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o Abstract 

The aim of my PhD project is to obtain magnetic bio-inorganic nanosystems having both diagnostic 

and therapeutic functions. We have focused our attention on magnetic nanoparticles (NPs) since 

their properties allow to use them in diagnosis, as good MRI contrast agents and in therapy, as 

colloidal mediators for hyperthermia or carriers for drug delivery. Furthermore, their diagnostic 

properties could also allow one to monitor the response to therapy. 

However, to achieve active targeting of magnetic nanocrystals in medical applications, we need to 

study in detail  their  interactions with biological systems. Indeed, when nanoparticles are injected 

into the bloodstream (we consider the parenteral administration because all cells receive supplies 

thanks to the blood circulation), circulating plasma proteins, opsonins, adsorbe on the NP surface 

forming a layer known as protein “corona”. Such protein layer is recognized by the cells of the 

mononuclear phagocyte system (MPS), which remove the NPs from the blood by phagocytosis. 

Usually, the MPS concentrates the NPs in organs such as the liver and the spleen and prevents the 

NPs to reach their target. For this reason, one must rationally design nanosystems minimizing or 

delaying their internalization by MPS cells in order to increase their plasma half-life and 

consequently the ability to reach the desired organ/tissue by active targeting. Such NPs are known 

as “stealth NPs”. The NP surface properties appear as more important than those of the core to 

escape phagocytosis, because the coating is in direct contact with blood and organs. In particular, 

during my PhD I have explored some examples of the two types of NP coating that, until now, have 

been mainly studied to prevent protein adsorption: the “conventional” polyethylene glycol (PEG) 

ligands and recently introduced small zwitterionic surfactants.  

Therefore, in the first part of my PhD thesis, we reported on magnetic iron oxide NPs coated with 

zwitterionic dopamine sulfonate (ZDS), containing a sulfobetaine group that we have chosen among 

the zwitterionic groups used in nanomedicine. We have compared these NPs to similar NPs coated 

with PEG-like 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEA) to investigate how surface 

chemistry affects the NP in vitro behavior. ZDS-coated NPs showed a very dense coating, that 

ensures high colloidal stability to the nanosystems in several aqueous media and negligible 

interaction with proteins. Treatment of HepG2 cells with increasing concentrations (from 2.5 up to 

100 µg Fe/ml) of ZDS-NPs had no effect on cell viability and resulted in a low, dose-dependent NP 

uptake, lower than most reported data for the uptake of iron oxide NPs by HepG2 cells. Conversely, 

MEEA-coated NPs showed lower ligand density and formed micrometer-sized aggregates in 

deionized water. Such NPs had a cytotoxic effect for dose ≥ 50 µg Fe/ml, and were about 20-fold 
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more efficiently internalized than ZDS-coated NPs. We could conclude that the high-density ZDS 

layer prevented the biocorona formation and both aggregation and sedimentation of iron oxide NPs. 

Moreover, the very low internalization of ZDS-coated iron NPs inside HepG2 cells could be useful 

to achieve an active targeting upon specific functionalization. We have also explored the 

intracellular fate of ZDS-coated NPs, demonstrating that in HepG2 cells they are sent to the 

lysosomial pathway. 

The second part of this Thesis concerned NPs coated with  PEGylated ligands. Considering the 

well-known ability of the catechol (1,2-dihydroxyphenyl) group to bind iron ions with high affinity 

and give stable NP water dispersion, we chose this grafting group for our NP ligands based on a 

PEG 5000 polymer chain. We would also functionalize magnetic NPs with a large biomolecule, the 

Fab fragment of Trastuzumab (Herceptin®), that is a monoclonal antibody selectively binding the 

human epidermal growth factor receptor 2 (HER2), hoping in this way to endow the nanoparticles 

with active targeting functionality because the antibody fragment strongly binds to its antigen.  

Therefore, we have designed different catechol molecules: (i) a bi-functional PEG ligand displaying 

a maleimide end-group able to react with the free thiol group of the Fab biomolecule; (ii) mono and 

bi-dentate OMe-terminated PEG ligands in order to employ them as co-surfactants to dilute the 

maleimide ligand, making the active molecule less sterically hindered while preserving water 

solubility and colloidal stability of the system. With poly-dentate structures, we wished to have an 

improvement in NP water stability by increasing the number of grafting groups per molecule and so 

decreasing the probability that a ligand is irreversibly lost from the NP surface. Such structures are 

based on ethylenediamine as a linker between the hydrophilic PEG chain and the catechol grafting 

groups. The PEG chain is linked to one of amine groups of the scaffold and the other amine group is 

linked to one or two 3,4-dihydroxybenzyl groups. 

We chose to link the PEG chain to the central ethylenediamine scaffold as the last reaction step by 

coupling it to the mono- or di-catechol-diamine moiety since the isolation and characterization of 

the intermediate products are simplified. We have tested some protecting groups for catechol 

moieties such as tert-butyldimethylsilyl (TBDMS) ether or acetonide, but we have found that both 

these protecting groups might be – at least partially – deprotected in our reaction conditions. So we 

finally tried the benzyl ether protecting group, more stable in our reaction conditions since it is  

removed by hydrogenation. In addition to these synthetic studies, which are still in progress, I 

prepared and characterized two batches of iron oxide NPs coated with a mixture of the catechol-

PEG-maleimide and catechol-PEG-OMe ligands. I synthesized one batch of NPs by solvothermal 

method, while the other batch was produced by alkaline co-precipitation from a stoichiometric 
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aqueous solution of FeCl3 and FeSO4. Solvothermal NPs are highly monodisperse and crystalline, 

whereas co-precipitated NPs can be produced in larger amount and in “green conditions”, 

minimizing the use of toxic reagents, and are free from coating ligands. In both cases, the final yield 

in water soluble NPs was around 50%. Indeed, the two batches of NPs were coated by different 

amount of PEG ligands; the coating was more efficient for NPs produced by co-precipitation as 

evaluated by CHN analysis. Finally, having the aim to functionalize the nanosystems with the Fab 

fragment of Trastuzumab, I have quantified the reactivity of maleimide groups of the bi-functional 

linker present in the NP coating. In particular, I carried out such quantification with a commercially 

available fluorescent kit able to measure protein maleimide groups. By comparison with a shorter 

maleimido PEG (molecular weight ≈ 2000 Da), I concluded that this moiety was less reactive in the 

longer PEG5000 chain. However, a fraction of maleimide group exposed at the NP surface was 

actually reactive and sufficient to functionalize the NCs with the desired amount of anti-body 

fragment.  

Therefore, both ZDS and PEGylated NPs could be considered promising in the development of 

theranostic nanosystems. 
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o Introduction 

A possible definition of  “nanomedicine”  is “the application of nanotechnology (the engineering of 

materials with sizes in the nanometer range) in a healthcare environment, with the aim to prevent 

and treat diseases in the human body”. 

In general, a favorable prognosis is closely correlated to the detection and treatment of illness at an 

early stage of development. Therefore, huge efforts have been made by biomedical researchers in 

order to improve the sensitivity and accuracy of imaging techniques and the efficacy of medical 

cares. Recently, nanotechnologists have designed a variety of theranostic nanosystems, where the 

word “theranostic” was coined by Funkhouser
1
 in 2002 to define a material that combines 

therapeutic and diagnostic modalities within a single platform.  

These nanosystems can be composed of either organic or inorganic materials. 

Organic platforms comprise polymer-drug conjugates
2
 such as poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles
3
, polymeric micelles

4
, liposomes

5
, high-density lipoproteins

6
 and dendrimers and are 

mainly used for drug delivery and gene therapy. In these cases, the drug or the gene are entrapped, 

fixed, adsorbed, or enclosed into or onto the nano-matrices. Such systems increase drug efficacy 

and are less toxic with respect to traditional drugs, so several of them are being tested in clinical 

trials thanks to promising pre-clinical results such as those obtained using INGN-401, a liposomal 

formulation to deliver a cancer-suppressing gene against metastatic lung cancer. In some cases, 

organic nanosystems have already reached the market as Doxil®, a liposomal system to deliver 

doxorubicin for the treatment of patients with ovarian cancer, AIDS-related Kaposi's sarcoma, and 

multiple myeloma. 

If we compare organic and inorganic nanoparticles (NPs), the latter are characterized by peculiar 

physical properties that often are different from those of the bulk materials, thanks to (quantum) 

size effects. For example, quantum dots (QDs)
7-8

, dye-doped silica NPs
9
, and upconverting NPs

10
 

are very useful NP fluorescent markers thanks to their advantageous features arising from quantum 

confinement effects at the nanometric scale. The ferrimagnetic iron oxides, i.e., magnetite or 

maghemite, having diameter < 30 nm are in the so-called superparamagnetic regime, where  their 

permanent magnetization changes orientation very rapidly, thus featuring appealing relaxation 

properties for use a MRI contrast agents.. 

In particular, we decided to focus our attention on magnetic NPs considering that, excluding 

humans whose body contains magnetizable material (such as medical devices with batteries or 

computer chips, vascular or intracranial metals), magnetic fields are not contraindicated for 

patients
11

 and since, due to their special features, magnetic NPs appear as ideal platform materials 

for theranostics
12-13-14

. 

http://whatis.techtarget.com/definition/nanotechnology-molecular-manufacturing
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First, magnetic nanocrystals (NCs) can be synthesized with controlled size that normally is in the 

range from few nanometers up to tens of nanometers. They thus are smaller than cells (10-100 m), 

larger than most organic molecules, and similar in size to viruses (20-450 nm) and biological 

macromolecules such as proteins (5-50 nm), and genes (2 nm wide and 10-100 nm long), as 

depicted in Fig 1
15

. For this reason, magnetic NPs can interact with biological objects, labeling them 

and potentially taking part in metabolic processes. 

 

 

 

Fig 1. Comparison between the dimensions of magnetic nanoparticles and biological entities. 

Image from Ref 15. 

 

Second, both the magnetic NP core and shell can be made of non-toxic material. For example, iron 

oxide NPs are usually employed in biomedical field for their biological compatibility. Moreover, in 

addition to biocompatibility, other functions can be inserted in their tailor-made surface coating, 

such as the ability to prevent the formation of the protein “corona”, selectively bind to a specific 

biological entity or deliver compounds and drugs to defined sites. 

Third, the permanent magnetic moment of magnetic NPs provides further functionalities. The above 

mentioned superparamagnetism makes magnetic NPs excellent MRI contrast agents because they 

strongly contribute to the relaxation of the hydrogen spins in water molecules. Furthemore the NP 

magnetic moment can be manipulated using an externally applied magnetic field. For instance, a 

magnetic field gradient can be used to separate NPs or localize them in particular regions of the 

body. Another example is based on the interaction of the magnetic NPs with an alternating magnetic 
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field (radiofrequency) which heats the NPs and can then be exploited in the field of hyperthermic 

therapy. 

 

Magnetic NPs for separation devices 

 A magnetic field gradient can exert a force at a distance adequate to move magnetic NPs tagged, at 

their external coating, with molecules or biological entities which in this way could be separated 

from their native medium. Such magnetic separation can be obtained by passing the fluid mixture 

through a region where a magnetic field gradient immobilizes the  magnetic NPs. In this simple 

device ( Fig 2
12

) a magnet fixed to the container wall of a solution can collect the tagged particles, 

while the unwanted supernatant solution is removed.  

 

 

 

Fig 2. Standard method of magnetic separation of magnetically tagged (•) and unwanted (◦) 

biomaterials. Image from Ref 12. 

 

The main limitation of this simple technique is the slow accumulation rates of the tagged NPs. 

Therefore other  more complex magnetic separation devices are developed.  

 

Magnetic NPs as colloidal mediators for hypertermia 

In addition, an alternating magnetic field of sufficient strength and suitable frequency can permeate 

human target tissues and transfer energy to magnetic NPs, in order to heat them up. The 

environment close to the NPs is also heated by thermal conduction. This principle allows one to use 

NCs as agents for magnetic fluid hyperthermia, providing a promising therapeutic solution to the 

homogeneous treatment of deep or scattered cancers. In fact, hyperthermia is used to destroy 

malignant cells
11

 in combination with other cancer therapy such as chemo- and/or radio-therapy 

since its local application can reduce side effects of treatment, such as systemic effects. The 

temperature is maintained in the range of 42-45 ˚C for 30 min or more, because it is known that 

tumor cells are more sensitive to temperature in this range than normal tissue cells. Magnetic NPs 

are appealing agents since they allow clinicians to heat  only the target tissue (Fig 3) without 

damage of surrounding healthy cells. 
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Fig 3. Animal trial data on hyperthermia treatments in rabbits,showing preferential heating of a 

tumour using intra-vascularly infused ferromagnetic microspheres;  tumour edge, (♦) tumour 

centre, normal liver 1–2 cm from tumour, (×) alternative lobe, and  core body 

temperature. Image from Ref 12. 

 

There are different types of hyperthermia depending on the size of the heated body part. In local 

hyperthermia heat is applied to a small area while in regional hyperthermia  a large tissue portion 

(such as a body cavity or organ) is heated; whole-body hyperthermia is used to treat metastatic 

cancer that has spread throughout the body. The efficacy of hyperthermia therapy is connected to 

the temperature achieved during the treatment, as well as to the duration of treatment and cell and 

tissue features. To ensure that the desired temperature is reached without excess heating, the 

temperature of the tumor and surrounding tissue is monitored during the treatment by thermometers 

inserted inside small needles or tubes. Many clinical trials are being managed to evaluate the 

efficacy of hyperthermia. Magnetic hyperthermia is a promising type of hyperthermia which 

exploits the ability of small magnetic particles to strongly absorb electromagnetic radiation in the 

radiofrequency-microwave range and to transform it into heat. Magnetic hyperthermia is effective 

since radiofrequency-microwave easily penetrate tissue, well localizable (magnetic particles can be 

located in the region to be treated) and free from radiation-related side effects. Magnetic 

hyperthermia is currently in clinical use. MagForce is a company founded in 1997 that has launched 

in 2011 the first and only nanotechnology-based therapy (NanoTherm™) currently having the 

European regulatory approval (CE conformity marking) for the treatment of brain tumors. As 
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clearly described on their website, NanoTherm™ therapy employs magnetic NPs as elements able 

to absorb electromagnetic radiation, . in particular NPs with size of 15 nm, coated by aminosilane 

which endows them with water-solubility. These NPs, once introduced by injection into a solid 

tumor, remain in the cancerous tissue for some time  and act as transducers, able to convert the 

energy coming from the alternating magnetic field applicator, the NanoActivator®, into heat.  

NanoActivator® devices (Fig 4) are installed in hospitals in Berlin, Münster, Kiel, Cologne and 

Frankfurt.  can be used for tumors in all regions of the body. Indeed, NanoTherm® Therapy was 

already clinically tested on approximately 90 patients with brain tumors and about 80 patients with 

other tumors such as pancreatic, prostate or esophageal cancer.  

 

 

 

Fig. 4.  NanoActivator® (from http://www.magforce.de/en/produkte/nanothermr.html). 

 

Magnetic NPs for drug delivery 

In cancer therapy, magnetic NPs can be also coupled with targeting agents and therapeutic drugs, 

with the aim to enhance treatment specificity and to reduce general side effects of chemotherapies. 

Therefore, they are used as magnetic carriers to transport and release the active molecule at the 

desired tissue.  For example, iron oxide NPs covalently conjugated with methotrexate (MTX), a 

chemotherapeutic drug able to cause apoptosis of malignant cells, can be addressed to tumor cells 

which over-expressed folate receptors such as human breast cancer cells (MCF-7), human cervical 

cancer cells (HeLa), 9L glioma cells
16-17

. Cancer cells internalized a higher level of functionalized 

NPs than healthy cells and the MTX release was obtained under low pH conditions through the 

action of intracellular enzymes within the lysosomal compartment (Fig 5). 

 

http://www.magforce.de/en/produkte/nanothermr.html
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Fig 5. Schematic representation of the intracellular uptake of MTX modified NPs into breast cancer 

cells. After a receptor-mediated endocytosis, magnetic NPs are transported to early endosomes 

which then fuse with lysosomes containing proteases, which cleave the peptide bond between the 

NP and the drug, allowing its delivery into the target cell. Image from Ref 16. 

 

Some interesting results have also been obtained using iron oxide NPs conjugated to the epidermal 

growth factor receptor (EGFR) inhibitor cetuximab against malignant gliomas, the most common 

and lethal primary brain tumor that frequently over-expresses EGFR receptor
18

. In this case, the 

treatment with -loaded NPs has an antitumor effect greater than with cetuximab alone. 

Porous hollow NPs (PHNPs) of Fe3O4, produced by controlled oxidation of Fe NPs at 250 °C 

followed by acid etching, were filled with cisplatin by diffusion. They can release cisplatin at low 

pH condition. After coupling with Herceptin to the surface, the cisplatin-loaded hollow NPs 

provided efficient delivery of cis-platin to breast cancer SK-BR-3 cells with IC50 reaching 

micromolar concentration much lower than that needed for free cisplatin
19

. 

 

Magnetic NPs as contrast agents 

Finally, magnetic NPs are employed as contrast agents for magnetic resonance imaging (MRI), a 

diagnostic technique usually used for three-dimensional non invasive scans of the human body. 

According to different relaxation pathways, MRI images can be classified as T1- (longitudinal 

relaxation time)- or T2- (transverse relaxation time)-weighted images. MRI contrast agents can 
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shorten both T1 and T2, helping to improve contrast in MRI images and to ease image interpretation 

by clinicians. 

Magnetic NPs are T2 contrast agents because they shorten T2 when, under the application of a  

magnetic field, their magnetic moment quickens the magnetic relaxation processes of the water 

protons close to the NPs in the body tissue. Such changes result in darkening of the corresponding 

area in T2-weighted MR images. The NP behavior in vivo is a significant challenge associated with 

their application as contrast agents. As better explained in the next section of the Introduction, all of 

these magnetic NPs are almost non-specifically taken up by the mononuclear phagocyte system 

(MPS) since they are recognized as not-self by the body, also in consideration of their size. NPs 

having diameters of ca 30 nm or more are rapidly collected by liver, spleen, and lymph nodes 

decreasing their effectiveness as MRI contrast agent, while particles with sizes of ca 10 nm or less 

are not so easily recognized by the MPS. The next generation of NP-based contrast agents should 

incorporate novel nanocrystal cores, coating materials, and functional ligands to improve their 

contrast effectiveness and specific delivery/targeting. In this way, they would also allow one to 

perform real-time monitoring of the pharmaceutical treatment. For example Herceptin
®
, that is an 

antibody specifically binding to the over-expressed HER2/neu marker on the surface of breast and 

ovarian tumors, was coupled to a series of metal-doped NPs having spinel structure MFe2O4 where 

M is a divalent cation such as Mn, Fe, Co or Ni
20

. As shown in Fig 6, MnFe2O4 NPs (MnMEIO) 

exhibited higher MRI sensitivity than Fe3O4 NPs (CLIO), consistent with the magnetization results. 
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Fig 6. In vivo MR detection of cancer using magnetic NP–Herceptin conjugates. Color maps of T2-

weighted MR images of a mouse implanted with the cancer cell line NIH3T6.7, at different time 

points after injection of 50 mg of MnMEIO-Herceptin conjugates or CLIO-Herceptin conjugates. In 

a–c, gradual color changes at the tumor site, from red to blue, indicate progressive targeting by 

MnMEIO-Herceptin conjugates. In contrast, almost no change was seen in the mouse treated with 

CLIO-Herceptin conjugate (d–f). Image from Ref 20. 

 

Magnetic NP plasma half-life and biodistribution 

The use of magnetic NPs in nanomedicine requires a detailed knowledge of their interactions with 

the biological system. 

In particular, one of the key aspects that influences the biodistribution and the biocompatibility of 

theranostic nanosystems throughout the body is protein binding
21

. Biologically active materials or 

NPs are often introduced into an organism via parenteral administration because all cells receive 

supplies thanks to the blood circulation. After the introduction into the physiological environment, 

the surface of the materials or NPs are bound by proteins, which form an adsorbed layer known as 

the protein “corona”. The NP-protein complex is the dynamic outcome of multiple interplaying 
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factors. Several plasma proteins (immunoglobulins, apolipoproteins, clotting factors and 

complement proteins) have been identified bound to various NPs. In particular, it is known that the 

presence of certain plasma proteins, called opsonins, on the NP surface creates a “molecular 

signature” which is recognized by immune cells of the mononuclear phagocyte system (MPS), 

previously known as reticulo-endothelial system (RES). MPS comprises monocytes, which 

circulate in the blood, dendritic cells and macrophages present in tissues like the liver (Kupffer 

cells), spleen, lungs, and bone marrow
22

. Therefore, the opsonization process enhances the NP 

uptake from the bloodstream by MPS cells through endocytosis/phagocytosis and their 

concentration in organs with high phagocytic activity (Fig 7). Indeed the NP accumulation can 

induce tissue inflammation and release of toxic byproducts if the NPs decomposed. 

 

 

 

Fig 7. Schematic representation of biomolecular corona formation and its influence on active 

targeting. Under serum-free in vitro conditions, active targeting of functionalized NPs is achieved 

by interaction and recognition of cell membrane-located receptors with targeting moieties grafted 

onto the NP surface. In a biological milieu, a biomolecular corona is formed by non-specific 

adsorption of proteins and lipids to the NP surface. This process impairs active targeting and leads 

to NP accumulation in the tissues of the MPS. Image from Ref 22. 
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After i.v. injection, colloidal drug carriers are removed from the bloodstream within minutes and 

their typical final biodistribution is of 80–90% in the liver, 5–8% in the spleen and 1–2% in the 

bone marrow
23

. In fact Kupffer cells together with macrophages in the spleen rapidly uptake NPs 

with hydrodynamic diameters larger than approximately 100 nm
24

. Instead NPs with diameters of ≤ 

5 nm are efficiently filtered by kidneys through their glomerulus pores (that have diameters around 

10 nm) and are thus rapidly cleared from the blood
25-26 

(Fig 7).  

So, it is clear that the protein corona affects the further NP biological destiny inside the body, 

changing its rate and route of clearance from the bloodstream. 

Other features that influence the biodistribution within the body, in particular of NPs with 

dimensions ranging from 5 to 100 nm, are size
27

, shape
28

, solubility, surface charge (as measured by 

zeta potential), coating functionalization, and route of administration. For NPs of the same 

composition, lower amounts of proteins are adsorbed onto smaller particles in comparison to larger 

particles, which are easily captured by MPS.  

NPs having a sufficiently long half-life can accumulate inside the tissues in different ways 

depending on the morphology of the epithelium near their blood vessels. Such aspect could be 

effective in the cancer imaging and treatment since most solid tumors exhibit a “leaky” vasculature 

with structured fenestrations, due to the high metabolism rate of their cells. This feature, along with 

poor lymphatic drainage, endorses the passive accumulation and targeting of NPs with size between 

30 and 200 nm within the tumor and it is called “enhanced permeability and retention (EPR) 

effect”. In addition to the passive targeting, most NPs are captured by cells via endocytosis that 

could be receptor mediated (the mechanism most efficient for NPs of 50 nm diameter), caveolae 

mediated or adsorptive (Fig. 8)
22

. 
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Fig 8. Graphical representation of the major size-dependent biological barriers that influence the 

biodistribution of blood-circulating NPs. (A): Phagocytosis of NPs with hydrodynamic diameters 

>100 nm by Kupffer cells in the liver. (B): Glomerular filtration and urine excretion of NPs smaller 

than 5.5 nm. (C): “Enhanced permeability and retention (EPR) effect”of NPs with hydrodynamic 

diameters between 30–200 nm in a large and well-vascularized tumor. (D): NP internalization 

mechanism by cells. Key: (i) endothelial cell; (ii) Kupffer cell; (iii) hepatocyte; (iv) glomerular 

basement membrane; (v) tumor cell. Image from Ref 22. 

 

Therefore, researchers have to rationally design nanosystems in order to use them in the body, if 

they want to achieve active targeting. In particular, they have to minimize or delay the NP uptake 

by MPS cells in order to increase the NP plasma half-life as long as possible and consequently the 

probability of reaching the desired tissue. Such NPs could be named as “stealth NPs” .  

With this aim, surface properties are more important than those of the core, because the coating is in 

direct contact with the blood and organs. 

 

Anti-fouling and biocompatible coatings 

Protein-repellent surfaces are characterized by electrical neutrality, hydrophylicity and the ability  

to play the role of hydrogen-bond acceptor, but not of hydrogen bond donor. 
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Until now, two types of NP surface modification have been mainly studied to prevent protein 

adsorption, the “traditional” polyethylene glycol (PEG) coating and zwitterionic molecules. Both of 

them are highly effective. 

Protein adsorption can occur if the total free energy of the process is negative (ΔGads = ΔHads - 

TΔSads < 0)
29

. Since the enthalpic contribution is positive (the absorption of lysozyme
30

 or bovine 

albumin, BSA, onto silica
31

 were reported to be endothermic processes), the driving force of the 

process has to be entropic. For both PEG and zwitterion coatings the driving force has been 

attributed to the release of counterions, according to the mechanism reported for the complexation 

of proteins with charged polymers (see Fig 9). But for a neutral surface, such as a zwitterion or PEG 

group, the surface charge is internally balanced (zwitterion) or neutral (PEG) and formation of an 

ion pair with the adsorbate is improbable; therefore no ion is available for release from the surface 

and consequently no protein adsorption occurs. 

 

 

Fig 9. Cartoon for the ion-coupled adsorption mechanism of a protein with a net positive charge 

onto a negatively charged hydrophilic substrate. (Top) Adsorption of protein is facilitated by the 

release of counterions and formation of ion pairs between the sorbent and the adsorbate. (Bottom) 

Neutral surface (zwitterion or PEG) has no surface ions associated with it. The binding of protein 

to the surface will not result in a net increase in entropy due to counterion release, and thus, 

adsorption is not preferred. Note that some of the charge is still associated with the original surface 

but is inaccessible due to a steric barrier. Image from Ref 29. 
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Obviously, PEG and zwitterionic coatings show several differences mainly due to the largely 

different molecular size. For example, the zwitterions, due to their small size, produce a thin coating 

(a few nm thick) that does not much increase the size with respect to the uncoated NP, an important 

factor related to the NP stealthiness and feasibility of renal excretion. Long-chain PEG, with 

molecular weight > 1000 as normally used, forms a thick coating on the nanocore significantly 

increasing the NP size. This is particularly important when the hydrodynamic size is considered, 

since the PEG chain flexibility can lead to an increase of the NP hydrodynamic diameter by several 

tens of nm
32

. As we will describe in more detail in the following of this PhD thesis, we have 

analyzed both classes of PEG and zwitterion surfactants, starting from a literature overview. 
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Part I: Magnetic NPs coated with zwitterions 

 

01. Introduction 

Recently, zwitterionic ligands have been used as an alternative to PEGylated coatings, aiming at 

obtaining biocompatible nonfouling materials, able to prevent nonspecific protein adsorption to the 

NPs
1-2

. Some of the zwitterion functional groups more commonly employed in nanomedicine are 

aminoacid (e. g. cysteine), carboxybetaine, phosphorylcholine, and sulfobetaine (Fig 1). 

 

Fig 1. Zwitterionic functional groups. Image from Ref 1. 

Cysteine is a zwitterionic amino acid and its thiol terminal group was used to stabilize NPs made 

from semiconductors, such as CdS
3
, ZnS

4
, and of noble metals Au

5
 or Ag

6
. Cysteine is not able to 

prevent noble metal NP aggregation when the electrolyte concentration increases while it is 

efficient with semiconductor NPs
7
 maybe thanks to a greater stability of the thiol-semiconductor 

over the thiol-gold bond. In this work, Bawendi and co-workers showed that quantum dots coated 

by cysteine and with a diameter less than 5.5 nm were collected in the bladder of rats since mainly 

excreted by kidneys. However, the cysteine inclination to spontaneous oxidation led to NP 

aggregation a few hours after preparation. A novel strongly-binding zwitterionic disulfide was used 

to prepare small (average diameter around 4 nm) water-soluble Au NPs by replacement of the 

pristine citrate ligand
8
. These NPs are stable in saline media with 3 M salt concentration and also 

when charged polyelectrolytes or biopolymers were added to the aqueous NP solution, witnessing 

the absence of nonspecific interactions. Afterwards, a siloxane sulfobetaine ligand was employed by 

Schlenoff and co-workers to coat and stabilize silica
9-10

 and iron oxide
11

 NPs by siloxane 

condensation chemistry, avoiding an appreciable increase of their hydrodynamic diameter. The 
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zwitterionic silica particles did not aggregate when exposed to aqueous 3 M NaCl and 50% FBS up 

to 24 h. The authors varied the zwitterionic siloxane concentration in order to produce iron oxide 

NPs small enough for renal clearance capability. They also demonstrated the NP stability in 

aqueous solution in the pH = 6–9 range, while the tendency of NPs to aggregate at lower pH was 

attributed to the presence of some pH-sensitive Fe-OH functionalities on the NP surface due to 

incomplete capping. 

In the literature it was also proved that sulfobetaine polymers, in contrast to classic polyelectrolytes 

with a single type of ionized group, had a very small disturbing effect on the water hydrogen-

bonded structure
12

. So their application was strongly advised in biomedical fields, e. g., iron oxide 

NPs coated with polymeric sulfobetaines have already been described
13-14

. 

Indeed, larger-size NPs coated with zwitterions have shown an extended circulatory lifetime which 

makes them ideal candidates as blood pool imaging agents. However, NPs with hydrodynamic 

diameter less than 5 nm are sufficiently small to be filtrated through kidneys and eliminated via the 

urine, a desirable feature for example if the NP is radioactively labeled
15

. In fact, a safe and 

successful NP application relies on a balance between a prolonged blood circulation (required to get 

the NPs to the desired target) and an effective clearing mechanism (enabling minimization of side 

effects due to a prolonged NP presence in the body, such as a deposition in non-targeted tissues and 

organs)
10

. To this purpose, an increase in NP size after the binding to the desired target, for example 

20 h following the NP administration, can be useful for their elimination
10

. 

Considering the advantage which can arise from the small sizes of these zwitterionic ligands, we 

focus our attention on small zwitterionic molecules effective in coating nanocrystals while 

increasing their diameter only by a few nanometers. 

The production, trough a nanoemulsion method, of a ultrathin coating layer of zwitterionic 

molecules adsorbed via hydrophobic and van der Waals interactions at the surface of oleic acid-

NPs
16

 has been reported (Fig 2). In this way, Lee et al obtained water-soluble NPs having high in 

vivo stability, as demonstrated by incubation in 1 M NaCl and 10% FBS solution. Moreover, the 

ultrathin coating layer led to a measured T2 relaxivity much higher than that of commercial T2 

contrast agents. 
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Fig 2. (a) Schematic of ZSPION synthesis and chemical structure of zwitterion surfactant. (b) 

Photograph of dispersion behavior of oleic acid stabilized SPIONs before and after the zwitterion 

surfactant coating in hexane/distilled water. (c) Hydrodynamic size distribution along with TEM 

image of ZSPIONs. The scale bar in the TEM images denotes 20 nm. Image from Ref 16 . 

 

Furthermore, small sulfobetaines have been reported to graft to NP surfaces. Bawendi and co-

workers synthesized and employed a novel dopamine sulfonate ligand to coat iron oxide NPs
17

. As 

the authors explained, the structure of the compound (see Fig 3) was designed considering that: (i) 

the catechol unit strongly binds the iron centers of NPs
18

, (ii) the sulfonate moiety ensures high 

water solubility and (iii) in association with a quaternary amine group leads to a zwitterionic feature 

which provides pH stability to the nanosystem and reduces the nonspecific protein adsorption. 

Water-soluble ZDS-NPs, having a hydrodynamic diameter of 10 nm, were well dispersible in 

phosphate-buffered saline (PBS) and stable in the pH range between 6 and 8.5 and with respect to 

time and salinity. As expected from their zwitterionic nature, a reduced amount of serum protein 

bound these NPs in comparison to negatively-charged iron oxide NPs. Finally the authors 
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functionalized ZDS-NPs with streptavidin and fluorescent dyes for biotin-specific targeting and 

imaging (Fig 3).  

 

 

 

Fig 3. Functionalization of iron oxide NPs coated with dopamine zwitterion (ZDS) ligand whose 

chemical structure is reported in the yellow square. Image from Ref 18. 

 

ZDS-coated NPs have a saturation magnetization (Ms) of 74 emu g
-1

 preserving the characteristics 

of pristine iron oxide NPs from which they were obtained by a ligand exchange process
19

. In the 

same report, the authors also tested in vitro NP uptake by HeLa cells and they observed a low 

aspecific cell internalization after 24 h incubation. In addition, they carried out an in vivo stability 

experiment by intravenous injection of ZDS-NPs in mouse. After 10 minutes, the hydrodynamic 

diameter showed only a small increase as observed by SEC.  

Gao at al
20

 employed ZDS to coat ultra-small iron oxide NPs, which they claim contain gadolinium 

species (e.g., Gd2O3 nanoclusters), that had a good performance as T1 contrast agents. These novel 

NPs have a constant hydrodynamic diameter of approximately 5 nm measured in PBS buffer and 

FBS solution, again showing a low nonspecific protein interaction and a sufficiently long blood 

half-life (ca 50 min). Thanks to their size, such NPs are rapidly filtered by kidneys and can be 

passive targeted in tumors by the EPR effect, as tested in a human ovarian cancer as model. 

Basing on these promising results about the potential application of ZDS-NPs in biomedical field, 

we have decided to use in this PhD thesis the ZDS molecule to produce water-soluble iron oxide 

NPs and we have compared them with a batch of NPs covered by the commercially available 2-[2-

(2-methoxyethoxy)ethoxy]acetic acid (MEEA)
21

, with structure MeO(CH2CH2O)2CH2COOH. The 

latter is about as large as ZDS, featuring  a short PEG-like chain with a carboxylic acid group able 

to graft the NP surface as carboxylate anion
22

. Both coatings were characterized in detail by Fourier 
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Transform Infrared (FTIR) spectroscopy and Thermal Gravimetric Analysis (TGA) and their 

behavior towards protein adsorption was evaluated by Dynamic Light Scattering (DLS). Then, we 

have assessed the NP interaction with cells investigating their cytotoxicity, internalization, and 

intracellular destinyusing human liver carcinoma cells (HepG2) in view of their high phagocytic 

activity
23-24-25

. To study the NP localization inside the HepG2 cells, we prepared a new fluorescent 

catechol ligand.  

Since ZDS and MEEA have similar molecular length, they form a coating of similar thickness. 

Using the same batch of monodisperse iron oxide NPs, we have obtained information about the 

nanosystem surface chemistry which is the main factor, as explained in the introduction, to produce 

“stealth NPs”, essential for successful theranostic agents. 

 

02. Preparation of iron oxide NPs coated with zwitterions 

a. Synthesis of magnetic nanoparticles 

Since NP properties are strongly size dependent, we planned to use NP comprising a crystalline iron 

oxide core with a very small size dispersion so that investigation of the surface chemistry is not 

hampered by size inhomogeneous NPs. The nanocrystal size and morphology can be controlled by 

various synthetic procedures as reported in literature
26-27

. A general way to produce monodisperse 

NCs is based on the high-temperature decomposition of metal complex in a high boiling solvent in 

the presence of a surfactant (solvothermal synthesis)
28

. In particular, two procedures are well 

known. In the hot-injection process, the metal complex is instantaneously decomposed by quickly 

injection inside a hot mixture of solvent and surfactant while in the heating-up process all reagents 

are dissolved in the solvent at moderate temperature and then the homogeneous reaction mixture is 

heat up to high temperature. The crystal growth control diversifies the two procedures. In both 

methods, reaction temperature and reactant concentrations determine the size distribution of the 

NPs. The most common surfactants employed in the solvothermal synthesis of NPs to stabilize 

them and modulate their dimension and shape are long-chain molecules such as oleic acid and 

oleylamine. Moreover, the most common metal precursor used in hot-injection are metal carbonyls 

(e.g. iron pentacarbonyl) while for heating-up procedures metal acetylacetonates or oleates are 

widely employed.  

We obtained iron oxide NPs with diameter ca. 9 nm following a modification of a hot-injection 

procedure described in literature
29

 (see Experimental Section). We modified another procedure to 

synthesize NPs
30

 to produce larger NCs (d ≈ 12 nm) by changing the molar ratio between metal 
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precursor and surfactant (from 1:4 to 1:3) in 1-octadecene (ODE). In both cases we produced 

monodisperse spherical iron oxide NPs coated with oleic acid (OlAc-NPs), as confirmed by TEM 

images (see Fig 4 and 5). 

 

  

 

Fig 4. Smaller (8.7 nm) OlAc-coated NPs. Left) TEM image from Ref 21. Right) Histogram of the 

NP diameters measured by the software PEBBLES
31

. 

 

 

Fig 5. Larger  (11.4 nm) OlAc-coated NPs. Left) TEM image. Right) Histogram of the NP diameters 

measured by the software PEBBLES
31

.  
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For smaller iron oxide NPs the median diameter was  <d> = 8.7 nm with a diameter standard 

deviation σd = 0.4 nm, witnessing a very low dispersion σd/<d> = 4.6%. For larger NPs the median 

diameter was  <d> = 11.4 nm, with σd = 0.6 nm, showing again a very narrow dispersion σd/<d> = 

5.4%.  

Since the as-synthesized NPs have small size and magnetite (Fe3O4) and maghemite (γ-Fe2O3) have 

very similar electron diffraction pattern (Fig 6), we can at most conclude that our NPs are iron oxide 

NPs with cubic spinel structure and stoichiometry intermediate between magnetite and maghemite 

(Fe3–xO4–x, 0 < x < 1).  

 

 
Fig 6 . Electron diffraction pattern of OlAc-NPs. All diffraction rings are indexed with 

reference to the magnetite structure. Image from Ref 21. 
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b. Catecholic ligands 

The catecholic ligands used as iron oxide NP surfactants, were synthesized in collaboration with Dr. 

Carmelo Drago (CNR, Istituto di Chimica Biomolecolare, Catania).  

The zwitterionic dopamine sulfonate ( ZDS) (Fig 7) was obtained following a modified two-step 

pathway based on the previously reported procedure
17 and described in detail in the Experimental 

Section. Briefly, commercially available dopamine hydrochloride was deprotonated with aq. 

ammonia and reacted with propansultone to give the sulfonic acid DS, which was isolated and 

further reacted with a large excess of MeI in the presence of an inorganic base to obtain the desired 

zwitterion ZDS. 
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Fig  7. Synthesis of zwitterionic dopamine sulfonate ZDS 
21

.  

Instead the fluorescent catecholic ligand (FCL), whose structure is depicted in Fig 8, was employed 

to study the intracellular fate of iron oxide NPs after their internalization into HepG2 cells. It was 

produced as reported in detail in the Experimental Section.  
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Fig  8. Chemical structure of fluorescent catecholic ligand (FCL). The position of the benzamido 

moiety is uncertain (5 or 6) because we used commercially available 5(6)-carboxyfluorescein. 
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 c. Preparation of water-soluble NPs via ligand exchange 

procedure 

To prepare water soluble iron oxide NPs, we employed the above described batches of 

monodisperse OlAc-coated NPs and we resorted to ligand exchange procedures in order to replace 

the pristine hydrophobic coating (oleic acid) with the desired hydrophilic one. 

In particular, both MEEA- and ZDS-coated NPs were obtained following pathway modification of 

the literature procedure
17

. A similar process was used to produce the fluorescent NPs, which were 

coated with a mixture of FCL and ZDS. The presence of ZDS is required to endow the fluorescent 

NPs with good  colloidal stability in water. The coating procedure is described in detail in the 

Experimental Section.  

MEEA-, ZDS- and FCL-NPs were obtained from OlAc-NPs with <d> = 8.7 nm (see Fig 9), while 

ZDS-NPs were produced also from OlAc-NPs with <d> = 11.4 nm (see Fig 10). The latter were 

employed in DLS experiments. A summary of the NP morphological parameters before and after 

the exchange processes is reported in Table 1 and Table 2, respectively (see below). 

 

 

 

Fig 9. TEM images (top) and diameter histograms (bottom) of ligand-exchanged NPs prepared 

from 8.7 nm OlAc –NPs. Left) MEEA-NPS. Center) ZDS-NPs. Right) FCL-NPs. 
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 <d>  (nm) σd  (nm) σd/<d>  (%) 

OlAc-NPs 8.7 0.4 4.6 

MEEA-NPs 8.8 0.6 7.3 

ZDS-NPs 9.0 0.5 5.2 

FCL-NPs 8.1 0.8 9.6 

 

Table 1. Summary of the morphological parameters before and after the exchange process for NPs 

prepared from 8.7 nm OlAc –NPs. 

 

 

 

 

Fig 10. TEM image of ZDS-NPs coming from the batch of OlAc–NPs with diameter ca. 12 nm 

(“larger” OlAc-NPs). TEM image (left) and diameter histogram (right) of ZDS-NPs prepared from 

11.4 nm OlAc –NPs. 

 

 

 

Morphological parameters <d>  (nm) σd  (nm) σd/<d>  (%) 

OlAc-NPs 11.4 0.6 5.4 

ZDS-NPs 12.3 0.7 5.5 

 

Table 2. Summary of the morphological parameters before and after the exchange process for ZDS-

NPs prepared from 11.4 nm OlAc–NPs . 
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d. Characterization of NP coating 

We studied the coating at the surface of the prepared NP types by Fourier-Transform Infrared 

(FTIR) spectroscopy and Thermogravimetric Analysis (TGA). UV-VIS spectroscopy was also used 

for fluorescent NPs. 

 

d.01. FTIR spectra  

 

The FTIR spectra of OlAc-, MEEA-, and ZDS-NPs are shown in Fig 11 (left) along with the 

corresponding FTIR spectra of pure ligands (right).  

 

 

COATED NPS                                    PURE LIGANDS 

 

Fig 11. FTIR spectra of OlAc- (a), MEEA- (b), and ZDS-coated (c) iron oxide NPs (left). FTIR 

spectra of the pure ligands are shown in the right subpanels. Image from Ref 21. 

 

In all NP spectra the peak at 590 cm
−1

 can be ascribed to the iron oxide core. In the spectrum of 

OlAc-NPs, strong C-H (2954, 2919, 2850 cm
–1

) and carboxylate stretching peaks (1550 and 1463 

cm
–1

) are clearly recognizable. Instead, the spectrum of MEEA-NPs displays stretching bands 

related to C-H (weak; 2956, 2923, 2855 cm
–1

), carboxylate (1634 and 1410 cm
–1

) and C-O-C (1200 

and 1100 cm
–1

)
22

 typical of MEEA, as proof of evidence that the ligand exchange procedure was 
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effective. Finally, the FTIR spectrum of ZDS-NPs shows, in addition to the weak C-H stretching 

peaks (2850-2950 cm
–1

), several diagnostic bands such as the S-O stretching peak (1209 cm
−1

), the 

C-H deformation peaks of the dimethylammonium group (1496 and 1042 cm
−1

), and the ring 

stretching (1596 cm
−1

) and C-H deformation (914-732 cm
−1

) peaks of 1,2,4-trisubstituted 

benzenes
21

. The ZDS-NPs spectrum is in agreement with that reported in literature for iron oxide 

NPs coated with a short siloxane sulfobetaine
32

. The intensity of the peaks in the C-H stretching 

region decreases passing from OlAc to MEEA and ZDS as a consequence of the efficient ligand 

exchange procedure. 

 

d.02. TGA curves 

 

MEEA- and ZDS-NPs were subjected to Thermogravimetric Analysis (TGA) by heating the NPs in 

air up to 950 °C. The TGA curves are shown in Fig 12. 

 

 

 

Fig 12. TGA curves of MEEA- and ZDS-coated iron oxide NPs. 

 

In the case of MEEA-NPs the weight loss is 16.5%, in agreement with that already reported in 

literature
22

. Such percentage corresponds to a coating density of 6 molecule/nm
2
 of MEEA in the 

coating, similar to the published data of 4.2-4.7 molecule/nm
2 

evaluated for aliphatic carboxylic 

acids having comparable size
33

. Instead, TGA curves of ZDS-NPs show two percentage weight 

losses: 33% in the 100-440°C range and 12% in the 440-580°C range. We attributed the first weight 

loss to the decomposition of the aliphatic part of the ZDS and the second one to the combustion of 

the aromatic part, also considering that the aliphatic:aromatic weight ratio in ZDS is about 3:1. In 
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this case, the total weight loss (45%) corresponds to a very high coating density of 15 molecule/nm
2
 

that we have attributed to the presence of a ZDS bilayer at the NP surface, as already observed in 

the literature for zwitterionic molecules adsorbed onto the oleic acid coating of NPs
 16 (i.e. with no 

ligand replacement). 

 

d.03. UV-Vis spectra 

 

The fluorescent coating of iron oxide NPs, comprising a mixture of ZDS and FCL was analyzed by 

UV-Visible spectroscopy (Fig 13). After purification by dialysis to remove the free ligands, we 

registered the absorption spectrum of ZDS/FLC NPs. As visualized in Fig 13, it was in agreement 

with that of the 5(6)-carboxyfluorescein chromophore of FLC, supporting the successful  

achievement of the desired fluorescent coating. Moreover, from the quantitative analysis of the UV-

Vis spectrum we evaluated that the number of FCL molecules grafted to one iron oxide NP is 

around 4∙10
2
. This value can be compared with the ca. 3∙10

3
 anchored ZDS molecules per NP 

estimated from the above TGA results. 

 

 

 

Fig 13. UV-Visible spectrum of fluorescent NPs coated with a mixture of ZDS and FLC in water 

(solid line) compared with that of 5(6)-carboxyfluorescein (dotted line, shifted upwards by 0.012 

absorbance units for the sake of clarity). Image from Ref 21. 
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03. Study of NP colloidal stability 

 

We decided to employ Dynamic Light Scattering (DLS) to study the colloidal stability of MEEA- 

and ZDS-NPs, first in deionized (DI) water and then in the complete culture medium of HepG2 

cells. We have analyzed both the intensity weighted size distribution PI and the volume-weighted 

size distribution PV. 

In deionized water, as shown in Fig 14, both PI and PV for MEEA-coated NPs display a single peak 

with mean diameter DI ≅ DV ≅ 750 nm. Therefore, these NPs were present in DI water as 

aggregates. Instead, ZDS-coated NPs were well dispersed in DI water, displaying a major (85%) 

peak in PI at DI = 23 nm and a minor (15%) peak at DI = 240 nm. The size related to the major 

(99%) peak in the volume weighted distribution (DV = 12 nm) is in agreement with values reported 

in literature
19

 and confirms that the ZDS layer is less than 2 nm thick. Only a minor fraction of 

ZDS-NP mass is present as aggregates as evidenced by the peak area ratio of both PI (85:15) and PV 

(99:1). 

 

 

Fig 14. Intensity-weighted diameter distribution PI (left) and volume-weighted diameter distribution  

Pv (right) of dispersions of MEEA- (red) and ZDS-coated (black) NPs in deionized water; PI and Pv 

of the cell culture medium (green) is also shown. Images  from Ref 21. 

 

The ζ potential of ZDS-coated NPs in DI water was measured. Despite that ZDS is globally neutral 

molecule, the ζ potential of ZDS-NPs in DI was negative, ζ = −8.6 mV, in conformity with that 

previously measured for quantum dots coated with a polymer exhibiting sulfobetaine pendant 

moieties (−13.1 mV)
34

 and Au NPs covered with sulfobetaine zwitterionic surfactants (−17.9/−14.8 

mV)
2
.  

The DLS results provide an explanation of the very different visual appearance of water dispersion 

of MEEA- and ZDS-NPs having similar NP concentration (0.15 - 0.20 mg Fe/ml). Indeed, fresh 
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dispersions of MEEA-NPs appeared as turbid since they formed aggregates, while ZDS-NPs gave 

dark, clear, stable solutions (Fig 15). 

 

 

Fig 15. Water dispersions of MEEA- (A) and ZDS-coated (B) iron oxide NPs. Image from Ref 21. 

 

 

Since ZDS-NPs appeared as well dispersible in DI water, we decided to explore their stability in 

both the Roswell Park Memorial Institute (RPMI) cell culture medium (which is serum free) and the 

complete cell culture medium (RPMI supplemented with 2 mM L-glutamine, 100U/ml antibiotic, 1 

mM sodium pyruvate and 10% FBS), which will be used to grow the HepG2 cells for the in vitro 

experiments described below. To this purpose, we analyzed the DLS intensity and size distribution 

of NP dispersions at the concentration and for the time interval used in the uptake experiments, 

starting from 9 nm ZDS-NPs. 

The scattered intensity Is is very sensitive to an increase of NP size due to protein adsorption or 

aggregation since Is is proportional to the sixth power of the NP size (e.g., a 10% size increase 

causes a 2.5-fold increase of Is). As shown in Fig 16, the scattered intensity Is was constant for 24 h 

in the case of the complete cell culture medium while Is displays a minor increase only at long 

times, especially in the 21−24 h range, for the dispersion of ZDS-NPs in the complete cell culture 

medium. These data witness the good colloidal stability of our dispersions and the absence of 

significant protein adsorption by ZDS-NPS. These results are confirmed considering that the 

volume-weighted size distribution PV did not display significant variations over 24 h (Fig 16). 
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Fig 16. Comparison of DLS of complete cell culture medium with (blue) and without (green) ZDS-

NPs. Left) intensity of the scattered light Is as a function of time t (the inset shows the initial 

behavior). Right) Volume weighted distribution PV of the hydrodynamic diameter. Circles: t = 0 h, 

triangles t = 24 h. Images from Ref 21.  

 

 

The first order autocorrelogram g1(τ) and intensity-weighted size distribution PI (Fig. 17) indicate 

that PI increased after 24 h. However, we have to consider that both Is and PI are very sensitive to 

size changes (Is, PI ∝ D
6
), so the size increase occurring after 24 h can be considered negligible. 

Indeed, this variation can be ascribed to changes occurring in the medium during time, since both 

g1(τ) and PI curves have similar behavior. For this reason, we could exclude that protein adsorption 

at the ZDS-NP surface occurred. Note that this process normally develops in a few minutes after 

contacting NPs and proteins and leads to a huge increase in Is
35

. 

 

 
 

Fig 17. Normalized first-order autocorrelograms g1(τ) (left) and intensity-weighted distribution PI 

(right) of ZDS-NPs in complete cell culture medium (blue) and of the pure cell culture medium 

(green). Circles or triangles denote data at 0 h or at 24 h. Images  from Ref 21. 
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To confirm the good stability of ZDS-coated NPs, we carried out the same DLS experiments 

employing ZDS-coated iron oxide NPs, having a diameter ca. 12 nm. Their DV in deionized water 

was equal to 15 nm. After dispersing the NPs (0.05 mg/ml) in RPMI serum-free, we measured DI = 

19−23 nm and DV = 15 nm. The NPs were colloidally stable for 24 h and a very minor aggregation 

was observed in PI (Fig 18).  

 

a) 

 

b) 

 
c) 

 

  

 

Fig 18. DLS of 12 nm ZDS-NPs in RPMI medium (serum free) at 0 (black) and 24 h (red). a) First-

order autocorrelation function g1(τ), b) intensity-weighted diameter distribution PI, c) volume-

weighted diameter distribution PV. Image from Ref 21. 

 

Next, DLS experiments were carried out on dispersions of 12 nm ZDS-coated NPs in the complete 

cell culture medium (Fig 19). Only very minor size changes (and hence protein adsorption) were 

observed. 
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a) 

 

b) 

 

c) 

 

  

 

Fig 19. DLS of 12 nm ZDS-coated iron oxide NPs in cell culture medium (modified RPMI + 10% 

FBS) at 0 (black) and 24 h (red). a) Normalized first-order autocorrelation function g1(τ), b) 

intensity-weighted diameter distribution PI, c) volume-weighted diameter distribution PV. Image 

from Ref 21. 

 

Finally we studied the behavior of 12 nm ZDS-coated NPs in PBS 1× added with 10% FBS. All 

results confirmed the absence of protein adsorption and the substantial colloidal stability after 24 h 

for these nanosystems (Fig 20). 
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a) 

 

b) 

 
c) 

 

  

 

Fig 20. DLS of 12 nm ZDS-coated iron oxide NPs in PBS (1x) added with 10% FBS at 0 (black) and 

24 h (red). a) Normalized first-order autocorrelation function g1(τ), b) intensity-weighted diameter 

distribution PI, c) volume-weighted diameter distribution PV. Image from Ref 21. 

 

 

04. NP Cytotoxicity 

All biological experiments were made in collaboration with the group of Dr. Bice Chini (CNR, 

Istituto di Neuroscienze, Milano).  

We tested the cytotoxicity of MEEA- and ZDS-coated iron oxide NPs by the MTS test, a 

colorimetric method that quantifies the metabolic activity of cells by evaluating the reduction of [3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) 

(CellTiter 96® AQueous One Solution Cell Proliferation Assay, Promega). Viable cells reduce 

MTS molecule by NAD(P)H-dependent dehydrogenase enzymes to generate a colored formazan 

product that is soluble in the cell culture medium and whose absorbance can be measured at 490-

500 nm. The applied procedure is described in detail in the Experimental Section.  

We evaluated the toxic effect on HepG2 cells of iron oxide NPs (added to the cell medium to final 

concentrations of 2.5, 5, 10, 25, 50, and 100 µg Fe/ml) after 24 h exposure. The percentage 
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difference between treated and untreated cells  was employed to express cell viability. In general, 

we observed that the addition of NPs to the cell culture medium did not significantly perturb its pH 

and osmolarity.  In more detail, we found that the highest doses of MEEA-coated NPs (50 and 100 

µg Fe/ml) induced a small cytotoxic effect whereas even the highest dose of ZDS-NPs did not 

induce a cytotoxic effect (Fig 21). Iron does not interfere with the MTS test even at the highest NP 

concentration employed in these experiments (100 μg/ml)
36

. 

 

 

Fig 21. Cell viability upon exposure to increasing concentrations of MEEA- (left) or ZDS- coated 

(right) NPs [MTS cell viability assay]. Obtained data are presented as mean ± SEM and compared 

to control values using ANOVA test. * p<0.05; ***p<0.001. Image from Ref 21. 

 

05. Uptake experiments by HepG2 cells 

As already mentioned in the Introduction, we employed human liver carcinoma cells (HepG2) for 

the NP uptake experiments since these cells display a high phagocytic activity. We evaluated the 

NP internalization in two ways: qualitatively, by Prussian Blue staining and imaging, and 

quantitatively, by UV-Vis spectroscopy. In our assays, HepG2 cells were treated for 24 h with NPs 

added to the culture medium at final concentration of 0, 2.5, 10, 25, 50 or 100 µg Fe/ml. 

 

e. Qualitative iron evaluation 

To carry out a qualitative investigation of the NP internalization, HepG2 cells were exposed to 

increasing concentration of iron oxide NPs and then the internalization was observed by Prussian 

Blue staining of the washed cells. The complete procedure is described in detail in the Experimental 

Section. For both MEEA-NPs and ZDS-NPs the intracellular uptake increases with the NP dose.  
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Prussian Blue staining clearly revealed much larger intracellular MEEA-NPs than ZDS-NPs (Fig 

22), probably because MEEA-NP aggregates were internalized. 

 

 

 

Fig 22. Prussian Blue staining of HepG2 cells after treatment with iron oxide NPs. HepG2 cells 

were exposed for 24 hours to different concentrations of MEEA- (top) or ZDS-coated (bottom) NPs, 

washed and processed for Prussian Blue staining and optical imaging. Black aggregates indicate 

the presence of iron. Scale bar = 10 μm. Image from Ref 21. 

 

     f. Quantitative iron quantification 

HepG2 cells were treated for 24 h with NPs added to the culture medium at final concentration of 0, 

2.5, 10, 25, 50 or 100 µg Fe/ml. To quantify the intracellular iron content we used a procedure 

described in detail in the Experimental Section. In brief, cellular pellets were digested with 

concentrated HCl/HNO3 and the resulting aqueous solution was treated with tiron (disodium 4,5-

dihydroxybenzene-1,3-disulfonate) at pH ≈ 7 to form the red complex Fe(tiron)3. This complex is 

suitable for quantification by UV-Vis spectroscopy
37

. UV-Vis data were analyzed by fitting a broad  

spectral interval (400-800 nm), thus ensuring better accuracy with respect to previous methods
38,39

. 

The cell protein content was quantified by the BIORAD-Dc protein assay in order to express the NP 

internalization as mass(internalized iron)/mass(protein). The native iron content of HepG2 cells was 

(mFe/mprotein)control = (0.4 ± 0.1) μgFe/mgprotein. The iron uptake was calculated as U = 

(mFe/mprotein)treated – (mFe/mprotein)control, where mFe and mprotein are the cellular iron and protein mass, 

respectively, both evaluated after 24 h treatment and averaged over the replicates (Fig 23).  
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Fig 23. NP internalization in HepG2 cells after 24 h incubation with increasing concentrations of 

MEEA- (left) or ZDS-coated (right) NPs. Note the different vertical scales in the subpanels. Results 

are presented as mean ± SEM and their significance was assessed using Student’s t-test, after 

testing for equal variance using the F-test. Student’s t-test was applied to test for uptake differences 

between adjacent doses (*) and with respect to the control (#).* p<0.05; # p<0.05, ## p<0.005. 

Image from Ref 21. 

 

The plots show that the NP internalization depends on the dose of NPs administered to HepG2 cells 

in the culture medium for both MEEA- and ZDS-coated iron oxide NPs. Experimental constraints, 

for instance an excessive volume of NP dispersion added to the culture medium, did not allow us to 

increase the NP final concentration to more than 100 µg Fe/ml. According with Prussian Blue 

staining observations, the amount of NPs taken up by HepG2 cells was closely related to the 

surfactant type: in particular the amount of internalized MEEA-NPs was 20-30 times higher than 

that of ZDS-NPs. Since these NPs have the same core and coating size, the surface chemistry is the 

only responsible for their different cell internalization. We could ascribe these results to the 

dissimilar surfactant charge (zwitterionic vs. neutral), which might influence the interaction of NPs 

with cell membranes. However, DLS results showed that such chemical differences primarily 

influenced NP colloidal stability in the culture medium, so that MEEA-coated NPs were 

internalized to a larger extent probably thanks to their presence as micrometer-sized aggregates
35

, 

maybe involving a size-dependent uptake mechanism. On the other hand, DLS showed that ZDS-

NPs did not vary their hydrodynamic size owing to protein adsorption or aggregation in the full cell 

culture medium, so they interacted as well-dispersed with cells affording low internalization. 

We compared our uptake data with those reported in literature. First, we considered internalization 

of iron oxide NPs by HepG2 cells. In the case of MEEA-coated NPs our results are higher but 

comparable with the internalization observed for NPs forming aggregates. Some examples are the 

uptake of cationic and galactose-decorated magnetoliposomes
40

, iron oxide NPs covered with 
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glucosamic acid
41

 or aminopropylsiloxane groups
24

 and commercially available “anionic” NPs
42

. 

Considering NPs well-dispersed to compare their behavior with ZDS-coated NPs, nanocrystals 

covered with PEG600 carboxylic acid
24

 and anionic magnetoliposomes
40

 were internalized in a 

larger amount with respect to our ZDS nanosystems. A slighty lower uptake than that of ZDS-NPs 

was reported for iron oxide NPs coated with dimercaptosuccinic acid
23

. Second, we considered two 

reports concerning the uptake of NPs coated with zwitterions, in particular with a polymeric coating 

functionalized with carboxybetaines. One report described the internalization by RAW 264.7 cells 

of well dispersed NPs (D = 19 nm) coated with polyacrylic acid bearing ammonium groups. The 

second report
14

 described the exposure of RAW 264.7 and also HUVEC cells to NPs (D ≈ 130 nm) 

coated with a polycarboxybetainemethacrylate polymer. Assuming that HepG2, RAW 264.7 and 

HUVEC cells have a comparable protein content, the internalizations of NPs coated with a 

zwitterionic polymer and with our small ZDS molecule were very similar. These comparisons 

suggest that the hydrodynamic diameter of zwitterionic NPs scarcely affects their uptake by cells. 

 

06. Study of the intracellular NP fate 

Finally, to explore the intracellular destiny of ZDS-NPs, we used fluorescent iron oxide NPs coated 

with a mixture of ZDS and FCL. TGA and UV-Vis data showed that the number of FCL molecules 

in the coating is about 10% of the number of ZDS molecules. HepG2 cells were exposed for 24 

hours to different concentrations of the fluorescent NPs, then washed and processed for optical 

imaging according to the procedure described in detail in the Experimental Section. First, confocal 

microscopy images again witnessed a dose-dependent uptake by cells (Fig 24). Moreover, these 

NPs did not stain the plasma membrane, a remark supporting that the final washing of HepG2 with 

PBS solution was effective in removing non-internalized NPs. 
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Fig 24. Confocal images of HepG2 cells treated with fluorescent NPs. The NPs are coated with a 

mixture of ZDS and FCL ca. 9:1 mol/mol. Scale bar = 20 μm. Inset scale bar = 10 μm. Image from 

Ref 21. 

 

However, the most important information deriving from the study of the internalization of 

fluorescent NPs concerned the intracellular fate of the NPs (green) which was studied by labeling in 

vivo lysosomes with Lysotracker-Red (red) and cell nuclei with DAPI (blue). Co-localization of the 

green and red signals, 6 or 24 hours after the addition of NPs in the cell medium, proved that these 

NPs in HepG2 cells were localized in lysosomes (Fig 25).  
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Fig 25. Lysosomal accumulation of fluorescent NPs, coated with a mixture of ZDS and FCL, in 

HepG2 cells. Cells were exposed to these NPs for 6 or 24 hours. Arrowheads indicates sites of 

colocalization between the green (NPs) and the red signal (Lysotracker). Scale bar: 5 μm. Image 

from Ref 21. 

 

Such result could be interesting for the potential application of ZDs-coated NPs in cancer therapy 

because magnetic NPs with the same lysosomial destiny
39-43

 have already been reported in the 

literature as efficient killers of tumor cells. Indeed, they induced cell death through the release of 

the lysosome content in the cytosol when exposed to an external magnetic field
43

. 
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07. Conclusions 

In this part of my PhD thesis, we prepared iron oxide NPs coated with a small zwitterionic 

molecule, ZDS, and we characterized them from the physico-chemical point of view, analyzing 

their coating structure and their colloidal stability in order to explore the protein adsorption on the 

NP surface. On the basis of such results, we also explored their cellular toxicity, uptake and 

intracellular destiny by HepG2 cells. 

We compared the ZDS-coated NPS with MEEA-coated NPs obtained from the same batch of 

nanocrystals, with the aim of investigating the effects due to the different surface chemistry. ZDS-

coated NPs have a high density of sulfobetaine ligands, which provides NPs with high colloidal 

stability even in the complete cell culture medium by avoiding NP aggregation or precipitation and 

the protein adsorption at their surface. Conversely, MEEA-coated NPs show low colloidal stability 

in deionized water and the fast formation of micrometer-sized aggregates. 

Cellular toxicity and the efficiency of aspecific uptake are affected by such different behavior, 

which has a deep impact on the in vitro interaction between NPs and cells. Therefore, we have 

confirmed the centrality of NP surface chemistry in NP-cell interactions and why it is important to 

monitor the NP dispersion during biological in vitro assays.  

ZDS-NPs were not toxic for HepG2 cells even at the highest administered concentration (100 µg 

Fe/ml), while MEEA-NPs caused cytotoxicity already at 50 µg Fe/ml. Both NP types are 

aspecifically internalized in HepG2 cells in a dose-dependent way, but to a very low extent for the 

zwitterionic NPs. One could benefit from this aspect when highly selective targeting through 

specific NP functionalization is desired. 

Finally, ZDS-coated NPs showed a lysosomal intracellular destiny, which is desirable when we 

want to destroy targeted cells, such as in tumor treatment. Taken together, all the advantages 

underlined for ZDS-coated NPs, indicate that they could be considered as a good backbone for the 

development of theranostic nanosystems. 
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08. Experimental section 
 

g. Materials 

All chemicals [dopamine hydrochloride (98.5%), 1,3-propansultone, iodomethane, 4,7,10-trioxa-

1,13-tridecanediamine, triethylamine, trityl chloride, diglycolic anhydride, pyridine (Pyr), N-

hydroxybenzotriazole (HOBt), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N,N-

diisopropylethylamine (DIPEA), triisopropylsilane (TIPS), trifluoroacetic acid (TFA), N-

hydroxysuccinimide (NHS), N,N'-diisopropylcarbodiimide (DIC), iron pentacarbonyl (Fe(CO)5), 

oleic acid (OlAc, 90%), octyl ether (99%) , 2-[2-(2-methoxyethoxy)ethoxy] acetic acid (MEEA, 

90%)]  and solvents [methanol, ethanol (98%), octadecene (ODE, 90%), aqueous ammonia, 

dimethylformamide (DMF), acetone (tech. grade), ethyl acetate, dichloromethane (DCM), 

diisopropylether] were acquired from Sigma-Aldrich and employed as received without further 

purification. To digest NPs we used concentrated acids (HNO3 and HCl) that were Aldrich Trace 

Select reagents. Deionized (DI) water was obtained using a Milli-Q Plus water purification system 

(resistivity > 18.2 mΩ cm at 25 °C). The  human liver carcinoma cells (HepG2) were obtained from 

the American Type Culture Collection. 

h. Procedures 

h.01. Acronyms used in the experimental section 

OlAc = oleic acid  

Fe(CO)5 =  iron pentacarbonyl 

RT = room temperature 

DMF = dimethylformamide 

D2O = deuterium oxide 

TEA = triethylamine 

NaHCO3 = sodium hydrogen carbonate  
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Na2SO4 = sodium sulfate  

CDCl3 = deuterochloroform 

TrCl = trityl chloride  

DCM = dichloromethane 

EDC = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

Pyr  = pyridine 

HOBt = N-hydroxybenzotriazole  

DIPEA = N,N-diisopropylethylamine 

CH3OH/ MeOH = methanol 

iPrOH = isopropanol 

CD3OD = deuterated methanol 

TIPS = triisopropylsilane 

TFA = trifluoroacetic acid 

i-Pr2O = isopropyl ether   

NHS = N-hydroxysuccinimide 

DIC = N,N'-diisopropylcarbodiimide 

CH3CN = acetonitrile 

DI water = deionized water  

PBS = phosphate buffer saline 

PFA = paraformaldehyde 

HCl = hydrochloric acid 

HNO3 = nitric acid 

DAPI  = 4′,6-diamidine-2′-phenylindole dihydrochloride 

tiron = disodium 4,5-dihydroxy-1,3-benzenedisulfonate 

 

h.02. Preparation of 9 nm iron oxide NPs 

9 nm iron oxide NPs were produced according to a modification of a published literature 

procedure
29

. Oleic acid (OlAc, 600 l, 1.89 mmol) was dispersed in octyl ether (10 ml) and oxygen 

was repeatedly removed from the solution at RT by vacuum/nitrogen cycles. Afterwards, the 

solution was heated to 105 °C under nitrogen and, after another degassing cycle, Fe(CO)5 (200 l, 

1.52 mmol) was injected into the reaction mixture (Fe(CO)5:OlAc = 1:1.25 mol/mol). The mixture 

was heated to reflux (285 °C) with a rate of 3.3 °C/min and maintained at this temperature for 25 
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min. Around 260 °C the color of the reaction mixture changed from pale yellow to black. The 

reaction crude, cooled at RT, was treated with acetone and the precipitated NPs were collected by 

centrifugation (6000 rpm for 10 min). The NPs were washed several times with acetone or ethanol 

and recovered by centrifugation (6000 rpm for 10 min). Finally, the OlAc-coated NPs were 

dispersed in hexane (20 ml). 

 

h.03. Preparation of 12 nm iron oxide NPs  

12 nm iron oxide NPs were produced according to a modification of a published literature 

procedure
30

. Fe(CO)5 was injected in a solution of 1-octadecene and oleic acid (Fe(CO)5:OlAc = 1:3 

mol/mol) at 120 °C and then heated to 320°C for 3 h under nitrogen. After cooling at RT, the NPs 

were precipitated by adding acetone and collected by centrifugation. Then, they were repeatedly 

washed with acetone and dispersed in toluene. 

 

h.04. Synthesis of zwitterionic dopamine sulfonate (ZDS) 

ZDS molecule was synthesized in two steps following the Scheme 1, a modification of an already 

reported procedure
17

, which is detailed below.  
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Scheme 1. Synthesis of ZDS molecule 
21

. 
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h.04. 1. Synthesis of dopamine sulfonate, DS 

28% aq. ammonia (416 μL, 3.00 mmol) and 1,3-propanesultone (799 mg, 6.50 mmol) were slowly 

added to a solution of dopamine hydrochloride (1.14 g, 6.0 mmol) in ethanol (150 mL) under inert 

gas. The mixture was warmed up to 50 °C and stirred for 72 h, giving a white precipitate. The solid 

(DS) was recovered by centrifugation, washed with ethanol (3 x 10 mL) and finally dried under 

reduced pressure.  

1
H-NMR (400 MHz, D2O): δ (ppm) 2.00 (m, 2H), 2.78-2.82 (m, 2H), 2.86-2.91 (m, 2H), 3.06-3.12 

(m, 2H), 3.16-3.18 (m, 2H), 6.72-6.74 (m, 1H), 6.78- 6.82 (m, 2H). 
13

C-NMR (100 MHz, D2O): δ 

(ppm) 21.1, 30.9, 46.1, 47.8, 48.6, 116.4, 121.1, 128.9, 143.0, 144.2.   

 

h.04. 2. Synthesis of zwitterionic dopamine sulfonate, ZDS 

Anhydrous sodium carbonate (0.254 g, 2.40 mmol) was added to a solution of DS (0.329 g, 1.00 

mmol) in DMF (150 mL) and mixed under nitrogen for 2 h. After that, iodomethane (2.2 mL, 35 

mmol) was added to the mixture, which was heated to 50 °C and continuously stirred overnight. 

After reaction completion, the solvent was evaporated under reduced pressure, obtaining an oil 

which was purified through several consecutive crystallization steps with DMF/ethyl acetate (1:10 

v/v, 50 mL) finally leading to a white solid collected by centrifugation and dried under reduced 

pressure.  

1
H-NMR (400 MHz, D2O): δ (ppm) 2.21 (m, 2H), 2.92-2.95 (m, 4H), 3.13 (s, 6H), 3.47-3.51 (m, 

4H), 6.74-6.76 (m, 1H), 6.83-6.88 (m, 2H). 
13

C-NMR (400 MHz, D2O): δ (ppm) 18.1, 27.7, 47.1, 

50.7, 62.0, 64.6, 116.5, 121.2, 128.2, 143.0, 144.2. 

 

h.05. Synthesis of fluorescent catecholic ligand ( FCL) 

The fluorescent catecholic ligand (FCL) was produced following the Scheme 2 reported below 

starting from the product commercially acquirable 4,7,10-trioxa-1,13-tridecanediamine (1). 



 

49 
 

OH

OH

NH
O

NH O

O O

NH

O

O

O OHOH

O

3

NH2 O NH23

1

NH2 O NH

Ph

Ph

Ph
3

2

NH2 O NH

Ph

Ph

Ph
3

3

O

O

OO

NH2

OH

OH

3

4

NH O NH

Ph

Ph

Ph

O

ONH

O

OH

OH

3

5

NH O NH2

O

ONH

O

OH

OH

6

O

O OHOH

O

OH

O

 

 

Scheme 2. Synthetic pathway leading to the FCL (6)
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h.05.1 Synthesis of compound 2  

A solution of compound 1 (5 g, 22.70 mmol) in dichloromethane (250 ml) and TEA (0.475 mL, 

3.41 mmol) was stirred for 30 min. After cooling to 0°C with an ice-bath, trityl chloride (TrCl, 632 

mg, 2.27 mmol) was added to the crude in small portions. Then the ice-bath was removed and the 

reaction mixture was maintained overnight at RT. The DCM phase was washed twice with a 

NaHCO3 saturated solution, dried with anhydrous Na2SO4, separated out and finally evaporated 

under reduced pressure to give product 2 (1.07 g, 2.27 mmol, quantitative yield). 

1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 7.43-7.37 (m, 6 H, aromatic protons Tr), 7.23-7.17 (m, 6 

H, aromatic protons Tr), 7.13-7.08 (m, 3 H, aromatic protons Tr), 3.58-3.41 (m, 12 H, 

CH2OCH2CH2OCH2CH2OCH2), 2.78 ( t, 2 H, CH2NH2 ), 2.20-2.11 (m, 2 H, CH2NH ) 1.76-1.63 

(m, 4 H, CH2CH2NH2, CH2CH2NH). ESI-MS: m/z 463.5 [M+H]+. 

 

h.05.2 Synthesis of compound 3 

Compound 2 was dissolved in dry DMF (10 ml); then diglycolic anhydride (527 mg, 4.54 mmol) 

and pyridine (Pyr, 0.736 mL, 9.08 mmol) were added to the solution and were mixed for 16 h at RT. 

The crude was acidified to pH 5 with an aqueous solution of 5% citric acid. The desired and 

practically pure compound 3 was extracted from water with DCM, dried on anhydrous Na2SO4, 

filtered off and finally obtained by evaporation under reduced pressure. 

1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 7.63-7.51 (m, 5 H, aromatic protons Tr), 7.44-7.31(m, 10 

H, aromatic protons Tr), 4.19 (s, 2H, CH2COOH), 4.13(s, 2H, OCH2CO), 3.55(m, 6 H), 3.52(t, 2 

H,CH2NHCO), 3.45-3.35(m, 6 H), 3.2(t, 2 H, CH2NHCTr), 2.04(t, 2 H, CH2CH2NHCTr), 1.79(t, 2 

H, CH2CH2NHCO). 
13

C NMR (400 MHz, CDCl3, 25 °C): δ = 138.8, 128.8, 128.7, 128.6, 71.3, 

70.6, 70.5, 70.3, 70.1, 69.9, 69.4, 69.2, 45.4, 36.9, 36.3, 31.3, 28.7, 25.4 .ESI-MS: m/z 579.5 

[M+H]+. 

 

h.05.3 Synthesis of compound 4  

EDC (154 mg, 0.801 mmol), HOBt (108 mg, 0.801 mmol) and DIPEA (0.458 mL, 2.676 mmol) 

were consecutively added at RT to a mixed solution of compound 3 (426 mg, 0.736 mmol) in DMF 

(5mL). After complete dissolution of the reagents, dopamine hydrochloride (127 mg, 0.669 mmol) 

was added and the reaction was stirred until completion, as assessed by HPLC-MS. Finally, the 

DMF was evaporated in vacuo and the crude product was recovered as pure 4 by BiotageTM C18 
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reverse phase chromatography. We applied the following BiotageTM eluant conditions: gradient 

from 90% H2O-10% CH3OH-iPrOH(6:4) to 100% CH3OH-iPrOH (6:4). 286 mg, 0.399 mmol, 60% 

yield. 

1
H-NMR (400 MHz, CD3OD, 25 °C): δ = 7.46-7.40 (m, 6 H, aromatic protons Tr),7.29-7.21 (m, 6 

H, aromatic protons Tr), 7.20-7.14 (m, 3 H, aromatic protons Tr), 6.68 (d, 1 H, catechol, Jortho= 8.3 

Hz), 6.65 (d, 1 H, catechol, Jmeta= 1.7 Hz), 6.52 (dd, 1 H, catechol, Jortho= 8.3 Hz, Jmeta= 1.7 

Hz), 4.00 (s, 2 H), 3.98 (s, 2 H), 3.61-3.51 (m, 8 H), 3.50-3.44 (m, 4 H), 3.41 (t, 2 H), 2.67 (t, 2 H), 

2.25 (t, 2 H), 1.76 (qt, 4 H), 1.15 (d, 2 H). 
13

C NMR (400 MHz, CDCl3, 25 °C): δ = 129.7, 128.4, 

127.0, 120.8, 116.6, 116.1, 71.3, 71.26, 71.22, 71.06, 70.99, 70.93, 68.6, 41.3, 40.5, 36.3, 34.5, 

29.8, 29.0. ESI-MS: m/z 714.5 [M+H]+. 

 

h.05.4 Synthesis of compound 5  

A solution of compound 4 (120 mg, 0.168 mmol) solved in DCM (5 mL), TIPS (0.070 mL, 0.336 

mmol) and TFA (0.250 mL) were stirred for 2 h at RT. Then, DCM was evaporated under reduced 

pressure. The crude residue was treated with water and extracted twice with i-Pr2O. The organic 

phase was then dried on Na2SO4, removed in vacuo affording the product 5 (95 mg, yield 82%) 

which can be used without further purification. 
1
H-NMR (400 MHz, D2O, 25 °C): δ 6.90 (d, 1 H, 

catechol, Jortho= 7.6 Hz) 6.84 (d, 1 H, catechol, Jmeta= 1.76 Hz), 6.75 (dd, 1 H, catechol, Jortho = 7.6 

Hz, Jmeta = 1.76 Hz), 4.10 (s, 2 H), 4.03 (s, 2 H), 3.78-3.66 (m, 10 H), 3.62 (t, 2H), 3.53 (t, 2H), 3.30 

(t, 2 H), 3.15 (t, 2 H), 2.78 (t, 2 H), 1.99 (qt, 2 H), 1.84 (qt, 2 H). ESI-MS: m/z 472.3 [M+H]
+
. 

 

h.05.5 Synthesis of compound 6 (FCL)  

NHS (30 mg, 0.225 mmol) and DIC (90 μl, 0.56 mmol) were consequently added to a mixture of 

5(6)-carboxyfluorescein (85 mg, 0.225 mmol) in dry DMF (4 ml) and then were stirred at RT for 18 

h. After reaction completion, DMF was removed under reduced pressure and the residue was left 

under the high vacuum during the night. Then, it was diluted in dry DMF (3 ml) and then slowly 

added to a solution of compound 5 (0.225 mmol) and DIPEA (154 μl, 0.90 mmol) in dry DMF (2 

ml), that was magnetically mixed over night at RT. Finally the organic solvent was evaporated and 

compound 6 was purified by HPLC using a C18 reverse column. We applied the following HPLC 
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eluant conditions: from 90% H2O/ 10% CH3CN to 100% CH3CN with a flow rate 20 ml/min. Yield 

of pure FCL: 57% (106 mg, 0.128 mmol). 

1
H-NMR (400 MHz, D2O, 25 °C): δ = 8.40 [s, 1H, 5(6)-carboxyfluorescein], 8.14 [dd, 1H, 5(6)-

carboxyfluorescein], 8.06 [dd, 1H, 5(6)-carboxyfluorescein], 7.61 [s, 1H, 5(6)-carboxyfluorescein], 

7.26 [d, 1H, 5(6)-carboxyfluorescein], 6.72-6.43 (m, 10H, 5(6)-carboxyfluorescein and catechol), 

3.94- 3.95 (2s, 4H), 3.57- 3.23 (m, 18H), 2.58-2.62( t, 2H), 1.89-1.60 (m, 4 H). 
13

C NMR (400 

MHz, D2O, 25 °C): δ = 133.75, 129.32, 129.18, 129.06, 119.67, 115.50, 115.03, 102.24, 70.11, 

70.09, 70.05, 69.88, 69.79, 58.60, 48.48, 40.47, 34.45, 28.97. ESI-MS: m/z 830.7 [M]+; 852.7 

[M+Na]+. 

 

h.06. Ligand exchange procedures 

h.06.1 Preparation of MEEA- or ZDS-coated NPs 

The oleic acid coating of NPs was displaced with either MEEA or ZDS by a two-step ligand 

exchange procedure
17

. 

First as-synthesized OlAc-NPs (17 mg) were gently stirred at 70 °C for 5 h in the presence of a 

solution of MEEA (327 μl) in methanol (7.5 ml). NPs were collected by centrifugation after the 

addition of acetone and hexane in succession. 

In the second step, in a mixture of DMF and water (7:1), the MEEA-coated NPS were treated with 

ZDS (250 mg, to obtain ZDS- NPS) or MEEA again (243 mg, to improve the coating density of 

MEEA- NPs) and heated up to 70°C for 12 h. The resulting NPs were precipitated with acetone and 

were solved in deionized water. Finally they were purified from the excess of surfactant by dialysis 

(MWCO 12500 Da) at different times: 48 h for ZDS-NPs, 3 hours for MEEA-NPs.  

 

h.06.2 Preparation of FCL-coated NPs 

 Fluorescent iron oxide NPs was obtained by coating them with a mixture of ZDS and FLC. We 

followed again a two-step ligand exchange procedure. Initially, as-synthesized OlAc- NPs (0.804 

mg) were treated with a solution of FCL (5 mg) in methanol (1 ml) and stirred at 45 °C for 6 days. 

Then, a solution of ZDS (5 mg) in DMF/water 8:5 (1.3 ml) was added to the NPs and the mixture 
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was mixed at 70 °C for 16 h. The NPs were precipitated with acetone, dispersed in DI water and 

afterwards purified by dialysis for 48 h against DI water (MWCO 12500 Da). 

h.07. Evaluation of NP cytotoxicity 

The assays to evaluate the NP cytotoxicity were performed in the log phase of growth after the 

HepG2 cells had been placed in 24-well plates (35,000 cells/cm
2
) where they stayed for 24 hours. 

Aqueous solution of iron oxide NPs were added to the cell medium to final concentrations of 2.5, 5, 

10, 25, 50, and 100 µg Fe/ml and left for 24 h. All experiments were performed in quintuplicate.  

 

h.08. Evaluation of NP uptake by HepG2 cells 

h.08.1 Qualitative determination of NP internalization 

To carry out qualitative determination of NP internalization by Prussian Blue staining, HepG2 cells 

were placed on 24 mm glass coverslips (52,000/cm
2
) for 24 h before the treatment with NPs, which 

were added at the desired concentration to a final volume of 2 ml of culture medium. The day after, 

all non-internalized NPs were washed away with large amount of PBS buffer and fixed for 30 min 

in a solution of paraformaldehyde (4% PFA). Then, coverslips were exposed for 30 min to freshly 

prepared Perls’ reagent (4% potassium ferrocyanide / 12% HCl, 1:1 v/v), washed with PBS and 

then held onto slides for examination under an optical microscope (Axioplan, Zeiss) coupled to a 

CCD camera (AxioCam, Zeiss). Bright-field pictures were acquired at 63x magnification. 

 

h.08.2 Quantitative iron evaluation 

 

To perform quantitative determination of NP internalization, HepG2 cells were placed on 10 cm-

plates, 45,000/cm
2
 for 24 hours and then treated for 24 h with NPs at a final concentration, in the 

culture medium, of 0, 2.5, 10, 25, 50 or 100 µg Fe/ml. Afterwards, HepG2 cells were washed five 

times with PBS to remove the non-internalized NPs and separated from plates through trypsin 

treatment. Pellets were recovered after 5 minutes centrifugation at 800 g and suspended in DI water. 

Their protein content were quantified by the BIORAD-Dc protein assay. To carry out the 

quantitative determination of iron in the pellets, the cell pellets were digested with a mixture of 
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conc. HCl / conc. HNO3 3:1 v/v able to oxidize the organic matter and transform the iron oxide NPs 

into soluble Fe
3+

 ions. We evaluated by UV-Vis spectroscopy
37

 the formation of the stable red 

complex Fe(tiron)3 (tiron = disodium 4,5-dihydroxy-1,3-benzenedisulfonate) at pH  7. We 

analyzed its absorbance considering the UV-Vis spectral profile between 400 and 800 nm
39

. 

In more detail, the cell pellet was dehydrated, treated with high-purity concentrated acids (150 l 

HNO3 and 450 l HCl), heated in a gradual manner to boiling, added with 300 l of HCl and again 

evaported to dryness. We repeated this procedure 3 times. The solid residue was left at RT during 

the night with acids (150 l HNO3 and 450 l HCl). The day after, the digested residue was again 

heated to boiling, added with 300 l of HCl and dried. Finally, the residue was recovered with 1 ml 

of 0.1 M HCl and dissolved in 10 ml of milliQ water. A sample (3 ml) of the aqueous solution was 

treated with powdered PBS until pH  7 and then treated with excess tiron (2 mg). One hour after 

the tiron addition, we recorded the UV-Vis spectrum of the sample. We had previously calibrate the 

procedure by measuring a series of diluted Fe
3+

standard solutions at different concentrations in PBS 

buffer. In this way we had obtained the molar extinction coefficient ε(λ) of the Fe(tiron)3 complex 

in the 400-800 nm range. The Levenberg-Marquard least-squares method was employed to fit the 

spectrum of the unknown sample to the ε(λ) curve.  

 

 h.09. Intracellular iron localization 

Cells treated with fluorescent NPs were fixed for 30 min in a solution of paraformaldehyde (4% 

PFA) and then stained with DAPI (4′,6-Diamidine-2′-phenylindole dihydrochloride). Finally the 

coverslips were placed onto microscope slides for examination under a confocal microscope (LSM 

510 Meta, Zeiss) at 63x magnification. Instead for Lysotracker labeling, the cell medium of HepG2 

exposed for 6 or 24 hours to NP dispersions was removed and replaced with fresh medium 

containing 1 μM Lysotracker-Red (Molecular Probes). Then, cells were incubated for 30 minutes in 

the dark at 37 °C and washed with PBS before staining. 
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i. Characterization methods and instruments 

1
H- and 

13
C-NMR spectra were registered with a Bruker Avance spectrometer in (

1
H: 400 MHz, 

13
C: 100 MHz). Transmission electron microscopy (TEM) images were taken with a Zeiss LIBRA 

200FE microscope (Carl Zeiss AG, Oberkochen, Germany). The TEM sample was obtained by 

evaporating in air a drop of diluted NP solution on a carbon covered copper grid. We measured the 

diameter distribution of the nanocrystal core using the software PEBBLES from TEM images 

31
.UV-Visible spectra were recorded on a Thermo Scientific Evolution 600 spectrophotometer. 

FTIR spectra were registered with a Thermo Nicolet NEXUS 670 FTIR spectrometer (Thermo 

Fisher Scientific, Waltham, MA, USA). The sample for FTIR was obtained by grinding and 

pelleting dry NPs with KBr (NP:KBr 1:100 w/w) or by evaporating a drop of NP solution on a thin 

silicon substrate. TGA curves were recorded employing a Perkin-Elmer 7HT instrument (Perkin 

Elmer Waltham, MA, USA). In particular the weight loss was monitored while heating up the 

sample in air from 50 °C to 900 or 1000 °C at a rate of 5°C/min. Hydrodynamic diameter and ζ 

potential of NPs were measured at 25 °C using a Zetasizer Nano ZS (Malvern Instruments Corp., 

Malvern, Worcestershire, UK) at a wavelength of 633 nm (solid state He-Ne laser) and at a 

scattering angle θ = 173°; instead scattering intensity Is was measured employing a BI 90 Plus 

(Brookhaven Instruments Corporation, Holtsville, NY, USA) at θ = 90°. Moreover the NP 

dispersion had a final concentration of 50 µg Fe/ml medium, both in deionized water and in RPMI 

(serum-free and complete), since it was an usual value employed in the HepG2 internalization tests. 

We monitored the conditions at the start and at the end of the NP uptake experiments measuring 

DLS respectively after NP addition and after 24 h incubation in medium. A gentle shaking before 

the DLS analysis was made to ensure the sample homogenization and we took at least three 

measurements for each sample. 
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o Part II: Magnetic NPs coated with functionalized 

polyethylene glycol (PEG) 
 

01. Introduction 

 

Until now, the protection and/or modification of the NC surface with polymers such as 

polysaccharides, polyacrilamide, poly(vinyl alcohol) and poly(ethylene glycol) (PEG) is the most 

common method used to ensure to the NPs the appropriate pharmacokinetic features for a specific 

application in vivo (such as good colloidal stability, reduced biomolecular corona formation, and 

increase of the NP half life)
1
.  

In particular, NP functionalization with biocompatible PEG chains, a method known as 

“PEGylation”, is currently applied to improve the “stealth” properties of nanosystems which are 

known as the “enhanced permeation and retention” (EPR) effect of PEGylated surfaces. 

Chemically, PEG is a polymer of the ethylene glycol monomer (HO-CH2-CH2-OH). It is 

commercially available in a range of different molecular weights from several hundreds to a few 

thousands of Dalton. 

PEG has some well-known favorable features: (i) excellent solvating properties, (ii) good stability 

against oxidation, reduction, and decomposition and (iii) the possibility to modify it with different 

terminal groups useful to attach large biomolecules such as antibodies, drugs, fluorescent TAGs ( 

for example by the selectively oxidation of the PEG terminal OH moiety
1
). Moreover, a PEGylated 

coating shields the surface charge of nanosystems, enhances water solubility and provides 

flexibility to the NPs. These features, together with PEG high surface density, determine the ability 

of PEGylated NPs to avoid non-specific opsonin absorption and the subsequent internalization by 

the reticuloendothelial system (RES), also known as mononuclear phagocyte system (MPS). PEG 

chains, both covalently and electrostatically bound to the NP surface, can show effective protein 

rejection tendency
2
. Nevertheless, the higher stability of covalent bonding can ensure that the PEG 

coating maintain its properties in vivo, during blood circulation, or when the NPs are stored in ionic 

media. The use of PEG as surfactant increased also thanks to its non-immunogenicity and the 

knowledge of full toxicity profiles of some PEG compounds. In the literature the most appropriate 

molecular weight for PEG to achieve the EPR effect has been reported to be in the 1500–5000 Da 

range
3
. However, such large molecular weight increases considerably the NP hydrodynamic 

diameter
4
, thus being a limitation in the use of PEG since even NPs based on very small core 

nanocrystals could not be excreted by kidneys and would accumulate in the body. In addition, long 
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PEG chains may also entrap biomolecules potentially present on the NP surface and interfere with 

their presentation to the environment. 

As depicted in Fig 1, NPs can be PEGylated by 1) direct PEGylation ( PEG molecules are adsorbed 

at the NP surface via physical bonding during the synthesis of NPs using PEG as solvent or other 

thermal/hydrothermal methods), 2) covalent attachment by anchoring groups. The latter strategy 

includes (i) monofunctional PEG (this way is very effective for inorganic materials characterized by 

high and selective binding affinity towards a specific group, such as gold NPs for thiol –SH 

groups), and (ii) bifunctional PEG molecules (which, besides a grafting group, have a moiety useful 

to achieve functionalization of the NP with selected ligands for theranostic features)
1
. Inorganic 

NPs such as metal and metal oxide NPs are usually PEGylated in these ways. 

 

 

Fig 1. Various strategies for the PEGylation of NPs. All the strategies result in NPs that are water 

soluble and can repel opsonin proteins. Direct PEGylation (by physical or electrostatic adsorption) 

has the advantage of a simple synthesis. Monofunctional PEGs can be used to achieve covalent 

bonding between the PEG molecules and the NPs providing long-term stability and high dispersion 

stability. The vectorization of NPs can be achieved by using bifunctional PEG molecules wherein 

the free terminal functional groups of PEG can be covalently grafted to other polymers, fluorescent 

tags, and targeting antibodies or proteins. Image from Ref 1. 
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As mentioned before, thiol (–SH) terminated PEGs are used to coat gold NPs because of the very 

strong binding affinity between Au and SH moieties (S-Au bond energy = 47 kcal mol
-1

). PEG 

molecules with molecular weight below 5000 Daltons are often preferred over higher molecular 

weights. Another important parameter is the spacer length of the PEG, for example when 

fluorescent tags are also present in the NP coating, because of the spacer length-related change of 

fluorescence intensity. As Ti and coauthors reported, PEG5000 chains could be covalently linked to 

Au NPs through thioctic acid (TA), a compound containing a cyclic disulfide
5
. The presence of TA 

increased the NP stability in phosphate buffer saline, stability which was also controlled by NP size 

(20 and 40 nm Au NPs showed a lower tendency toward aggregation than 80 nm NPs and a delayed 

clearance from the blood). These results were ascribed to a lowest surface PEG density of 80 nm Au 

NPs. Nanosystem instability might come from oxidation of thiolated species and from exchange 

reactions with other thiol compounds present inside the body. 

 

 

Fig 2. (A) Representative pancreatic cancer tissue thin sections labeled using secondary antibody 

staining (red regions). (B) Dark field transmission scattering images of GNP-F19-labeled 

pancreatic cancer tissue, (C) GNP-F19-labeled healthy tissue, and (D) GNP-mIgG-labeled 

pancreatic cancer tissue. The expanded section in B has been contrast enhanced to emphasize the 

presence of individual GNP-F19.Image from Ref 6. 
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Homo and hetero bifunctional PEG can be employed to covalently bind a specific functionality. For 

example Mason et al
6
 synthesized ≈ 15 nm spherical Au NCs coated with PEG ligands having a 

dithiol group for grafting to the NC surface and a terminal carboxy moiety for binding F19 

monoclonal antibodies. The NP dispersions did not aggregate for a long time as demonstrated by 

DLS, size exclusion chromatography, and TEM analysis. Finally the authors demonstrated the NP 

ability to selectively stain a human pancreatic cancerous tissue (Fig 2). 

Focusing now on magnetic iron oxide NPs, those produced by aqueous routes can be directly 

PEGylated. For example, Reimhult et al. stabilized NPs obtained by aqueous precipitation using 

methoxy-PEG(550)-gallol, methoxy-PEG(5000)-6-hydroxy-dopamine, biotin-PEG(3400)-6-

hydroxy-dopamine or their mixtures
7
 (Fig 3). The NPs can be freeze dried thanks to the high 

binding affinity of the trihydroxy-benzene groups toward iron oxide surface, stored for at least 20 

months and easily redispersed in water as individual particles when necessary. To produce MRI 

contrast agents, the authors functionalized their NPs with anti-human vascular cell adhesion 

molecule 1 (VCAM-1) antibodies binding them to the biotinylated PEG-gallol units through 

neutravidin. VCAM-1 was chosen since it is over expressed at the endothelial cell periphery of 

atherosclerotic sites, aging as early marker of this disease. 

 

 

 

Fig 3. Schematic image of PEG-gallol stabilized iron oxide nanoparticles where m ≈10 and n ≈73. 

Approximately 9 mol% of the adsorbed PEG-gallol was biotinylated. Image from Ref 7. 

 

In another article Reimhult and coauthors have extensively analyzed the capacity of eight different 

PEG5000-based mono-catechols to act as anchors for iron oxide NPs
8
. Stability tests in 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (pH 7.2) containing 150 mM NaCl 
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showed that electron-attractive groups, such as nitro-group, present on the catechol ring, were 

effective in enhancing the NP stabilization. 

Going back to the NP PEGylation strategies, the direct PEGylation, in addition to small and 

uniform NC size, was obtained in the literature also by a non-hydrolytical synthesis. In particular, 

Fe(acac)3 was thermally decomposed in 2-pyrrolidone and in the presence of monocarboxyl-

terminated poly(ethylene glycol) (MPEG-COOH)
9
, which results as covalently bound to the NP 

surface by COOH moieties. NPs displayed excellent water solubility and biocompatibility and so 

they were tested as magnetic resonance imaging (MRI) contrast agents. 

Instead, NPs produced by non-hydrolytically routes are typically coated with hydrophobic 

molecules such as oleic acid or oleylamine
10

. Therefore, in order to PEGylate these systems it is 

necessary to follow different exchange procedures in which the new surfactant is typically formed 

by two parts, a region grafting the NP surface and the PEG chain as hydrophilic part exposed to the 

aqueous medium (named as “bifunctional ligand” in Fig 4). 

 

Fig 4. Surface modification strategies for designing MNP probes with high colloidal stability. 

Image from Ref 4. 

For example Sun et al
11

 synthesized monodisperse Fe NPs through thermal decomposition of 

Fe(CO)5 in the presence of oleylamine in octadecene at 180°C. Then the NP dispersion in hexane 
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was exposed to air in order to oxidize the iron surface producing a crystalline Fe3O4 shell. The 

oleylamine exchange with PEG-dopamine leads to a stable aqueous NP dispersion in PBS, useful 

for biomedical application (Fig 5). 

 

Fig 5. c) Exchange of ligands on Fe@Fe3O4 nanoparticles for PEG–dopamine. d) TEM image of 

water-soluble Fe@Fe3O4 nanoparticles. Images from Ref 11. 

The colloidal stability of NP solution was further increased thanks to employment of multidentate 

polymeric ligands, since the approach of increasing the number of grafting groups in a NP 

surfactant allows to minimize its loss. For instance Matoussi et al
12

 have developed some oligomers 

named as OligoPEG-Dopa, since they were formed by several catechol groups binding NC surface, 

a short poly(acrylic acid) backbone and polyethylene glycol chains. In addition, PEG allowed 

further coupling with different biomolecules, for example by azide-alkyne cycloaddition when the 

PEG had an azide end-group. These oligomers gave quick exchange process and exhibited a better 

colloidal stability varying the pH range and in the presence of electrolytes, compared to other 

olygomers having several carboxyl groups or to monodentate ligands having a catechol or a 

carboxyl moiety. The authors verified also the ability of magnetite NPs coated with OligoPEG-

Dopa to act as T2 contrast agents and tested their cytotoxicity in live cells which resulted low 

significant. Bawendi and coauthors showed another example of multidentate ligand, a PEG-

polymeric phosphine oxide ligand which was used to transfer various NPs (Au, γ-Fe2O3, Pd, and 

QD) from organic solvents to water maintaining their physical properties and reactivities
13

.  

Considering the well-known ability of the catechol group and its derivatives to bind with high 

affinity iron ions and give stable NP water dispersion
14-15

, in this PhD thesis we have decided to 
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choose this grafting group for our NP dispersion. Moreover about PEG chain molecular weight, we 

resorted to PEG 5000. 

We would also functionalize magnetic NPs with the Fab fragment of Trastuzumab (Herceptin®), 

which is a monoclonal antibody specifically binding the human epidermal growth factor receptor 2 

(HER2). Such receptor is up-regulated in 20-30% of breast cancer cells and also in some classes of 

adenocarcinoma cells of the gastro-esophageal junction and of stomach. In this case the large  

biomolecule provides the NPs with (i) an active targeting since the antibody strongly binds to its 

antigen and (ii) therapeutic features since Trastuzumab affects the cellular proliferation mechanism 

in different ways. In a future application in cancer therapy, the functionalization of the iron NPs 

with Fab Trastuzumab will improve treatment specificity and reduce toxicity and side effects 

typical of a traditional chemotherapy. The Fab fragment was produced by Bioker srl; it has a 

molecular weight around 5.6 kDa and a dimension of 5 nm. Therefore we have designed and tested 

different catechol molecules: (i) a bi-functional PEG displaying besides to the catechol anchor 

moiety, a maleimide terminal group in order to react with the free thiol group of the Fab 

biomolecule; (ii) mono and bi-dentate polymeric ligands in order to employ them as co-surfactants 

to dilute the bi-functional linker described before at the NP surface. Their chemical structures will 

be presented in detail in the next Chapter, together with the description of the procedures used to 

obtain PEGylated NPs and their characterization. 
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02. Preparation of iron oxide NPs coated with functionalized 

polyethylene glycol 

a. Synthesis of magnetic nanoparticles 

Two synthetic strategies were followed in order to prepare magnetic iron oxide NPs, hot-injection 

of metal precursor and co-precipitation of iron salts. 

 

a. 01. Synthesis of magnetic NPs by hot-injection  

 

We prepared monodisperse spherical iron oxide NPs coated with oleic acid (diameter 9.6 nm) 

following a hot-injection method in 1-octadecene (ODE) described in the literature (see 

Experimental Section) with a molar ratio between metal precursor and oleic acid equal to 1:3
16

. 

 

 

 

Fig 6. OlAc-coated NPs synthesized by hot-injection. Left) TEM image. Right) Diameter histogram 

(as measured by the software PEBBLES
17

). The median diameter is 9.6 nm. 

 

As shown in Fig 6,  the median diameter measured from the TEM images was  <d> = 9.6 nm with a 

diameter standard deviation σd = 0.9 nm, corresponding to a dispersion σd/<d> = 8.5 %. 

These iron oxide NPs had a spinel structure (Fig 7) and stoichiometry intermediate between 

magnetite (Fe3O4) and maghemite (Fe2O3). 
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Fig 7 . Electron diffraction pattern of OlAc-coated NPs synthesized by hot-injection. 

 

a. 02. Synthesis of magnetic NPs by co-precipitation 

 

Iron oxide NPs are typically obtained on a large scale by co-precipitation from a stoichiometric 

mixture of Fe
3+

 and Fe
2+

 salts in alkaline aqueous media. This method for the synthesis of magnetite 

NPs by precipitation of FeCl3 and FeCl2 with alkali was introduced by Massart
18

. The possibility of 

a large-scale preparation along with the use of “green chemistry” methods, that avoid the 

employment of toxic reagents, are appealing prerequisites for a scalable synthesis of magnetic NPs 

to industrial applications for medical use
19

. In this case, the resulting NPs are free from surfactants, 

so in principle more suitable to being directly dispersed in water after coating by hydrophilic 

molecules such as PEG ligands. Precursor, reaction temperature, and pH are the experimental 

parameters to control NP morphology and dimension but it is however difficult to synthesize NPs 

with a narrow size distribution
20

. Other drawbacks of these magnetite NPs are their instability and 

poor crystallinity, with a loss in magnetic susceptibility
19

. We used as metal precursor FeCl3.6H2O 

and FeSO4.7H2O. The followed synthetic procedure was described in detail in the Experimental 

Section. As clearly visualized in TEM image (Fig 8), our NPs are polydisperse according with those 

produced in the literature. The measured NP size was 2.9 nm with a diameter standard deviation σd 

= 0.8 nm. 
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Fig 8. TEM image (left) and electron diffraction pattern (right) of “naked” iron oxide NPs obtained 

by co-precipitation. 
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b. Synthesis of catecholic PEG ligands 

We have designed the organic preparation of different types of PEG 5000 catecholic ligands whose 

structures are shown below (Fig 9). In our strategy, we attributed to them different roles as 

surfactants: in particular, structure (a) refers to the bi-functional linker which we are going to bind 

to the Fab fragment of Trastuzumab thanks to its maleimide end group; structures (b) and (c) 

display possible co-surfactants of the bi-functional linker. In this case, we want to employ ligands 

chemically similar to the bi-functional linker and in addition, with compounds (c), to explore the 

effect, if present, of a bidentate grafting group on the NP colloidal stability. Indeed, we could 

potentially improve the NP water stability by increasing the number of grafting groups per ligand 

and so decreasing the chance that a surfactant molecule is irreversibly lost from the NP coating. 
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Fig 9. Chemical structures of the desired PEG5000 catecholic ligands displaying different functions: 

the bi-functional linker (a) to bind biomolecules; co-surfactants (b) and (c). 

 

 

b. 01. Synthesis of catechol (a) and (b) compounds 

 

The synthesis of compounds (a) and (b), named as SS33 and SS20_A respectively, were made in 

collaboration with the laboratory of CISI scrl inside the RSPPTECH project (“Ricerca e sviluppo di 

(a) 

(b) 

(c) 
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prodotti e piattaforme tecnologiche per la competitività dell’industria Lombardia) of Regione 

Lombardia that financially supported us (see the detail in the Experimental Section). 

 

b. 02. Synthesis of catechol (c) compounds 

 

We designed the linker structures of (c) starting from the ethylenediamine scaffold. One of the 

nitrogen atoms of ethylenediamine is linked to the PEG 5000 chain while the other nitrogen atom is 

bound to one or two (3,4-dihydroxyphenyl)methyl moieties. We could bind the PEG chain to the 

central amine scaffold (I) before the introduction of the 3,4-dihydroxyphenyl groups or (II) as the 

final reaction step, by coupling it to mono- or di-catechol-diamine fragment. In both these 

approaches, we planned that the PEG chain is going to react with one of the nitrogen atoms of 

ethylenediamine as the brominated PEG derivative 12 (see Scheme 3 in the Experimental Section). 

We obtained the compound 12 following the procedure reported in literature by Cozzi et al
21

 in 

order to achieve, from the starting material 9, whose hydroxyl group is not reactive enough because 

of steric hindrance, substrate 11 that is more reactive in SN2 reactions, thanks to the introduction of 

the 3-(4-hydroxyphenyl)propanol spacer. Considering that in the general type-(I) strategy, the 

isolation and characterization of the intermediate substances could be more difficult due to the high 

molecular weight of the PEG chain, we decided to follow the type-(II) procedure visualized in 

Scheme 4 in the Experimental Section in order to produce the desired mono-catechol 16. 

Since many protecting groups for the 3,4-dihydroxyphenyl moiety were in principle appropriate, we 

have synthesized different examples of hydroxyl-protected derivative 13, first exploring the  R = 

tert-butyldimethylsilyl (TBDMS) ether. The derivative 13_TBDMS was synthesized starting from 

3,4-dihydroxybenzaldehyde 17 following the Scheme 5 depicted in the Experimental Section. 

However, when compound 14_TBDMS was treated with 12, according to the general synthetic 

pathway (Scheme 4) proposed to achieve the mono-catechol surfactant, the reaction did not proceed 

and we did not obtain 16. Therefore, we tried to investigate in detail this step to clarify if the reason 

was again a poor reactivity of a high molecular weight PEG derivative. With this purpose we 

designed the reaction reported in the Scheme 6 of the Experimental Section, where the compound 

14_TBDMS was treated with compound 21 directly derived from the 3-(4-hydroxyphenyl)propanol 

spacer. Also in this case, although in absence of the long PEG chain, 
1
H-NMR and HPLC-mass 

analysis confirmed that the reaction did not proceed to the desired product 22 and gave a mixture of 

byproducts. 

For this reason, we modified the chosen protecting group R focusing on the acetonide functionality. 

The protected derivative 13_Acetonide was prepared from 3,4-dihydroxybenzoic acid 23 (see 
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Scheme 7 in the Experimental Section). Unfortunately, we could not proceed beyond molecule 14-

Acetonide because it did not react with 12 as also occurred with the derivative 14_TBDMS. We 

have correlated these negative results to the - at least partial - deprotection of both tert-

butyldimethylsilyl ether and acetonide protecting groups in our reaction conditions. So, we finally 

resorted to the benzyl ether protecting group, which we have already employed in our previous 

work
22

 to obtain a PEG-based tetra-catechol surfactant, hoping that it can be more stable in our 

reaction conditions. As shown in the Scheme 7 of the Experimental Section, with this protecting 

group, in addition to 13_BnO bromide, we want also to consider the 13_BnO chloride and 

13_BnO mesylate, trusting that their dissimilar SN2 reactivities could allow us to achieve, in a 

controlled way, both the mono- or bi- cathecol linkers (c) by nucleophilic substitution on the 

ethylendiamine scaffold. These experiments are in progress. 
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c. Preparation of water-soluble PEG-ylated NPs  

To prepare PEG-ylated NPs, we employed the previous batches of magnetic iron oxide NPs 

synthesized by hot-injection and co-precipitation. 

In the first case, we followed a ligand exchange procedure in order to displace the pristine oleic acid 

with the desired PEG molecules whereas in the second case the “naked” NPs were directly treated 

with PEG surfactants (see Experimental part). Here I reported TEM image ( Fig. 10) of iron oxide 

NPs produced by co-precipitation and coated with a mixture of bi-functional linker (a) and co-

surfactant (b). The measured NP size was 2.6 nm with a diameter standard deviation σd = 0.7 nm. 

 

 

Fig 10. TEM image (left) and electron diffraction pattern (right) of iron oxide NPs produced by co-

precipitation and coated with a mixture of bi-functional linker (a) and co-surfactant (b). 
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d. Characterization of PEG-ylated NPs 

We have characterized PEG-ylated NPs by different techniques. First, we carried out Fourier-

Transform Infrared (FTIR) spectra of PEG molecules SS33 and SS20_A alone. As expected, the 

FTIR spectra are similar spectra since they are dominated by the presence of the high molecular 

weight PEG chain (Fig 11).  

 

 

Fig 11. Comparison between IR Spectra of SS33 and SS20_A PEG molecules. 

 

In particular, we could observe the vibrations of the PEG which comprise CH2 bending (1467 

cm
−1

), CH2 wagging (1344 cm
−1

), CH2 twisting (1281, 1251 cm
−1

), C–O and C–C stretching (1116 

cm
−1

), and CH2 rocking (953.6, 841.8 cm
−1

)
22

. In the spectrum of PEG molecule SS33 we can 

appreciate also the presence of a strong band of at 1705 cm
−1

 arising from the out-of-phase 

stretching of C=O of maleimide moiety. 

In addition IR spectra allow us to confirm that the exchange process was effective since iron oxide 

NPs appeared coated with PEG derivative (Fig 12, 13, 14), without bands coming from the pristine 

oleic acid surfactant.  
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Fig 12. Comparison of IR spectra of PEG derivative SS20_A and iron oxide NPs coated with it, 

after the exchange process. 

 

 

Fig 13. Comparison of IR spectra of PEG derivative SS33 and iron oxide NPs coated with it, after 

the exchange process. 
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Fig 14. Comparison of IR spectra of PEG derivative SS20_A, PEG SS33 and iron oxide NPs coated 

with a mixture of them, after the exchange process. 

 

We have also measured by DLS the (intensity weighted) hydrodinamic diameter of the PEGylated 

NPs, after dialysis and filtration, that resulted around 240 nm for co-precipitated NPs and 120 nm 

for solvothermal NPs (see Experimental Section). 

By measuring the iron content of our NP solution with UV-Vis method described in the Part I, we 

have evaluated that the yield in water soluble NPs is approximately the same, around 50%. 

Instead by calculation of the percentage of organic portion present at the NP surface from CHN 

analysis data, we deduced that this value is higher for NPs obtained by co-precipitation (around 

90%) than that of solvothermal NPs (around 70%) (See Experimental Section).  

Finally, having the idea of functionalizing the nanosystems with the Fab fragment of Trastuzumab, 

we need to investigate and potentially quantify the reactivity of maleimide groups of the bi-

functional linker (compound (a) or PEGSS 33) present in the NP coating. 

In particular, we carried out such quantification with a commercially available fluorescent kit 

(Amplite
TM

 fluorimetric maleimide quantitation kit) able to measure protein maleimide groups. 

As the producers specified, this  kit employs a dye that has enhanced fluorescence after reaction 

with a maleimide. It is able to detect as little as 100 nM in concentration of maleimide,  performing 

the analysis directly in a 96-well-plate and choosing Ex/Em = 490 nm/520 nm. By comparison with 
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a shorter maleimido PEG (molecular weight ≈ 2000 Da), we have concluded that maleimide moiety 

was less reactive in the longer PEG5000 chain. However, a fraction of maleimide group exposed at 

the NP surface was actually reactive and sufficient to functionalize the NCs with the desired amount 

of anti-body fragment.  
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03. Conclusions 

 
In the second part of my PhD thesis, we have explored examples of PEGylated molecules in order 

to ensure colloidal stability to our nanosystems, as indicated in the literature.  

In particular, we have also designed a compound, the bi-functional linker, potentially able to react 

with large biomolecule, such the Fab fragment of the monoclonal antibody Trastuzumab. 

In this way we are trying to achieve iron oxide NPs provided with an active targeting.  

From a synthetic point of view our efforts are focused on producing water-soluble PEG-ylated 

linkers with one or two catechol grafting group(s) that we want to use as co-surfactants for the bi-

functional linker, having the same chemical nature and preserving the good water solubility and 

stability of our nanosystems. Although several protecting groups for the catechol moiety are in 

principle usable, we have proved that in our experimental conditions, some of them (tert-

butyldimethylsilyl ether and acetonide) are at least partially deprotected. Therefore, we have 

selected the benzyl group as a promising protecting group for catechol moieties. 

In addition to these synthetic studies, we have produced and characterized two batches of iron oxide 

NPs coated with a mixture of the bi-functional linker and a catechol-PEG5000-OMe acting as co-

surfactant. One batch of NPs was produced by hot-injection of Fe(CO)5 in 1-octadecene and in the 

presence of oleic acid, while the other by co-precipitation of iron salts in water. Solvothermal NPs 

showed a good size dispersion and crystallinity, whereas co-precipitated NPs can be produced in 

large amount and in “green chemistry” conditions. In both cases, the yield in “water soluble NPs” 

was estimated around 50%. Indeed, evaluating by CHN analysis the amount of PEG molecules 

present in their coating, this was higher for NPs produced by co-precipitation. 

Finally, thanks to a commercially fluorescent kit, we have deduced that the maleimide moiety was 

less available for reaction in the longer PEG chain than in the shorter one (molecular weight around 

2000 Da). However, a fraction of the maleimide groups present at the NP surface was reactive, 

enough to functionalize the NCs with the desired antibody fragment avoiding problem arising from 

steric hindrance. 

Therefore, as already deduced for zwitterionic iron oxide NPs, also PEGylated NPs could be 

considered promising in the development of theranostic nanosystems. 
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04. Experimental section 

 

e. Materials 

All chemical and solvents were acquired from Sigma-Aldrich and used without further purification. 

Aldrich Trace Select concentrated acids (HNO3 and HCl) were employed to digest NPs.  

f. Procedures 

f.01. Acronyms used in the experimental section 

Fe(CO)5 =  iron pentacarbonyl 

RT = room temperature 

NaOH = sodium hydroxide  

FeCl3.6H2O = iron (III) chloride hexahydrate 

FeSO4.7H2O = iron (II) sulfate heptahydrate 

HCl = hydrochloric acid 

PEG 5000 = polyethylene glycol with molecular weight around 5000 D 

PPTS = pyridinium p-toluenesulfonate 

EtOAc / AcOEt = ethyl acetate 

LiAlH4 = lithium aluminium hydride 

THF = tetrahydrofuran 

Na2SO4 = sodium sulfate  

CH3OH/ MeOH = methanol 

NH3 = ammonia solution  

DCM = dichloromethane 

CD3OD/ MeOD = deuterated methanol 

CDCl3 = deuterochloroform 

K2CO3 = potassium carbonate 

PBr3 = phosphorous tribromide 

H2O = water  

CH3CN = acetonitrile 

TEA = triethylamine 

TBDMS-chloride = tert-butyldimethylsilyl chloride 

NaBH4 = sodium borohydride 
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Et2O = diethyl ether  

HBr = hydrogen bromide  

H2SO4 = sulfuric acid 

EtOH = ethanol 

NaHCO3 = sodium hydrogen carbonate  

DMP = 2,2-dimethoxypropane 

SOCl2 = thionyl chloride 

CHCl3 = chloroform  

 

f. 02. Synthesis of magnetic NPs by hot-injection 

We obtained 9.6 nm iron oxide NPs according to a published literature procedure
16

. In particular 

Fe(CO)5 (12 ml) was injected in a mixture of 1-octadecene (45.96 g) and oleic acid ( 7.68 g, molar 

ratio metal precursor: surfactant 1: 3) at 120°C which was then heated up to 320°C for 3h under 

nitrogen. After cooling at RT, the NPs were collected by precipitation with acetone and 

centrifugation, repeatedly washed with acetone and finally solved in toluene. 

f. 03. Synthesis of magnetic NPs by co-precipitation 

We prepared iron oxide NPs following a method reported in the literature
23

 using sodium hydroxide 

instead of the ammonium base to co-precipitate ferrous and ferric ion water solutions in 

stoichiometric molar ratio (1:2). 4.17 ml of NaOH 10M was injected inside a solution of 

FeCl3.6H2O (0.65 g , 2.4 mmol) and  FeSO4.7H2O (0.333 g, 1.2 mmol) in water (25 ml) and 

concentrated HCl (130 l) under mechanical stirring. Immediately a black precipitate formed and 

was stirred for 1 hour. Then iron oxide NPs were collected by centrifugation, washed with 

deionized water until the pH became neutral and dispersed in 26 ml of water (concentration ≈ 10 

mg of Fe3O4 /ml water as used by Reimulth and coauthors in following exchange process with 

mono-functional catechol PEG 5000
8
). 

f. 04. Synthesis of the bi-functional linker (SS33) 

The bi-functional linker (SS33) was produced inside the laboratory of CISI scrl following the 

Scheme 1 reported below and starting from the product commercially acquirable (1). 



81 
 

Br N

O

OHOHO OH

OH

O O

O

OO
N

O

OO
H2N

N (CH2)5

O

O

H
N

O

PEG
O

O

O

N (CH2)5

O

O

H
N

O

PEG
O

O

N
H

O

O

O

N (CH2)5

O

O

HN

O

PEG
O

O

N
H

O

OH

OH

N

O

O

PPTS

Toluene dry
170 min reflux, 
on rt

, ,
Cs2CO3

DMF dry
2 h, rt

LiAlH4 
in THF 1M

THF dry
30 min, rt

DCM dry
3 h, rt

water,
2 h, refluxHCl 6N

1 2 3 4

5

6

 

 

Scheme 1. Synthetic pathway leading to the SS33 (6). 

 

f. 04. 1 Synthesis of compound 2 

The product 2 was produced according with a method reported in literature
24

 and employing a two-

necked flask, furnished with a distillation apparatus in one neck and a stopcock in the other. A 

mixture of benzene-1,2,4- triol (0.4g, 3.17 mmol), pyridinium p-toluenesulfonate (0.64 mg, 

2.54x10
-3

 mmol), and dry toluene (32 mL) was stirred and heated to reflux with distillation of the 

solvent. During the reaction 2,2-dimethoxypropane in portion (0.096 mL x 4; 0.064 mL x 4; 4.63 

mmol) and dry toluene (to compensate for the loss of solvent) were added to the mixture every 15 

min. After 3h, the reaction mixture was cooled to r.t. and stirred over night. The crude was 

subjected to column chromatography (silica gel, petroleum ether 100%→ petroleum ether /EtOAc 

9.5/0.5) to give 2 (0.296 g, yield 56 %) as a light yellow oil. 
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f. 04. 2 Synthesis of compound 3 

Bromoacetonitrile (0.101 ml, 1.46 mmol) was added to a dispersion of compound 2 (0.121 mg, 0.73 

mmol) and Cs2CO3 (0.476g, 1.46 mmol) in dry DMF (5 mL), cooled at 0°C. Then the mixture was 

stirred at r.t. for 2h, filtered through celite and DMF was removed under vacuum. The crude was 

purified by flash chromatography (silica gel, isocratic elution with DCM/ EtOAc 1:1). The resulting 

product appeared as a yellow oil ( 0.11 g, yield 74%). 

 

f. 04. 3 Synthesis of compound 4 

LiAlH4 in THF 1M (1ml, 1 mmol) was added under N2 drop by drop to a solution of compound 3 

(0.102 g, 0.5 mmol) in dry THF (5 ml), cooled at 0°C. After that the reaction was mixed at r.t. for 

30 min and then stopped by the addition, at 0°C, respectively of water (0.038 ml), 15% NaOH  

(0.038 ml) and again water (0.0114 ml), in order to induce the precipitation of lithium salts. Then 

the dispersion was stirred at r.t. for 15 min, dried with anhydrous Na2SO4, filtered off and the 

solvent was finally removed by evaporation. The crude was purified by chromatography (silica gel, 

EtOAc/ MeOH 9/ 1 + 1% NH3), ( 0.05 g, yield 48%). 

 

f. 04. 4 Synthesis of compound 5 

A solution of compound 4 (0.044g, 0.21 mmol) in anydrous DCM (2 mL) was additioned dropwise 

to a solution of Malhex-NH-PEG-O-C3H6-CONHS (0.891g, 0.18 mmol) in dry DCM (2 mL) 

refrigerated at 0°C. The mixture was stirred at r.t. for 3h. Then the product was precipitated by 

adding diethyl ether ( 84 ml), stirred at r.t for 1h, collected by filtration and washed with fresh 

diethyl ether. In order to remove the fraction of Malhex-NH-PEG-O-C3H6-CONHS that did not 

react, the crude was solved in DCM and treated with PS-NMM (Biotage
®
, 0.2g, 0.36mmol)e PS-

NH2 (Biotage
®
, 0.24g, 0.36mmol).(0.458 g, yield 68%). 

 

f. 04. 5 Synthesis of compound 6 

A water solution (10 ml) of compound 5 (0.445 mg, 0.09 mmol) was treated with HCl 6N (3 l), 

heated to reflux for 2h under magnetic stirring. Subsequently the reaction was cooled at r.t, and 

water was removed by evaporation affording the desired product SS33 (6) (0.421 g, yield 95%). 
1
H 

NMR (400 MHz, MeOD , 25 °C):  = 8.1 (m, 1H, CONH-Ar), 7.95 (m, 1H, maleimide-CONH),  
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6.84 (s, 2H, maleimide H ) 6.68  (d, 1H, aromatic ring H), 6.45 (d, 1H, aromatic ring H), 6.30 (dd, 

1H, aromatic ring H), 3.97- 3.94 (m, 2H, Ar-OCH2), 3.66 ( PEG chain), 2.35-2.31 (m, 2H, 

CH2CONH-Ar ) 2.23-2.19 (m, 2H, maleimide-CH2CONH) 1.90-1.87 (m, 2H, CH2CH2CONH-Ar), 

1.69-1.59 (m, 4H, maleimide-CH2CH2CH2CH2CONH), 1.36-1.30 (m, 2H, maleimide-CH2CH2CH2 

CH2CONH). 

 

f. 05. Synthesis of the catechol-PEG5000 co-surfactant (SS20_A) 

CH3O-PEG-Br

O

OHO

O

OO
PEG

H3CO
Cs2CO3

DMF dry,
5 h, 90°C MW

OH

OHO
PEG

H3CO
HCl 6N

water
4.5 h, reflux

2 7 8  

Scheme 2. Synthetic pathway leading to the SS20_A (8). 

 

f. 05. 1 Synthesis of compound 7 

CH3O-PEG-Br (0.74g, 0.15 mmol)  was added to a mixture of compound 2 (0.027g, 0.16 mmol) 

and Cs2CO3 (0.053g, 0.16 mmol) in dry DMF (7 mL). The reaction was heated by a microwave to 

90°C. After 5h, the dispersion was filtered through celite and the solvent was evaporated. The crude 

was precipitated by treatment with small amount of  EtOAc, and then collected by centrifugation; 

the purified product appeared as light brown solid (0.65g, yield 83%). 

 

f. 05. 2 Synthesis of compound 8 

A water solution (6 ml) of compound 7 (0.648 mg, 0.13 mmol) was treated with HCl 6N (3  l) in 

order to remove protecting group acetonide, and heated up at reflux for 5 h. Then water was 

evaporated and the residue was crystallized twice with methanol/ diethyl ether leading to the desired 

product SS20_A (8) (0.401 g, yield 61%). Additional 0.046 g of product 8 were recovered from the 

crystallization water by precipitation with diethyl ether and subsequent filtration thus increasing the 

isolated yield to an overall 68%. 
1
H NMR (400 MHz, MeOD , 25 °C):  = 6.68  (d, 1H, aromatic 

ring H), 6.45 (d, 1H, aromatic ring H), 6.30 (dd, 1H, aromatic ring H), 4.05- 4.02 (m, 2H, Ar-

OCH2), 3.66 ( PEG chain), 3.38 (s, 3H, OCH3). 
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 f. 06. Synthesis of the catechol (c) co-surfactant: synthesis of the 

brominated PEG derivative 12 

We obtained the compound 12 following the procedure reported in literature by Cozzi et al
21 

 and as 

we have already described in our previous work
22

. PEG samples were melted at 100°C in vacuum 

for 1h before their employment in order to remove traces of moisture. At the end of the reaction, we 

roughly purified PEG derivates by evaporating the solvent in vacuum, solving the residue in a small 

volume of CH2Cl2 and adding diethyl ether (around 100 mL/g of polymer), under stirring and at 

0°C. Then the precipitate was filtered and the solid was repeatedly washed with fresh diethyl ether. 

Br

O PEG5000

OCH3

OH

O PEG5000

OCH3

OH PEG5000

OCH3

MsO PEG5000

OCH3

9 10 11
12

Scheme 3: Preparation of the brominated PEG derivative 12. 

f. 06. 1 Synthesis of compound 10 

Mesyl chloride (93 l, 1.2 mmol) dissolved in dry DCM (3 ml) was added dropwise to a solution of 

methoxy-PEG5000 commercially available (2g, 0.4 mmol) and trioctylamine (700 l, 1.6 mmol) in 

3 ml of dry DCM, cooled to 0°C. The reaction was stirred for 15 min at this temperature, then left 

overnight at RT (quantitative yield). 
1
H NMR (400 MHz, CDCl3, 25 °C) :  = 4.40 (m, 2H, 

CH2OMs), 3.66 (PEG chain), 3.38 (s, 3H, OCH3), 3.08 (s, 3H, CH3SO3). 

f. 06. 2 Synthesis of compound 11 

The methoxy-PEG5000 mesylate 10 (10.49 g, 2.07 mmol) was treated with the commercially 

available 3-(4-hydroxyphenyl)-1-propanol (629 mg, 4.13 mmol) in anhydrous DMF and in the 

presence of K2CO3 (1.43 g, 10.35 mmol).The reaction was heated up to 70°C for 20 h affording the 

compound 11 (yield 92%). 
1
H NMR (400 MHz, MeOD , 25 °C) :  = 7.07 (d, 2H, aromatic ring H), 

6.82 (d, 2H, aromatic ring H), 4.10 (m, 2H; PEGCH2CH2OAr), 3.66 (PEG chain), 3.57 (m, 2H, 

CH2CH2CH2OH), 3.38 (s, 3H, OCH3), 2.63 (t, 2H, ArCH2), 1.82 (m, 2H, CH2CH2CH2). 

 

 



85 
 

f. 06. 3 Synthesis of compound 12 

The compound 11 (1g, 0.195 mmol) was solved in 5 ml of anhydrous DCM in the presence of 

triethylamine ( 81 l, 0.584 mmol) and cooled to 0°C with an ice-bath. Then PBr3 ( 55 ml, 0.584 

mmol) was added in small portions under magnetic stirring. The reaction was left at r.t. overnight 

leading to the desired derivative 12. In this case, in addition to diethyl ether precipitation and 

washing, the product was also purified with HPLC using a C18 reverse column. We applied the 

following HPLC eluant conditions: from 85% H2O/ 15% CH3CN to 100% CH3CN with a flow rate 

15 ml/min (yield 70%).
1
H NMR (400 MHz, MeOD , 25 °C) :  = 7.15 (d, 2H, aromatic ring H), 

6.75 (d, 2H, aromatic ring H), 4.10 (m, 2H, PEGCH2CH2OAr), 3.66 (PEG chain), 3.42 (m, 2H, 

CH2Br), 3.36 (s, 3H, OCH3), 2.73 (t, 2H, ArCH2), 2.12 (m, 2H; CH2CH2CH2). 

 

f. 06. 4 Synthesis of the mono-catechol (c) co-surfactant (16) 

We reported in the Scheme 4 below the synthetic pathway that we wanted to follow in order to 

produce the derivative 16. It is an example of  type- (II) procedure where the PEG chain is bound to 

a mono- or di-catechol-diamine fragment, already obtained. 
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Scheme 4: General preparation of the desired mono-catechol 16. 

 

f. 06. 5 Synthesis of the mono-catechol (c) co-surfactant: tert-

butyldimethylsilyl (TBDMS) ether protecting group 

OH

OH

CHO TBDMSO

TBDMSO

CHO TBDMSO

TBDMSO

CH2OH

TBDMSO

TBDMSO

CH2Br TBDMSO

TBDMSO

NH
NH2

17 18 19

13_TBDMS 14_TBDMS
 

Scheme 5: Preparation of the derivative 14 with TBDMS protecting group. 
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f. 06. 6 Synthesis of compound 18 

The product 18 was achieved according with a method reported in literature
25

 starting from the 

commercially available 3,4-dihydroxybenzaldehyde 17 (100 mg, 0.72 mmol), solved in dry DCM (4 

ml) in the presence of TEA (400 l, 2.88 mmol). The reaction was cooled to 0°C and then a 

solution of TBDMS-chloride in a few ml of anydrous DCM was added to the system. After the 

addition, we needed to join dry THF to increase the reaction solubility. The mixture was stirred for 

4 h at r.t. and evaporated. The residue was treated with water and extracted with diethyl ether. The 

organic phase was washed with brine, dried with anydrous Na2SO4, filtered off  and finally 

evaporated. The crude was subjected to column chromatography (silica gel, hexane/EtOAc 95/5) to 

give 18 (0.194 g, yield 74 %).
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 9.71 (s, 1H, CHO), 7.28-7.26 

(dd, 1H, aromatic ring H), 7.17 (d, 1H, aromatic ring H), 6.86- 6.84 (d, 1H, aromatic ring H), 0.90 

(s, 18H, 2 × (CH3)3 of TBDMS), 0.14 (s, 6H, (CH3)2 of TBDMS), 0.13 (s, 6H, (CH3)2 of TBDMS).  

 

f. 06. 7 Synthesis of compound 19 

NaBH4 (32 mg, 0.85 mmol) was added in small portions to a solution of compound 18 (0.2501 g, 

0.683 mmol) in dry THF (5 ml), refrigerated at 0°C thanks to an ice-bath. The reaction was stirred 

for 2h and thirty at r.t., but we evaluated by monitoring the reaction with TLC that it did not go to 

completeness, so we joined additional NaBH4 (7 mg, 0.17 mmol). Finally we treated the mixture 

with dilute HCl and extracted the product with AcOEt. The organic layer was washed with water 

until neutral pH, then dried with anydrous Na2SO4  and evaporated in vacuum.(0.2258 g, yield 

90%).
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 6.87-6.82 (m, 3H, aromatic ring H), 4.57 (s, 2H, 

CH2OH), 1.01 (s, 18H, 2 × (CH3)3 of TBDMS), 0.22 (s, 12H, 2 × (CH3)2 of TBDMS). 

 

f. 06. 8 Synthesis of compound 13_TBDMS 

We achieved the product 13_TBDMS drawing inspiration from a synthetic pathway reported in 

literature
26

. PBr3 (132 l, 1.22 mmol) was added dropwise to a solution of 19 (226 mg, 0.62 mmol) 

in dry DCM (2 ml) at 0°C. After 30 min, the mixture was warmed to r.t. and magnetically stirred for 

1 h. The crude was poured on ice and extracted three times with Et2O; the organic phase was dried 

with Na2SO4 and evaporated. (0.218 g, yield 82%). 
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 6.89-

6.76 (m, 3H, aromatic ring H), 4.44 (s, 2H, CH2Br), 1.01 (s, 9 H, (CH3)3 of TBDMS), 1.00 (s, 9 H, 

(CH3)3 of TBDMS), 0.22 (s, 12H, 2 × (CH3)2 of TBDMS). 
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f. 06. 9 Synthesis of compound 14_TBDMS 

Also the product 14_TBDMS was obtained drawing inspiration from a method already reported in 

literature
27

. To a solution of ethylenediamine (1.69 ml, 25.3 mmol) in toluene (5 mL) was added 

dropwise a solution of 13_TBDMS (0.218g, 0.506 mmol) dissolved in toluene (1 mL) over a period 

of 25 min at r.t.. Then the reaction was heated up to reflux for 4 h followed by treatment of  a water 

solution of NaOH (90 mg in 400 L of H2O). After that the solvent and excess diamine were 

evaporated in vacuum affording a residue which was taken up in DCM, washed with H2O and dried 

on anhydrous Na2SO4.(0.1575 mg, yield 75%). 
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 6.78-6.76 

(m, 3H, aromatic ring H), 3.68 (s, 2H, Ar-CH2NH), 2.83-2.80 (t, 2H, NHCH2), 2.69-2.63 (m, 2H, 

CH2NH2), 0.98 (s, 9 H, (CH3)3 of TBDMS), 0.97 (s, 9 H, (CH3)3 of TBDMS), 0.18 (s, 12H, 2 × 

(CH3)2 of TBDMS). ESI-MS: m/z 411.5 [M+H]+. 

 

f. 06. 10 Synthesis of the mono-catechol (c) co-surfactant: investigation of 

reactivity of 14_TBDMS  

We have designed the reaction reported in the Scheme 6 to investigate in detail why the coupling 

between the compounds 14_TBDMS and 12 did not afford derivative 16.  

.

OH

CH2OH

TBDMSO

TBDMSO

NH
NH2

OH

CH2Br

OH

NH
NH

OTBDMS

OTBDMS

X
20 21

14-TBDMS

22
 

Scheme 6: Preparation of the derivative 22. 
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f. 06. 11 Synthesis of compound 21 

The product 21 was achieved following the procedure described in the literature to achieve 4-(2-

Bromoethyl)phenol compound
28

. The commercially acquirable 3-(4-hydroxyphenyl)propanol (250 

mg, 1.64 mmol) was dissolved in 48 wt % HBr (1.3ml) affording a orange solution that was heated 

up to 80°C and stirred for 16h. After that the reaction was warmed to r.t. and extracted with DCM. 

The organic phase was dried on anhydrous Na2SO4, filtered off and finally evaporated. (0.3551g, 

quantitative yield). 
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 7.09 (d, 2H, aromatic ring H), 6.80 (d, 

2H, aromatic ring H), 3.41 (t, 2H; PEGCH2CH2OAr), 2.73 (t, 2 H, ArCH2), 2.19-2.10 (m, 2H, 

CH2CH2CH2).  

f. 06. 12 Synthesis of the mono-catechol (c) co-surfactant: acetonide 

protecting group 
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COOH OH
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COOEt COOEtO
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CH3
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CH3

CH3

CH2OHO

O

CH3

CH3

O

O

CH3

CH3

NH
NH2

23 24 25 26

13_Acetonide 14_Acetonide
 

Scheme 7: Preparation of the derivative 14 with acetonide protecting group. 

f. 06. 13 Synthesis of compound 24 

We produced the compound 24 following the method reported in literature
29

. Concentrated H2SO4 

(80 l) was added dropwise to a solution of 3,4-dihydroxybenzoic acid (500 mg, 3.24 mmol) in 

EtOH (7ml). Then the reaction was heated to reflux for 4h. Since by monitoring with TLC, we have 

again observed the presence of starting material 23, we added additional 5 drops of concentrated 

H2SO4 and we maintained the heating overnight. After evaporation of the solvent, the residue was 

treated with water and the product extracted with diethyl ether. The organic phase was washed with 

NaHCO3 water solution, water and salt, dried on Na2SO4 and evaporated. (405 mg, yield 69%). 
1
H-

NMR (400 MHz, CDCl3, 25 °C): δ = 7.26-7.23 (m, 2H, aromatic ring H), 6.63-6.61 (m, 1H, 

aromatic ring H), 4.13-4.05 (m, 2H, OCH2CH3), 1.18-1.13 (m, 3H, OCH2CH3). 
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f. 06. 14 Synthesis of compound 25 

We have followed the procedure described on a patent
30

. A solution of 24 (200 mg, 1.10 mmol), 

DMP (271 l, 2.20 mmol) and p-toluensolfonic acid as catalyst (8 mg) in dry toluene (15 ml) was 

heated to reflux for 20h. Then toluene was removed and the residue was extracted with AcOEt, 

washed respectively with a dilute water solution of NaHCO3, water and salt, dried on Na2SO4 and 

evaporated. The crude was subjected to column chromatography (silica gel, hexane/EtOAc from 

90/10 to 80/20) to give 25 as yellow solid (yield 49%).
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 

7.63-7.60 (m, 1H, aromatic ring H), 7.41-7.39 (m, 1H, aromatic ring H), 6.77-6.72 (m, 1H, aromatic 

ring H), 4.36-4.30 (m, 2H, COOCH2CH3), 1.70 (s, 6H, acetonide), 1.39-1.35 (m, 3H, 

COOCH2CH3). 

 

f. 06. 15 Synthesis of compound 26 

According to the process detailed in the literature
31

, a solution of compound 25 (140 mg, 0.63 

mmol) in dry THF (3  ml) was added dropwise to a suspension of LiAlH4 (40 mg, 1.05 mmol) in 

dry THF (3 ml), under N2, cooled at 0°C with an ice bath. Then the reaction was warmed to r.t. and 

stirred overnight. The reaction was quenched with AcOEt, filtered on celite and purified by 

chromatography (silica gel, hexane/EtOAc from 75/25 to 50/50), affording an oil (62.4 mg, yield 

55%).
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 6.82-6.78 (m, 2H, aromatic ring H), 6.74-6.71 (m, 

1H, aromatic H), 4.59 (s, 2H, CH2OH), 1.70 (s, 6H, acetonide). 

 

f. 06. 16 Synthesis of compound 13_Acetonide 

 A solution of PBr3 (150 l, 1.58 mmol) in dry Et2O (2 ml) was added during 15 min to a solution 

of 26 (0.26 g, 1.44 mmol) in dry Et2O (3 ml) at 0°C. Then the reaction was warmed to r.t. and 

stirred for 30 min. The crude was poured on ice, quenched with water and stirred for 1h. Then the 

product was extracted with DCM and the organic phase was washed with salt, dried with Na2SO4 

and evaporated. (0.278 mg, yield 79%). 
1
H-NMR (400 MHz, CDCl3, 25 °C): δ = 6.85-6.80 (m, 2H, 

aromatic ring H), 6.69-6.66 (m, 1H, aromatic H),4.49 (s, 2H, CH2Br), 1.70 (s, 6H, acetonide). 
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f. 06. 17 Synthesis of compound 14_Acetonide 

A solution of 13-Acetonide (50 mg, 0.21 mmol) in dry THF (210 l) was added with a syringe 

pump (8 l/min) to a solution of ethylenediamine (700 l, 10.5 mmol) in dry THF (800 l) at r.t. 

After 1h, since the reaction was complete as monitored by TLC, the mixture was treated with 

aqueous NaOH ( 10.4 mg, 0.26 mmol in 1 ml of water), and then extracted three times with DCM 

(3 × 3 ml). The organic phase was dried with with Na2SO4, filtered off and evaporated in vacuum. 

(33.6 mg, yield 72%). 
1
H-NMR (300 MHz, CDCl3, 25 °C): δ = 6.76-6.72 (m, 2H, aromatic ring H), 

6.67 (d, 1H, aromatic ring H), 3.71 (s, 2H, Ar-CH2NH), 2.84-2.81 (t, 2H, NHCH2), 2.71-2.68 (m, 

2H, CH2NH2), 1.68 (s, 6H, acetonide). 

 

f. 06. 18 Synthesis of the mono-catechol (c) co-surfactant: benzyl ether 

protecting group 

CHOBnO

BnO

CH2OHBnO

BnO

CH2BrBnO

BnO

CH2ClBnO

BnO

CH2OMsBnO

BnO

27 28

13_BnO bromide

13_BnO chloride

13_BnO mesilate
 

Scheme 8: Preparation of different derivatives 13 with benzyl ether protecting group. 

The derivative 13_BnO bromide was produced according with our previous work
22

. The treatment 

of compound 28 with SOCl2 or mesyl chloride allowed us to achieve respectively 13_BnO chloride 

and 13_BnO mesilate. 
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f. 07. Preparation of PEG-ylated NPs 

f. 07. 1 Preparation of PEG-ylated NPs from those obtained by hot-

injection 

We have prepared 3 different batches of PEG-ylated NPs starting from 9.6 nm iron oxide NPs 

prepared by hot-injection. A solution of PEG SS20_A or PEG SS33 (10.65 mg) or a mixture of both 

of them (5.33 mg each) in CHCl3 (500 l) was added to 500 l of NP hexane solution (2.13 mg of 

iron oxide NPs). The NPs was heated to 70 °C for 2 days, then precipitated with hexane, collected 

by centrifugation and solved in deionized water (5 ml). The NPs were purified by dialysis for 2 days 

giving a little precipitate that was left in the tube. 

f. 07. 2 Preparation of PEG-ylated NPs from those obtained by co-

precipitation 

3 ml of the water suspension of co-precipitated NPs (around 30 mg of Fe3O4) were treated with a 

mixture of PEG SS20_A and PEG SS33 (107 and 119 mg respectively). Then they were stirred and 

heated to 70 °C for 24h under N2.Finally NPs were solved in deionized water( final volume of 36.9 

ml) and purified by dialysis for 1 day, frequently changing water. 
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g. Characterization of PEG-ylated NPs 

g. 01. DLS of PEG-ylated NPs 

 

 

 

Fig 15. DLS autocorrelogram (top) and intensity-weighted diameter distribution (bottom) of co-

precipitated NPs (M 448) coated with PEG SS20_A and PEG SS33. The mean diameter is 240 nm. 
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Fig 16. DLS autocorrelogram (top) and intensity-weighted diameter distribution (bottom) of 

solvothermal NPs (M 415) coated with PEG SS20_A and PEG SS33. The mean diameter is 120 nm. 
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g. 02. CHN analysis data  

 
 

Calculated 
Experimental 

 

    

 
MeO - SS20A M415 

% organic in 
the NPs 

C 54,85% 40,41% 74% 

H 9,09% 6,48% 71% 

N 0% 0,09% 
 

O 36,06% 
  

    

 
Maleimm - SS33 M420 

% organic in 
the NPs 

C 55,08% 32,87% 60% 

H 8,93% 5,21% 58% 

N 0,77% 0,51% 66% 

O 35,22% 
  

    

 
Maleimm - SS33 
& MeO - SS20A 

M448 
% organic in 

the NPs 

C 55,08% 50,62% 92% 

H 8,93% 7,73% 87% 

N 0,77% 0,33% 43% 

O 35,22% 
  

  

 

Fig 17. Results of the CHN analysis for solvothermal NPs (M415 and M420) and for co-

precipitated NPs (M 448) coated with PEG SS20_A and PEG SS33.  
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g. 03. Fluorescent assay to quantify maleimide groups  

We reported in the Fig. 16 an example of calibration curve used to quantify maleimido groups by 

fluorescence measurement. 

 

 

 

Fig 18.  Maleimide calibration curve 
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h. Characterization methods and instruments 

1
H-NMR spectra were registered with a Bruker Avance spectrometer in (

1
H: 400 MHz or 300 

MHz). 
1
H-NMR of PEG derivatives (around 10 mg of solid in 0.4 ml of deuterated solvent) were 

collected with 32 scan and a recycle delay (D1 time parameter) of 10 s. HPLC purification was 

performed by BiotageTM C18 reverse phase chromatography. Transmission electron microscopy 

(TEM) images were taken with a Zeiss LIBRA 200FE microscope (Carl Zeiss AG, Oberkochen, 

Germany). The TEM sample was achieved by evaporating in air a drop of diluted NP solution on a 

carbon covered copper grid. FTIR spectra were registered with a Thermo Nicolet NEXUS 670 

FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The sample for FTIR was 

produced by grinding and pelleting dry NPs with KBr (NP:KBr 1:100 w/w). Hydrodynamic 

diameter was measured employing a BI 90 Plus (Brookhaven Instruments Corporation, Holtsville, 

NY, USA) at θ = 90°. Fluorescence measures were registered by a Synergy 2 Biotek Instrument. 
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Ed ora, non potendo più storicamente ricoprire il ruolo di 

faraone e neanche (per ora) quello di Papa, permettetemi 

almeno di “fare la faraona”… 

Example of final recipe: 

Roast guinea fowl with chestnut, sage & lemon stuffing 

Ingredients 

 1 small guinea fowl, about 1kg 

 8 rashers streaky bacon 

 50g soft butter 

 1 onion, unpeeled and thickly sliced 

 2 tbsp plain flour 

 350ml strong chicken stock 

 cranberry sauce, roast potatoes and vegetables, to serve 

For the stuffing 

 1 onion, chopped 

 25g butter 

 1 tbsp chopped sage 

 50g walnut, finely chopped 

 50g breadcrumb 

 zest 2 lemons 

 ¼ tsp ground mace 

 100g cooked chestnut, quartered 

 1 medium egg, beaten with a fork 

http://www.bbcgoodfood.com/glossary/guinea-fowl
http://www.bbcgoodfood.com/glossary/butter
http://www.bbcgoodfood.com/glossary/onion
http://www.bbcgoodfood.com/glossary/onion
http://www.bbcgoodfood.com/glossary/butter
http://www.bbcgoodfood.com/glossary/sage
http://www.bbcgoodfood.com/glossary/walnut
http://www.bbcgoodfood.com/glossary/lemon
http://www.bbcgoodfood.com/glossary/chestnut
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Method 

1. First make the stuffing. Soften the onion in the butter very gently, then stir in the sage and 

cook for 2 mins more. Scrape into a bowl with the chopped walnuts, breadcrumbs, lemon 

zest, mace, chestnuts and egg and mix together well. Season generously. 

2. For the guinea fowl, wash and wipe out the inside cavity. Mix the butter with some 

seasoning, then push and spread some under the skin over the breasts, and rub the rest over 

the legs. Lay the bacon across the breasts, smoothing over, and season with some more 

pepper. Push the stuffing into the cavity (any extra can be rolled into balls and baked in the 

oven for the last 20 mins cooking time). You can cover and chill the guinea fowl now for up 

to 24 hours. 

3. To roast, bring the bird out of the fridge 30 mins before. Heat oven to 200C/180C fan/gas 6. 

Sit the bird in a snug roasting tin with the sliced onion underneath. Roast for 15 mins, then 

lower the oven to 180C/160C fan/gas 4 and roast for a further 35-45 mins for a 1kg bird (or 

longer if bigger – use the timings for a roast chicken). Check the bird is done by piercing the 

inside of the thigh with a knife and making sure the juices are clear, not bloody. Lift the 

guinea fowl off the onions, onto a platter. Loosely cover with foil, top with a towel (to keep 

it warm), and rest while you make the gravy. 

4. Pour off the juices from the roasting tray into a jug or bowl, and allow to settle. Spoon a tbsp 

of the fat on top back into the roasting tray, pop on the hob over a low heat (make sure your 

roasting tray is suitable or transfer contents to a pan), and stir in the flour until it isn’t dusty 

anymore. Gradually stir in the stock, plus any meat juices after you’ve discarded the rest of 

the fat, and bubble gently until thickened. Season with salt, pepper, and pinches of sugar if it 

needs it, then strain into a gravy jug and discard the onions. Serve with the guinea fowl, 

spooning out the stuffing as you carve, plus cranberry sauce and plenty of vegetables. 


