
1

A semi-automatic and trustworthy scheme for
continuous cloud service certification

Marco Anisetti, Claudio Ardagna Member, IEEE, Ernesto Damiani Senior Member, IEEE, Filippo Gaudenzi

Abstract—Traditional assurance solutions for software-based systems rely on static verification techniques and assume continuous
availability of trusted third parties. With the advent of cloud computing, these solutions become ineffective since services/applications
are flexible, dynamic, and change at run time, at high rates. Although several assurance approaches have been defined, cloud requires
a step-change moving current assurance techniques to fully embrace the cloud peculiarities. In this paper, we provide a rigorous and
adaptive assurance technique based on certification, towards the definition of a transparent and trusted cloud ecosystem. It aims to
increase the confidence of cloud customers that every piece of the cloud (from its infrastructure to hosted applications) behaves as
expected and according to their requirements. We first present a test-based certification scheme proving non-functional properties of
cloud-based services. The scheme is driven by non-functional requirements defined by the certification authority and by a model of the
service under certification. We then define an automatic approach to verification of consistency between requirements and models,
which is at the basis of the chain of trust supported by the certification scheme. We also present a continuous certificate life cycle
management process including both certificate issuing and its adaptation to address contextual changes. Finally, we describe our
certification framework and an experimental evaluation of its performance, quality, applicability, and practical usability in a real industrial
scenario, which considers Engineering Ingegneria Informatica S.p.A. ENGpay online payment system.

Index Terms—Assurance, Certification, Cloud, Testing

F

1 INTRODUCTION

Cloud computing paradigm supports a new vision of IT
where software and computational resources are released
as services over a virtualized ICT infrastructure accessi-
ble through the Internet. The convenience introduced by
cloud computing in terms of flexibility, and reduced costs
of owning, operating, and maintaining the computational
infrastructures, comes at a price of increased risks and
concerns. Users deploying a service in the cloud in fact lose
full control over their data and applications, which are fully
or partially in the hands of cloud providers.

Assurance and verification techniques (e.g., audit, cer-
tification, and compliance) need to be adapted to fit the
dynamics of the cloud ecosystem [1], [2]. The advent of
cloud in fact makes traditional techniques inappropriate,
because assurance claims and information were assumed to
be all available a priori at the time of evaluation and before
service deployment. Cloud assurance aims to increase cloud
trust and transparency, and therefore needs to manage claim
verification and evidence collection in a post-deployment
environment. Moreover, due to the fact that cloud assurance
should manage the complete cloud service/application life
cycle, it should i) depart from the assumption of a single
trusted third party that is available during the whole process
and takes responsibility over different claims done on a
target object [3], ii) implement (semi-)automatic approaches

• M. Anisetti, C.A. Ardagna, E. Damiani, F. Gaudenzi are with the
Dipartimento di Informatica, Università degli Studi di Milano, Milano,
Italy. E. Damiani is also with Etisalat British Telecom Innovation Center,
Khalifa University of Science, Technology and Research, Abu Dhabi, UAE.
E-mail: {firstname.lastname}@unimi.it

that adapt to changes in the service and/or its environment,
iii) target multiple cloud layers at the same time.

Effectively tackling such issues is fundamental to in-
crease trust in the cloud [1], [2], [4], and in turn fosters
the movement of critical businesses to the cloud. In this
paper, we focus on certification techniques, which aim to
implement a secure, trusted, and transparent cloud by speci-
fying a dynamic delegation mechanism supporting multiple
signatures of artifacts in a cloud environment. A certification
process in the cloud must follow a multi-step process that
certifies the support of a given set of non-functional prop-
erties by a cloud-based system. The process starts with the
certification of the system in a controlled, lab environment.
Upon successful verification, the service is deployed in the
in-production environment and the certification process is
re-executed to prove the support of the same properties
verified in the lab environment. Finally, a continuous cer-
tification process is set up to monitor the status of the
certification process during the system operation. It is based
on continuous collection of evidence on the behavior of the
system, which is used to verify whether it maintains the
support of the certified properties, according to guidelines
designed by the certification authority. Our scheme supports
the above certification process, where the certification au-
thority takes responsibility and signs all evaluation activ-
ities to be done to prove a given property (requirements
specified in a certification model template), and delegates the
management of the certification activities to be done on
specific targets to other parties (activities specified in a cer-
tification model instance). The correct execution of evaluation
activities on real target services can be verified at any time
in a semi-automatic way, by checking consistency between
certification model template and instance. This check allows

2

to build a chain of trust grounded on the requirements
specified by a certification authority in a certification model
template, increasing the trustworthiness of the cloud and
its services. The proposed process supports both i) basic
and traditional certification processes for one-time, static
certificate issuing and ii) advanced certification processes
for continuous, incremental, and multilayer verification.

Our contribution is manifold. After describing a certifica-
tion scheme for the cloud discussing its building blocks and
certification process (Sections 3 and 4), we define a matching
algorithm supporting dynamic delegation of responsibilities
and a semi-automatic certification process, which reduces
the burden of certification authorities (Section 5). We then
present a continuous and incremental process for the man-
agement of a certificate life cycle from issuing to revocation
(Section 6). We further implement our algorithm and process
in a certification framework, and experimentally evaluate it
in terms of quality, performance, utility, and practical usabil-
ity in a real industrial scenario based on Engineering Ingeg-
neria Informatica S.p.A. ENGpay online payment system,
ENGpay in the following (Section 7). Finally, we provide a
discussion on a trust model for the cloud emerging from the
proposed approach (Section 8).

2 RELATED WORK

Certification schemes aim to provide evidence that a given
software system has some non-functional properties and
behaves as expected. Their evolution followed the evolution
of IT, first focusing on software certification (e.g., [5]), then
considering service certification (e.g., [3], [6]), and finally
approaching certification in the cloud (e.g. [7], [8]). In the
last few years, different approaches to security certification
of services have been proposed (e.g., [3], [8]–[11]). Many
of them [3], [9] considered static service certification, with
no support for continuous certification of evolving applica-
tions. Common Criteria scheme [5] was the first approach
to incremental certification distinguishing between partial
re-evaluation and partial re-certification [11]. However, it
provides a manual process and puts a high overhead on
developers and certification authorities. Anisetti et al. [10]
then provided an approach to continuous and incremental
certification of SOA and web services, by extending their
test-based security certification scheme in [3].

Compared to traditional service certification, cloud cer-
tification is: i) highly dynamic, it is affected by contextual
changes at any layer of the cloud stack, ii) multi-layer, it
can refer to services at different cloud layers; iii) intrinsically
incremental, it requires continuous validity verification and
incremental adaptation with the scope to minimize costly
re-certification activities, and iv) trustworthy by delegation,
it requires advanced trust models based on delegation to
support cloud peculiarities. In this context, Sunyaev and
Scheneider [12] discussed the advantages introduced by a
certification approach when integrated in a cloud system,
while Chen et al. [13] proposed a cloud security assessment
indicator system based on classifying and grading. Lins et
al. [1] then presented a conceptual architecture for contin-
uous verification of cloud services discussing its benefits
and challenges. Krotsiani et al. [14] proposed an approach
based on monitoring for incremental security certification of

cloud services. Although their model-based methodology is
similar to the one in this paper, it does not apply to test-
based certification, requires full involvement of the certifi-
cation authority, and provides a high-overhead incremental
certification requiring full execution of monitoring activities.
Stephanow et al. [15] described a test-based certification
framework, based on randomized and non-invasive testing,
for evaluating opportunistic providers. This paper, while
providing an interesting model, does not focus on contin-
uous certification and suffers from similar problems as [14].
Stephanow et al. [16] also presented an approach to con-
tinuous certification based on a set of metrics at infrastruc-
ture layer. These metrics, which collect evidence of service
changes, represent the basis for continuous certification and
can be integrated within our certification process to further
reduce the need of human intervention.

The research community has also focused on different
solutions supporting trust in the cloud and implementing
different trust models for the cloud [7], [17]–[20]. Ryan et
al. [17] presented TrustCloud, a framework for accountabil-
ity and auditability in the cloud, which provides continuous
and multi-layer audit of cloud services based on policies
and regulations. Although the described trust model and
accountability life cycle show some similarities with our
approach, they do not provide a formal and rigorous de-
scription of how to collect audit-related evidence. Khan
et al. [18] discussed the problem of trust in the cloud,
underlying the challenges of reduced control and lack of
transparency, and acknowledged certification as one of the
emerging technologies to bring trust in the cloud. Naskos et
al. [19] proposed an approach to deploy and scale cloud ser-
vices based on security- and performance-related evidence.
Wahab et al. [20] proposed a trust-model for cloud services
that is completely decentralized. A cloud service trust is
built by collecting feedback from its neighbors, which is
calculated as the relation between successful interactions
over total interactions and spread following a hedonomic
coalition game. Differently from the above papers, we de-
scribe a trust model based on certification and a running
schema for trusted evidence collection.

Another relevant line of research analyzed the problem
of cloud testing specifically focusing on Testing-as-a-Service
paradigm [21], [22]. Tsai et al. [21] proposed a TaaS design
for SaaS combinatorial testing. King et al. [22] proposed
a virtual test environment that combines an automated
test harness for a cloud service, with the delivery of Test
Support-as-a-Service (TSaaS). Gonzales et al. [23] presented
a set of tests and attacks, which affect the cloud infras-
tructure layer and can be used to assess different security
properties. In this paper, we address the issues of cloud-
based incremental testing in a way similar to the regression
testing described by Di Penta et al. [24], where the goal is to
re-use, as much as possible, existing test cases. Differently
from the approach in this paper, Di Penta et al. [24] focused
on identifying new faults, rather than on certifying the non-
functional properties of evolving services; moreover, in this
paper, incremental testing is driven by certification models
and the relative regression is based on them.

To conclude, the approach in our paper develops on
the architecture in [25] and the initial trust model in [7] by
providing i) the methodology for consistency check between

3

certification model template and instance, ii) a complete
certification process starting from certificate issuing to com-
plete certificate life cycle management, iii) a certification
framework implementing the continuous certification pro-
cess and providing tools for supporting certification author-
ities, iv) a complexity analysis of the proposed approach
that evaluates its computational overhead and, in turn, its
practical applicability in real industrial scenarios.

3 CERTIFICATION BUILDING BLOCKS

We describe the building blocks of our certification scheme
for the cloud. Examples in this paper refer to the security
domain and consider a cloud-based deployment of online
payment system ENGpay on top of OpenStack IaaS.

3.1 Non-Functional Properties

A non-functional property p is a pair (p̂ ,Ap), where p̂ is an
abstract property and Ap is a set of attributes refining it. An
abstract property is taken from a shared vocabulary (e.g.,
confidentiality, integrity, availability) [3] or domain-specific
vocabularies derived from regulations (e.g., [26]), standards
(e.g., [27]), cloud security specifications (e.g., [9]). Attributes
can include information on the class of mechanisms guaran-
teeing p̂ (e.g., access control, encryption, signature), a level
modeling property strength (e.g., CVSS standard severity
score level low, medium, high), and contextual attributes
(e.g., confidentiality of data in transit, availability with 95%
uptime). Differently from existing work (e.g., [3], [9]), we
decouple definition of properties from the mechanisms that
must be implemented to support them. Non-functional
properties are organized in a hierarchy HP=(P ,�P) [3],
where P is the set of properties and �P is a partial order
relationship over P . Given two properties pi,pj∈P , pi is
weaker than pj (denoted pi�P pj) if pi.p̂=pj .p̂ , and ∀ak∈Ap ,
either the value vi (ak) of attribute ak is not specified or
vi (ak)�ak

vj (ak). We note that total order relations �ak
be-

tween contextual attributes ak∈Ap can be defined by expert
users. An example of property hierarchy can be found in [3].

3.2 Non-Functional Mechanisms

A non-functional mechanism θ is a pair (θ̂ ,Am), where θ̂ is
a mechanism type (e.g., access control, encryption), and Am
is a set of attributes specifying mechanism configurations
(e.g., cloud layer, encryption algorithm, key length) and
specific cloud stack configurations affecting the mechanism
behavior. Non-functional mechanisms support the verifica-
tion of properties and are organized according to their type
θ̂ . Abstractions can be defined over mechanisms, possibly
introducing a hierarchy HMi for each type θ̂i. A hierarchy
HMi is then defined as a pair (Mi,�Mi), where Mi is the
set of all mechanisms of a given type, and �Mi is a partial
order relationship over Mi. The partial order is defined
by domain experts (e.g., a certification authority – CA) so
that given two mechanisms θj ,θk∈Mi, θj is weaker than θk
(denoted θj�Miθk) if θj .θ̂=θk.θ̂ , and ∀at∈Am, either vj (at)
is not specified or vj (at)�atvk (at). We note that total order
relations �at between mechanism attributes at∈Am can be
defined by expert users. We also note that there is a special

hierarchy HMf
=(Mf ,=), where Mf={(Functional,{})}, re-

ferring to all mechanisms concerning functional aspects of
a given service. All families can be logically seen as part
of a common hierarchy HM of mechanisms M having a
common ancestor denoted as any . Each mechanism is an-
notated with a set {events} of events affecting its execution
and, in turn, the validity of an existing certification process.
Events can also refer to specific cloud configurations, which
are requested for the correct functioning of the mechanism.

3.3 Target of Certification
The meaning of properties is strictly associated with
the application context and the cloud perimeter, called
Target of Certification (ToC), they insist on. ToC describes
the mechanisms, possibly at different cloud layers,
behind a non-functional property. ToC is defined as (Θ,b),
where Θ={θi} is a set of mechanisms θi∈M and b
specifies the layer (i.e., service, platform, infrastructure)
of certificate binding. Each mechanism belongs to a
cloud layer and can support a property alone or
in cooperation with other mechanisms in ToC. The
certificate, instead, is bound to a single layer b representing
the provisioning layer for the certified service. For
instance, let us consider a ToC for security property
p=(Confidentiality,{ctx=in-transit/at-rest}). ToC includes
two mechanisms θ1 and θ2 deployed at service layer
and infrastructure layer, respectively, and its binding is
defined at service layer (i.e., b=<service>). Mechanism
θ1=(encryption,{algo=XML-encryption,protocol=WS-
Security,level=message-in-transit}) refers to a mechanism
implementing an encrypted communication channel,
mechanism θ2=(encryption,{algo=encrypted FS}) identifies
a mechanism implementing an encrypted file system.

3.4 Evidence
A certification process (see Section 4) relies on the collection
of evidence at the basis of a certificate, proving a non-
functional property p for a given ToC. We focus on test-based
evidence ev that includes i) the specification of the collection
process, ii) the set of testing activities (i.e., test cases) to be
executed, iii) the results retrieved by test case execution and
corresponding rules for their aggregation, and iv) a reference
to the mechanisms specified in the ToC over which test cases
are executed and corresponding results collected. For sim-
plicity, but without loss of generality, test-based evidence is
defined as ev={{(θ ,Pr,In,EO,Po)}}, where {(θ ,Pr,In,EO,Po)}
represents a single test case tc as a sequence of 5-tuples
(θ ,Pr,In,EO,Po), with θ a mechanism, In the set {i1,. . .,in}
of inputs, EO the set {eo1,. . .,eom} of (expected) outputs,
Pr the set of pre-conditions, Po the set of post-conditions.
Pre-conditions and post-conditions express dependencies
between inputs and (expected) outputs. Evidence collection
follows a model-based testing approach and is driven by an
automaton describing all activities, in the form of a sequence
of invocations, to be done on the ToC. The automaton, called
evidence collection model m, is described as a Symbolic
Transition System (STS) [3] and combines the automaton
mθ of the mechanisms θ∈Θ in ToC. Model m is then defined
as 〈S ,s0,V ,I ,A,→〉, where S is a set of states s, each one
referring to either a mechanism θ defined in ToC or a

4

NI I S

E

R

Validity period expired

Contradictory evidence

Validity period expired

Contradictory evidence

Sufficient evidence

Not sufficient evidence

Sufficient evidence

Conditions on transitions

condeNI,I
=0.9tc condeS,R

=¬condeNI,I
∧ suspension time>t

condeI,E=expiration date is reached condeS,I
=condeNI,I

condeI,R=∅
condeI,S=¬condeNI,I

∧ suspension time<t condeS,E
=expiration date is reached

Fig. 1. Life cycle with states Not Issued (NI), Issued (I), Suspended (S),
Expired (E), Revoked (R) and examples of conditions on transitions.

functional mechanism, s0∈S is the initial state that refers
to a functional mechanism modeling no operation, V is the
set of internal variables, I is the set of interaction variables,
A is the set of actions (i.e., service operations and internal
function calls), and → is the transition relation. → consists
of a set of edges connecting two states and labeled with
an action, a guard in disjunctive normal form (conditions
on transition), and an update mapping (new assignments
to variables). According to m and its linear independent
paths modeling the testing flows φi∈Φ(m), evidence ev can
be generated following our approach in [3]. Each test case tc
refers and exercises a given flow φi.

3.5 Life Cycle

The certificate life cycle l models the certificate evolution
from its issuing to possible expiration or revocation. In
traditional certification, it is in the bailiwick of the CA
issuing the certificate. Decisions like certification issuing,
suspension, revocation, or expiration are normally taken
asynchronously, statically, and offline by the CA, for in-
stance, as a reaction to new discovered vulnerabilities or
audit activities. In a cloud scenario, where the certificate
life cycle is managed at run-time on the basis of evolving
evidence, the static intervention of a CA is not always feasi-
ble. The life cycle is modeled as a deterministic finite state
automaton Gl (V l ,El) with each vertex v∈V l representing
a possible state of the certificate with label label (v) (e.g., is-
sued, suspended) and each edge e=(v i,v j)∈El representing
a transition between two states. Each edge e is labeled with
a condition conde over certificate evidence that regulates the
transition. Figure 1 shows an example of the life cycle au-
tomaton with transition conditions. For instance, edge eNI,I
is labeled with a condition condeNI,I

requiring that at least
90% of the test cases are successful (i.e., condeNI,I

=0.9tc) for
the certificate to move from state NI to state I.

4 CLOUD CERTIFICATION PROCESS

A certification process for the cloud is a collaborative effort
involving i) a service provider developing cloud-based ap-
plications that need to be certified; ii) a cloud provider that
either supports application certification or wants to certify
its own cloud services; iii) a certification authority responsible
for the design and definition of certification requirements
and methodology; iv) an accredited lab delegated by the

certification authority and responsible for certification activ-
ities.1 We note that the accredited lab can be either an online
actor using a certification framework to carry out evaluation
activities or the framework itself. In the following, when
clear from the context, we will call accredited lab both the
online actor and the framework.

Our certification process is responsible for all evaluation
activities aimed to produce a certificate for the ToC (issuing
phase), as well as to continuously verify the validity of the
certificate against context changes to reduce unnecessary
certificate revocation and re-certification [25] (post-issuing
phase). It is based on specific machine-readable documents,
namely Certification Model (CM) Template, Certification
Model (CM) Instance, and Certificate.

CM Template T drives the definition of the certification
methodology, and represents the cornerstone for building
a chain of trust that is grounded on the correctness of
the certification methodology itself (see Section 8). It is an
abstract representation of the process inputs, which specifies
high-level requirements, configurations, and activities for
the certification of a property for a given (class of) ToC. It is
defined as 5-tuple of the form 〈p,ToC,m,ev,l〉 and signed by
the certification authority. CM Template T specifies require-
ments on ToC in terms of the mechanisms to be implemented
to support a property p, the model m for evidence collection,
and the evidence ev to be collected. It also includes a life
cycle l for continuous verification of certificate validity.
Mechanisms θ∈Θ in ToC can be defined at different levels
of abstraction, from mechanisms only including the type
(i.e., (θ̂ ,∅)) to fully specified ones (i.e., (θ̂ ,Am)). The evidence
collection model m describes execution flows Φ(m) involv-
ing mechanism in Θ, which must be evaluated to certify p.
Evidence ev must be produced according to Φ(m). We note
that evidence ev in T specifies test cases {(θ ,Pr,In,EO,Po)},
where inputs In and expected outputs EO are expressed
in the form of partitions of the corresponding input and
output domains, DIn and DEO , respectively. A partition of
a domain D is a set φ(D)={D1, . . . , Dn} of equivalence
classes such that:

⋃n
j=1Dj=D and ∀j 6=t Dj∩Dt=∅ with

j, t=1, . . . , n. For instance, equivalence classes φ(Dpwd) for
input parameter password can include: i) the set of valid
passwords, ii) the set of invalid passwords, iii) the set of
valid but not existing password.

Example 4.1 (T). Let us consider the cloud storage ser-
vice of ENGpay, to be certified for property Confiden-
tiality. A CM Template T can include security prop-
erty p=(Confidentiality,{ctx=in-transit/at-rest}) and tar-
get of certification ToC=({θ1,θ2,θ3},<service>), where
θ1=(encryption,{level=message-in-transit}) is an encryp-
tion mechanism securing public communication chan-
nels, θ2=(encryption, {level=internal-communications})
is an encryption mechanism securing internal cloud
service communications, θ3=(encryption,{level=data-
at-rest}) is an encryption mechanism securing stored
data. Evidence collection model m in T specifies the
flows of execution, which are used for test case gener-
ation, by combining mechanisms in ToC. It generates a
set of test cases ev expressed in terms of test partitions

1. An accredited lab is an official emanation of a certification author-
ity carrying out a system evaluation.

5

DIn and DEO insisting on the above mechanisms. The
life cycle automaton is fully defined in terms of states
that can be assumed by a certificate with all mandatory
transition conditions specified in terms of specific aggre-
gations on evidence.

The concrete implementation of the methodology is a
refinement of T , called CM Instance I . CM Instance I
includes specific information on configurations and activ-
ities to be executed on the service under evaluation for
evidence collection. It is jointly specified by the accredited
lab and the service provider, and can be defined as a 5-
tuple of the form 〈p ,ToC ,m ,ev ,l 〉. CM Instance I is under
the responsibility of the accredited lab and contributes to
the establishment of a complete chain of trust, which is
grounded on the corresponding CM Template signed by the
certification authority (see Section 8). Before distributing a
CM Instance, the accredited lab verifies i) the signature of
the CM Template from which it is generated/to which is
claiming conformance, ii) that the CM Instance is a correct
instantiation of the CM Template and correctly represents
the ToC (see Section 5). The instantiated target of certification
ToC contains all configurations for the mechanisms in the
real service implementation. Evidence ev defines test cases
specifying the reference to the real mechanisms θ , input
values i, and expected output values eo. We note that
an input value i (expected output value eo, resp.) can be
considered as a representative of the corresponding equiv-
alence class Dj iff i∈Dj (eo∈Dj , resp.). In the following,
we denote an equivalence class Dj as [i], where i∈Dj .
Additional information (e.g., access credentials, cloud con-
figurations, network configurations, endpoints) regarding
the mechanism implementation is fundamental for evidence
generation. However, how this information is really used in
practice to execute test cases is out of the scope of this paper.

Example 4.2 (I). Let us consider CM Template T
in Example 4.1. A CM Instance I for T can
include the following elements. Security property
p=(Confidentiality,{ctx=in-transit/at-rest}). Target
of certification ToC=({θ1,θ2,θ3},<service>), where
θ1=(encryption,{algo=XML-encryption,protocol=WS-
Security,level=message-in-transit}) implements
a XML-encryption mechanism based on
WS-Security securing public communication
channels, θ2=(encryption,{level=internal-
communications,algo=HTTPS}) implements an HTTPS
communication channel securing internal cloud
service communications, θ3=(encryption,{level=at
rest,algo=encrypted FS}) implements an encrypted file
system securing stored data. The remaining components
should be such that: i) m is consistent with m in T , ii) ev
includes test cases reflecting the partitions in T , iii) l=l.

We introduce an instantiation function I→ that produces
I as specialization of a given T as follows.

Definition 4.1 (I→). Let T =〈p,ToC,m,ev,l〉 be a CM Template.
An instantiation I→ is a transformation that takes T as
input and produces I=〈p ,ToC ,m ,ev ,l 〉 as output where:
p I→p , ToC I→ToC m I→m , ev I→ev , l I→l .

Non-Functional Property

ToC

CM Template

CM Instance

Evidence

self adapted

is certified for

according to

instantiated in

verified against

generates
is verified by

supports

is included in

Fig. 2. Conceptual framework

CM Instance I describes an executable evidence col-
lection process (see Figure 2) whose results are evaluated
for: i) certificate issuing, if the produced evidence is suffi-
cient according to the certification authority, ii) certificate
adaptation, to continuously validate and possibly adapt the
status of a certificate C , following certificate life cycle l (see
Section 7.1). A certificate C is a 4-tuple 〈I ,T ,ws,evr〉, where
I is a CM Instance, T the original methodology over which
I is defined, ws the certified service, and evr the results of
the execution of test cases in ev∈I . Certificate C plays a fun-
damental role for improving the trustworthiness of cloud
services/systems and is at the basis of advanced processes
such as certification-aware service discovery and service
composition, to name but a few. A concrete incarnation of
Examples 4.1 and 4.2, as well as certicates built on them, are
available at http://tinyurl.com/hwyvklb.

Figure 2 shows the conceptual framework at the basis of
our certification process, as an extension of the one in [7].
The certification process aims to prove a property for a ToC
and is driven by a CM Instance. CM Instance is generated
as a refinement of a given CM Template and verified against
it through the validity check in Section 5. The evidence sup-
porting the considered property is continuously generated,
according to the CM Instance. We remark that, in some
cases, the evidence is not sufficient to prove a given non-
functional property (dashed arrow in Figure 2) and therefore
award the corresponding certificate.

Based on the conceptual framework, Figure 3 presents
our certification process that is composed of five main steps
implemented in the certification framework in Section 7.1.
In the first step (CM Template Definition), the certification
authority produces a CM Template T specifying the certi-
fication methodology for proving p on a class of ToC. We
note that CM Template Definition might happen well before
the execution of the other steps of the certification process,
making certification authority involvement feasible also in a
cloud environment. In the second step (Service Implementa-
tion), the cloud/service providers implement the service ws
to be certified. In the third step (CM Instance Definition), the
accredited lab, with the help of the cloud/service providers,
produces CM Instance I for the implemented service as a
refinement of the methodology in the CM Template. We note
that CM Instance can also be defined independently, and
then lately show conformance to a specific CM Template.
In the fourth step (I.T), the accredited lab verifies the
consistency between I and T . This consistency check is
crucial to build a chain of trust suitable for the cloud. Finally,

6

CM Template
Definition

Service
Implementation

CM Instance
Definition I.T CM Instance

Execution
Consistent
I

T
ws

C

Certification
Authority

Cloud/service
provider

Accredited
Lab

T ws I

Fig. 3. Certification process: execution steps. Squared boxes represent
steps implemented in our framework in Section 7.1, rounded boxes
steps for which we provide tools or guidelines for cloud providers,
accredited labs, or CA.

in the fifth step (CM Instance Execution), the certification
authority and the accredited lab execute all certification
activities aimed to first certificate issuing (issuing phase) and
then certificate adaptation (post-issuing phase). In the post-
issuing phase, the CM Instance adapts itself to changes at
both cloud (e.g., due to service migration), service (e.g.,
due to service versioning), and certification methodology
(e.g., due to CM Template versioning) levels, ensuring (if
possible) I.T and verifying certificate validity. We note
that the proposed certification process accomplishes cloud
peculiarities. It supports i) the evaluation of a multilayer ToC,
ii) a dynamic and incremental approach to certificate adapta-
tion based on CM consistency check (I.T), and iii) trust by
delegation providing a dynamic and runtime certificate life
cycle management in the cloud.

5 CONSISTENCY CHECK

The consistency check I.T is the main pillar of the certifi-
cation process in Figure 3. It verifies whether a CM Instance
I is a correct and valid refinement of a CM Template T ,
and represents the basis for building a chain of trust based
on our certification process. It is mandatory both when I is
generated independently by cloud/service provider owning
the ToC, and in case it is generated with the support of the
certification authority or one of its accredited labs. The check
that a CM instance I=〈p ,ToC ,m ,ev ,l 〉 is a valid instance
of T =〈p,ToC,m,ev,l〉 is a matching process composed of 5
verification steps as follows.

5.1 Non-functional property and ToC verification

Non-functional property and ToC are strictly related ele-
ments, which are often used to index and collect certification
requirements. Their verification proceeds as follows.

• Non-functional property verification: p is a valid
instance of p, denoted p I→p , iff p�P p on the basis
of the hierarchy of properties HP (see Section 3.1).
Property verification checks that the property to be
certified p is equal to/stronger than p.

• ToC verification: ToC=(Θ,b) is a valid instance of
ToC=(Θ,b), denoted ToC I→ToC , iff i) ∀θj∈Θ, ∃θk∈Θ :
θj�Miθk and {events}θj⊆{events}θk , for j=1,. . .,|Θ|,
k=1,. . .,|Θ| (see Section 3.3), ii) b=b. ToC verifica-
tion checks that i) for each mechanism specified in
the ToC of CM Template, there exists the same or
stronger mechanism in the CM Instance having a
superset of annotated events and ii) the certificate
binding layer is the same.

Example 5.1. Let us consider a CM Template for
payment systems with p=(Confidentiality,{ctx=in-
transit}) and ToC=({{encryption,level=message-
in-transit}},<service>), and a CM Instance for
ENGpay system with p=(Confidentiality,{ctx=in-
transit}) and ToC=({encryption,algo=XML-
encryption,protocol=WS-Security,level=message-
in-transit},<service>). p I→p because p=p ; ToC I→ToC
because the encryption mechanism based on XML-
encryption in ToC is a refinement of the generic
encryption mechanism for message in transit in ToC,
and they both have a service binding.

5.2 Evidence collection model verification
We aim to verify the consistency between the STS-based
models m∈T and m∈I . Our verification is successful,
meaning that m is a valid instance of m, if the linear
independent paths modeling the testing flows Φ(m) in the
CM Instance I are equal to the flows Φ(m) in the CM
Template T . Our verification starts by defining the quotient
graphsGm (V m ,Em) andGm (V m ,Em) of models m and m ,
respectively. Let us consider model m=〈S ,s0,V ,I ,A,→〉. The
quotient graph is calculated on the basis of the equivalence
relationship ≈, which models the belonging to the same
functional mechanism θ∈Θ in ToC, on the set of states S
of m. The quotient graph Gm (V m ,Em) with respect to ≈ is
a graph whose vertex set is the quotient set V m =S/≈ and
two equivalence classes [u],[v]∈V m form an edge ([u],[v]),
iff (u,v)∈→. We note that ≈ summarizes a set of consec-
utive or parallel functional mechanisms in m as a single
mechanism. This is due to the fact that m specifies a variety
of functional-related mechanisms that cannot be known a
priori by m.

Given the quotient graphs Gm and Gm , m is a valid
instance of m, denoted m I→m , iff Gm is isomorphic to Gm ,
as formalized by the following definition.

Definition 5.1 (m I→m). Let Gm (V m ,Em) be the quotient
graph of m, Gm (V m ,Em) be the quotient graph of m .
Also, let θi be the mechanism associated with each
vi∈V m∪V m . m is a valid instance of m, denoted m I→m ,
iff there exists an isomorphism f :V m→V m, such that
the following conditions hold:

1) ∀vi∈V m , ∃f(vi)∈V m ∧ θvi�Mj
θf(vi) on the basis of

mechanism hierarchy HMj
;

2) ∀(vi ,vj)∈Em , (f(vi),f(vj))∈Em.

Condition 1 states that each vertex vi in the evidence
collection model of the CM Template should have a corre-
sponding vertex f(vi) in the evidence collection model of
the CM Instance, such that the mechanism associated with
vi is an abstraction of the one associated with f(vi) based
on the relevant hierarchy. Condition 2 states that each edge
in Gm should have a corresponding edge in Gm .

We note that different possible isomorphisms can be
found between I and T . This is due to the fact that the ab-
stract definition of T (in terms of abstract mechanisms) links
to several possible instantiations on the basis of mechanism
hierarchy HM . As an example, m can specify a set of states
referring to a generic encryption mechanism. The latter

7

indirectly refers to both 3DES- and AES-based encryption
mechanisms, opening the door to different isomorphisms.
Example 5.2. Let us consider a CM Template for payment

systems having a model m for secure data exchange as
a sequence of two functional mechanisms interleaved
by a security mechanism for channel encryption, and
a CM Instance for ENGpay system having a model m
for secure data exchange as a sequence of a functional
mechanism for the selection and configuration of the
ENGpay operation to perform, a security mechanism
based on XML-encryption for secure communications,
and two functional mechanisms for operation execution
and history management. The quotient graph of m keeps
the first two mechanisms as they are and merges the
two functional mechanisms at the end of m in a single
mechanism. m I→m because Gm and Gm have both i) a
functional mechanism at the beginning and the end of
the graph, and ii) a security mechanism in the middle
such that the mechanism in Gm is an abstraction of the
one in Gm according to Example 5.1.

5.3 Evidence verification
Evidence verification uses the result of the evidence col-
lection model verification to index the evidence ev to be
matched against ev . This step is needed because m refers to
a set of abstract mechanisms and maps on a set {ev1,. . .evn}
of possible evidence. Evidence ev and ev are composed of
a set of test cases tc={(θ ,Pr,In ,EO ,Po)} (see Section 3.4).
Also, evidence ev can contain test cases that refer to more
mechanisms than the ones referred by test cases in ev, and
the cardinality of ev is equal to/greater than the cardinality
of ev. As already discussed, this is due to the fact that m
specifies a variety of functional-related mechanisms that
cannot be known a priori by m. For this reason, i) m can
summarize a set of consecutive or parallel functional mech-
anisms in m in a single mechanism, and ii) each quintuple
(θ ,Pr,In,EO,Po) in tc∈ev, with θ=(Functional,{}), has the
form ((Functional,{}),Pr,any,any,Po).

After ev is selected, evidence verification continues exe-
cuting a test case matching function (denoted ×) that veri-
fies the correspondence between two test cases as follows.
Definition 5.2 (Function ×). Let tcr={(θz ,Prz ,Inz ,EOz ,Poz)}

and tct={(θj ,Prj ,Inj ,EOj ,Poj)} be two test cases.
tcr corresponds to tct (denoted tcr×tct) iff
∀(θz ,Prz ,Inz ,EOz ,Poz)∈tcr one of the following
conditions holds:

1) if θz 6=(Functional,{}), ∃! (θj ,Prj ,Inj ,EOj ,Poj)∈tct s.t.

• (θk,Prk,Ink,EOk,Pok)∈tct, with k<j, already
satisfied either Condition 1 or Condition 2;

• θz�Mθj ;
• ∀i∈Inz , ∃i∈Inj s.t. [Inz.i]=[Inj .i];
• ∀eo∈EOz , ∃eo∈EOj s.t. [EOz.eo]=[EOj .eo].
• Prz=Poj ;
• Poz=Poj ;

2) else, ∃ zero or more consecutive
(θs,Prs,Ins,EOs,Pos)∈tct s.t.

• (θk,Prk,Ink,EOk,Pok)∈tct, with k<s, already
satisfied either Condition 1 or Condition 2;

• θs=(Functional,{}).

Definition 5.2 verifies the correspondence between
tcr and tct. The correspondence is evaluated by
analyzing each quintuple (θz ,Prz ,Inz ,EOz ,Poz)∈tcr and
(θj ,Prj ,Inj ,EOj ,Poj)∈tct according to Conditions 1 and 2.
Condition 1 is applied to each quintuple (θi,Pri,Ini,EOi,Poi)
in tcr referring to a non-functional mechanism (i.e.,
θz 6=(Functional,{})). It is satisfied if a corresponding quintu-
ple (θj ,Prj ,Inj ,EOj ,Poj) in tct is found, which defines a spe-
cialization of θz (second bullet), a set of inputs (outputs) in
the same equivalence classes of inputs (outputs) of evr (third
and fourth bullets), and the same set of pre-conditions Pr
and post-conditions Po (fifth and sixth bullets). Condition 2
applies to each quintuple in tcr referring to a functional
mechanism (i.e., θz=(Functional,{})). Each quintuple in tcr
corresponds to one or more consecutive and functional
quintuples in tct. We note that both conditions define a
constraint (first bullet) guaranteeing that all quintuples are
verified keeping their ordering in tcr and tct.
Example 5.3. Starting from Example 5.2, let us consider

a test case tci in T that selects an operation, receives
an encrypted request and decrypts it, and executes the
operation according to the received request, and a test
case tcj in I that selects operation payment of ENGpay,
receives an encrypted request with the credit card details
and decrypts it, executes the operation according to the
received request, and adds the results of its execution to
the history log. tci×tcj according to Definition 5.2.

Following Definition 5.2, evidence ev∈I is a valid in-
stance of evidence ev∈T as follows.

Definition 5.3 (ev I→ev). Let ev={tc1,. . .,tck} be an evidence
of T and ev={tc1,. . .,tcn} be the evidence of I , with
n≥k. ev is a valid instance of ev, denoted ev I→ev , iff
∀ path φi of m and corresponding path φj of m according
to Definition 5.1, ∀tcr∈ev associated with φj , ∃tct∈ev
associated with φi s.t. tcr×tct.

Definition 5.3 verifies the correspondence between each
test case tcr in CM Template and at least one test case tct in
CM Instance. The correspondence is evaluated by analyz-
ing all (θi,Pr,Ini,EOi,Po)∈tcr and (θj ,Pr ,Inj ,EOj ,Po)∈tct
according to Definition 5.2.

5.4 Life cycle verification
The certificate life cycle describes the expected evolution of
a certificate over time, according to different events (e.g.,
unexpected testing failures, new version of a ToC). The
lifecycle l in I must then adhere to the abstract lifecycle
l in T . l is a valid instance of l, denoted l I→l , iff Gl (V l ,El)
is isomorphic to Gl (V l ,El) and each condition labeling
edges in l is more restrictive of the corresponding in l , as
formalized by the following definition.

Definition 5.4 (l I→l). Let Gl (V l ,El) be the lifecycle in T
and Gl (V l ,El) be the lifecycle in I . Gl (V l ,El) is a valid
instance of Gl (V l ,El), denoted Gl (V l ,El) I→Gl (V l ,El),
iff there exists an isomorphism f :V l→V l , such that:

1) ∀vi∈V l , ∃f(vi)∈V l ∧ label(vi)=label(f(vi));

8

2) ∀(vi ,vj)∈El , (f(vi),f(vj))∈El and is such that
cond(f(vi),f (vj)) is more restrictive than cond(vi ,vj).

Condition 1 states that each vertex vi in Gl , representing
a state of a certificate, should have a corresponding vertex
f (vi) in Gl with the same label. Condition 2 states that each
edge in Gl should have a corresponding edge in Gl with
a more restrictive transition condition. In the following, for
simplicity, we require each edge in Gl and corresponding
edge in Gl to have the same condition, meaning that T and
I must have the same lifecycle (e.g., the one in Figure 1). Ex-
isting approaches for the comparison of boolean expressions
(e.g., [28]) can be integrated within lifecycle verification.

Consistency check I.T can then be modeled as a process
composed of the 5 verification steps in this section. It is de-
fined as a function f.:I×T →R, where R models differences
between I and T if I6 .T , R=∅ otherwise, as follows.
Definition 5.5 (f.). Let T be a CM Template and I be a

CM Instance, function f.:I×T →R implements the CM
Instance validity check . and is such that:

1) f.=∅ (I.T) iff p I→p (Non-functional property verifi-
cation), ToC I→ToC (ToC verification), m I→m (Evidence
Collection Model verification), ev I→ev (Evidence verifi-
cation), l I→l (Lifecycle verification);

2) f. returns the differences R between I and T
(I6 .T), otherwise.

We note that f. can also be used to check validity of a
CM Instance I (CM Template T , resp.) w.r.t. an adapted
CM instance I ′ (CM Template T ′, resp.). We also note
that R could additionally specify the differences between
certification models in terms of test cases that i) become
invalid in I ′ or ii) are specified in I ′ only. For conciseness, an
example of consistency check based on Examples 4.1 and 4.2
can be found at http://tinyurl.com/hwyvklb. We finally
note that the computational complexity of f. can easily
raise to a level that becomes unmanageable in a real-time
scenario like the one in this paper. In Section 7, we therefore
define and experimentally evaluate two main heuristics that
make the consistency function manageable at the price of a
reasonable decrease in the quality of the consistency check.

6 CERTIFICATE LIFE CYCLE MANAGEMENT

Certificate life cycle management relies on evidence collec-
tion and CM Instance validity check to verify the validity
of a CM Instance w.r.t. the corresponding CM Template
for certificate issuing (Section 6.1) and to monitor changes
to either CM Templates or CM Instances for certificate
adaptation (Section 6.2) as discussed in the following.

6.1 Certificate Issuing
Certificate issuing first verifies the validity of a CM Instance
w.r.t. the corresponding CM Template and is then managed
according to transition eNI,I=NI→I (dashed node/arrow
in Figure 1). The transition is triggered, if corresponding
condition condeNI,I

of eNI,I in l is satisfied. The issuing
phase is usually executed in a laboratory environment (pre-
deployment) under the supervision of a certification author-
ity, though in some specific situations it can be executed

also in production by the delegated accredited lab (e.g., for
properties that must evaluate systems in production such
as availability via replica). When the certificate reaches the
issuing state, life cycle management enters the second phase
where the continuous execution of I triggers certificate
adaptation.

6.2 Certificate Adaptation

Certificate adaptation is built around states I, S, R, and E of
l in Figure 1. A certificate goes to state S when the collected
evidence becomes insufficient to prove the property in the
certificate; to state R when collected evidence is contradic-
tory and does not prove the property (e.g., a successful
attack is observed); to state E when the validity date expires.
It returns from state S to state I when the collected evidence
becomes sufficient for certificate re-new. We note that states
R and E are final states and trigger re-certification from
scratch. We also note that condeS,I

=condeNI,I
with eS,I=S→I

and eNI,I=NI→I.
Certificate adaptation aims to maximize certificate va-

lidity, while minimizing the risk of unnecessary certificate
revocation and reducing as much as possible the amount
of re-certification activities. A certificate revocation in fact
requires re-certification from scratch, which introduces high
cost and time overheads invalidating the benefit introduced
by cloud certification schemes. We consider two adaptation
scenarios: i) CM Instance adaptation reacting to a new version
of service, platform, or infrastructure, or to any change in
the configurations (e.g., due to elastic scaling, migration)
at all cloud layers specified in the ToC; ii) CM Template
adaptation reacting to new requirements for the validity of
a property (e.g., a new bug in a mechanism or a new attack
discovered). We note that any change in CM Template also
triggers an adaptation process on CM Instance. Certificate
adaptation is carried out through an incremental certifica-
tion process. The incremental process provides the ability
to re-execute (part of) the process in Figure 3, following
changes in the CM Template, the CM Instance, and the
service implementation. It re-validates the ToC according
to the minimum set of test cases identified by validity check
function f. in Section 5.

Table 1 shows a summary of the two adaptation sce-
narios. It describes the amount of verification activities (i.e.,
column . and f.) to be done on the basis of the adapted
element (column adapted element), and the adaptation actions
to be executed (column adaptation actions).

6.2.1 CM Instance Adaptation

Let us consider an adapted CM Instance
I ′=〈p′,ToC ′,m ′,ev ′,l ′〉 of I=〈p ,ToC ,m ,ev ,l 〉. CM Instance
adaptation is triggered when f .(I ′, I)6=∅ and follows four
different approaches.

Partial re-evaluation. It applies when I ′.T , and considers
transitions eI,S=I→S, eS,I=S→I, and eS,R=S→R. Partial re-
evaluation first triggers transition eI,S . It then executes an
incremental evidence collection process, which follows the
differences between I and I ′ returned by f.(I ,I ′). It finally
re-news the certificate (eS,I), if possible, according to the
following scenarios.

9

TABLE 1
Adaptation summary

Scenario Adapted . f. Adaptation
element actions

p
I′.T p

I→p′ −
I′ 6 .T p

I→p′ Full re-certification

ToC
I′.T ToC

I→ToC
′
, m

I→m ′, ev
I→ev ′ Partial re-evaluation

I′ 6 .T ToC
I→ToC

′
, m

I→m ′, ev
I→ev ′ Partial re-certification/

Upgrade/Downgrade
CM Instance

m
I′.T − −

Adaptation I′ 6 .T m
I→m ′, ev

I→ev ′ Partial re-certification/
(I→I′) Upgrade/Downgrade

ev
I′.T ev

I→ev ′ Partial re-evaluation

I′ 6 .T ev
I→ev ′ Partial re-certification/

Upgrade/Downgrade

l
I′.T l

I→l
′ −

I′ 6 .T l
I→l

′ −

CM Template
Any

I.T ′ All CM Instance Adaptation

Adaptation (partial re-evaluation)

(T →T ′) I6 .T ′ All CM Instance Adaptation
(partial re-certification)

• Cloud event. A mechanism θi∈ToC
′

of I is affected
by the occurrence of an event. Test cases involving θi
are re-executed according to the result of f..

• Additional test cases. They are added in I ′, due to a
change in ToC

′
, m ′, or ev ′, and executed.

• New mechanism. A new mechanism θj∈ToC
′

of I ′
replaces a mechanism θi∈ToC of I and is such that
θj .θ̂=θi.θ̂ (i.e., they have the same type). All the test
cases involving θi in the original CM Instance I are
re-executed according to the new ToC

′
and m ′.

If enough correct evidence is collected the certificate
returns to state I (eS,I), otherwise partial re-certification can
be triggered or the certificate can be revoked (eS,R). We note
that, in case a new life cycle l

′
is defined in I ′, no operations

are needed iff l
′ I→l . We also note that partial re-evaluation

does not require certificate authority intervention and can
be executed at runtime following I ′.
Partial re-certification. It applies when I ′ 6.T , and considers
transitions eI,S=I→S, eS,I=S→I, and eS,R=S→R. Partial re-
certification first triggers transition eI,S . It then executes an
incremental evidence collection process that i) searches for
a new T ′ such that I ′.T ′ and ii) follows the differences be-
tween I and I ′ returned by f.(I ,I ′). Partial re-certification
exercises flows of I ′ that do not exist or are different from
the ones in I , rather than implementing a complete re-
certification. It then executes new test cases to collect the
evidence needed to award a certificate for a new property
p′ in I ′. If the evidence is sufficient and correct according to
T ′, the certificate is re-newed (eS,I). Otherwise the certificate
is revoked (eS,R). We note that, in case a new life cycle l

′
is

defined in I ′, no operations are needed iff l
′ I→l .

Downgrade/Upgrade. It is a lightweight degeneration of the
general case of partial re-certification that does not require
new testing activities, at a price of a little involvement of
the certification authority. Partial re-certification is executed
only if downgrade/upgrade fail. Certificate downgrade is
triggered when a set of test cases i) fail or ii) are removed
from I ′ due to changes in ToC and/or m . It aims to find
a suitable CM template T ′ for the adapted CM Instance I ′,
such that a weaker property is still preserved for the service
referring to it. Templates for certificate downgrade are de-
fined by the certification authority, making the accredited

lab just responsible to check if I ′ is consistent with one
of the alternative templates T ′. In case such T ′ is found,
the original certificate C is downgraded to C . Certificate
upgrade process is the inverse of the downgrade process
and is only applicable to a downgraded certificate C , up to
the original certificate C . Downgrade and upgrade processes
deal with some classes of cloud configurations that change
very rapidly (e.g., number of replicas supporting property
availability).

Full re-certification. It is applied in case changes to I cannot
be managed according to one of the above approaches.

6.2.2 CM Template Adaptation
CM Template adaptation focuses on incremental updates
of the certification methodology. It is driven by the cer-
tification authority that releases a refined CM Template
T ′=〈p′,ToC′,m′,ev′,l′〉 of T =〈p,ToC,m,ev,l〉, and can trigger
a CM Instance adaptation for all instances I referring to T .
The initial CM Template T is defined by the certification
authority for a given property and class of ToC. However,
upon new requirements for the validity of the property are
discovered, the certification authority defines an adapted
T ′ that is matched against I originally showing consistency
with T . The incremental process proceeds as follows: i) if
I.T ′, f .(T ′, T) is performed and a partial re-evaluation
executed according to its results; ii) if I6.T ′, the service
under certification must be adapted and a new instance I ′
produced such that I ′.T ′. f .(I ′, I) is then performed and
a partial re-certification executed according to its results.

CM Template adaptation can be considered as a
certification-aware fast-patching approach. As an example,
suppose that United States Computer Emergency Readiness
(US-Cert – https://www.us-cert.gov/) identifies a new vul-
nerability for a given ToC, which calls for T modification.
Such modification triggers a top-down adaptation process,
and all certificates referring to affected templates become
suspended. A service owner must then adapt its own service
and corresponding instance I to maintain the certificate.

7 EXPERIMENTAL EVALUATION

We give a brief overview of our certification framework
(Section 7.1), present a complete experimental evaluation
of our approach in terms of efficiency and quality (Sec-
tion 7.2), and discuss the utility and practical usability of
our approach for life cycle management in a real industrial
scenario (Section 7.3), where ENGpay online payment sys-
tem is checked for compliance against PCI-DSS standard.
Performance and quality experiments have been run on a
VM with 22 cores, 16GB RAM, and 120GB HDD deployed
on a physical machine Dell PowerEdge T620 equipped with
8 Xeon Octa Core 1.99 GHz, installing the whole certifi-
cation framework. All experiments have been repeated 3
times and the results shown in this section are the average
over the 3 executions. All building blocks of our experi-
ments, including the certification framework, are available
at http://tinyurl.com/hwyvklb.

7.1 Certification Framework
Our certification framework extends the certification frame-
work in [29] to implement the process in Figure 3, providing

10

Evidence Collector Manager

Test Manager Test Agent

Certification Model Manager

Certification Model
Manager Interface CM

Test
Suites

ToC
Probe

Hook

Fig. 4. A simplified view of the certification framework architecture

a set of tools and guidelines for designing CM Templates,
generating CM Instances, consistency check, and certifica-
tion management. It is composed of two main components:
i) Certification Model Manager that deals with CM generation,
selection, verification, ii) Evidence Collector Manager that
parses the CM Instance I and drives the testing process by
injecting test cases of ev in ToC .

Certification Model Manager is the main interface for cer-
tification authorities and accredited labs managing a certifi-
cation process. It implements the repository of certification
models and building blocks in Sections 3 and 4, such as the
hierarchies of properties HP and mechanisms HM . It also
implements the Test Suites Repository, where all test suites
are stored with corresponding evidence and have been kept
up to date. It further offers internal functionalities (e.g.,
consistency check – f., certificate adaptation) supporting
the Evidence Collector Manager in the management of the
certification process and certificate life cycle (step I.T in
Figure 3).

Evidence Collector Manager implements a master-slave
architecture for evidence collection driven by CM Instance
I [29] (step CM Instance Execution in Figure 3). It is com-
posed of a Test Manager (TM), the master owning the collec-
tion process, and one or more Test Agents (TAs), the slaves
responsible for testing specific flows Φ(m) over ToC . TM
i) provides interfaces to manage (e.g., start, stop) the collec-
tion process, ii) configures the evidence collection process
and initializes TAs according to configurations, models, and
test cases in I , and iii) manages the certificate life cycle
according to l . TA retrieves the relevant test cases in ev
from the Test Suites Repository, executes them on the ToC,
and returns the results of their execution to TM.

Figure 4 shows the data flow between Certification Model
Manager and Evidence Collection Manager. Certification Model
Manager is externally accessed through a restful interface,
which permits to manage CM Templates and CM Instances,
and communicates with TM and TA(s) in the Evidence
Collector Manager. A certification process starts when the
Certification Model Manager sends a valid CM Instance I to
TM. Upon receiving I , TM parses it and forwards each of its
elements, except property p , to TA(s). TA(s) retrieves the test
cases in ev of I from Test Suites Repository and manages the
testing activities. The testing activities are executed by one
or more probes that access the ToC through a hook. TA(s)
sends collected evidence back to TM when available, which
aggregates it and eventually triggers a life cycle transition.

7.2 Consistency Check Algorithms
We implemented the exhaustive algorithm of our consistency
check function f. as 5 consecutive verification steps ac-
cording to Definition 5.5. We called it exhaustive because
the evidence collection model verification is carried out by
exhaustively searching if, among all possible permutations
of flows Φ(m) in I , there exist one or more isomorphisms
(Definition 5.1) with flows Φ(m) in T . Considering β as
the cardinality of Φ(m) in T , the evidence collection model
verification, and in turn the exhaustive algorithm, has a
factorial asymptotic behavior O(β!) in the worst case. The
other 4 steps of f. show instead a polynomial behavior.
We then propose two heuristics2 balancing efficiency and
quality in terms of precision and recall, which differs from
the exhaustive algorithm only for the evidence collection
model verification as follows.

Heuristic 1: k-matching. Evidence collection model verifi-
cation is carried out flow by flow and aims to find multiple
matching, isomorphisms in Definition 5.1, between m of T
and m of I . It logically traverses the permutation tree of
the flows φj∈Φ(m) of I with a breadth-first search, and
selects a proper sub-tree according to k and flows φi∈Φ(m)
of T . k represents the maximum number of matching flows
that are selected at each step of the heuristic. First, a node
j at depth d=1, . . .,β in the permutation tree, with β the
cardinality of Φ(m), is traversed iff its parent has less than
k selected children in the sub-tree; then, it is selected iff
φj∈Φ(m) matches the corresponding φd∈Φ(m) according to
Definition 5.1. The resulting sub-tree includes zero or more
isomorphisms between m and m , represented as paths of
length β. In the worst case scenario, the algorithm has an
exponential asymptotic behavior O(kβ−k+1·(k−1)!), which
for k=β degenerates to the exhaustive algorithm O(β!). We
note that, for small k, the complexity is far lower than the
one of exhaustive algorithm.

Heuristic 2: Ordered k-matching. Evidence collection
model verification is carried out by first ordering the flows
in Φ(m) and Φ(m), and then applying k-matching heuristic.
We use an ordering function that recursively compares
nodes at the same depth d, with d=1,. . .,β, from the ances-
tors to the leafs. For each d, only flows that have not been
ordered yet according to the previous runs of the ordering
function are considered. The ordering function is based on
the hierarchy of mechanisms HM and given two flows φi
and φj , with i>j, φi is placed first iff mechanism θi at depth
d of φi and mechanism θj at depth d of φj are such that
θj≺θi. In the worst case scenario, the algorithm has the same
asymptotic behavior as Heuristic 1, since the complexity of
the ordering process is negligible compared to the one of
k-matching.

7.2.1 Performance evaluation
We evaluated the performance of our approach considering
the matching between CM Templates and CM Instances at
the basis of certificate lifecycle management in Section 6. We
automatically generated, using the tool available at http://
tinyurl.com/jxoubsb, 19 CM Templates 〈p,ToC,m,ev,l〉 (see
Section 4), varying the number β of flows between 1 and 19

2. Heuristics pseudocode is available at http://tinyurl.com/zkqs9vn.

11

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ti
m

e
 (

s
)

Number of flows (β)

Exhaustive

Heuristic 1 k=1

Heuristic 1 k=2

Heuristic 1 k=3

Heuristic 1 k=4

Heuristic 1 k=5

Heuristic 1 k=6

600s

Fig. 5. Execution time (log scale) varying the number of flows

(step 1), each with depth (i.e., flow length) equal to 5. Our
tool selects a property p from the set of available properties,
defines ToC ToC and life cycle l, and builds the evidence
collection model m. Model m is composed of a set of β
paths, implemented as flows of single mechanisms with
depth 5. We note that a small depth equal to 5 has been
chosen to demonstrate the high complexity of our matching
approach also in simplified scenarios. For each template,
we randomly generated 10 CM Instances (a total of 190
instances) that satisfy f., using the same tool available at
http://tinyurl.com/jxoubsb. Performance results measured
consistency check verification between CM Templates and
corresponding CM Instances in the worst case scenario,
where all computations must be done to find a solution.

Figure 5 compares the execution time of the exhaustive
algorithm and heuristic 1, using a log scale, varying k
from 1 to 6, considering a fixed number of 50 test cases
in evidence ev. Heuristic 2 has not been considered because
it only adds a fixed delta for flow ordering. We note that
the execution time of all algorithms is reported only for
configurations requiring less than 10 minutes, and estimated
for configurations over that threshold using the complexity
analysis in Section 7.2. Our results show that, as expected,
all heuristics approximates factorial execution time in the
number of flows Φ(m), which can however be taken under
control by selecting proper k. For instance, for k=3 execu-
tion time exceeds the 10-minute limit with Φ(m)=13, for
k=5 with Φ(m)=10. The exhaustive algorithm shows the
worst execution time, being k=β.

7.2.2 Quality evaluation

We evaluated the precision and recall of our heuristics with
respect to the full precision and recall of our exhaustive
algorithm, using three test sets. Each test set contains 160
consistent CM Instances derived from a single CM Tem-
plate, with β = 9 and depth equal to 5. Each test set has
an increasing number of average matching per flow, repre-
senting the mean number of flows in the 160 CM Instances
matching a single flow in the CM Template. The first test
set (a) is characterized by CM Instances having an average
match per flow of 1.12 with variance 0.03; the second test
set (b) has average match per flow of 2.26 with variance
0.25; the third test set (c) has average match per flow of

 0

 20

 40

 60

 80

 100

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

R
e
c
a
ll
 (

%
)

k-matching ordered k-matching

Test set (c)Test set (b)Test set (a)

Fig. 6. Quality evaluation considering three instantiations of our k-
matching algorithm with k=1, k=2, and k=3.

3.63 with variance 0.33. We note that the three test sets
model the three working of our consistency check function:
i) the matching between two I (CM Instance adaptation -
low average matching), ii) the matching between T and I
(certificate issuing and CM Instance adaptation – medium
average matching), and iii) the matching between two T
(CM Template adaptation – high average matching).

First, we evaluated the recall of our heuristics on the
three test sets, configuring our k-matching algorithm with
three distinct values k=1, k=2, and k=3. Our results are
presented in Figure 6. Heuristic 1 has 70% recall for test set
(a), 13.125% recall for test set (b), and 5.625% recall for test
set (c) with k=1; 100% recall for test set (a), 61.875% recall
for test set (b), and 27.5% recall for test set (c) with k=2;
100% recall for test set (a), 86.875% recall for test set (b), and
48.75% recall for test set (c), with k=3. Heuristic 2 provides
a substantial improvement for k=2 and k=3, which have
86.25% and 98.125% recall for test set (b), 73.75% and 98.75%
recall for test set (c) respectively. Our results show that the
ordering introduced in Heuristic 2 has a positive effect on
the recall. This is due to the fact that the ordering, especially
with k>1, increases the probability of correctly matching
the evidence model in the template with the one in the
instance. In addition, our results show that the higher k,
the higher the recall. This is due to the fact that, with higher
k, multiple evidence model matching between a template
and an instance are found, increasing the probability of
finding the one that also makes the whole consistency check
successful.

Second, we evaluated the precision of our heuristics
by introducing ad hoc random variations on all 480 CM
Instances (e.g., modifications of flows, mechanisms, proper-
ties) in the three test sets, to produce CM Instances which are
inconsistent with the corresponding CM Templates. We then
executed our heuristics obtaining no matching, meaning
that our heuristic algorithms do not produce any false
positives or, in other words, an inconsistent CM Instance
never shows consistency with a CM Template.

To conclude, although all heuristics approximate facto-
rial execution time, high-quality results can be achieved
with small k and good performance. For instance, ordered
k-matching, with k=2, achieves quality of 86.25% on test

12

set (b) with a worst case performance of 0.52s; with k=3, it
achieves quality of 98.75% on test set (c) with a worst case
performance of 0.7s.

7.3 Life Cycle Management Evaluation

All cloud-based systems with strict non-functional require-
ments can benefit from a trustworthy certification approach.
These systems include cloud-based systems managing sen-
sitive data and critical application processes, and cloud-
based systems that need to show verifiable compliance with
standards or regulations. We therefore discuss the utility
and practical usability of our approach in a real industrial
scenario based on the ENGPay e-payment system deployed
in the cloud. In particular, we show how our certification
framework has been instantiated and used for security com-
pliance verification of ENGPay against the Payment Card
Industry Data Security Standard (PCI DSS). Certification-
based compliance verification was first envisioned by Ac-
corsi et al. [30]. Here, we briefly describe the collaborative
effort for compliance verification between us, acting as
certification authority/accredited lab using the certification
framework, and Engineering Ingegneria Informatica S.p.A.
ENGPay team, acting as a service provider. PCI DSS is a
global standard established by financial organizations to
protect cardholder data and information linked to users’
personal data. It is based on a set of requirements (de-
tails are available at https://it.pcisecuritystandards.org/
security standards/) calling for online and continuous eval-
uation activities, to verify storage integrity, confidentiality of
data in transit, and the like.

We considered a specific cloud-based deployment of EN-
Gpay system designed for PCI DSS compliance verification
and testing. It was deployed in three virtual machines, one
for each ENGPay service, on top of OpenStack, as follows:
i) ENGpay HUB service, providing the centralized function-
alities to manage users’ needs (e.g., start a transaction),
ii) Acquirer-Issuer service, providing functionalities for the
Cleaning&Settlement process, iii) Selfcare Data management,
providing functionalities to manage card holder data and all
transaction information. For conciseness, we focused on PCI
DSS requirement 4 Encrypt transmission of cardholder data,
which requires confidentiality of data in transit. We defined
a CM Template T for assessing PCI DSS requirement 4
asking for secure communications based on HTTPS both
at infrastructure and application layers, and instantiated it
in CM Instance I for compliance verification of ENGpay.
Our approach to life cycle management was then used
to continuously verify the compliance of ENGPay against
PCI DSS and trigger adaptation whenever necessary. In
the following, we assume that a certificate was issued for
ENGPay system according to the CM Instance for PCI DSS
requirement 4, and discuss three adaptation scenarios.

Adapted template T ′ of T . A new bug is discovered on the
HTTPS implementation used by ENGpay (e.g., Heartbleed
Bug of openSSL). This new event triggers an adaptation of
T , which results in a new template T ′ including additional
test cases for evaluating the robustness of the application
against the bug. The change in T triggers a change in I and
the execution of the new test cases on the ToC (i.e., ENGPay).

Adapted instance I ′ of I : Service configuration event.
ENGPay system changes the HTTPS mechanism used by
Acquirer-Issuer service, deploying a new version of openSSL.
This change triggers an adaptation of CM Instance I , which
results in a new CM instance I ′ including the details and
test cases for evaluating the new mechanism. Upon veri-
fying that I ′ is still consistent with T ′ (I ′.T ′), the incre-
mental certification process tests the HTTPS mechanism of
Acquirer-Issuer service only.

Adapted instance I ′′ of I ′: Cloud management event.
Finally, ENGPay components are migrated to a new Open-
Stack infrastructure. CM instance I ′ is further modified and
distributed as a new instance I ′′. After verifying that I ′′ is
still consistent with T ′ (I ′′.T ′), the incremental certification
process tests the OpenStack infrastructure. We note that, in
case our application is moved to an OpenStack that does not
correctly implement SSL for internal communications, the
certificate is revoked. We also note that if the new OpenStack
is such that I ′′ 6 .T ′, a new consistent template is searched
and, if found, partial re-certification executed.

We showed how our certification-based approach can
be used to provide verifiable evidence of a service behav-
ior at the basis of compliance verification against existing
standards, and how the life cycle management can be used
for handling runtime cloud events. To show the generality
and interoperability of our approach, we re-used test cases
applied in a different industrial scenario in [25]. This choice
shows that requirements specified in a CM Template can be
cross services and instantiated in different CM Instances.
We did not report on performance improvement of our
certificate life cycle management with respect to traditional
certifications, because performance is highly dependent on
the proposed scenario and can be affected by our own
choices, limiting the impartiality of the results. Interested
readers can see examples of real performance results in [25].

8 DISCUSSION ON TRUST MODEL

The practical usability of a cloud certification process passes
from the definition of a proper trust model enabling certi-
fication authorities to delegate part of the process manage-
ment to accredited labs, and increasing the confidence of
final users in the results of the certification process itself.

8.1 Chain of Trust

Cloud certification introduces the need to define a chain
of trust where responsibilities are spread across the certi-
fication process life cycle and the entities involved in it.
In fact, certification authorities cannot be assumed as a
single trusted CA taking responsibility on (i.e., signing) the
whole certification process. We therefore envision a chain of
trust based on multiple XML signatures. In the following,
we denote with Aen,ws assertions made by an entity en
over a system/service ws, and with Een,ws the evidence
produced by an entity en over ws and supporting Aen,ws.
The customer c’s trust in an assertion Aen,ws made by an
entity en is denoted Tr(c, Aen,ws), where Tr takes discrete
values on an ordinal scale (e.g., for a Common Criteria [5]
certified product, an assurance level value in 1-7).

13

T CA

IAL,ws

EAL,ws

AAL,ws

AL

CA

Client c
Tr(c,EAL,ws)

Tr(c,IAL,ws)

Tr(c,C)

Tr(AL,T CA)

Tr(c,AAL,ws)

C

defines and executes
signed IAL,ws

defines signed T CA

produces

supports

produces

instantiates

Fig. 7. Chain of Trust for cloud certification

The signing process at the basis of our chain of trust can
be decomposed in three different signing moments, one for
each of the components (CM Template, CM Instance, Cer-
tificate) of the certification process in Section 4, as follows.

• CM Template signature: CM Template T is signed by
a trusted certification authority CA. It describes the
methodology for the certification of a class of ToC,
while it does not contain details about the evidence
collection endpoints and the real ToC mechanisms.
Tr(AL,T CA) denotes the trust an accredited lab AL
has in CM Template T that builds on the trust AL
has on CA and its signature.

• CM Instance signature: CM Instance I is signed by
an accredited lab AL, which has been delegated by
CA as the party responsible for instantiating the CM
Template. AL receives a signed CM template T and
fills in all missing elements (possibly with the help of
the cloud/service providers) to form a CM Instance.
The CM Instance signature builds on Tr(AL,T CA)
and is at the basis of the trust Tr(c, AAL,ws) and
Tr(c, EAL,ws) a client c has in assertions AAL,ws and
evidence EAL,ws , respectively, provided by AL.

• Certificate signature: this signature binds the certificate
(including assertions AAL,ws and evidence EAL,ws)
and the corresponding CM Instance, which has been
used to i) execute real testing activities on the target
of certification and ii) produce the certificate itself.

Figure 7 shows our chain of trust, identifying roles
(rectangles), artifacts (rounded rectangles), certification ac-
tivities (solid arrows), and trust relations (dashed arrows).
All signatures are implemented using public key cryp-
tography. The chain of trust includes c’s trust in i) CM
Instance IAL,ws , denoted as Tr(c,IAL,ws), used to collect
the evidence supporting a set of assertions, ii) the evidence
generated by AL according to CM Instance I , denoted
as Tr(c,EAL,ws), iii) assertions made by AL on a service,
denoted as Tr(c,AAL,ws), where AAL,ws is the set of asser-
tions produced by the accredited lab AL on ws , and iv) the
certificate C including AAL,ws and EAL,ws . Tr(c,C) depends
on i) the reputation of CA signing CM Template T (i.e,
Tr(AL,T CA)) and the certificate C itself, ii) the reputation
of AL and the trust in the methodology used by AL to
generate and sign CM Instance IAL,ws (i.e., Tr(c,IAL,ws)),
and specify assertionsAAL,ws (i.e., Tr(c,AAL,ws)), and iii) the

trust in the methodology used by AL to generate evidence
EAL,ws (i.e., Tr(c,EAL,ws)).

8.2 Chain of Trust and Life Cycle Management

Our chain of trust supports the certificate life cycle in Fig-
ure 1, and both issuing and post-issuing phases in Section 4.

Whenever issuing phase is concerned, there is a subtlety
to consider. Since this phase is usually based on static
evidence collected in a laboratory environment, the CM
Instance signature must undergo a two-step process. The
first process involves the signature of a CM Instance where
the endpoints of the service under certification refer to
mechanisms deployed in the laboratory environment. Upon
a certificate Cws is issued and certified service ws moved in
production (i.e., there is a transition from state NI to state I in
the life cycle), a second process substitutes the CM Instance,
which is linked in the certificate, with a new one signed
by AL with all bindings and endpoints referring to the real
deployment infrastructure.

The chain of trust also considers post-issuing phase,
where a certified system evolves to a new version or cloud
events affecting it are observed. In this phase, as discussed
in Section 6.2, the collected evidence may become insuffi-
cient or contradictory, and corresponding certificate invalid,
requiring re-certification. The simplest approach is to always
perform re-certification from scratch (i.e., certificate is re-
voked and the process starts from state NI); however, this
approach introduces substantial time and cost overheads,
which are not manageable in a highly dynamic cloud-based
ecosystem. An incremental certification process producing
evolving certificates, though more complex, is more ade-
quate to the considered environment. Its main goal is to
renew a certificate by reusing, as much as possible, the
certification evidence available from older certificates [10],
limiting collection of new evidence. Trust in an incremental
process is given by the trust Tr(c,EAL,ws) the client c has in
the dynamic evidence produced by executing CM Instance
IAL,ws and the trust Tr(c,IAL,ws) c has in the instance
itself. The evolving certificate generated as a result of the
incremental process is managed through our life cycle. For
instance, as soon as the evidence is no more sufficient or
part of it becomes invalid, the certificate is moved to state
S, where AL evaluates if the certificate can evolve or not.
In the first case, if the collected evidence is sufficient, the
certificate comes back to state I. The involvement of the
certification authority is marginal, since it only needs to
sign the adapted certificate when required by accredited lab
AL. The accredited lab in fact has been delegated by the
certification authority, which trusts and verifies lab activities
by means of digital signature verification. In the second case,
the CM Instance is no more usable for service certification
or compliance with the original CM Template cannot be
guaranteed. Re-certification from scratch is then triggered.

9 CONCLUSIONS

We provided a rigorous and adaptive assurance technique
based on certification which fully addresses cloud require-
ments. Above all, our certification scheme provides a so-
lution to certificate life cycle management including an

14

automatic and incremental approach to certificate adapta-
tion addressing the multi-layer and dynamics nature of the
cloud. Our scheme departs from the assumption of having
an online certification authority always available during
the certification process, and is at the basis of a concrete
trust model for the cloud. We finally presented the im-
plementation of our approach in a certification framework
and evaluated its performance, quality, and utility in a real
industrial scenario.

10 ACKNOWLEDGMENTS

We would like to thank Domenico Presenza (Engineering
Ingegneria Informatica S.p.A.) for its continuous support
during the compliance verification of ENGPay system.

REFERENCES

[1] S. Lins, S. Schneider, and A. Sunyaev, “Trust is good, control is
better: Creating secure clouds by continuous auditing,” IEEE TCC,
vol. PP, no. 99, pp. 1–1, 2016.

[2] I. Windhorst and A. Sunyaev, “Dynamic certification of cloud
services,” in Proc. of ARES 2013, Regensburg, Germany, September
2013.

[3] M. Anisetti, C. Ardagna, E. Damiani, and F. Saonara, “A test-based
security certification scheme for web services,” ACM TWEB, vol. 7,
no. 2, pp. 1–41, May 2013.

[4] Microsoft, Trusted Cloud, https://www.microsoft.com/en-us/
server-cloud/trusted-cloud/overview.aspx, Accessed June 2016.

[5] D. Herrmann, Using the Common Criteria for IT security evaluation.
Auerbach Publications, 2002.

[6] D. Kourtesis, E. Ramollari, D. Dranidis, and I. Paraskakis, “In-
creased reliability in SOA environments through registry-based
conformance testing of web services,” Production Planning & Con-
trol, vol. 21, no. 2, pp. 130–144, 2010.

[7] M. Anisetti, C. Ardagna, and E. Damiani, “A certification-based
trust model for autonomic cloud computing systems,” in Proc. of
ICCAC 2014, London, UK, September 2014.

[8] M. Krotsiani, G. Spanoudakis, and K. Mahbub, “Incremental
certification of cloud services,” in Proc. of SECURWARE 2013,
Barcelona, Spain, August 2013.

[9] CSA Security, Trust & Assurance Registry (STAR), Cloud Secu-
rity Alliance (CSA), https://cloudsecurityalliance.org/star/, Ac-
cessed June 2016.

[10] M. Anisetti, C. Ardagna, and E. Damiani, “A low-cost security
certification scheme for evolving services,” in Proc. of ICWS 2012,
Honolulu, HI, USA, June 2012.

[11] C. Criteria, CCRA Supporting Document 2004-02-009 Assurance Con-
tinuity, February 2004, http://www.commoncriteriaportal.org/
files/supplements/2004-02-009.pdf.

[12] A. Sunyaev and S. Schneider, “Cloud services certification,” Com-
munications of the ACM, vol. 56, no. 2, pp. 33–36, February 2013.

[13] X. Chen, C. Chen, Y. Tao, and J. Hu, “A cloud security assessment
system based on classifying and grading,” IEEE Cloud Computing,
vol. 2, no. 2, pp. 58–67, 2015.

[14] M. Krotsiani, G. Spanoudakis, and C. Kloukinas, “Monitoring-
based certification of cloud service security,” in Proc. of C&TC 2015,
Rhodes, Greece, October 2015.

[15] P. Stephanow, G. Srivastava, and J. Schütte, “Test-based cloud
service certification of opportunistic providers,” in Proc. of CLOUD
2016, San Francisco, CA, USA, July–June 2016.

[16] P. Stephanow and N. Fallenbeck, “Towards continuous certifi-
cation of Infrastructure-as-a-Service using low-level metrics,” in
Proc. of ATC 2015, Beijing, China, August 2015.

[17] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirch-
berg, Q. Liang, and B. S. Lee, “Trustcloud: A framework for
accountability and trust in cloud computing,” in Proc. of IEEE
SERVICES 2011, Washington, DC, USA, 2011, pp. 584–588.

[18] Q. Malluhi and K. M. Khan, “Establishing trust in cloud comput-
ing,” IT Professional, vol. 12, pp. 20–27, 2010.

[19] A. Naskos, A. Gounaris, H. Mouratidis, and P. Katsaros, “On-
line analysis of security risks in elastic cloud applications using
probabilistic model checking,” (To appear in) IEEE Cloud Computing
Magazine, 2016.

[20] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Towards
trustworthy multi-cloud services communities: A trust-based he-
donic coalitional game,” IEEE TSC, vol. PP, no. 99, pp. 1–1, 2016.

[21] W. T. Tsai, G. Qi, L. Yu, and J. Gao, “TaaS (testing-as-a-service)
design for combinatorial testing,” in Proc. of SERE 2014, San
Francisco, CA, USA, June–July 2014.

[22] T. M. King and A. S. Ganti, “Migrating autonomic self-testing to
the cloud,” in Proc. of IEEE ICSTW 2010, Paris, France, April 2010.

[23] D. Gonzales, J. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods,
“Cloud-trust - a security assessment model for infrastructure as a
service (IaaS) clouds,” IEEE TCC, vol. PP, no. 99, pp. 1–1, 2015.

[24] M. Di Penta, M. Bruno, G. Esposito, V. Mazza, and G. Canfora,
“Web services regression testing,” in Test and Analysis of web
Services. Springer, 2007, pp. 205–234.

[25] M. Anisetti, C. Ardagna, and E. Damiani, “A test-based incremen-
tal security certification scheme for cloud-based systems,” in Proc.
of SCC 2015, New York, NY, USA, June–July 2015.

[26] Health Insurance Portability and Accountability Act (HIPAA), U.S.
Department of Health & Human Services, November 2015, http:
//www.hhs.gov/ocr/privacy/hipaa/understanding/.

[27] ISO/IEC 27001 - Information security management, ISO/IEC,
November 2015, http://www.iso.org/iso/home/standards/
management-standards/iso27001.htm.

[28] R. E. Bryant, “Graph-based algorithms for boolean function ma-
nipulation,” IEEE TC, vol. 100, no. 8, pp. 677–691, 1986.

[29] M. Anisetti, C. Ardagna, E. Damiani, and F. Gaudenzi, “A certifi-
cation framework for cloud-based services,” in Proc. of SAC 2016,
Pisa, Italy, April 2016.

[30] R. Accorsi, D.-I. L. Lowis, and Y. Sato, “Automated certification for
compliant cloud-based business processes,” Business & Information
Systems Engineering, vol. 3, no. 3, pp. 145–154, 2011.

Marco Anisetti Marco Anisetti is an Assistant
Professor at the Università degli Studi di Milano,
Italy. His research interests are in the area of
Computational Intelligence, and its application
to the design of complex systems and services.
Recently, he has been investigating the adoption
of Computational Intelligence techniques in the
area of security mechanisms for distributed sys-
tems, and software/service testing/monitoring for
certification.

Claudio A. Ardagna is an Associate Professor
at the Università degli Studi di Milano, Italy. His
research interests are in the area of big data an-
alytics, cloud security and assurance, and cloud
performance. He is the recipient of the ERCIM
STM WG 2009 Award for the Best PhD Thesis
on Security and Trust Management. He has co-
authored the Springer book “Open Source Sys-
tems Security Certification”. The URL for his web
page is http://www.di.unimi.it/ardagna

Ernesto Damiani is a Full Professor at the Uni-
versità degli Studi di Milano, where he leads
the SESAR research lab, and the leader of the
Big Data Initiative at the EBTIC/Khalifa Univer-
sity in Abu Dhabi, UAE. He is the Principal
Investigator of the H2020 TOREADOR project.
He was a recipient of the Chester-Sall Award
from the IEEE IES Society (2007). He was
named ACM Distinguished Scientist (2008) and
received the Stephen S. Yau Services Comput-
ing Award (2016).

Filippo Gaudenzi received his master degree in
Informatics Engineering (2012) at the Università
Politecnica di Ancona. Currently, he is a Ph.D.
Student at the Università degli Studi di Milano,
where he worked as a Assistant Researcher
within the FP7 project CUMULUS. He worked
as R&D Engineering at INRIA - Bretagne Atlan-
tique within the FP7 Contrail project. His main
research interests are in the areas of cloud, se-
curity, and monitoring and testing tools.

