obtained in untreated cells (data not shown).  

To confirm efficacy of Dox-loaded PLGA-PVP NPs against tumour cells, 

human breast cancer cell line, namely 4T1 and CRL-2335 cell lines, were 

incubated with NPs and viability by MTT test evaluated (Figure 3.12 and 3.13). 

As previously reported, blank NPs did not explicated toxicity against cells at 

any concentrations. The inhibition effect was concentration dependent with 

some differences between the two cell lines and substances. Dox free form 

presented a percent inhibition of 70 and 65 % respectively against 4T1 and 

CRL-2335 cells at 0.2 μM. Similarly, Dox-loaded PLGA-PVP10:1 NPs showed 

an inhibition percentage respectively of 50 and 70 %, while PLGA-PVP10:2 

ones had an inhibition values of 85 and 80 %. At a dose 10 time lower, 
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inhibition by Dox free form turned down to 30 and 10 % and by Dox- loaded 

PLGA-PVP10:1 NPs to 15 and 20 %, instead of Dox-loaded PLGA-PVP10:2 

NPs that kept at high level inhibition, 65 and 70 %.  

 
Figure 3.9. Inhibition percentage of DoxB free and loaded in PLGA-PVP NPs 

on MDA-MB-231 cell line. 

 
Figure 3.10. Inhibition percentage of Dox and DoxB free and loaded in PLGA 

NPs on MDA-MB-231 cell line. 
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Figure 3.11. Inhibition percentage of Dox free and loaded in PLGA-PVP NPs 

on MDA-MB-231 cell line. 

 
Figure 3.12. Inhibition percentage of Dox free and loaded in PLGA-PVP NPs 

on 4T1 cell line. 
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Figure 3.13. Inhibition percentage of Dox free and loaded in PLGA-PVP NPs 

on CRL-2335 cell line. 

3.5.2.7 Viability of PLGA-PVP10:2 NPs on spheroid cultures 

3D cell culture spheroids, present a powerful alternative to standard 2D cell 

culture for in vitro studies.cxxxii The 3D spheroid model is particularly useful to 

mimic solid-tumours from a physiologically relevant architectural perspective. 

For this reason, spheroid cultures of human breast cancer (HCC1906) cells 

were used to test viability of PLGA-PVP10:2 NPs, that gave in 2D in vitro tests 

the best performance when loaded with Dox. HCC1906 was treated with blank 

PLGA-PVP10:2 NPs, at different dilution, at day 5 from the seeding in ULA 

plates. After 72h of treatment, morphology was checked (Figure 3.14). No 

significant changes were observed even in the spheroid cultures treated with 

the highest quantity of blank PLGA-PVP10:2 NPs. 
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Figure 3.14. Spheroid cultures of HCC1906 cells treated with blank PLGA-

PVP10:2 NPs, at different dilution a) Control; b) dilution 1:100; c) dilution 

1:1000; d) dilution 1:10000. 

3.5.3 CONCLUSION: DOXORUBICIN 

In conclusion, results obtained in the present study showed that PLGA-PVP 

copolymers could be used to prepare stable nanoparticles loaded with 

doxorubicin in base and salt forms, using a solvent displacement technique. 

Blank NPs had small dimension, 160 - 170 nm and spheroidal shape as 

evidenced by DLS and TEM respectively. Drug encapsulation led to an 

increase of size and in the case PLGA-PVP10:1 a change in morphology, which 

showed a rod-like particles. Increasing initial amount of drug, in all prepared 

formulation an increase of drug loading was evidenced reaching values higher 

than 3 %. All particles presented a negative charged surface, probably due to 

carboxylic acid end-group of PLGA. Increasing PVP amount in copolymers, 

zeta potential values increase, leading to less negative surface; similar trend was 

evidenced also in the case of drug-loaded NPs. In particular Dox-loaded NPs 

had always lower negative surface than DoxB-loaded ones. pH and osmolarity 

measurements confirmed the presence cell compatible solutions. BSA 

adsorption on PLGA-PVP NP surface was meaningfully reduced respect of 

PLGA NP one, indicating that were stealth nanoparticles. Data clearly 

indicated a lower inclination of PLGA-PVP NPs for opsonization 

phenomenon, ensuring a prolonged in circulation half-life compared to PLGA 
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NPs one. Release studies of both drugs at pH 7.4 showed a doxorubicin 

retention by PLGA-PVP NPs during 24 h. An initial burst release and then 

sustained release phase were conversely typical trend at pH 5.5. At both pHs 

and for all studied systems, Higuchi kinetic model well-fitted release data 

indicating that diffusion was the principle mechanism involved. The 

cytotoxicity against MDA-MB 231 cell line of DoxB-loaded NPs was slightly 

lower than that of Dox ones and for this reason they were not further 

investigated. MTT assays on MDA-MB 231 together with 4T1 and CRL-2335 

cell lines evidenced that Dox-loaded PLGA-PVP10:2 NPs highly affected cancer 

cell proliferation, allowed an inhibition activity of about 65-95 % at 0.02M. At 

the same concentration, Dox free inhibited proliferation of only 25% of treated 

cells. Thus, it can be concluded that Dox-loaded PLGA-PVP10:2 NPs were 

capable of providing an efficient anticancer activity. In addition, in all 

considered cases blank PLGA-PVP NPs were safe and this result was 

confirmed by incubation with 3D spheroid cultures. 

  



CHAPTER 3 

FORMULATION OF PLGA-g-PVP COPOLYMERS 

 

120 
 

3.6 ANTIMALARIAL PROJECTS EXPERIMENTAL PART 

3.6.1 METHODS 

3.6.1.1 Materials and Instruments 

PLGA-PVP10:1 and PLGA-PVP20:1 were prepared according to the procedure 

reported in Chapter 2, Paragraphs 2.3.4.1. Epikuron® 200 (soya 

phosphatidylcholine 95%) was purchased by Degussa GmbH, Hamburg, 

Germany. Mygliol® 812 (medium-chain triglycerides containing 57% caprylic 

acid (C8), 41.4% capric acid (C10) and 0.6% lauric acid (C12))was purchased 

from Cremer Oleo division (Hamburg, Germany). Pluronics F68, Tween 80, 

isopropyl myristate, dioctyl sulfosuccinate sodium salt (DOSS) and other 

chemicals and solvents were supplied by Sigma- Aldrich (Italy) at reagent grade 

and used without further purifications. Artemisinin (Art) was purchased from 

Tocris Bioscience (United Kingdom) and Curcumin (Cur) from Sigma-Aldrich 

(Spain). Ultra-Turrax SG215 homogenizer was from IKA Staufen, Germany. 

High pressure homogenizer was Emulsiflex C5 by Avestin, Canada. For 

biological tests, 96 well plates and Gibco™ RPMI 1640 Complete Medium 

were bought from Thermo Fisher Scientific, 0.2 M L-glutamine solution, 

phosphate buffered saline (PBS) powder and Triton™ X-100 from Sigma-

Aldrich (Spain), SYTO® 11 Green Fluorescent Nucleic Acid Stain from Life 

Technologies by Thermo Fisher Scientific.  

Particle size and polydispersion index (PDI) were determined by photon 

correlation spectroscopy (PCS), employing a 90 PLUS Particle Size Analyzer at 

a fixed angle of 90° and a temperature of 25 °C. The laser light (He/Ne) 

wavelength was 678 nm. Two drops of sample were diluted directly into the 

cuvette sample holder with previously filtered water. All determinations were 

carried out in triplicate and the results were expressed as the average diameter 

(expressed in nm) and PDI as measure of the distribution width. 

Zeta potential measurements were determined using 90 PLUS Particle Size 

Analyzer. Nanoparticle solution was diluted with few drops of a 1 mM KCl 

solution. A minimum of five runs was obtained per sample. 
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Transmission electron microscopy (TEM) analysis was performed using a 

Philips CM10 instrument. Nanoparticle solution was stained with a 2% 

solution of osmium tetraoxide. 

Optical microscopy analysis was carried out using a Motic AE 31inverted 

microscope equipped with Motic MHG - 100B using Ex D350/50x, DM 

400DCLP and BA D460/50m. Magnification LWD 600x. 

Osmolarity was measured using Semi-micro osmometer K-7400 with 

measuring head for glass vessels. 300 mOsmol solution of sodium chloride 

used for reference standard. 

3.6.1.2 Formulation of drug loaded and blank nanocapsules 

7.0 mg of artemisinin or curcumin and 70.0 mg of Epikuron 200 were 

dissolved in 220.0 mg di Tween 80 in presence of 300 µL of decanol and 300 

μL isopropyl miristate under stirring at room temperature. Ultrafiltered water 

(10 mL) was added under vigorous stirring allowing to a milky mixture. This 

emulsion was dispersed for 5 minutes by Ultra-Turrax at 30000 rpm and for 1 

hour by a high pressure homogenizer. 3.5 mL of each emulsion were putted in 

a 10 mL flask at 40°C and under vigorous magnetic stirring 400 μL of 15 

mg/mL (15:75 v/v) DMSO/Acetone PLGA-PVP10:1 or PLGA-PVP10:2 

solution was drop-wise added into. After 3 hours, drug loaded nanocapsules 

were collected and stored in fridge.  

Blank nanocapsules were prepared by the same method in absence of drug. 

3.6.1.3 Artemisinin assay 

The quantitative determination of artemisinin was performed by reverse-phase 

high performance liquid chromatography using a Binary LC 250 pump (Perkin 

Elmer). Stationary phase was a Ultrasphere ODS (C18) 5-μm HPLC Columns 

(250×4.6 mm, Beckman). Mobile phase was acetonitrile/0.1% v/v acetic acid 

at a ratio 70:30 v/v; the flow rate was fixed at 1.0 ml/min and the detector UV 

(LC 95 UV/Visible detector, Perkin Elmer) at λ=254 ηm.  

Experimental conditions for standard preparation was rearranged from a 

procedure previously described in literature.cxxxiii Briefly, 1 mg/mL of 

artemisinin solution in acetone was prepared was placed in a 10 mL measuring 

flask. Three dilutions of the stock solution were prepared adding in a 10 mL 
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measuring flask as follows: a) 0.2 mL of artemisinin solution and 0.8 ml of 

acetone; b) 0.5 ml of artemisinin solution and 0.5 ml of acetone; c) 1 ml of 

artemisinin solution alone without acetone. This was followed by the addition 

of 4 ml of 0.2 % NaOH solution to the three flasks respectively, and then, 

allowed to react at 50 °C for 30 min. After that, 0.08 mol/L acetic acid solution 

was used to reach the final volume.  

In Art-loaded PLGA-PVP NCaps, Art content was evaluated preparing 

samples as follows: nanocapsules were dissolved 200 µL in 1.8 mL of acetone 

into a 5 mL measuring flask. 1 ml of 0.2 % NaOH solution was added to the 

flask and allowed to react at 50 °C for 30 min after which 0.08 mol/L acetic 

acid solution was added to fill up to the mark. All solutions were applied to 

HPLC-UV in order to evaluate Art encapsulation efficiency % (E.E. %) using 

Equation 3: 

       

(

 
 [    ]        

[     ]          
⁄

)

 
 

         Equation 3 

where [Art]Exp was Art concentration found experimentally by and [Art]Theor 

was theoretical concentration of Art present in NCaps if all the amount of drug 

was totally encapsulated, both concentrations were expressed in mM. 

3.6.1.4 Curcumin assay 

Cur loading of NCaps was evaluated using a Beckman Coulter DU® UV/Vis 

spectrophotometer. A standard solution 0.1 mg/mL of Cur in acetone was 

prepared dissolving 1 mg was accurately weighed and transferred in a 100ml 

volumetric flask. 5, 2.5, 1.25, 0.75, 0.375 mL of Cur standard solution were 

transferred in 10 mL measuring flasks and diluted to mark with acetone. 200 

µL Cur-loaded PLGA-PVP NCaps was dissolved in acetone in a 10mL 

measuring flask. All solutions were analysed at wavelength of 425 ηm in 

triplicate. Entrapment efficacy was evaluated by equation 4: 

       

(

 
 [    ]        
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        Equation 4 
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where [Cur]Exp was Cur concentration found experimentally by and [Cur]Theor 

was theoretical concentration of Cur present in NCaps if all the amount of 

drug was totally encapsulated, both concentrations were expressed in mM. 

3.6.1.5 Stability studies 

Blank, Art-loaded and Cur-loaded NCaps were stored at room temperature 

(about 27°C) for thirty days. Stability was evaluated by comparing the initial 

particle size, PdI (polydispersity index) with those obtained from samples 

withdrawn after 1, 7, 14, 21, and 28 days of storage. 

3.6.1.6 Growth Inhibition Assay 

In order to perform a growth inhibition assay, Plasmodium falciparum (3D7) 

culture was synchronize by 5% sorbitol lysis before the experiment. Seventy-

five µL of P. falciparum were plated in 96-well plate at 1.5% parasitemia and 

3% haematocrit. Samples (2x) were added to the culture dissolved in 75 µL of 

RPMI complete medium as the culture. After 48h parasitemia was analysed by 

fluorescent-assisted cell sorting (FACS). 

3.6.1.7 Haemolysis Assay 

Human blood collected in citrate-phosphate-dextrose (CPD) buffer was 

washed and diluted in PBS to make a solution with 3% haematocrit. 100 µL of 

RBCs were placed into 96-well plate and 100 µL of each PLGA-g-PVP in 

different concentrations (2x) were added. Same amount of PLGA-g-PVP than 

in the GIA’s was here tested. As controls, 1% Triton X-100, for the positive 

one, and PBS for the negative one were used. After incubating with the 

samples for 3h and 24h at 37°C, plates were centrifuge at 1500 rpm during 5 

min and supernatants were measured at 541ηm. 

3.6.2 RESULTS AND DISCUSSIONS: ARTEMISIMIN AND 

CURCUMIN LOADED NANOCAPSULES. 

3.6.2.1 Polymeric lipid nanocapsules preparation 

Polymeric nanocapsules (NCaps) are submicronic carriers consisted of an oily 

core surrounded by a polymeric shell with lipophilic and/or hydrophilic 



CHAPTER 3 

FORMULATION OF PLGA-g-PVP COPOLYMERS 

 

124 
 

surfactants assembled at the interface.cxxxiv The main advantages of polymeric 

NCaps are the possibility of loading high amount of water insoluble drug 

molecules into the oil core, their physicochemical stability, and protection 

against enzymatic degradation due to the presence of the polymeric 

wall.cxxxv,cxxxvi For these reasons NCaps were chosen as delivery system of 

artemisinin and curcumin, hydrophobic drugs, for antimalarial activity. PLGA-

PVP copolymers were used as polymeric shell of NCaps, thank to their stealth 

properties, long term stability and drug retention as demonstrated in a previous 

work.  

PLGA-PVP copolymers due to ester groups along PLGA chain and, in 

particular way, to the carboxylic acid as one terminal, present a negative zeta 

potential when used to form nanoparticles. This negative surface charge was 

here used to form stable shell on oily core of a nanocapsules, by ionic 

interactions. Oily core was thus prepared in order to have a positive surface 

charge. Epikuron 200 consisted in purified phosphatidylcholine was used as 

hydrophobic surfactant of mygliol 812, a triglyceride of the fractionated plant 

fatty acids with alkyl chains of C8 and C10, in presence of hydrophilic 

surfactants such as dioctylsulfosuccinate (DOSS), Pluronics F68 or Tween 80. 

Solids were firstly solubilised in mygliol and after the whole solution diluted 

with water under stirring. Microemulsion was obtained homogenizing for 5 

min at 30000 rpm by Ultra-Turrax, and nanosized droplets after 1 hour 

treatment by high pressure homogenizer. Particle sizes and zeta potentials of 

obtained emulsions were evaluated and listed in Table 7. The smallest oily 

droplets (93 nm) with the most positive surface charge (+24 mV) was reached 

by using Tween 80 as surfactant. A further trials were attempted changing the 

oil and using ones with a longer alkyl chain, i.e. isopropyl-myristate (i-pr-myr, 

C14+C3), and oleic acid (C18). I-pr-myr in presence of Tween 80 and 

Epikuron 200 gave drop size of 94 nm and comparable zeta potential value of 

those obtained using mygliol 812. Probably size reduction was due to a more 

affinity between isopropyl groups and apolar chains in the hydrophilic head of 

both surfactants. Instead of oleic acid had similar behaviour of mygliol 812. 

Therefore, isopropyl-myristate was successively used to form nanocapsules. 

Amount of Tween 80 in recipe was adjusted. Both lower and higher amounts 

of surfactant caused droplet aggregation, but decreasing Tween 80 zeta 

potential increased. Despite last findings, 200 mg of Tween 80 was chosen. 
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Table 7. Zeta potentials and size of lipid core of nanoparticles varying 

emulsifier and lipid. 

Sample 
ζ Potential ± 

σ (mV) 
Size ± σ (nm) PDI ± σ 

Epika), DOSSb), Mygliolc) +20.04 ± 3.93 133.1 ± 16.1 0.30 ± 0.04 

Epik, Plud), Mygliol +18.12 ± 1.00 160.9 ± 12.2 0.301 ± 0.003 

Epik, Tween 80, Mygliol +20.18 ± 1.50 128.5 ± 1.4 0.280 ± 0.005 

Epik, Tween 80, oleic acid +21.89 ± 3.65 113.8 ± 2.7 0.304 ± 0.022 

Epik, (200 mg) Tween 80, i-pr-myre) +23.57 ± 1.19 94.7 ± 4.0 0.210 ± 0.02 

Epik, (100 mg) Tween 80, i-pr-myre +24.75 ± 1.85 118.2 ± 2.2 0.340 ± 0.008 

Epik, (400 mg)Tween 80, i-pr-myre) +16.89 ± 2.42 115.2 ± 1.2 0.299 ± 0.015 

a) Epikuron 200; b) DOSS= dioctylsulfosuccinate; c)Mygliol 810; d) Pluronic F68; 
e) isopropyl-myristate. 

Influence of different alcohols on droplet size was evaluated. Butanol was 

knew to influence arrangements in lipid monolayercxxxvii and it was 

hypothesised that could contribute also in rearrangement in oily droplet. 

Butanol like ethanol and other short chain alcohols (up to C6), by hydrogen 

bonds to carbonyl groups in the lipid headgroups, leads reducing interlipid van 

der Waals attraction, and increasing membrane elasticity.cxxxviii,cxxxix When used 

with mixture of satured and unsatured lipids, it reduced the tail mismatch 

between the two lipids.clv 

In droplets, it was hypothesised that butanol and other alcohols act similarly, 

reducing tail mismatch between surfactant and i-pr-myristate, leading to size 

reduction. Results are depicted in Table 8. 

In this study methanol, ethanol and propanol was not used, because they are 

incompatible with PLGA-PVP copolymers, leading to their precipitation. Thus, 

the first alcohol tested was butanol by using different volume to dissolve oil 

and surfactants. In all three tests a reducing of size was obtained, but the 

smallest dimension (39.9 nm) was reached using 300 µL of butanol. Using the 

same volume, hexanol, heptanol, decanol and benzyl alcohol were evaluated as 
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lipid compatibilizer. Benzyl alcohol did not affect droplet size, confirming that 

a long alkyl chain in alcohol structure was fundamental. 1-decanol gave the best 

result, reaching droplet size of 28.9 nm, instead of 94.7 nm of original recipe. 

Table 8. Size dependence by kind and amount of alcohol used to dissolve oil 

and surfactants. 

Alcohol Volume (µL) Particles size ±σ (nm) PDI ±σ 

No alcohol -- 94.7 ± 4.0 0.210 ± 0.02 

1-Butanol 500 57.9 ± 3.0 0.295 ± 0.015 

1-Butanol 300 39.9 ± 3.0 0.308 ± 0.017 

1-Butanol 200 66.8 ± 2.4 0.258 ± 0.013 

1-Hexanol 300 43.2 ± 3.3 0.211 ± 0.024 

1-Heptanol 300 53.8 ± 2.2 0.237 ± 0.014 

1-Decanol 300 28.9 ± 0.5 0.231 ± 0.012 

Benzyl alcohol 300 84.7 ± 3.9 0.344 ± 0.005 

 

3.6.2.2 Drug encapsulation 

Once optimized formulation parameters for obtaining empty oily nanodroplets 

having small dimensions, anti-malarial drugs encapsulation was studied. 

Three different concentrations of artemisinin and curcumin were prepared, 0.4, 

0.7 and 1.0 mg/mL of each drug, and resulting droplet size and morphology 

were evaluated by DLS and optical microscopy. Results are listed in Table 9 

and depicted in Figure 15. 

In all cases a slight increase in size was observed. Focusing on Art 

encapsulation, it was possible to appreciate a droplet size decreasing, when 

drug concentration in recipe was increased. Nevertheless, in 1.0 mg/mL Art-

loaded droplet, several crystals of not encapsulated Art were visible at optical 
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microscope and thus 0.7 mg/mL solution was chosen for nanocapsule 

formation. On the other hand, Cur behaved differently with a minimum in size 

at 0.7 mg/mL. No crystals were detected when analysed by optical microscope 

(Figure 15). 

 

Figure 15. Optical microscopy pictures of Art-loaded droplets and Cur-loaded 

droplets with three different drug loading. 

Table 9. Droplet sizes by DLS after encapsulation of different amounts of 

drugs. 

Concentration 

(mg/mL) 

Artemisinin Curcumin 

Particles size ±σ 

(nm) 
PDI ±σ 

Particles size ±σ 

(nm) 
PDI ±σ 

0.4 59.6 ± 0.3 0.19 ± 0.01 54.8 ± 0.7 0.21 ± 0.01 

0.7 33.2 ± 0.5 0.19 ± 0.01 34.1 ± 0.2 0.13 ± 0.03 

1.0 31.7 ± 0.5 0.22± 0.01 42.5 ± 0.5 0.20 ± 0.001 

Final concentration of Art and Cur were evaluated by HPLC-UV and UV-

Visible spectroscopy respectively, using calibration curve previously prepared 

(Figure 16 and 17). Drug concentration and encapsulation efficiency were listed 

in Table 10. Artemisinin was closely total encapsulated with an E.E.% of 99 %, 

instead of Cur that presented an E.E.% of 74%, confirming that in both case 

drugs and i-pr-myristate have a good compatibility. 
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Figure 16. Calibration curve of curcumin by UV-Visible spectroscopy. 

 
Figure 17. Calibration curve of artemisinin by HPLC-UV-Vis. 

Table 10. Concentration of encapsulated drug in oily droplets and 

encapsulation efficacy percentage (E.E.%). 

Anti-malarial drug Concentration (mM) E.E.% 

Curcumin 1.42 74 

Artemisinin 2.46 99 

3.6.2.3 Drug-loaded PLGA-PVP NCaps characterization 

Droplets were coated with PLGA-PVP copolymers by depositing of a layer of 

on oily droplet, dropping 400 µL a 30:70 DMSO/acetone copolymeric solution 

(15 mg/mL) under vigorous stirring. Schematic portrait of whole NCaps 

preparation was depicted in Figure 18 together with inserts of optical and TEM 



CHAPTER 3 

FORMULATION OF PLGA-g-PVP COPOLYMERS 

 

129 
 

image of oily droplets and final formulation of Art-loaded PLGA-PVP10:2 

NCaps.  

PLGA-PVP10:1 and PLGA-PVP10:2 were used as copolymers, in order to study 

the dependence of drug-loaded NCap properties with PVP content in 

copolymers. As greatly described in Chapter 2, PVP weight content % in 

copolymers was 6.7 and 18.8, respectively for PLGA-PVP10:1 and PLGA-

PVP10:2.  

A thick copolymeric shell was obtained for all nanocapsules as demonstrated 

by the increase in particle size by DLS analysis and the variation of surface 

charge in negative sign from positive one, characteristic of nude oily droplets 

(Table 11 and 12), as showed by zeta potential analysis. In details, for PLGA-

PVP10:1 NCaps, diameters ranged between 57 to 75 nm with an increase in size 

of about 30 nm respect of the only oily droplets. For PLGA-PVP10:2 NCaps, 

diameters ranged between 55 to 95 nm, and usually greater those obtained 

from PLGA-PVP10:1 NCaps. In regard of kind of drug, passing from Cur- to 

Art-loaded NCaps a diameter increase was detected. 
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Figure 18. Schematic portrayal of drug-loaded PLGA-PVP nanocapsules, with 

insert of image of oily droplets (a) by optical microscope and Art-loaded 

PLGA-PVP10:1 NCaps after at high pressure homogenization (HPH) treatment 

(b) by TEM. 

Zeta potentials were more dependent from the kind of copolymer used to 

coated oily droplets and in particular PLGA-PVP10:2 NCaps always showed less 

negative surface charges than PLGA-PVP10:1 NCaps. No significant 

dissimilarities were observed changing kind of drug used. In Table 12 

osmolarity values of PLGA-PVP NCaps were also listed. 

It is essential to maintain isotonicity for the intravenous application of 

formulations. Osmolarity values varied from 130 to 240 mOsmol, indicated 

that all formulation were ipotonic. Thus, non-ionic substances such as glycerol 

or carbohydrate were recommended for use to reach isotonicity, before 

biological tests in vitro will be performed.  

Table 11. Particle sizes by DLS of empty, Cur-loaded and Art-loaded 

nanocapsules with the two different copolymeric shells. 

NCaps 
PLGA-PVP10:1 PLGA-PVP10:2 

Particles size ±σ (nm) PDI ±σ Particles size ±σ (nm) PDI ±σ 

Empty  57.1 ± 0.8 0.27 ± 0.01 69.5 ± 1.0 0.30 ± 0.01 

Cur-loaded  67.6 ± 0.6 0.17 ± 0.03 54.7 ± 0.1 0.20 ± 0.01 

Art-loaded 74.7 ± 0.7 0.20 ± 0.02 94.6 ± 0.7 0.26 ± 0.01 

 

Table 12. Zeta potentials and osmolarity of empty, Cur-loaded and Art-loaded 

nanocapsules with the two different copolymeric shells. 

NCaps 

PLGA-PVP10:1 PLGA-PVP10:2 

Zeta potential 

±σ (mV) 

Osmolarity 

(mOsmol) 

Zeta potential 

±σ (mV) 

Osmolarity 

(mOsmol) 

Empty  -11.54 ± 4.05 145 -7.56 ± 1.82 130 

Cur-loaded  -12.37 ± 4.66 241 -10.78 ± 4.93 204 

Art-loaded -14.07 ± 2.94 200 -13.03 ± 2.39 160 
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3.6.2.4 Stability studies 

Stability studies of empty and drug-loaded PLGA-PVP NCaps were performed 

in order to assess the influence of ingredients on the stability of the colloidal 

suspensions. For this purpose, mean diameter and PDI of PLGA-PVP NCaps 

dispersions were determined after different storage times (1, 7, 14, 21, 28 days) 

at room temperature (~27°C). Stability data are shown as average values and 

errors in Figure 19. After thirty days, PLGA-PVP NCaps dispersions were 

apparently homogeneous, without any visible precipitates, phase separation or 

flocculation. Furthermore, PLGA-PVP NCaps did not exhibit significant 

alterations in particle size, save at the end of experiment, slightly increase in 

size could be observed. PDI values were ranged between 0.10 and 0.30, 

indicating that a narrow distribution of particle size was present. 

 

A) 
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Figure 19. Stability study of blank and drug-loaded PLGA-PVP NCaps after 1, 

7, 14, 21, 28 days, regarding of A) dimensional diameter (size in nm) and B) 

polydispersity (PDI) with their error bars. 

3.6.2.5 In vitro biological studies 

In an attempt to verify if PLGA-PVP NCaps could increase Art and Cur 

cytotoxicity, in vitro cytotoxicity studies were performed with FACS assay and 

Plasmodium Falciparum infected red blood cells (p-RBC) (3D7 culture lines). 

Nine different concentrations of free Cur (0.780-200 µM) and free Art (0.195-

50 nM) were added to the cell culture, which was incubated for 48 h. From 

growth inhibition curve depicted in Figure 20, it was possible to infer the IC50 

values for both free drugs, that were 7.93 μM and 29.7 nM, for Cur and Art 

respectively.  

B) 
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Figure 20. Growth inhibition % of pRGB in function of log of drug 

concentration: A) free curcumin; B) free artemisinin. 

Similar experiments were conducted on Cur-loaded PLGA-PVP NCaps and 

emply ones. Tested drug amounts and the corresponding NCap concentrations 

were reported in Table 13. From preliminary results, after 48h of co-

incubation, examination of p-RBC untreated group showed 100 % parasitemia, 

whereas a reduction of parasitemia was explicated after that pRBCs were 

treated with Cur-loaded PLGA-PVP NCaps (Figure 21). Also empty PLGA-

PVP NCaps caused reduction of parasitemia, but in a lower extent respect of 

drug-loaded NCaps. IC50 of Cur loaded PLGA-PVP10:1 NCaps was found to be 

0.5 μM, instead of Cur-loaded PLGA-PVP10:2 NCaps was 0.4 μM. Both IC50 

values are significantly lower than IC50 of free curcumin (~8.0 microM).  

By microscopic examinations, some p-RBCs were lysed when kept in contact 

with the formulation at highest concentration (1.56 μM). Nevertheless, more 

diluted formulations resulted not-toxic against p-RBCs, even if parasitemia was 

maintained. 

Table 13. Cur concentrations tested during growth inhibition assay of Cur-

loaded PLGA-PVP NCaps and corresponding NCap concentrations herein 

present. 

Cur loaded in 
PLGA-PVP10:1 

(μM) 

NCaps conc 
 (μg/mL) 

Cur loaded in 
PLGA-PVP10:2 

(μM) 

NCaps conc  
(μg/mL) 

1.56 8.47 1.17 6.34 

A) B) 

Free 
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0.78 4.24 0.58 3.17 

0.39 2.12 0.29 1.58 

0.20 1.06 0.15 0.79 

 
Figure 21. Growth inhibition curve of the free curcumin (black line), Cur-

loaded PLGA-PVP10:1 NCaps (red line) Cur-loaded PLGA-PVP10:2 NCaps (blue 

line) and empty PLGA-PVP10:1 NCaps (purple line) and empty PLGA-PVP10:2 

NCaps (green line). 

Figure 22 reported the effect of Art-loaded formulations on pRBCs after 48h 

of incubation. At tested concentrations listed in Table 14, only PLGA-PVP10:2 

NCaps resulted efficient in p-RBC ablation, but the IC50 value (38.8 nM) was 

greater than free Art (29.7 nM), indicating that Art was not easily released, but 

almost all retained inside the core of the particles. Empty NCaps did not 

inhibit p-RBC growth. No lysis of p-RBCs was evidenced during the 

experiment. 

Table 14. Art concentrations tested during growth inhibition assay of Art-

loaded PLGA-PVP NCaps and corresponding NCap concentrations herein 

present. 
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Art loaded in 

PLGA-PVP NCaps 

(nM) 

NCap conc 

(ng/mL) 

50.0 165 

25.0 82.3 

12.5 41.1 

6.25 20.6 

3.13 10.3 

1.56 5.14 

0.78 2.57 

0.39 1.29 

0.20 0.64 

 
Figure 22. Growth inhibition curve of the free artemisinin, Art-loaded PLGA-

PVP NCaps and empty PLGA-PVP NCaps. 

To clarify if the lysis of pRBCs could contribute to inhibition of parasitemia, a 

haemolysis assay was performed with healthy red blood cells (RBCs) and blank 

PLGA-PVP NCaps. Seven dilution of empty PLGA-PVP NCaps were tested, 

covering all dilution range used in growth inhibition assays of drug-loaded 

NCaps (Table 15). After 3 h, no haemolysis properties was noted. After 24 h, 

only D1 caused slightly haemolysis, but further dilutions resulting totally safe. 

D1 dilution corresponded to double of first concentration used in growth 

inhibition assay. Thus, tested solutions resulted safe for healthy RBC cultures. 

Further experiments are planned to confirm all data. 
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Table 15. Dilutions of empty PLGA-PVP NCaps tested in haemolysis assay 

with healthy red blood cells. 

Dilution  
code 

NCap concentration 
 (μg/mL) 

D1 17.0 
D2 8.47 

D3 4.24 
D4 2.12 

D5 1.06 
D6 0.164 

D7 6.43.10-4 

 

Figure 23. Haemolysis of RBCs at different concentration of empty PLGA-

PVP NCaps after 3 and 24 h of incubation. 

3.6.3 CONCLUSIONS: ARTEMISIMIN AND CURCUMIN LOADED 

NANOCAPSULES 

In conclusion, results obtained in the present study showed that PLGA-PVP 

copolymers could be used as shell to prepare stable oily nanocapsules loaded 

with artemisinin and curcumin. Empty PLGA-PVP NCaps had small 

dimensions, about 50-60 nm as measured by DLS. Drug-loaded NCaps 

presented increased diameters, leading to 70-90 nm. High encapsulation 

efficacy was reached for all formulations, in particular in the case of 

artemisinin-loaded NCaps. Characterization of nanocapsules was conducted 

evaluating zeta potentials. All particles presented a negative charged surface, 

after PLGA-PVP deposition as shell. Increasing PVP amount in copolymers, 

zeta potential values increase, leading to less negative surface. No significantly 

difference between the two different drugs was evidenced. Stability studies of 

empty and drug-loaded PLGA-PVP NCaps were performed. After thirty days, 
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PLGA-PVP NCaps dispersions were apparently homogeneous, without any 

visible precipitates, phase separation or flocculation. Furthermore, PLGA-PVP 

NCaps did not exhibit significant alterations in particle size.  

Growth inhibition assay were evaluated after 48 h of incubation with 

Plasmodium Falciparum infected red blood cells of empty PLGA-PVP NCaps, 

drug-loaded PLGA-PVP NCaps and free drugs. Cur-loaded PLGA-PVP 

NCaps presented an IC50 ten times lower than one of free curcumin. In the 

case of Art-loaded NCaps, only PLGA-PVP10:2 one resulted efficient in p-RBC 

ablation, but the IC50 value was greater than free Art, indicating that Art was 

not easily released, but almost all retained inside the core of the particles. 

Haemolysis assay of empty NCaps evidenced only a slight activity at higher 

concentrations than ones tested in growth inhibition assay. 

This preliminary results indicated that both Cur-loaded PLGA-PVP NCaps 

were effective as antimalarial treatment. Art-loaded PLGA-PVP NCaps have to 

be perfect in order to promote drug release. Target could be reached by 

reducing PLGA-PVP shell or reducing stabiliser amounts at the start of 

preparation. Further experiments will be conducted.  
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CHAPTER 4 

NANOFIBRE FORMATION OF PLGA-g-PVP /PLGA BY 

ELECTROSPINNING 

“The purpose of this piece of work is to produce nanofibre based scaffolds of PLGA, having 

a modulable wettability, by incorporating PLGA-PVP copolymer in the fibre structure. 

Single and coaxial electrospinning techniques were employed for this aim.” 

 

4.1 ELECTROSPINNING TECHNIQUE 

Electrospinning technique was derived by modification the electrospraying 

phenomenon. Indeed, both processes are based on the same physical and 

electrical mechanisms, but differ in the geometry of final products, small 

droplets by electrospraying, whereas continuous fibres by electrospinning are 

formed.i The electrospray phenomenon was firstly described by Lord Rayleigh 

in 1882,ii discovering that a highly-charged droplet was unstable when passed 

through a voltage gradient with the consequence break down into smaller 

droplets. Following experiment electrosprays of dilute polymer solutions were 

performed by Dole.iii In 1934, Formhals granted a series of U.S. patents on 

electrospun fine fibres from a cellulose acetate.iv In 1966, Simons found that 

more viscous solutions favoured the formation of longer fibres.v Baumgarten 

designed an apparatus with an infusion pump to electrospun acrylic fibres, and 

discovered that the diameter of fibres could be controlled by the polymer feed 

rate from the infusion pump.vi Finally, Larrondo and Manley electrospun 

polypropylene and produced polyethylene nanofibres in 1981.vii,viii,ix 



CHAPTER 4 

NANOFIBRE FORMATION OF PLGA-g-PVP COPOLYMER BY 

ELECTROSPINNING 

146 
 

4.2 ELECTROSPINNING APPARATUS 

The electrospinning apparatus consists of only three major components: a high 

voltage power supply, a polymer solution reservoir (usually a syringe, with a 

small diameter needle, named spinneret) with or without a flow control pump, 

and a metal collecting screen (Figure 4.1). 

 

Figure 4.1. Schematic portrayal of a electrospinning apparatus. Figure adapted 

from reference. x 

A syringe pump is typically used to force the polymeric solution through a 

small-diameter capillary, but also gravitational forces, or pressurized gas can be 

used for this aim. As consequence of this pressure, a hemispherical droplet of 

polymer solution is formed at the tip of the needle. Successively, an electrode 

from the high voltage source is immersed in the solution (or can be directly 

attached to the capillary if a metal needle is used) and when the voltage source 

is turned on, the electrode charges the polymeric solution. x With increasing 

voltage, the polymer droplet elongates to form a conical shape, known as the 

Taylor cone, causing a raising of surface charge on droplet over time. xi,xii Once 

the surface charge overcomes the surface tension of the polymer droplet, a 

polymer jet is initiated. If the molecular cohesion of the liquid is low, jet 

breakup occurs and polymer is electrosprayed and not electrospinned.xiii 

During travel to reach the collecting screen, the solvent in the polymer jet 

evaporates, increasing the surface charge that induces instability in the polymer 
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jet when it passes through the electric field. To compensate this instability, the 

polymer jet divides geometrically, first into two jets, and then into many more 

as the process repeats itself. Eventually, fibre jet arrived by a helical motion 

(Figure 4.2) and deposited layer-by-layer on the metal collecting screen, 

forming a non-woven nanofibrous mat.xiv,xv  

 

Figure 2. Particular of Taylor cone and helicoidally motion of fibre jet. Figure 

take from reference.xvi 

Depending on the application a number of collector configurations can be 

used, including a stationary plate, rotating mandrel, solvent (e.g. water), etc. 

Typically the use of a stationary collector will result in the formation of a 

randomly oriented fibre mat. A rotating collector can be used to generate mats 

with aligned fibres, with the rotation speed playing an important role in 

determining the degree of anisotropy.xvii This technique allows for the 

production of polymer fibres with diameters varying from 3 nm to greater than 

5 μm.xviii 

4.3 PARAMETERS OF ELECTROSPINNING PROCESS 

Electrospinning is a relatively simple and versatile method for forming non-

woven fibrous mats, but a number of processing parameters must be tuned to 

adjust the properties of the generated fibres. Both extrinsic parameters, such as 

humidity and temperature, and intrinsic parameters, namely applied voltage, 
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conductivity and viscosity of the polymer solution, need to be optimized to 

produce uniform nanofibres.xix Generally, the intrinsic parameters are more 

critical in determining the nanofibre structure. 

Polymer Solution Viscosity. Polymer solution viscosity is the most critical 

factor in controlling the structural morphology of the nanofibrous structure. It 

is directly proportional to the concentration of the polymer solution and to 

molecular weight of polymer. The polymer concentration determines the 

spinnability of a solution, namely whether a fibre forms or not.xvi For the 

formation of uniform and dimensionally narrow fibres, polymer viscosity 

should be in a specific range, depending on the type of polymer and solvent 

used. If the solution is too dilute, then, the polymer fibre will break up into 

droplets before reaching the collector, due to the effects of surface tension.xx 

With increasing polymer concentration and thus viscosity, spherical beads 

become elongated into spindle-shaped ones, and number of beads in the 

structure is reduced.xxi In some cases, increasing the concentration of a 

polymer solution can also affect its surface tension.xxii For solutions that are 

too concentrated (and therefore too viscous), the droplet dries out at the tip 

before jets could be initiated, preventing electrospinning.xxiii An example of 

how polymer concentration and viscosity influence morphology and diameter 

of fibres is showed in Figure 4.3. 
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Figure 4.3. SEM Image. Effect of polymer concentration on fibre diameter. 

Fibres were electrospun from solutions containing varying concentrations of 

poly(ethylene- co -vinyl alcohol) in 70:30 (v/v) 2-propanol: DI water. Top left 

to bottom left: 5.5% (g/mL), 8.5% (g/mL) and 11.5% (g/mL) solutions. 

Bottom right plot of average fibre diameter against polymer concentration. 

Figure adapted from reference. xxiii 

Applied Charge Density. Charge density is defined as the amount of charge 

per unit surface area of the polymer droplet. It is the sum of different 

contribute, namely the applied voltage, the distance between needle and 

collector of apparatus, and the conductivity of the polymer solution. The 

distance between capillary tip and collector can also influence fibre size by 1-2 

orders of magnitude. Additionally, this distance can dictate whether the end 

result is electrospinning or electrospraying.xxiv Applied voltage ( i.e. strength of 

electric field) alters shape of surface at which Taylor cone and fibre jet are 

formed.xxv In particular, at relatively low applied voltages, a polymeric pendant 

drop is formed at the tip of the capillary, having Taylor cone at the tip of the 

pendant drop. This configuration can lead to bead defects in the fibres or at 

lower values even failure in jet formation with the subsequently formation of 

only beads (Figure 4.4, a-b).xxvi Increasing the electric field strength decreases 

bead density, leading the formation of uniform fibres (Figure 4.4, c e d). High 

voltage conditions also creates a rougher fibre structure and the jet eventually 

moves around the edge of the tip, with no visible Taylor cone; at these 

conditions, the presence of many beads can be observed.xxvii 

 

Figure 4.4. Schematic illustration of a jet spinning model of electrospinning 

from low to high voltages (from a to e). Figure take from reference.xxviii 
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Polymer Solution Conductivity. The conductivity of a polymer solution is 

mainly determined by the polymer type, solvent used, and the availability of 

ionisable salts. A more conductive polymer solution carries more electric 

charge during the electrospinning process, with the as-spun fibres generating a 

stronger repulsive force, which facilitates the formation of bead-free, uniform 

fibres (Figure 4.5).xxix,xxx In case of non-conductive polymer choice of solvent 

plays an important role. Usually solvents with high dipole moment or dielectric 

constant are preferable, such as dimethylformamide, methanol, ethanol and so 

on.xxxi,xxxii,xxxiii Also, the productivity (number of fibres produced per unit time) 

of spinning polystyrene fibres is found to correlate with the dipole moment 

and dielectric constant. xxxiv 

 

Figure 4.5. Representative SEM images (~10,000x) of 393 kDa poly SBMA 

electrospun nanofibres from solutions with varying concentrations of NaCl: (a) 

1 M, (b) 0.5 M, (c) 0.25 M, (d) 0.17 M NaCl. Figure take from reference. xxxv 

Flow rate. Flow rate was poorly investigated in literature, but the few present 

studies report that flow rate influences the homogeneity of nanofibres. In 

particular, too high flow rates result in rich bead defected mats since fibre jet 

have not a chance to dry prior to reaching the collector.xxxvi,xxxvii As well as, if 

the flow of solution through the capillary is insufficient to replace the solution 

ejected as the fibre jet, the cone shape at the tip of the capillary cannot be 

maintained.xxxviii,xxxix 
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Solvent volatility. Choice of solvent is also critical as to whether fibres are 

capable of forming, as well as influencing fibre porosity. In order for sufficient 

solvent evaporation to occur between the capillary tip and the collector a 

volatile solvent must be used. As the fibre jet travels through the atmosphere 

toward the collector a phase separation occurs before the solid polymer fibres 

are deposited, a process that is greatly influenced by the volatility of the 

solvent.xl,xli Highly volatile solvents give fibres with a high density of pores, 

resulting in an increase of surface area. Less volatile solvent leads to a 

complete loss of microtexture with the formation of smooth fibres. Example 

of this behaviour is shown in Figure 4.6, where different ratio of DMF (less 

volatile solvent; b.p.= 154°C) and THF (more volatile solvent; b.p. = 66°C) 

solutions were used to electrospun poly(styrene).xlii 

 

Figure 4.6. SEM pictures of fibres and their surfaces fabricated by 

electrospinning 20% (w/v) PS solutions with various THF/DMF ratios. (A, B) 

6:0, (C, D) 5:1, (E, F) 4:1, (G, H) 3:1, (I, J) 2:1, (K, L) 0:6, (M, N) 1:5, (O, P) 

1:4, (Q, R) 1:3, and (S, T) 1:2, v/v. RH 60%, collecting distance 15 cm, feeding 

rate 1.5 ml/h, and applied voltage 12 kV. Figure take from reference. xlii 
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Ambient parameters. Temperature and humidity are classified as ambient 

parameters of the electrospinning process, and they have some influence of 

the appearance of fibrous mats. In particular, temperature influences viscosity 

of polymeric solution, leading to a decrease of this parameter when 

temperature increases.xliii As a results, a decreased fibre diameter is usually 

observed. Humidity influences porous morphology of fibrous surfaces. 

Increasing the humidity leads to the appearance of small circular pores on the 

surface of the fibres, with further increase pores have the tendency to 

coalescing phenomenon.xliv Figure 4.7 illustrates the effects of both parameters 

on poly(caprolactone) fibres by keeping all other parameters constant. 

 
Figure 4.7. SEM micrographs of PCL fibres spun from a 15 % w/w solution 

in CHCl3 at the different temperatures and relative humidities. Figure take 

from reference. xlv 

4.4 MODIFICATION OF BASIC ELECTROSPINNING PROCESS: 

COAXIAL ELECTROSPINNING 

Modification of the spinneret and/or the type of solution can allow for the 

creation of fibres with unique structures and properties. One such 

modification that has gained much attention and holds great promise in a 

variety of applications is preparation nanofibres using “co-axial 

electrospinning” are also called “two-fluid electrospinning”.xlvi,xlvii,xlviii 
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As deducible by the name, in this process, two dissimilar materials are 

delivered independently through a co-axial capillary and drawn to generate 

nanofibres in core-sheath configuration. This opens up the possibility of 

creating composite fibres which can have a wide range of uses: for instance, a) 

to isolate and/or protect an unstable component and minimizing its chances 

of decomposition under a highly reactive environment; b) to release with time 

a substance to a particular receptor; c) to reinforce a material improving its 

mechanical properties; d) to serve as scaffold for engineering tissues in which a 

less biocompatible polymer is surrounded by a more biocompatible 

material.xlix,l,li 

The general set up adopted is quite similar to that used for electrospinning 

described before (Figure 4.8). A modification is made in the spinneret by 

inserting a smaller (inner) capillary that fits concentrically inside the bigger 

(outer) capillary to make co-axial configuration. Since the process of co-axial 

electrospinning is similar to that of the conventional electrospinning, all 

variables that govern the quality of the process and the morphology of the 

fibres in the latter also affects the behaviour in the former.lii 

 

Figure 4.8. Schematic portrayal of Coaxial electrospinning apparatus, with a 

magnification of Taylor cone. 
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4.5 AIM OF RESEARCH 

In this work, PLGA-based scaffolds were produced by electrospinning for 

biomedical applications. PLGA is a hydrophobic copolymer, as extensively 

described in chapter 2. To improve biocompatibility and cell attachment on 

PLGA-based scaffold, its hydrophobic must be reduced. Wettability of the 

PLGA-basesd scaffolds was thus modulated by the use of a new synthetic 

copolymer consisting of a main chain of PLGA with grafts lateral chains 

constituted by highly hydrophilic units of poly(vinylpyrrolidone), named 

(PLGA-g-PVP). Different strategies were followed for the production of 

highly wettable fibres. In particular, fibres of blend solutions of both 

copolymers and coaxial fibres, in which PLGA formed the core and PLGA-g-

PVP formed the shell of coaxial fibres, were produced and analysed. 

 

4.6 EXPERIMENTAL PART 

4.6.1 Materials 

PLGA-g-PVP10:1 (named PLGA-g-PVP in this work) was synthesised 

following procedure reported in Chapter 2, Paragraph 2.2.3. Poly (lactide-

glycolide) 50:50 (PLGA) was purchased from Evonik Industries AG (Essen). 

Polyvinylpyrrolidone (PVP)  ̅  360000 g/mol was obtained by Sigma-Aldrich 

(Italy). Solvents were purchased from Sigma-Aldrich and used without any 

further purification steps. 

4.6.2 Film formation by spin coating  

A Laurell WS-650MZ-23NPP/LITE spin coater was used for 60 s at 1000 

rpm with initial acceleration of 300 rpm/sec to spin-coat the polymeric 

solutions on 24 x 24 mm glass. Spin-coating was used to make a uniform 

distribution of 0.5 mL of 5 % w/v copolymeric solution (PLGA or PLGA-g-

PVP) in chloroform.  
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4.6.3 Scaffold preparation by single electrospinning 

The electrospinning apparatus was composed of a high voltage power supply 

(Spellman, SL 50 P 10/CE/230), a syringe pump (KD Scientific 200 series), a 

glass syringe, a stainless-steel blunt-ended needle (inner diameter 0.51 mm) 

connected with the power supply electrode and a grounded aluminium plate-

type collector. The polymer solution was dispensed through a teflon tube to 

the needle that was vertically placed on the collecting plate. Distance between 

needle and collector was in all cases of 20 cm. 

Electrospinning parameters for all compositions are listed in Table 4.1. 

PLGA solution was prepared at room temperature by dissolving the 

copolymer in DCM:DMF = 70:30 v/v at a concentration of 22 % and 26 % 

w/v, named respectively PLGA22 and PLGA26.  

PLGA-g-PVP scaffolds were fabricated from a solution of PLGA-g-PVP in 

DCM:DMF = 70:30 v/v, at a concentration of 30 and 37% w/v. The two 

solutions were identified as PLGA-g-PVP30 and PLGA-g-PVP37, respectively. 

PLGA/PLGA-g-PVP blend scaffolds were fabricated by using solution at 

two different concentration of PLGA-g-PVP, 13% w/w and 37% w/w, named 

Blend13 and Blend37 respectively. Blend solutions were prepared at room 

temperature dissolving both copolymers in DCM:DMF = 70:30 v/v, obtaining 

a total polymeric concentration of 25% w/v.  

Obtained electrospun mats were kept under vacuum over P2O5 at room 

temperature overnight in order to remove residual solvents. 

4.6.4 Scaffold preparation by coaxial electrospinning 

The home-made electrospinning apparatus is composed of a high voltage 

power supply (Spellman SL 50 P 10/CE/230), two syringe pumps (KD 

Scientific 200 series), a glass syringe, a stainless steel coaxial needle connected 

to the power supply electrode and a grounded aluminium collector (10 cm ×10 

cm). The coaxial needle used in the present work is constituted by an inner 
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needle (internal diameter = 0.55 mm) positioned concentrically to the outer 

needle (internal diameter = 1.5 mm). 

Core solution is constituted by 26 % w/v PLGA in 70:30 DCM:DMF 

solution. Sheath solution is formed by PLGA-g-PVP in 70:30 DCM:DMF 

solution. Three different copolymer concentrations, 13 %, 25% and 37% w/v, 

was used, giving three different mats, named Coax13, Coax25 and Coax37. 

Electrospinning parameters for all coaxial fibres were listed in the following 

Table 1. Electrospun fibres were kept under vacuum over P2O5 at room 

temperature overnight in order to remove residual solvents. 

4.6.5 Characterization of polymeric films and electrospun fibres 

Scanning Electron Microscope (SEM) were performed SEM Philips 515 

operating at 15 kV. Samples were fixed on aluminium stubs by double-sided 

carbon adhesive tape and sputter-coated with gold prior to examination. The 

distribution of electrospun fibre diameters was determined through the 

measurement of fibres by means of an acquisition and image analysis software 

(EDAX Genesis) and the results were given as the average diameter ± 

standard deviation.  

Thermogravimetric analysis (TGA) measurements were performed with a TA 

Instruments TGA2950 Thermograms were recorded on 10-15 mg of samples 

from RT to 700◦C by heating rate of 10 °C/min, using gas nitrogen to purge 

furnace (75 mL/min) and balance (55 mL/min).  

Differential scanning calorimetry (DSC) was carried out using a TA 

Instruments Q100 DSC equipped with the LNCS (Liquid Nitrogen Cooling 

System) accessory. DSC scans were performed in helium atmosphere from -

50° to 210°C. A rate of 20°C/min was used during heating scans whereas the 

cooling scans were performed at a rate of 10°C/min. 

Static water contact angle measurements were performed at room temperature 

under ambient conditions by using an optical contact angle and surface tension 

meter KSV's CAM 100 (KSV, Espoo, Finland). Milli-Q water was used for 

measurements. The water drop profile images were collected in a time range of 
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0–30 s, every 1 s. Optical contact angle and pendant drop surface tension 

software was used for image processing. Results were averaged on at 10-12 

measurements obtained at different areas of the sample. 

Table 4.1. Electrospinning parameter used to prepare polymeric fibres at 

different composition. 

Samples 

Syringe 

diameter 

(mm) 

Applied 

voltage 

(kV) 

Flow rate 

core sol. 

(mL/h) 

Flow rate 

sheath sol. 

(mL/h) 

Temperature 

(°C) 

Humidity 

% 

PLGA22 11.8 15.2 1.2 -- 25 60 

PLGA26 11.5 15.1 0.9 -- 22 58 

PLGA-g-PVP30 / 

PLGA-g-PVP37 
12.2 18 0.9 -- 21 82 

Blend13 12.2 17.0 0.9 -- 26 76 

Blend37 12.2 16 0.9 -- 21 65 

Coax13 12.2 17.0 1.0 0.10 27 63 

Coax25 12.2 18.5 0.97 0.23 27 62 

Coax37 12.2 17.0 0.85 0.35 26 64 

4.7 RESULTS AND DISCUSSIONS 

4.7.1 Thermal characterization of native polymers. 

Starting materials, namely the PLGA copolymer, the PVP homopolymer and 

PLGA-g-PVP copolymer, were characterized in their thermal properties by 

means of thermogravimetry (TGA) and differential scanning calorimetry 

(DSC). 

The thermogravimetric analysis measuring the sample weight loss in function 

of temperature, due to substances volatilization or deriving from the thermal 

degradation. This technique allows to have information relating to the 

composition of samples. Figure 4.9 shows thermogravimetric curves of three 

starting polymers. In Table 4.2 degradation temperature and the corresponding 

weight losses of each sample are collected. 
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Figure 4.9. Overlapping of PVP (red curve), PLGA (black curve), PLGA-g-

PVP (blue curve) TGA. For each sample is reported of the weight loss 

percentage as a function of temperature (continuous line) and the 

corresponding derivative (dashed line). 

Table 4.2. Percentage of weight loss (  ) and temperatures of the maximum 

degradation rate of starting polymers. 

Sample 

Δm (%) 

RT - 

150°C 

Δm (%) 

150°C - 

340°C 

Δm (%) 

340°C - 

500°C 

PLGA 

Tdegradation 

(°C) 

PVP 

Tdegradation 

(°C) 

PLGA 0.051 96 0 293 - 

PVP 2.8 0 94 - 427 

PLGA-g-PVP10:1 1.1 83 9.3 274 404 

 

PLGA degraded essentially through a single degradation step, which 

corresponds to a weight loss of about 96%, with a maximum degradation rate 

at 293 °C. Both PVP and PLGA-g-PVP, both have a small loss of weight at 

low temperatures (T <150 °C) respectively of 2.9% and 1.1% due to the 

evaporation of adsorbed water from samples. In fact, the presence of 

vinylpyrrolidone units makes these very hygroscopic polymers and, despite the 

samples are maintained under anhydrous conditions prior to analysis, in a few 

minutes in contact with atmospheric humidity absorb significant amounts of 

water. Following the loss of water, PVP degraded via a single step with a 

maximum degradation rate at 427 °C, accomplishing by a weight loss of 94%. 
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PLGA-g-PVP instead presented two weight losses, at 274 °C equal to 83% and 

a 404 °C of about 9%. By comparing the TGA curves of the PLGA-g-PVP 

with those of the PVP and the PLGA is noted that the two weight losses 

shown by the PLGA-g-PVP are respectively attributable to thermal 

degradation of PLGA backbone (T = 274 °C) and PVP side chains (T = 404 

°C). From PVP weight loss % is possible to define PVP content in 

copolymers, i.e. approximately 10%. 

The differential scanning calorimetry (DSC) was used to detect the chemical-

physical transformations taking place in the polymers and involving enthalpy 

or heat capacity changes. The DSC measurements were showed in Figure 4.10 

and DSC data listed in Table 4.3. 

 
Figure 4.10. Overlapping of PVP, PLGA and PLGA-g-PVP DSC. Second 

scan from -50°C to 210°C with a temperature ramp of 20°C/min.  

Table 4.3. Glass transition temperatures and variation of the heat capacity of 

the starting polymers. 

Sample PLGA Tg (°C) PVP Tg (°C) 
PLGA ΔCp  

(J/(g·°C)) 

PVP ΔCp 

(J/(g·°C)) 

PLGA 46 - 0.60 - 

PVP - 178 - 0.33 

PLGA-g-PVP10:1 46 NDa 0.52 NDa 

aND = not detected 
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Thermogram corresponding to PLGA analysis showed a glass transition 

temperature (Tg) at 46 °C associated to a variation of heat capacity (ΔCp) equal 

to 0.60 J/g·°C. While, the PVP has Tg at 178 °C with a ΔCp equal to 0.33 J/g·

°C. PVP and PLGA homopolymers are reported to be poorly miscible.liii In 

DSC thermograms, the presence of two separated not miscible phases are 

represented in two glass transitions in correspondence of those of the 

individual component. Each glass transition is associated to ΔCp proportional 

to weight amount of each component. Thus, for PLGA-g-PVP copolymer, 

two different glass transitions were expected, with two ΔCp values 

proportional to PLGA and PVP amounts present herein. However, PLGA-g-

PVP showed only a single transition at 46 °C with a ΔCp equal to 0.52 J/g·°C, 

corresponding to PLGA Tg. The associated ΔCp was lower than that of not-

grafted PLGA (0.52 J/g·°C vs 0.60 J/g·°C). Taking advantage of 

proportionality law that correlate ΔCp to material weight and applying the 

Equation 1, it is possible to calculate the PLGA weight amount in the 

copolymer PLGA-PVP (x), amounting to 87%: 

   
             

             Equation 4.1 

TGA analysis described above provided PLGA weight content of 90%. Within 

experimental error associated with the two techniques (± 5%), the two 

characterizations provide comparable results. The absence of a glass transition 

in correspondence of the PVP Tg can be attributed to the low PVP content. 

4.7.2 Electrospinning and characterization of PLGA fibres 

Non-woven fabric was spun starting from a PLGA26 solution in 70:30 v/v 

DCM:DMF. Preliminary observations by optical microscopy evidenced fibres 

of micrometric dimensions. Several experimental observationsliv,lv,lvi have 

reported the influence of solution concentration on fibre morphology. In 

particular, at low concentrations, the polymer was spun in form of micro and 

nanobeads, increasing concentration very rich of beads thin fibres are 

obtained, further increasing allow to electrospun fibres of larger diameter 

devoid of defects. This behaviour is closely related to the number of physical 

linkages between chains in solution.lvii In consideration of the above, to 
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decrease fibre sizes under submicron diameters, polymer concentration was 

decreased to 22% w/v using the same solvent mixture, obtaining PLGA22. 

This solution was electrospun and analysed by scanning electron microscope 

and SEM images at both polymer concentration are reported in Figure 4.11. 

SEM images of Figure 4.11a and Figure 4.11b of PLGA26 fibres showed no 

beads but diameters between 0.9 and 1.9 μm. While, scaffold obtained instead 

from the solution at a lower concentration, PLGA22, presented fibres with an 

average size between 0.1 and 0.5 μm. However, having a less stable 

concentrated jet, fibrous structure possessed high number of beads and 

irregular diameter distribution. Probably, the spinning of a PLGA solution at 

an intermediate concentration would have allowed to obtain sub-micrometre 

fibres devoid of beads with homogeneous diameter distribution. But this 

optimization was not carried out, because unnecessary for the purposes of  the 

work. 

 
Figure 4.11. SEM images. a) 1000x PLGA26, b) 4000x PLGA26, C) 1000x 

PLGA22, d) 4000x PLGA22. 

Nonwoven fabric were further characterized by measuring contact angle of a 

drop of water deposited on the sample surface, providing informations on the 

wettability of the material (for more in deep information on wettability see 

chapter 1 paragraph 1.4.3). 
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Table 4.4 compares the average contact angles obtained for the two nonwoven 

fabrics PLGA and for a film of the same copolymer. 

Table 4.4. Contact angle of a water drop deposited on PLGA-based materials. 

Sample 
Average water  

contact angle ±σ (°) 

PLGA26 

(diameter: 0.9-1.9 μm) 
99 ± 4 

PLGA22 

(diameter: 0.1-0.5 μm) 
132 ± 6 

Film 69 ± 1 

Contact angle measurements provided different values, despite the same 

chemical composition of materials. In particular, wettability was greater in the 

case of the film and smaller in the case of nonwoven fabrics, probably due to 

the different surface roughness. A smooth surface, as in the case of the PLGA 

film, had a contact angle lesser than a porous material, as the case of 

electrospinned fibres. Furthermore, for the same reason, the two scaffolds had 

two different contact angle. The presence of beads and thin fibres, in the case 

PLGA22, made its surface less uniform and more wrinkled, giving greater angle 

of contact, compared to a more homogeneous surface of PLGA26. Similar 

results have been reported in the literature in the case of non-woven-fabrics of 

other polymeric materials.lviii,lix 

4.7.3 Electrospinning and characterization of PLGA-g-PVP fibres 

Preliminary electrospinning tests of PLGA-g-PVP were conducted using a 

solution of 30% w/v in 70:30 DCM:DMF. Results indicated that very thin and 

full of beads fibres were obtained (Figure 4.12a). Instead, in the case of PLGA-

g-PVP37, homogenous fibres with few imperfections were electrospinned 

(Figure 4.12b, Figure 4.12c). PLGA-g-PVP37 fibres had an average diameter 

between 0.2 and 1 μm. 
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Figure 4.12. SEM images. a) 1000x PLGA-g-PVP30, b) 1000x PLGA-g-PVP37, 

c) 4000x PLGA-g-PVP37. 

Wettability of scaffolds were evaluated by contact angle measurements. Trend 

over time is reported in Figure 4.13. Graph is representative of a single drop 

on the non-woven PLGA-g-PVP fabric and a single drop on a film of the 

same composition. 

 

Figure 4.13. Contact angle results as a function of time for a PLGA-g-PVP37 

non-woven fabric and for a PLGA-g-PVP films (representative 2 drops). 

The trend of angle of contact of fibrous scaffold was not constant over time 

and decreased rapidly within 2 seconds, after which the droplet was completely 

absorbed by the porous structure of the sample. Furthermore, the initial 

contact angle (approximately 58°) was significantly lower than the contact 
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angle values of PLGA fibres, a consequence of PVP grafts on the main 

backbone of PLGA that increased copolymer hydrophilicity. 

The PLGA-g-PVP37 films instead presented an contact angle practically 

constant over time with a mean value of 57° ± 6°. The addition of PVP chains 

on PLGA significantly increases the wettability. Indeed, comparing its contact 

angle value with those obtained from PLGA, a greater wettability was 

highlighted for PLGA-g-PVP compared to PLGA, also in the case of films. It 

is noted that the PVP is a water-soluble polymer and had not been therefore 

conducted contact measurements on this polymer. 

4.7.3 Electrospinning and characterization of PLGA/PLGA-g-PVP 

fibres 

Above described contact angle measurements have shown that the non-woven 

fabric of PLGA was strongly hydrophobic and a drop of water did not 

penetrate inside the porous structure. The scaffold of PLGA was therefore not 

wettable by water. In contrast, the PLGA-g-PVP was wet in a few seconds due 

to the addition of PVP chains grafted on PLGA chains. To modulate the 

wettability of the scaffolds, minimizing the use of non-commercial PLGA-g-

PVP, fibres of PLGA containing small amounts of PLGA-g-PVP were 

produced. 

PLGA-g-PVP was introduced into the fibres by adopting two strategies: 1) 

Electrospinning of mixtures. Copolymers were solubilised in the same solvent 

system and the obtained solution was electrospun leading to scaffolds with 

different content of PLGA-g-PVP depending on the concentration in the 

starting solution; 2) Coaxial electrospinning: were prepared two separate 

solutions of PLGA and PLGA-g-PVP and electrospunned simultaneously by 

two needles arranged in a coaxial configuration. The PLGA-g-PVP solution 

was kept in the outside needle while that of PLGA in the inner needle. The 

PLGA-g-PVP content in the fibres depended both from concentration and 

flow rate of the two solutions. 
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4.7.3.1 Electrospinning of blends 

SEM images in Figure 4.14 show in both cases, fibres with only a few beads. 

Blend13 fibre diameter was between 0.4 and 0.9 μm, while those of Blend37 

were thicker fibres with a diameter between 0.6 and 1.5 μm. 

 

Figure 4.14. SEM images. a) 1000x of Blend13 b) of 4000x Blend13 c) of 1000x 

Blend37 d) of 4000x Blend37. 

 

Figure 4.15. TGA overlapping of non-woven fabrics of Blend13, Blend37 and 

the starting polymer (PLGA, PLGA-g-PVP). temperature ramp of 10 °C/min. 
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To assess the composition of produced nonwoven fabrics, thermogravimetric 

analysis was carried out. In Figure 4.15, TGA thermograms of the blend along 

with that of the two components for comparison were depicted. Both blend 

fabrics had a small weight loss at a low temperature due to adsorbed water and 

two degradation step, one at a lower temperature (T ~ 290 °C) and one at a 

higher temperature (T ~ 400 °C). As described in paragraph 4.5.3, the second 

weight loss is attributable to the PVP degradation. PVP weight loss was of 

2.3% for the Blend13 and of 4.0% for the Blend37, index that a greater PVP 

content was present Blend37. 

The overall wettability of the non-woven fabric was evaluated by contact angle 

measurements for both samples. In both cases, contact angle values were 

constant over time. Results are collected in Table 4.5, data relating to PLGA 

scaffold were also reported for comparison. It was noted that the contact 

angles of PLGA/PLGA-g-PVP blend were independent of the PLGA-g-PVP 

content. In addition, sample wettability did not increase; contact angle values 

were similar to that of PLGA22 and PLGA26 fabrics.  

Table 4.5. Comparison of the mean contact angle of blends based on PLGA / 

PLGA-g-PVP and non-PLGA-woven fabrics. 

Sample Average contact angle (°) 

Blend13 

(fibre diameter: 0.4-0.9 μm) 
122 ± 6 

Blend37 

(fibre diameter: 0.6-1.5 μm) 
122 ± 3 

PLGA26 

(fibre diameter: 0.9-1.9 μm) 
99 ± 4 

PLGA22 

(fibre diameter: 0.1-0.5 μm) 
132 ± 6 

Results evidenced that fibre surface of Blend13 and Blend37 is not enough rich 

of PVP units to significantly decrease the hydrophobicity of the fabric when 

compared to those of only PLGA. The strategy of mixing the copolymers was 

not so effective, at least up to concentrations of PLGA-g-PVP equal to 37%. 

Evidently, the total amount of PVP in Blend37 (4.0%) was homogenously 
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distributed along the section of the fibre and was not enough to influence 

surface property. 

4.7.3.2 Coaxial electrospinning of copolymers 

In order to increase the wettability of the fibres of PLGA, without using too 

high concentrations of PLGA-g-PVP, the latter was introduced into the fibres 

by adopting a different strategy to that described in the previous paragraph. 

The electrospinning was therefore conducted using two coaxial needles, the 

outer one containing the PLGA-g-PVP solution and the internal one 

containing the PLGA solution. In this configuration, it is expected that the 

surface of so produced fibres is richer PLGA-g-PVP compared to fibres 

obtained by electrospinning of mixtures, at equal copolymer content in the 

fibre. 

The global composition of fibres was modulated by varying the flow rate of 

the two starting solutions. Three scaffolds with three PLGA-g-PVP percentage 

in the fibre (13%, 25% and 37% w/w) were electrospun and named Coax13, 

Coax25, Coax37 respectively. Figure 4.16 showed SEM images of fabrics 

obtained by coaxial electrospinning. All samples have sub-micrometre fibres. 

Morphology was not perfectly smooth, but some beads very elongated were 

present, particularly in low-PLGA-g-PVP content samples (i.e. Coax13 and 

Coax25). 

Composition of the nonwoven fabrics produced was evaluated by 

thermogravimetric analysis. Figure 4.17 shows the thermograms of the samples 

by coaxial electrospinning together with that of the two pure components for 

comparison. 

The TGA curves of Coax samples show similar trends of PLGA-g-PVP 

sample. A first weight loss at low temperature (T <150 °C) due to the loss of 

adsorbed water, a second weight loss after 200 °C, given by the degradation of 

PLGA chains, and the last weight loss around 400 °C, attributable to the 

degradation of grafted PVP chains. The last weight loss can provide 

informations on the composition of samples in terms of PVP weight amount. 
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Table 4.6 shows these values of weight loss for samples Coax and for 

comparison the values for the samples Blend. 

 
Figure 4.16. SEM images) of 1000x Coax13, b) of 4000x Coax13, c) of 1000x 

Coax25, d) of 4000x Coax25, e) of 1000x Coax37, f) of 4000x Coax37. 
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Figure 4.17. TGA overlapping tissue-non-tissue of Coax13, Coax25 and Coax37 

and of the starting polymers PLGA and PLGA-g-PVP. Temperature ramp of 

10 °C/min. 

Table 4.6. PVP weight loss% of Coax and Blend samples from TGA analysis. 

Sample 
Δm (%) 

350°C - 500°C 

Coax13 2.1 

Coax25 2.7 

Coax37 3.9 

Blend13 2.1 

Blend37 3.7 

Coax13, Coax25, Coax37 presented increasing weight amount of PVP in fibres, 

as expected by increasing flow rate of external solution. Comparing the values 

obtained from Coax13 and Coax37 and the respective Blend13 Blend37, PVP 

content was comparable. 

Contact angle values of Coax samples and for comparison also those Blend 

were reported in Table 4.7. In this case fibre diameters were not shown 

because all samples had sub-micrometre dimension and similar morphology. 

Coax13 and Coax25 samples were still hydrophobic, while Coax37 was wettable. 

In contrast, the blend with the same composition, i.e. Blend37, was 

hydrophobic. Therefore, coaxial needle favoured PLGA-g-PVP location on 

fibre surface and a quantity of 37% by weight appears to be sufficient to wet 

the scaffold. It is noted that the drop of water is absorbed by the Coax37 
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sample in about 25 seconds, time significantly greater than that of the pure 

PLGA-g-PVP non-woven fabric, about 2 sec. 

Table 4.7. Comparison of the mean contact angle of samples Blend and Coax 

samples. 

Sample Average contact angle (°) 

Coax13 126 ± 7 

Coax25 121 ± 6 

Coax37 
Decreasing trend over time 

Drop was adsorbed after 25 s 

Blend13 122 ± 6 

Blend37 122 ± 3 

 

4.8 CONCLUSIONS 

In this work, PLGA-based scaffolds were produced by electrospinning for 

biomedical applications. In order to modulate the wettability of the scaffolds 

PLGA, which is a hydrophobic copolymer, has been used in combination to a 

synthetic copolymer consisting of a main chain of PLGA with grafts lateral 

chains constituted by highly hydrophilic units of poly(vinylpyrrolidone), named 

(PLGA-g-PVP). 

Measurements of contact angle conducted on only PLGA film and only 

PLGA-g-PVP has confirmed the increased wettability of the latter with respect 

to the only PLGA. Comparing the wettability of the corresponding non-

woven-fabrics for the difference in wettability is even more obvious: the 

scaffold is PLGA is highly hydrophobic, while the scaffold is PLGA-g-PVP 

absorbs water drops in a few seconds. Then, comparing contact angle values 

obtained from the same materials but with different surface roughness, it was 

found that a film with a smooth surface by the use of a spin coater, had 

smaller contact angles and was therefore more wettable with respect to the 

fibrous scaffolds, that it is a porous material with a highly corrugated surface at 

micrometre level. 

To modulate the wettability of the scaffolds, minimizing the amount of 

synthetic PLGA-g-PVP, PLGA fibres containing small amounts of PLGA-g-
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PVP were electrospinned adopting two different strategies: (1) by 

electrospinning of mixtures of PLGA and PLGA-g-PVP to obtain fibres with 

different content of copolymers depending on their concentration in the 

starting solution; (2) by coaxial electrospinning, in which PLGA-g-PVP 

solution fed the external needle and PLGA solution fed the internal one. 

PLGA-g-PVP content in the fibres depends by solution concentrations and 

flow rates.  

The composition of the scaffolds products was verified by TGA measures and 

the wettability by contact angle measurements. 

From contact angle measurements on scaffolds produced by electrospinning 

of blends, it was concluded that the addition of PLGA-g-PVP to PLGA 

solution with w/w percentage of 37%, did not vary significantly the wettability 

of the material. Most likely, having PLGA-g-PVP a low amount of PVP (10% 

w/w , as valuated by TGA analysis), it was assumed that the few PVP chains 

were homogeneously distributed along the fibre section, and thus, did not lead 

to a significant increase of material hydrophilicity. 

Therefore, PLGA-g-PVP was tried to locate on fibre surface in order to better 

exploit the hydrophilicity of this copolymer to modify scaffold wettability, by 

using coaxial electrospinning. Analysing three products containing increasing 

percentages of PLGA-g-PVP, only the sample having 37% w/w appeared to 

be well wettable: indeed, a water drop was absorbed by the porous structure in 

approximately 25 seconds. In addition, this scaffold was more wettable than 

that of one produced by electrospinning of the mixture having similar 

composition. Therefore, it can be concluded that coaxial electrospinning was 

useful to prepare wettable PLGA-based non-woven fabric. It was also 

demonstrated that wettability of nonwoven fabrics was influenced both by the 

morphology of the same fabric, both on the chemical composition of the 

fibres.  
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CHAPTER 5 

HYDROGELS FOR TISSUE ENGINEERING BASED ON 
HYALURONIC ACID, GELATIN AND AGMA1 

 “Aim of this piece of work was the synthesis of a new classes of poly(saccharide-co-
amidoamine) and poly(saccharide-protein-amidoamine) 3-D-networks intended as scaffolds 
for tissue regeneration. In particular, hyaluronan-polyamidoamine and hyaluronan-gelatin-
polyamidoamine hydrogels were synthesised by amidation reaction between the carboxylate 
groups of hyaluronan and the amine groups of gelatin and of an NH2-functionalized PAA, 
promoted by 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride 
(DMTMM) as coupling agent. In order to promote hepatic cell proliferation serotonin was 
covalently linked to hydrogels, by adding it to the reaction mixture, exploiting the same 
coupling reaction.” 

5.1 HYDROGELS 

Hydrogels are made up of cross-linked polymer networks and may be 
classified as: (i) chemical hydrogels and (ii) physical hydrogels. In (i), the 
polymer network is obtained by chemical cross-linking, whereas in physical 
hydrogels (ii), chains are held together by ionic, hydrogen bonding and or 
dipolar interactions. Linear homopolymers, linear copolymers, and block or 
graft copolymers having cross-linkable functional groups are usually used to 
form chemical cross-linked hydrogel, on the other hand, polyion-, polyion–
polyion or H–bonded complexes as physical cross-linked matrix.i In both 
cases, cross-link density is crucial in determining the properties and 
applications of the gels, as it is responsible for the swelling behaviour and 
therefore for the combined solid-like and liquid-like characteristics. 

Main property of hydrogels is the ability to absorb huge amounts of water, up 
to several thousand percentages, without dissolving.ii Equilibrium state is 
reached when osmotic driving forces, which encourage water to come into the 
hydrogel matrix, and cohesive ones exerted by hydrogel macromolecules are 
balanced. Cohesive forces depend primarily on hydrogel crosslinking 
density.iii,iv In general, the higher the cross-linking extent, the lower the gel 
swelling. Equally, the more hydrophilic the polymer matrix, the higher the 
amount of water absorbed by the hydrogel.v In the swollen state, hydrogels are 
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soft and rubbery, resembling to a great extent living tissues. For this reason, 
hydrogels have become attractive to the new field of „tissue engineering‟ as 
matrices used for cell/tissue regenerating.vi,vii,viii,ix,x,xi 

In order to be used as biomaterials, hydrogels must be biocompatible. 
Inflammatory response to a hydrogel can affect the immune response toward 
the transplanted cells and vice versa.xii,xiii In particular if they are components 
of or have macromolecular properties similar to the natural extracellular matrix 
(ECM).xiv,xv,xvi 

5.2 HYALURONIC ACID 

Hyaluronic acidxvii,xviii,xix is a naturally occurring, biocompatible, and 
biodegradable polysaccharide composed of repeating disaccharide units of D-
glucuronic acid and N-acetyl-d-glucosamine linked by alternating β(1→4) and 
β(1→3) linkages. Carboxyl groups in the glucuronic acid residues are 
negatively charged at physiological pH and ionic strength, giving as result a 
polyanions sodium hyaluronate, referred as hyaluronan (HA). xx It is the 
simplest glycosaminoglycan (GAG) and an important component of ECM, it 
is ubiquitously present in many biological fluids and tissues, such as eyes, 
joints, and cartilage.xxi,xxii It is naturally synthesized by a class of integral 
membrane proteins called hyaluronan synthases,xxiii and degraded by a family 
of enzymes called hyaluronidases.xxiv Degradation products, i.e. oligomeric HA 

( ̅ <100 000), are usually found as inflammatory, immuno-stimulatory and 
angiogenic.xxv These chains are then fractionated in monosaccharide units by 
β-d-glucuronidase, and β-N-acetylhexosaminidase.xxiv 

Its function in the body is, among others, to bind water and lubricate movable 
parts of the body, such as joints and muscles. HA is highly hygroscopic and 
this property is believed to be important for modulating tissue hydration and 
osmotic balance.xxvi In addition to its function as a passive structural molecule, 
HA also acts as a signalling molecule by interacting with cell surface receptors 
and regulating cell proliferation, migration, and differentiation.xxvii,xxviii Thanks 
to these favourable properties, HA has been intensively used as component of 
scaffolds for tissue engineering.xxix,xxx,xxxi  

A pitfall of HA-based materials is the fast HA in vivo degradation. HA half-life 
after injection into skin and joints is lower than 24 h.xxxii,xxxiii This time is not 
enough to allow restoring of tissues and lost functionalities. Modifications of 
HA chemical structure are needed, in order to camouflage HA chains to 
enzymes.xxxiv 
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HA can be chemically modified by two different ways: cross-linking or 
conjugation. HA conjugation and HA cross-linking can be in principle based 
on the same chemical reactions and only differ in that, in the first case, a 
compound is grafted onto one HA chain by a single bond only, whereas in the 
second case, different HA chains are linked together by two bonds or more, as 
depicted in Figure 5.1. Some methods are performed in water while others, 
need to be performed in organic solvents, such as dimethylformamide (DMF) 
or dimethylsulfoxide (DMSO).xxxv, In the latter case, native HA sodium salt 
first needs to be converted into its acidic form. Since HA is soluble in water, 
the easiest method is to perform the reaction in water. However, treatments in 
alkaline or acidic aqueous conditions induce hydrolysis of HA chains.xxxvi,xxxvii  

 

Figure 5.1. Schematic representation of chemical conjugation and cross-
linking. 

Typical partners in cross-link/conjugation products are polysaccharides 
(alginatexxxviii, chitosanxxxix, agarosexl, etc), proteins or oligopeptide 
(fibronectinxli, fibrin,xlii gelatinxliii, collagenxliv, etc) and also synthetic polymers, 
such as PLA,xlv PLGAxlvi, PGAxlvii PHEMAxlviii and so on.xlix In addition to 
reduce degradation rate, improvement in cell adhesion onto HA-based 
scaffolds is reached when carboxylic acid groups are involved in reactions. It is 
due to a reduction of repulsive force between cell membranes (negative 
charged by presence of lipids) and carboxylic acid of HA.l 

5.3 GELATIN 

Gelatin is a soluble protein obtained by partial hydrolysis of collagen, the main 
fibrous protein constituent in bones, cartilages and skins; therefore, the source, 
age of the animal, and type of collagen, are all intrinsic factors influencing 
properties of the produced gelatin.li The acid-extracted gelatin is designated 
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“Type A” , whereas the product of the alkaline method is referred to as “Type 
B”. Traditionally, hydrogen chloride and lime or sodium hydroxide are used 
for the types A and B methods, respectively.lii  

Compared to its precursor, gelatin is economical and low-antigenic, and it has 
been presumed to retain some of the information signals, such as the RGD 
sequence of collagen,liii also if its biological activity of gelatin should be zero, 
due to the absence of the essential amino acid, i.e. tryptophan. liv The tripeptide 
arginyl-glycyl-aspartic acid (RGD) is an oligopeptide capable of reproducing 
the receptorial sites of proteins, such as fibronectin, vitronectin, and others 
playing a fundamental role in cell adhesion.lv 

Gelatin is reported to contain 18 amino acids linked together in a partially 
ordered fashion. The various amino acids obtainable from some gelatins by 
complete hydrolysis, in grams per 100 grams of dry gelatin, are listed in Table 
5.1.lvi,lvii,lviii No significant differences in the value of N-terminal residues as well 
as in the amino acid composition have been mentioned relating to the origin of 
gelatin. Type A gelatin has been reported to have an isoionic point of 7 to 9, 
and the isoionic point for lime (alkali) processed gelatin falls in the range of 4.8 
to 5.1.lix Isoionic points are important values, determining the reactivity of 
gelatin, especially in pH-dependent coupling reaction. 

Table 5.1. Amino acid composition of different type and source of gelatin. 

Amino Acid Type A (Pork skin) Type B (Calf skin) Type B (Bone) 

Alanine 8.6 10.7 9.3 11.0 10.1 14.2 

Arginine 8.3 9.1 8.55 8.8 5.0 9.0 
Aspartic acid 6.2 6.7 6.6 6.9 4.6 6.7 

Cystine 0.1  Trace Trace 
Glutamic acid 11.3 11.7 11.1 11.4 8.5 11.6 

Glcine 26.4 30.5 26.9 27.5 24.5 28.8 
Histidine 0.9 1.0 0.74 0.8 0.4 0.7 

Hydroxlysine 1.0  0.91 1.2 0.7 0.9 
Hydroxyproline 13.5  14.0 14.5 11.9 13.4 

Isoleucine 1.4  1.7 1.8 1.3 1.5 
Leucine 3.1 3.3 3.1 3.4 2.8 3.5 

Lysine 4.1 5.2 4.5 4.6 2.1 4.4 
Methionine 0.8 0.9 0.8 0.9 0.0 0.6 

Phenylalanine 2.1 2.6 2.2 2.5 1.3 2.5 
Proline 16.2 18.0 14.8 16.4 13.5 15.5 

Serine 2.9 4.1 3.2 4.2 3.4 3.8 
Threonine 2.2  2.2  2.0 2.4 

Tyrosine 0.4 0.9 0.2 1.0 0.0 0.2 
Valine 2.5 2.8 2.6 3.4 2.4 3.0 
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Since gelatin has a sol-gel transition temperature around 30 °C, it should be 
chemically cross-linked in order to avoid dissolution at body temperature. 
Thanks to the fact that gelatin is composed of a large variety of side chains, a 
wide variety of chemical modification methods, introducing cross-linkable 
groups, have been proposed.lx, lxi The choice of potential reagents is limited to 
water-stable ones because gelatin only dissolves in water and in a number of 
alcohols.lxii In most cases, bifunctional reagents including glutaraldehyde,lxiii 
diisocyanates,lxiv,lxv carbodiimides,lxvi genipin,lxvii polyepoxy-compounds,lxviii and 
acyl azideslxix have been applied. When gelatin is combined with sugars (e.g., 
agarose), 1,1-carbonyldiimidazole can be applied as cross-linker.lxx 

5.4 AGMA 1  

The linear amphoteric poly(amidoamine) nicknamed AGMA1 is prepared by 
the Michael-type polyaddition of monoprotonated 4-aminobutylguanidine 
(agmatine) and 2,2-bis(acrylamido)acetic acid (BAC).lxxi Agmatine belongs to 
the family of biogenic amines and is involved in many physiological functions. 
Agmatine derives from the arginine decarboxylase-mediated decarboxylation 
of L-arginine, a semi-essential amino acid with interesting properties mostly 
attributed to its guanidine group. Agmatine and arginine play an important role 
in cell growth and proliferation, as well as in the synthesis of proteins and 
nucleic acids.lxxii  

Table 5.2. Comparison of Some Structural Features of AGMA1 Repeating 
Unit and RGD Sequence 

Structural features AGMA 1 unit RGD sequence 

no. of guanidine groups 1 1 
no. of carboxyl groups 1 1 
no. of amidic groups 2 2 

distance between 
guanidine and carboxyl 

groups 

sequence of 10 atoms 
including 2 amidic groups 

sequence of 11 atoms 
including 2 amidic groups 

 
AGMA1 repeating unit carries both guanidine- and carboxyl groups and, 
therefore, shows a strong structural resemblance to the RGD sequence (Table 
5.2). It was reported that AGMA1 is nontoxic and non-haemolytic in vitro 
within all pH ranges tested (4-7.5).lxxi Haemolysis is usually a function of the 
overall charge, reaching low value at physiological and neutral pHs. High 
toxicity was usually associated with the polycationic character of other studied 
PAAs.lxxiii As revealed from speciation curves (Figure 5.2), AGMA1‟s 
isoelectric point is at pH 10, corresponding to the intersection of the curves 



CHAPTER 5 

HYDROGELS FOR TISSUE ENGINEERING BASED ON HYALURONIC 

ACID, GELATIN AND AGMA1 

180 

 

relative to LH+ and L-. Charge distribution profiles show that this polymer is 
prevailingly cationic at all physiological pH values, the net average charge per 
unit varying from about 0.5 at pH 7.4, to about 1.0 at pH 5. Probably, the 
RGD-like repeating units exert a stabilizing action on cell membranes, 
overshadowing the membranolytic effect of the excess positive charges. 

Grafted on a material‟s surface, RGD is capable of promoting a strong cell 
adhesion even at very low surface densities.lxxiv Similarly, AGMA1 hydrogels 
have exhibited good cell proliferation ability. In particular, AGMA1 hydrogel 
layers exhibited towards epithelial cells (Madin-Darby Canine Kidney epithelial 
cell line) a level of cell adhesion comparable to that of commercial plastic 
substrates for tissue culturing even in the presence of only 0.1% of fetal 
bovine serum.lxxv AGMA1 hydrogels were successfully used as scaffold for 
tissue engineering.lxxvi In particular, hydrogels with tubular shape proved to 
facilitate nerve regeneration, achieving good surgical outcomes with no signs 
of inflammation or neuroma.lxxvii In addition, AGMA1–montmorillonite 
composites with tunable stiffness were used as scaffolds for bone tissue-
engineering applications.lxxviii 

 

Figure 5.2. AGMA1 ionic speciation as a function of pH. Figure adapted 
from reference. lxxiii 

5.5 Chemical design of hydrogels 

Aim of this work was the production of chemical cross-linked hydrogels with 
potential as scaffolds for the regeneration of liver tissue. Sodium hyaluronate 
and gelatin (HA-Gel) were selected as scaffolding material to mimic the crucial 
components of ECM, in order to enhance cell proliferation, migration, and 
differentiation of liver tissue.  
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HA-Gel scaffolds for tissue engineering were already described in literature.lxxix 
Leaving apart studies in which HA-Gel physical blends were used,lxxx,lxxxi,lxxxii all 
other works reported 3-4 step long synthetic schemes, consisting firstly in 
functionalization step of one terminus or pendant groups of both reagents 
followed by coupling reaction.lxxxiii,lxxxiv,lxxxv,lxxxvi,lxxxvii,lxxxviii 

In one instance, the use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
(EDC) as cross-linker agent in order to obtain hydrogels with a one-step 
process is reported.lxxxix In this work, HA-Gel scaffolds were fabricated by 
freeze-drying of blend solution and then immersed for 24h in EDC solution. 
In the resulting hydrogels, EDC efficacy was observed as gelatin cross-linker, 
but not for HA one. HA was only physical dispersed in the hydrogel structure, 
and gradually released when immersed in an aqueous solution. Furthermore, 
proliferation of L929 fibroblasts on the surfaces of these scaffolds after cell 
culturing showed a lower activity compared with control plate. 
In this work, introducing AGMA1 in HA-Gel hydrogels was expected bring 
many benefits: on one side it will allow forming macroscopically homogeneous 
hydrogels with HA and gelatin, thanks to its easy coupling with both polymers. 
In addition, the RGD-mimic cationic AGMA1 units and their counteracting 
HA polyanionic nature, responsible for repulsive interactions with cell 
membranes, may improve cell adhesion and proliferation. As a further 
modification, serotonin (Ser) was introduced in the hydrogel structure to 
improve liver cell adhesion and proliferation. Serotonin is a biogenic 
monoamine neurotransmitter with variable effects on many different target 
organs.xc It is derived from the L-tryptophan, which is hydroxylated to 5-
hydroxy-L-tryptophan (5-HTP) by tryptophane hydroxylase (Tph). Recent 
scientific studies highlighted the involvement of serotonin in the induction of 
hepatocyte DNA synthesis after a hepatectomy in the rat and human.xci,xcii 
Serotonin can be potentially associated with either beneficial or detrimental 
effects on liver regeneration and these actions are mediated through many 
different receptor subtypes located either centrally or peripherally.xciii 
In this work, hydrogels were synthesised by a one-pot coupling reaction 
between the carboxylate groups of HA and the amine groups of Gel, AGMA1 
and Ser, using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4- methylmorpholinium 
chloride (DMTMM) as coupling agent. DMTMM is a water-soluble cross-
linker used for the amide bond formation of amines in presence of carboxylic 
group, without taking part in linkages.xciv According to literature reports, 
DMTMM efficacy is superior to that of EDC/NHS (1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide / N-Hydroxysuccinimide),xcv PyBOP 
((Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate)xcvi 
for ligation of amines to carboxylate anions. Furthermore, it does not require 
accurate pH control or pH shift during the reaction to be effective.xcvii 
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5.6 EXPERIMENTAL SECTION 

5.6.1 Materials 

Sodium hyaluronate (HA) with a  ̅  260 000 (evaluated by Size Exclusion 
Cromatography, SEC) was obtained from Bioiberica, Gelatin powder from 
bovine skin (type B with bloom ~225 g) was purchased from Sigma Aldrich 
(Spain). 2,2-Bis(acrylamido)acetic acid (BAC) were synthesized as previously 
described and purity determined by Nuclear Magnetic Resonance (NMR) and 
titration.xcviii 4-Aminobutylguanidine sulphate (agmatine), lithium hydroxide 
monohydrate, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium 
chloride (DMTMM), N-Boc-ethylenediamine, 37% hydrochloridic acid, 
serotonin, sodium nitrate, sodium phosphate monobasic were purchased from 
Sigma-Aldrich. Phosphate buffer solution (PBS) was prepared using Sigma 
Aldrich dry powder. All these reagents were used without further purification. 

5.6.2 Methods 

1H-, 13C-, HSQC-, and COSY- NMR spectra were recorded using a Bruker 
NMR spectrometer operating at 400 and 133.3 MHz. Spectra were recorded 
on samples dissolved in deuterium oxide (D2O). 

SEC analyses were obtained using a Shimadzu system comprising a DGU-
20A3 solvent degasser, an LC-20AD pump, a CTO-20A column oven, an SIL-
20A HT autosampler, an RID- 10A refractive index and an SPD-20A 
Shimadzu UV-VIS detector (flow rate: 1 mL min-1, temperature: 40°C). The 
instrument was equipped with three columns (300 mm x 7.5 mm, 8 mm): PL-
aquagel-OH 30 TM, PL-aquagel-OH 40TM and PLaquagel- OH 50TM, protected 
with a guard column (50 mm x 7.5 mm, 8 mm) (Polymer Laboratories). 
Calibration was performed with polysaccharide standards (Pullulan 
Polysaccharide, PL2090-0100 VARIAN) ranging from 180 to 708 000. The 
eluent was a pH 7 0.2 M NaNO3 and 0.01 M NaHPO4 buffer solution 
prepared using milli-Q water. Samples concentration 2 mg/mL. 

Fourier Transformed Infrared (FTIR) spectra in Attenuated Total Reflection 
mode (ATR-FTIR) were obtained using a Perkin Elmer Spectrum One 
instrument. Spectra of reagents and dried hydrogels were recorded in the 4000 
to 650 cm−1 range after 4 scans and with a resolution of 4 cm−1. 

Thermogravimetric analysis (TGA) was performed on 10 mg dry hydrogels 
with a TGA Q500 (TA Instruments) working from 25 to 600°C at 10°C/min 
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heating rate and under 50 mL/min nitrogen flow. Tests were repeated two 
times and data obtained as media of these measurements. 

Differential scanning calorimetric (DSC) analyses were carried out with a 
Mettler Toledo DSC823 (Mettler Toledo, Italy) equipped with the STAR 
Software and the FRS5 Mettler Toledo ceramic sensor. The instrument was 
calibrated with indium for melting point and heat of fusion. The dry samples 
(5-10 mg) were placed in aluminium pans and heated from 0 to 200°C at a 
constant rate of 10°C min-1. Empty pan was taken as reference. Tg was taken 
as the midpoint of the heat capacity transition.  

Atomic force microscopy (AFM) experiments were performed in tapping 
mode using a Multimode AFM (Veeco Instruments, Santa Barbara, CA) 
equipped with a Nanoscope IVa control system (software version 6.14r1). 
Silicon tapping probes (RTESP, Veeco) were used with a resonance frequency 
of 300 kHz and a scan rate of 0.5 Hz. 3 μm2 AFM images were taken for each 
sample. Topography was examined by topographical AFM, whereas 
composition was explored using phase imaging AFM. 

5.6.3 Synthesis of AGMA10 and AGMA20 

In a 200 mL flask, BAC (purity: 97%, 10.0 g, 0.049 mol) and lithium hydroxide 
monohydrate (2.04 g, 0.049 mol) were dissolved under stirring in distilled 
water (17 mL) and degassed with nitrogen. After complete dissolution, 4-
Aminobutylguanidine sulphate (10.056 g, 0.044 mol) and lithium hydroxide 
monohydrate (1.88 g, 0.044 mol) were added. The clear reaction mixture was 
allowed to react for 5 days at room temperature in the dark. Mono-N-BOC-
ethylenediamine (1.88 g, 0.012 mol) was then added under stirring and mixture 
allowed reacting for 1 day in the dark. After this time, the solution was 
acidified to pH 5 with few drops of a 3 M HCl aqueous solution and 
maintained under stirring for 15 min. The final product was purified by 
ultrafiltration with a membrane with nominal molecular weight cut-off 1000 
and recovered by freeze-drying. Yield = 12.7 g (63.4%).   

AGMA20 was synthesized as described for AGMA10 using the following 
reagent amounts: BAC (10.0 g, 0.049 mol), LiOH·H2O (2.04 g, 0.049 mol), 4-
Aminobutylguanidine sulphate (9.11 g, 0.039mol), LiOH·H2O (1.66 g, 0.039), 
N-BOC-ethylenediamine (3.24 g, 0.020 mol). Yield = 2.97 g (15.5%). The 
NMR spectra were as reported for AGMA10. 
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1H-NMR 400.132 MHz (D2O, δ, ppm): 1.52-1.70 (m, NCH2CH2CH2CH2NH), 
1.70-1.92 (br, NCH2CH2CH2CH2NH), 2.32-2.52 (br, NHCH2CH2NH2), 2.69-
2.88 (br, CH2CONH), 2.88-2.95 (br, NHCH2CH2NH2), 3.13-3.29 (m, 
NCH2CH2CO), 3.40-3.62 (br, NCH2CH2CH2CH2NH), 5.52 (s, CH-COO-). 

13C NMR 100 MHz (D2O, δ , ppm ) 20.5 (NHCH2CH2CH2), 25.1 
(NHCH2CH2), 29.1 (NHCOCH2CH2), 35.8 (NHCH2CH2NH2) 40.5 
(CH2NCH2), 44.4 (NHCH2CH2NH2) 49.3 (NHCOCH2), 52.2 (NHCH2), 56.0 
(COOHCH), 155.1 (NH2CNNH), 171.3 (NHCO), 173.5 (CHCOOH). 

5.6.4 Synthesis of HA-Gel-AGMA, HA-AGMA and HA-Gel hydrogels 

HA (0.500 g) and Gel (1.00 g) were dissolved in bidistilled water (10 mL) at 
50ºC under vigorous stirring for 15 min. After complete dissolution, AGMA10 
(0.100 g) was added to the solution, followed by DMTMM (0.150 g). The 
resultant clear solution was poured in the wells (1 cm diameter, 0.2 cm 
thickness) of 12-well plate using a 10 mL syringe. The reacting mixtures were 
allowed reacting for totally 48 h at 37.5ºC in a humid atmosphere, even though 
the observed setting time was 5 min. The hydrogels were retrieved and freeze-
dried.All hydrogels were prepared by following the general procedure 
described for the HA-Gel-AGMA10 hydrogel and using the amounts of 
reagents reported in Table 5.3.  

Table 5.3. Experimental parameters for hydrogel synthesis. 

Sample 
HA 
(g) 

Gel 
(g) 

Agma10 

(g) 
Agma20 

(g) 
DMTMM 

(g) 
Vol H2O 

(mL) 

HA-Gel 0.500 1.00 - - 0.150 10 

HA-Gel-
Agma20% 0.500 1.00 - 0.100 0.150 10 

HA-Agma10 0.500 - 0.100 - 0.150 10 

HA-Agma20 0.500 - - 0.100 0.150 10 

5.6.5 Synthesis of Serotonin containing hydrogels 

HA (0.300 g), Gel (0.600 g) were dissolved in bidistilled water (6 mL) at 50ºC 
under vigorous stirring for 15 minutes. AGMA10 (0.060 g) and Serotonin 
(0.015 g , % w/w regards to HA) were added into the solution followed by 



CHAPTER 5 

HYDROGELS FOR TISSUE ENGINEERING BASED ON HYALURONIC 

ACID, GELATIN AND AGMA1 

185 

 

DMTMM (0.090 g). Reagents were mixed, transferred in a 12 well-plate and 
allowed to proceed for 48h at 37.5ºC in a humid atmosphere. The hydrogels 
were retrieved and freeze-dried. Xerogels were sterilised by UV irradiation. 

5.6.6 Water uptake measurement 

Water uptake measurements were performed in 0.01 M pH 7.4 PBS at 37.5°C. 
Dry discs with 1 cm base diameter and 0.2 cm thickness were soaked in 25 mL 
buffer solution and maintained statically until maximum swelling for 24 h. 
After this time, discs were retrieved, wiped with filter paper to remove excess 
water and then weighed. The percentage water uptake was calculated as:  

                 
(  –  )

  
           Equation 5.1 

where Wo is the initial hydrogel weight and Ws the wet hydrogel weight after 
24h. Tests were performed in triplicate. Final values were expressed as the 
means ± standard error. 

5.6.7 Flory-Rehner calculations 

The hydrogel swelling ratio based on mass (QM) was calculated by dividing the 
hydrogel mass after swelling (Ws) by the xerogel mass (Wo). Flory-Rehner 
calculations were used to determine the crosslink density and mesh size of 
hydrogels. 

The average molecular weight between crosslinks,  ̅ , was calculated using a 
simplification of the Flory-Rehner equation:xcix,c  

  
    

  ̅  ̅ 

  
(
 

 
   )       Equation 5.2 

where Qv is the volumetric swelling ratio,  ̅ is the specific volume of the dry 
polymer,  ̅  is the average molecular weight between crosslinks, V1 is the 
molar volume of the solvent (18 mol/cm3 for water), and   is the Flory 
polymer-solvent interaction parameter. Qv was determined from the degree of 
mass swelling, QM:ci 

      
  

  
 (    )     Equation 5.3 

where    is the density of the dry polymer (1.229 g/cm3) and    is the density 
of the solvent (1 g/cm3 for water). The value of   for HA was estimated to be 
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0.473, based on several assumptions. First, it was assumed that χ for HA is 
comparable to that for dextran, a well-studied polysaccharide, because HA and 
dextran have similar chemical structures. Finally, differences between soluble, 
unmodified polysaccharides and cross-linked polymers were assumed to be 
negligible. 

The effective cross-link density,   , was calculated as follows:cii 

   
  

 ̅ 
       Equation 5.4 

The swollen hydrogel mesh size, ξ, was determined with the following 
equation:ciii.civ 

     
   √  

        Equation 5.5 

where √    is the root-mean square distance between crosslinks and depends 
on the molecular weight between cross-links. For HA, the following root-
mean-square end-to-end distance value was previously reported:cv 

(
 ̅ 
 

  
)
   

            Equation 5.6 

where n is the number of disaccharide repeat units for HA with a given 
molecular weight. cvi 

5.6.8 Degradation studies 

Hydrogel degradation was studied by monitoring the residual mass of 
hydrogels discs with 1 cm base diameter and 0.2 cm thickness soaked in 0.01 
M pH 7.4 PBS at 37.5°C at different time points (1, 2, 7, 14, 21, 28 days). 
Residual mass measurements were obtained after freeze-drying, as: 

                 
(     )

  
       Equation 5.7 

where Wt represents the weight of dried hydrogel at time t and Wo is the initial 
weight of hydrogel. Tests were performed in triplicate. Final values were 
expressed as the means ± standard error. 
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5.6.9 Stress strain tests 

Rheological measurements were carried out using a stress-controlled 
oscillatory rheometer ARG2 TA Instruments using parallel plate geometry. 
The test geometry was a 20 mm diameter standard steel parallel-plate. A 
dynamic mechanical analysis (stress–strain tests) was carried out to determine 
the viscoelastic properties of the HG, to obtain their storage (G‟) (elastic 
behaviour) and loss (G‟‟) (viscous behaviour) moduli. Hydrogel were prepared 
putting the reaction mixture in teflon moulds (diameter 20 mm, 0.2 mm thick). 
The reaction were conducted in a humid atmosphere at 37°C. The test 
methods employed were stress sweep, temperature ramp and frequency sweep. 
The stress sweep was set up by holding the temperature (37°C) and frequency 
(1 Hz) constant while increasing the oscillation torque from 0.1 to 10000 µN 
m. At this fixed oscillation torque (30 µN m) in the linear viscoelastic region 
and temperature (37°C), the oscillatory frequency was increased from 0.01 to 
100 Hz. In the temperature ramp test, the evolution of G„ and G„„ in the range 
of 25−100°C was measured at a heating rate of 5°C/min, with the same 
oscillation torque previously decided and frequency of 1Hz. Tests were 
performed in triplicate. 

5.6.10 Biocompatibility test 

Cell viability (CV) of hydrogels and starting reagents was assessed by a 3-(4,5-
dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. To 
evaluate the possibility of cytotoxic product formation, the samples were 
immerged (or solubilized) in 5 mL of FBS-free supplemented DMEM 
(Dulbecco‟s Modified Eagle‟s Medium with 4500mg L-1 glucose) and placed on 
a shaker at 37°C. The conditioned medium was collected and filtered at days 1, 
2, 3, 7, 10, 15, 21 and stored at -20°C until required. BALB/3T3 Fibroblasts 

were seeded at a density of 8×104 cells⋅mL-1 in complete medium into a sterile 
96-well plate and incubated to confluence. After 24 hours, the medium was 
replaced with the eluted extracts (100 µL /well) for each composite, the 
control sample and the Triton X-100 (positive control), and incubated at 37°C 

in humidified air with 5% CO2 for 24 hours. An MTT solution (0.5 mg⋅mL-1) 
was prepared in warm FBS-free supplemented DMEM and plates were 
incubated at 37°C for 4 hours. Excess medium and MTT were removed and 
dimethyl sulfoxide (100 μL) was added to all wells in order to dissolve MTT 
taken up by the cells. Finally, the absorbance was measured with a BioTek 
Synergy HT detector using a test wavelength of 570 nm. CV (%) was 
calculated with the following equation: 
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CV(%) = 100 × [(ODS – ODB)/(ODC – ODB)]  Equation 5.8 

ODS, ODB, and ODC are defined as the optical density for sample (S), blank 
(B) (culture medium without cells), and control (C), respectively. 

5.7 RESULTS AND DISCUSSIONS 

5.7.1 Synthesis and characterization of soluble NH2-end-capped AGMA1 
oligomers 

As previously pointed out, hydrogels were synthesised by a one-pot reaction 
between the carboxylate groups of HA and the amine groups present in Gel 
and AGMA1 and Ser, using DMTMM as coupling agent. AGMA1 precursors 
were NH2-end-capped oligomers, in turn obtained from amide-end-capped 
oligomers prepared using non-stoichiometric acrylamide/amide ratios in the 
recipe (Figure 5.3). Different excess of BAC (namely 10% and 20%) were 
used. LiOH was used to neutralize the primary amine group of agmatine the 
carboxylic acid of BAC. The acrylamide-end-capped AGMA1 was finally 
converted to the NH2-end-capped one by reaction with mono-N-BOC-
ethylenediamine (added in excess), followed by strongly acidic treatment in 
order to remove the protecting group. The final AGMA1 products were 
nicknamed AGMA10 and AGMA20, respectively. 

 
Figure 5.3. Synthesis of AGMA10 product. AGMA20 was prepared similarly by 
using a 1:0.8 BAC:agmatine ratio. 
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1H-NMR and 13C-NMR confirmed AGMA10 and AGMA20 structures and are 
depicted in Figure 5.4 together with assignments. The percentages of amine 
end-terminated groups observed by NMR were 8 and 19% for respectively 
AGMA10 and AGMA20, in agreement with the theoretical data. By 1H-NMR 
spectrum of products was possible calculate also number average molecular 
weight of AGMA10 and AGMA20, that was 2680 and 1370 respectevely. 

 

 

 

Figure 5.4. Nuclear magnetic resonance characterization of AGMA10 and 
AGMA20 with assignments: A) amine end-terminated AGMA1 structure; 
B)1H-NMR and C) 13C-NMR spectra of AGMA10; D) 1H-NMR and E) 13C-
NMR spectra of AGMA20. 

3 

2 

1 A) 

B) C) 

E) D) 
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5.7.2 Synthesis of hydrogels and reaction parameter optimization  

Hyaluronan-gelatin-AGMA1 (HA-Gel-AGMA) hydrogels were prepared by 
chemical cross-linking of a mixture using DMTMM as a coupling agent (Figure 
5.5). For comparison purpose, also HA-AGMA and HA-Gel hydrogel were 
prepared. Serotonin (Ser) was added to hydrogel recipes only for biological 
tests, considering that its presence did not influenced chemical and physical 
properties of hydrogels. 

 

Figure 5.5. Synthesis of HA-Gel-AGMA1-Ser hydrogels. 

The reaction mechanism implies the addition of a carboxylate anion to 
DMTMM to give an activated ester, which subsequently undergoes 
nucleophilic substitution by an amine group to give the corresponding amide. 
It should be observed that, together with chemical cross-linking, the hydrogel 
structure is stabilized by hydrogen bonds and Van der Waals interactions.cvii  

In order to produce a ready-to-use hydrogels, avoiding any purification steps, 
DMTMM initial amount was adjusted until reaching biocompatible 
concentration. This choice was further dictated by the need to not use for its 
trace removal organic solvents (such as THF, methanol, acetonitrile), that even 
if present only in traces could lead to toxic effects too. Considering cell 
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viability test further reported in Figure 5.15A, selected DMTMM 
concentration was 15 mg/mL. Similarly, cell viability tests gave 10 mg/mL 
aqueous concentration of AGMA10 and AGMA20 as maximum exploitable 
concentrations. More detailed information on cell viability tests were further 
reported in paragraph 5.7.9. 

As regard the best gelatin concentration to be used in hydrogel recipe, three 
HA-Gel hydrogels with different composition (HA:Gel 1:1, 1:2 and 1:3) were 
synthesised using the previously described (15mg/mL) DMTMM 
concentration. The reaction was allowed to proceed for 24 h and stopped 
lowering the temperature to -20°C and following freeze-dried. 
Biocompatibility and rheological properties were evaluated and described in 
paragraph 5.7.9 and 5.7.6. As consequence of these results, HA-Gel 1:2 was 
chosen as final optimal hydrogel composition. 

5.7.3 FTIR characterization 

FTIR hydrogels spectra were compared with those of reagent confirming the 
presence of all components (Figure 5.6). In particular, characteristic absorption 
bands of HA, gelatin and AGMA1 were following reported and found in 
hydrogel spectra. Hyaluronate spectrum contained five important bands: C-O 
stretching vibrational band (950-1200 cm-1), symmetric stretching of COO- 
(1400 cm-1), an intense group of bands due to superposition of amides and of 
various carbonyl and carboxyl bands (1500-1700 cm-1); symmetric and 
asymmetric stretching C-H band (2900 cm-1) and a broad and intense band of 
N-H and O-H stretching bands engaged in hydrogen bonds (2500-3600 cm-1). 
The FTIR spectrum of gelatin showed the characteristic absorption bands of a 
protein structure, e.g. C-O stretching band (1230 cm-1), amide I vibrational 
band (1530-1580 cm-1), asymmetric C=O stretching of carbonyl and carboxyl 
groups (1640-1650 cm-1), H2C-H and HC-H stretching vibration (2860 cm-1 
and 2920 cm-1, respectively) and, lastly, N-H and O-H vibrational bands (3200-
3450 cm-1). AGMA10 and AGMA20 had similar FTIR spectra, with typical 
bands of AGMA1 polyamidoamine: C–H and HC-H stretching bands (2960–
2860 cm-1), asymmetric C=O stretching (1619 cm-1) and symmetric COO- 
stretching (1379 cm-1), as well as the amide I band (1523 cm-1). 

In hydrogels, a decrease of band intensities of the characteristic functional 

groups involved in the cross-link reaction was highlighted (    
 at 3350 cm-1, 

    at 1620 cm-1,       at 1410 cm-1). Simultaneously, a new amide band at 
1680 was observed, which can be assigned to the new covalent amide bond 
formed between hyaluronan and gelatin or AGMA1, different to original 
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carbonyl band. Monitoring these signals, over 3 days of reaction, was possible 
to establish the end of cross-link reaction. Results indicated that after 2 days, 
no further modifications occurred in both FTIR spectra for the analysed 
hydrogels. Trend over time was reported of the only HA-AGMA20 in Figure 
5.7, highlighting the formation of a new amide band at 1680 cm-1 and 
disappearing of carboxylate one at 1410 cm-1.  

 
Figure 5.6. FTIR spectra of reagents and hydrogels at different compositions. 
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Figure 7. FTIR spectra of HA-AGMA20 hydrogels varying time reaction. 

5.7.4 Water uptake measurements and Flory-Rehner calculations 

Water uptake of hydrogels was measured at 37 °C after 24 h of immersion in 
PBS buffered solution at pH 7.4. Figure 5.8 shows the water uptake of 
hydrogels at different composition. Initially the system was in a solid state 
(xerogel), forming a rigid network. When the system started to hydrate the 
polymer chains swelled and became more flexible, allowing the diffusion of 
water molecules in the network. When the chain relaxation reached a 
minimum energy state, equilibrium between chain relaxation and contraction 
of the polymeric network was reached, getting a stable swelled state. Water 
uptake was affected noticeably by the composition due to a change of 
crosslinking density. The level of water uptake changed from 2500% for the 
HA-AGMA10 hydrogel, to 1300% for HA-Gel-AGMA20.  

These data allowed determination of the crosslinking density and the average 
molecular weight and distance between nodes, parameters that define the 
three-dimensional network structure of chemical cross-linked hydrogel. These 
parameters determine the mechanical properties, stiffness, and elastic 
behaviour of the hydrogels. Flory–Rehner equation reported in the 
experimental section, gave these important parameters, which are reported in 
Table 5.4. The Flory–Rehner model was applied to hydrogels considering the 
only HA contribute, as in the case of monocomponent matrix, without 
considering gelatin and AGMA1 influences. This coarse simplification lead to 

approximated values of  ̅ ,   , ξ. Notwithstanding, these values were useful 
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for making order-of-magnitude comparisons of the hydrogel chemistries in 
biologically relevant features in this work. 

In general, a low crosslinking density gives rise to a more open network, and a 
higher degree of hydration and higher distance between nodes. However, a 
high crosslinking density implies a lower degree of hydration and a less 

deformable hydrogel.   % ranged between 10-4 to 10-3, with a maximum in the 
case of HA-Gel-AGMA20. Regarding to mesh size, in all cases a nanometric 

pattern was calculated, in the range of 250 nm. Considering  ̅  and the  ̅  of 
native HA, number of cross-links per HA chain was calculated. Results 
indicated that at least one node per chain was present. Data confirming 
rheological results in which no physical interaction was detected, in the 
temperature ramp. Values increased passing from HA-AGMA1 to HA-Gel 
(1.8) and then to HA-Gel-AGMA1, with a maximum of 3.48 cross-link nodes 
per chain for HA-Gel-AGMA20.  

 

Figure 5.8. Water uptake after 24 h of immersion in PBS solution of 
hydrogels at different composition. 

Table 5.4. Flory-Rehner calculation results, average MW between crosslinks, 

 ̅ , crosslinking density %, ʋc %, number of cross-links per HA chain, swollen 
state mesh size, ξ (nm) of all hydrogels. 

Samples 
Average MW 

between 

crosslinks,  ̅  

Crosslinking 
density %, ʋ

c
 % 

Number 
of cross-
links per 
HA chain 

Mesh 
size, ξ 
(nm) 
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HA-Gel 143228 8.58·10
-4
 1.88 243 

HA-Gel-AGMA
10

 102021 1.20·10
-3
 2.55 227 

HA-Gel-AGMA
20

 74786 1.64·10
-3
 3.48 213 

HA-AGMA
10

 232874 5.28·10
-4
 1.12 267 

HA-AGMA
20

 170291 7.22·10
-4
 1.53 251 

5.7.5 Thermal characterization 

The thermal behaviour of hydrogels was assessed by means of 
thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC. 
TGA traces (Figure 5.9 and Table 5.5) showed in all cases moisture loss at 
80°C in different amounts, ranging from 5 to 15%. Table 5.5 reports the onset 
decomposition temperatures, obtained by the intersection of tangent lines to 
curves, and the relevant maximum weight loss rate temperatures, obtained by 
the first derivative of TGA curves. HA and gelatin degraded by a single step 
with maximum degradation rates, Tmax, at 242 and 309°C, respectively. 
AGMA10 and AGMA20 showed a multi-step degradation with Tmax at 245, 326 
and 463°C.  

By comparing the hydrogel degradation curves with those of each single 
component, it is apparent that AGMA1 and Gel had a different influence on 
thermal stability of HA. In particular, in the case of HA-Gel, the onset 
decomposition temperatures were 5°C and 23°C lower than those of native 
HA and Gel, respectively; similarly, the Tmax decreased of 10°C and 8°C 
respectively.  

Conversely, HA-AGMA10 and HA-AGMA20 exhibited higher thermal stability 
than single component. The onset degradation temperatures of HA in 
hydrogels was higher of 18°C and 11°C than native HA, in the cases of HA-
AGMA10 and HA-AGMA20, respectively. The maximum degradation rates 
increased of 8°C and 10°C, respectively. AGMA10, AGMA20 in HA-AGMA1 
hydrogels and native ones started to degrade at similar temperatures, (212 and 
207°C vs. 210°C, respectively), but maximum degradation rate were lower of 
22 and 21°C for HA-AGMA10 and HA-AGMA20.  

In the cases of HA-Gel-AGMA1 hydrogels, all components started to degrade 
early than native ones. In particular, HA presented an onset temperature lower 
of 15 and 22°C, in the cases of HA-Gel-AGMA10 and HA-Gel-AGMA20 
respectively and, similarly, considering Tmax, a decrease of 18 and 28°C. Gel 
showed an onset temperature variation of 32 and 39°C and Tmax decrease of 60 
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and 23°C for HA-Gel-AGMA10 and HA-Gel-AGMA20 respectively. AGMA10 
and AGMA20 degradation steps were not detected.  

Notwithstanding temperature trends, the presence of Gel and AGMA1 onto 
HA chains slowed down the overall degradation of hydrogels as evidenced by 
a less steep slope of TGA curve. Residual mass at 600°C did not significantly 
varied passing from native components to hydrogels. 

 
Figure 5.9. Thermogravimetric analyses of precursors and hydrogels. 

Table 5.5. Hydration water loss temperature (THydr) and degradation 
temperature (TDegr) of reagents and hydrogels, derived by TGA. Maximum 
degradation rate temperatures (Tmax) and onset temperatures (Tonset) are 
reported for each component. 

Samples THydr (°C) 

TDegr (°C) 

1rt step 2nd step 3rd step 

Tonset Tmax Tonset Tmax Tonset Tmax 

HA 83 228 242     

Gelatin 82 274 316     
AGMA

10 
/AGMA

20
 -- 210 245 304 326 432 463 

HA-Gel 83 223 232 297 308   

HA-AGMA
10

 82 140 142 212 224 246 250 
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HA-AGMA
20

 82 144 150 207 223 239 252 

HA-Gel-AGMA
10

 82 213 224 242 256   

HA-Gel-AGMA
20

 83 144 150 206 214 235 293 

 
Figure 5.10. Differential scanning calorimetry thermograms of reagents and 
hydrogels.  

The DSC traces (Figure 5.10 and Table 5.6) resulting from the first heating 
cycle of all polymers were characterized by broad endothermic peaks centred 
around 80°C associated with the loss of residual water, in agreement with 
TGA results. The second heating cycle lead invariably to flat curves, not 
reported below for seek of simplicity. HA-AGMA10 and HA-AGMA20 showed 
a degradation step centred at about 130°C, also observed in TGA curves, not 
present in AGMA1 and HA-Gel-AGMA1 thermograms. In the same region, 
the endothermic peak present in AGMA1 trace at 130 - 138°C does not 
correspond to any mass loss in the TGA curve.  

Table 5.6. Glass transition temperature (Tg) and hydration water loss 
temperature (THydr) and peak temperature (Tpeak) of reagents and hydrogels, 
derived by DSC. 
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Samples 
Tg (°C) THydr (°C) Tpeak (°C) 

Max Onset Max Onset Max Onset 

HA -- -- 90 47 -- -- 
Gel -- -- 97 40 -- -- 

AGMA10 50 40   130 120 
AGMA20 -- --   138 127 

HA-Gel -- -- 84 32 -- -- 
HA-Gel-AGMA10 50 40 79 41 -- -- 

HA-Gel-AGMA20 57 38 104 38 -- -- 
HA-AGMA10 -- -- 74 26 152 141 

HA-AGMA20 -- -- 74 24 156 143 

5.7.6 Rheological experiments 

The cross-linked nature (chemical or physical one) of HA-Gel hydrogels was 
evaluated by rotational rheometer in oscillatory mode (Figure 5.11). Three 
experiments were carried out, evaluating G‟ and G‟‟ moduli trend variation 
with oscillation torque, oscillation frequency and temperature, respectively.  

In a first experiment, G‟ and G‟‟ were obtained operating at a fixed oscillation 
frequency, namely 1 Hz, varying oscillation torque from 0.1 to 10000 µN.m. 
All sample showed G‟‟ values lower than those of G‟, highlighting a prevailing 
elastic behaviour rather than a viscous one. The linear viscoelastic regions 
ended only for oscillation torque values higher than 2000 µN.m, indicating a 
high stability in a wide range of torque values. G‟ was not significantly sensitive 
to the gelatin content, and was 510, 570, 550 Pa for HA:Gel 1:1, 1:2, 1:3, 
respectively. 

 

G
’ 
(P

a
) 

G
”
 (P

a
) 

D
el

ta
 (

d
eg

re
e)

 

Oscillation torque (µN•m) 

A) 



CHAPTER 5 

HYDROGELS FOR TISSUE ENGINEERING BASED ON HYALURONIC 

ACID, GELATIN AND AGMA1 

199 

 

 

 

Figure 5.11. Rheological analyses of HA-Gel with different weight ratio (●1:1, 
□1:2, ○1:3). A) oscillation stress dependency of the modulus values G‟ and G‟‟, 
B) oscillation frequency dependency of the modulus values G′ and G′′, C) 
temperature ramp. 

In frequency sweep tests, G′ and G” were obtained operating at a fixed 
oscillation torque in the linear viscoelastic region, 30 µN.m, varying oscillatory 
frequency from 0.01 to 100 Hz (Figure 5.11, panel B). For frequencies <30 Hz 
samples showed a solid response (both sinusoidal stress and deformation) and 
G‟ and the G‟‟ were constant for a wide frequency range. At frequencies >30 

Hz, samples began to have liquid-like behaviour (sinusoidal stress and 
cosinusoidal deformation trends) in response to stress. No differences were 
observed among hydrogels with different gelatin content.  
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The temperature ramp tests allowed understanding the stability of samples at 
high temperatures (Figure 5.11, panel C). Tests were conducted fixing 
oscillation torque to 30 µN.m and frequency of 1Hz. In general, for chemical 
cross-linked hydrogels, increasing temperature, water tends to evaporate, 
leading the G‟ increased with temperature. This trend was observed almost for 
all studied samples. The only exception was HA-Gel 1:3 that showed a 
decreasing G‟ with temperature, in particular in the 10 to 35ºC range, meaning 
that physical interactions, such as Van der Waals interactions, were present. 
This temperature range was typical of uncross-linked gelatin,cviii,cix indicating 
that HA:Gel 1:3 contains too high gelatin content inside. For this reason, a 1:2 
weight ratio was chosen as final composition of HA-Gel hydrogels. 

All hydrogels were analysed by using the same experimental conditions 
adopted for HA-Gel hydrogel. The viscoelastic behaviour was evaluated by 
determining G‟ and G‟‟ values varying oscillation torque, frequency of 
oscillation and temperature (Figure 5.12 panel A to C).  

In the first experiment (Figure 5.12, panel A), G‟ and G‟‟ value were evaluated 
at fixed oscillation frequency 1 Hz varying oscillation torque from 0.01 to 
10000 µN.m. Hydrogels presented an extended linear viscoelastic region 
ending only after 100 Pa, thus indicating a great stability also at medium – high 
stress. In particular, HA-AGMA10 and HA-AGMA20 presented the longest 
linear viscoelastic region, more than 1000 µN.m. The G‟ modulus were higher 
for all gelatin-based hydrogels (4, 4, 6 KPa for HA-Gel, HA-Gel-AGMA10, 
HA-Gel-AGMA20 respectively) than of HA-AGMA10 and HA-AGMA20 (0.7 
and 2.3 KPa respectively). In panel B, a magnification of stress sweep is 
reported, highlighting the breakpoint of each hydrogel. HA-Gel-AGMA20 

presented the higher value, followed by HA-Gel, HA-Gel-AGMA10, HA-
AGMA20 and HA-AGMA10. Similar trend replicated the cross-link density one, 
reported before.  

Oscillation frequency dependence was evaluated fixing oscillation torque of 30 
µN.m (Figure 5.12, panel B). Hydrogels‟ behaviour did not significantly depend 
on frequency within a wide frequency range. For frequencies <15 Hz samples 
showed a solid response (both sinusoidal stress and deformation) and G‟ and 
the G‟‟ were constant for a wide frequency range. Only at really high frequency 
(15-100 Hz) samples involved liquid behaviour to the stress. 

Temperature ramp from 25 to 100°C was performed fixing oscillation torque 
at 30 µN.m and frequency at 1 Hz (Figure 5.12, panel C). All hydrogels 
resulted stable to temperature increase. Water loss was slowed down, indeed 
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only slight increase of G‟ modulus was recorded. No physical interactions were 
detected. Same G‟ value trend of  was present. Resuming all tests, the best 
performance was reached by HA-Gel-AGMA20, due to its highest G‟ modulus 
and breakpoint in stress sweep, highest stability to heating in temperature ramp 
analysis. 
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Figure 5.12. Rheological characterization of hydrogels via: (A) oscillation 
torque dependency of the modulus values G‟ (red), G‟‟ (blue) and delta (black); 
(B) oscillation frequency dependency of the modulus values G‟ (red), G‟‟ (blue) 
and delta (black); (C) temperature dependency of G‟ (red), G‟‟ (blue) and delta 
(black). []= HA-Gel, ●=HA-Gel-AGMA

10
 , ○=HA-Gel-AGMA

20
, □=HA-

AGMA
10

, ⌂=HA-AGMA
20

. 

It is important to underline that almost all synthesised hydrogels presented 
rheological properties comparable to those of human and bovine liver. In 
literature, it was reported G‟ and G‟‟ dependency by frequency, measured by 
oscillation rheology and multifrequency magnetic resonance elastography. 
Reported modulus values ranged between 1 and 3 KPa and between 0.4 and 
1.5 KPa for respectively G‟ and G‟‟, varying frequency from 2 to 100 Hz.cx 
Similar values were obtained in the cases of HA-Gel-AGMA20, HA-Gel-
AGMA10, HA-Gel and HA-AGMA20, lower ones in the case HA-AGMA10. 
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5.7.7 Degradation test 

Figure 5.13 shows the residual mass of hydrogels as a function of incubation 
time in PBS at 37 °C. For comparison 1:2 weight ratio HA/gel blend were 
similarly immersed in PBS, but at 37°C they are totally soluble. After one 
week, HA/Gel blend started to smell bad, probably due to their 
decomposition, but pH solution did not change. For all hydrogels, the extent 
of degradation regularly and slowly increased with time. No smells or pH 
variation were spotted during time experiment. After 1 week, only 5-10 % of 
weight loss was recorded, after 4 week 25-35%. It may be noted that the 
highest weight loss percentage occurred for HA-Gel, the lowest for HA-Gel-
AGMA20. These results corroborated the water uptake studies and cross-linked 
degrees. In particular, hydrogels presented a high degradation degree were the 
same showing low cross-linked density. As well as, HA-Gel-AGMA20 showed 
the lowest degradation degree possessed the highest cross-linked density.  

 
Figure 5.13. Residual mass % of hydrogels after immersion in PBS solution 

for 28 days at 37°C. 

5.7.8 Morphological studies by AFM 

Morphology of hydrogels was examined by AFM. Images of xerogels are 
shown in Figure 5.14 with a size bar of 3 μm. The topographical image of HA-
AGMA1 and HA-Gel-AGMA1 revealed a rough surface. However, the 
topographical image of HA-Gel was characterized by a smooth surface 
without any indication of the presence of orientated polymer chains or 
aggregates or organized systems domains. The surface characteristics of 
xerogels were composition and cross-ling degree dependent. Roughness was 
higher for xerogels presented lower values of cross-link degree, as showed in 
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the case of HA-AGMA20 and more in HA-AGMA10. Analysis of phase images 
revealed an absence of phase separation in the microdomains at all 
compositions, what can be attributed to the total miscibility of reagents. 

 
Figure 5.14. AFM images of hydrogels (3 μm bar). 
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5.7.9 Cell biocompatibility  

One of the most popular and convenient ways to determine cell viability is the 
rapid colorimetric tetrazolium dye procedure commonly referred to as the 
MTT assay. This assay is based on the cleavage of the yellow-coloured 
tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 
into a blue-coloured formazan by the mitochondrial enzyme succinate-
dehydrogenase.cxi In order to disregard any cytotoxic product‟s influence on 
fibroblast proliferation, an MTT assay was carried out for reagents and final 
hydrogels, staying in contact with the culture medium for determined time 
periods. Cell viability of DMTMM, AGMA10 and AGMA20 PBS solutions was 
monitored for maximum 24h, incubating them with fibroblast cells dispersed 
in DMEM matrix.  

Results indicated that 15 mg/mL was the maximum concentration of 
DMTMM after 2 h of incubation, but it resulted toxic after 18 h (Figure 5.15, 
panel A). Notwithstanding, this concentration was chosen in consideration 
that the major extent of coupler agent was consumed in the first part of 
reaction.  

In the case of NH2-end-capped AGMA1 products, 10 mg/mL concentration 
as maximum biocompatible concentration for both oligomers (Figure 5.15, 
panel B).  

 
Figure 5.15. MTT tests with BALB/3T3 fibroblast cell line in presence of A) 
DMTMM and B) AGMA1 at different concentrations. 

Biocompatibility of HA-Gel hydrogels and final hydrogels were studied (Figure 
5.16 and 5.17), evaluating cell viability over 21 days on fibroblast cells and 
compared to PBS solution as control. The cell viability was approximately or 
higher than 80% in all cases. Thus, under the experimental conditions, 

A) 
B) 
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biocompatibility was not compromised and the samples did not produce 
cytotoxic products. 

Proliferation tests on containing serotonin hydrogels are actually in progress 
with hepatocytes in order to evaluate the adhesion, proliferation and 
morphologies of cells.  

 
Figure 5.16. Cell viability % of HA-Gel hydrogels over 21 days with 

BALB/3T3 fibroblast cell line. 

 
Figure 5.17. Cell viability of hydrogels evaluated by MTT test at determined 

times. 

5.8 CONCLUSIONS 

In this work, chemical cross-linked hydrogels intended as scaffolds for tissue 
regeneration, in particular of liver tissue, were produced. Sodium hyaluronate 
and gelatin (HA-Gel) were selected as scaffolding material to mimic the crucial 
components of ECM, in order to enhance cell proliferation, migration, and 
differentiation of liver tissue. Two different NH2-end-capped AGMA1 
oligomers were opportunely synthesised and used as co-reagent in hydrogel 
synthesis. AGMA 1 was used to favour cell adhesion on hydrogel surface by 
RGD sequence enrichment in the porous hydrogel structure. Thanks to its 

HA-Gel(1:1) HA-Gel (1:2) HA:Gel (1:3) Control 
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efficacy without control pH solution, DMTMM was chosen as coupler agent 
in the cross-link reaction between hyaluronate, gelatin and AGMA1. Reaction 
parameters were finely tuned in order to increase cross-link degree at body 
temperature. FTIR spectra of final products confirmed the presence of all 
initial components and, in particular, after 48 h of reaction, the formation of 
new amides groups and a reduction of carboxylate groups of HA. These 
results confirmed the presence of chemical cross-linked hydrogels.  

Thermal analysis showed lower onset temperatures and maximum rate ones of 
HA-Gel-AGMA1 component compared to native ones. In contrast, onset 
temperatures and maximum rate ones of HA-AGMA1 were higher of equal to 
native ones.  Huge amount of moisture was retained in hydrogel structure. 

Swelling analysis performed in PBS solution for 24 h allowed evaluating cross-
link degrees by using of Flory-Rehner equation. Cross-link density degrees and 
the other mesh properties depended on composition. At least one cross-link 
node was present in all hydrogels, but, among others, HA-Gel-AGMA20 
hydrogel showed the highest cross-link density, number of nodes per HA 
chain, and the smallest distance between two cross-links nodes. Results found 
explanation considering the amine content in AGMA20 higher than AGMA10 
and gelatin. Flory-Rehner results indicated that HA-Gel-AGMA20 should be 
the most stable hydrogel; hypothesis confirmed by degradation tests, where, it 
presented the slowest degradation rate compared to the others. 
Notwithstanding, all hydrogel presented an high stability in water, indeed a 
maximum of 35 % weight loss was recorded after 28 days in PBS solution.  

Rheological tests revealed that synthesised hydrogels presented good 
rheological properties for liver regeneration. In particular, HA-Gel-AGMA20 
gave the best performance under oscillation stress and temperature heating, 
presenting the highest G‟ modulus and highest water retention when heated.  

The in vitro results revealed that the scaffolds did not induce cytotoxic effects 
and were suitable for cell growth. Biocompatibility was not compromised and 
the samples did not produce cytotoxic products over time. On the other hand, 
the cell adhesion and proliferation tests on hydrogels are actually in progress. 
In particular, these tests will be conducted with hydrogels contained also 
serotonin, a neurotransmitter also involved in DNA synthesis activation of 
liver cells after hepatectomy in rats and humans.  
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In conclusion, HA-Gel-AGMA1 hydrogels, combining the advantages of 
hyaluronan, gelatin and AGMA1, might be a suitable candidate for use in soft 
tissue engineering. 
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