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0.1 C-Type lectins: some generalities of a complex world 

0.1 Glycans represent an essential component of living organisms, where they are present as polysaccharide 

chains or as conjugates with proteins and lipids.1, 2 Notably, all cells express glycans on their surface forming 

a nanolayer called glycocalix,3,4 and the great majority of proteins are subjected to glycosylation, which is the 

most common protein post-translational modification. These evidences and the ubiquitous diffusion of 

oligosaccharides highlight their importance in cellular processes. However the relevance of carbohydrates has 

been neglected for a long time and is during the past fifty years that glycans started to attract attention.5 This 

underestimation of carbohydrate functions in the context of cellular biology may reside in the difficulties 

encountered during their investigation. Particularly, glycan and glycoconjugate biosynthesis and its regulation 

are far more complicated to elucidate compared to polynucleic acids or proteins, where a clear correlation 

between a gene and the corresponding polypeptide sequence can be identified. Moreover, a great effort from 

an analytical point of view is required to determine the structural diversity of glycans, which can be constituted 

just by one monosaccharide unit up to a polysaccharde sequence of different monomers, connected in a linear 

or branched array and potentially leading to different regio- and stereoisomers.6,7  

Nowadays it is well established that carbohydrates are extensively engaged by cells in different biological 

processes, being able to control embryogenesis and organism development,8 determine cellular adhesion and 

migration,9 promote tumour progression and modulate inflammation and immune response.10 Many of these 

events are mediated by carbohydrate-protein interactions, where glycans are recognized and selectively bound 

by proteins known as lectins. The great majority of lectins can be classified into three different superfamilies 

of proteins depending on the structural domain composition and the nature of the minimal sacchharide epitope 

recognized: galectins mainly recognize the disaccharide lactose or N-acetyllactosamine, while Siglecs bind 

preferentially to sialic acid residues and C-type lectins have certain selectivity for mannose and galactose 

related structures.11 Among these, proteins belonging to the C-type lectin superfamily are the most abundant 

and are broadly expressed by animals, viruses and parasites. Apart from some exceptions, C-type lectins are 

either extracellular or transmembrane proteins, which can be classified into seventeen different groups based 

on the overall domain composition (Fig. 1).12 

 

Figure 1 - Domain architecture of vertebrate C-type lectins. Group numbers I-XVII are indicated. Soluble C-type 

lectins are shown on the left, while transmembrane C-type lectins on the right. The legend for schematic representation 
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of structural domains is reported. I lecticans, II the ASGR group, III collectins, IV selectins, V NK receptors, VI the 

macrophage mannose receptor group, VII REG proteins, VIII the chondrolectin group, IX the tetranectin group, X 

polycystin 1, XI attractin, XII EMBP, XIII DGCR2, XIV the thrombomodulin group, XV Bimlec, XVI SEEC, XVII 

CBCP.12 

Despite this great variety of structures, all C-type lectins contain at least one C-type lectin-like domain 

(CTLD).12,13 This globular domain is characterised by an overall disordered loop structure where few 

conserved secondary structures can be identified. Both the N and C terminus lie below the domain where the 

two β strands β1 and β5 forms an antiparallel β-sheet. A second β-sheet is formed by the β strands β2, β3, β4, 

while two α helixes, α1 and α2, flank the domain. Four highly conserved cysteine residues, C1-4, play an 

important structural role forming two disulphide bonds in close proximity of the two loop regions: C1 and C4 

connect β5 with α1 while C2 and C3 join β3 with β5. Above the whole domain is a long loop region with a 

variable primary structure where the carbohydrate binding site is located, as revealed by the presence of a 

calcium ion (Fig. 2a).  

 

Figure 2 - C-type lectin-like domain (CTLD) structure.12 a) The globular structure of CTLD is shown. The disordered 

loop structure where the carbohydrate binding site is located is highlighted in blue. The conserved secondary structures 

(α helixes and β strands) and the cysteine residues (C) are indicated. b) A mannose residue binding to the Ca2+ ion at the 

carbohydrate binding site is shown. The sugar moiety coordinates with the metal centre (blue sphere) through equatorial 

vicinal hydroxyls at 3 and 4 positions. Further stabilizing interactions between the protein and both the Ca2+ ion and the 

carbohydrate moiety are shown: five ligands lye on a plane, while three others lye in a trigonal arrangement on an 

orthogonal plane resulting in an eightfold coordination of the Ca2+ ion.  

The Ca2+ ion, from which C-type lectins take their name, is essential for the binding ability of the proteins 

for carbohydrates, which directly interact binding to the metal centre through two vicinal hydroxyl groups. In 

particular, C-type lectins are able to bind sugar moieties exposing either equatorial vicinal hydroxyls at 3 and 

4 position, thus showing selectivity for mannose, glucose and N-acetylglucosamine (but also for fucose, 

binding with hydroxyls 2 and 3), or residues with a combination of equatorial/axial vicinal hydroxyls in 3 and 

4 position, therefore being selective for galactose and fucose. The Ca2+ ion is stabilised at the binding site 

through interactions that it makes with carboxylic and amide groups either contained in the protein backbone 

or in the side chains. In particular, interactions are established between the metal and Asn, Asp, Glu and Gln 

residues belonging to a conserved WND sequence and either an EPN or QPD motif. The aminoacids involved 

in Ca2+ coordination also stabilize through hydrogen bonds the carbohydrate moiety bound to the metal. This 

creates a complex network of interactions that is always observed for CTLDs and results in a eightfold 

coordination to the Ca2+, with five ligands lying on a plane and with the remaining three, two of which coming 
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from the sugar moiety, lying on an orthogonal plane in a trigonal arrangement (Fig.2b). As mentioned before, 

the highly conserved WND and EPN or QPD triplets have the major role of coordinating to calcium. The 

proline residue in EPN and QPD is in a cis conformation, thus allowing for optimal orientation of the flanking 

residues. Side chains of the triads also make contacts with bound carbohydrates, greatly influencing lectin 

selectivity. More in detail, EPN sequence has shown to give selectivity towards mannose, while QPD is usually 

associated with galactose binding selectivity. This correlation was first demonstrated by Drickamer and co-

workers by an elegant mutagenesis experiment in which the replacement of the EPN triplet with the QPD in 

the murine MBL-A determines a switch in preferential binding from sugar with a mannose like configuration 

to a galactose like.14 Crystallographic analysis of the mutated MBL-A, revealed that the EPN replacement with 

the QPD sequence did not alter the geometry of calcium ion coordination bonds. This suggests that the switch 

in specificity may derive from a different network of hydrogen bonds between the sugar moiety and the 

aminoacidic residues coordinated to the calcium ion, thus highlighting their importance in protein specificity 

and in controlling the orientation and conformation of the ligand at the binding site. However, CTLDs with 

preferential binding for mannose related derivatives have often proved to accept also galactose related 

structures and vice versa and furthermore different CTLDs with the same carbohydrate selectivity have often 

shown different binding modes. Given all these evidences, it seems reasonable to believe that more complex 

and still not well defined mechanisms allowing lectins to specifically recognize their glycan target must be 

operative.  

0.2 C-Type lectins in immunity 

In animals, C-type lectins are mainly expressed at the surface of myeloid cells and engaged by the immune 

system, thus being involved in infectious diseases, autoimmunity and allergies. C-type lectin receptors in fact 

belong to the class of the so called pattern recognition receptors (PRRs), which are greatly expressed on the 

surface of dendritic cells (DCs) where they act as important modulators of the immune system. DCs 

differentiate from bone marrow stem cells, then after migration to the bloodstream they populate all tissues 

where they exert the role of sentinels able to recognize, process and present antigens on major 

histocompatibility complex (MHC) class I and II molecules to T cells, promoting their differentiation.15 

Immature DCs lie in a steady-state where they recognize and scavenge pathogens and innocent self occurring 

antigens, deriving from necrotic and apoptotic cells. Upon pathogen infection or massive cell death, DCs are 

activated and after maturation they migrate into secondary lymphoid organs where they can present processed 

antigens as MHC class I and II to naïve CD8+ and CD4+ T cells respectively. 

Depending on the infecting pathogen, DCs shape the immune response inducing alternative subsets of 

helper T cells (TH). Therefore, TH1 cells are able to activate macrophages against microbial infections 

producing interferon-γ, while TH2 cells can secrete interleukin-4 (IL-4), IL-5 and IL-13 to recruit white cells 

against helminth and TH17 cells express IL-17 to mobilize phagocytes and resist bacteria and fungi infections.16 

DCs antigen recognition is possible through the engagement of different PRRs that can bind either non-self 

ligands, pathogen-associated molecular patterns (PAMPs), and self-damaged structures, damage-associated 

molecular patterns (DAMPs), as well as self-altered ones, tumour-associated molecular patterns (TAMPs). 

Among PRRs expressed by DCs there are Toll-like receptors (TLRs), nucleotide-binding oligomerization 

domain-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors and C-type lectin 

receptors.17 C-type lectins receptors expressed by DCs recognize and bind to characteristic moieties of 

glycoconjugates exposed on pathogen membranes and allowing specific targeting.18 

Generally speaking, C-type lectin receptors like DC-specific ICAM3-grabbing non-integrin (DC-SIGN), 

L-SIGN, mannose receptor, macrophage galactose-specific lectin (MGL) and langerin in Langerhans cells are 

highly selective for high-mannose or fucose-containing glycans (Lewisa,b,x,y), GalNAc or GlcNAc. A different 

selectivity is shown by DC-associated C-type lectin 1 (dectin-1), a Ca2+-independent C-type lectin, that is 
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usually engaged in fungi infection being able to bind β-glucan containing glycans.19 After recognition and 

binding, C-type lectin receptors trigger internalization allowing pathogen degradation and antigen processing 

and presentation as MHC. Furthermore, C-type lectin receptors are able to fine tune immune response through 

signalling pathways leading to activation and modulation of gene expression. Many details concerning C-type 

lectin induced signal transduction still have to be clarified. What we know, is that upon pathogen recognition, 

C-type lectin receptors can either directly induce gene expression, this is the case of dectin-1,20 dectin-221 and 

macrophage-inducible C-type lectin (mincle),22 while others such as DC-SIGN,23 blood DC antigen 2 protein 

(BDCA2),24 DC immunoreceptor (DCIR)25 and myeloid C-type lectin-like receptor (MICL) can synergistically 

tailor immune response by modulating gene expression signalling triggered by TLRs. Depending on the 

pathogenesis of the infection, different pathways can be initiated. Nevertheless, all C-type lectin receptors 

initiate their signalling in two alternative ways. Lectin such as mincle, dectin-2, BDCA2 and C-type lectin 

domain family 5, member A (CLEC5A) initiate signalling through immunoreceptor tyrosine-based activation 

motif (ITAM)-containing adaptor molecules.21,24,26,27 On the contrary, dectin-1, DC-SIGN, DCIR, MICL 

induce signalling by interactions between their cytosolic domain and either kinase or phosphatase proteins.20,23, 

,28,29 Generally, C-type lectin receptors induced signalling pathways produces as its final event the activation 

and modulation of the transcriptional factor nuclear factor-κB (NF-κB), the main mediator in immune system 

of inducible gene expression.  

An explicative case of how the PRRs all together orchestrate their functions leading to a highly specific 

immune response is given by the DC-SIGN crosstalk with Toll-like receptors and their signalling pathway 

modulation (Fig. 3). More in detail, during infections of Mycobacterium tuberculosis, Mycobacterium leprae, 

HIV-1 and Candida albicans, DC-SIGN recognition of these pathogens shape TLR4 mediated immune 

responses.23,30 After infection, TLR4 binds lipopolysaccharides (LPS), initiating a signalling pathway that 

finally activate NF-κB for gene expression. This response is further tuned by DC-SIGN. In fact, DC-SIGN 

binding to polymannosylated surfaces exposed by the infecting pathogens triggers a cascade eventually 

activating RAF1 protein. RAF1 is a serine/threonine kinase that phosphorylates NF-κB p65 subunit at Ser276, 

thus allowing recruitment of histone acetyl-transferases CREB-binding protein (CBP) and p300 that results in 

acetylation of various p65 lysine residues.23,31 Acetylation of NF-κB p65 subunit prolongs its binding at the 

promoter and increases transcriptional rate of genes encoding cytokines such as IL-8 and IL-10.23,32 

 

Figure 3 – PRRs crosstalk: DC-SIGN modulation of Toll-like receptors signalling.33 DC-SIGN is able to modulate 

the response triggered by Toll-like receptors TLR3 and TLR4 during infections of Mycobacterium tuberculosis, 
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Mycobacterium leprae, HIV-1 and Candida albicans. After infection, TLR3 is activated by binding double-stranded RNA 

(dsRNA), while TLR4 binds lipopolysaccharides (LPS). These recognition initiate a signalling pathway involving the 

recruitment of the ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) followed by self-induced polyubiquitylation 

(Ub) which triggers the recruitment of TGFβ-activating kinase 1 (TAK1). TAK1 activates the IκB kinase (IKK) complex, 

which is then able to phosphorylate inhibitor of NF‑κBα (IκBα), promoting its proteasomal degradation and the release 

of NF‑κB. Finally, NF‑κB translocates into the nucleus, where it binds to promoter sequences triggering gene expression. 

This cascade of events is modulated by DC-SIGN. Indeed, DC-SIGN recognition of polyglycosylated surfaces exposed 

by pathogens triggers a cascade eventually activating the serine/threonine kinase RAF1 protein. RAF1 is then able to 

phosphorylate NF-κB p65 subunit at Ser276, thus allowing recruitment of histone acetyl-transferases CREB-binding 

protein (CBP) and p300 which determines the acetylation of various lysine residues of NF-κB p65 subunit. Acetylation 

prolongs NF-κB binding at the promoter, thus increasing transcriptional rate of genes encoding cytokines such as IL-8 

and IL-10.  

Up to now, the concept that C-type lectins play an essential role in the first-line host defence has been 

stressed. However, some viruses and bacteria have evolved mechanisms to escape from immune activation, 

exploiting C-type lectin receptors for their entry and to modulate PRRs signalling, thus promoting survival and 

infection. A very well studied example of this mechanism is DC-SIGN mediated infection, since DC-SIGN 

ability to recognize many dangerous viruses such as HIV,34,35,36 Ebola virus,37,38 Cytomegalovirus,39 Hepatitis 

C virus,40,41,42 Dengue virus43,44 but also bacteria like Helicobacter pylori, Mycobacterium tuberculosis as well 

as parasites like Leishmania amastigotes, Schistosoma mansoni and Candida albicans.45,46,47,48 In HIV 

infection, after binding of DC-SIGN and internalization, virus particles are able to circumvent lysosomal 

degradation through still unknown mechanism. Moreover, the infected DC-SIGN expressing dendritic cell is 

further exploited by HIV virus to interact with T cells, enabling dissemination and spreading of the infection. 

Mycobacterium tuberculosis and Mycobacterium bovis bacillus Calmette-Guérin (BCG) also target DC-SIGN 

through the membrane mannose containing glycolipid lipoarabinomannan (Man-LAM). It was demonstrated 

that this interaction leads to the expression of the anti-inflammatory IL-10, while in M. bovis BCG it results in 

an inhibition of the TLR4 mediated DC differentiation signal therefore showing how these bacteria succeed in 

downregulating immune response.30 

Being able to trigger and modulate the immunological system, C-type lectins can be responsible for the 

pathogenesis of inflammatory diseases and dysregulation of their activity may lead to autoimmune responses, 

as well as allergic disorders.10 Notably, mannose binding lectin (MBL) was shown to sense damaged cells after 

ischemic stroke and brain injury, playing a role in the establishment of an inflammatory environment that 

further exacerbates the lesion.49,50 Blocking MBL with antibodies has proved to provide a protective effect in 

ischemia mouse model.51 With the same approach, a mannosylated proteolipid peptide was used to inhibit 

experimental autoimmune encephalomyelitis in mice, probably antagonizing mannose receptors expressed on 

DCs.52,53 C-type lectins can also effect allergic inflammation, as demonstrated for dectin 2, which recognizes 

house dust mite stimulating mobilization of innate immune cells.54 

Quite recently, it has been demonstrated that C-type lectins are also able to interact with characteristic 

glycans of malignant carcinogenic cells. Indeed, modifications of membrane polysaccharides and 

glycoconjugates enable tumour progression.55 Several glycoforms of carcinoembryonic antigen and mucin 1 

(MUC-1) have been found to target DC-SIGN and MGL expressed by DCs.56,57 In particular, the interaction 

of MUC-1 with MGL allows cancer cells to induce a TH2-mediated response, promoting their survival. 

For their numerous biological implications, C-type lectins clearly emerge as promising targets for 

development of new drug therapies. Indeed, C-type lectins targeting has been revealed as a potent approach 

for inhibition of first stage pathogen adhesion, treatment of inflammatory diseases and presentation of vaccine 

vehicle, finally stimulating tumour suppression.58,59 
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0.3 Targeting C-type lectins 

The development of carbohydrate based C-type lectin targeting drugs is a hard challenge. The polar nature 

of carbohydrates accounts for their poor pharmacokinetic properties. Their highly polarity impairs oral 

availability, since they are not passively absorbed in the small intestine. Additionally, olygosaccharides present 

a short half-life in plasma, being subjected to the hydrolytic activity of glycosidases and rapidly excreted by 

kidneys. Moreover, they are usually produced through multi-step synthetic processes with low atom economy. 

The rational design of C-type lectin ligands is even more demanding if we consider that most of the 

carbohydrate binding sites are located at superficial and accessible regions of the proteins, which also leads to 

low affinity interactions. Few small molecule ligands have been developed so far and this may be also due to 

the discouraging low success of classical drug discovery campaigns in the quest for new hit structures. 

However, recently Rademacher and coworkers60 have shown that in silico low scores for lectin druggability 

prediction does not correlate with experimental 19F NMR based fragment screening against DC-SIGN, 

disclosing the limitations of the software analysis developed so far, which are not parametrized for 

carbohydrate and Ca2+ binding sites.61 The ideal C-type lectin antagonist is characterized by a proper 

pharmacokinetic and a straightforward synthesis, it has to show increased affinity than the natural competing 

ligand and it has to be selective. Promising results for such a goal have been achieved through rational design 

of monovalent glycomimetics and the synthesis of multivalent glycocompounds. 

0.3.1 Monovalent ligands 

Several lectins have been successfully targeted by ligands, most of them with a carbohydrate-based 

structure. Starting from natural ligands, glycomimetics are carefully designed in order to obtain drug-like 

entities. This implies a simplification of the structure, a reduced polarity and increased stability for better 

bioavailability, the introduction of functional groups giving further interactions with the protein, therefore 

enhancing both affinity and selectivity. Remarkably, compounds with great avidity have been achieved for 

Siglecs and galectins, as well as molecules directed against bacterial lectins, which may function as toxins or 

as adhesion proteins enabling infection.62 Because of its engagement in first recognition of several pathogens, 

many of the developed ligands for C-type lectins have been addressed to DC-SIGN. Herein, an overview of 

DC-SIGN monovalent ligands is presented along with their corresponding IC50 values. It should be noted that 

IC50 values allow to quantify ligand potency, being however affected by the nature and the setting of the 

experimental technique used for their determination. For this reason, a comparison with a reference compound 

should always be assessed. Unfortunately, the lack of a standard reference in the literature devoted to DC-

SIGN antagonists makes their comparison not easy.  

Noncarbohydrate antagonists 163 and 264 with IC50 values ranging from micromolar to submicromolar were 

identified with high-throughput screening and particularly compound 2 was found to block DC-SIGN mediated 

internalization of fluorescent-labelled mannosylated BSA in DC-SIGN expressing Raji cells (Fig. 4).  

 

Figure 4 – Non-carbohydrate based DC-SIGN antagonists. Compound 1 showed IC50 = 32 µM in inhibition assay 

using Man-BSA as competitor.63 Compound 2 displayed IC50 = 0.3 μM in a competition experiment with fluorescent 

mannosylated BSA.64  

IC50 = 32 μM IC50 = 0.3 μM 
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DC-SIGN specifically recognizes L-fucose and D-mannose residues, therefore glycomimetic antagonists of 

DC-SIGN are mainly based either on the Lewisx trisaccharide Galβ(1,4)[Fucα(1,3)]GlcNAc or on the highly 

mannosylated structure of the oligosaccharide (Man)9(GlcNAc)2 (abbreviated as Man9), which is often exposed 

in multiple presentation by several pathogen proteins. Glycomimetic 3 represents a simplified version of 

Lewisx ligand, where a cyclohexane ring mimics the original GlcNAc residue.65 This strategy is further stressed 

in the synthesis of 4. NMR studies of this compound revealed that binding to DC-SIGN is ensured mainly by 

the fucose, and that the phenol moiety establishes further contacts with the protein (Fig. 5).66  

 

Figure 5 – L-fucose based DC-SIGN ligands. The fucose containing 3 and 4 are glycomimetic structures of LewisX 

trisaccharides. All IC50 values were obtained by SPR inhibition assay in which ligands had to compete with BSA-

mannotriose for DC-SIGN binding.65,66 

In the past few years, our group has reported the synthesis of the pseudo-dimannosides 5a,b67 and the 

pseudo-trimannosides 6a,b,68 whose structures are based on terminal epitopes of the natural ligand Man9 (Fig. 

6). All these ligands are characterized by the presence of a conformationally locked cyclohexane diol ring that 

mimics a mannose residue while conferring enzymatic stability. It is remarkable that trimannobioside 6a is 

able to successfully inhibit DC-SIGN mediated HIV transfection of B-THP-1 cells,68 while mannobioside 5b 

proved to be three times more active than the corresponding α(1,2)-dimannoside in blocking virus binding for 

Ebola virus invasion model in Jurkat cells expressing DC-SIGN.67  

 

Figure 6 – Mannose based DC-SIGN glycomimetic ligands. The pseudo-dimannosides 5a,b and pseudo trimannosides 

6a,b are glycomimetic structures of the highly mannosylated natural ligand Man9. IC50 values measured by SPR inhibition 

assay with BSA-mannotriose as competitor showed 5a67 IC50 = 1.0 mM and 6a69,70 IC50 = 125 μM. 

IC50 = 350 μM IC50 = 470 μM IC50 = 800 μM 
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The less synthetically demanding 5a,b were further optimised. A small library of bis-amido derivatives 

able to establish additional interactions was synthesised, with the identification of a benzyl substituted 

derivative as the most promising candidate.71 The library was therefore expanded with compounds belonging 

to the benzyl series whose increased affinity for DC-SIGN was confirmed by surface plasmon resonance (SPR) 

competition assay against immobilized polymannosylated-bovine serum albumin (BSA).72 Since Langerin is 

directly involved in protective mechanism against virus dissemination, selectivity is an essential requisite in 

the development of anti HIV adhesion molecules. Notably, almost all the library members showed low binding 

affinity towards Langerin, proving that achieving high affinity together with selectivity is not an impossible 

goal. Based on a combination of high affinity and selectivity, water solubility, affordable synthetic route, p-

hydroxybenzylamide derivative 7 was selected as the best lead structure and the presence of a terminal azide 

function was exploited for the generation of multivalent glycodendrimers (Fig. 7).73,74  

A similar approach was adopted by Anderluh and co-workers75 who functionalised a mannose residue with 

aryl substituents in order to target the Phe313 side chain, located in proximity to the DC-SIGN carbohydrate 

binding site. Bis-arylamides and O-aryl ethers were obtained tethering D-mannose either with a 1,3-

diaminopropan-2-ol or with glycerol and tested in vitro for binding to DC-SIGN extracellular domain in 

competition with the Man9 displaying HIV gp120 protein. The most active compounds 1,3-diarylglycerol 8a 

and 8b are shown in Figure 7. 

 

Figure 7 - Mannose based DC-SIGN glycomimetic ligands. The p-hydroxybenzylamide derivative 7 is a selective and 

potent antagonist of DC-SIGN, IC50 = 325 μM measured in SPR inhibition assay versus polymannosylated immobilized-

BSA.72 Targeting of Phe313 side chain with O-aryl ethers of mannosylated glycerol led to the potent DC-SIGN ligands 

8a and 8b, IC50 40 μM and 50 μM respectively. IC50 values were measured in vitro for binding to DC-SIGN extracellular 

domain in competition with the Man9 displaying HIV gp120 protein.75 

DC-SIGN monovalent ligands comprise also the mannosylated glycolipid 9, which demonstrated to be 

active in inhibiting HIV invasion,76 and the carbohydrate inspired compound 10 based on the shikimic acid 

scaffold that matches the configuration of hydroxyl groups in 2-, 3- and 4- position of mannose (Fig. 8).77  

 

IC50 = 325 μM 

IC50 = 40 μM 

IC50 = 50 μM 

IC50 = 120 μM 
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Figure 8 - Mannose based DC-SIGN glycomimetic ligands. Mannosylated glycolipid 9 performs as DC-SIGN ligand 

and proved to inhibit DCs mediated infection of T-Cells, IC50 = 120μM.76 The shikimic acid derivative 10 is a mimic 

structure of mannose which showed IC50 = 3.2 mM in inhibition assay using Man-BSA as competitor.77 

0.3.2 Multivalent ligands 

Protein-carbohydrate interactions are relatively weak, with dissociation constants often lying in the low 

millimolar range. This problem has been smartly overcome by Nature exploiting multivalency. Indeed, high 

affinity can be achieved through multiple interactions between lectin receptors and target glycans. As a 

consequence, lectin receptors have either multiple carbohydrate recognition domains or an oligomeric structure 

that allow multiple binding towards carbohydrate ligands, usually exposed in several copies forming 

polyglycosylated surfaces. Multivalent interactions affect lectin affinity as well as selectivity, moreover the 

density of multipresented glycans, their topology and orientation have emerged as important parameters.78,79 

As Nature suggests, multivalent glycoconjugate synthesis represents an excellent strategy for targeting C-type 

lectins (Fig. 9), hence, for a rational design of polyvalent lectin ligands, the knowledge of the theoretical 

principles at the bases of multivalency is essential.  

 

Figure 9 - Targeting protein-carbohydrate interactions. Protein-carbohydrate interactions usually take place between 

a multivalent receptor and a polyglycosylated target. To inhibit such interactions monovalent or multivalent ligands can 

be exploited. The picture depicts the comparison between the monovalent and multivalent ligand efficacy. While 

monovalent ligand affinity may be not strong enough for them to compete for binding with native ligands, multivalent 

compounds can really help in overcoming this problem.80 

0.3.2.1 Multivalency: a theorethical point of view 

It is correct to speak about multivalency when a system composed by n > 1 entities shows a different 

behaviour compared to a single isolated component. In particular, a multivalent interaction requires an m-

valent receptor interacting with an n-valent ligand (with m equal or not to n and both m,n > 1). Thus, an m-

valent receptor interacting simultaneously with n isolated ligands is not a multivalent interaction.80 To quantify 

the affinity enhancement in multivalent interactions, the enhancement factor β was introduced, expressed as 

the ratio between the binding constant of a multivalent ligand (Kmulti) for its receptor and the binding constant 

of the corresponding monovalent ligand (Kmono).81 

IC50 = 3.2 mM 
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β = 
𝐾𝑚𝑢𝑙𝑡𝑖

𝐾𝑚𝑜𝑛𝑜
 

The enhancement of multivalent ligand affinity for a multivalent receptor can be explained by three 

mechanisms that can be operative simultaneously or not: chelation, statistical rebinding and protein 

aggregation (see below Fig. 10).82 

Chelation is the ability of a multivalent ligand to bind at least two binding sites of a multivalent receptor 

(Fig. 10a). Taking as an example a divalent receptor, the equilibrium constant for the binding of a chelating 

divalent ligand is far greater than the product of the two equilibrium constants for the binding of two 

monovalent ligands. This greater affinity is mainly due to entropic effects. Binding of a ligand to a receptor is 

associated with reduced mobility and loss of degrees of freedom, since several translational and rotational 

states are no longer accessible. The drop of entropy (ΔS < 0) reduces the variation of free energy associated 

with the binding process (ΔG = ΔH - TΔS), but monovalent and chelating ligands experience it in different 

extents. In the case of two monovalent ligands, the free energy penalty that has to be paid is the same for the 

two binding events. In the case of a chelating divalent ligand, the second binding is associated with a 

significantly reduced drop of entropy (thus less negative ΔG), since most of the entropy penalty has already 

been paid during the first binding event. Chelation probably provides the major contribution to affinity 

enhancement that is observed in multivalent interactions. Nevertheless, an efficient chelation can only occur 

in the case of a multivalent antagonist with an optimized scaffold that guarantees a proper distribution of the 

ligands in order to bridge two different binding sites of the receptor.74,83,84 

Statistical rebinding can also contribute to the affinity enhancement of a multivalent ligand (Fig. 10b). This 

effect takes place between two or more ligands tethered to the same multivalent construct and one binding site 

of a (multivalent) receptor. In particular, after a first binding event, additional ligands may be located in close 

proximity of the binding site. In case of dissociation, the highly effective local concentration of ligands will 

ensure a rapid rebinding of the binding site, thus leading to a high affinity interaction.  

A similar mechanism, that has been observed in multivalent interactions is described by the bind and slide 

model.85 Such a behaviour was originally demonstrated for DNA-protein interactions and in the past few years 

it has been extended to lectin-polyglycosylated surface interactions. As the name of the model suggests, lectin 

receptors are depicted as entities able to bind to ligands in a dynamic way and to move along the 

polyglycosylated surface. This mechanism is the consequence of the detachment from a ligand and the 

subsequent binding to another in close proximity, which determines the sliding motion, a reduced off rate, thus 

an increased affinity. It has been proposed that the bind and slide phenomenon may facilitate receptor migration 

and their aggregation (Fig. 10c),86,87 therefore regulating the triggering and transduction of cell signalling.88 

Concerning affinity enhancement, the last two mechanisms described above generally account for minor 

contributions compared to chelation, but they gain more and more importance as the number of interactions 

increases. 
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Figure 10 – Affinity enhancement mechanisms. The mechanisms governing multivalency are depicted for a divalent 

receptor (shown in blue) interacting with a divalent ligand (shown in red). a) Chelation is achieved through concomitant 

binding of (at least) two binding sites. A spacer of proper length with a good balance between rigidity and flexibility is 

required. b) Statistical rebinding is given by the increased local concentration of ligand, which enables high rebinding 

rate of one binding site upon dissociation. c) Protein aggregation may occur when a ligand simultaneously binds to binding 

sites belonging to distinct receptors. 

Accurate theoretical treatments of multivalent systems from a thermodynamic point of view are extremely 

challenging. Interactions in a multivalent system have different properties if compared to the corresponding 

monovalent one and this behaviour is explained with the concept of cooperativity. Many groups have tried to 

identify and define the different types of cooperativity, which however remains a subject of great 

debate.80,81,89,90  

The difficulty in analysing such interactions is exemplified by the study of the simplest multivalent 

interaction, a divalent ligand and a divalent receptor, that nevertheless turns to be extremely complex. All the 

possible equilibria of the system are depicted in Figure 11.  

 

Figure 11 - Schematic representation of all the possible equilibria for interaction between a divalent receptor with 

a divalent ligand. Assumption of high concentration of the ligand enables to neglect states involving more than one 

receptor. K is the microscopic intermolecular association constant, while Kintra is the microscopic intermolecular 

association constant and EM is defined as the effective molarity.90 

For sake of simplicity, the ligand is considered in great excess relative to the receptor, which allows to 

neglect species presenting more than one receptor, and the only cooperativity effect taken in consideration is 

chelate cooperativity.90 The accessible species for the receptor are four: the not bounded AA, the partially 

bounded open complex o-AA·BB, the chelated c-AA·BB and the totally bounded AA·(BB)2. The strength of 

the binding interaction is defined by K, the microscopic intermolecular association constant, while the strength 



Introduction 

12 

of the intramolecular binding is expressed by the association constant Kintra = ½ K EM, where ½ is the statistical 

factor associated with the cyclization and the constant EM, the microscopic effective molarity, takes into 

account the tendency to chelation. The relative population of the partially and fully bound species as a function 

of free ligand BB concentration is reported in Figure 12. In particular, Figure 12a shows the population 

distribution for a system with Kintra = 0, thus without chelate interaction. At this borderline situation, of course 

c-AA·BB is completely non populated, while both the population of o-AA·BB and AA·(BB)2 gradually 

increase along with ligand concentration until AA·(BB)2 start to be more favoured and become the only 

accessible. On the other hand Figure 12b present the distribution of populations in a system with high 

intramolecular association constant, Kintra = 25. In this case, the chelated c-AA·BB is highly populated, 

showing a bell-shaped distribution. This state is far more stable than the partially bound o-AA·BB therefore, 

at low concentration of ligand BB, is the only accessible state and its population increases along with ligand 

concentration until almost all the binding sites are occupied. At this point, as the ligand concentration further 

increases, the fully bound AA·(BB)2 gets more and more stabilised until it becomes the only populated state. 

 

Figure 12 - Speciation profiles. a) Speciation profile of the equilibria for a system not affected by chelate interaction, 

Kintra = 0; EM = 0. b) Speciation profile of the equilibria for a system showing strong chelate interaction, Kintra = 25; EM 

= 50. The concentration scale on the abscissa is normalized by the equilibrium constant K. Fractions of the species are 

reported as follows: (●) = total fraction of receptor AA species with occupied binding sites; (●) = fraction of AA·(BB)2; 

(▲) = fraction of o-AA·BB; (■) = fraction of c-AA·BB.90  

The great variability of population distribution that can be observed in a simple multivalent system gives 

an idea of how complex is the study and the analysis of multivalent interactions. We have just seen how ligand 

concentration and effective molarity (which is a constant property of the system) greatly influence the species 

composition of the system. Moreover, the initial assumption that ligand BB is in great excess relative to the 

receptor should not be forgotten. A change in ligand to receptor ratio may result in further accessible states 

envisaging more than one receptor in the binding, therefore increasing the complexity of the system and 

enabling clustering and aggregation processes. 
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0.3.2.2 Multivalent glycoconjugates 

In the attempt of interfering with lectin mediated biological processes, many potent multivalent antagonists 

have been successfully synthesised. Notably, the effectiveness of a glycoconjugate as an antagonist is dictated 

not only by the nature of the ligands engaged, but it also depends on the architecture of the polyvalent scaffold, 

the valency, the ligand density, the kind of linker engaged and the flexibility of the construct. For this reason, 

a huge variety of glycoconjugate structures comprising glyconanoparticles, glyconanodiamonds, 

glycopolymers, fullerenes, self-assembled Janus glycodendrimers,91 liposomes, micelles and nanowires,92 

cyclodextrins, calixarenes, glycodendrons and glycodendrimers have been investigated and successfully 

employed as antagonists for different kind of lectins such as galectins, Siglecs, bacterial lectins, bacterial toxins 

and C-type lectins. (Multivalent glycoconjugates have been extensively reviewed).59,62c,93,94,95,96,97,98  

For the sake of clarity, we will focus our attention on the applications of multivalent glycoconjugates as C-

type lectin antagonists. The great majority of synthetic C-type lectin multivalent ligands reported so far have 

been developed for DC-SIGN targeting and an overview on the great diversity of such antagonists is herein 

presented. On the other hand, few multivalent glycoconjugates have been developed to target MBL. This is 

probably mostly due to the difficulty in studying this protein, which is expressed as different isoforms in 

different organisms and present as scarcely characterized aggregates. Some of the few multivalent MBL 

antagonists so far reported will be also described. 

Glycopolymers have been reported as convenient scaffolds for glycan multipresentation to lectins and new 

generation polymerization strategies have enabled a certain control in terms of polymer length and 

ramification. Kiessling and co-workers applied ring opening metathesis polymerization (ROMP) for the 

synthesis of a polymer loaded with a mannose mimic derived from shikimic acid.77 ROMP of N-

hydroxysuccinimide activated norbornene carboxylic acid monomers 11 allowed for subsequent 

functionalization with the amino tethered glycomimetic 16 (Scheme 1). Performing the reaction in a mixture 

with ethanolamine furnishes a polymer with well defined density of glycomimetics 15: the multivalent 

polymers were 25 monomeric units long displaying on average seven glycomimetics per polymer chain. The 

binding ability of the polymer for DC-SIGN was established by a competitive assay against a mannosylated 

(20-25 mannose copies displayed) fluorescein-labelled BSA. The IC50 value for the multivalent antagonist 

binding to the immobilised DC-SIGN extracellular domain is 2.9 µM, thus gaining three orders of magnitude 

compared to the monovalent ligand, IC50 = 3.2 mM.  
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Scheme 1 – Glycopolymers as DC-SIGN multivalent ligands. ROMPs have been exploited to prepare activated 

polymers which were functionalized with multiple copies of monovalent DC-SIGN ligand 16. The glycopolymer 15 

showed an increased affinity of 3 orders of magnitude IC50 = 2.9 μM compared to the monovalent ligand 16, IC50 = 3.2 

mM.77 

Following a similar post-polymerization modification approach, the Haddleton group reported the synthesis 

of even more potent mannosylated polymers as DC-SIGN antagonists.99 The synthesis of multi-block 

glycopolymers has also been accomplished through single-electron transfer living radical polymerization 

(SET-LRP) (Scheme 2). Mannose and glucose derived glycomonomers 18 and 19 were successfully 

polymerized obtaining polymers with defined length and composition. In particular, the influence of the 

density and the distance between mannose units for DC-SIGN binding was evaluated by SPR competition 

assay flowing the polymers with soluble DC-SIGN over immobilised gp120 protein. The most active polymer, 

IC50 = 153 nM, showed only 10 fold weaker activity compared to soluble gp120, IC50 = 11 nM.100  

Scheme 2 – Multi-block glycopolymers as DC-SIGN ligands. Single-electron transfer living radical polymerization 

(SET-LRP) of mannosylated and glucosylated monomers allowed the synthesis of DC-SIGN antagonists with control 

over ligand density.100 

Mannosylated polymers have also shown to act as potent MBL antagonists. Exploiting atom transfer radical 

polymerization (ATRP), mannose monomers 21, 22 and eventually inimer 24 and mannosylated inimer 23 

IC50 = 2.9 μM 
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(inimers act both as monomers and as initiator units) have been polymerized to obtain linear and branched 

chains characterized by different lengths, mannose units and density, branch density, with or without mannose 

at the branching sites (Scheme 3).101 The ability in binding hMBL (human MBL) contained in human serum 

was evaluated in a competition enzyme-linked lectin assay (ELLA) with the immobilized natural 

polysaccharide mannan. As expected, the number of mannose residues exposed by the polymer greatly affects 

the binding activity. Interestingly, branched polymers were far more active than linear ones and the presence 

of a mannose residue at the branching site further increased the affinity.  

 

Scheme 3 - Mannosylated polymers as potent MBL antagonists. Atom transfer radical polymerization (ATRP) was 

applied to the synthesis of mannosylated polymers. Mannose monomers 21, 22 and eventually inimer 24 and 

mannosylated inimer 23 were used. The use of inimer 24 allowed the introduction of ramifications, while inimer 23 

generated branched chains with mannose residues at the ramification sites.101 

In a recent work, the same authors further applied ATRP for the synthesis of MBL antagonists in a grafting-

from approach. Direct polymerization of glycomonomers was accomplished using BSA as macroinitiator.102 

The single conjugation of a glycopolymer to BSA for the development of MBL multivalent ligands had already 

been described,103 but now the modification of exposed lysine residues into initiator unit allows the 

polymerization to start from multiple sites of the protein (Scheme 4). As a consequence, glycopolymers-BSA 

conjugates displaying from 70 up to 360 mannose residues per protein are formed with an overall spherical 

distribution of the polymeric chains. As confirmed by ELLA competition assay, this tridimensional multiple 

presentation of ligands confers greater affinity for rhMBL (recombinant human MBL) compared to simple 

polymeric structures. Indeed, the BSA conjugate exposing 70 mannose residues as an average of 3 residues 

per polymeric chain showed to antagonize MBL binding to immobilized mannan 260 times stronger than a 

corresponding glycopolymer displaying 75 mannose moieties. 
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Scheme 4 – Mannosylated polymer-BSA conjugates. The synthesis of BSA-based mannosylated polymers is shown. 

A representative portion of BSA structure is depicted in green. Amino residues of Lys side chains are functionalized to 

give a BSA macroinitiator. Atom transfer radical polymerization (ATRP) is then applied to polymerize mannosylated 

monomers giving the corresponding glycoconjugate with polymeric chains grafting out the BSA scaffold. ELLA 

competition assay showed that the three dimensional arrangement of the ligands of BSA-glycopolymer conjugate allowed 

to gain two orders of magnitude, IC50 = 52.6 μM, when compared to linear mannosylated polymers with very similar 

content of mannose residues, IC50 = 13.8 mM.102  

As we have just seen, proteins are a powerful scaffold for multiple presentation. Recently, the oligomeric 

Ebola virus capsid was chosen as a platform for the preparation of highly multivalent DC-SIGN antagonists.104 

Ebola virus envelope is constituted by 180 copies of the monomeric Qβ that assemble together forming an 

icosahedral structure of ~ 28 nm diameter. The over-expression of recombinant Qβ in E. coli and self-assembly 

allowed the formation of capsid-like scaffold 25 with site specific introduction of the unnatural aminoacid L-

homopropargylglycine. This tag enabled the direct functionalisation through CuAAC with trivalent and 

nonavalent mannosylated glycodendrons 28 and 29, resulting in the 540 fold Qβ-(Man3)180 26 and the 1620 

fold Qβ-(Man9)180 27 mannosylated antagonists (Scheme 5). Qβ-(Man9)180 28 displays 1620 residues of 

mannose and is therefore the highest glycosylated structure with homogeneous presentation. The spherical 

symmetry of the molecule along with its dimension allowed impressive mimicking of the highly glycosylated 

Ebola virus envelope as it is demonstrated by DC-SIGN mediated Ebola virus infection model, where infection 

is inhibited with IC50 = 9.62 nM for Qβ-(Man3)180 26 and 910 pM for Qβ-(Man9)180 27.  
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Scheme 5 – Ebola capside is a valuable scaffold for highly valent DC-SIGN ligands. Ebola virus capsid 25 generated 

by self-assembly of 180 copies of mutated monomeric Qβ was prepared. Trivalent and nonavalent mannosylated 

glycodendrons 28 and 29 were introduced by CuAAC affording the 540 fold Qβ-(Man3)180 26 and the 1620 fold (Qβ-

(Man9)180) 27 that strongly inhibited DC-SIGN mediated Ebola virus infection, IC50 = 9.62 nM and 910 pM 

respectively.104 

Self-assembly strategy was also applied by the Wagner group, showing that the inhibitory potency of 

mannoside glycolipids for DC-SIGN mediated HIV infection can be drastically enhanced upon formation of 

micelles. Particularly the best inhibition was achieved with trimannosylated glycolipid 30 that showed two 

inhibition rates in dose-response inhibition of HIV-1 trans-infection model, (Fig. 13) with the faster slope b 

reached upon formation of dynamic micelles. Moreover the authors showed that dynamic micelles of 

mannoside glycolipids are more effective in binding DC-SIGN compared to corresponding rigid polymeric 

structures.105  

 

 

Figure 13 – DC-SIGN multivalent antagonists by self-assembly. Trimannosylated glycolipid 30 displayed two 

inhibition rates in dose-response inhibition of HIV-1 trans-infection model. The dynamic formation of highly valent 

micelles determines the faster slope b. The CMC (critic micellar concentration) is shown.105 

Gold nanoparticles (GNPs) have demonstrated to be a valuable scaffold for multipresentation of 

oligomannosides.106 Different degrees of functionalisation can be achieved, with 50 % of density being 

IC50 = 9.62 nM 

IC50 = 910 pM 
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sufficient to reach great inhibition in DC-SIGN triggered HIV trans-infection studies. Gold nanoparticles 

bearing dimannoside up to heptamannoside moieties all showed inhibition ability in the low nanomolar and 

subnanomolar range. Notably, the best inhibition was achieved with GNP 31 displaying tetramannoside 

moieties, but high potency was also reached by nanoparticles tethered with the simpler dimannoside and 

trimannoside structures (Fig. 14).107 Gold nanoparticles carrying fucose based ligands were also addressed in 

DC-SIGN binding (Fig. 14). The N-α-fucosyl-β-alanylamide derivative 32 showed to be potent DC-SIGN 

ligand, able to trigger internalization of the receptor in dendritic cells (DCs) without the induction of DC 

maturation, thus emerging as promising DC-SIGN targeting tools for selective delivery of antigens and dyes.108  

Figure 14 - Nanoparticles as platform for multipresentation of glycans. Gold nanoparticles have been described for 

multipresentation of DC-SIGN ligands. Gold nanoparticles 31 and 32 bearing either a tetramannoside or a fucose based 

ligand are shown.107,108  

Highly homogeneous constructs with spherical distribution of glycans can be obtained employing the rigid 

structure of fullerenes.109 So called fullerene “sugar balls” displaying up to 36 mannose residues have been 

obtained through CuAAC between hexakis-adduct 33 and mannosylated glycodendrons. The resulting 

conjugates were tested as DC-SIGN ligands in Ebola virus infection model. Results identified glycofullerene 

35 as the most active, IC50 = 0.3 µM, and highlighting the number of glycans exposed and especially linker 

length as important parameters for the control of glycan density and accessibility for DC-SIGN receptor 

(Scheme 6).110 

 

Scheme 6 – Fullerene “sugar balls”. CuAAC have been exploited to connect mannosylated dendrons to conveniently 

functionalized fullerenes. This approach led to construct 35 which showed an IC50 = 0.3 µM for DC-SIGN mediated 

Ebola virus infection.110 

IC50 = 0.3 μM 
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Glycodendrimers and glycodendrons are promising platforms for lectin antagonists with potential clinical 

applications. The synthesis of these constructs has been accomplished either through divergent or convergent 

routes leading to products with various scaffold structure and properties. The generation of mannosylated 

Boltorn-type dendrons 36 and 37 have been reported previously by our group (Fig. 15).111,68 These two 

dendrons are characterised by a common tetravalent polyester scaffold bearing four copies of either 

pseudobiomannoside 5b or pseudotrimannoside 6b ligands, properly designed to mimic the natural mannose 

glycan Man9 often exposed in multiple presentation on several pathogen glycoproteins. Both dendrons act as 

potent inhibitors of DC-SIGN mediated cis- and trans-infection in Jurkat cell Ebola model,111 while strong 

inhibition of DC-SIGN mediated trans-infection was further confirmed for dendron 36 by in vitro HIV 

infection assay.68 Moreover, 37 proved to guarantee a protective effect in MBL triggered brain ischemic injury 

in acute stroke in mice.51 

 

Figure 15 - Tetramannosylated dendrons 36 and 37. The polyester scaffold is either functionalized with 

pseudobiomannoside 5b or pseudotrimannoside 6b ligands. 

Scaffolds based on small molecules such as aromatic compounds112 and sugars113 have been largely 

employed. Exploiting Cu catalysed azide alkyne cycloaddition (CuAAC), pentaerythritol based glycodendrons 

38 and 39 were prepared, allowing the synthesis of higher valency compounds up to the 18-valent 

glycodendrimers 40 and 41 (Fig. 16). Constructs bearing multiple copies of the bis-amido glycomimetic 7 

revealed as the most active DC-SIGN antagonists in HIV and Dengue virus infection model.73 Despite the high 

affinity of these compounds for DC-SIGN, their structure is too short to bridge at least two carbohydrate 

binding sites. The introduction of a rigid spacer, derived from PEGylated phenyl acetylene moieties, enabled 

chelation resulting in the extremely potent DC-SIGN antagonists 42, 43, with IC50 values in the low nanomolar 

range in HIV infection studies.74 
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Figure 16 - Multipresentation of glycomimetics. Up to 18-valent glycodendrimers 40 and 41 have been prepared by 

CuAAC of azido tagged trivalent glycodendrons 38 and 39 with a dipentaerythritol based scaffold.73 The same strategy 

was applied to functionalize a rigid spacer, thus generating chelating antagonists 42 and 43.74 

0.4 Aim of the work 

So far we have appreciated the myriad of biological processes, both physiological and pathological, that 

are regulated and mediated by lectins. The generation of molecular tools able to interact strongly with these 

receptors is a challenging goal. Remarkable progresses have been possible with the synthesis of new generation 

of glycomimetics and glycoconjugates along with more insights in the principles that govern multivalency. 

Yet, the optimization of pharmacokinetic properties, the improvement of ligand affinity and selectivity remain 

an issue for clinical applications.  

All these problems were addressed in this PhD thesis work, whose final goal is the identification and the 

synthesis of new C-type lectins antagonists. Two main strategies were pursued:  

 Scaffold optimization. New multivalent constructs have been designed for MBL and DC-SIGN binding 

through structure optimization of previously developed antagonists. In particular, stabilised versions 

of the already reported hydrolytically sensitive glycodendrons 36 and 37 (Fig. 15) were successfully 

prepared employing a tetramide scaffold that showed great stability and versatility for the generation 

of compounds with increased valency. Moreover, guided by the high affinity for DC-SIGN achieved 

with chelating ligands 42, 43, the synthesis of a tetravalent antagonist with a rigid architecture allowing 

simultaneous binding of the four C-type lectin like domains of DC-SIGN tetramer was undertaken. 

 Ligand optimization. The development of new potent and selective C-type lectin antagonists is highly 

desirable and glycan microarrays have proved to be a useful tool for the identification of promising 

ligand candidates. In this context, preliminary studies for the chemoenzymatic synthesis of MALDI-
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TOF detectable microarrays of monovalent glycomimetic structures were conducted. More in detail, 

the synthesis of clickable NDP-sugar nucleotides was attempted to enable on-chip glycosylation and 

subsequent library diversity expansion through CuAAC. 
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1.1 Mannose Binding Lectin and its role in the complement system 

The Mannose Binding Lectin (MBL) is a circulating soluble C-type lectin that plays a crucial role in innate 

immunity. Indeed, MBL is fundamental for initiation of the complement system, which guarantees a front line 

protection against infecting pathogens and self-altered structures.1,2  

The complement system machinery is the evolution result of an ancestral defence system. It comprises more 

than 30 plasma and membrane proteins and allows for protection in the lag period that is required for the 

adaptive immune system to develop a specific immunological response. The complement system fulfils its 

functions through three main pathways, the classical pathway, the lectin pathway and the alternative pathway 

that are interconnected by a complex signalling network.1 For the sake of simplicity, herein we will focus just 

on the lectin pathway and particularly on its initiation mediated by MBL (Fig. 1.1). 

Beyond the classical pathway, the existence of the lectin pathway was demonstrated only after the discovery 

of MBL, which was identified as the solely activating pattern recognition receptor. Nowadays, we know that 

the situation is far more complex and at least six different PRRs were recognized as initiators of the lectin 

pathway: MBL, collectin-10, collectin-11, ficolin-1, ficolin-2 and ficolin-3. The PRRs, upon initial selective 

recognition of PAMPs and DAMPs motives, trigger lectin pathway through autoactivation of associated 

proteases, called MBL-associated serine proteases (MASPs). To date, three MASPs have been identified, 

MASP-1, MASP-2 and MASP-3 that can be found associated in initiation complexes to two non-catalytic 

proteins, MAp19 and MAp44. The regulatory mechanisms governing the formation of the initiation complex 

and the roles and mode of actions of recruited proteins are still unclear and object of investigation.3 

Nevertheless, it is proven that activation of MASPs finally triggers a proteolytic cascade, in which factors C4 

and C2 are initially cleaved with the formation of convertase C4b2a that activates C3 into the C5 convertase 

C4b2a3b, that cleaves C5 into the anaphylatoxins C5a and C5b eventually leading to the formation of the 

membrane attack complex (MAC).4  
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Figure 1.1 - The complement system pathway. So far, three pathways have been described that accounts for 

complement system functions. Beside the classical pathway, engaging adaptive immunity to form complex C1qr2s2, the 

lectin pathway has been identified MBL, ficolin-1, ficolin-2, ficolin-3, collectin-10, collectin-11 are all possible initiators 

of the signalling, which is triggered upon binding to PAMPs or DAMPs exposed by cells. Activation of MASP results in 

the cleavage of both C2 and C4 factors that combine together to form the C3 convertase C4b2a. C3 conversion finally 

leads to conversion of C5 into anaphylatoxins C5a and C5b promoting the formation of the MAC.4 

Recent insights established MAC formation to take place with the assembly of C5b protein with C6, C7, 

and C8 defining a structure that is elongated with 18 copies of C9, therefore resulting in an asymmetric barrel 

shape complex (Fig. 1.2).5,6,7 For long time, the membrane attack complex was supposed to act as a simple 

pore able to insert into the phospholipidic membrane of target cells and to cause lysis due to uncontrolled 

osmotic gradient. However, recent studies suggests that precise and fine regulations of the process must be 

operative, thus further highlighting the complexity of the complement system defence response.4 
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Figure 1.2 – The MAC structure. Sharpened map coloured according to complement proteins: C5b (tan), C6 (green), 

C7 (yellow), C8a (magenta), C8b (dark blue), C8g (orange) and C9 (light blue). Apart from C5b, all proteins of the MAC 

complex possess the cholesterol-dependent cytolysin/MAC/perforin-like (CDC/MACPF) domain, which associate into a 

β barrel determining pore formation (shown in grey). Axes are shown.6 

MBL is a homotrimeric, soluble C-type lectin belonging to the collectin family that is mainly expressed in 

hepatocytes and secreted as a soluble protein in the serum, where is normally found in 1 µg/mL concentration 

in humans.8 In animals, two gene sequences encoding for MBL can be identified on the same chromosome in 

close proximity, suggesting that the two isoforms arise from gene duplication of an ancestral gene.9 In rodents 

two MBL isoforms originate from the expression of Mbla and Mblc. In primates the corresponding ortholog 

gene are present, MBL1P1 and MBL2, but in higher primates only the latter is functional, while MBL1P1 is 

found as a pseudogene.10 

The functional structure of the protein is a homotrimer, formed by three subunits in which four different 

domains can be recognized: an N-terminal cysteine rich domain, with three cysteine residues responsible for 

intra and inter-chain disulphide bonds formation; the characteristic collagen like domain; a hydrophobic neck 

domain; a C-terminal C-type lectin-like domain. Subunits association process may be guided by interactions 

between the collagen regions, however experiments with truncated recombinant MBL showed that the 

presence of the neck region alone linked to the CTLD is sufficient to give, in solution and in crystals, a homo 

trimeric complex.11,12 The assembly of three subunits is strongly favoured and stabilised by interactions 

between the hydrophobic neck regions leading to formation of a α-helical coiled-coil motif. The resulting 

structure is depicted in Figure 1.3, where the three CTLDs clearly show a flat and trigonal arrangement, with 

calcium binding sites Ca2 (Ca2 is the calcium binding site involved in sugar recognition and binding) averagely 

spaced by 45 Å. 
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Figure 1.3 – MBL structure. a) Model structure of rat MBL homotrimer. The model was created by connection of a 

collagen region to crystal structures of the CRDs and the neck regions. The model was completed by addition of three N-

terminal cysteine-rich peptides at the N-terminus of collagen regions and by the addition of four glycosylgalactosyl 

disaccharides to residues Lys-44, Lys-47, Lys-79, and Lys-82 in each of the three collagen chains. At the bottom, the rat 

MBL sequence is aligned with the four regions of MBL.13 b) Crystal structure of truncated human MBL. The structure of 

MBL homotrimer lacking the collagen region is shown. The three CRDs displayed in a trigonal arrangement are shown 

in blue. Ca2+ ions are shown as yellow spheres, while the α-helixes of the three neck domains are shown in red.12 

The trivalent nature of MBL allows for multivalent protein-carbohydrate interactions, thus enhancing 

binding affinity. Notably, MBL homotrimers (thus displaying 3 CRDs) in solution assemble together forming 

higher oligomers, ranging from dimers up to octamers (6-24 CRDs; 3 CRDs per MBL homotrimer). In 

particular in mice MBL is present in serum ranging from monomers up to tetramers, whereas in humans, the 

main fraction is constituted by trimers and tetramers, with lower and higher forms occurring, from dimers up 

to hexamers.14,15 Some evidences suggests that higher MBL oligomers may increase complement activation,16 

hence revealing oligomerization process as a plausible regulation level in lectin pathway signalling. However, 

the study of oligomerization mechanisms and oligomer structures characterization are frustrated by the 

multidomain structure of the protein, which hampers X-ray crystallography determinations. Recently, a 

combination of X-ray scattering analysis and analytical ultracentrifugation data allowed for the determination 

of murine MBL dimers, trimers and tetramers, which showed a common near-planar V-shaped structure, with 

CTLDs separated on average by 20 nm (within the oligomers) (Fig. 1.4).13 

a. 

b. 
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Figure 1.4 – Structures of murine MBL oligomers. MBL homotrimers are known to associate together in solution 

forming aggregates. The structures for the dimer, trimer and tetramer of trimeric MBL have been calculated from X-ray 

scattering analysis and analytical ultracentrifugation data. The structure of MBL homotrimer is depicted along with the 

best-fit structures for the corresponding dimer, trimer and tetramer. The approximate angle between the two collagen 

helixes is also shown.13 

1.2 MBL in health and disease 

As a C-type lectin, MBL selectively binds to D-mannose, N-acetyl-D-glucosamine, D-glucose and L-fucose 

containing polysaccharides that are exposed either by invading pathogens, pathogen associated molecular 

patterns (PAMPs), and by self-altered cells, damage associated molecular patterns (DAMPs). As a 

consequence of binding, different responses can be triggered. Activation of complement is the most 

investigated pathway, but MBL is also able to promote apoptosis, to modulate inflammation and to induce 

opsonophagocytosis, even if is not clear whether MBL directly acts as an opsonin or if phagocytosis is 

stimulated through initiation of other pathways.  

Recognition of pathogens and activation of defence mechanisms is a complex event that is orchestrated in 

a cooperative fashion by several PRRs. Among these, MBL is able to recognize and target bacteria, viruses 

and fungi. Both the surface lipoarabinomannan glycan of Mycobacterium avium17 and peptidoglycan and 

lipoteichoic acid from Staphylococcus aureus18,19 are natural MBL ligands. A study revealed that MBL-null 

mice inoculated with S. aureus are far more susceptible to infections compared to wild type mice. Notably, an 

inversion of the phenotype was obtained treating MBL-null mice with recombinant human MBL (rhMBL) 

prior to inoculation, thus showing the important role of MBL in contrasting the infection.20 

MBL easily detects high-mannose glycans exposed on viral proteins. Studies have shown that MBL binds 

to influenza A virus inhibiting hemagglutination.21 Moreover, a higher susceptibility to herpes simplex virus-

2 infection was revealed in MBL-null mice.22  

Mannan oligosaccharide found as major component of fungal cell wall is another target for MBL. Indeed 

MBL is known to bind Saccharomyces cerevisiae, Aspergillus fumigatus and Candida albicans. Immune 

response against C. albicans infections are modulated by MBL, which is able to induce phagocytosis and 

respiratory burst and to stimulate monocytes to synthesise TNF-α.23,24 

1.3 MBL in ischemic injury - Background 

Being part of the innate immune system, MBL plays an important role in the detection of self-altered cells. 

Nauta and coworkers reported that MBL recognition of apoptotic and necrotic cells induces activation of 

macrophages and phagocytosis allowing non-inflammatory clearance of dying cells.25 Altered motives may 
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also be displayed by self damaged cells. MBL recognition of such DAMPs have proved to prompt complement 

activation, which aggravates the pathogenesis of ischemia and reperfusion injury. Indeed, MBL activity was 

found to exacerbate lesions in mice models of ischemia and reperfusion injury in heart,26,27,28,29 skeletal 

muscle,30 gut31,32 and kidney.33  

In vitro experiments in mice models also revealed the deleterious effects of MBL in brain ischemic injury. 

Ischemic stroke occurs when the blood supply is severely reduced or completely blocked. The restoration of 

blood circulation is followed by the establishment of an inflammatory environment that worsen the lesion, 

which is referred to as reperfusion damage. In this context, it has been show that MBL senses damaged cells 

activating the complement cascade and contributing to inflammatory responses leading to recruitment of 

inflammatory cells, synthesis of inflammatory molecules, activation of phagocytosis, induction of cell death 

and endothelial damage. Particularly, MBL binding to endothelial cells generates cytotoxic damage and 

increased MBL deposition in endothelium has been observed after ischemic stroke. Hence, MBL targeting 

emerges as a promising therapeutic strategy to limit reperfusion injuries after stroke. Recent studies have 

demonstrated that recombinant human C1 inhibitor (rhC1-INH), an oligomannosylated 478 aminoacids 

protein, colocalizes with deposited MBL, suggesting a pivotal role in silencing complement activation, thus 

reducing inflammation responses in ischemic brain mice models.34 Moreover, Lozano, Chamorro et al. 

observed reduced complement deposition and neutrophils recruitment in ischemic brain tissues of MBL-null 

mice, along with smaller infarction volume and better prognosis compared to wild type mice. Remarkably, the 

same study was also addressed to patients with acute stroke presenting single nucleotide polymorphism in the 

promoter and encoding region of MBL2 gene. This genotype is characterised by a low level of serum 

circulating MBL and was revealed to be associated with 11 times more probability of positive outcome after 

stroke.35 

The disclosure of MBL as a potential therapeutic target in acute stroke is of great interest. Indeed, in 2013 

stroke represented the fifth cause of death in the United States, with about 795 000 people per year experiencing 

a new or recurrent stroke (ischemic or haemorrhagic) and estimated to be responsible for $33 billion of direct 

and indirect annual costs.36 Ischemic stroke is caused by thrombotic or embolic occlusions and represents on 

his own the 87% cases of strokes. The only therapies available, including thrombolysis with tissue plasminogen 

activator, are limited in application due to the narrow therapeutic window (from 4.5 to 6 hours form stroke 

event) dictated by safety concerns. For this reason, the development of alternative treatment agents is really 

desirable. 

Furthermore, the therapeutic relevance of MBL as promising drug target was corroborated by in vivo 

experiments. Blocking the most abundant mouse isoform, MBL-A, with anti-MBL-A monoclonal antibodies 

in a mouse model of brain ischemic injury mice models resulted in protecting effects with a very wide 

therapeutic window: mice treated with mAb up to 18 hours after stroke showed 58% reduction of overall 

ischemic volume by MRI analysis.37 

Following a similar approach, aiming to block MBL with synthetic antagonists, multivalent constructs have 

been investigated. Promising results were obtained for Polyman2 37, a glycodendron based on a tetravalent 

polyester scaffold functionalised with pseudo-trisaccharide moieties 6. Indeed, in vivo experiments with 

transient middle cerebral artery occlusion (tMCAo) mice models, revealed remarkable protecting effect of 37, 

that was able to reduce ischemic functional deficits and ischemic volume when given up to 24 hours after 

stroke (Fig. 1.5a). Maximum efficacy was achieved after 6 hours from ischemic event, with a 68% reduction 

of ischemic volume. Moreover, Polyman2 37 treated mice resulted in MBL deposition abrogation in the 

endothelium (Fig. 1.5b), suggesting a plausible correlation between MBL deposition and tissue damage.37 
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Figure 1.5 - In vivo studies of Polyman2 37 dendron protecting effects. a) Polyman2 37 was given 3, 6, 12, 18, 24, or 

30 hours from transient middle cerebral artery occlusion (tMCAo) in mice. Infarct volume was assessed 48 hours from 

injury. Maximum reduction of ischemic volume was obtained when Polyman2 37 was given after 6 hours from injury. b) 

Representative images of MBL-A staining in the ipsilateral cortex 24 h after tMCAo in a vehicle treated mouse (left) and 

in a Polyman2 37 treated mouse (right. Polyman2 37 given 6 h after injury). Nuclei are stained in blue, blood vessels in 

green and MBL in red. c) Structure of tetravalent Polyman2 37 dendron.37 

1.4 Manno-glycodendrimers as MBL antagonists in reperfusion injury 

The binding ability of Polyman2 37 and its extremely wide therapeutic window make it a promising 

candidate for stroke treatment. In fact, Polyman2 37 possesses good solubility in water and minor cytotoxicity. 

However, 37 suffers from chemical instability ascribed to the unhindered succinyl ester bonds in the dendron 

scaffold (Fig. 1.5). The presence of these moieties makes the constructs really sensitive to nucleophiles, both 

under basic and mild acidic catalysis, impeding purification by common chromatographic techniques (both 

direct and reverse phase), preventing the scale up of the synthesis and hampering pharmacokinetic studies. 

Moreover, Polyman2 37 hydrolysis was observed even in water solution at physiological pH (7.4, PBS buffer), 

and quantified as 30% after 6 h by NMR analysis.38 MS analysis of the hydrolysed product confirmed that the 

cleavage takes place at the succynyl ester bond, while the remaining hindered α,α-disubstituted ester bonds 

contained in the molecule remained untouched. For these reasons, the design and preparation of more stable 

and easily accessible glycodendrons able to perform as MBL ligands were sought after. 

The nature of MBL targets in both physiological and pathological processes are still not clear, but X-ray 

structures of MBL complexes with mono and oligosaccharides have been determined.39,40,41 A rational design 

of synthetic multivalent ligands based on the structural data has never been attempted. However, by testing 

previously developed DC-SIGN pseudo-mannosylated ligands using Surface Plasmon Resonance (SPR),38,42,43 

we demonstrated that they also perform as MBL antagonists. 

SPR (Surface Plasmon Resonanace) is a physical phenomenon that is nowadays commonly applied as a 

biophysical method for measuring kinetic aspects of interactions between macromolecules and their ligands. 

From a theoretical point of view, the SPR is the collective excitation of electrons of a metal surface that is 

observed upon irradiation and absorption of a polarized light. The surface plasmon resonance is maximum 

c. 
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when the angle of incidence of the radiation, Θ, reaches the value of the resonance angle, Θres. Resonance 

angle, Θres, is dependent from the refracting indexes of the materials crossed by the incident light, thus the 

polarizing glass prism and the metal surface (glass/metal). When Θ = Θres the radiation absorption of electrons 

is maximum and, as a consequence, the intensity of the reflected light reaches a minimum.  

SPR was revealed as a valuable tool for the determination of dissociation constants for small molecule-

protein interactions. Devices based on this technique consists of a chip coated with a metal surface, usually 

gold, on which the protein of interest (or either the ligand) is immobilized. A solution of the ligand (or either 

the protein) is then flowed through channels over the gold surface and the extent of the ligand-protein 

interaction is measured irradiating with a polarized light. The refracting index of the glass prism is a constant, 

while the refracting index of the gold layer is sensitive to changes at its surface. Therefore, association and 

dissociation processes that takes place over the chip will result in a modulation of SPR signal, which can be 

detected as a variation of Θres measuring the intensity of reflected light (Fig. 1.6). 

 

 

Figure 1.6 - SPR based analysis of carbohydrate-protein interactions. a) Schematic representation of an SPR based 

device. In the picture, the extent of the binding of ligands (in red) towards proteins (in blue), immobilized on a gold 

surface, is revealed irradiating with light polarized by a glass prism. b) The typical SPR signal is shown. The intensity of 

reflected radiation is monitored varying the incident angle Θ. When Θ = Θres the plasmon resonance is maximum and the 

reflected radiation intensity reaches a minimum. Θres is characteristic for each surface and sensitive to modifications that 

are detected as a shift in Θres value. c) Association and dissociation at the gold surface of SPR devices are translated into 

a sensogram. Curves corresponding to solutions of different concentration of ligands are reported. As the ligand is binding, 

the signal rapidly increases until it reaches a maximum, forming a plateau. Washing out the ligand, the signal rapidly 

decreases. From the sensograms, the dissociation koff and association kon rate constants can be extrapolated and the 

corresponding dissociation constant KD can be calculated. 

For our screening of putative MBL antagonists, multivalent constructs with different geometries and 

valencies, bearing either simple mannose residues or the glycomimetic dimannosides 5 and trimannosides 6 

were tested (Table 1.1), while the already investigated Polyman2 37 was screened as reference compound. All 
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SPR analysis were performed by the Gobbi group at “Mario Negri - Istituto di Ricerche Farmacologiche” in 

Milan. 

The Polyman2 37 analogue, Polyman1 36 was also included in the screening.44 In fact, although this 

dendron presents the same drawbacks of Polyman2 37, it allows to evaluate the impact on MBL binding when 

pseudo trisaccharide 6 units are switched with the simplified structure of pseudo-disaccharide 5. The more 

robust structures of Polyman5 44,45 Polyman8 45,42 Polyman17 46,42 still belonging to the tetravalent series, 

were tested. These glycodendrons display respectively four copies of D-mannose and of glycomimetic ligands 

5 and 6. The relationship between the amount of displayed ligands and potency enhancement was evaluated 

screening the related hexavalent Polyman9 4742 and Polyman21 4842. Moreover, hexavalent compounds 

Polyman30 49,43 Polyman32 50,43 Polyman31 4243 and Polyman42 5146 with a rigid rod-like structure of 

different length were tested to study chelation of MBL binding sites. Finally, the nonavalent presentation of 

glycomimetic 5 was evaluated with Polyman 20 52.42 

Compound Structure 
Ligand/ 

Valency 

Polyman2a 

37 

 

Pseudo-trimannoside 6/ 

4 

Polyman1b 

36 

 

Pseudo-dimannoside 5/ 

4 

Polyman5c 

44 

 

D-Mannose/ 

4 
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Polyman8d 

45 

 

Pseudo-dimannoside 5 / 

4 

Polyman17d 

46 

 

Pseudo-trimannoside 6/ 

4 

Polyman9d 

47 

 

Pseudo-dimannoside 5 / 

6 

Polyman21d 

48 

 

Pseudo-trimannoside 6/ 

6 

Polyman30e 

49 

 

Pseudo-dimannoside 5 / 

6 

Polyman32e 

50 

 

Pseudo-dimannoside 5 / 

6 
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Polyman31e 

42 

 

Pseudo-dimannoside 5 / 

6 

Polyman42f 

51 

 

Pseudo-trimannoside 6/ 

6 

Polyman20d 

52 

 

Pseudo-dimannoside 5 / 

9 

 

Table 1.1 - Glycodendrons and glycodendrimers as potential MBL antagonists. The multivalent constructs tested as 

MBL ligands are reported. Ligands deriving from D-mannose are depicted in black, from pseudo-dimannoside 5 in red 

and from pseudo-trimannoside 6 in blue. The corresponding valency is also shown. Names of the compounds are reported 

with a superscript specifying the literature reference for synthesis and characterisation: a) S. Sattin et al. ACS Chem. Biol. 

2010, 5, 301-312; b) J. Luczkowiak et al. Bioconjugate Chem. 2011, 22, 1354-1365; c) M. Touaibia et al. ChemMedChem 

2007, 2, 1190-1201; d) N. Varga et al. Biomaterials 2014, 35, 4175-4184. Preparation and characterisation of Polyman42 

51 is also described in the Experimental part of Chapter1; e) S. Ordanini et al. Chem. Commun. 2015, 51, 3816-3819; f) 

Preparation and characterisation of Polyman42 51 is described in the Experimental part of Chapter1. 

Two preliminary screening campaigns to identify multivalent ligands for MBL were first conducted by 

non-competitive SPR assay. MBL was immobilized on the sensor chip, then solutions of putative multivalent 

ligands were flowed on the gold surface to measure the entity of the binding. As a first analysis, only single 

point measurements were registered. 

Compounds belonging to the tetravalent series were tested in binding assay with the murine isoform MBL-

A (Fig. 1.7a). The results suggests that binding ability of this multivalent constructs is enhanced when copies 

of both glycomimetics 5 and 6 are displayed instead of D-mannose residues, with 6 performing as the best. 

Moreover, the higher avidity of 36 and 37, when compared to constructs displaying the corresponding 

monovalent ligands 45 and 46, identifies Boltorn glycodendron scaffold as a platform with better ligand 

presentation for the arrangement of MBL-A binding sites. Polyman8 45 and Polyman2 37 were further 

investigated along with hexavalent and a nonavalent compounds, all displaying dimannoside monovalent 
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glycomimetic 5, in interactions with either recombinant human MBL (RHmbl) and the two murine isoforms 

MBL-A, MBL-C (Fig. 1.7b). In some cases a certain degree of selectivity for the different protein forms was 

observed. For example, while no selectivity was shown by the hexavalent Polyman9 47, Polyman2 37, which 

bears four copies of the more potent trimannoside 6, achieved binding for rhMBL but presented significantly 

decreased affinity for the murine isoforms. The highest binding affinity was exhibited by rigid rod containing 

compounds 50 and 42, suggesting that chelation mechanisms may be operative with these extended scaffolds. 

 

 

Figure 1.7 - SPR direct interaction experiments with MBL-A. a) Compounds in the tetravalent series were tested for 

direct interaction with the murine isoform MBL-A. MBL was immobilized on the surface of sensor chip, whereas the 

dendrimers were injected for 3 minutes at a flow rate of 100 µL/min. The maximal binding for each dendrimer is expressed 

in resonance units, RU. Single point measurements were recorded. b) The graphics show results for the second screening 

campaign. Selected constructs were tested in direct interaction with both murine MBL isoforms MBL-A and MBL-C and 

with recombinant human MBL, rhMBL. Single point measurements were recorded immobilizing MBL isoforms over the 

sensor chip and flowing the multivalent ligands at two different concentrations (100 and 30 µM).  

These initial studies allowed the selection of compounds with the most promising geometries, therefore the 

affinities of Polyman20 52, Polyman31 42, Polyman9 47 and Polyman2 37 for rhMBL were further determined 

by a more accurate SPR inhibition assay. In this experiment, IC50 values of multivalent ligands can be 

calculated flowing the compounds at different concentrations together with rhMBL over the sensor chip, where 

they have to compete for binding against an immobilized polymannosylated BSA (Fig. 1.8). Additionally, the 

two constructs Polyman42 51 and Polyman21 48, both functionalised with six copies of the trimannoside 6, 

were also tested.  

To contain the loss of materials and the costs associated with this kind of analysis, monovalent ligands were 

not screened and experiments were restricted to multivalent compounds. Thus, a rigorous calculation of the 

relative inhibition potency (β) was not possible but compounds affinity was evaluated as relative potency γ, 

taking the already investigated Polyman2 37 as a reference. Relative potency weighted for the valency γW is 
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also reported (Table 1.2). Compared with the affinity of Polyman2 37 a 3.5 fold higher potency (2.3 corrected 

per ligand) was achieved with the higher functionalized Polyman21 48, while the extended structure of 

Polyman42 51 possibly allows chelation, resulting in a compound with 8.5 increased relative inhibition 

potency corrected per number of monovalent ligands. In order to achieve comparable inhibition potency with 

more accessible compounds, constructs bearing multiple copies of the synthetically less demanding ligand 5 

were screened. Polyman9 47 provided comparable affinity for rhMBL as Polyman2 37 and approaching half 

the inhibition potency of the corresponding hexavalent Polyman21 48. An IC50 value of 60 µM was achieved 

by the chelating compound Polyman31 42, which is four time less potent than the dendron of analogous 

structure Polyman42 51, but reaches the potency showed by the non chelating Polyman21 48. Finally, further 

increased potency was achieved with the higher extent of functionalization of Polyman20 52, that showed an 

IC50 value of 21 µM corresponding to a γW value 4 times higher than both Polyman9 47 and Polyman2 37. 

From this screening, Polyman31 42 was chosen as the best compromise between synthetic accessibility, 

loading of monovalent ligand and potency and was therefore selected for further in vitro and in vivo 

investigations. 

 

Figure 1.8 - SPR dose-response inhibition curves for multivalent compounds in interaction with rhMBL. The curves 

show the inhibition profiles for the multivalent compounds screened in the interaction with rhMBL. Multivalent ligands 

were preincubated with rhMBL (8 nM) at different concentrations (10, 30, 100 µM) and the solutions were flowed over 

an SPR sensor chip coated with previously immobilized mannosylated-BSA. The concentration dependence of SPR signal 

allows fitting of model curve to the experimental data for each multivalent ligand and determination of the corresponding 

IC50 value (data showed in Table 1.2). 

 

Compound IC50 (µM) Relative potency γ γW
 

Polyman2 37 

 

191 1 1 

Polyman21 48 

 

55 3.5 2.3 

Polyman42 51 

 

15 12.7 8.5 

Polyman9 47 

 

126 1.5 1.0 
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Polyman31 42 

 

60 3.2 2.1 

Polyman20 52 

 

21 9 4.0 

 

Table 1.2 - Compounds affinities for rhMBL. From inhibition curves, IC50 values of multivalent ligands for rhMBL 

were calculated. The relative potency γ for each constructs was calculated taking Polyman2 37 as a reference (γ=1). 

Taking into consideration the number of monovalent ligands displayed by each rhMBL antagonist the relative potency 

weighted for the valency γW was defined.  

The intrinsic fluorescence of Polyman31 42 allowed to assess its stability in plasma by simply measuring 

intensity variations of its emission. Tests with both murine and human plasma at 37 °C revealed that the 

molecule is rather unstable showing a reduction in fluorescence intensity around 10-30% after 4 hours and 

complete disappearance of the signal after 24 hours (Fig. 1.9a). However, an additional fluorescence signal 

appeared (Fig. 1.9a) and increased inversely to the fluorescence of 42. This new signal can likely be ascribed 

to a degradation product, possibly arising from hydrolysis of methyl ester groups of the dendron glycomimetic 

moieties. In vivo stability was also assessed in mice, monitoring both by fluorescence and MS spectrometry. 

The susceptibility of the dendron to hydrolysis was confirmed by analysis of the mass spectra (Fig. 1.9b). 

Moreover, the disappearance of signals of both Polyman31 42 and hydrolysed metabolites was evaluated by 

fluorescence and mass analysis and was established to occur completely in just 1 hour in mice. Combining the 

in vivo data with the analysis in plasma, we conclude that the decrease of fluorescence observed in vitro 

(stability tests in plasma) is probably due to hydrolytic lability of the molecule, while in vivo clearance of the 

molecule is likely due to a fast excretion rate. (Fig. 1.9b) Indeed, fluorescence measurements of the mice urine 

suggests that most of 42 is probably expelled with first renal pass in mice (5 minutes after intravenous 

administration), which may also justify the inefficacy of Polyman31 42 in providing beneficial effects in in 

vivo experiments with transient middle cerebral artery occlusion (tMCAo) mice models (Fig. 1.9c).  
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Figure 1.9 - In vitro and In vivo tests of Polyman31 42. a) In vitro stability test using both murine and human plasma 

at 37 °C. Fluorescence signal of Polyman31 42 and formation of a second peak ascribed to partial hydrolysis of 42 are 

monitored over time up to 24 hours. b) Concentration of Polyman31 42 in mice at different time from injection. The 

presence of the dendrimer was evaluated monitoring both with fluorescence and mass spectroscopy. The presence of 

hydrolysed metabolites of Polyman31 42 was also monitored by mass spectroscopy. c) Polyman31 42 protecting effects 

were evaluated in transient middle cerebral artery occlusion (tMCAo) mice models. No significant improvement of 

general and focal deficits, neither reduction of ischemic volume were observed upon administration comparing with a 

control experiment in which a saline buffer solution was administered. 

The drawbacks of Polyman31 42 brought us to reconsider previously screened compounds with alternative 

architecture. We stated that Polyman2 37 combines good affinity for MBL (KD = 6 µM) and good activity in 

vivo with relatively low loading of monovalent sugar ligand, while Polyman20 52 presents high avidity in vitro 

displaying multiple copies of the synthetically less demanding dimannoside 5. Thus, additional 

characterization of Polyman20 52 in ex vivo and in vivo studies will be pursued at the Mario Negri Institute. 

For our part, we focused on the possibility of optimizing the structure of 37 with two main goals: 1) chemical 

stabilization of the dendron moiety; 2) replacement of the ps-trisaccharide ligand 6 with the more accessible 

ps-di counterpart 5. 

The design of a stabilised version 53 of previously developed dendrons 36 and 37 was based on minor 

changes of the previously developed scaffold, switching the hydrolytically unstable unhindered ester bonds 

into more robust amide functions (Fig. 1.10). To avoid solubility issues and for synthetic reasons explained 

below, we sought to replace the succinyl moiety of 37 with a slightly longer and more hydrophilic linker (blue 

box in Fig. 1.10). Additionally, a proper functionalization of the dendron focal point was adopted to allow the 

preparation of higher valency compounds by multipresentation. 
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Figure 1.10 - Stabilised tetraamide MBL antagonists. Our aim is to attempt to stabilize previously developed dendrons 

36 and 37 generating analogues with general structure of 53. The feeble unhindered ester bonds of succinyl linker (red 

box) will be replaced with amido functions using a longer and more hydrophilic linker (blue box).   

The retrosynthetic analysis that we adopted for the preparation of 54a is depicted in Scheme 1.1 and three 

building blocks can be identified. The dendron structure 54a is formed by reaction of tetraamine 57a with the 

capping unit 55. Building block 55 can be derived from ring opening reaction of diglycolic anhydride 56. It 

was selected to replace the shorter succinate linker in order to avoid the possible intramolecular cyclization of 

amide groups over the activated carboxylic acid during the final functionalization of 54a. In fact, an analogous 

reactivity has been described for aspartic acid derivatives, where 5-member ring imides can form upon 

activation.47 Moreover, a linker containing an ether oxygen atom in the chain was chosen to favour water 

solubility of the final constructs.  

On the other hand, the tetraamine 57a can be prepared by connecting two units of 2,2-

bis(aminomethyl)propionic acid 59 to the 2,2-bis(hydroxymethyl)propionate ester focal unit 58a. Introduction 

of reactive groups at the ester focal point allows for further functionalization of the final glycodendrons, 

enabling access to higher valency compounds and multiple presentation of the multivalent ligand. For this 

reason, the azido containing glycodendron 54b was also prepared employing building block 58b. Finally both 

58a,b and 59 can originate in a divergent approach form the common precursor 2,2-

bis(hydroxymethyl)propionic acid 60. 
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Scheme 1.1 - Retrosynthetic analysis of scaffold 54. Retrosynthetic analysis allowed to identify three building blocks: 

55 can be obtained from ring opening reactions of diglycolic anhydride, while the ester 58 and the Boc-protected 

aminoacid 59 can both originate from the common precursor 2,2-bis(hydroxymethyl)propionic acid 60. 

Herein we describe the synthesis of stabilised tetraamide antagonists with general structure as 53. As a 

preliminary study, to explore the feasibility of the synthesis, dendrons with a benzyl ester group at the focal 

point 54a were selected and prepared. The building blocks 58a, 59 and 55, identified by the rethrosynthetic 

analysis, were prepared and connected to one another following a synthetic route aimed to minimizing 

protection/deprotection steps, which instead were required in the preparation of the polyester scaffold of the 

corresponding dendrons 36 and 37.44,48 

The focal unit 58a was obtained from 2,2-bis(hydroxymethyl)propionic acid 60 (Scheme 1.2). 

Deprotonation using NaOH followed by addition of BnBr afforded 58a in low yield, 19%. However, changing 

for KOH in harsher conditions furnished 58a in good yield (62%), which is comparable to an already reported 

procedure.49  

 

Scheme 1.2 - Synthesis of building block 58a. The two different procedures adopted for esterification of 60 to give the 

corresponding benzyl ester are reported. 

The preparation of synthon 59 requires the transformation of the two hydroxyl groups of 60 into leaving 

groups followed by double nucleophilic substitution with NaN3. Since direct tosylation of 60 as free acid using 

TsCl and pyridine at room temperature was unsuccessful (Scheme1.3a), the ester 58a was conveniently 

employed as intermediate in the synthesis of 59. Therefore, 58a was successfully transformed into the bis-

tosylate 62. As a first attempt, mild conditions (TsCl, DIPEA, DMAP cat., DCM, rt) were tried achieving only 

partial conversion (Composition of the crude revealed by 1H NMR analysis: bis-tosylate 62 9%, mono-tosylate 

63 66%, unreacted starting material 58a 25%). This reaction showed a strong concentration dependence. 

Indeed complete conversion was obtained performing the reaction with TsCl at 60 °C with pyridine as the 

solvent at higher concentration, which furnished 62 as unique product in very high yield (94%). Pleasantly, 

the following double nucleophilic substitution step gave the desired bis-azido 63 in 91% yield. An alternative 

route envisaging mesylate 65 as intermediate was also explored. As opposed to tosylation, complete conversion 

was obtained performing mesylation in mild reaction conditions at increased concentration (MsCl, DIPEA, 

DMAP cat., DCM, rt). However, low conversion of 65 was achieved in the subsequent nucleophilic 

substitution reaction with NaN3, which led, after 3.5 days, to a mixture of the product 64 (39%) along with 

mono functionalised 66 (52%) and unreacted starting material 62 (9%) (percentages calculated by 1H NMR 

analysis of the crude) (Scheme 1.3b). Again, excessive dilution is likely responsible for the observed partial 

conversion. 
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Scheme 1.3 - Synthesis of bis-azido intermediate 64. a) Unsuccessful direct tosylation of 60 is reported. b) Mild reaction 

conditions were not efficient for the synthesis of 62, which was readily obtained under harsher and more concentrated 

reaction conditions. From 62, double nucleophilic substitution afforded the desired 64. 

One-pot catalytic hydrogenation of 64 in the presence of di-tert-butyl dicarbonate finally afforded the N-

Boc-protected bisaminoacid 59 (Scheme 1.4). This procedure enables subsequent reduction of azido groups 

into amines, protection of amines as Boc derivatives and removal of the benzylester, affording the carboxylic 

acid 59 in overall 50% yield, after flash column chromatography.  

 

Scheme 1.4 - Synthesis of building block 59. The protected aminoacid 59 was obtained by catalytic hydrogenation of 

64 in presence of di-tbutyl dicarbonate. 

With the building blocks 58a and 59 in hand, we started to synthesize the tetravalent scaffold. A double 

condensation reaction between diol 58a and two molar equivalents of bisaminoacid 59 allowed the formation 

of the Boc-protected tetraamine 70a. Initial trials using DCC (N,N’-dicyclohexylcarbodiimide) as condensing 

agent (Table 1.3, entry 1 and 3) identified DCM and room temperature as better reaction conditions compared 

to THF under reflux (Table 1.3, entry 2). The use of DPTS (dimethylaminopyridinium p-toluenesulfonate) was 
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investigated, as it was reported to minimize the formation of N-acylurea side products, which are usually 

formed in this kind of reactions by rearrangement of the activated carboxylic acid intermediate (Scheme 1.7).50 

However, in our case, a slightly detrimental effect was observed using DPTS instead of DMAP (Table 1.3, 

entry 3). A better reaction outcome was finally obtained using a purer source of compound 59 (Table 1.3, entry 

4), which allowed to obtain 70a in 80% yield. Alternative condensing agents were also tested. EDC·HCL (N-

(3-dimethylaminopropyl)-N’-ethylcarbodiimide) was less effective for the reaction (Table1.3, entry 5), while 

the use of DIC (N,N’-diisopropylcarbodiimide) resulted in low yield, 37%, due to difficult isolation of the 

product from the corresponding N-acylurea side-product (Table 1.3, entry 6). 

 

Scheme 1.6 - Synthesis of protected tetraamine 70a. Condensation of focal unit 58a with an excess of building block 

59 afforded the Boc-protected tetraamine 70a. The possibly occurring monosubstituted side product 71 is shown along 

with the structures of the coupling reagents tested for the reaction. 

Entry Conditions: Products: 

1 
59 (3.5 mol. eq.), DCC (2.8 mol. eq.), DMAP (1.0 mol. eq.), 

DCM, r.t. 

70a 55% and 71 (isolated but 

not quantified) 

2 
59 (2.5 mol. eq.), DCC (2.8 mol. eq.), DMAP (1.0 mol. eq.), 

THF reflux 
70a 16% and 71 48% 

3 
59 (3.0 mol. eq.), DCC (2.8 mol. eq.), DPTS (2.0 mol. eq.), 

DCM reflux 
70a 39% 

4 
59a (3.0 mol. eq.), DCC (3.0 mol. eq.), DMAP (1.0 mol. eq.), 

DCM, r.t. 
70a 80% 

5 
59a (3.0 mol. eq.), EDC (3.0 mol. eq.), DMAP (1.0 mol. eq.), 

NEt3 (3.0 mol. eq.), DCM, r.t. 

70a and 71 in comparable 

amount (by TLC) 

6 
59a (3.0 mol. eq.), DIC (3.0 mol. eq.), DMAP (1.0 mol. eq.), 

DCM, r.t. 
70a 37% 

Table 1.3 - Reaction conditions attempted for the synthesis of 70a. The conditions that have been tested are 

reported: the amounts of 59, the coupling agents and the solvent were varied. a) Reactions performed with a better 

purified source of 59.  
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Scheme 1.7 - N-acylurea: a side-product in carbodiimide mediated condensation reactions. The general mechanism 

for amide formation envisaging activation of a carboxylic acid with a carbodiimide derivative and subsequent reaction 

with an amine is depicted. The attack of the acid over the carbodiimide lead to an activated intermediate that can either 

evolve toward the formation of the desired amide (blue box) or rearrange to give an N-acylurea as side-product (red box).  

In order to directly obtain the tetraacid 54a from 70a, N-Boc removal in a 4:1 TFA/DCM mixture leading 

to tetraamine 57a followed by ring opening reaction of dyglicolic anhydride 56 was attempted. However, this 

procedure was abandoned due to difficulties in monitoring the formation of the tetra carboxylic acid 54a 

(Scheme 1.9). Thus, we decided to prepare the related scaffold 72a protected as trimethylsilylethyl ester. As a 

first attempt, N-Boc removal from 70a and subsequent condensation reaction of the tetraamine with acid 68, 

deriving from ring opening reaction of diglycolic anhydride with trimethylsilylethanol (60% yield after 

chromatographic purification), was tested. Using DCC as coupling agent, 72a was obtained as judged by MS 

analysis, albeit the formation of many side-products was also observed. Indeed, residual TFA deriving from 

deprotection step is also activated towards nucleophilic attack, leading to undesired functionalization of the 

tetraamine scaffold as trifluoroacetamides. Up to doubly functionalized side-products were detected by ESI-

MS analysis.  

Elongation of the scaffold to give 72a was cleanly achieved employing p-nitrophenyl ester 55. This building 

block was synthesized by EDC·HCl mediated condensation reaction of carboxylic acid 68 and p-nitrophenol 

and was pure enough to be employed in the following step without further purification (71% yield was 

determined by 1H NMR) (Scheme 1.5). However, chromatographic purification for characterisation purposes 

gave pure 55 as a waxy white solid in 56% yield. Finally, N-Boc deprotection of carbamate 70a in a 4:1 

TFA/DCM mixture and subsequent reaction of the tetraamine with an excess of the activated ester 55 afforded 

dendron 72a as a crude that was successfully purified (74% yield) by automated chromatography using a high 

performance column (Biotage SNAP Ultra). 
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Scheme 1.8 - Synthesis of dendron 72a employing building block 55. Treatment of 70a with TFA/DCM mixture and 

subsequent reaction with the activated building block 55 gave the protected 72a dendron. Attempts aimed to directly 

obtain the deprotected derivative 54a by ring opening of diglycolic anhydride failed. Deprotection of 70a and subsequent 

DCC mediated condensation with intermediate 68 afforded the product 72a in a mixture with side-products deriving from 

unwanted condensation with residual TFA. The synthesis of building block 55 is also shown. Starting from diglycolic 

anhydride 56, a ring opening reaction with trimethylsilylethanol affords carboxylic acid 68, which is activated as p-

nitrophenyl ester giving the desired 55.  

The tetravalent trimethylsilylethyl ester dendron 72a turned to be a very useful intermediate. This scaffold 

presented high stability, it could be stored for months without degradation and conveniently deprotected in 

acidic conditions only once needed. Treatment with a 6:1 DCM/TFA mixture quantitatively afforded the 

tetraacid 54a. Coevaporation of TFA with toluene and diethylether is a critical operation since esterification 

of 54a was observed under acidic conditions in the presence of nucleophilic solvents such as methanol. 

Generally the product could be employed directly as a crude in the next synthetic step, but an analytical sample 

was purified by automated reverse chromatography (Biotage SNAP C18, gradient elution: from 100% H2O to 

100% MeOH) for characterisation purposes, (72%).  
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Scheme 1.9 - Deprotection of dendron 72a. The synthesis of tetraacid 54a was achieved treating the corresponding 

protected scaffold with a mixture of DCM/TFA. 

The reaction conditions for the final functionalization of dendron 54a were optimized employing the 

commercially available p-methoxybenzylamine 74 as a more accessible amine counterpart. (Scheme 1.10). 

Treating 54a with an excess of the amine 74 in presence of HATU and DIPEA in DMA at 30 °C allowed the 

formation of the tetrasubstituted 75 in 47% yield (Table 1.4, entry 1). Since ESI-MS analysis of the crude 

assessed full conversion, the low yield may be due to purification issues and the small scale of the reaction 

with consequent loss of material during purification. Monitoring by ESI-MS analysis, no significant 

differences were obtained varying the HATU coupling agent with a combination of HATU and HOAT or using 

COMU (Table 1.4, entry 2 and 3). On the contrary, increasing the temperature is detrimental for the reaction 

outcome (Table 1.4, entry 4), since the amide functionality of 54a can compete for nucleophilic attack over 

the activated carboxylic acid by an intramolecular process giving cyclic imide side-products (detected by ESI-

MS; see Scheme 1.10). Moreover, when the amine excess was decreased to 4.8 mol.eq. a worse conversion 

and formation of impurities were detected (Table 1.4, entry 5).  

 

Scheme 1.10 - Optimization study for efficient functionalization of scaffold 54a as a tetraamide. The reaction 

conditions for the functionalization of 54a as glycodendrons were previously optimized using the commercially available 

amine 74. The structures of the coupling reagents employed are reported in the box. The key step of the mechanism 

responsible for the formation of possible intramolecular cyclization side-products is also shown. 

Entry Conditions Yield 

1 
74 (7.6 mol. eq.), HATU (8.0 mol. eq.), DIPEA (16.0 mol. eq.), 

DMA, 30 °C. 
75 47% 

2 
74 (7.6 mol. eq.), HATU (4.4 mol. eq.), HOAT (4.4 mol. eq.), 

DIPEA (4.4 mol. eq.), DMA, 30 °C. 

Comparable conversion to 

entry 1 by ESI-MS 

3 
74 (7.6 mol. eq.), COMU (4.8 mol. eq.), DIPEA (9.6 mol. eq.), 

DMA, 30 °C. 

Comparable conversion to 

entry 1 by ESI-MS 
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4 
74 (7.6 mol. eq.), HATU (8.0 mol. eq.), DIPEA (16.0 mol. eq.), 

DMA, 70 °C. 
Undesired cyclization 

5 
74 (4.8 mol. eq.), HATU (4.4 mol. eq.), DIPEA (8.8 mol. eq.), 

DMA, 30 °C. 
Impurities 

 

Table 1.4 - Condensation between scaffold 54a and p-methoxybenzylamine 74. The table summarizes the reaction 

conditions tested. Three different coupling reagents were screened, all giving good conversions (entry1-3). Increasing the 

temperature was detrimental for the reaction (entry 4) as well as reducing the amine excess employed (entry 5). 

For the final conjugation of dendron 54a with glycomimetics 5b, the reaction conditions previously 

reported in Table 1.4, entry 1 were selected (HATU, DMA, 30 °C, 12 h) affording the tetravalent glycodendron 

76a in 82% (Table 1.5, entry 1). On the other hand, the functionalization of scaffold 54a with the pseudo-

trisaccharide 6b required slightly harsher conditions (Table 1.5, entry 2). Both PyBroP and the combination 

HATU/HOAT were used as coupling agent at 37 °C, with the latter condition being the best and affording the 

corresponding glycodendron 77a in 74% yield after purification. Notably, despite the increase of temperature 

no intramolecular cyclization was observed by MALDI analysis (HCCA, MeOH) of the reaction crude. 

Both dendrons 76a and 77a were first purified from low molecular weight impurities by size exclusion 

chromatography (Sephadex LH-20) and, as opposed to 36 and 37, could be submitted to a second direct phase 

flash chromatography which afforded the pure products. Moreover, 76a proved to be stable under reverse 

phase HPLC purification conditions (H2O/CH3CN + 0.1% of formic acid). The excess of glycomimetics 5b 

and 6b could be recovered after size exclusion chromatography as guanidine derivatives, coming from side-

reaction with the excess HATU (Scheme 1.11).  

The stability of 77a towards hydrolysis was corroborated by 1H NMR: no hydrolysis was observed in water 

solution at physiological pH (PBS buffer, pH 7.4), monitoring the dendron for up to four days. Both 

glycodendrons were fully characterised by NMR, HRMS ESI and MALDI (HCCA) mass spectroscopy. 

Notably, the signals of both dendrons 76a and 77a in MALDI MS analysis are always associated with an 

additional signal at lower molecular weight (m/z: 1947.7 and 1090.1 respectively) that arises from dendron 

decomposition upon ionization. 
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Scheme 1.11 - Synthesis of glycodendrons 76a and 77a. Scaffold 54a was functionalised either with four copies of the 

amino tethered pseudo-mannoside 5b and in analogous fashion with the pseudo-trimannoside 6b. 

Entry Conditions Yield 

1 
5b (7.6 mol. eq.), HATU (8.0 mol. eq.), DIPEA (16.0 mol. eq.), 

DMA, 30 °C. 
76a 82% 

2 
6b (7.6 mol. eq.), HATU (8.0 mol. eq.), DIPEA (16.0 mol. eq.), 

DMA, 30 °C. 
77a 15%  

3 
6b (7.6 mol. eq.), PyBroP (8.0 mol. eq.), DIPEA (16.0 mol. eq.), 

DMA, 37 °C. 
77a 56% 

4 
6b (7.6 mol. eq.), HATU (6.0 mol. eq.), HOAT (6.0 mol. eq.), 

DIPEA (16.0 mol. eq.), DMA, 37 °C. 
77a 74% 

 

Table 1.5 - Conditions for the synthesis of glycodendons 76a and 77a. The table reports the conditions used for 

condensation between the tetraacid 54a and the linker amino group of the properly functionalised pseudo-mannoside 5b 

(entry 1). Different coupling reagents were tested for the analogous conjugation of 54a with pseudo-trimannoside 6b 

(entry 2-4), revealing the combination of HATU/HOAT to perform as the best. 

The increased stability of the new generation constructs brought us to consider the opportunity of 

orthogonally functionalize the dendron focal point allowing further diversification and the generation of higher 

valency compounds. For this purpose, the azido containing focal unit 58b was prepared (80%) by esterification 

of 60 treating with mesylate 79 derived from 3-azidopropanol 78 (Scheme 1.12).51  
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Scheme 1.12 - Synthesis of the azido containing building block 58a. Esterification of 60 with the mesylate derivative 

79 obtained from 3-azidopropanol 78 afforded the azido armed 58b that was then used as dendron focal unit. 

The modularity and reproducibility of the synthesis that we have designed allowed us to follow analogous 

synthetic steps to combine building blocks 58b, 59 and 55 and to readily generate the azide-armed tetravalent 

dendron 72b (Scheme 1.13). Finally, deprotection and conjugation with 5b (HATU, DMA, 35 °C, 12 h, 67%) 

afforded the glycodendron 76b that was purified with both size exclusion chromatography and direct phase 

flash chromatography in good yields, (67% over 2 steps). 

Scheme 1.13 - Synthesis of the azido armed glycodendron 76b. Using focal unit 58b and following the same synthetic 

strategy already described for the synthesis of the glycodendrons, construct 76b was readily obtained in a reproducible 

way in good yields (40% over 5 steps). 

The ease of preparation and increased stability of glycodendron 76b makes it a valuable and versatile 

scaffold that can be used to generate compounds with higher ligand presentation. Indeed, exploiting Cu(I) 

catalysed azide-alkyne cycloaddition (CuAAC) reaction between 76b and the propargyl ether derivative of 

pentaerythritol 80, the hexadecavalent glycodendrimer 81 was obtained in high yield (90%) after purification 

with size exclusion chromatography (Sephadex LH-20) (Scheme 1.14). The purity of the dendrimer was 

assessed by reverse phase HPLC and the compound was fully characterised by NMR and HRMS ESI. 
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Scheme 1.14 - Synthesis of the 16-valent dendrimer 81. Exploiting CuAAC reaction, the azido tethered dendron 76b 

was reacted in presence of the propargyl ether derivative of pentaerythritol scaffold 80 finally affording dendrimer 81 in 

very good yield (90%). 

The inhibition potency of the stabilised dendrons was evaluated by a recently established SPR competition 

assay that was developed by the group of Dr. M. Gobbi at Mario Negri Institute (Milan).52 In this assay dendron 

affinity was evaluated both for murine MBL-A and MBL-C isoforms contained in murine plasma. Therefore, 

the dendrons were incubated at different concentrations for 30 min at 25 °C with diluted murine plasma and 

then directly flowed over the sensor chip coated with immobilized mannosylated BSA (Man-BSA). The ability 

to compete with mannosylated BSA for the binding of MBL isoforms was compared with the previously 

developed Polyman2 37. The amount of MBL-A and MBL-C bound to the surface was detected sequentially 

flowing anti-mMBL-A and anti-mMBL-C antibodies, which bind to the proteins giving a clear SPR signal. 

The higher is the dendron concentration, the lower is the amount of MBL bound to the surface which will be 

recognized by the antibodies resulting in a concentration-dependent decrease of the SPR signal (Fig. 1.11).  

 

Figure 1.11 - SPR competition assay of newly synthesized dendrons for MBL-A and MBL-C isoforms in murine 

plasma. Dendrons inhibition potency was evaluated by a competition assay with immobilized mannosylated-BSA as 

competitor. BSA was also immobilized on the chip as negative control. Dendrons were incubated for 30 min at 25 °C at 

different concentrations with diluted murine plasma containing both MBL-A and MBL-C isoforms. The solutions were 
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then flowed over the sensor chip coated with immobilized Man-BSA. Anti-MBL-A and anti-MBL-C antibodies were 

subsequently flowed to detect MBL isoforms bound to the surface.  

From the SPR experiments inhibition curves of multivalent ligands were obtained (Fig. 1.12) and the 

corresponding IC50 values for inhibition of MBL-A and MBL-C were calculated (Table 1.6).  

The results obtained for inhibition of murine MBL-A binding were of difficult interpretation. Indeed, while 

glycodendron 76a, bearing the pseudo-disaccharide 5, presented comparable affinity with Polyman2 37, only 

half of the affinity was shown by Polyman50 77a, which is functionalised with four copies of the more potent 

monovalent pseudo-trisaccharide 6. Even more unexpected behaviour was shown by the 16-valent dendrimer 

Polyman54 81, that was found to be far less potent than the others constructs (IC50 >> 200 µM). Although it 

has been demonstrated that high ligand density can limit lectin accessibility hampering protein-carbohydrate 

interactions,53 this seems not to be the case. Indeed, a positive correlation between valency and binding affinity 

was shown in the inhibition experiments with MBL-C. With this isoform comparable avidity with Polyman2 

37 was observed for Polyman49 76a. The Polyman50 77a, bearing the pseudo-trisaccharide 6, show a two 

times increased avidity, while the higher ligand density of Polyman54 81 enhanced affinity up to two orders 

of magnitude (IC50 = 1.0 µM). 

The contrast between experimental data obtained for dendron binding affinity highlight the contrast of 

valency and avidity correlation for the inhibition of MBL-A (negative correlation) and MBL-C (positive 

correlation). However, it cannot be excluded that our results may be affected by the complexity of the adopted 

SPR assay. Control experiments incubating the dendrons in buffered solution with either pure MBL-A or 

MBL-C isoforms are under investigation. 

Figure 1.12 - Concentration-dependent inhibition curves for the newly synthesised dendrons 76a and 77a and the 

highly valent dendrimer 80. The inhibition curves were obtained by SPR inhibition assay. Multivalent ligands were 

previously incubated at different concentrations with murine plasma containing both MBL-A and MBL-C isoforms. The 

solutions were then flowed over a sensor chip where mannosylated-BSA was previously immobilised. The binding of 

MBL-A and MBL-C to Man-BSA was revealed subsequently flowing anti-MBL-A and anti-MBL-C antibodies on the 

chip which resulted in a clear concentration-dependent SPR signal. From the inhibition curves the corresponding IC50 

values were calculated. Polyman2 37 dendron was screened as reference compound. 

Compound MBL-A inhibition MBL-C inhibition 

 

IC50 (µM) 

(95% conf.)a 

Relative 

potency 

γb 

γW
c IC50 (µM) 

(95% conf.)a 

Relative 

potency 

γb 

γW
c 
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93 

(77-113) 
1 1 

84 

(61-118) 
1 1 

 

109 

(66-180) 
0.85 0.85 

77 

(57-102) 
1.1 1.1 

 

209 

(154-285) 
0.44 0.44 

35 

(25-50) 
2.4 2.4 

 

>> 200 - - 
1.0 

(0.7-1.3) 
84 21 

 

Table 1.6 - Inhibition potencies of 76a, 77a and 80 multivalent ligands against murine MBL-A and MBL-C. The 

table summarizes the structures of the tested compounds and the corresponding IC50 values obtained in SPR competition 

assay for both MBL-A and MBL-C. a) 95% confidence intervals of IC50 values are reported in brackets. b) The relative 

potency γ was calculated for each compound taking IC50 value of Polyman2 37 as a reference. c) The relative potency 

corrected per number of monovalent ligands γW was also calculated.  

1.5 Conclusions 

In recent years, the role of MBL in the pathogenesis of ischemic brain damage has been disclosed, 

identifying it as an attracting and promising pharmaceutical target. Recently we have demonstrated that the 

tetravalent glycodendron Polyman2 37 can perform as protecting agent in transient middle cerebral artery 

occlusion (tMCAo) mice models. Nevertheless this construct presented high sensitivity to hydrolysis, which 

aggravates its preparation and hampers pharmacokinetic studies.37 Previously developed polymannosylated 

DC-SIGN antagonists have been synthesized and tested as MBL ligands showing IC50 values in the micromolar 

range. In this study we have presented in vitro and in vivo results obtained with one of the most active of these 
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dendrons, Polyman31 42. This ligand possess a hexavalent structure functionalized with pseudo-dimannoside 

glycomimetic moieties, which constitute a good compromise between synthetic accessibility and potency. 

Moreover, the extended rigid core allows this construct to perform as a chelating agent, able to simultaneously 

bind two carbohydrate recognition domains of MBL homotrimer. Good binding affinity towards rhMBL 

(60µM) was revealed by SPR inhibition assay. However, the poor pharmacokinetic properties of this 

compound brought us to select the highly active nonavalent Polyman20 52 as an alternative candidate for in 

vivo investigations. Moreover, since Polyman2 37 showed protecting effect in brain ischemic injury with wide 

therapeutic window, our aim was to stabilize the scaffold structure of this construct. Therefore dendrons 76a 

and 77a, where the labile ester bond of succinyl linkers are replaced with more robust amide bonds using 

longer and more hydrophilic linkers, were successfully prepared. These constructs showed remarkable 

increased stability, good solubility in water and proved to be able to bind MBL-C murine isoform in murine 

plasma in comparable way compared to the analogue 37 by SPR inhibition assay. The versatility of this newly 

designed scaffold and the robustness of the synthetic strategy was confirmed and exploited to prepare the 

azido-armed glycodendron 76b, which gave access to the highly functionalised dendrimer 81. The binding 

ability 81 for MBL-C was also assessed by SPR inhibition assay in murine plasma, where it showed an 

increased potency of two orders of magnitude. The efficacy of the developed dendron architecture in displaying 

the sugar ligands and the ease of being functionalized by CuAAC allow for a rapid access towards high valency 

constructs of various geometries. These features will guarantee an alternative strategy to target MBL if on 

going in vivo studies with Polyman20 52 dendrimer will reveal it not to be effective as a protective agent in 

ischemic injury.54 

1.6 Experimental 

1.6.1 General methods and procedures 

Chemicals were purchased from commercial sources and used without further purification, unless otherwise 

indicated. When anhydrous conditions were required, the reactions were performed under nitrogen 

atmosphere. Anhydrous solvents were purchased from Sigma-Aldrich® with a content of water ≤ 0.005 %. 

N,N'-diisopropylethylamine (DIPEA), triethylamine were dried over calcium hydride, THF was dried over 

sodium/benzophenone and freshly distilled. Reactions were monitored by analytical thin-layer 

chromatography (TLC) performed on Silica Gel 60 F254 plates (Merck) with UV detection (254 nm and 365 

nm) and/or staining with ammonium molybdate acid solution, potassium permanganate alkaline solution or 

ninhydrin. Flash column chromatography was performed according to the method of Still and co-workers55 

using silica gel 60 (40-63 µm) (Merck). Automated flash chromatography was performed with Biotage Isolera 

Prime system, Biotage SNAP KP-Sil cartridges were employed unless otherwise indicated. Size-exclusion 

chromatography was performed using Sephadex LH-20 from GE Healthcare Life Science. HPLC purifications 

were performed on Dionex Ultimate 3000 equipped with Dionex RS Variable Wavelenght Detector (column: 

Atlantis Prep T3 OBDTM 5 µm 19 x 100 mm; flow 15 mL/min unless stated otherwise). NMR experiments 

were recorded on a Bruker AVANCE-400 MHz instrument at 298 K. Chemical shifts (δ) are reported in ppm. 

The 1H and 13C NMR resonances of compounds were assigned with the assistance of COSY and HSQC 

experiments. Multiplicities are assigned as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m 

(multiplet). Mass spectra were recorded on Apex II ICR FTMS (ESI ionization-HRMS), Waters Micromass 

Q-TOF (ESI ionization-HRMS), ThermoFischer LCQ apparatus (ESI ionization) or Bruker Daltonics 

Microflex LT (MALDI-TOF apparatus). Specific optical rotation values were measured using a Perkin-Elmer 

241, at 589 nm in a 1 dm cell. The following abbreviations are used: DCC (N,N'-dicyclohexylcarbodiimide), 

DCM (CH2Cl2), DMA (N,N'-dimethylacetamide), DMF (N,N'-dimethylformamide), DIPEA (N,N'-

diisopropylethylamine), DMAP (4-dimethylaminopyridine), EDC (N-(3-dimethylaminopropyl)-N′-
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ethylcarbodiimide), HATU (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate), HOAT (1-hydroxy-7-azabenzotriazole), TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine), TFA (trifluoroacetic acid), THF (tetrahydrofuran). Compounds 5b,56 6b,38 79,51 8045 were 

prepared as previously described in the literature. Compounds 56, 60, 67 and 69 are commercially available. 

Mouse plasma was obtained from eight-week-old C57Bl/6 mice (wild-type, WT, 20-25g; Harlan Laboratories) 

and from C57Bl/6 mice with a target mutation of both MBL-A and MBL-C genes (MBL-/-, 20-25g, purchased 

from Jackson Laboratories-USA and colonized at the Mario Negri Institute). Blood samples were collected 

from the vena cava in 10 mM ethylendiaminetetracetic acid and 0.125% polybrene (Sigma-Aldrich). Plasma, 

separated by centrifugation for 15 min at 2000 g at 4 °C, was immediately stored and kept at -80 °C until use. 

The IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, adheres to the principles set out in the 

following laws, regulations, and policies governing the care and use of laboratory animals: Italian Governing 

Law (D.lgs 26/2014; Authorisation n.19/2008-A issued March 6, 2008 by Ministry of Health); Mario Negri 

Institutional Regulations and Policies providing internal authorisation for those conducting animal experiments 

(Quality Management System Certificate – UNI EN ISO 9001:2008 – Reg. N° 6121); the NIH Guide for the 

Care and Use of Laboratory Animals (2011 edition) and EU directives and guidelines (EEC Council Directive 

2010/63/UE). The Statement of Compliance (Assurance) with the Public Health Service (PHS) Policy on 

Human Care and Use of Laboratory Animals has been recently reviewed (9/9/2014) and will expire on 

September 30, 2019 (Animal Welfare Assurance #A5023-01). The results reported here were obtained within 

a project specifically authorized by the Italian Ministry of Health (Decree n° 161/2014B). SPR studies were 

carried out using a ProteOn XPR36 Protein Interaction Array apparatus (Bio-Rad Laboratories, Hercules, CA). 

The instrument is characterized by six parallel flow channels that can immobilize up to six ligands on the same 

sensor chip.57 Mannosylated bovine serum albumin (Man-BSA, Dextra Laboratories, Reading, UK) was 

immobilized on one channel of the sensor chip (GLC, Bio-Rad) by amine coupling chemistry;58 BSA (Sigma) 

was immobilized, as a reference, in a parallel different channel. Immobilization levels were typically 3000 and 

4000 resonance units (RU, 1RU 1pg protein/mm2), respectively. 

1.6.2 Synthesis of MBL multivalent antagonists 

1.6.2.1 Products numbering for spectral assignment 

The unusual numbering used for pseudo-disaccharide and pseudo-trisaccharide derivatives are shown below. 

The cyclohexanediol unit is indicated as D. Numbering of this ring does not follow IUPAC rules, but it was 

adopted in analogy to the numbering of mannose. In pseudo-trisaccharide derivatives, the non reducing end 

Man residue is indicated as M’ and the reducing end one as M.  

 



Chapter 1 

55 

1.6.2.2 General procedure for the CuAAC reaction42 

In the optimized procedure for copper(I) catalyzed 1,3-dipolar cycloaddition, the starting materials and 

reagents were added to the reaction mixtures as solutions in water (degased by bubbling with nitrogen) or THF 

(freshly distilled). Monovalent ligands 5a, 6a and dendrons 38, S3 (see below) with azide groups were added 

as solids. The reagents were added to the reaction in the following order: multivalent scaffold (1 eq. in THF), 

TBTA (1 eq. in THF), CuSO4 · 5 H2O (0.1 eq. in H2O), sodium ascorbate (0.4 eq. in H2O) and finally the azide 

derivative (1.1 eq. per alkyne). After the addition of all the reagents, the solvent ratio was adjusted to 1:1 by 

addition of THF and/or water (c =  0.03 M). The reactions were stirred under nitrogen atmosphere, and 

shielded from light. The reaction progress was followed by TLC (silica, eluent: n-hexane - EtOAc, 8:2 and 

C18, eluent: H2O - MeOH, 1:1) or mass spectrometry (MALDI or ESI ionization). Usually, in order to achieve 

reaction completion, an additional 0.4 eq. of sodium ascorbate was added (2-4 h after reaction start). After 

reaction completion the mixtures were loaded directly on Sephadex LH-20 column (Ø = 3 cm, height = 50 cm; 

eluent: MeOH) to purify the products by size exclusion chromatography. Copper residues were removed either 

by automated reverse phase chromatography (Biotage SNAP C18 cartridges, with gradient elution using 

H2O/CH3CN or H2O/MeOH as eluents) or by dissolving the product in MeOH adding a metal scavenger (such 

as QuadrasilTM MP) and stirring for 5 min. The scavenger was filtered off through a cotton pad and the filtrate 

was concentrated to obtain the product. 

1.6.2.3 Preparation and characterization of hexavalent Polyman42 51  

Synthetic route: 

 

Scheme 1.15 – Synthetic strategy for Polyman42 51. Hexavalent glycodendrimer 51 can be obtained starting from the 

trivalent scaffold S1 which is functionalized with three copies of monovalent ligand 6a to give dendron S2. Substitution 

of the chloride atom with NaN3 affords dendron S3 which is connected to the linear ROD-3 scaffold to achieve the desired 

Polyman42 51. 
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Synthesis of trivalent glycodendron S2 

Prepared according to the general procedure for CuAAC starting from S159 and 6a38. Reaction time: 20 h. 

Yield: 91%. [α]D
18 = + 45.3 (c = 0.93 in MeOH). 1H NMR (400 MHz, CD3OD) δ (ppm): 7.99 (s, 3 H, 11-H), 

4.95 (d, J = 1.4 Hz, 3 H, 1-HM), 4.76 (d, J = 1.4 Hz, 3 H, 1-HM'), 4.69-4.63 (m, 6 H, 8-H), 4.55 (s, 6 H, 13-H), 

4.16-4.08 (m, 3 H, 7-H), 4.07-4.02 (m, 3 H, 2-HD), 3.94-3.82 (m, 9 H, 7-H', 2-HM, 6-HM'), 3.79-3.67 (m, 20 H, 

2-HM', 1-HD, 6-H'M', 3-HM, 6-HM, 6-H'M, 19-H), 3.65 (s, 9 H, 9-H), 3.65 (s, 9 H, 10-H), 3.64-3.63 (m, 2 H, 20-

H), 3.62-3.51 (m, 16 H, 17-H, 18-H, 4-HM, 4-HM', 5-HM, 5-HM'), 3.47 (s, 6 H, 14-H), 3.43 (s, 2 H, 16-H), 3.37-

3.34 (m, 3 H, 3-HM'), 2.98 (m, 3 H, 5-HD), 2.89-2.78 (m, 3 H, 4-HD), 2.19-2.09 (m, 3 H, 6-HDax), 2.07-1.97 (m, 

3 H, 3-HDax), 1.87-1.77 (m, 3 H, 3-HDeq), 1.77-1.67 (m, 3 H, 6-HDeq). 13C NMR (100 MHz, CD3OD) δ (ppm): 

177.2, 177.0 (C=O), 146.2 (C12), 125.7 (C11), 101.7 (C1M'), 100.4 (C1M), 76.0 (C1D), 75.5 (C5M’), 74.2 (C3M’), 

72.7, 72.6, 72.5, 72.5 (C2D, C2M, C3M, C5M), 72.4 (C19), 72.1 (C17), 71.7 (C2M’), 71.4 (C18), 70.7 (C16), 70.1 

(C14), 69.8 (C6M), 68.6, 68.4 (C4M, C4M’), 67.0 (C7), 65.3 (C13), 63.0 (C6M'), 52.5, 52.4 (C9, C10), 51.3 (C8), 

46.5 (C15), 44.1 (C20), 40.4 (C5D), 40.1 (C4D), 28.8 (C6D), 28.4 (C3D). MS (MALDI) m/z: calcd for 

C90H142ClN9O53 2231.8; found 2235.1 [M+H]+, 2257.4 [M+Na]+, 2298.1 [M+Cu]+ (matrix DHB). 

 

1H NMR spectrum of S2 in CD3OD (400 MHz) 
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13C NMR spectrum of S2 in CD3OD (100 MHz) 

 

Synthesis of trivalent glycodendron S3 

To a solution of S2 (75 mg, 33.56 μmol) in dry DMF (1 mL) sodium azide (17.5 mg, 269 μmol) was added. 

The reaction was stirred at 60 ºC for 2.5 d monitoring by MALDI MS. The solvent was removed under reduced 

pressure and the resulting crude was purified by automated reverse phase chromatography (Biotage SNAP 

C18) to afford pure S3 (70.8 mg, 94%). [α]D
18 = + 45.3 (c = 0.93 in MeOH). 1H NMR (400 MHz, CD3OD) δ 

(ppm): 7.98 (s, 3 H, 11-H), 4.95 (d, J = 1.3 Hz, 3 H, 1-HM), 4.76 (d, J = 1.3 Hz, 3 H, 1-HM'), 4.68-4.62 (m, 6 

H, 8-H), 4.55 (s, 6 H, 13-H), 4.16-4.08 (m, 3 H, 7-H), 4.07-4.02 (m, 3 H, 2-HD), 3.95-3.82 (m, 9 H, 7-H', 2-

HM, 6-HM), 3.80-3.67 (m, 21 H, 2-HM', 1-HD, 3-HM, 3-HM', 6-H'M, 6-HM', 6-H'M'), 3.67-3.63 (m, 22 H, 9-H, 10-

H, 19-H), 3.62-3.51 (m, 16 H, 4-HM, 5-HM, 4-HM', 5-HM', 17-H, 18-H), 3.48 (s, 6 H, 14-H), 3.44 (s, 2 H, 16-

H), 3.39-3.33 (m, 2 H, 20-H), 3.04-2.92 (m, 3 H, 5-HD), 2.90-2.76 (m, 3 H, 4-HD), 2.21-2.10 (m, 3 H, 6-HDax), 

2.07-1.98 (m, 3 H, 3-HDax), 1.87-1.77 (m, 3 H, 3-HDeq), 1.77-1.66 (m, 3 H, 6-HDeq). 13C NMR (100 MHz, 

CD3OD) δ (ppm): 177.2, 177.1 (C=O), 146.2 (C12), 125.7 (C11), 101.7 (C1M'), 100.4 (C1M), 76.0 (C1D), 75.5 

(C5M'), 74.2 (C3M'), 72.7, 72.6, 72.5, 72.5 (C2D, C2M, C3M, C5M), 72.1 (C17), 71.7 (C2M'), 71.4 (C18), 71.1 

(C19), 70.8 (C16), 70.1 (C14), 69.8 (C6M), 68.6, 68.4 (C4M, C4M'), 67.0 (C7), 65.3 (C13), 63.0 (C6M'), 52.5, 

52.5 (C9, C10), 51.8 (C20), 51.3 (C8), 46.6 (C15), 40.4 (C5D), 40.1 (C4D), 28.8 (C6D), 28.4 (C3D). MS 

(MALDI) m/z: calcd for C90H142N12O53 2238.9; found 2264.0 [M+Na]+ (matrix DHB). 
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1H NMR spectrum of S3 in CD3OD (400 MHz) 

 

13C NMR spectrum of S3 in CD3OD (100 MHz) 

 

Synthesis of Polyman42 51 

The rod-like scaffold ROD-360 (10 mg, 7.91 µmol) was dissolved in freshly distilled THF (300 µL) under 

nitrogen atmosphere. TBAF (18 µL) was added as a 1 M solution in THF and the reaction was stirred at room 

temperature for 1 h. Complete deprotection was assessed by TLC analysis (eluent: DCM - MeOH, 9:1). A 

solution of TBTA (840 µg, 1.58 µmol) in distilled THF (84 µL) was added, followed by 29 µL of a solution 

of CuSO4·5 H2O (197 µg, 0.79 µmol) and 88 µL of a solution of sodium ascorbate (627 µg, 3.16 µmol) both 

in degassed H2O. The mixture was stirred for 10 min and finally dendron S3 (39 mg, 17.4 µmol) was added. 

The reaction was stirred at room temperature, under nitrogen atmosphere for 15 h. The complete conversion 

into the desired product was assessed by TLC analysis (reverse phase plates, eluent: MeOH – H2O, 6:4) and 

by MALDI-TOF MS (matrix DHB). The solvent was evaporated and the crude was purified by automated 
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reverse phase chromatography (Biotage SNAP C18) obtaining pure Polyman42 51 dendrimer (36.7 mg, 85%). 

[α]D
18 = + 41.5 (c = 0.46 in MeOH). 1H NMR (400 MHz, CD3OD) δ (ppm): 8.59 (s, 2 H, 21-H), 7.91 (s, 6 H, 

11-H), 7.85 (s, 2 H, 25-H), 7.21 (s, 4 H, 23-H, 24-H), 4.94 (s, 6 H, 1-HM), 4.74 (s, 6 H, 1-HM'), 4.64 (bs, 16 H, 

8-H, 20-H), 4.45 (s, 12 H, 13-H), 4.35-4.22 (m, 12 H, HG1, HG5, HG9), 4.14-4.06 (m, 6 H, 7-H), 4.03 (s, 6 H, 2-

HD), 3.98-3.91 (m, 16 H, HG2, HG6, HG10, 19-H), 3.90-3.81 (m, 18 H, 2-HM, 6-HM, 7'-H), 3.79-3.66 (m, 52 H, 

2-HM', 1-HD, 3-HM, 6-H'M, 6-HM', 6-H'M', HG3, HG4, HG7, HG8, HG11, HG12), 3.64 (s, 36 H, 9-H, 10-H), 3.62-3.48 

(m, 32 H, 4-HM, 4-HM', 5-HM, 5-HM', 17-H, 18-H), 3.36-3.33 (m, 10 H, 3-HM', 14-H, 16-H), 2.97 (td, J = 12.5, 

3.5 Hz, 6 H, 5-HD), 2.82 (td, J = 12.3, 3.6 Hz, 6 H, 4-HD), 2.20-2.08 (m, 6 H, 6-HDax), 2.07-1.96 (m, 6 H, 3-

HDax), 1.86-1.64 (m, 12 H, 3-HDeq, 6-HDeq). 13C NMR (100 MHz, CD3OD) δ (ppm): 177.22, 177.03 (C=O), 

155.36, 154.99, 150.53, 146.16 (C12), 143.48 (C22), 125.73 (C11), 122.45, 121.94, 119.16 (C21), 118.28 

(C23, C24), 115.92, 114.35, 113.00 (C25), 110.32, 108.53, 108.01, 101.67 (C1M), 100.42 (C1M'), 92.83, 91.76, 

76.00 (C5M'), 75.50 (C5M), 74.21 (C3M'), 74.13, 73.74, 72.74, 72.59, 72.53, 72.52 (C1D, C2D, C2M, C2M'), 71.98 

(C18), 71.77 (C3M), 71.55 (C17), 71.05, 70.93, 70.87, 70.68, 70.49, 69.92, 69.83, 69.49, 68.59, 68.42 (C4M, 

C4M'), 66.97 (C7), 65.34 (C13), 63.03 (C6M), 62.40, 62.38, 62.30, 52.51, 52.46 (C9, C10), 51.28 (C8, C20), 

46.54 (C15), 40.40, 40.14 (C4D, C5D), 28.83, 28.43 (C3D, C6D). HRMS (ESI) m/z: calcd for C230H346N24O124 

5431.15975; found 1109.25359 [M+5Na]5+, 1380.82980 [M+4Na]4+. MS (MALDI) m/z: calcd for 

C230H346N24O124 5431.2; found 5434.7 [M+H]+ (matrix DHB). 

 

1H NMR spectrum of Polyman42 51 in CD3OD (400 MHz) 
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13C NMR spectrum of Polyman42 51 in CD3OD (100 MHz) 

 

1.6.2.4 Preparation and characterization of nonavalent Polyman20 52 

Synthetic route: 

 

 

Scheme 1.15 – Synthetic strategy for Polyman20 52. Nonavalent glycodendrimer 52 can be obtained starting from the 

trivalent scaffold S1 which is functionalized with three copies of monovalent ligand 5a to give dendron S4. Substitution 
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of the chloride atom with NaN3 affords dendron 38 which is used in further CuAAC reaction with the trivalent propargyl 

derivative S5 to give the desired Polyman20 52. 

Synthesis of trivalent glycodendron S461 

 

Prepared according to the general procedure for CuAAC starting from S159 and 5a56. Reaction time: 4 h. Yield: 

88%. 1H NMR (400 MHz, CD3OD) δ (ppm): 7.98 (s, 3 H, 11-H), 4.90 (bs, 3 H, 1-H), 4.60 (t, J = 5 Hz, 6 H, 

8-H), 4.55 (s, 6 H, 13-H), 4.00-3.79 (m, 15 H, 2-H, 6-H, 2-HD, 7-H), 3.75-3.45 (m, 37 H, 6-H', 1-HD, 3-H, 9-

H, 10-H, 4-H, 5-H, 17-H, 18-H, 19-H, 20-H), 3.48 (s, 6 H, 14-H), 3.43 (s, 2 H, 16-H), 2.83-2.63 (m, 6 H, 4-

HD, 5-HD), 2.04-1.92 (m, 6 H, 3-HDeq, 6-HDeq), 1.78-1.51 (m, 6 H, 3-HDax, 6-HDax). 13C NMR (100 MHz, 

CD3OD) δ (ppm): 177.0, 176.8 (C=O), 146.4 (C12), 125.9 (C11), 100.7 (C1), 75.8 (C3), 75.8 (C5), 72.7 (C1D), 

72.7 (C19), 72.6 (C2), 72.3 (C2D), 72.2 (C17), 71.5 (C16), 70.8 (C14), 70.2 (C18), 68.8 (C4), 68.5 (C7), 65.6 

(C13), 63.2 (C6), 52.6 (C9, C10), 51.7 (C8), 46.8 (C15), 44.2 (C20), 40.4, 40.3 (C4D, C5D), 29.0, 28.5 (C3D, 

C6D). MS (ESI) m/z: calcd for C72H112ClN9O38 1745.7; found 1768.7 [M+Na]+. 

Synthesis of trivalent glycodendron 3861 

 

To a solution of S4 (150 mg, 0.086 mmol) in dry DMF (1 mL) sodium azide (44.5 mg, 0.684 mmol) was added. 

The reaction was stirred at 60 ºC for 4 d. The solvent was removed under reduced pressure and the resulting 

crude was purified by size exclusion chromatography using a Sephadex LH-20 column (Ø = 3 cm, height = 50 

cm; eluent: MeOH) affording pure 38 (130 mg, 87%). 1H NMR (400 MHz, CD3OD) δ (ppm): 7.97 (s, 3 H, 11-

H), 4.90 (bs, 3 H, 1-H), 4.60 (t, J = 5 Hz, 6 H, 8-H), 4.55 (s, 6 H, 13-H), 4.01-3.80 (m, 15 H, 2-H, 6-H, 2-HD, 

7-H), 3.72-3.49 (m, 35 H, 6-H', 1-HD, 3-H, 9-H, 10-H, 4-H, 5-H, 17-H, 18-H, 19-H), 3.48 (s, 6 H, 14-H), 3.44 

(s, 2 H, 16-H), 3.40-3.32 (m, 2 H, 20-H), 2.84-2.61 (m, 6 H, 4-HD, 5-HD), 2.05-1.95 (m, 6 H, 3-HDeq., 6-HDeq.), 

1.77-1.46 (m, 6 H, 3-HDax, 6-HDax). 13C NMR (100 MHz, CD3OD) δ (ppm): 177.0, 176.8 (C=O), 146.4 (C12), 

125.9 (C11), 100.7 (C1), 75.8 (C3), 75.7 (C5), 72.7 (C1D), 72.5 (C2), 72.3 (C2D), 72.3 (C17), 71.6 (C16), 71.3 

(C19), 70.9 (C14), 70.2 (C18), 68.8 (C4), 68.5 (C7), 65.6 (C13), 63.2 (C6), 52.6 (C9, C10), 52.0 (C20), 51.7 

(C8), 46.8 (C15), 40.4, 40.2 (C4D, C5D), 29.0, 28.5 (C3D, C6D). MS (ESI) m/z: calcd for C72H112N12O38 1752.7; 

found 1775.5 [M+Na]+. 
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Synthesis of Polyman20 5261 

 

Prepared according to the general procedure for CuAAC starting from S562 and 38.42 Reaction time: 18 h. 

Yield: 54%. [α]D
25 = + 22 (c = 0.22 in MeOH). 1H NMR (400 MHz, CD3OD) δ (ppm): 8.10 (s, 3 H, 21-H), 7.94 

(s, 9 H, 11-H), 6.33 (s, 3 H, 25-H), 5.11 (s, 6 H, 23-H), 4.90 (bs, 9 H, 1-H), 4.62-4.49 (m, 42 H, 8-H, 13-H, 

20-H), 3.99-3.78 (m, 45 H, 7-H, 2-H, 6-H, 2-HD), 3.71-3.46 (m, 117 H, 6-H', 1-HD, 3-H, 9-H, 10-H, 4-H, 5-H, 

17-H, 18-H, 19-H), 3.44 (s, 18 H, 14-H), 3.38 (s, 6 H, 16-H), 2.83-2.58 (m, 18 H, 4-HD, 5-HD), 2.05-1.90 (m, 

18 H, 3-HDeq., 6-HDeq.), 1.77-1.49 (m, 18 H, 3-HDax, 6-HDax). 13C NMR (100 MHz, CD3OD) δ (ppm): 177.0, 

176.8 (C=O), 146.3 (C12), 144.8 (C22), 126.4 (C21), 125.9 (C11), 100.7 (C1) 96.6 (C24), 75.8, 75.8 (C5, C3), 

72.7 (C1D), 72.6 (C2), 72.3 (C2D); 72.2, 71.5, 70.8, 70.5, 70.2 (C14, C16, C17, C19, C18), 68.8 (C4), 68.5 

(C7), 65.6 (C13), 63.2 (C23, C6), 52.7 (C9, C10), 51.7 (C8), 46.8 (C15), 40.4, 40.3 (C4D, C5D), 29.0, 28.5 

(C3D, C6D). MS (MALDI) m/z: calcd for C231H348N36O117: 5500.2; found = 5502.5 [M+1]+, 5525.7 [M+Na]+ 

(matrix DHB). 

1.6.2.5 Synthesis of stabilized tetravalent glycodendrons 76a and 77a 

Synthesis of benzyl 2,2-bis(hydroxymethyl)propanoate 58a49 

2,2-Bis(hydroxymethyl) propionic acid 60 (8.25 g, 61.5 mmol) was dissolved in dry DMF (61.5 mL) under 

nitrogen atmosphere. KOH (4.87 g, 73.8 mmol) was added to the solution at 0 °C and the reaction was stirred 

at 100 °C for 1.5 h. Benzyl bromide (8.0 mL, 67.6 mmol) was slowly added to the reaction, which was heated 

at 100 °C and stirred for 20 h. The formation of a white precipitate was observed. After having co-evaporated 

DMF with toluene, H2O (40 mL) was added, the product was extracted with EtOAc (6x30 mL) and reunited 

organic phases were dried over anhydrous Na2SO4. After filtration and evaporation of the solvent the crude 

was purified by flash chromatography (eluent: n-hexane - EtOAc, 1:1; Rf = 0.27) obtaining pure 58a as a white 

solid (9.94 g, 62%). 1H NMR (400 MHz, CDCl3) δ (ppm): 7.40-7.32 (m, 5 H, Ph), 5.22 (s, 2 H, CH2Ph), 3.95 

(d, J = 11.3 Hz, 2 H, 1'-H, 2'-H), 3.72 (d, J = 11.3 Hz, 2 H, 1'-H', 2'-H'), 1.08 (s, 3 H, CH3). 
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1H NMR spectrum of 58a in CDCl3 (400 MHz) 

 

Synthesis of benzyl 2,2-bis(p-toluensulfonylmethyl)propanoate 62 

Benzyl 2,2-bis(hydroxymethyl)propanoate 58a (5.0 g, 22.30mmol) was dissolved in dry pyridine (22 mL) 

under nitrogen atmosphere. Tosyl chloride (21.0 g, 110.0 mmol) was slowly added at 0 °C and the reaction 

was heated at 60 °C stirring for 3 h. After evaporation of pyridine, EtOAc was added (40 mL) and washed with 

HCl aqueous solution (2x30 mL). The aqueous phases were extracted with fresh EtOAc (2x40 mL) and finally 

the combined organic phases were washed with brine (40 mL) and dried over anhydrous Na2SO4. After 

filtration and evaporation of the solvent, the crude was purified with automated chromatography (gradient 

elution: from 90% n-hexane - 10% EtOAc to 40 % n-hexane - 60% EtOAc) obtaining pure 62 as a white solid 

(11.2 g, 94%); Rf = 0.24 (eluent: n-hexane - EtOAc, 4:1). 1H NMR (400 MHz, CDCl3) δ (ppm): 7.70 (d, J = 

8.3 Hz, 4 H, Ar), 7.35-7.31 (m, 7 H, Ph and Ar), 7.25-7.22 (m, 2 H, Ph), 5.04 (s, 2 H, CH2Ph ), 4.14 (d, J = 9.6 

Hz, 2 H, 1'-H, 2'-H), 4.06 (d, J = 9.6 Hz, 2 H, 1'-H', 2'-H'), 2.44 (s, 6 H, ArCH3), 1.17 (s, 3 H, CH3). 13C NMR 

(100 MHz, CDCl3) δ (ppm): 171.0 (C=O), 145.3 (2 C, Ar), 135.1 (Ph), 132.1 (2 C, Ar), 130.1 (4 C, Ar), 128.7 

(2 C, Ph), 128.6 (3 C, Ph), 127.1 (4 C, Ar), 69.4 (2 C, C1', C2'), 67.3 (CH2Ph), 46.7 (C2), 21.8 (2 C, ArCH3), 

17.5 (CH3). MS (ESI) m/z: calcd for C26H28O8S2 532.1; found 555.4 [M+Na]+, 1086.9 [2M+Na]+. 

1H NMR spectrum of 62 in CDCl3 (400 MHz) 

 



Chapter 1 

64 

13C NMR spectrum of 62 in CDCl3 (100 MHz) 

 

Synthesis of benzyl 2,2-bis(methanesulfonylmethyl)propanoate 65 

DIPEA (170 µL, 0.98 mmol) and DMAP (8 mg, 0.07 mmol) were added to a solution of 58a (74 mg, 0.33 

mmol) in dry DCM (500 µL) under stirring and nitrogen atmosphere. MsCl (75 µL, 0.98 mmol) was then 

added at 0 °C. The reaction mixture was stirred at room temperature overnight. H2O (10 mL) was added and 

the product was extracted in EtOAc (6x3 mL). The combined organic extracts were washed with brine (10 

mL) and dried over anhydrous Na2SO4. After filtration and evaporation of the solvent, the crude was purified 

by flash chromatography (eluent: n-hexane - EtOAc, 3:2; Rf = 0.29) and pure 65 (100 mg, 80%) was obtained 

as a yellow pale oil. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.40-7.33 (m, 5 H, Ph), 5.19 (s, 2 H, CH2Ph), 4.42 

(d, J = 9.9 Hz, 2 H, 1'-H, 2'-H), 4.31 (d, J = 9.9 Hz, 2 H, 1'-H', 2'-H'), 2.96 (s, 6 H, SO3CH3), 1.33 (s, 3 H, 

CH3). 13C NMR (100 MHz, CDCl3) δ (ppm): 171.1 (C=O), 134.9 (Ph), 128.8 (2 C, Ph), 128.7 (2 C, Ph), 128.5 

(Ph), 69.1 (2 C, C1', C2'), 67.6 (CH2Ph), 46.7 (C2), 37.2 (2 C, SO3CH3), 17.6 (CH3). MS (ESI) m/z: calcd for 

C14H20O8S2 380.060; found 403.018 [M+Na]+. 

1H NMR spectrum of 65 in CDCl3 (400 MHz) 
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13C NMR spectrum of 65 in CDCl3 (100 MHz) 

 

Synthesis of benzyl 2,2-bis(azidomethyl)propanoate 64 

Sodium azide (9.9 g, 152 mmol) was added to a solution of benzyl 2,2-bis(p-toluensulfonylmethyl)propanoate 

62 (10.1 g, 19.0 mmol) in dry DMA (38 mL). Bu4NI (70.0 mg, 0.19 mmol) was added to the reaction that was 

stirred under nitrogen atmosphere at room temperature for 3 d until completion. DMA was evaporated, H2O 

(30 mL) was added and the product was extracted with EtOAc (3x50 mL). Organic phases were dried on 

anhydrous Na2SO4 and, after filtration and evaporation of the solvent, the crude was purified with automated 

chromatography (gradient elution: from 100% n-hexane to 80 % n-hexane - 20% EtOAc) obtaining pure 64 as 

a colourless liquid (4.7 g, 91%); Rf = 0.75 (eluent: n-hexane - EtOAc, 3:1). 1H NMR (400 MHz, CDCl3) δ 

(ppm): 7.40-7.33 (m, 5 H, CH2Ph), 5.18 (s, 2 H, CH2Ph), 3.62 (d, J = 12.2 Hz, 2 H, 1'-H, 2'-H), 3.51 (d, J = 

12.2 Hz, 2 H, 1'-H', 2'-H'), 1.22 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ (ppm): 173.1 (C=O), 135.4 (Ph), 

128.8 (2 C, Ph), 128.6 (Ph), 128.3 (2 C, Ph), 67.3 (CH2Ph), 54.9 (2 C, C1', C2'), 47.8 (C2), 19.4 (CH3). MS 

(ESI) m/z: calcd for C12H14N6O2 274.1; found 242.5 [M-2N2+Na]+, 297.1 [M+Na]+. 

1H NMR spectrum of 64 in CDCl3 (400 MHz) 
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13C NMR spectrum of 64 in CDCl3 (100 MHz) 

 

Synthesis of 2,2-bis((tert-butoxycarbonyl)aminomethyl)propanoic acid 59 

Benzyl 2,2-bis(azidomethyl)propanoate 64 (4.72 g, 17.2 mmol) was dissolved in dry MeOH (43 mL) under 

nitrogen atmosphere. Di-tert-butyl dicarbonate (9.40 g, 43.0 mmol) was added to the solution along with a 

catalytic amount (13% w/w) of 10% Pd/C. The reaction was stirred under hydrogen atmosphere at room 

temperature for 18 h until TLC (eluent: n-hexane - EtOAc, 3:1 + 1% AcOH) showed complete consumption 

of starting material. The reaction was then diluted in MeOH and filtered over a celite pad. After evaporation 

of the solvent the crude was purified with flash chromatography (eluent: n-hexane - EtOAc, 4:1 + 1% AcOH; 

Rf = 0.22) affording pure 59 as a foamy white solid (2.3 g, 50%). 1H NMR (400 MHz, CD3OD) δ (ppm): 3.23 

(AB system, 4 H, CH2NH), 1.44 (s, 18 H, (CH3)3CO), 1.09 (s, 3 H, CH3). 13C NMR (100 MHz, CD3OD) δ 

(ppm): 178.4 (C1), 158.7 (2 C, (CH3)3COC=O), 80.3 (2 C, (CH3)3CO), 49.3 (C2), 45.1 (2 C, CH2NH), 28.7 (6 

C, (CH3)3CO), 19.3 (CH3). MS (ESI) m/z: calcd for C15H28N2O6 332.195; found 355.214 [M+Na]+, 687.449 

[2M+Na]+. 

1H NMR spectrum of 59 in CD3OD (400 MHz) 
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13C NMR spectrum of 59 in CD3OD (100 MHz) 

 

Synthesis of compound 68 

To a stirred solution of diglycolic anhydride 56 (90% purity) (505.5 mg, 4.36 mmol) in dry DCM (8.7 mL) 

freshly distilled Et3N (600 µL, 4.36 mmol) and 2-(trimethylsilyl)ethanol 67 (680 µL, 4.80 mmol) were added 

at 0 °C under nitrogen atmosphere. The reaction was stirred for 22 h at room temperature. DCM was 

evaporated, an HCl aqueous solution (8 mL, 0.6 M) was added and the product was extracted with EtOAc 

(4x12 mL). Collected organic phases were washed with brine (12 mL) and dried over anhydrous Na2SO4. The 

crude was purified with flash chromatography (eluent: n-hexane - EtOAc, 2:1 + 1% AcOH; Rf = 0.24) affording 

a colourless oil as a pure product 68 (552.3 mg, 60%). 1H NMR (400 MHz, CDCl3) δ (ppm): 4.31-4.27 (m, 2 

H, CH2CH2TMS), 4.26 (s, 2 H, CH2COOCH2), 4.23 (s, 2 H, CH2COOH), 1.05-1.01 (m, 2 H, CH2CH2TMS), 

0.05 (s, 9 H, (CH3)3Si). 13C NMR (100 MHz, CDCl3) δ (ppm): 172.3 (C=O), 171.0 (C=O), 69.4 

(CH2COOCH2), 69.3 (CH2COOH), 64.4 (CH2CH2TMS), 17.5 (CH2CH2TMS), -1.4 (3 C, (CH3)3Si).  

1H NMR spectrum of 68 in CDCl3 (400 MHz) 
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13C NMR spectrum of 68 in CDCl3 (100 MHz) 

 

Synthesis of compound 55 

The carboxylic acid 68 (225.0 mg, 0.96 mmol) was dissolved in dry THF (9.6 mL) and stirred under nitrogen 

atmosphere. Upon activation adding EDC hydrochloride (220.0 mg, 1.15 mmol) at 0 °C and stirring for 10 

min, 4-nitrophenol 69 (150.0 mg, 1.10 mmol) and DIPEA (50 µL, 0.29 mmol) were added. The reaction was 

allowed to reach room temperature and stirred for 2 h until complete conversion. THF was evaporated and the 

crude was diluted in EtOAc (50 mL). The organic phase was washed with a 0.5 M HCl aqueous solution 

(2x24mL), with cold saturated NaHCO3 aqueous solution (2x15 mL), with H2O (2x 15 mL) and was finally 

dried over anhydrous Na2SO4. The crude consisted of the desired activated ester 55 (71% by 1H NMR) and 4-

nitrophenol 69 as the only impurity and could be employed in the next step without further purification. For 

characterisation purposes automated chromatography (gradient elution: from 90% n-hexane - 10% EtOAc to 

50% n-hexane - 50% EtOAc) of the mixture afforded pure 55 as a white waxy solid (6.0 g, 56%); Rf = 0.56 

(eluent: n-hexane - EtOAc, 2:1 + 1% AcOH). 1H NMR (400 MHz, CDCl3) δ (ppm): 8.31-8.27 (m, 2 H, Ar), 

7.36-7.32 (m, 2 H, Ar), 4.54 (s, 2 H, CH2COOAr), 4.31-4.27 (m, 2 H, CH2CH2TMS), 4.29 (s, 2 H, 

CH2COOCH2), 1.05-1.01 (m, 2 H, CH2CH2TMS), 0.05 (s, 9 H, (CH3)3Si). 13C NMR (100 MHz, CDCl3) δ 

(ppm): 169.8 (C=O), 167.6 (C=O), 154.8 (Ar), 145.7 (Ar), 125.5 (2 C, Ar), 122.4 (2 C, Ar), 68.5 (CH2COOAr), 

68.2 (CH2COOCH2), 63.8 (CH2CH2TMS), 17.6 (CH2CH2TMS), -1.4 (3 C, (CH3)3Si). MS (ESI) m/z: calcd for 

C15H21NO7Si 355.1; found 378.0 [M+Na]+, 732.7 [2M+Na]+. 
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1H NMR spectrum of 55 in CDCl3 (400 MHz) 

 

13C NMR spectrum of 55 in CDCl3 (100 MHz) 

 

Synthesis of compound 70a 

2,2-Bis((tert-butoxycarbonyl)aminomethyl)propanoic acid 59 (305.0 mg, 0.9 mmol) was dissolved in dry 

DCM (1.0 mL) and stirred under nitrogen atmosphere. Upon addition of diol 58a (68.0 mg, 0.3 mmol) and 

DMAP (37.0 mg, 0.3 mmol) reagents were completely dissolved and the clear solution turned to light yellow. 

Finally DCC (185.0 mg, 0.9 mmol) was added at 0 °C and the formation of a white precipitate was immediately 

observed. The reaction was stirred overnight under nitrogen atmosphere at room temperature. The solution 

was diluted in DCM and filtered over a celite pad, the solvent was evaporated and the crude purified with flash 

chromatography (eluent: n-hexane - EtOAc, 4:1; Rf = 0.15). Pure product 70a was obtained as a foamy white 

solid (210.2 mg, 80%). 1H NMR (400 MHz, CDCl3) δ (ppm): 7.36-7.32 (m, 5 H, CH2Ph), 5.51 (bs, 4 H, NH), 

5.17 (s, 2 H, CH2Ph), 4.30 (d, J = 11.2 Hz, 2 H, CHH'O), 4.17 (d, J = 11.2 Hz, 2 H, CHH'O), 3.44-3.36 (m, 4 

H, CHH'N), 3.06-2.99 (m, 4 H, CHH'N), 1.43 (s, 36 H, (CH3)3CO), 1.30 (s, 3 H, CH3), 1.05 (s, 6 H, CH3). 13C 

NMR (100 MHz, CDCl3) δ (ppm): 174.8, 172.7 (3 C, C=O), 156.8 (4 C, (CH3)3COC=O), 135.3 (Ph), 128.8 

(Ph), 128.7 (2 C, Ph), 128.6 (2 C, Ph), 79.5 (4 C, (CH3)3CO), 67.4 (CH2Ph), 65.1 (2 C, CH2O), 49.2 (2 C, 
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CCH2N), 46.8 (CCH2O), 43.4 (4 C, CH2N), 28.5 (12 C, (CH3)3CO), 19.1 (2 C, CH3), 18.0 (CH3). MS (ESI) 

m/z: calcd for C42H68N4O14 852.5; found 875.6 [M+Na]+. 

1H NMR spectrum of 70a in CDCl3 (400 MHz) 

 

13C NMR spectrum of 70a in CDCl3 (100 MHz) 

 

Synthesis of compound 72a 

Under nitrogen atmosphere, TFA (3.1 mL, 41.0 mmol) was slowly added to a stirred solution of 70a (350.0 

mg, 0.41 mmol) in dry DCM (10.5 mL) which was reacted at room temperature for 40 min. DCM and TFA 

were co-evaporated with toluene, the crude was dried under high vacuum and then dissolved again in dry DCM 

(4.1 mL). Et3N (2.1 mL, 12.3 mmol) was then added under nitrogen atmosphere with complete dissolution of 

the crude and the resulting solution was stirred for 10 min. Upon addition of the activated ester 55 (875.0 mg, 

2.5 mmol) the solution turned to bright yellow and was stirred overnight at room temperature. DCM was 

evaporated, the crude was dissolved in EtOAc (50 mL) and washed with a saturated NaHCO3 aqueous solution 
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(2x15 mL) and with brine (15 mL). The organic phase was dried over anhydrous Na2SO4 and concentrated. 

The crude was purified with automated chromatography (Biotage SNAP Ultra 25g cartridge, gradient elution: 

from 100% n-hexane - EtOAc, 2:1 to 92% n-hexane - EtOAc, 2:1 8% MeOH) giving 72a in high purity as a 

colourless oil (399.0 mg, 74%); Rf = 0.13 (eluent: n-hexane - EtOAc, 2:1 + 3% MeOH). 1H NMR (400 MHz, 

CDCl3) δ (ppm): 7.67 (t, J = 6.6 Hz, 4 H, NH), 7.34-7.32 (m, 5 H, Ph), 5.15 (s, 2 H, CH2Ph), 4.29 (d, J = 11.2 

Hz, 2 H, CHH'O), 4.25 (d, J = 11.2 Hz, 2 H, CHH'O), 4.23 (m, 8 H, CH2CH2TMS), 4.14 (s, 8 H, CH2COOCH2), 

4.07 (s, 8 H, CH2CONH), 3.58 (ddd, J = 13.6, 8.4, 4.8 Hz, 4 H, CHH'N), 3.21 (ddd, J = 14.0, 5.2, 4.4 Hz, 4 H, 

CHH'N), 1.30 (s, 3 H, CH3), 1.09 (s, 6 H, CH3), 0.99 (m, 8 H, CH2CH2TMS), 0.03 (s, 36 H, (CH3)3Si). 13C 

NMR (100 MHz, CDCl3) δ (ppm): 174.1, 172.6, 170.3, 170.0 (11 C, C=O), 135.5 (Ph), 128.8 (2 C, Ph), 128.7 

(Ph), 128.5 (2 C, Ph), 71.0 (4 C, CH2CONH), 68.9 (4 C, CH2COOCH2), 67.3 (CH2Ph), 65.8 (2 C, CH2O), 63.7 

(4 C, CH2CH2TMS), 48.4 (2 C, CCH2N), 46.7 (CCH2O), 41.7 (4 C, CH2N), 19.4 (2 C, CH3), 17.9 (CH3), 17.5 

(4 C, CH2CH2TMS), -1.1 (12 C, (CH3)3Si). HRMS (ESI) m/z: calcd for C58H100N4O22Si4 1316.59063; found 

681.28400 [M+2Na]2+, 1339.58006 [M+Na]+. MS (MALDI) m/z: calcd for C58H100N4O22Si4 1316.5; found 

1340.2 [M+Na]+ (matrix HCCA), 1340.3 [M+Na]+ (matrix DHB), 1341.2 [M+Na]+ (matrix SIN). 

1H NMR spectrum of 72a in CDCl3 (400 MHz) 
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13C NMR spectrum of 72a in CDCl3 (100 MHz) 

 

Synthesis of compound 54a 

A solution of 72a (40.1 mg, 0.03 mmol) in anhydrous DCM (1.5 mL) was stirred under nitrogen atmosphere 

and TFA (250 µL, 3.26 mmol) was added dropwise. The reaction was performed stirring for 6 h at room 

temperature, monitoring by MS (ESI). The solvent was evaporated and TFA was co-evaporated with toluene 

(3x1.5 mL). The crude was washed with diethylether and 54a was then dried under high vacuum and stored in 

the reaction vessel as a white foamy solid (28.0 mg, quantitative); Rf = 0.00 (eluent: n-hexane - EtOAc, 2:1 + 

3% MeOH). No further purification was needed to employ the product in the next synthetic step. For 

characterisation purposes, an analytical amount was purified with automated reverse phase chromatography 

(Biotage SNAP C18 12g cartridge, gradient elution: from 100% H2O to 100% MeOH) and was recovered as a 

white foamy solid (19.7 mg, 72%). However, no differences were appreciated comparing the product before 

and after purification by 1H NMR analysis. 1H NMR (400 MHz, CD3OD) δ (ppm): 7.41-7.30 (m, 5 H, Ph), 

5.20 (s, 2 H, CH2Ph), 4.29 (AB system, 4 H, CH2O), 4.22 (s, 8 H, CH2COOH), 4.10 (s, 8 H, CH2CONH), 3.44-

3.35 (m, 8 H, CH2N), 1.34 (s, 3 H, CH3), 1.10 (s, 6 H, CH3). 13C NMR (100 MHz, CD3OD) δ (ppm): 175.2 

(C=O), 174.2 (C=O), 172.9 (2 C, C=O), 137.2 (Ph), 129.7 (Ph), 129.6 (Ph), 129.5 (Ph), 71.3 (4 C, CH2CONH), 

69.2 (4 C, CH2COOH), 68.2 (CH2Ph), 67.2 (2 C, CH2O), 49.4 (2 C, CCH2N), 47.8 (2 C, CCH2O), 43.4 (4 C, 

CH2N), 19.5 (2 C, CH3), 18.2 (CH3). MS (ESI) m/z: calcd for C38H52N4O22 916.307; found 917.443 [M+H]+, 

939.369 [M+Na]+, 955.376 [M+K]+. MS (MALDI) m/z: calcd for C38H52N4O22 916.3; found 917.7 [M+H]+, 

939.8 [M+Na]+ (matrix HCCA). 
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1H NMR spectrum of 54a in CD3OD (400 MHz) 

 

13C NMR spectrum of 54a in CD3OD (100 MHz) 

 

Synthesis of compound 76a 

Tetraacid 54a (4.8 mg, 5 µmol) and the pseudo-disaccharide 5b (18.9 mg, 39 µmol) were dissolved together 

under nitrogen atmosphere in dry DMA (260 µL). Freshly distilled DIPEA (15 µL, 85 µmol) was added and 

the reaction stirred for 15 min, then HATU (16.0 mg, 42 µmol) was added and the solution immediately turned 

to bright yellow. The reaction was heated overnight at 30 °C and monitored with MS (MALDI) instrument. 

The solution turned to brownish-red. DMA was removed by a rotatory evaporator under high vacuum and the 

product was isolated by size-exclusion chromatography using a Sephadex LH-20 column (Ø = 3 cm, height = 

50 cm; eluent: MeOH). A further purification with flash chromatography (eluent: CHCl3 - MeOH - H2O, 

7:3:0.25; Rf = 0.31) afforded pure 76a as a white foam (10.6 mg, 82%). An analytical sample was additionally 

purified by HPLC (Waters Atlantis 21 mm x 10 cm column, gradient from 100% (H2O + 0.1% HCOOH) to 

100% (CH3CN + 0.1% HCOOH) in 12 min, tR (product) = 6.6 min). [α]D
23 = + 30.0 (c = 0.17 in MeOH).1H 
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NMR (400 MHz, CD3OD) δ (ppm): 7.39-7.33 (m, 5 H, Ph), 5.20 (s, 2 H, CH2Ph), 4.93 (d, J = 1.0 Hz, 4 H, 1-

H), 4.30 (AB system, 4 H, CH2O), 4.13 (s, 16 H, CH2CONH), 3.99-3.96 (m, 4 H, 2-HD), 3.87-3.82 (m, 8 H, 6-

H, 2-H), 3.70-3.52 (m, 28 H, 1-HD, 3-H, 6-H', OCH2CH2N, 5-H, 4-H), 3.55 (s, 12 H, OCH3), 3.54 (s, 12 H, 

OCH3), 3.51-3.40 (m, 12 H, CHH'N, OCH2CH2N), 3.39-3.33 (m, 4 H, CHH'N), 2.91-2.80 (m, 8 H, 5-HD, 4-

HD), 2.10-2.01 (m, 8 H, 6-HDeq, 3-HDeq), 1.79-1.73 (m, 8 H, 3-HDax, 6-HDax), 1.36 (s, 3 H, CH3), 1.12 (s, 6 H, 

CH3). 13C NMR (100 MHz, CD3OD) δ (ppm): 176.9 (C=O), 176.9 (C=O), 175.1 (C=O), 174.3 (C=O), 172.4 

(C=O), 171.7 (C=O), 137.2 (Ph), 129.8 (2 C, Ph), 129.6 (Ph), 129.5 (2 C, Ph), 100.4 (4 C, C1), 75.7 (4 C, C4), 

75.3 (4 C, C1D), 72.5 (4 C, C3), 72.4 (4 C, C2), 72.3 (4 C, C2D), 71.4 (8 C, CH2CONH), 68.6 (4 C, C5), 68.2 

(CH2Ph), 68.1 (4 C, OCH2CH2N), 67.1 (2 C, CH2O), 63.1 (4 C, C6), 52.5 (8 C, OCH3), 49.1 (2 C, CCH2N), 

47.9 (CCH2O), 42.8 (4 C, CH2N), 40.3 (8 C, C4D, C5D), 40.2 (4 C, OCH2CH2N), 28.9 (4 C, C6D), 28.3 (4 C, 

C3D), 19.9 (2 C, CH3), 18.2 (CH3). HRMS (ESI) m/z: calcd for C110H168N8O62 2594.02717; found 887.66579 

[M+3Na]3+, 1320.00119 [M+2Na]2+. MS (MALDI) m/z: calcd for C110H168N8O62 2594.0; found 2616.6 

[M+Na]+ (matrix HCCA).  

1H NMR spectrum of 76a in CD3OD (400 MHz) 
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13C NMR spectrum of 76a in CD3OD (100 MHz) 

 

HPLC purification of analytical sample of 76a: HPLC trace. Waters Atlantis 21 mm x 10 cm column, gradient from 

100% (H2O + 0.1% HCOOH) to 100% (CH3CN + 0.1% HCOOH) in 12 min, tR = 6.6 min. 

 

Synthesis of compound 77a 

The tetracarboxylic acid 54a (3.6 mg, 4 µmol) and compound 6b (19.3 mg, 30 µmol) were dissolved together 

in dry DMA (200 µL) at 0 °C. In the order HATU (9.1 mg, 24 µmol), HOAT (3.3 mg, 24 µmol) and freshly 

distilled DIPEA (11 µL, 63 µmol) were added at 0 °C to the stirred solution under nitrogen atmosphere. The 

solution turned to bright yellow. The reaction was heated at 37 °C overnight and monitored with MS (MALDI) 

instrument. The solution turned to brownish-red. DMA was removed by a rotatory evaporator under high 

vacuum and the crude was first purified with size-exclusion chromatography using a Sephadex LH-20 column 

(Ø = 3 cm, height = 50 cm; eluent: MeOH). A further purification with flash chromatography (eluent: CHCl3 

- MeOH - H2O, 7:3:0.5; Rf = 0.19) afforded pure 77a as a pale yellow foamy solid (9.4 mg, 74%). [α]D
21 = + 

44.9 (c = 0.47 in MeOH). 1H NMR (400 MHz, CD3OD) δ (ppm): 7.41-7.33 (m, 5 H, Ph), 5.21 (s, 2 H, CH2Ph), 

4.94 (s, 4 H, 1-HM'), 4.79 (s, 4 H, 1-HM), 4.30 (AB system, 4 H, CH2O), 4.14 (s, 8 H, CH2CONH), 4.12 (s, 8 

H, CH2CONH), 4.08-4.04 (m, 4 H, 2-HD), 3.87-3.73 (m, 28 H, 6-HM', 2-HM', 2-HM, 6-HM, OCHH'CH2N, 1-HD, 

6-H'M), 3.72-3.42 (m, 44 H, 6-H'M', 3-HM, 3-HM', 5-HM, 5-HM', 4-HM, 4- HM', OCHH'CH2N, OCHH'CH2N, 
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CHH'N), 3.65 (s, 24 H, OCH3), 3.38-3.32 (m, 4 H, CHH'N), 2.96 (td, J = 12.4, 3.5 Hz, 4 H, 5-HD), 2.83 (td, J 

= 12.6, 3.5 Hz, 4 H, 4-HD), 2.15 (dt, J = 13.2, 2.9 Hz, 4 H, 6-HDeq), 2.03 (dt, J = 13.2, 2.9 Hz, 4 H, 3-HDeq), 

1.82 (td, J = 13.7, 1.4 Hz, 4 H, 3-HDax), 1.73 (td, J = 13.7, 1.4 Hz, 4 H, 6-HDax), 1.36 (s, 3 H, CH3), 1.12 (s, 6 

H, CH3). 13C NMR (100 MHz, CD3OD) δ (ppm): 177.2 (C=O), 177.0 (C=O), 175.1 (C=O), 174.3 (C=O), 172.4 

(C=O), 171.7 (C=O), 137.2 (Ph), 129.8 (2 C, Ph), 129.6 (Ph), 129.5 (2 C, Ph), 101.6 (4 C, C1M), 100.4 (4 C, 

C1M'), 76.1 (4 C, C1D), 75.5, 74.1 (8 C, C4M, C4M'), 72.6 (4 C, C2D), 72.5 (12 C, C3M, C3M', C2M'), 71.9 (4 C, 

C2M), 71.4 (8 C, CH2CONH), 69.9 (4 C, C6M), 68.6 (8 C, C5M, C5M'), 68.3 (CH2Ph), 67.0 (6 C, CH2O, 

OCH2CH2N), 63.0 (4 C, C6M'), 52.5 (12 C, OCH3), 52.4 (12 C, OCH3), 49.1 (2 C, CCH2N), 47.9 (CCH2O), 

42.9 (4 C, CH2N), 40.4 (4 C, C4D), 40.2 (4 C, C5D), 39.9 (4 C, OCH2CH2N), 28.9 (4 C, C6D), 28.4 (4 C, C3D), 

19.9 (2 C, CH3), 18.2 (CH3). HRMS (ESI) m/z: calcd for C134H208N8O82 3242.23849; found 1103.73571 

[M+3Na]3+, 1644.10830 [M+2Na]2+. MS (MALDI) m/z: calcd for C134H208N8O82 3242.2; found 3265.1 

[M+Na]+ (matrix HCCA). 

1H NMR spectrum of 77a in CD3OD (400 MHz) 
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13C NMR spectrum of 77a in CD3OD (100 MHz) 

 

1.6.2.6 Synthesis of 16-valent glycodendrimer 81 

Synthesis of 3-azidopropyl 2,2-bis(hydroxymethyl)propanoate 58b 

2,2-bis(hydroxymethyl)propionic acid 60 (366.0 mg, 2.73 mmol) was dissolved in dry DMF (900 µL) under 

nitrogen atmosphere. Cs2CO3 (534.0 mg, 1.64 mmol) was added and the reaction mixture stirred for 2 h at 90 

°C, with the formation of a white precipitate. The reaction was cooled down at room temperature and a solution 

of 79 (163.0 mg, 0.91 mmol) in dry DMF (500 µL) was added. The reaction was stirred for 3 h at 90 °C, 

monitoring by TLC (Rf = 0.22; eluent: toluene - EtOAc, 1:1), with complete consumption of 79. The reaction 

was cooled to room temperature, H2O (15 mL) was added and the product was extracted with EtOAc (4x20 

mL). Organic phases were dried over anhydrous Na2SO4 and, after filtration and evaporation of the solvent, 

the crude was purified by automated chromatography (gradient elution: from 80% n-hexane - 20% EtOAc to 

100% EtOAc) giving 58b as a yellow liquid (157.4 mg, 80%). The 1H NMR spectroscopic data are in 

accordance with those previously reported in the literature.63 1H NMR (400 MHz, CDCl3) δ (ppm): 4.25 (t, J 

= 6.1 Hz, 2 H, OCH2CH2CH2N3), 3.88 (d, J = 11.2 Hz, 2 H, 1'-H, 2'-H), 3.70 (d, J = 11.3 Hz, 2 H, 1'-H', 2'-

H'), 3.41 (t, J = 6.6 Hz, 2 H, OCH2CH2CH2N3), 1.93 (quint, J = 6.3 Hz, 2 H, OCH2CH2CH2N3), 1.05 (s, 3 H, 

CH3). 

1H NMR spectrum of 58b in CDCl3 (400 MHz) 
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Synthesis of compound 70b 

The diol 58b (45.0 mg, 0.21 mmol) was dissolved in dry DCM (700 µL) under nitrogen atmosphere. 

Compound 59 (206.0 mg, 0.62 mmol) was then added followed by DMAP (25.3 mg, 0.21 mmol). At 0 °C, 

DCC (128.0 mg, 0.62 mmol) was added with the formation of a white precipitate. The mixture was allowed to 

reach room temperature and stirred for 16 h. The mixture was then diluted with DCM and filtered over a celite 

pad. The solvent was evaporated and a flash chromatography (eluent: n-hexane - EtOAc, 4:1; Rf = 0.14) 

afforded pure 70b as a white foamy solid (135.6 mg, 78%). 1H NMR (400 MHz, CD3OD) δ (ppm): 6.44 (bs, 

4 H, NH), 4.27 (AB system, 4 H, CH2O), 4.25 (t, J = 6.1 Hz, 2 H, OCH2CH2CH2N3), 3.45 (t, J = 6.6 Hz, 2 H, 

OCH2CH2CH2N3), 3.23 (AB system, 8 H, CH2N), 1.95 (quint, J = 6.4 Hz, 2 H, OCH2CH2CH2N3), 1.44 (s, 36 

H, (CH3)3CO), 1.33 (s, 3 H, CH3), 1.09 (s, 6 H, CH3). 13C NMR (100 MHz, CDCl3) δ (ppm): 175.5, 174.3 (3 

C, C=O), 158.6 (4 C, (CH3)3COC=O), 80.4 (4 C, CH3)3CO), 66.6 (2 C, CH2O), 63.7 (OCH2CH2CH2N3), 50.0 

(2 C, CCH2N), 49.3 (OCH2CH2CH2N3), 47.9 (2 C, CCH2O), 45.2 (4 C, CH2N), 29.1 (OCH2CH2CH2N3), 28.7 

(12 C, (CH3)3CO), 19.0 (2 C, CH3), 18.2 (CH3). MS (ESI) m/z: calcd for C38H67N7O14 845.5; found 868.5 

[M+Na]+. 

1H NMR spectrum of 70b in CD3OD (400 MHz) 
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13C NMR spectrum of 70b in CD3OD (100 MHz) 

 

Synthesis of compound 72b 

Under nitrogen atmosphere, 70b (95.3 mg, 0.113 mmol) was dissolved in dry DCM (2.8 mL) and TFA (860 

µL, 11.3 mmol) was slowly added at 0 °C. The solution was stirred at room temperature for 40 min, then DCM 

and TFA were co-evaporated with toluene and diethylether. The crude was dried under high vacuum and 

redissolved under nitrogen atmosphere in DCM (1.1 mL). Freshly distilled triethylamine (590 µL, 3.38 mmol) 

was added at 0 °C. The mixture was stirred for 10 min, then the activated ester 55 (240.0 mg, 0.68 mmol) was 

added. The bright yellow solution was allowed to reach room temperature and stirred overnight. DCM was 

evaporated from the crude, which was dissolved in EtOAc (12 mL) and washed with a saturated NaHCO3 

aqueous solution (2x4 mL) and brine (4 mL). The organic phase was dried over anhydrous Na2SO4, the solvent 

was evaporated under reduced pressure and the crude was purified with flash chromatography (eluent: CHCl3 

- acetone, 10:1; Rf = 0.18). Compound 72b was obtained as a pure colourless oil (112.3 mg, 76%). 1H NMR 

(400 MHz, CDCl3) δ (ppm): 7.70 (dd, J = 7.4, 5.8 Hz, 4 H, NH), 4.30-4.19 (m, 14 H, CH2O, CH2CH2TMS, 

OCH2CH2CH2N3), 4.15 (s, 8 H, CH2COOCH2), 4.10-4.07 (m, 8 H, CH2CONH), 3.62 (ddd, J = 14.0, 8.1, 2.7 

Hz, 4 H, CHH'N), 3.41 (t, J = 6.6 Hz, 2 H, OCH2CH2CH2N3), 3.28 (dd, J = 14.0, 5.8 Hz, 4 H, CHH'N), 1.93 

(quint, J = 6.4 Hz, 2 H, OCH2CH2CH2N3),1.30 (s, 3 H, CH3), 1.16 (s, 6 H, CH3), 1.02-0.98 (m, 8 H, 

CH2CH2TMS)., 0.03 (s, 36 H, (CH3)3Si). 13C NMR (100 MHz, CDCl3) δ (ppm): 174.1, 172.6, 170.3, 170.0 (11 

C, C=O), 71.0 (4 C, CH2CONH), 68.9 (4 C, CH2COOCH2), 65.8 (2 C, CH2O), 63.7 (4 C, CH2CH2TMS), 62.6 

(OCH2CH2CH2N3), 48.5 (2 C, CCH2N), 48.2 (OCH2CH2CH2N3), 46.7 (2 C, CCH2O), 41.7 (4 C, CH2N), 28.1 

(OCH2CH2CH2N3), 19.5 (2 C, CH3), 17.8 (CH3), 17.5 (4 C, CH2CH2TMS), -1.4 (12 C, (CH3)3Si). HRMS (ESI) 

m/z: calcd for C54H99N7O22Si4 1309.59202; found 677.78621 [M+2Na]2+, 1332.58236 [M+Na]+. 
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1H NMR spectrum of 72b in CDCl3 (400 MHz) 

 

13C NMR spectrum of 72b in CDCl3 (100 MHz)  

 

Synthesis of compound 54b 

To a solution of 72b (22.8, 17.4 µmol) in dry DCM (870 µL), TFA (145 µL, 1.9 mmol) was slowly added at 

0 °C under nitrogen atmosphere. The reaction is stirred at room temperature for 6 h, monitoring with TLC 

(eluent: CHCl3 - acetone, 10:1) until full conversion of the starting reagent. DCM was evaporated and TFA 

co-evaporated with toluene. The crude was then washed with diethylether and dried under high vacuum to 
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obtain a white foamy solid (quantitative). 1H NMR (400 MHz, CD3OD) δ (ppm): 4.30 (s, 4 H, CH2O), 4.24 (t, 

J = 6.2 Hz, 2 H, OCH2CH2CH2N3), 4.23 (s, 8 H, CH2COOH), 4.11 (s, 8 H, CH2CONH), 3.49-3.46 (m, 8 H, 

CH2N), 3.45 (t, J = 6.5 Hz, 2 H, OCH2CH2CH2N3), 1.94 (quint, J = 6.4 Hz, 2 H, OCH2CH2CH2N3), 1.34 (s, 3 

H, CH3), 1.18 (s, 6 H, CH3). 13C NMR (100 MHz, CD3OD) δ (ppm): 175.2, 174.3, 173.6 (4 C, C=O), 71.5 (4 

C, CH2CONH), 69.2 (4 C, CH2COOH), 67.1 (2 C, CH2O), 63.8 (OCH2CH2CH2N3), 49.3 (OCH2CH2CH2N3), 

47.8 (2 C, CCH2O), 43.3 (4 C, CH2N), 29.1 (OCH2CH2CH2N3), 19.6 (2 C, CH3), 18.1 (CH3). MS (ESI) m/z: 

calcd for C34H51N7O22 909.309; found 477.650 [M+2Na]2+, 932.293 [M+Na]+, 948.288 [M+K]+. 

1H NMR spectrum of 54b in CD3OD (400 MHz) 
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13C NMR spectrum of 54b in CD3OD (100 MHz) 

 

Synthesis of compound 76b 

The tetraacid 54b (5.8 mg, 6.4 µmol) and the pseudo-disaccharide 5b (23.2 mg, 48.9 µmol) were dissolved 

together in dry DMA (320 µL) under nitrogen atmosphere. The mixture was cooled to 0 °C and HATU (19.6 

mg, 51.5 µmol) and DIPEA (18 µL, 103 µmol) were added. The bright yellow solution was heated at 35 °C 

and stirred overnight monitoring with MS (ESI). The crude was purified with a size-exclusion chromatography 

using a Sephadex LH-20 column (Ø = 3 cm, height = 50 cm; eluent: MeOH). Additionally, was performed a 

flash chromatography (eluent: CHCl3 - MeOH - H2O, 7:3:0.5; Rf = 0.36) and mixed fractions were further 

purified by HPLC (Waters Atlantis 21 mm x 10 cm column, gradient from 100% (H2O + 0.1% HCOOH) to 

25% (H2O + 0.1% HCOOH) - 75% (CH3CN + 0.1% HCOOH) in 12 min, tR (product) = 7.6 min). The reunited 

fractions afforded pure 76b as a white foam (11.1 mg, 67 %). [α]D
35 = + 31.3 (c = 0.55 in MeOH). 1H NMR 

(400 MHz, CD3OD) δ (ppm): 4.93 (d, J = 1.3 Hz, 4 H, 1-H), 4.30 (s, 4 H, CH2O), 4.24 (t, J = 6.2 Hz, 2 H, 

OCH2CH2CH2N3), 4.16-4.12 (m, 16 H, CH2CONH), 3.99-3.96 (m, 4 H, 2-HD), 3.87-3.82 (m, 8 H, 6-H, 2-H), 

3.71-3.49 (m, 32 H, 1-HD, 3-H, 6-H', OCH2CH2N, 5-H, 4-H, CHH'N), 3.65 (24 H, OCH3), 3.48-3.33 (14 H, 

OCH2CH2CH2N3, OCH2CH2N, CHH'N), 2.92-2.80 (m, 8 H, 5-HD, 4-HD), 2.12-2.01 (m, 8 H, 6-HDeq, 3-HDeq), 

1.95 (t, J = 6.4 Hz, 2 H, OCH2CH2CH2N3), 1.82-1.72 (m, 8 H, 3-HDax, 6-HDax), 1.35 (s, 3 H, CH3), 1.18 (s, 6 

H, CH3). 13C NMR (100 MHz, CD3OD) δ (ppm): 176.9 (C=O), 176.8 (C=O), 175.1 (C=O), 174.3 (C=O), 172.4 

(C=O), 171.7 (C=O), 100.4 (4 C, C1), 75.7 (4 C, C4), 75.4 (4 C, C1D), 72.6 (4 C, C3), 72.5 (4 C, C2), 72.4 (4 

C, C2D), 71.4 (8 C, CH2CONH), 68.7 (4 C, C5), 68.2 (4 C, OCH2CH2N), 67.1 (2 C, CH2O), 63.8 

(OCH2CH2CH2N3), 63.1 (4 C, C6), 52.5 (8 C, OCH3), 49.3 (OCH2CH2CH2N3), 49.1 (2 C, CCH2N), 47.9 

(CCH2O), 42.8 (4 C, CH2N), 40.3 (8 C, C4D, C5D), 40.2 (4 C, OCH2CH2N), 29.1 (OCH2CH2CH2N3), 28.9 (4 

C, C6D), 28.3 (4 C, C3D), 20.0 (2 C, CH3), 18.1 (CH3). HRMS (ESI) m/z: calcd for C106H167N11O62 2587.02851; 

found 885.33588 [M+3Na]3+, 1316.51256 [M+2Na]2+. MS (MALDI) m/z: calcd for C110H168N8O62 2587.0; 

found 2610.6 [M+Na]+ (matrix DHB). 
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1H NMR spectrum of 76b in CD3OD (400 MHz) 

 

13C NMR spectrum of 76b in CD3OD (100 MHz) 

 

HPLC purification of analytical sample of 76b: HPLC trace. Waters Atlantis 21 mm x 10 cm column, gradient from 

100% (H2O + 0.1% HCOOH) to 25% (H2O + 0.1% HCOOH) - 75% (CH3CN + 0.1% HCOOH) in 12 min, tR = 7.6 min. 
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Synthesis of compound 81 

The tetravalent scaffold 80 (740 µg, 2.6 µmol) was dissolved in freshly distilled THF (125 µL) under nitrogen 

atmosphere. A solution of TBTA (270 µg, 0.5 µmol) in distilled THF (10 µL) was added, followed by 5 µL of 

a solution of CuSO4·5 H2O (64 µg, 0.26 µmol) and 10 µL of a solution of sodium ascorbate (200 µg, 1 µmol) 

both in degassed H2O. After stirring for 10 min, the mixture changed from colourless to light yellow and finally 

a solution of dendron 76b (29.2 mg, 11.3 µmol) in degassed H2O (100 µL) was added. The mixture was stirred 

at room temperature, under nitrogen atmosphere, sheltered by light for 15 h. Monitoring with MS (MALDI) 

(matrix DHB, HCCA) formation of the product along with the di- and tri-substituted intermediates was 

observed thus 76b (14.2 mg, 5.5 µmol) and sodium ascorbate (200 µg, 1 µmol) were further added as solution 

in degassed H2O. The mixture was stirred as before for additional 15 h, after which MS (MALDI) analysis 

(matrix DHB, HCCA) confirmed the unique formation of the desired product. The copper scavenger QuadraSil 

MP was added to the solution which was stirred for 20 min. After filtering, the crude was finally purified by 

size-exclusion chromatography using a Sephadex LH-20 column (Ø = 3 cm, height = 50 cm; eluent: MeOH) 

and monitoring by TLC (eluent: CHCl3 - MeOH - H2O, 7:3:0.5; Rf = 0.11). Dendrimer 81 was recovered as a 

pure white foam (24.6 mg, 90%). The purity of the compound was assessed by HPLC (Waters Atlantis 21 mm 

x 10 cm column, gradient from 100% (H2O + 0.1% HCOOH) to 50 % (H2O + 0.1% HCOOH) - 50% (CH3CN 

+ 0.1% HCOOH) in 15 min, tR (product) = 10.8 min). [α]D
27 = + 31 (c = 0.50 in MeOH). 1H NMR (400 MHz, 

D2O) δ (ppm): 8.01 (s, 4 H, Ha), 4.99 (s, 16 H, 1-H), 4.32-4.23 (m, 16 H, OCH2CH2CH2N, Hc), 4.29-4.13 (m, 

88 H, CH2O, CH2CONH, OCH2CH2CH2N), 3.99-3.94 (m, 32 H, 2-H, 2-HD), 3.92-3.79 (m, 32 H, 6-H, 3-H), 

3.76-3.57 (m, 96 H, 6-H', 1-HD, OCH2CH2N, 5-H, 4-H), 3.66 (s, 48 H, OCH3), 3.65 (s, 48 H, OCH3), 3.56-

3.32 (m, 72 H, CH2N, OCH2CH2N, Hd), 2.91 (td, J = 12.0, 3.2 Hz, 16 H, 5-H), 2.81 (td, J = 12.0, 3.2 Hz, 16 

H, 4-H), 2.36-2.26 (m, 8 H, OCH2CH2CH2N), 2.16-2.06 (m, 32 H, 6-HDeq, 3-HDeq), 1.80 (t, J = 13.1 Hz, 16 H, 

3-HDax), 1.71 (t, J = 12.9 Hz, 16 H, 6-HDax), 1.29 (s, 12 H, CH3), 1.16 (s, 24 H, CH3). 13C NMR (100 MHz, 

D2O) δ (ppm): 177.1 (C=O), 176.9 (C=O), 174.6 (C=O), 173.8 (C=O), 171.7 (C=O), 171.3 (C=O), 144.5 (4C, 

Cb), 124.4 (4C, Ca), 98.6 (16 C, C1), 73.5 (16 C, C1D), 73.4 (16 C, C4), 70.9, 70.5 (48 C, C2, C2D, C3), 69.8 

(32 C, CH2CONH), 68.3 (4 C, Cd), 66.7 (16 C, C5), 66.5 (16 C, OCH2CH2N), 66.1 (8 C, CH2O), 63.8 (4 C, 

Cc), 62.8 (4 C, OCH2CH2CH2N), 61.0 (16 C, C6), 52.5 (16 C, OCH3), 52.4 (16 C, OCH3), 47.7 (8 C, CCH2N), 

47.3 (4 C, OCH2CH2CH2N), 46.5 (4 C, CCH2O), 44.8 (Ce), 41.9 (16 C, CH2N), 39.0 (32 C, C5, C4), 38.9 (16 

C, OCH2CH2N), 28.6 (4 C, OCH2CH2CH2N), 27.0 (16 C, C3), 26.6 (16 C, C6), 18.6 (8 C, CH3), 16.8 (4 C, 

CH3). HRMS (ESI) m/z: calcd for C441H688N44O252 10637.25277; found 1795.93886 [M+6Na]6+, 2150.50807 

[M+5Na]5+, 2682.45649 [M+4Na]4+. 
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1H NMR spectrum of 81 in D2O (400 MHz) 

 

13C NMR spectrum of 81 in D2O (100 MHz) 

 

HPLC purification of analytical sample of 81: HPLC trace. Waters Atlantis 21 mm x 10 cm column, gradient from 

100% (H2O + 0.1% HCOOH) to 50 % (H2O + 0.1% HCOOH) - 50% (CH3CN + 0.1% HCOOH) in 15 min, tR = 10.8 min. 
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1.6.2.7 Isotopic distribution of dendrons 

Calculated (a) and found (b) isotopic distribution for dendron 76a HRMS (ESI): 

a) Calculated: 
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b) Found: 

 

Calcd for neutral [C110H168N8O62]: 2594.02717. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 2593.02390 2593.02042 0.7923 0.7850 

2 2594.02717 2594.02665 1.0000 1.0000 

3 2595.03012 2595.02457 0.7269 0.7661 

4 2596.03295 2596.03182 0.3864 0.3218 

5 2597.03570 2597.03874 0.1658 0.1279 

6 2598.03839 Not detected 0.0604 Not detected 

 

Calcd for [C110H168N8O62Na2]2+: 2640.00563. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                     Found 

1 1319.50117 1319.49999 0.7923 0.8454 

2 1320.00281 1320.00119 1.0000 1.0000 

3 1320.50428 1320.50146 0.7269 0.7629 

4 1321.00570 1321.00454 0.3864 0.4536 

5 1321.50707 1321.50861 0.1658 0.2165 

6 1322.00841 Not detected 0.0604 Not detected 

 

 Calcd for [C110H168N8O62Na3]3+: 2662.99485. 
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Peak Mass 

Calculated                    Found 

Relative intensity 

Calculated                     Found 

1 887.33052 887.32894 0.7923 0.6970 

2 887.66495 887.66579 1.0000 1.0000 

3 887.99926 887.99793 0.7269 0.8485 

4 888.33354 Not detected 0.3864 Not detected 

5 888.66779 Not detected 0.1658 Not detected 

6 889.00202 Not detected 0.0604 Not detected 
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Calculated (a) and found (b) isotopic distribution for dendron 76b HRMS (ESI): 

a) Calculated: 

 

b) Found: 
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Calcd for neutral [C106H167N11O62]: 2587.02851. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 2586.02530 2586.03709 0.8131 0.7045 

2 2587.02851 2587.04151 1.0000 1.0000 

3 2588.03140 2588.04197 0.7134 0.6513 

4 2589.03418 2589.04050 0.3732 0.3044 

5 2590.03688 2590.03594 0.1578 0.0978 

6 2591.03953 Not detected 0.0568 Not detected 

 

Calcd for [C106H167N11O62Na2]2+: 2633.00697. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                     Found 

1 1316.00187 1316.00849 0.8131 0.8479 

2 1316.50348 1316.51256 1.0000 1.0000 

3 1317.00492 1317.01106 0.7133 0.6935 

4 1317.50631 1317.51151 0.3732 0.3691 

5 1318.00766 Not detected 0.1578 Not detected 

6 1318.50899 Not detected 0.0568 Not detected 

 

Calcd for [C106H167N11O62Na3]3+: 2655.99619. 

Peak Mass 

Calculated                    Found 

Relative intensity 

Calculated                     Found 

1 884.99765 885.00161 0.8131 0.5729 

2 885.33206 885.33588 1.0000 1.0000 

3 885.66635 885.66992 0.7134 0.6432 

4 886.00062 886.00203 0.3732 0.3125 

5 886.33485 Not detected 0.1579 Not detected 

6 886.66906 Not detected 0.0568 Not detected 
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Calculated (a) and found (b) isotopic distribution for dendron 77a HRMS (ESI): 

a) Calculated: 

 

 

b) Found: 
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Calcd for neutral [C134H208N8O82]: 3242.23849. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 3241.23520 3241.23672 0.6519 0.6382 

2 3242.23849 3242.23941 1.0000 1.0000 

3 3243.24150 3243.24348 0.8717 0.8645 

4 3244.24437 3244.24587 0.5528 0.5334 

5 3245.24716 3245.25233 0.2819 0.2825 

6 3246.24989 3246.24922 0.1219 0.1204 

7 3247.25257 3247.25424 0.0461 0.0407 

 

Calcd for [C134H208N8O82Na2]2+: 3288.21694. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                     Found 

1 1643.60682 1643.60671 0.6519 0.6632 

2 1644.10847 1644.10830 1.0000 1.0000 

3 1644.60997 1644.61066 0.8717 0.8710 

4 1645.11141 1645.11195 0.5527 0.5879 

5 1645.61280 1645.61796 0.2819 0.3208 

6 1646.11417 Not detected 0.1219 Not detected 

7 1646.61551 Not detected 0.0461 Not detected 

 

Calcd for [C134H208N8O82Na3]3+: 3311.20617. 

Peak Mass 

Calculated                    Found 

Relative intensity 

Calculated                     Found 

1 1103.40095 1103.40144 0.6519 0.6407 

2 1103.73539 1103.73571 1.0000 1.0000 

3 1104.06972 1104.07041 0.8717 0.8651 

4 1104.40401 1104.40459 0.5528 0.5305 

5 1104.73827 1104.73990 0.2819 0.2893 

6 1105.07252 1105.07388 0.1218 0.1287 

7 1105.40675 1105.40764 0.0461 0.0557 
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Calculated (a) and found (b) isotopic distribution for dendrimer 81 HRMS (ESI): 

a) Calculated: 

 

 

b) Found: 
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Calcd for neutral [C441H688N44O252]: 10637.25277. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 10632.23817 Not detected 0.0247 Not detected 

2 10633.24096 Not detected 0.1262 Not detected 

3 10634.24394 Not detected 0.3343 Not detected 

4 10635.24691 10635.71762 0.6104 0.5233 

5 10636.24986 10636.69768 0.8615 0.8263 

6 10637.25277 10637.69978 1.0000 1.0000 

7 10638.25565 10638.72687 0.9923 0.9908 

8 10639.25850 10639.72958 0.8643 0.8793 

9 10640.26133 10640.74317 0.6736 0.6752 

10 10641.26413 Not detected 0.4765 Not detected 

11 10642.26690 Not detected 0.3094 Not detected 

12 10643.26966 Not detected 0.1861 Not detected 

13 10644.27240 Not detected 0.1044 Not detected 

14 10645.27513 Not detected 0.0550 Not detected 

15 10646.27783 Not detected 0.0274 Not detected 

 

Calcd for [C441H688N44O252Na4]4+: 10729.20964. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                     Found 

1 2681.04856 Not detected 0.0247 Not detected 

2 2681.29937 Not detected 0.1261 Not detected 

3 2681.55015 Not detected 0.3343 Not detected 

4 2681.80092 Not detected 0.6103 Not detected 

5 2682.05167 2682.20456 0.8615 0.8696 

6 2682.30241 2682.45649 1.0000 1.0000 

7 2682.55314 2682.72037 0.9923 09814 

8 2682.80386 2682.96842 0.8642 0.9130 

9 2683.05458 2683.22542 0.6735 0.7634 

10 2683.30528 Not detected 0.4764 Not detected 

11 2683.55598 Not detected 0.3094 Not detected 

12 2683.80668 Not detected 0.1861 Not detected 

13 2684.05737 Not detected 0.1044 Not detected 

14 2684.30806 Not detected 0.0550 Not detected 

15 2684.55874 Not detected 0.0274 Not detected 

 

Calcd for [C441H688N44O252Na5]5+: 10752.20005. 

Peak Mass 

Calculated                    Found 

Relative intensity 

Calculated                     Found 

1 2149.45359 Not detected 0.0257 Not detected 
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2 2149.64236 Not detected 0.1274 Not detected 

3 2149.84072 Not detected 0.3354 Not detected 

4 2150.04018 2150.09093 0.6110 0.5714 

5 2150.24001 2150.29852 0.8617 0.8276 

6 2150.44001 2150.50807 1.0000 1.0000 

7 2150.64010 2150.72202 0.9926 0.9704 

8 2150.84025 2150.92523 0.8649 0.9015 

9 2151.04043 2151.13063 0.6744 0.7291 

10 2151.24063 2151.33624 0.4773 0.4926 

11 2151.44085 Not detected 0.3102 Not detected 

12 2151.64109 Not detected 0.1867 Not detected 

13 2151.84132 Not detected 0.1049 Not detected 

14 2152.04157 Not detected 0.0553 Not detected 

15 2152.24182 Not detected 0.0275 Not detected 

16 2152.44207 Not detected 0.0130 Not detected 

17 2152.64232 Not detected 0.0058 Not detected 

 

Calcd for [C441H688N44O252Na6]6+: 10775.18820. 

Peak Mass 

Calculated                    Found 

Relative intensity 

Calculated                     Found 

1 1795.02968 Not detected 0.0248 Not detected 

2 1795.19640 1795.29360 0.1263 0.2393 

3 1795.36342 1795.45771 0.3344 0.3869 

4 1795.53050 1795.61647 0.6105 0.6098 

5 1795.69759 1795.77580 0.8615 0.8820 

6 1795.86470 1795.93886 1.0000 0.9967 

7 1796.03181 1796.10768 0.9924 1.0000 

8 1796.19892 1796.27374 0.8644 0.8656 

9 1796.36603 1796.44277 0.6737 0.6885 

10 1796.53313 1796.60886 0.4765 0.5180 

11 1796.70024 1796.77841 0.3095 0.3443 

12 1796.86734 1796.94738 0.1861 0. 2393 

13 1797.03444 Not detected 0.1045 Not detected 

14 1797.20154 Not detected 0.0551 Not detected 

1.6.2.8 SPR inhibition assay experiments 

Dendron affinity was evaluated both for murine MBL-A and MBL-C isoforms contained in murine plasma. 

Mouse plasma was diluted 100-folds in running buffer (10 mM TRIS buffer containing 150 mM NaCl, 1.2 

mM CaCl2, and 0.005% Tween 20, pH 7.4), preincubated for 30 min at 25 °C with or without glycodendrimers 

at different concentrations, and then flowed simultaneously onto immobilized Man-BSA and BSA. The 

availability of six parallel flow channels allowed to analyze the effect of four inhibitors concentrations 

simultaneously, leaving one channel for mouse plasma preincubated with vehicle alone and one channel for 

MBL-/- mice plasma. Anti-MBL-A antibody (10 µg/mL, Hycult Biotech, The Netherlands) and anti-MBL-C 

antibody (10 µg/mL, Hycult Biotech, The Netherlands) were subsequently injected to specifically recognize 
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and quantify the amount of free mMBL-A and mMBL-C bound to mannose residues. We considered the SPR 

signal measured 100 s after antibody’s injection. (More details for the assay: ref 52) 

The inhibitors effect was calculated as follows: 

%𝐼𝑁𝐻 − 𝑆𝐵 =
𝑇𝐵 − 𝐵𝐼

𝑇𝐵 − 𝑁𝑆𝐵
 ∗  100 

where: %INH-SB = percentage of inhibition of either mMBL-A or mMBL-C specific binding to Man-BSA; 

TB = total binding i.e. maximal mMBL-C binding to Man-BSA (plasma preincubated with vehicle); NSB = 

non-specific binding signal (plasma from MBL-/- mice); BI = binding signal observed in the presence of 

inhibitor. Inhibition curves, i.e. %INH-SB versus log[inhibitor], were fitted using the ‘one-site competition’ 

equation built into Prism version 6.0 for Windows (Graphpad Software, San Diego, CA). This analysis gives 

the IC50 value with its 95% confidence intervals. 

Diluted plasma from WT mice was preincubated with different concentrations of dendrons, or vehicle, and 

then injected over MAN-BSA immobilized on the sensor chip. Diluted plasma from MBL-/- mice was injected 

in parallel. Anti-mMBL-A and anti-mMBL-C antibodies were subsequently injected for 2 min (bars), 

producing the sensorgrams (i.e. SPR signal in Resonance Units, RU, vs time). The SPR signal is proportional 

to the amount of MBL bound to mannose, which in turn is proportional to the amount of free MBL in the 

plasma (i.e. not bound by the inhibitor). 

  

Figure 1.12 - Sensorgram of Polyman2 37 inhibitory effect on mMBL-C. Polyman2 37 dendron was incubated at 

different concentrations (25 µM, 50 µM, 100 µM, 200 µM) with murine plasma. The solutions were then flowed over a 

sensor chip and binding of MBL-C to immobilized Man-BSA was revealed flowing anti-MBL-C antibodies. From the 

concentration-dependent SPR signals an IC50 = 84 µM was calculated.  

Polyman2 0 

25 µM 

50 µM 

100 µM 

200 µM 

MBL-/- Anti-mMBL-C Ab 
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Figure 1.13 - Sensorgram of Polyman49 76a inhibitory effect on mMBL-C. Polyman49 76a dendron was incubated 

at different concentrations (25 µM, 50 µM, 100 µM, 200 µM) with murine plasma. The solutions were then flowed over 

a sensor chip and binding of MBL-C to immobilized Man-BSA was revealed flowing anti-MBL-C antibodies. From the 

concentration-dependent SPR signals an IC50 = 77 µM was calculated.  

Figure 1.14 - Sensorgram of Polyman50 77a inhibitory effect on mMBL-C. Polyman50 77a dendron was incubated 

at different concentrations (25 µM, 50 µM, 100 µM, 200 µM) with murine plasma. The solutions were then flowed over 

a sensor chip and binding of MBL-C to immobilized Man-BSA was revealed flowing anti-MBL-C antibodies. From the 

concentration-dependent SPR signals an IC50 = 35 µM was calculated.  

Polyman49 76a 0 

25 µM 

50 µM 

100 µM 

200 µM 

MBL-/- 
Anti-mMBL-C Ab 

Polyman50 77a 0 

25 µM 

50 µM 

100 µM 

200 µM 

MBL-/- 
Anti-mMBL-C Ab 
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Figure 1.15 - Sensorgram of Polyman54 81 inhibitory effect on mMBL-C. Polyman54 81 dendrimer was incubated 

at different concentrations (0.3 µM, 1 µM, 3 µM, 10 µM) with murine plasma. The solutions were then flowed over a 

sensor chip and binding of MBL-C to immobilized Man-BSA was revealed flowing anti-MBL-C antibodies. From the 

concentration-dependent SPR signals an IC50 = 1.0 µM was calculated.   
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2.1 DC-SIGN in HIV infection: a paradigm in escaping immunity 

One of the most known and studied members of the C-type lectin family surely is DC-SIGN (Dendritic 

Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin). DC-SIGN is a transmembrane 

protein with a structure characterized by a tetrameric arrangement of four homologous subunits (Fig. 2.1). 

Each subunit presents a cytosolic N-terminus domain, a transmembrane region, a long flexible neck domain 

and a C-type lectin-like domain. Importantly, the neck domain is formed by seven complete and one 

incomplete tandem repeats and is responsible for the oligomerization of the protein into the biologically active 

homo-tetramer.1 

 

Figure 2.1 – Tetrameric structure of DC-SIGN. a) The extracellular domains of DC-SIGN are shown. Four DC-SIGN 

monomers assemble together to form the active homotetramer. The structure is characterized by the presence of four 

carbohydrate recognition domains (CRDs) and a long flexible neck formed by seven complete and one incomplete tandem 

repeats. b) The four CRDs of DC-SIGN are directed towards opposite directions in a tetragonal arrangement, with Ca2+ 

ions involved in the binding of glycans spaced around 4 nm between two different CRDs.2 

In animals, DC-SIGN is mainly expressed on the surface of dendritic cells (DCs), where it accomplishes 

two main roles: it acts as a PRR, being able to recognize and bind pathogens, and is also responsible for the 

adhesion of T lymphocytes (or T cells).3,4 

As already described in the Introduction, myeloid DCs are antigen presenting cells (APCs), that are present 

in an immature state throughout the body, like mucosal and limphoyd tissues, providing important defence 

mechanism against infections to the organism. Indeed, DCs recognize, and internalize pathogens in order to 

process and present antigens on major histocompatibility complex (MHC) class I and II molecules to T cells, 

triggering their activation and differentiation.5 More in detail, immature DCs, which show high phagocytic and 

endocytic capability are responsible for pathogen internalization by several mechanisms including 

macropinocytosis,6 phagocytosis7 and adsorptive endocytosis that is mediated by the interaction with PRRs 

displayed on the myeloid cell surface.6 Upon recognition and internalization of antigens, DCs maturation takes 

place. This process carries out the presentation of processed antigens on their surface and the migration towards 

secondary lymphoid organs where interactions with T lymphocytes occurs.   

Among the PRRs exposed by dendritic cells, a major role is played by the surface C-type lectin DC-SIGN. 

As a C-type lectin, DC-SIGN is able to bind pathogens selectively recognizing polysaccharide structures 
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displayed on their surfaces. Moreover, DC-SIGN allows for antigen presentation to T cells, being able to bind 

to the highly glycosylated intracellular adhesion molecule 3 (ICAM-3) exposed on T lymphocytes.  

The affinity and selectivity of DC-SIGN for highly glycosylated structures containing either L-fucose or D-

mannose moieties is at the basis of its binding ability towards a series of viruses (HIV, Hepatitis C, Ebola) 

bacteria (Mycobacterium tuberculosis, Helicobacter pylori), yeasts (Candida albicans), and parasites 

(Leishmania spp, Schistosoma mansoni).8,9,10 However, pathogens recognized by DC-SIGN may be able to 

escape from degradation and antigen processing, therefore exploiting the scavenging defensive activity of DC-

SIGN as a preferential way to start and spread the infection.11,12 

A deeply investigated example of DC-SIGN mediated infection is the HIV-1 (Human Immunodeficiency 

Virus type 1) infection, which is responsible for AIDS (Acquired Immune Deficiency Syndrome).13 The way 

in which HIV exploits DCs to trigger infection is a controversial topic which is not fully defined. On the basis 

of experimental evidences, several mechanisms have been proposed; however, multiple mechanisms may be 

simultaneously operative.14  

What is known is that recognition of the HIV highly mannosylated capsid protein gp120 by DC-SIGN is 

exploited by the virus to reach the secondary lymphoid organs and to infect CD4+ T cells. It has been 

demonstrated that HIV transmission can occur upon formation of specific complexes between DCs and T cells 

named infectious-synapses, but this mechanism is still poorly understood.15,16,17,18  

Another proposed mechanism arose from the observation that HIV is rapidly internalized by immature DCs 

into endosomes in a DC-SIGN dependant uptake. HIV containing endosomes are likely targeted to lysosomes 

for degradation. However, to a certain extent, virus particles have been shown to be released from endosomes 

in the extracellular environment associated with vesicles known as exosomes. Thus, it has been suggested that 

infection may originate from exosomes19 fusion with T cells membrane.20 Moreover, endosomes escape and 

release of virus particles could represent a mechanism for HIV to reach infectious synapses. Altogether, these 

mechanisms are referred to as in trans infection. On the contrary, several days after the first contact with the 

virus, T cell infection may be caused by HIV particles originated from de novo synthesis in infected DCs. This 

mechanism is known as in cis infection.21 
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Figure 2.2 - Mechanisms of DC-mediated HIV infection. HIV infection mechanisms can be classified as trans- 

(pathways a,b) and cis-infection mechanisms (pathway c). a) HIV infection may be promoted by the formation of 

complexes between DCs and T cells named infectious-synapses. b) HIV transmission can be mediated by DC-SIGN. DC-

SIGN recognizes the highly mannosylated capsid protein gp120 of HIV, which is internalized into endosomes. However, 

HIV is able to escape from lysosomal degradation and to infect CD4+ T cells. Infection of T cells may arise from HIV 

release at infectious synapse site or from release of HIV associated to vesicles known as exosomes. Fusion of exosomes 

with T cells membrane may constitute a mechanism to spread the infection. c) Cis-infection is ascribed to HIV virions 

originated from de novo synthesis in infected DCs.14 

Although a clear picture of the operative mechanisms leading to HIV infection is still missing, the 

recognition of the virus mediated by DC-SIGN emerges as a key event for the overall process. This fact is 

furthermore corroborated by the correlation of DC-SIGN expression shutdown with the unproductive 

formation of infectious synapses and the inhibition of in trans infection of CD4+ T cells.16,22 

2.2 Structure-based synthesis of DC-SIGN ligands 

The engagement of DC-SIGN in the first stage of several pathogenic processes offers a convenient way for 

the development of antiadhesive drugs against many pathogens for which the formulation of vaccine is still a 

challenge. As a consequence, ligands targeting DC-SIGN constitute the great majority of the C-type lectin 

antagonists reported so far (see Introduction – Monovalent and Multivalent ligands).  

Considering the synthesis of DC-SIGN antagonists as potential HIV drugs, a great challenge is represented 

by the achievement of selectivity. Indeed, selective targeting of DC-SIGN is required to avoid interfering with 

other C-type lectins that may supply protecting effects to the host. A clarifying example is given by the protein 

Langerin. As DC-SIGN, Langerin is a transmembrane C-type lectin showing affinities for mannose and fucose 

containing glycans, but is characterized by a significantly different structure. Indeed, Langerin quaternary 
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structure is a homotrimer, in which each subunit, presenting an extracellular region formed by a neck domain 

and a C-terminus C-type lectin-like domain, assemble together displaying the C-type lectin-like domain in a 

rigid trigonal fashion spaced around 41.5 Å.23 

 

Figure 2.3 – Trimeric structure of Langerin. Extracellular domains of truncated Langerin are shown. The protein is 

characterized by three subunits that assemble together forming a homotrimer. The three CRDs are arranged in a trigonal 

disposition spaced about 4 nm from each other.23 

Langerin expression is limited to Langerhans cells, a sub-type of immature dendritic cells located in the 

epidermis layer and in mucosal stratified epithelia, thus being the first antigen presenting cells encountered by 

pathogens as HIV.24 As opposed to DC-SIGN, an important protective role is furnished by Langerin which is 

able to sequester HIV virions into Langerhans cells allowing their degradation.25 

In the past few years our group have demonstrated that structure-based design of DC-SIGN antagonists, 

which combine glycomimetic ligands and optimal multivalent presentation, constitute a successful approach 

to reach potency and selectivity. In particular, glycomimetics have been loaded onto rigid rod-like spacers 

giving access to constructs with tuneable length, which were used to bridge two DC-SIGN C-type lectin-like 

domains (Fig. 2.4).26,27 

In the design of chelating agents for DC-SIGN, the length of the compounds is a fundamental parameter 

since it has to cover at least the distance between two calcium ions at adjacent carbohydrate recognition 

domains, estimated to be around 4 nm for the tetramer.2 Moreover, a good compromise between rigidity and 

flexibility is required to simultaneously decrease the entropy of the system, thus favouring the binding, while 

still allowing conformational adaptation of the ligands to the protein.  

As monovalent ligands, the pseudo-disaccharide 5 was selected along with the corresponding more potent 

bis-p-hydroxymethylbenzylamide derivative 7 which demonstrated good selectivity against DC-SIGN over 

Langerin.28 Both monovalent ligands and the corresponding trivalent glycodendrons were used to functionalize 

the rigid spacers obtaining bidentate and hexavalent compounds with different length and flexibility. The 

molecular rods were obtained by connection of PEG-containing phenylene-ethynylene units, which guaranteed 

water solubility of the constructs.29 
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Figure 2.4 – DC-SIGN chelating antagonists. The syntheses of DC-SIGN ligands able to bridge two CRDs have been 

reported. Hexavalent and divalent ligands have been developed connecting either trivalent glycodendrons 38 and 39 or 

monovalent glycomimetics 5a and 7 to a rod like scaffold with variable lenght. The rod core, constituted by pegylated 

phenylene-ethynylene units, bestows rigidity and water solubility to the construct.26 

Compounds were tested for their binding affinity towards DC-SIGN in a HIV-1 trans infection experiment. 

B-THP-1 cells expressing DC-SIGN were used as a model of DCs and the antagonists potency was evaluated 

by their ability in inhibiting CD4+ T cells infection.  

As expected, compounds bearing the more active bis-amide ligand 7 performed as the best. Among these, 

surprisingly high potency was shown by the divalent 82 (IC50 = 161 nM), in which just two copies of 

monovalent 7 were directly connected to a spacer constituted by three phenylene-ethynylene units (Fig. 2.5). 

Stochastic Dynamics (SD) simulation experiments revealed that the bidentate 82 possesses an optimized pre-

organization of the ligands that results in a strong chelation of DC-SIGN binding sites. Indeed, the rigidity 

imposed by the spacer, limits molecule conformations to extended geometries, with 30% of the sampled 

structures showing a length higher than 35 Å, thus being able to perform as chelating agents. The length of the 

structures was calculated as the distance between the two O3 atoms (dO3-O3) of the two mannose residues 

displayed by the linear 82, which are known to interact with the Ca2+ ions at the carbohydrate binding sites.  

 

Figure 2.5 – Chelating divalent 82. A DC-SIGN potent antagonist (IC50 = 161 nM) was obtained functionalizing a linear 

scaffold constituted by three phenylene-ethynylene units with two copies of monovalent ligand 7. Stochastic Dynamics 

(SD) simulation experiments revealed that construct 82 is characterized by optimal presentation of the glycomimetic 

moieties, which determines a strong chelating effect. 
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In a predictable way, increasing the number of monovalent ligands afforded even more potent antagonists 

with the hexavalent glycodendrimer 43 performing as the most potent (IC50 = 24 nM) (Fig. 2.6). This 

compound is characterized by a rod at its core, with the same length of the linear 82, which was connected to 

two copies of glycodendrimer 39. The introduction of two long linkers protruding from the aromatic core 

bestows a higher flexibility to the molecule. As a consequence, although the maximum length for hexavalent 

43 was calculated as 67.5 Å, SD simulations revealed that this construct preferentially lies in folded and 

compact conformations, with less than 5% of sampled structures having dO3-O3 larger than 35 Å. However, the 

statistical rebinding contribution arising from multiple presentation of glycomimetic moieties represents a 

trade-off for the unoptimized preorganization of the ligand and, along with chelation, ensures high avidity to 

the system. 

 

Figure 2.6 – Chelating hexavalent 43. Glycodendrimer 43 was originated connecting of two copies of glycodendron 

38 with a rod like scaffold of three phenylene-ethynylene units. SD simulations have revealed that the flexibility of the 

construct hamper a proper preorganization of the glycomimetic moieties, with 43 assuming compact conformations. 

However, statistical rebinding effects and the retained chelating ability allow for strong binding potency (IC50 =24 nM). 

2.3 Synthesis of tetracoordinating ligands: grabbing DC-SIGN 

So far, our group has reported the synthesis of DC-SIGN antagonists able to bridge two carbohydrate 

binding sites of the protein.26 Since chelation ability proved a strong impact on ligand potency, we reasoned 

that even stronger antagonists could be obtained by simultaneous binding of the four CRDs of the DC-SIGN 

tetramer. 

We planned to achieve this goal by synthesizing a cross-shaped glycodendrimer 83, characterized by a 

tetravalent rigid core functionalized with four copies of trivalent glycodendron 38 (Fig. 2.7). The core is 

reminiscent of to the rod-like scaffold previously developed for the chelating compounds 82 and 43. Crucial 

aspects are the rigidity, which allows preorganization of the ligands directed towards the targeted CRDs, and 

the presence of PEG (polyethylene glycol) chains, which guarantee the solubility of the construct. As DC-

SIGN ligand, we chose to connect the scaffold with the trivalent glycodendron 38, which displays three copies 

of the pseudo-dimannoside glycomimetic 5a. This functionalization allows to extend the core structure, whose 

diagonal length was calculated to be 22 Å, in order to reach all the four CRDs of DC-SIGN, which are spaced 

around 55 Å at opposite sides of the tetramer. 
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Figure 2.7 – Cross-shaped glycodendrimer 83. In order to allow simultaneous binding of the four CRDs displayed by 

DC-SIGN, the synthesis of cross shaped 83 was targeted. The functionalization of a tetravalent core with trivalent dendron 

38 is aimed to extend the scaffold length in order to cover the distance between CRDs located at opposite sides of DC-

SIGN tetramer (around 5.5 nm). 

Following a similar strategy for the synthesis of the rod-family compounds, we planned to exploit CuAAC 

reaction to connect glycodendron 38 to the rigid tetravalent core. For this purpose, we identified the TIPS (tri-

isopropyl silyl) protected 85 as a key intermediate (Scheme 2.1). The proposed retrosynthetic analysis shows 

that 85 can be originated from functionalization of the tetraalkynyl aryl derivative 86 with four copies of the 

iodide phenylene ethynylene unit 87. On the other hand, the core unit 86 can arise from Sonogashira reaction 

of pegylated tetrabromide 88 obtained from alkylation of the corresponding tetrabromo hydroquinone 89 

(Scheme 2.1, path a).  

A more straightforward pathway envisages the synthesis of key intermediate 85 directly by Sonogashira 

coupling between the tetrabromo propargyl 88 and the monoprotected bis-alkyne 90 (Fig. 2.1, path b). 

However, this route was avoided due to the laborious and non-efficient synthesis required for the 

monoprotected synthon 90, whose preparation has been reported for the synthesis of rod-like linear scaffolds.30 

This building block shares the initial synthetic step with the synthon 87 envisaged in path a. First the bis-iodide 

derivative 91 is reacted in a Sonogashira coupling to give the mono-functionalized phenylene-ethynylene unit 

87 (37%) along with the corresponding bis-alkyne derivative (39%). Since both the products were required in 

the preparation of rod-like scaffolds, an optimization of the reaction to give 87 as unique product has never 

been attempted. A further Sonogashira coupling of 87 is then required to install an orthogonally protected 

alkyne moiety which enables selective deprotection of 92 under basic condition affording synthon 90 in 35% 

yield.  
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Scheme 2.1 – Retrosynthetic analysis for scaffold 85. Two pathways have been identified for the synthesis of the core 

85. Path a envisages a Sonogashira coupling between iodide synthon 87 and the tetraalkyne derivative 86, which can be 

originated from the tetrabromide 88, obtained from alkylation reaction of tetrabromohydroquinone 89. A more 

straightforward strategy is offered by path b where core 85 is originated from Sonogashira coupling of tetrabromide 88 

and the terminal alkyne derivative 90. However, this route was avoided due to the non-efficient synthesis of 90 (shown 

in the scheme). 

The alkylation of tetrabromo hydroquinone 89 with 2-(2-chloroethoxy)ethanol under basic conditions 

afforded the pegylated 88, that constitutes the central unit of the tetravalent rigid core (Scheme 2.2). Almost 

complete conversion was observed heating for 5 days at 80 °C and monitoring by TLC. Flash chromatography 

afforded pure product 88 in 80% yield.  

 

Scheme 2.2 - Alkylation reaction of 89. Tetrabromohydroquinone 89 was reacted with K2CO3 and 2-(2-

chloroethoxy)ethanol affording the pegylated 88 (80%). 

In the attempt to synthesize the protected tetraalkynyl 86, tetrabromo 88 was subjected to Sonogashira 

coupling. A similar coupling reaction has been reported for 1,4-alkoxy derivatives of tetrabromo hydroquinone 

using phenylacetylene as the terminal alkyne.31 However, in our case the use of variously protected acetylene 

derivatives was unsuccessful. Reactions were generally performed using (Ph3P)2PdCl2 as catalyst in 

combination with CuI in the presence of a base. Low conversion was achieved with TIPS- acetylene 

performing the reaction at 80 °C, with formation of the mono and disubstituted intermediates (detectable by 

ESI-MS analysis) (Table 2.1, entry 1). To favour the reactivity, trimethylsilyl- acetylene (TMS- acetylene) was 

chosen as a less bulky alkyne. Unfortunately, no conversion was observed heating the reaction mixture at 70 

°C or irradiating with the microwave at 50 °C (Table 2.1, entry 2 and 3). Increasing the temperature at 100 °C 

under microwave irradiation led to side-products with higher molecular weight (Table 2.1, entry 4). The use 
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of 2-methyl-3-butyn-2-ol as an alternative protected acetylene equivalent was also investigated. Formation of 

up to a trisubstituted intermediate was observed heating in dioxane at 90 °C (Table 2.1, entry 6), while, a 

tetrasubstituted product was obtained with almost complete conversion irradiating with microwaves at 100 °C 

in 2 hours (detected by ESI-MS 637.6 [M+Na]+) (Table 2.1, entry 7). Surprisingly, a different isomer of the 

expected 86 was isolated after flash chromatography as revealed by 1H NMR analysis (Fig. 2.8). Indeed, eight 

signals for the PEG chains (two being overlapped) were identified, clearly showing the disruption of the 

molecular symmetry, which is in contrast with the formation of 86. This constitutional isomer may perhaps 

arise from undesired Pd catalysed isomerization favoured under the reaction conditions and its full 

characterization was not pursued.  

 

 

Entry Alkyne Conditions Result 

1  
12 mol. eq. 

(Ph3P)2PdCl2, CuI, Ph3P, Et3N, 80 °C, 7 h 
Low conversion in mono- 

and di- functionalised 

2 

 

 
4.4 mol. eq. 

(Ph3P)2PdCl2 3 mol%, CuI 6 mol%, Et3N, DMF, 

70 °C, 20 h 
No conversion 

3  
10 mol. eq. 

(Ph3P)2PdCl2 20 mol%, CuI 20 mol%, Et3N, 

DMF, 100 °C, MW, 2 h 

High molecular weight side-

products 

4  
4.4 mol. eq. 

(Ph3P)2PdCl2 20 mol%, CuI 20 mol%, Et3N, 

DMF, 50 °C, MW, 2 h 
No conversion 

5  
5 mol. eq. 

(Ph3P)2PdCl2 10 mol%, CuI 10 mol%, DIPEA, 

THF, 70 °C, 2 d 
No conversion 

6 

 

 
5 mol. eq. 

(Ph3P)2PdCl2 10 mol%, CuI 20 mol%, DIPEA, 

1,4-dioxane, 90 °C, 2.5 d 

Mono-, di- and tri-

functionalized 

7 

 

 
10 mol. eq. 

(Ph3P)2PdCl2 20 mol%, CuI 20 mol%, DIPEA, 

DMF, 100 °C, MW, 2 h 

Almost complete but 

rearrangement to 

unidentified constitutional 

isomer 

Table 2.1- Alkynylation of 88. The table summarizes the reaction conditions attempted for the Sonogashira coupling of 

tetrabromide 88 with different sources of protected terminal acetylenes. 
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Figure 2.8 - 1H NMR spectrum of 86 constitutional isomer in CD3OD (400 MHz). The formation of an isomeric side-

product of tetraalkynyl 86 under reaction conditions of (Table 2.1, entry 7) was clearly revealed by 1H NMR analysis. 

The presence of a deshielded signal (6.53 ppm), eight different signals for the PEG chains and four distinct signals for 

the methyl groups can be identified. These data reveal the low degree of symmetry of the molecule, which allows to 

exclude the formation of the desired highly symmetric 86. 1H NMR (400 MHz) δ (ppm): 6.53 (s, 1 H), 4.59-4.53 (m, 2 

H, PEG), 4.33-4.28 (m, 2 H, PEG), 3.98-3.93 (m, 2 H, PEG), 3.85-3.80 (m, 2 H, PEG), 3.73-3.68 (m, 4 H, PEG), 3.65-

3.57 (m, 4 H, PEG), 1.64 (s, 12 H, CH3), 1.62 (s, 6 H, CH3), 1.60 (s, 6 H, CH3). 

To establish whether the poor reactivity of tetrabromo 88 was determined by the presence of free hydroxyl 

groups at the end of the PEG chains, the corresponding dimethoxy derivative 93 was synthesized by 

methylation of tetrabromo hydroquinone 89 and subjected to Sonogashira reaction with trimethylsilylacetylene 

(Scheme 2.3). The reaction was performed using (Ph3P)2PdCl2 as catalyst along with CuI, Et2NH at 50 °C for 

18 h but no formation of the product was detected by ESI-MS. No conversion was also assessed by analogous 

reaction of the tetrabromo hydroquinone 89. 

To push the reactivity, an alkynylzinc compound was exploited as a more reactive agent in the 

transmetallation step envisaged by the catalytic cycle (Scheme 2.3). In particular, a THF solution of 

trimethylsilylacetylene was treated with nBuLi, followed by the addition of ZnCl2 to afford a 

trimethylsilylacetylene zinc chloride complex. This reagent was used in combination with Pd(PPh3)4 at 80 °C 

to convert the tetrabromide 93. This protocol has been reported as a valuable alternative for substrates that 

presents poor reactivity under Sonogashira reaction and has been exploited for the synthesis of encumbered 

hexaalkynyl benzene derivatives.32 Yet, with this methodology we observed no conversion of tetrabromide 93. 

 

Scheme 2.3 – Alkynylation reaction of 93. Dimethoxy derivative 93 was prepared by methylation of 

tetrabromohydroquinone 89. No conversion of 89 was observed either after Sonogashira reaction with 

trimethylsilylacetylene or using the corresponding alkynylzinc reagent. 
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Since we did not want to abandon the synthetic strategy adopted, we reasoned that an increased reactivity 

for the Sonogashira coupling could be displayed by the tetraiodide derivative 97. Indeed, aryliodides are known 

as more reactive species compared to arylbromides towards Pd oxidative addition. The synthesis of tetraiodo 

97 requires as an intermediate the pegylated 96, which was obtained from alkylation reaction of hydroquinone 

95 as a pure compound with no need of chromatographic purification. (Scheme 2.4). 

Full iodination of the aromatic ring in 96 turned out to be really challenging. In a first attempt ICl was used 

as iodinating agent in refluxing methanol.33 The reaction was monitored by ESI-MS revealing the formation 

of mono, di and tri iodinated species along with the chlorinated side-products. As an alternative, I2 was used 

in combination with HIO3 at 90 °C, however only the product of disubstitution was observed monitoring by 

ESI-MS.34 Analogous results were obtained for iodination reaction of the hydroquinone 95. 

 

Scheme 2.4 – Iodination reaction of 96. Pegylated 96 was obtained by alkylation reaction of hydroquinone 95. Iodination 

of 96 to give tetraiodide 97 failed using either ICl or I2 in combination with HIO3. 

The failures in the synthesis of the pegylated tetraalkynyl central unit 86 brought us to reconsider our 

synthetic plan. Therefore, we selected the cross-shaped scaffold 99 as an alternative key intermediate. This 

core represents a good compromise between synthetic accessibility and similarity with our original goal 

(Scheme 2.5). The difference with respect to the previous targeted core 85 is given by the central unit which 

now does not contain the two original PEG chains. Even though this modification may determine a decrease 

in water solubility and a higher tendency to give pi-stacking interactions, the high content of PEG chains into 

the core structure may be sufficient to tolerate this variation. 

A retrosynthetic analysis for the core 99 identifies the iodide phenylene ethynylene unit 87 and the protected 

tetraalkynylbenzene 100 as the two key synthons (Scheme 2.5). The synthesis of 100 has already been reported 

starting from 1,2,4,5-tetrabromobenzene 101.35 

 

Scheme 2.5 – Retrosynthetic analysis for core 99. Following the proposed retrosynthesis, the tetravalent core 99 can be 

obtained from Sonogashira coupling between iodide 87 and the tetraalkynylbenzene 100. Intermediate 100 can be 

achieved using tetrabromobenzene 101 as precursor. 
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As the first step of the synthesis, 1,2,4,5-tetrabromobenzene 101 was subjected to Sonogashira coupling 

with trimethylsilylacetylene (Scheme 2.6). The use of (Ph3P)2PdCl2 and CuI in Et2NH at 50 °C afforded the 

desired protected tetraalkynyl 100 as a pure product in 20 h. Remarkably, no conversion was obtained in the 

previously attempted Sonogashira reaction of pegylated tetrabromo 88 using the same reaction conditions. The 

great difference in terms of reactivity between substrates 101 and 88 suggests that the presence of alkoxy 

substituents on the aromatic ring plays detrimental stereoelectronic effects.  

The tetravalent 100 was used as a crude in the following deprotection reaction. Removal of the 

trimethylsilyl groups under basic conditions afforded the tetraalkynyl central unit 102 as a pure product, with 

no need of further chromatographic purification. Notably, the selective formation of both 100 and 102 was 

confirmed by 1H NMR and by electron impact (EI) MS. 

 

Scheme 2.6 – Synthesis of 1,2,4,5-tetraethynylbenzene 102. Tetrabromobenzene 101 was converted into 

tetraalkynylbenzene 100 by Sonogashira reaction with trimethylsilylacetylene. Removal of trimethylsilyl protecting 

groups was achieved treating with NaOH in a 1:1.3 MeOH/DCM mixture. No purification was needed for these synthetic 

steps. 

Finally, the central unit 102 was connected to four copies of iodide synthon 87 by Sonogashira coupling. 

The temperature is a critical parameter since no conversion was observed performing the reaction at room 

temperature. However, the desired scaffold 99 was selectively obtained in 3 h heating at 50 °C. The intrinsic 

fluorescence of the product allows its detection by TLC analysis irradiating at 365 nm. The reaction was also 

monitored by ESI-MS. After work-up, flash chromatography followed by size-exclusion chromatography 

(Sephadex LH-20 column) afforded the pure core 99 as an oil in 30% yield over three steps. 

 

Scheme 2.7 – Synthesis of tetravalent core 99. Sonogashira coupling of 1,2,4,5-tetraethynylbenzene 102 with iodide 

synthon 87 at 50 °C for 3 h afforded the cross-shaped phenylene-ethynylene scaffold 99 in 30% yield (over 3 steps from 

101).  

With the phenylene-ethynylene core 99 in hand, the glycodendrimer 103 was finally accessible (Scheme 

2.8). Removal of triisopropylsilyl protecting groups was achieved in situ treating with a TBAF solution in THF 

for 1 h. The reaction was followed by TLC monitoring at 365 nm until full conversion was observed. Then the 

scaffold was functionalized by CuAAC with four copies of the trivalent glycodendron 38. The formation of 

glycodendrimer 103 was assessed by MALDI-TOF MS (DHB matrix) and its isolation was achieved by size-

exclusion chromatography (Sephadex LH-20) in very good yield (92%). 
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Scheme 2.8 – Synthesis of cross-shaped glycodendrimer 103. The final glyodendrimer 103 was readily obtained by in 

situ desilylation of the tetravalent scaffold 99 and subsequent CuAAC reaction with the azide tagged trivalent pseudo-

mannosylated dendron 38. 

2.4 Conclusions 

Structure-based design is a successful strategy for the synthesis of effective DC-SIGN antagonists. Potency 

and selectivity can be jointly achieved by the combination of glycomimetic ligands and multivalent 

presentation. In particular, our group has recently demonstrated that chelating glycodendrimers able to bridge 

two DC-SIGN CRDs perform as strong antagonists of HIV trans infection.26,27 Hexavalent and divalent 

glycodendrimers of various size were prepared by connecting either trivalent glycodendrons 38, 39 or 

monovalent glycomimetic ligands 5a, 7 to a rigid linear scaffold. Rod-like scaffolds of variable length were 

obtained from connection of pegylated phenylene-ethynylene units in order to guarantee the water solubility 

of the constructs. This study highlighted the importance of ligand preorganization and the delicate balance 

between rigidity and flexibility that have always to be considered in the designing of chelating ligands. Fine-

tuned multivalent scaffolds achieve potency with low loading of monovalent glycomimetic ligands (divalent 

82 IC50 = 161 nM), while increasing ligand valency is a valuable strategy for the synthesis of effective ligands 

with unoptimized scaffolds (hexavalent 43 IC50 = 24 nM).  

Following a similar approach, a cross-shaped tetravalent rigid scaffold was synthesized starting from 

1,2,4,5-tetrabromobenzene 101. Thus, ligands able to simultaneously bind all four CRDs of DC-SIGN were 

targeted. As a preliminary result the synthesis of the dodecavalent glycodendrimer 103 was achieved. This 

construct is characterized by an aromatic central unit which was extended with pegylated phenylene-

ethynylene moieties. The resulting core was functionalized with four copies of trivalent glycodendron 38 which 

increases the length of the construct allowing to cover the distance between two CRDs located at opposite 

sides of the DC-SIGN tetrameric structure (5.5 nm).  

The feasibility of the synthesis that we designed gives now access to a set of cross-shaped ligands. In 

particular, the functionalization of the core with trivalent glycodendron 39 may be attempted. This construct 

is an analogous version of glycodendron 38 which displays higher affinity for DC-SIGN but also reduced water 
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solubility. On the other hand, the use of monovalent glycomimetic ligands 5a and 7 may also be exploited 

(Fig. 2.9). The reduced length of monovalent ligands, compared to trivalent glycodendrons, demands for the 

synthesis of antagonists with further extended central core. However, these new constructs may allow to reach 

potency and selectivity with minimal loading of glycomimetic ligands. 

 

Figure 2.9 – Tetravalent crossed-shaped ligands. As a future perspective the synthesis of tetravalent cross-shaped 

ligands bearing monovalent ligands may be addressed. This goal requires the preparation of antagonists characterized by 

further extended cross-shaped central core. 

2.5 Experimental 

2.5.1 General methods and procedures 

Chemicals were purchased from commercial sources and used without further purification, unless otherwise 

indicated. When anhydrous conditions were required, the reactions were performed under nitrogen 

atmosphere. Anhydrous solvents were purchased from Sigma-Aldrich® with a content of water ≤ 0.005 %. 

N,N'-Diisopropylethylamine (DIPEA) and triethylamine were dried over calcium hydride, THF and 1,4-

dioxane were dried over sodium/benzophenone and freshly distilled before use. Reactions were monitored by 

analytical thin-layer chromatography (TLC) performed on Silica Gel 60 F254 plates (Merck) with UV detection 

(254 nm and 365 nm) and/or staining with ammonium molybdate acid solution or potassium permanganate 

alkaline solution. Flash column chromatography was performed according to the method of Still and co-

workers36 using silica gel 60 (40-63 µm) (Merck). Automated flash chromatography was performed with 

Biotage Isolera Prime system, Biotage SNAP KP-Sil cartridges were employed unless otherwise indicated. 

Size-exclusion chromatography was performed using Sephadex LH-20 from GE Helthcare Life Science. 

Microwave irradiation was performed by a Biotage Initiator+ system. HPLC analyses were performed with an 

Atlantis T3 5 µm 4.6x100 mm column (Waters) equipped with a Waters 996 Photodiode Array Detector. NMR 

experiments were recorded either on a Bruker AVANCE-600 MHz, Bruker AVANCE-400 MHz or a Bruker 

AVANCE-300 MHz instrument at 298 K. Chemical shifts (δ) are reported in ppm. The 1H and 13C NMR 

resonances of compounds were assigned with the assistance of COSY and HSQC experiments. Multiplicities 

are assigned as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet). EI-MS spectra were 

collected using a VG AUTOSPEC- M246 spectrometer (double-focusing magnetic sector instrument with EBE 

geometry) equipped with EI source. Solid samples were introduced via a heated direct insertion probe. ESI-
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MS spectra were recorded on Waters Micromass Q-TOF (ESI ionization-HRMS). MALDI-TOF MS spectra 

were recorded on Bruker Daltonics Microflex LT. The following abbreviations are used: CuAAC (copper 

catalysed azide alkyne cycloaddition), DCM (CH2Cl2), DMA (N,N'-dimethylacetamide), DMF (N,N'-

dimethylformamide), DIPEA (N,N'-diisopropylethylamine), MW (microwave), TBAF (tetrabutylammonium 

fluoride), TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine), THF (tetrahydrofuran). Compounds 

3837 and 8729 were previously synthesized in our group and already available. Compounds 89, 95 and 101 are 

commercially available.  

2.5.2 Synthesis of a “cross-shaped” DC-SIGN antagonist 

Synthesis of compound 88 

Tetrabromohydroquinone 89 (1 g, 2.35 mmol) was dissolved under nitrogen atmosphere in dry DMA (4.7 mL). 

K2CO3 (1.3 g, 9.41 mmol) was added and the mixture was stirred for 30 min at room temperature turning from 

a yellow colour to a light orange one. Then, 2(2-chloroethoxy)ethanol (1 mL, 9.47 mmol) was added dropwise 

and the reaction stirred at 80 °C for 5 d monitoring by TLC (eluent: n-hexane - EtOAc, 3:7, Rf = 0.23). The 

reaction was quenched adding a saturated Na2CO3 solution (80 mL), the product was extracted with EtOAc 

(6x60 mL) and reunited organic phases were dried over Na2SO4. After filtration and evaporation of the solvent, 

the crude was purified by automated flash chromatography (gradient elution: from 40% n-hexane - 60% EtOAc 

to 100% EtOAc) affording pure 88 (1.13 g, 80%) as light pink crystals. 1H NMR (400 MHz, CDCl3) δ (ppm): 

4.17-4.21 (m, 4 H, ArOCH2CH2), 3.97-3.93 (m, 4 H, ArOCH2CH2), 3.81-3.76 (m, 4 H, CH2CH2OH), 3.73-

3.69 (m, 4 H, CH2CH2OH), 2.14 (t, J = 5.7 Hz, 2 H, OH). 13C NMR (100 MHz, CDCl3) δ (ppm): 152.0 (2 C, 

C1), 121.7 (4 C, C2), 72.9 (2 C, CH2CH2OH), 72.7 (2 C, ArOCH2CH2), 70.2 (2 C, ArOCH2CH2), 62.0 (2 C, 

CH2CH2OH). MS (ESI) m/z: calcd for C14H18Br4O6 601.8; found 640.7 [M+K]+. 

1H NMR spectrum of 88 in CDCl3 (400 MHz) 
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13C NMR spectrum of 88 in CDCl3 (100 MHz) 

 

Synthesis of 1,2,4,5-tetrabromo-3,6-dimethoxybenzene 93 

Tetrabromohydroquinone 89 (500 mg, 1.17 mmol) was dissolved under nitrogen atmosphere in dry DMA (2.3 

mL). K2CO3 (650 mg, 4.70 mmol) was added and the mixture was stirred for 30 min at room temperature. 

Then, methyl iodide (290 µL, 4.70 mmol) was added dropwise and the reaction stirred at 80 °C for 4.5 h 

monitoring by TLC (eluent: n-hexane - EtOAc, 10:1, Rf = 0.67). The reaction was quenched adding H2O (25 

mL), the product was extracted with EtOAc (3x25 mL) and reunited organic phases were dried over Na2SO4. 

After filtration and evaporation of the solvent, the crude was purified by automated flash chromatography 

(gradient elution: from 100% n-hexane to 75% n-hexane - 25% EtOAc) affording pure 93 (450 mg, 81%). The 

spectroscopic data are in accordance with those previously reported in the literature.38 1H NMR (400 MHz, 

CDCl3) δ (ppm): 3.87 (s, OCH3). 13C NMR (100 MHz, CDCl3) δ (ppm): 153.0 (2 C, C3), 121.4 (4 C, C1), 60.7 

(2 C, OCH3). MS (EI) m/z: calcd for C14H18Br4O6 454; found 439 [M-CH3]+, 454 [M]+·.  

1H NMR spectrum of 93 in CDCl3 (400 MHz) 

 

Synthesis of compound 96 

Hydroquinone 95 (1 g, 9.1 mmol) was dissolved under nitrogen atmosphere in dry DMA (37.5 mL). K2CO3 

(10 g, 72.7 mmol) was added and the mixture was stirred for 30 min at room temperature shielding from light. 

Then, 2(2-chloroethoxy)ethanol (5.3 mL, 36.3 mmol) was added dropwise and the reaction stirred at 80 °C for 

8 d monitoring by TLC (eluent: n-hexane - EtOAc, 2:8, Rf = 0.18). The reaction was filtered over fritted glass 

funnel, it was diluted in DCM (50 mL) and washed with H2O (2x30 mL). The aqueous phases were extracted 

with DCM (2x30 mL) and reunited organic phases were dried over Na2SO4. After filtration and evaporation 
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of the solvent, 2.59 g of crude were recovered and judged pure enough by 1H NMR to be used in the next 

synthetic step without further purification. 1H NMR spectroscopic data are in accordance with those previously 

reported in the literature.39 1H NMR (300 MHz, CDCl3) δ (ppm): 6.85 (s, 4 H, Ar), 4.11-4.06 (m, 4 H, 

ArOCH2CH2), 3.87-3.82 (m, 4 H, ArOCH2CH2), 3.78-3.73 (m, 4 H, CH2CH2OH), 3.70-3.64 (m, 4 H, 

CH2CH2OH).  

 

Synthesis of 1,2,4,5-tetrakis((trimethylsilyl)ethynyl)benzene 10035 

Tetrabromobenzene 101 (158 mg, 0.40 mmol) was dissolved under nitrogen atmosphere with distilled Et2NH 

(2 mL) and (Ph3P)2PdCl2 (7.1 mg, 0.010 mmol), CuI (1.0 mg, 0.005 mmol), ethynyltrimethylsilane (270 µL, 

1.92 mmol) were added in the order. The reaction was stirred at 50 °C for 19 h and TLC analysis showed 

complete conversion (eluent: n-hexane, Rf = 0.08). The mixture was filtered over a celite pad and washed with 

Et2O. Evaporation of the solvent afforded crude 100 that was pure enough to be used in the next synthetic step 

without further purification. The spectroscopic data are in accordance with those previously reported in the 

literature. 1H NMR (400 MHz, CDCl3) δ (ppm): 7.56 (s, 2 H, Ar), 0.25 (s, 36 H, Si(CH3)3). MS (ESI) m/z: 

calcd for C26H38Si4 462.20; found 485.08 [M+Na]+. 

1H NMR spectrum of 100 in CDCl3 (400 MHz) 

 

Synthesis of 1,2,4,5-tetraethynyl benzene 10235 

Crude 100 (50.6 mg, 0.109 mmol) was dissolved under nitrogen atmosphere in dry DCM (900 µL). Then a 

NaOH solution in MeOH (45.2 mg in 700 µL) was added and the reaction was stirred at room temperature for 

5 h monitoring by TLC (eluent: n-hexane - EtOAc, 20:1, Rf = 0.33). The solvent was evaporated, the crude 

was dissolved in DCM (5 mL) and filtered washing with fresh DCM (5 mL) to remove a white precipitate. 

The organic phase was washed with brine (2x5 mL) and dried over anhydrous Na2SO4. Evaporation of the 

solvent afforded crude 102 that was pure enough to be used in the next synthetic step without further 

purification. The spectroscopic data are in accordance with those previously reported in the literature. 1H NMR 

(400 MHz, CDCl3) δ (ppm): 7.64 (s, 2 H, Ar), 3.42 (s, 4 H, C≡CH). MS (EI) m/z: calcd for C14H6 174; found 

174 [M]+·.   
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1H NMR spectrum of 102 in CDCl3 (400 MHz) 

 

Synthesis of compound 99 

Crude 102 (2.7 mg, 0.012 mmol) was dissolved under nitrogen atmosphere in dry THF (70 µL) and 

(Ph3P)2PdCl2 (1.3 mg, 0.002 mmol), CuI (1.5 mg, 0.008 mmol), distilled DIPEA (12 µL, 0.069 mmol) were 

added in the order. Finally the aryl iodide 87 (40 mg, 0.068) was added as a solution in dry THF (84 µL). The 

reaction was stirred at 50 °C for 3 h and complete conversion was assessed by TLC analysis (eluent: DCM - 

MeOH, 9:1, Rf = 0.61) monitoring at 365 nm. The solvent was evaporated and the product isolated by flash 

chromatography (eluent: DCM - MeOH, 20:1 for 6 fractions then DCM - MeOH, 15:1). A further purification 

was performed by size-exclusion chromatography using a Sephadex LH-20 column (Ø = 3 cm, height = 50 

cm; eluent: MeOH) affording pure 99 (7.4 mg, 30% over three steps from 101). 1H NMR (400 MHz, CDCl3) 

δ (ppm): 7.77 (s, 2 H, HS1), 7.02 (s, 4 H, HS10), 7.00 (s, 4 H, HS7), 4.18 (t, J = 4.6 Hz, 8 H, HG5), 3.98 (t, J = 4.6 

Hz, 8 H, HG1), 3.83-3.78 (m, 16 H, HG6, HG2), 3.72-3.68 (m, 16 H, HG8, HG4), 3.66-3.61 (m, 16 H, HG7, HG3), 

1.14 (s, 84 H, TIPS). 13C NMR (100 MHz, CDCl3) δ (ppm): 154.4 (4 C, CS9), 153.6 (4 C, CS6), 134.7 (2 C, 

CS1), 125.6 (4 C, CS2), 119.3 (4 C, CS7), 117.6 (4 C, CS10), 115.2 (4 C, CS8), 114.3 (4 C, CS5), 102.5 (4 C, CS11), 

98.0 (4 C, CS12), 93.2 (4 C, CS3), 92.2 (4 C, CS4), 73.1 (8 C, CG3, CG7), 70.3 (4 C, CG5), 69.7 (8 C, CG2, CG6), 

69.2 (4 C, CG1), 62.0, 61.9 (8 C, CG4, CG8), 18.9 (24 C, SiCH(CH3)2), 11.5 (12 C, SiCH(CH3)2). MS (ESI) m/z: 

calcd for C114H166O24Si4 2032.09; found 700.3 [M+3Na]3+, 1038.93 [M+2Na]2+, 2054.88 [M+Na]+. MS 

(MALDI) m/z: calcd for C114H166O24Si4 2032.1; found 2056.1 [M+Na]+ (matrix DHB). 
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1H NMR spectrum of 99 in CDCl3 (400 MHz) 

 

 

   

 

  

13C NMR spectrum of 99 in CDCl3 (100 MHz) 
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Synthesis of compound 103 

 

The tetravalent cross-shaped scaffold 99 (5.3 mg, 2.6 µmol) was dissolved in freshly distilled THF (105 µL) 

under nitrogen atmosphere. TBAF (10 µL) was added as a 1 M solution in THF and the reaction was stirred at 

room temperature for 1 h. Complete deprotection was assessed by TLC analysis (eluent: DCM - MeOH, 9:1, 

Rf = 0.29) monitoring at 365 nm. A solution of TBTA (280 µg, 0.53 µmol) in freshly distilled THF (38 µL) 

was added, followed by 13 µL of a solution of CuSO4·5 H2O (60 µg, 0.24 µmol) and 17 µL of a solution of 

sodium ascorbate (210 µg, 1.06 µmol) both in degassed H2O. Finally, dendron 38 (20 mg, 11.4 µmol) was 

added followed by THF (94 µL) and H2O (102 µL) to reach a ~ 2:1 THF/H2O mixture. The reaction was stirred 

at room temperature, under nitrogen atmosphere, shielded from light for 15 h. The complete conversion into 

the desired product was assessed by TLC analysis (eluent: DCM - MeOH, 7:3 + 0.5 H2O, Rf = 0.22) monitoring 

at 365 nm and by MALDI-TOF MS (matrix DHB, HCCA). The copper scavenger QuadraSil MP was added 

to the solution which was stirred for 15 min. After filtering, the crude was finally purified by size-exclusion 

chromatography using a Sephadex LH-20 column (Ø = 3 cm, height = 50 cm; eluent: MeOH) and monitoring 

by TLC (eluent: DCM - MeOH, 7:3 + 0.5 H2O). Dendrimer 103 was recovered as a bright yellow oil (20.3 mg, 

92%). The purity was confirmed by HPLC analysis of an analytical sample (Waters Atlantis T3 5 µm 4.6x100 

mm column), plateau at 90% (H2O + 0.1% TFA) – 10% (CH3CN + 0.1% TFA) for 1 min followed by a gradient 

to 100% (CH3CN + 0.1% TFA) in 10 min, tR (product) = 7.0 min). [α]D
16 = + 28.5 (c = 0.49 in MeOH). 1H 

NMR (600 MHz, D2O) δ (ppm): 8.30 (s, 4 H, HS12), 7.85 (s, 12 H, 11-H), 7.72 (s, 2 H, HS1), 7.65 (s, 4 H, HS7 

or HS10), 6.99 (s, 4 H, HS7 or HS10), 4.88 (s, 12 H, 1-H), 4.50 (bs, 32 H, 8-H, 20-H), 4.37 (s, 24 H, 13-H), 4.20 

(s, 8 H, HG5), 3.90-3.74 (m, 84 H, 2-H, 7-H, 1-HD, 6-H, HG1, HG2, HG6), 3.72 (dd, J = 9.5, 3.3 Hz, 12 H, 3-H), 

3.70-3.38 (m, 176 H, 6-H', 2-HD, 4-H, 5-H, 9-H, 10-H, 17-H, 18-H, 19-H, HG3, HG4, HG7, HG8), 3.26-3.16 (m, 

32 H, 14-H, 16-H), 2.73 (td, J = 12.1, 3.0 Hz, 12 H, 5-HD), 2.37 (td, J = 12.1, 2.7 Hz, 12 H, 4-HD), 1.88 (t, J = 

14.0 Hz, 24 H, 6-HDeq, 3-HDeq), 1.64 (t, J = 13.2 Hz, 12 H, 3-HDax), 1.37 (t, J = 13.2 Hz, 12 H, 6-HDax). 13C 

NMR (100 MHz, D2O) δ (ppm): 176.9 (12 C, C=O), 176.6 (12 C, C=O), 153.7, 148.7 (8 C, CS9, CS6), 144.4 

(12 C, C12), 141.6 (4 C, CS11), 135.0 (2 C, CS1), 125.5 (4 C, CS12), 125.0 (12 C, C11), 120.9, 117.0 (4 C, CS7 

or CS10), 112.2 (4 C, CS7 or CS10), 111.6, 98.6 (12 C, C1), 92.5, 73.7 (12 C, C2D), 73.5 (12 C, C4), 72.6, 71.8, 
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70.8 (12 C, C1D), 70.4 (24 C, C2, C3), 69.8, 69.4 (8 C, CG5), 68.8, 68.1, 66.7 (12 C, C5), 66.6 (12 C, C7), 63.7 

(12 C, C13), 61.0 (12 C, C6), 60.6, 60.5 (8 C, CG4, CG8), 52.4, 52.3 (24 C, C9, C10), 50.3 (16 C, C8, C20), 

44.9 (4 C, C15), 38.7 (24 C, C4D, C5D), 26.9 (12 C, C3D), 26.6 (12 C, C6D). HRMS (ESI) m/z: calcd for 

C366H534N48O176 8421.44331; found 1426.56540 [M+6Na]6+, 1707.28033 [M+5Na]5+, 1711.67260 [M-

H+6Na]5+, 2128.36951 [M+4Na]4+, 8421.46951 by deconvolution.  

1H NMR spectrum of 103 in D2O (600 MHz) 

 

 

13C NMR spectrum of 103 in D2O (100MHz) 
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HSQC NMR spectrum of 103 in D2O (600 MHz) 
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HPLC of analytical sample of 103: HPLC trace. Waters Atlantis T3 5 µm 4.6x100 mm column, a plateau at 90% (H2O 

+ 0.1% TFA) – 10% (CH3CN +0.1%) for 1 min was followed by a gradient from 90% (H2O + 0.1% TFA) – 10% (CH3CN 

+0.1%) to 100% (CH3CN +0.1%) in 10 min followed by a plateau for 1 min. 

 

Calculated (a) and found (b) isotopic distribution for dendron 103 HRMS (ESI): 

a) Calculated: 
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b) Found: 

 

Calcd for neutral [C366H534N48O176]: 8421.44331. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 8417.43278 Not detected 0.0592 Not detected 

2 8418.43501 8418.45671 0.2520 0.2125 

3 8419.43773 8419.43653 0.5573 0.4919 

4 8420.44052 8420.46531 0.8492 0.8168 

5 8421.44331 8421.46951 1.0000 1.0000 

6 8422.44610 8422.49895 0.9682 0.9638 

7 8423.44886 8423.50766 0.8013 0.7119 

8 8424.45160 8424.50719 0.5820 0.5067 

9 8425.45432 8425.48736 0.3782 0.2857 

10 8426.45703 8426.52198 0.2230 0.1578 

11 8427.45972 8427.53866 0.1207 0.1238 

12 8428.46239 Not detected 0.0605 Not detected 

 

Calcd for [C366H534N48O176Na4]4+: 8513.40007. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 2127.34749 Not detected 0.0592 Not detected 

2 2127.59801 Not detected 0.2520 Not detected 

3 2127.84867 2127.83845 0.5573 0.5362 
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4 2128.09936 2128.11542 0.8492 0.8809 

5 2128.35005 2128.36951 1.0000 1.0000 

6 2128.60074 2128.63333 0.9682  0.9660  

7 2128.85143 2128.88062 0.8013 0.6766 

8 2129.10211 2129.14678 0.5820 0.4681 

9 2129.35278 2129.40902 0.3782 0.3660 

10 2129.60346 Not detected 0.2230 Not detected 

11 2129.85413 Not detected 0.1207 Not detected 

12 2130.10479 Not detected 0.0605 Not detected 

 

Calcd for [C366H533N48O176Na6]5+: 8558.37124. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 1710.87226 Not detected 0.0592 Not detected 

2 1711.07266 Not detected 0.2521 Not detected 

3 1711.27318 Not detected 0.5574 Not detected 

4 1711.47372 1711.48194 0.8493 0.7530 

5 1711.67428 1711.67260 1.0000 1.0000 

6 1711.87483 1711.87500 0.9683 0.8300 

7 1712.07537 1712.07173 0.8014 0.6275 

8 1712.27591 1712.28010 0.5821 0.4980 

9 1712.47645 1712.50227 0.3782 0.3806 

10 1712.67699 Not detected 0.2230 Not detected 

11 1712.87752 Not detected 0.1207 Not detected 

12 1713.07805 Not detected 0.0605 Not detected 

 

Calcd for [C366H534N48O176Na5]5+: 8536.38929. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 1706.47585 Not detected 0.0592 Not detected 

2 1706.67626 Not detected 0.2520 Not detected 

3 1706.87679 Not detected 0.5573 Not detected 

4 1707.07733 1707.08130 0.8492 0.7853 

5 1707.27789 1707.28033 1.0000 1.0000 

6 1707.47844 1707.48293 0.9683 0.9633 

7 1707.67898 1707.69000 0.8014 0.7827 

8 1707.87953 1707.89063 0.5821 0.5576 

9 1708.08007 Not detected 0.3782 Not detected 

10 1708.28061 Not detected 0.2230 Not detected 

11 1708.48114 Not detected 0.1207 Not detected 

12 1708.68167 Not detected 0.0605 Not detected 

13 1708.88220 Not detected 0.0283 Not detected 
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Calcd for [C366H534N48O176Na6]6+: 8559.37851. 

Peak Mass 

Calculated                   Found 

Relative intensity 

Calculated                    Found 

1 1425.89476 Not detected 0.0592 Not detected 

2 1426.06176 Not detected 0.2521 Not detected 

3 1426.22886 1426.23787 0.5573 0.5478 

4 1426.39598 1426.39920 0.8492 0.8391 

5 1426.56311 1426.56540 1.0000 1.0000 

6 1426.73023 1426.73855 0.9683 0.9739 

7 1426.89736 1426.90216 0.8014 0.7000 

8 1427.06447 1427.06811 0.5820 0.6130 

9 1427.23159 Not detected 0.3782 Not detected 

10 1427.39870 Not detected 0.2230 Not detected 

11 1427.56582 Not detected 0.1207 Not detected 

12 1427.73292 Not detected 0.0605 Not detected 

13 1427.90003 Not detected 0.0283 Not detected 

14 1428.06713 Not detected 0.0124 Not detected 

15 1428.23423 Not detected 0.0051 Not detected 
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3.1 Glycan Microarrays: general features and applications 

An important contribution in the study of protein-carbohydrate interactions is offered by glycan microarray 

technology. A microarray consists of a library of compounds of interest, which are displayed in a controlled 

fashion over a suitable surface. This technique dates back to the mid ‘90s, when it was first applied to DNA1 

and proteins2,3 and was readily adapted to glycans. In particular, the first glycan microarrays were described 

in 2002 by several research groups, who achieved printing of glycans by automated arrayers4,5 or immobilized 

them with various methodologies over printed slides or multiwell plates.6,7,8,9,10 Since then, the application of 

this technique has literally exploded and different methodologies concerning preparation of the arrays and their 

analysis have been developed.11  

The success of glycan microarrays can be understood looking at the general features of the experiment (Fig. 

3.1). In a typical set-up, selected glycans are immobilized, usually using an automatic spotter, over properly 

functionalized or coated slides. Following immobilization, target lectins are incubated with the array to study 

their interactions with printed glycans, while unbound proteins are washed away. In most of the cases, the 

extent of lectin affinity for each glycan of the library is detected by fluorescence. The intensity of fluorescence 

is a direct measurement of the bound lectin, which can be obtained either using already labelled proteins or 

indirectly, performing a second incubation with a labelled tag able to recognize and bind to the lectin, e.g. an 

antibody or fluorescently labelled streptavidin in the case of biotinylated lectins. Therefore, this process allows 

displaying in a well defined and tunable arrangement a large number of compounds over a relatively small 

surface. Moreover, the entire library can be screened by fast analysis requiring tiny amounts of both glycans 

(usually pmol) and lectins. Finally, the high density of monovalent ligands immobilized on the array is able to 

mimic carbohydrate-protein interactions as they occur in Nature, with lectins showing avidity and selectively 

binding to multivalent counterparts. 

 

Figure 3.1 – Glycan microarray screening. In a tipycal experiment involving glycan microarrays, several different 

glycan structures are immobilized on a surface and screened for interactions with a target lectin (either labelled or not). 

The extent of lectin binding is usually revealed by fluorescence spectroscopy. 

The density of spotted ligands is an important parameter that has to be considered in microarray analysis. 

Indeed, if glycan concentration is too high, saturation of the binding signal may occur with the lectin showing 

comparable binding affinity both for high affinity and low affinity ligands. On the contrary, printing glycans 

at reduced concentration allows highlighting the preferential binding of lectins for different carbohydrate 

structures.12 In recent years, the influence of ligand orientation has also been investigated. Various studies have 

pointed out that carbohydrate-protein interactions of biological systems are only roughly mimicked by 

bidimensional microarrays and that tridimensional presentation of glycan ligands may play a crucial role in 

directing binding selectivity.13 These effects have been investigated developing three-dimensional 

microarrays,14 in which printed glycans have been grafted on various synthetic scaffolds, comprising 

neoglycoproteins,15 glycodendrimers16 or glycopolymers.17,18 However, a high degree of control over glycan 
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surface density and presentation is hard to achieve mainly due to difficulties in the characterisation of the 

device surface. 

Fast screening of large glycan libraries is one of the most attractive properties of microarray analysis that 

has been exploited to assess binding specificities of newly discovered lectins. Among these, screening 

campaigns have been addressed also towards several C-type lectins, including DC-SIGN, langerin, Dectin-1, 

MGL and SIGN-R1-7.19,20,21,22,23 In this manner, naturally occurring ligands can be identified opening the doors 

to more accurate structural studies and allowing rational design of glycomimetic analogues. 

Glycan microarrays have also been addressed to the identification of synthetic lectin antagonists. In a recent 

work, Paulson and coworkers have described the identification of a highly potent Siglec-7 ligand through the 

screening of a sialoside library that was directly synthesised on the array.24 Remarkably, a library of 1140 

sialoside analogues was readily obtained by printing a set of 12 different sialosides bearing an alkyne moiety 

followed by CuAAC reaction with 94 different azides. 

Microarrays represent a promising tool for diagnostic purposes.25 This technique combines fast screening 

and low detection limits. Moreover, bacteria and viruses can be directly incubated on the array surface to study 

their interactions and selectivities towards the printed glycans.26 The Seeberger group has demonstrated that 

E. coli, which can bind to surfaces exploiting the adhesive lectin FimH, selectively binds to mannose in 

carbohydrate microarrays.27 This result suggests the possible application of glycan arrays as a test for the 

detection of pathogens. Indeed, characterizing different bacterial species on the basis of their binding 

specificity towards different glycan structures would allow, in theory, to assess the presence and to discriminate 

between different species of pathogens in strains and biological fluids. 

3.2 Immobilization chemistry 

The immobilization of glycans is the key step for the generation of carbohydrate microarrays. Depending 

on the type of chemistry on which they rely, immobilization strategies can be classified into covalent 

immobilization methodologies and non-covalent immobilization methodologies. In any case, a proper 

functionalization of the glycans is necessary to match the chemical nature of the array surface. 

3.2.1 Covalent immobilization  

This technique requires the formation of a new covalent bond between the array surface and the glycans 

(Fig. 3.2). Covalent immobilization and particularly the robust amine chemistry is probably the most exploited 

strategy for the synthesis of glycan microarrays. Reported studies employing this methodology comprise the 

immobilization of amino tethered glycans with a surface activated as N-hydroxysuccinimide (NHS)-ester26 or 

containing reactive epoxide groups.28 Condensation reactions between aldehydes and amines, hydrazides and 

O-substituted hydroxylamines have also been applied; notably this strategy includes the use of non 

functionalised reducing glycans as the aldehyde counterpart, which however determines the loss of the 

reducing end residue of the glycan in its native form. 

Along with the amine chemistry, thiol chemistry allowed for robust immobilization technique. Thiol-ene 

reactivity between a thiol group and a maleimide moiety is the most commonly adopted combination,29,30  

however disulphide exchange reaction has also been applied allowing the synthesis of an SPR detectable 

array.31 

Cycloaddition reactions have been successfully used for glycan immobilization, in particular Diels Alder9 

and CuAAC8,18 reaction have been applied to array libraries of monosaccharides and oligosaccharides. 

Finally, a convenient method that allows glycan immobilization using non derivatized sugars is the 

photoimmobilization. Activating the array surface with aryl-trifluoromethyldiazirine or phthalimido moieties 

the photochemical immobilization of bacterial polysaccharides, dextrans, xyloglucans and glycoproteins has 
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been achieved.32,33,34,35 A reverse strategy has also been established, in which perfluoroarylazide functionalized 

mono and disaccharides were photochemically linked onto a non activated PEG-ylated surface.36 

 

Figure 3.2 – Covalent immobilization techniques. Most of the described methodologies for the fabrication of 

microarrays rely on covalent immobilization, where a covalent bond is directly formed between glycans and the array 

surface. Robust amine chemistry is the most developed, but also thiol chemistry along with cycloaddition reactions and 

photoimmobilization processes have been reported. 

3.2.2 Non-covalent immobilization  

This strategy envisages the adsorption of selected glycans over the array surface through non covalent 

interactions (Fig. 3.3). Non-covalent methods were reported since the early development of glycan 

microarrays, when it was observed that polysaccharides, glycoproteins and proteoglycans spontaneously 

adsorb on nitrocellulose and oxidized polystyrene surfaces.5,6 A clear disadvantage of this methodology is the 

uncontrolled, random orientation of the immobilized glycans. 

With a similar approach, electrostatic interactions were exploited to immobilize naturally charged 

glycosaminoglycans or properly modified negatively charged dextrans over a positively charged amino 

tethered surface.37,38 

The two methodologies described so far are both limited to high molecular weight glycans. On the contrary, 

non-covalent immobilization of mono up to pentasaccharides has been reported using glycolipids. Glycolipids 

are obtained tethering glycans with a long alkyl chain, thus allowing hydrophobic interactions and consequent 

adsorption over a polystyrene surface.7 

A similar principle was used by the Pohl group who adopted a perfluorinated surface (C8F17) to immobilize 

monosaccharides bearing the same perfluorinated (C8F17) chain.39 
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Finally, DNA40 and biotin-streptavidin41 based methods have been also described, even though the latter 

has never been applied for immobilization of monosaccharides.  

 

Figure 3.3 – Non-covalent immobilization techniques. Non-covalent immobilization envisages the absorption of 

conveniently functionalized glycans on a surface, usually by hydrophobic, fluorous or electrostatic interactions. 

Polysaccharides have shown to spontaneously absorb on nitrocellulose surfaces, while other methods exploit 

biotin/streptavidin interaction or ssDNA pairing. 

3.3 Detection techniques and surface characterization 

Among the possible applications of glycan microarrays, the investigation of carbohydrate-lectin 

interactions is certainly one of the most attractive. The most common technique to measure the relative 

affinities between lectins and printed saccharides is fluorescence spectroscopy, even though SPR detection has 

been successfully applied.31,42,43,44  

One of the most challenging aspects of glycan microarrays fabrication is represented by surface 

characterization. With the aim of quantifying the extent of glycan immobilization Cummings and co-workers 

developed a method using fluorescent labelled glycans.45 The selected carbohydrates were functionalized with 

a fluorescent diaminopyridyl moiety prior to immobilization. Then the reaction over epoxide activated slides 

was monitored and quantified measuring the fluorescence intensity (Scheme 3.1). The limitation of this 

application resides in the reductive amination conjugation step that determines loss of structural complexity of 

the reducing glycan moiety.  

Scheme 3.1 – Immobilization of fluorescent glycans. Reductive amination of glycan reducing end with 

diamnopyridine was exploited to immobilize fluorescent detectable carbohydrates. This method allowed to characterize 

array surface in terms of glycan density by fluorescent spectroscopy.45 
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Printing of a fluorescent dye on a given array was established by Wong and co-workers46 as a general 

method to estimate glycan density. In particular, solutions of fluorescein cadaverine were printed at different 

concentrations onto N-hydroxysuccinimide activated slides and fluorescence was detected by an array scanner. 

After the immobilization time, the slides were washed with a PBS buffer solution and analysed again by 

fluorescence. Plotting the average fluorescence intensity obtained from quenched slides with the logarithm of 

the concentration allowed to establish the concentration at which saturation of the surface is reached. 

Moreover, knowing the solution concentrations (C) and the volumes (V) employed during printing, the density 

of spotted compound could be calculated as follows: 

𝛿 =
𝑁𝑝

𝜋 ∙ 𝑟2
      where     𝑁𝑝 =

𝐶 ∙ 𝑉 ∙ 𝑁𝐴 ∙ 𝑄𝑝𝑜𝑠𝑡

𝑄𝑝𝑟𝑒
 

where Np is the number of spotted molecules, r the radius of the spots, NA the Avogadro’s constant, Qpost is 

the fluorescence intensity post-quench and Qpre is the fluorescence intensity pre-quench. The limit of this 

approach is the use of fluorescein as a dye which presents very different morphology and chemophysycal 

properties when compared to glycans. Indeed, steric bulk and topology are likely to affect be important 

parameters affecting glycan density on arrays, which may vary significantly depending on the complexity and 

architecture of printed glycans.  

An alternative way to characterize arrays surface is provided by mass spectroscopy. In a pioneering work, 

oligosaccharides were conveniently functionalised with a photocleavable linker and covalently immobilized 

on porous silicon based slides. Photolytic cleavage and analysis of the array was possible using 

desorption/ionization on silicon mass spectroscopy (DIOS-MS) technique. Unfortunately this method is 

affected by a low signal to noise ratio (S/N), which is mostly due to incomplete cleavage of the linker.47  

Surface characterization by mass spectroscopy is a powerful technique that has been also exploited to 

monitor on-chip enzymatic reactions. The on-chip transformation of the lactose derivative S using either a β-

1,4-galactosidase or a α-2,3-sialyltransferase has been reported (Scheme 3.2).48 The extent of the enzymatic 

reactions was assessed by the exotic Nanostructure-Initiator Mass Spectrometry (NIMS) technique. 

Particularly, S was tethered with a fluorous-tagged linker that enabled immobilization through non-covalent 

interactions on a perfluorinated surface. Upon laser irradiation, desorption and ionization take place and 

carbohydrates can be detected. Notably, the presence a guanidine moiety in the saccharide linker favored the 

ionization process providing a methodology with a low detection limit (S/N ~ 20 at 500 amol). 
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Scheme 3.2 – On-chip reactions are detectable by MS spectrometry. Glycan arrays based on compounds immobilized 

through fluorous interactions are suitable to be analysed by NIMS (Nanostructure-Initiator Mass Spectrometry). In 

particular, glycan S was elaborated using either a β-1,4-galactosidase or a α-2,3-sialyltransferase. The formation of the 

corresponding products P1 and P2 was assessed by NIMS.48 

In a similar manner, arrays based on self-assembled monolayers (SAMs) on a gold surface have been 

described and exploited to monitor on-chip enzymatic modifications of printed saccharides (Scheme 3.3). This 

platform offers great versatility in terms of detection, with SPR analysis and MALDI-TOF spectrometry being 

particularly efficient.49 

Scheme 3.3 – SAMs based glycan arrays. Glycosylation reactions of glycans immobilized to self-assembled monolayers 

on a gold chip were successfully monitored by MALDI-TOF MS. From the two spectra we can appreciate the shifting of 

the mass signal towards higher molecular weight upon glycosylation reaction.49 
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In a recent work, Reichardt and coworkers demonstrated that hydrophobically immobilized glycan arrays 

are a suitable device for studying lectin-carbohydrate interactions by MALDI-TOF (matrix-assisted laser 

desorption/ionization time-of-flight) mass spectrometry (MS).50 Particularly, a small library of N-glycans 

tethered with an amino group was printed over an indium-tin oxide (ITO) surface coated with an NHS activated 

lipidic double layer. The resulting glycan array (Fig. 3.4) proved to be a versatile device allowing both 

fluorescent and MALDI-TOF MS detection. As a proof of principle experiment, concanavalin A (Con A) was 

incubated with the spotted glycans and binding interactions were detected by MALDI-TOF MS. Moreover, 

partial on-chip trypsin digestion and MALDI-TOF/TOF analysis allowed peptide sequencing and assignment 

of fragment ions, pointing out that this method is a powerful technology for the identification of unknown 

lectins binding to already characterized glycan molecular patterns. 

 

Figure 3.4 – Hydrophobically immobilized glycan arrays detectable by MALDI-TOF MS. Glycan-lectin interactions 

are detectable by MALDI-TOF MS using hydrophobically immobilized glycan arrays. a) The signal of concanavalin A 

(Con A) was detected for glycans able to interact with this protein. Control experiment was performed using fluorescently 

labelled Con A. b) This technique would also allow for determination of structure of unknown proteins. As a proof of 

concept, on chip trypsin digestion of Con A was performed leading to fragments that were detected by MALDI-TOF MS. 

c) and d) Sequencing of the protein main fragments was achieved by on-chip MALDI-TOF/TOF analysis.50 

3.4 On-chip glycomimetic library expansion  

MALDI-TOF detectable glycan arrays combine fast screening with ease of surface characterization, which 

make them an attractive platform for the study of carbohydrate-protein interactions and, in particular, for the 

identification of novel lectin ligands. Indeed, new lead structures can be selected among hundreds of 

compounds by fast screening of wide glycan libraries. Moreover, analysis by MALDI-TOF spectrometry 

furnishes a characterisation of the surface, glycans can be easily identified, their on-chip elaborations can be 

properly monitored and interactions with lectins can be successfully detected. 

In collaboration with the group of Niels C. Reichardt at CICbiomaGUNE in San Sebastian (Spain), we 

aimed to exploit the features of MALDI TOF detectable glycan arrays to perform the on-chip chemoenzymatic 

synthesis of a glycomimetic library (Fig. 3.5). We thought that the ease of surface characterization of these 

devices would allow to synthesize and expand chemically or enzymatically the library of glycans directly on 
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the array. The strategy that we adopted envisages the use of glycans functionalized with alkyl chains embedded 

onto hydrophobic surface from which they can be desorbed after laser ionization. Elaboration of the glycans 

was investigated by enzymatic reactions, which constitute a convenient method for the stereoselective 

transformation of glycans, both in solution and directly on micro-arrays. In particular, our goal was to 

enzymatically elongate arrayed glycans using “clickable” NDP-sugar donors, allowing further library 

diversification by CuAAC reaction. Following this methodology, large libraries of glycomimetic able to 

explore different chemical spaces can be rapidly generated and tested as potential ligand in interactions with 

C-type lectins. Remarkably, each elaboration step and the extent of the reactions performed on the array can 

be monitored by MALDI-TOF MS analysis. 

 

Figure 3.5 – General strategy for on-chip library expansion. A small library of glycans will be properly functionalized 

directly on the array allowing further reactivity and diversification of glycan library. This will allow fast generation of 

different glycan structures. Moreover, the extent of reactions will be detectable by MALDI-TOF MS. 

3.4.1 On-array chemoenzymatic reactions: optimization studies 

To assess the feasibility of the approach that we devised, both on-chip enzymatic glycosylation and CuAAC 

reactions were investigated and optimized in a model experiment (Scheme 3.4). In detail, glycans ranging from 

a monosaccharide to a nonasaccharide 105-111 were selected to build up a glycan array. ITO slides were 

chosen as a suitable surface for both MS and fluorescence detection and properly functionalized by self-

assembly to form a hydrophobic monolayer on which glycans tethering long alkyl chains got adsorbed. Then, 

glycan elongation by enzymatic glycosylation was tested using two glycoside donors: the commercially 

available UDP-GalNAz 112 and the 6-azido-UDP-Gal 114, which was previously synthesized in our group51 

following a known procedure.52 The introduction of azido tagged glycoside units allowed for further 

diversification and library expansion by CuAAC reaction, which was optimized and applied to a set of nine 

alkynes 104a-i. 
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Scheme 3.4 – On-chip glycosylation and CuAAC reactions. The methodology we designed envisages the 

immobilization of a small library of glycans 105-111 that will be expanded directly on the array. We aimed to introduce 

an azide tag by glycosylation reaction using the labelled UDP-GalNAz 112 and UDP-6-azido-D-galactose 114, 

respectively mimic structure of the natural 113 and 115. The azide functionalities will allow diversification through 

CuAAC with a small library of alkynes 104a-i. 

3.4.1.1 Glycan printing 

In the construction of glycan microarrays a careful selection of the nature of the surface which has to match 

with the immobilization method is essential. For our purposes, we chose commercially available glass slides 

coated with an indium tin oxide (ITO) layer as a transparent and conductive platform, which ensures both 

fluorescence and MALDI-TOF MS detection.  
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In order to allow the hydrophobic immobilization of glycans, ITO slides had to be properly functionalized. 

Therefore, ITO slides were initially treated with a basic piranha solution (H2O:NH3:H2O2 = 6:1:1), which 

allowed to maximize the hydroxyl groups on the surface and to remove eventual adsorbed organic traces. 

Incubation with a solution of octadecyl phosphonic acid in THF (3 h, r.t.) and finally curing the slides at 140 

°C overnight allowed to get a self-assembled hydrophobic monolayer. The use of phosphonic acids is known 

as a preferential method for the generation of self-assembled monolayers on ITO slides.53 Then, a CHCl3 

solution of the N-hydroxy succinimide (NHS) activated glycerol derived linker 116, which was previously 

synthesized in the Reichardt group at CIC biomaGUNE,50 was incubated with the hydrophobic slides, leading 

to a reactive lipidic double layer where glycans could finally be immobilized (Scheme 3.5). In particular, 

glycans were conveniently functionalized with a C-5 amino linker and robotically printed as solutions (50 µM 

in phosphate buffer pH 8.5) on the slides where they got bound as carbamates upon reaction with the activated 

NHS carbonates. Finally, remaining NHS reactive groups were quenched treating the slides with an 

ethanolamine solution (50 mM in borate buffer pH 9.0). 

Scheme 3.5 – Immobilization of the glycans. ITO slides were conveniently functionalized with octadecyl phosphonate 

to get a hydrophobic surface, which was incubated with a CHCl3 solution of NHS activated linker 116. Amino tethered 

glycans were then printed over the reactive lipidic double layer getting immobilized through the formation of carbamate 

bonds. 

 As a first attempt, N-glycans presenting a C5 amino linker and characterised by different degrees of 

complexity were selected and printed on the ITO slides (Fig. 3.6). All glycans 105-109 display a terminal 

GlcNAc residue, except for the pentasaccharide 110 and the LewisX trisaccharide 111. (Once immobilized on 

the slide, we will refer to glycans 105-111 as 105i-111i). 
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     = GlcNAc;      = Man;      = Gal;     = Fuc 

Figure 3.6 – Amino tethered glycans printed on the array. Glycans 105-111 were selected to be printed on the array. 

The extended chemical structures are reported along with their schematic representation. 

3.4.1.2 Enzyme activity assay: clickable NDP sugars as glycoside donors 

To establish the methodology, glycosylation reaction with the azido labelled UDP sugars 112 and 114 as 

glycoside donors were first studied in solution with two related enzymes. The ability of the enzymes in 

transferring the unnatural sugar nucleotides 112 and 114 was evaluated and compared with glycosylation 

reactions using the respective naturally occurring UDP-N-acetyl-D-galactosamine 113 and UDP-D-galactose 

115 (Scheme 3.4). 

The glycosylation reactions were performed using β-1,4-galactosyl transferase I (GalT-1) enzyme, which 

selectively transfers UDP activated galactosyl donors to N-acetyl glucosamine residues forming a β-1→4 

glycosidic bond. In particular, two versions of the GalT-1 enzyme were exploited, the native enzyme and the 

double mutant C342T&Y289L. While the C342T mutation allows for better and easier folding during the 

protein expression and purification process,54 the additional Y289L mutation allows modulating enzyme 

selectivity. Indeed, the native GalT-1 enzyme can use UDP-Gal as a donor; it shows only a minimal activity 

(0.1%) in transferring GalNAc from the related UDP-GalNAc nucleoside. On the contrary, it was demonstrated 

that GalNAc residues are successfully accepted by the GalT-1 Y289L mutant, in which the Tyr289 at the 

glycoside donor binding site is substituted with the non coordinating Leu289.55 As already reported, the mimic 

structure of the 6-azido-UDP-Gal 114 is a substrate of the truncated bovine galactosyl transferase GalT-1,52 

while the commercially available GalNAz 112 can be transferred using the double mutant version of the 

protein, the GalT-1-DM.  

Both GalT-1 and GalT-1-DM were overexpressed in transformed E. coli56 and recovered after cell lysis 

from inclusion bodies. The enzymes were folded and purified by His-Trap column eluting with a 500 mM 

imidazole Tris buffer solution pH 8.5. The fractions were analysed by SDS-page and dialysed affording GalT-

1 (0.50 mg/mL) and GalT-1-DM (0.62 mg/mL) solutions.  

In order to evaluate the activities of the expressed enzymes towards the natural glycoside donors 113, 115 

and the respective azido derivatives 112 and 114, glycosylation reaction were performed in solution using the 

UV visible 1-p-nitrophenyl-N-acetyl glucosamine 117 as acceptor (Scheme 2). The reactions were generally 

performed mixing an equimolar ratio of the glycoside donor and acceptor with the enzyme solution (3.3 µL) 

in Hepes buffer (50 mM, pH 7.4) containing MnCl2 and shaking at 37 °C. The reactions were stopped after 30 

minutes quenching with acetonitrile and analytical samples were analysed by UPLC-MS detecting at 298 nm. 

From the resulting chromatograms (Fig. 3.7), the conversions were estimated by area integration of the 

NH
2
 

NH
2
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absorbance peaks of the acceptor 117 (dark blue peak) and of the disaccharide products 118-121 (light blue 

peaks). The corresponding enzyme units for the solutions of GalT-1 and GalT-1-DM were calculated (1U = 

the amount of enzyme that transforms 1 µmol of a given substrate in 1 min). 

The GalT-1-DM enzyme was able to transfer both the native UDP-N-acetyl-D-galactosamine 113 and the 

unnatural counterpart 112 (26% and 46% conversion respectively in 30 minutes) (Fig. 3.7a,b); on the other 

hand, the GalT-1 enzyme was found to be active only with UDP-galactose 115 as donor (46% conversion in 

30 minutes) (Fig. 3.7c), showing to be completely unable to accept 114 as a substrate. Attempts to force the 

reaction using a higher amount of the enzyme (0.76 mU taking reaction of UDP-D-galactose 115 with GalT-1 

as a reference) and an excess of donor (2.5 and 5.0 eq) failed. Only using 13 µL = 1.75 mU of enzyme at room 

temperature for 14 h a low conversion (2%) was observed (Fig. 3.7d). In a further trial, alkaline phosphatase 

was added to favour the reaction thermodynamics57 but was found not to affect the reaction outcome. 

Analogous results were obtained in trials employing a commercially available GalT-1 supplied by Sigma-

Aldrich, thus suggesting a possible decomposition of the activated UDP-6-azido-D-galactose 115. However, 

since 1H and 31P NMR and ESI-MS spectra of this compound were all in agreement with those reported in 

literature,52 it is reasonable to argue that such a low conversion is likely to be ascribed to the low affinity of 

GalT-1 enzyme for this substrate. As a consequence, on-chip glycosylation reactions with UDP-6-azido-D-

galactose 115 as a donor seem not feasible and we focused our attention on the use of UDP-GalNAz 112. 

 

Scheme 3.6 – Enzyme activity assay. The activity of expressed enzymes GalT-1 and GalT-1-DM were evaluated by in 

solution glycosylation reactions using both natural glycoside donors 113 and 115, as well as the azido derivatives 112 

and 114. The p-nitrophenyl GlcNAc 117 was employed as glycoside acceptor. 
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Figure 3.7 – UPLC-MS chromatograms for enzymatic glycosylation reactions. Reaction samples were analysed by 

UPLC-MS. The p-nitrophenyl labelled acceptor 117 and the disaccharide products were both UV-visible monitoring at 

289 nm and conversions were estimated upon area integration of absorbance peaks. PNP-GlcNAc 117 tR = 0.89 min. a) 

GalNAc-β-1,4-PNP-GlcNAc 119 tR = 1.50 min. b) GalNAz-β-1,4-PNP-GlcNAc 118 tR = 1.42 min. c) Gal-β-1,4-PNP-

GlcNAc 121 tR = 1.49 min. d) 6-azido-Gal-β-1,4-PNP-GlcNAc 120 tR = 1.26 min. From chromatograms a,b,c the enzyme 

units for the corresponding reaction were calculated. 

3.4.1.3 On-chip glycosylation 

The enzymatic glycosylation of arrayed glycans was investigated using GalT-1-DM enzyme in order to 

transfer either the natural substrate UDP-N-acetyl galactosamine 113 or the labelled UDP-GalNAz 112. The 

reactions were performed in similar conditions as previously established in solution. The ITO slides were 

incubated overnight at 37 °C with a 500 µL solution of both the enzyme and the glycoside donor (glycoside 

donor 1 mM, MnCl2 5 mM, Hepes 50 mM, GalT-1-DM enzyme 125 µL of a 0.62 mg/mL solution, BSA IgG 

free 2 µL of a saturated solution). The extent of the reactions was evaluated by robotically printing a DHB 

matrix solution onto the slides and analysing by MALDI-TOF spectrometry. Almost complete conversion was 

assessed for the monosaccharide 105i with both the GalNAc donor 113, yielding the GalNAc-β-1,4-GlcNAc 

disaccharide 122i (Fig. 3.8b; 1126.996 [M+Na]+, 1142.984 [M+K]+), and the azido derivative 112, yielding 

the corresponding azido labelled disaccharide 123i (Fig. 3.8c 1168.079 [M+Na]+, 1184.059 [M+K]+). Notably, 

the MS peaks for the azido labelled disaccharide 123i were always associated with signals at lower molecular 

weight (-28) due to decomposition of the azido group upon ionization (Fig. 3.8c 1142.070 [M-N2+H2+Na]+, 

1158.046 [M-N2+H2+K]+). Complete conversion was obtained also for glycosylation of the linear trisaccharide 

106i with UDP-N-acetylgalactosamine 113, leading to the tetrasaccharide 124i (Fig. 3.9b; 1533.198 [M+Na]+, 

1549.201 [M+K]+). On the contrary, a decreased activity was shown by GalT-1-DM in the glycosylation of 

106i with UDP-GalNAz 112 as the donor and only partial conversion was achieved (Fig. 3.9c; 1548.317 [M-

N2+H2+Na]+, 1562.289 [M-N2+H2+K]+, 1574.320 [M+Na]+, 1590.319 [M+K]+).  

The glycosylation of multiantennary glycans was less satisfactory: elongation of 109-111 with UDP-

GalNAc 113 always afforded the desired products along with partially galactosylated intermediates, likely in 

regioisomeric mixtures (respectively Fig.3.10b, 3.11b, 3.12b). On the contrary, using UDP-GalNAz 3.9 as 

glycoside donor no signals ascribed either to the starting material or to the products and the corresponding 

intermediates could be detected (respectively Fig.3.10c, 3.11c, 3.12c). As expected, no glycosylation product 

was observed in reactions involving the pentasaccharide 110i and the LewisX 111i, which were included in 

the screening as negative controls.  
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Figure 3.8 – MALDI-TOF MS spectra of on-chip enzymatic elongations of monosaccharide 105i. a) MS spectrum 

of immobilized glucosamine derivative 105i: m/z calcd 900.665; found 923.858 [M+Na]+, 939.834 [M+K]+. b) MS 

spectrum acquired after enzymatic glycosylation of 105i with UDP-GalNAc 113. Almost complete conversion to 

disaccharide 122i was observed: m/z calcd 1103.444; found 1126.996 [M+Na]+, 1141.866 [M+K]+. c) MS spectrum 

acquired after enzymatic glycosylation of 105i with UDP-GalNAz 112. Almost complete conversion to azido tagged 

disaccharide 123i was observed: m/z calcd 1144.745; found 1168.079 [M+Na]+, 1184.059 [M+K]+. Peaks at lower 

molecular weight (-28) deriving from decomposition of azide group due to ionization were also detected: m/z 1142.070 

[M-N2+H2+Na]+, 1158.046 [M-N2+H2+K]+. 
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Figure 3.9 - MALDI-TOF MS spectra of on-chip enzymatic elongations of trisaccharide 106i. a) MS spectrum of 

immobilized trisaccharide 106i: m/z calcd 1306.824; found 1330.127 [M+Na]+, 1346.105 [M+K]+. b) MS spectrum 

acquired after enzymatic glycosylation of 106i with UDP-GalNAc 113. Complete conversion to tetrasaccharide 124i was 

observed: m/z calcd 1509.903; found 1533.198 [M+Na]+, 1549.021 [M+K]+. c) MS spectrum acquired after enzymatic 

glycosylation of 106i with UDP-GalNAz 112. Partial conversion to azido labelled tetrasaccharide 125i was observed: m/z 

calcd 1550.905; found 1574.320 [M+Na]+, 1590.319 [M+K]+. Peaks at lower molecular weight (-28) deriving from 

decomposition of azide group due to ionization were also detected: m/z 1548.317 [M-N2+H2+Na]+, 1562.289 [M-

N2+H2+K]+. 
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Figure 3.10 - MALDI-TOF MS spectra of on-chip enzymatic elongations of biantennary 107i. a) MS spectrum of 

immobilized biantennary 107i: m/z calcd 1996.061; found 2019.515 [M+Na]+. b) MS spectrum acquired after enzymatic 

glycosylation of 107i with UDP-GalNAc 113. Almost complete conversion to di-GalNAc containing glycan 127i was 

achieved: m/z calcd 2403.223; found 2425.723 [M+Na]+. Partially glycosylated 126i was also observed at minor extent: 

m/z calcd 2200.144; found 2222.615 [M+Na]+. c) Enzymatic glycosylation of 107i with UDP-GalNAz 112 was 

unsuccessful and no peaks ascribed to the product were detected. 
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Figure 3.11 - MALDI-TOF MS spectra of on-chip enzymatic elongations of triantennary 108i. a) MS spectrum of 

immobilized triantennary 108i: m/z calcd 2200.144; found 2222.641 [M+Na]+, 2239.620 [M+K]+. b) MS spectrum 

acquired after enzymatic glycosylation of 108i with UDP-GalNAc 113. Incomplete conversion to give the triglycosylated 

product 130i was observed: m/z calcd 2809.382; found 2832.986 [M+Na]+. Partially glycosylated intermediates 128i and 

129i were detected. Diglycosylated intermediate 129i: m/z calcd 2606.303; found 2629.868 [M+Na]+. Monoglycosylated 

intermediate 128i: m/z calcd 2403.22; found 2425.747 [M+Na]+. c) Enzymatic glycosylation of 108i with UDP-GalNAz 

112 was unsuccessful and no peaks ascribed to the product were detected. 
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Figure 3.12 - MALDI-TOF MS spectra of on-chip enzymatic elongations of tetraantennary 109i. a) MS spectrum 

of immobilized tetraantennary 109i: m/z calcd 2403.224; found 2425.760 [M+Na]+. b) MS spectrum acquired after 

enzymatic glycosylation of 109i with UDP-GalNAc 113. Incomplete conversion to give the tetraglycosylated product 

134i was observed: m/z calcd 3215.547; found 3243.898 [M+Na]+. Partially glycosylated intermediates 131i, 132i and 

133i were also detected. Triglycosylated intermediate 133i: m/z calcd 3012.462; found 3035.097 [M+Na]+. 

Diglycosylated intermediate 132i: m/z calcd 2809.382; found 2832.987 [M+Na]+. Monoglycosylated intermediate 131i: 

m/z calcd 2606.303; found 2629.870 [M+Na]+. c) Enzymatic glycosylation of 109i with UDP-GalNAz 112 was 

unsuccessful and no peak ascribed to the product was detected. 

3.4.1.4 Library diversification: CuAAC of arrayed glycans 

The introduction of the azide tag into the arrayed glycan structure allowed for the on-chip library 

diversification by CuAAC reaction. Since the on-chip enzymatic glycosylation of multiantennary glycans with 

tagged unnatural glycosides could not be optimized, monoantennary 123i and 125i were selected for setting 

up the general conditions for the CuAAC reaction on the array. Moreover, when printed on ITO slides, these 

glycans showed a good S/N ratio analysing by MALDI-TOF spectrometry.  

Generally, experiments were conducted with the azido 123i and 125i obtained by on-chip glycosylation, 

however to limit the use of the synthetically precious UDP-GalNAz 112, in solution glycosylation was also 

exploited. In particular, in solution enzymatic glycosylation of the GlcNAc derivative 105 using GalT-1-DM 

enzyme and UDP-GalNAz 112 afforded the corresponding amino tethered disaccharide 123 that was readily 

purified by a graphitized carbon cartridge (eluting with H2O - CH3CN, 6:4) and printed over the ITO slides 

leading to the immobilized 123i (Scheme 3.7).  
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Scheme 3.7 – In solution preparation of azido tagged glycans. Following an alternative strategy, the immobilized 

glycan 123i could be prepared by in solution glcosylation of 105 with UDP-GalNAz 112 followed by printing on NHS 

activated ITO slides.  

The monoantennary 123i and 125i were subjected to cycloaddition reactions with variously functionalized 

terminal alkynes (Scheme 3.8). All the selected alkynes were commercially available, except for the methyl 

hexynoate 104c which was readily obtained by esterification of the corresponding acid 104b58 and the 

homopropargyl glucose 104i that was obtained by glycosylation reaction 3-butyn-1-ol with β-D-glucose. 

Importantly, to prevent disruption of the hydrophobic interactions between the arrayed glycans and the 

hydrophobic ITO slides, all reactions on the array must be performed in water solutions and reaction conditions 

have to be carefully tuned. For this reason, cycloaddition of glycans 123i and 125i were generally performed 

in a 99:1 H2O/DMSO mixture as a good compromise between low content of DMSO and alkyne solubility. 

Cu(I) catalysed azide alkyne cycloadditions were performed following the methodology reported by Sharpless 

and co-workers,59,60 thus ITO slides with the printed azido tagged glycans were incubated with reaction 

mixtures containing terminal alkyne, CuSO4·5 H2O, Na ascorbate and the THPTA (tris(3-

hydroxypropyltriazolylmethyl)amine) ligand (5 mol. eq. relative to the Cu salt). The THPTA ligand61 is a 

hydrophilic version of the more common TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) ligand, 

which is employed as an additive in CuAAC reaction to stabilize the copper complex in its catalytically active 

Cu(I) oxidation state. Reactions were conducted for 2 hours, shielding from light and finally analysed by DHB 

matrix printing and MALDI-TOF analysis. 

 

Scheme 3.8 - Cu catalyzed cycloaddition of 123i and 125i with terminal alkynes 104a-i. The reactions were performed 

in a 99:1 H2O/DMSO mixture to ensure stability of the array and enough solubility of the alkynes. The water soluble 

Cu(I) stabilizing ligand THPTA was involved. 
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In a first attempt, glycan 123i was reacted with pentynol 104a and hexynoic acid 104b. The slides were 

incubated with 100 µL of reactive solutions with a 4 mM concentration of the alkynes, 2.5 mM of Na ascorbate 

and 100 µM CuSO4, using a 99:1 H2O/DMSO mixture as solvent (Table 3.1, entry 1). No signals of the 

products could be detected by MALDI-TOF MS. However no signal of unreacted disaccharide 123i was 

observed either, indicating a probable disruption of the hydrophobic bilayer upon reaction.  

More encouraging results were obtained using reactive solutions with a lower concentration (2 orders of 

magnitude) of the catalytic system partners (CuSO4, THPTA, sodium ascorbate) and higher concentrations (14 

fold) of terminal alkyne employed. (Table 3.1, entry 2). Almost complete conversion was achieved in the 

cycloaddition reaction of azido labelled 123i with 4-pentyn-1-ol 104a using a 99:1 H2O/DMSO mixture as the 

solvent. Increasing the content of DMSO was detrimental for both the reaction outcome and the array stability; 

indeed partial conversion and slightly decreased S/N ratio were observed with a 95:5 H2O/DMSO mixture (not 

shown in Table 3.1). 

The conditions of (Table 3.1, entry 2) were extended to the cycloaddition of 123i with the selected set of 

alkynes obtaining partial conversions using propargylamine 104d and 2-ethynyl pyridine 104g. Similar results 

were obtained for cycloaddition of azido tetrasaccharide 125i (Table 3.1, entry 3). Low conversions were 

achieved with pentynol 104a and propargylamine 104d, while complete conversion was obtained with 2-

ethynyl pyridine 104g. Decreasing the alkyne concentration to a comparable range with that of the catalyst and 

the additives led to a reduced reactivity and cycloaddition of azido disaccharide 123i was achieved only with 

propargylamine 104d and 2-ethynylpyridine 104g, respectively with low and partial conversion (Table 3.1, 

entry 4). Performing the reaction in a more oxygen free environment to stabilize the catalyst in its active Cu(I) 

oxidation state was attempted using degassed H2O (bubbled with N2), which however did not affect the reaction 

outcome. Finally, homogeneously increasing the concentrations by one order of magnitude as reported in 

(Table 3.1, entry 5) allowed reaching a better balance between array stability and reactivity. Indeed, CuAAC 

reaction of azido 123i with the terminal alkynes 104a-i was achieved with complete conversion using 

propargylamine 104d and almost complete conversions were observed with pentynol 104a, methyl hexynoate 

104c, the methoxynaphthalene derivative 104f and 2-ethynylpyridine 104g. 

 

Entry Substrate CuSO4 THPTA Alkyne Na 

Ascorbate 

Conversion 

1a 

 
100 µM 500 µM 4 mM 2.5 mM 

Not observed with 

 and  

2  
 

1.15 µM 5.75 µM 57.5 mM 11.5 µM 

Almost complete: 

 

Partial: 

  

3 
 

1.15 µM 5.75 µM 57.5 mM 11.5 µM 

Complete: 

 

Low: 

   



Chapter 3 

149 
 

4 
 

1.15 µM 5.75 µM 57.5 µM 11.5 µM 

Partial: 

   

5 
 

11.5 µM 57.5 µM 575 µM 115 µM 

Complete:  

 

Almost complete: 

    

 

Table 3.1 – CuAAC reaction conditions. Cycloaddition reactions were performed incubating arrayed glycans with 

reactive solutions (100 µL) containing different alkynes in 99:1 H2O/DMSO mixture. The concentrations of the reactants 

are reported. a Reaction performed using either pentynol 104a or hexynoic acid 104b. 
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Figure 3.13 - MALDI-TOF MS spectra of on-chip CuAAC reactions. The spectra of glycan 123i successfully 

functionalized by CuAAC reaction with terminal alkynes are reported. Except for reaction with propargylamine 104d, 

traces of unreacted glycan were observed (m/z ~ 1142 [M+Na]+, 1168 [M+K]+). a) Almost complete conversion was 

achieved with pentynol 104a: m/z calcd 1228.803; found 1252.384 [M+Na]+. b) Almost complete conversion was 

obtained with methylhexynoate 104c: m/z calcd 1270.814; found 1294.431 [M+Na]+, 1308.413 [M+K]+. c) Complete 

conversion was assessed for propargylamine 104d: m/z calcd 1199.788; found 1201.350 [M+H]+, 1223.325 [M+Na]+, 

1239.307 [M+K]+. Almost complete conversion was observed for the naphthalene derivative 104f: m/z calcd 1326.819; 

found 1350.418 [M+Na]+. Almost complete conversion was achieved for 2-ethynylpyridine 104g: m/z calcd 1247.788; 

found 1271.323 [M+Na]+. 

These encouraging results suggest that the overall strategy of on-chip library expansion by glycosylation 

and CuAAC reactions is feasible. However, since array stability turned to be a crucial and delicate parameter, 

a convenient alternative may be to perform the enzymatic glycosylation in solution. Indeed, glycosylation with 

tagged monosaccharide donors of amino tethered acceptors leads to labelled glycans that, after simple 

purification with graphite cartridges, can be spotted on the array for on-chip CuAAC library expansion. This 

approach simultaneously limits the amount of synthetically precious sugar nucleotides needed for enzymatic 

reactions and minimizes array decay resulting in MALDI-TOF spectra with better S/N ratio. Moreover, this 

method enables for glycosylation of multiantennary compounds, allowing their printing and enriching the 

complexity of glycans displayed on the array.  

Further studies to identify more efficient conditions for on-chip CuAAC are currently being performed at 

CIC biomaGUNE. The main goal is to broaden the scope of alkynes while improving conversions. Indeed the 

reaction failure observed using some members of the terminal alkyne set (5-hexynoic acid 104b, 3-

phenylpropyne 104e, 3-cyclohexylpropyne 104h, 3-butynyl-β-D-glucopyranoside 104i) points out that further 

optimization is required. Interestingly, the absence of conversion using the water soluble 3-butynyl-β-D-
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glucopyranoside 104i suggests that, even though solubility may be an issue for some alkynes, additional 

parameters have to be fine-tuned. In this regard, the amount of catalyst used may represent a crucial point.  

3.4.1.5 Array stability: fluorescent analysis  

Since desorption and leaching of printed glycans is possibly occurring during physical treatments and 

chemical transformations on the array, we aimed to study the stability of hydrophobically coated ITO slides 

by fluorescence studies. For our purpose, fluorescein cadaverine was printed on the slides, which were then 

subjected to the same conditions used during glycosylation and CuAAC reactions. The stability of the array 

was evaluated measuring and quantifying the loss of fluorescent signal.  

 

Figure 3.13 – Fluorescein cadaverine structure. The amino tethered fluorescein cadaverine allowed to be immobilized 

on ITO slides to assess array stability by fluorescence studies. 

To evaluate the extent of glycan loss, different concentrations of fluorescein cadaverine solutions (ranging 

from 5 mM to 1 fM) were printed on activated ITO slides. The slides were quenched with ethanolamine 

solution (50 mM in borate buffer pH = 9.3) and treated as during enzymatic glycosylation (incubation overnight 

at 37 °C with aqueous solution containing Hepes buffer 50 mM and MnCl2 10 mM) and CuAAC reactions 

(incubation for 2 h at r.t. with a 95:5 H2O/DMSO mixture). Fluorescence intensity was measured after each 

step and leaching of glycans was evaluated as the loss of intensity after simulation of the CuAAC reaction 

compared to fluorescence measured after quenching (Table 3.2). Fluorescence was detected by array scanner 

irradiating at 532 nm. 

Unexpectedly, poor linear correlation was observed between fluorescein concentration and fluorescent 

signal after quenching of the slides. The loss of glycans at 50 μM, the concentration at which our glycans are 

spotted on the ITO slides, was found to be around 14% which is an acceptable value for our experiments. 

However, fluorescence measurements were sometimes affected by the quality of the slides possibly due to 

unspecific binding. An improvement may perhaps be obtained using a less hydrophobic and bulky fluorescent 

dye such as a compound belonging to the cyanine family.     

 

Concentration After quench After glycosylation After CuAAC 

Fluorescence intensity 

loss (compared to 

fluorescence after 

quenching) 

5 mM 1517 426 756 34% 

1mM 1065 851 850 11% 

500 µM 1072 1072 702 21% 

100 µM 964 564 928 2% 

50 µM 801 602 602 14% 

10 µM 371 371 151 42% 

5 µM 291 193 152 31% 

Table 3.2 – On-array fluorescent studies. The Table reports the median fluorescence intensities measured after printing 

of fluorescein cadaverine on ITO slides at different concentrations. In particular, the slides were treated as during 
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glycosylation and CuAAC reaction. Fluorescence intensities were detected after quenching of the slides with 

ethanolamine and after glycosylation reaction and CuAAC reaction. The loss of glycans was estimated comparing 

fluorescence intensity after CuAAC reaction with initial fluorescence (after quenching of the slides).  

3.4.2 Synthesis of LewisX mimics array: looking for lead structures 

Once established the feasibility of the methodology, we decided to apply this strategy for the on-chip 

synthesis of a library of LewisX mimics. The natural occurring LewisX moiety is a fucose containing 

trisaccharide, Galβ(1,4)[Fucα(1,3)]GlcNAc, which has shown to perform as a ligand for DC-SIGN.19 

Considering the relevance of DC-SIGN as potential pharmaceutical target, we reasoned that the fast generation 

of a LewisX mimics library would constitute a very appealing and efficient way for the identification of novel 

and potent lead structures. Hence, following a similar approach as discussed above, LewisX epitopes could be 

introduced by enzymatic glycosylation of arrayed lactosamine moieties 126 using conveniently tagged GDP-

fucose glycoside donors 127 and allowing for library generation by CuAAC reaction (Scheme 3.9).  

Scheme 3.9 – On-array LewisX mimics library generation. On-chip synthesis of LewisX mimics can be achieved by 

enzymatic fucosylation of printed lactosamine moieties 126. The use of labelled GDP-fucose derivatives allows the 

introduction of a tag (azide or alkyne function) that will be exploited to perform CuAAC reactions on the array. 

Azide or alkyne-tagged GDP-fucose mimics are not commercially available and we decided to synthesize 

them on our own. In particular, the 6-azido-GDP-galactose 127 and the 5-ethynyl-GDP-fucose 128 (Scheme 

3.10) were selected as known substrates of the α-1,3-fucosyltransferase from Helicobacter pylori.62  

Two main strategies have been reported for the synthesis of sugar nucleotide diphosphates (Scheme 3.10).63 

Sugar phosphate derivatives such as 132 or 133 can be employed as nucleophilic counterpart in reactions with 

activated nucleotide monophosphates X-GMP (Scheme 3.10, path a). Most of the developed methodologies 

rely on this synthetic pathway and various activating groups X have been reported.64 Alternatively, 

carbohydrate derivatives can be activated by leaving groups at the anomeric position, thus acting as 

electrophiles in nucleophilic substitution reactions with nucleotide diphosphates (Scheme 3.10, path a). 

Notably, this route was exploited by Timmons and co-workers for the synthesis of GDP-L-fucose.65 Both 

pathways were considered to design a retrosynthetic analysis of tagged glycoside donors 127 and 128. 

Unfortunately, both strategies are usually characterized by overall low yields, which is particularly true for the 

synthesis of GDP-L-fucose derivatives. However, fewer synthetic steps are required in pathway b, which was 

therefore selected as the more convenient route. Therefore, the synthesis of tagged GDP-fucose 127 and 128 

was achieved coupling GDP with fucosyl bromide derivatives 134, 135, which were obtained by elaboration 

of L-galactose. 
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Scheme 3.10 – Retrosynthetic analysis for tagged GDP-fucose derivatives 127 and 128. The GDP-fucose mimics 127, 

128 can be either generated by nucleophilic substitution between sugar phosphates 132, 133 with activated X-GMP, or in 

a reaction between GDP with sugar bromide 134, 135 as activated electrophiles. Reported activating groups for GMP are 

shown. 

3.4.2.1 Synthesis of tagged GDP-fucose glycoside donors 

L-Galactose is the common precursor for the synthesis of both 6-azido-GDP-L-galactose 127 and 5-ethynyl-

GDP-L-fucose 128. The use of the less expensive L-galactono-1,4-lactone as starting material was also 

attempted but abandoned due to low conversion (55% by 1H NMR) in the reductive transformation to L-Gal 

(Scheme 3.11).66,67 

  

 

Scheme 3.11 – L-Galactose by reduction of L-galactonolactone. The synthesis of L-Gal from the less expensive L-

galactono-1,4-lactone by reduction under acidic conditions was attempted but abandoned due to low yield in this reaction. 

The protection of L-galactose as the bis-acetonide derivative 136 (Scheme 3.12) is a common step for the 

synthesis of both the tagged GDP-fucose derivatives 127 and 128. A protocol using CuSO4 as Lewis acid under 

acidic conditions with acetone as the solvent was reported by Sawa and co-workers, but in these conditions 

only partial conversion was observed monitoring by TLC (Table 3.3, entry 1). Transacetalization reaction of 

L-Gal with 2,2-dimethoxypropane under acidic conditions led to a mixture of products from which the desired 

bis-acetonide 136 was purified by flash chromatography in 50% yield (Table 3.3, entry 2).68 On the other hand, 



Chapter 3 

154 
 

fast and clean reaction was obtained treating L-galactose with a polymer-bound triphenylphosphine and iodine 

in acetone at room temperature.69 This reaction gave complete conversion in 30 minutes (monitoring by TLC 

analysis) (Table 3.3, entry 3). Moreover, a simple filtration allows to get rid of triphenylphosphine oxide side-

product immobilized on the polymeric resin, which may otherwise complicate the purification step. Despite 

no work-up has been reported for this methodology, we found that quenching of the hydrogen iodide developed 

during the reaction was essential to avoid decomposition of bis-acetonide 136. Thus, the reaction was quenched 

directly adding Na2CO3 as a solid which was later on filtered away along with the polymer-bound 

triphenylphosphine oxide. Removal of iodine was achieved by chromatographic purification. Surprisingly, low 

yields have always been observed after purification by automated flash chromatography (37-42% by direct 

phase), which is possibly due to hydrolysis of 136 under acidic catalysis during dry load. On the contrary, flash 

column chromatography afforded 136 in 75% yield.  

 

Scheme 3.12 – L-Gal protection as bis-acetonide derivative 136. L-Gal was protected as bis-acetonide by reaction with 

polymer-bound triphenylphosphine and iodine in acetone. The reaction involves the formation of a phosphonium ion 

intermediate which leads to the activation of acetone towards nucleophilic attack by a diol. Finally, the intermediate 

evolves towards the formation of an oxonium ion which allows the formation of the chetal. 

Entry Conditions Yield 

1 CuSO4, H2SO4 (30 mol%), acetone Partial conversion 

2 2,2-dimethoxypropane, pTsOH (10 mol%), 30 °C 50% after flash chromatography 

3 
1. Ph3P polymer-bound, I2, acetone, r.t., 30 min 

2. Na2CO3 

Pure product by 1H NMR 

75% after flash chromatography 

Table 3.3 – Synthesis of L-Gal bis-acetonide. The table reports the conditions attempted for the protection of L-Gal as 

bis-acetonide. 

The bis-acetonide 136 gave access to the 6-azido-L-fucose 139, a key intermediate in the synthesis of the 

corresponding 6-azido-GDP-L-fucose 127 (Scheme 3.13). Following a procedure that was adopted in our 

group for the synthesis of the enantiomeric 6-azido-D-galactose,51 the free hydroxyl group of 136 was activated 
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to give the corresponding tosylate 137 in good yield, which was subjected to nucleophilic substitution by 

sodium azide in the presence of a catalytic amount of tetrabutylammonium iodide. Despite the prolonged 

reaction times at high temperature (5 days at 90 °C) only partial conversion was achieved (59% estimating by 
1H NMR) and pure azide 138 was obtained after flash chromatography only in 39% yield. 

The low conversion with tosylate 137 brought us to explore an alternative route envisaging the more 

reactive triflate intermediate 140 (Scheme 3.13).70 Complete conversion of bis-acetonide 136 was achieved 

upon reaction with triflic anhydride in the presence of DIPEA at low temperature and the resulting triflate 140 

was directly submitted to nucleophilic substitution with sodium azide. Complete conversion was achieved in 

only four hours and pure azide 138 was isolated in 61% yield over two steps. Notably, in the synthesis of 

triflate 140, DIPEA was preferred to the usually employed pyridine in order to avoid the massive formation of 

side product 141 (clearly identified both by 1H NMR and ESI-MS), which proved to react slowly and 

incompletely with sodium azide in the following substitution step. The purity of bis-acetonide 136 is also a 

critical point. In particular, contamination from iodine should be avoided since the formation of iodide 142 has 

been observed. However, this side product could be completely converted into the desired azide 138 upon 

reaction with NaN3 for 7 days at 80 °C. 

Finally, removal of the acetonide groups from protected azide 138 with a 9:1 TFA/H2O mixture 

quantitatively afforded 6-azido-L-fucose 139 without purification needed (Scheme 3.13).71  

 

Scheme 3.13 – Synthesis of 6-azido-L-fucose 139. The azido labelled 139 was obtained following two alternative routes 

starting from the protected bis-acetonide 136. Particularly, the synthetic strategy involving triflate 140 as intermediate 

turned to be the most advantageous. The use of pyridine as a base in the formation of triflate 140 was avoided to prevent 

the formation of little reactive 141. Iodide contamination of bis-acetonide 136 can lead to the formation of 142 as side-

product.  

As mentioned above, the bis-acetonide 136 was also employed for the preparation of 5-ethynyl-GDP-L-

fucose 128 which required the synthesis of 5-ethynyl-L-fucose as key intermediate (Scheme 3.14).71 

Oxidation of the free hydroxyl group of 136 was achieved using IBX in refluxing ethyl acetate. The 

aldehyde 141 was isolated by flash chromatography in 60% yield. The required hypervalent iodine reagent 

IBX was synthesized from 2-iodobenzoic acid 144 with oxone as highly oxidizing agent.72 The reaction was 
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monitored by 1H NMR, which allowed to assess the complete conversion of the partially oxidized I(III) 

intermediate 145. Unfortunately, the yield of aldehyde 141 literally dropped as the reaction was scaled up 

(15% with ~ 1.3 g of 136). A better outcome may be obtained optimizing the reaction conditions or using a 

different oxidation methodology with alternative oxidants.66 

The alkyne 142 was obtained in good yield (80%) from 141 by Seyferth-Gilbert homologation reaction (for 

the mechanism see Scheme 3.15). The reaction was performed using the Ohira-Bestmann diazo compound 

reagent.73 This relatively expensive reagent allows for clean and fast reactions and in-situ generation using 

more easily available and cheaper precursors have also been reported.74 

Finally acetonide removal from 142 in 9:1 TFA/H2O mixture quantitatively afforded the 5-ethynyl-L-

fucose 143 with no purification needed. 

 

Scheme 3.14 – Synthesis of 5-ethynyl-L-fucose 143. Alkyne sugar 143 was generated by oxidation of bis-acetonide 136 

in presence of IBX and Seyferth-Gilbert homologation using the Ohira-Bestmann reagent. The synthesis of IBX from 2-

iodobenzoic acid 144 is also shown. 

 

Scheme 3.15 – Seyferth-Gilbert homologation mechanism. The Ohira-Bestmann reagent decomposes in situ to give a 

stabilized anion that attacks the aldehyde with the formation of a four membered ring. Rearrangement and elimination of 

nitrogen lead to the formation of a carbene that, upon transposition of the R group, affords the desired terminal alkyne.  

To obtain the targeted GDP derivatives 127 and 128, both the tagged 6-azido-L-fucose 139 and 5-ethynyl-

L-fucose 143 had to be activated as anomeric bromides (Scheme 3.16). These intermediates were first 

peracetylated with acetic anhydride in pyridine. The reaction afforded the tetra-O-acetates 146 and 147 in good 

yield (71% and 80% over 2 steps, respectively starting from bis-acetonide intermediates 138 and 142). 1H 

NMR analysis revealed that the products were obtained as a α/β anomeric mixture of pyranosydic forms (1.6:1 

β/α ratio for tetra-O-acetate azido fucose 146; 1.2:1 β/α ratio for tetra-O-acetate ethynylfucose 147) along with 

the corresponding α/β mixture of furanose isomers (11%, 1:1 β/α ratio for tetra-O-acetates azido fucose; 43%, 
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1:1.3 β/α ratio for tetra-O-acetates ethynylfucose 147).70 The desired pyranose tetra-O-acetates 146 and 147 

were not isolated, bur the mixtures of isomers were directly subjected to bromination, which selectively 

afforded the pyranose α-bromides 148 and 149 (see below). The furanose forms of tetra-O-acetates azido 146 

were not converted during bromination and were still observable in the reaction crude by 1H NMR. 

The selective introduction of a bromine atom at the anomeric position of both peracetylated 146 and 147 

was not trivial. This is particularly true for the preparation of the 6-azido bromide 148, for which different 

methodologies were explored. The use of an HBr solution 33% in acetic acid as brominating agent, which was 

exploited in our group for the synthesis of the analogous (OAc)3-α-D-fucopiranosyl bromide,75 failed (Table 

3.4, entry 1). Indeed, no formation of the desired bromide 148 was observed, while a major side-product, 

probably deriving from unwanted substitution of the azide function, was clearly detectable by 1H NMR. 

Reactions involving either PBr3 or TiBr4 left the azide group untouched,70,76 but low conversion was always 

assessed monitoring by TLC even after long reaction times (Table 3.4, entry 2,3). This problem was overcome 

by performing the reaction with TiBr4 at 40 °C in a microwave assisted mode, which successfully achieved 

almost complete conversion to bromide 148 in 1.5 h (Table 3.4, entry 4).77 Most of the unreacted peracetylated 

146 was identified by 1H NMR as the α-OAc anomer, suggesting a lower reactivity towards bromination 

compared to the β-OAc anomer. 

As opposed to the bromination of 146, the tetraacetylated alkyne derivative 147 was successfully activated 

as the corresponding bromide 149 using a 33% HBr solution in acetic acid in 1 h (Table 3.4, entry 5). 

Fucosyl bromides 148 and 149 were not isolated and could be employed directly in the next synthetic step. 

Notably, both compounds were selectively obtained as α-anomers due to the strong anomeric effect of the 

bromine substituent. 

 

Scheme 3.16 – Synthesis of sugar bromides 148 and 149. The azide and alkyne fucose mimics 139 and 143 were 

peracetylated and selectively transformed into the α-sugar bromides 148 and 149, respectively. 

Substrate Entry Conditions Results 

 

1 33% HBr in AcOH, DCM, r.t., 50 min Undesired product, loss of N3 

2 PBr3, H2O, DCM, r.t., 3 h 148 Low conversion by TLC 

3 TiBr4, 9:1 DCM/EtOAc, r.t., 2 d 148 Low conversion by TLC 

4 TiBr4, 9:1 DCM/EtOAc, 40 °C, MW, 1.5 h 
148 Almost complete conversion 

by 1H NMR 

 

5 33% HBr in AcOH, DCM, r.t., 1 h 
149 Almost complete conversion 

by 1H NMR 

Table 3.4 – Bromination conditions. The table reports the reaction conditions explored for bromination of the azido 

tagged 146 (entry 1-4) and the alkyne labelled 147 (entry 5). 
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With the activated bromide sugars 148 and 149 in hands, the coupling reaction with GDP was finally 

possible (Scheme 3.17).65 GDP, purchased as the sodium salt, was protonated using an ion exchange acidic 

resin (IR 120 H) and finally titrated with a solution of Bu4NOH to pH 6. This is a critical point since reactions 

with GDP Bu4N salts titrated at pH 5 or 7 gave poor results.  

The reactions with fucosyl bromide 148 and 149 were performed under anhydrous conditions in CH3CN at 

80 °C. After 30 minutes TLC analysis revealed the complete consumption of the glycoside donors while the 

formation of the glycosyl-O-acetates GDP derivatives 150, 151 was assessed by analytical HPLC analysis 

(Fig. 3.15a and 3.16a. All the analysis were performed monitoring at 254 nm eluting at 1 mL/min with a 

gradient from 90% (aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% CH3CN, pH 4)) – 10% ( CH3CN) 

to 40% (aqueous buffer) – 60% (CH3CN) in 2 min followed by a plateau for 2 min and a second gradient until 

100% (CH3CN) in 2 min. 150 tR 8.3 min, 151 tR 8.1 min). Notably, a lower formation was observed for the 5-

ethynyl-(O-Ac)3-GDP-L-fucose 151. To simplify isolation of the products, the crude reaction mixtures were 

treated with alkaline phosphatase enzyme at controlled pH 9 to hydrolyze the unreacted GDP into the 

corresponding pyrophosphate and guanosine nucleoside (Fig. 3.15b and 3.16b; guanosine tR 1.4 min). After 

enzymatic digestion, the crudes were treated with a 2:2:1 H2O/MeOH/Et3N mixture for 16 hours to afford the 

desired 127 and 128, as revealed by HPLC analysis (Fig. 3.15c and 3.16c; 127 tR 6.9 min; 128 tR 6.5 min). 

Finally, reverse phase chromatography with 10 mM (Bu3NH)HCO3 aqueous buffer was used in order to isolate 

the products as tributylammonium salts. Satisfyingly, the 6-azido-GDP-L-fucose 127 was selectively obtained 

as the β anomer (for glycosylation mechanism see Scheme3.17) in 11% overall yield starting from the 6-azido-

(OAc)4-L-fucose 146.  

On the contrary, the 5-ethynyl-GDP-L-fucose 128 totally decomposed during this final purification. 

Hence, an optimization of deprotection and purification step is likely required.  
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Scheme 3.17 – Synthesis of GDP-fucose mimics 127 and 128. Sugar bromides 148 and 149 were reacted in presence 

of GDP and subsequently deacetylated to give the targeted GDP-derivatives 127 and 128. The glycosylation reaction 

selectively afforded the GDP-sugars as β-anomers due to the anchimeric effect of the participating acetyl group. 

 

Figure 3.15 – HPLC traces of reaction crudes for the synthesis of 6-azido-GDP-L-fucose 127 starting from GDP 

and fucosyl bromide 148. All the analysis were performed monitoring at 254 nm eluting at 1 mL/min with a gradient 

from 90% (aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% CH3CN, pH 4)) – 10%( CH3CN) to 40% (aqueous 

buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% CH3CN, pH 4)) – 60% (CH3CN) in 8 min followed by a plateau for 2 min 

and a second gradient until 100% (CH3CN) in 2 min. a) HPLC trace for the crude of GDP glycosylation using fucosyl 

bromide 148. Glycosylation products 150 tR = 8.3 min; unreacted GDP tR = 6.5 min. b) HPLC trace after enzymatic 

digestion of the crude with alkaline phosphatase. The disappearance of GDP is associated with the appearance of a second 
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signal which was ascribed to guanosine, tR = 1.4 min. c) HPLC trace for the crude of solvolysis reaction in 2:2:1 

H2O/MeOH/Et3N. Removal of acetyl groups afforded the desired product 127 tR = 6.9 min. 

 

Figure 3.16 – HPLC traces of reaction crudes for the synthesis of 5-alkynyl-GDP-L-fucose 128 starting from GDP 

and fucosyl bromide 149. All the analysis were performed monitoring at 254 nm eluting at 1mL/min with a gradient 

from 90% (aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% CH3CN, pH 4)) – 10%( CH3CN) to 40% (aqueous 

buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% CH3CN, pH 4)) – 60% (CH3CN) in 8 min followed by a plateau for 2 min 

and a second gradient until 100% (CH3CN) in 2 min. a) HPLC trace for the crude of GDP glycosylation using fucosyl 

bromide 149. Glycosylation product 151 tR = 8.1 min; unreacted GDP tR = 6.5 min. b) HPLC trace after enzymatic 

digestion of the crude with alkaline phosphatase. The disappearance of GDP signal is associated with the appearance of 

a second signal which was ascribed to guanosine, tR = 1.4 min. c) HPLC trace for the crude of solvolysis reaction in 2:2:1 

H2O/MeOH/Et3N. Removal of acetyl groups afforded the desired product 128 tR = 6.5 min. 

In order to introduce LewisX epitopes on arrayed glycans, different enzymes were screened in solution for 

glycosylation reactions with biantennary 152 as the model glycoside acceptor. The enzyme ability to transfer 

the unnatural 6-azido-GDP-L-fucose 127 was compared with the corresponding natural glycoside donor GDP-

L-fucose. Fucosylation with CeFUT6 enzyme proceeded completely using GDP-L-fucose leading to glycan 

153, as it was assessed by MALDI-TOF MS. On the contrary, the CeFUT6 enzyme78 completely failed in 

reaction with 6-azido-GDP-L-fucose 127 as glycoside donor and no formation of 154 was observed. However, 

full conversion of 152 glycan with both the natural and unnatural glycoside donors was obtained using the α-

1,3-fucosyltransferase from H. pylori (Fig. 3.17). This experiment demonstrates that α-1,3-fucosyltransferase 

can be used for direct glycosylation of glycan arrays with the azido tagged 127 allowing the on-chip synthesis 

of LewisX mimics library. Studies to achieve this goal are currently on going at CIC biomaGUNE. 

 

 

Scheme 3.18 – In solution fucosylation tests. The activity of CeFUT6 and α-1,3-fucosyltransferase from H. pylori in 

transferring the azido-GDP-L-fucose 127 were evaluated by in solution reactions and compared with corresponding 

transformation using the natural GDP-fucose. 
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Figure 3.17 – MALDI-TOF MS spectra for enzymatic fucosylation of biantennary 152. Biantennary 152 was 

successfully fucosylated using α-1,3-fucosyltransferase from H. pylori. This enzyme was able to accept and transfer both 

the natural GDP-L-fucose and the 6-azido-GDP-L-fucose 127. a) MALDI-TOF spectrum of biantennary 152, m/z: calcd 

1725.681; found 1749.560 [M+Na]+. b) Biantennary 153 obtained by fucosylation reaction of 152 with GDP-fucose, m/z: 

calcd 2017.797; found 2042.050 [M+Na]+.. c) Azido tagged 154 obtained by fucosylation reaction of 152 with unnatural 

6-azido-GDP-L-fucose 127, m/z: calcd 2099.800; found 2124.127 [M+Na]+. 

3.5 Conclusions 

Glycan microarrays are a useful tool in the identification of new lead structures enabling fast analysis of 

large glycan libraries. We decided to exploit this technology to develop new glycomimetic structures able to 

perform as potent lectin antagonists. In particular, we established a methodology for on-chip generation and 

expansion of glycan libraries by enzymatic glycosylation and CuAAC reaction. Glycosylation with unnatural 

azido tagged glycoside donors (UDP-GalNAz and 6-azido-UDP-D-Gal) was investigated, showing that an 

optimization is required for the complete functionalization of multianatennary glycans. For this reason, 

monoantennary glycans were selected as the most suitable structures for preliminary CuAAC reaction 

experiments. Promising results were obtained for a small library of alkynes, most of which reacted almost 

completely with the arrayed tagged glycans. 

This piece of work provided proof of concept that a glycan library non-covalently immobilized on ITO 

microarrays using the Reichardt’s approach can be expanded and diversified using two subsequent 

transformations, i.e. an enzymatic glycosylation with a nucleotide donor of a tagged monosaccharide, followed 

by CuAAC reactions. However, from a practical point of view, a much more robust system with improved S/N 
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ratio can be obtained if the enzymatic transformation is performed in solution and only the final CuAAC 

modification is actually carried out on the array. 

Following this innovative approach, we aimed to synthesize a library of LewisX mimics for the 

identification of new potent antagonist of the DC-SIGN lectin. The strategy we designed envisages the use of 

labelled GDP-fucose derivatives; consequently the synthesis of the 6-azido-GDP-L-fucose 127 and 5-ethynyl-

GDP-L-fucose 128 was undertaken. Unfortunately, the alkyne derivative 128 decomposed during the last 

purification stage and its synthesis is still under study. However, the azido-GDP-fucose derivative 127 was 

successfully prepared and proved to be readily accepted as glycoside donor by the α-1,3 fucosyltransferase 

from Helicobacter pylori. Thus, this substrate gives access to the enzymatic synthesis of azido labelled LewisX 

epitopes, which will be exploited for the on-array synthesis of LewisX mimics library at CIC biomaGUNE. 

3.6 Experimental 

3.6.1 General methods and procedures 

Microarrays were printed employing a robotic piezoelectric non-contact spotter SciFLEXARRAYER S11 

(Scienion, Berlin, Germany). Indium tin oxide (ITO) coated glass slides (75 mm x 25 mm) were obtained from 

Hudson Surface Technology, Inc. (Fort Lee, NJ). The slides have a nominal transmittance of >78 % and an 

ITO thickness of 130 nm. Modified surfaces were stored under vacuum conditions until use. Enzymatic and 

CuAAC reactions on the slides were performed using 16 wells Fast Frame® incubation chambers from 

Whatman (Kent, UK). All aqueous solutions used for array fabrication and protein expression were prepared 

from nanopure water produced with a Diamond UV water purification system (Branstead International). 

pET30a plasmid bearing the bovine β-1,4-galactosyltransferase-1 gene was obtained from Dr. Peter Both, 

University of Manchester, UK. Bovine β-1,4-galactosyltransferase-1 double mutant (C342T and Y289L) was 

prepared as previously described.55 OD280nm of protein solutions and OD600nm of bacterial cultures were 

measured in a Nanodrop®ND-1000 spectrophotometer (Thermo Scientific, Wilmington, USA). 

Chromatography was performed in an Acquity UPLC system equipped with photodiode array detector (PDA) 

using an Acquity BEH Amide column (50x 2.1 mm, 1.7 µm) from Waters (Milford, MA, USA). The mass 

spectrometry detection was carried out using a time-of-flight mass spectrometer (ESI-TOF) LCT Premier XE 

from Waters (Milford, MA, USA) with an electrospray ionization source, working in positive /W mode. The 

MS range acquired was between m/z 100-1000. Masslynx v4.1 software was used to analyze chromatograms 

and spectra (Waters, Milford, MA, USA). MALDI-TOF mass analyses were performed on an Ultraflextreme 

III time-of-flight mass spectrometer equipped with a pulsed Nd:YAG laser (355 nm) and controlled by 

FlexControl 3.3 (Bruker Daltonics, Bremen, Germany). The acquired data were processed using the Bruker 

software FlexAnalysis 3.3. Fluorescence measurements were performed in an Agilent G265BA microarray 

scanner system (Agilent Technologies, Santa Clara, USA). Quantification was performed with ProScanArray® 

Express software (Perkin Elmer, Shelton, USA).  

Chemicals were purchased from commercial sources and used without further purification, unless otherwise 

specified. When anhydrous conditions were required, the reactions were performed under nitrogen or argon 

atmosphere. Anhydrous solvents were purchased from Sigma-Aldrich® with a content of water ≤ 0.005 %. 

N,N-diisopropylethylamine (DIPEA), triethylamine, acetonitrile were dried over calcium hydride and freshly 

distilled. Reactions were monitored by analytical thin-layer chromatography (TLC) performed on Silica Gel 

60 F254 plates or aluminium sheets (Merck) with UV detection (254 nm and 365 nm) and/or staining with 

ammonium molybdate acid solution, potassium permanganate alkaline solution or vanillin solution. Titrations 

and reactions at controlled pH were performed monitoring with a PH 211 Microprocessor pH-meter (HANNA 

instruments) equipped with a HI 1331B electrode (HANNA instruments). Flash column chromatography was 

performed according to the method of Still and co-workers79 using silica gel 60 (40-63 µm) (Merck). 

Automated flash chromatography was performed with Biotage Isolera Prime system, Biotage SNAP KP-Sil 
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cartridges were employed unless otherwise indicated. Microwave irradiation was performed by a Biotage 

Initiator+ system. HPLC analyses were performed with an Atlantis T3 5 µm 4.6x100 mm column (Waters) 

equipped with a Waters 996 Photodiode Array Detector. HPLC purifications were performed on Dionex 

Ultimate 3000 equipped with Dionex RS Variable Wavelenght Detector (column: Atlantis Prep T3 OBDTM 5 

µm 19 x 100 mm; flow 15 mL/min). NMR experiments were recorded on a Bruker AVANCE-400 MHz and 

a Bruker UltraShield 500 MHz instrument at 298 K. Chemical shifts (δ) are reported in ppm. The 1H and 13C 

NMR resonances of compounds were assigned with the assistance of COSY and HSQC experiments. 

Multiplicities are assigned as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet). ESI 

mass spectra were recorded on Waters Micromass Q-TOF (ESI ionization-HRMS), ThermoFisher LCQ 

apparatus (ESI ionization). The following abbreviations are used: BSA (bovine serum albumin), DCM 

(CH2Cl2), DHB (2,3-dihydroxybenzoic acid), DIPEA (N,N-diisopropylethylamine), DMAP (4-

dimethylaminopyridine), DMF (N,N-dimethylformamide), DMSO (dimethylsulfoxide), GDP (guanosine 

diphosphate), IBX (2-iodoxybenzoic acid), MW (microwave), NHS (N-hydroxysuccinimide), ODPA 

(octadecylphosphonic acid), THPTA (tris(3-hydroxypropyltriazolylmethyl)amine), TFA (trifluoroacetic acid), 

UDP (uridine diphosphate).  

Compounds 105,80 106,81 107,82 108,82 110,82 109,83 111,84 152,83 116,50 117, 104i were previously 

synthesized and available in the Reichardt group. Compound 114 was previously prepared in the Bernardi 

group51 adapting a reported procedure.52 Compounds 104a, 104b, 104d-h, 112, 113, 115, L-galactono-1,4-

lactone, L-Gal, polymer-bound triphenylphosphine, dimethyl(1-diazo-2-oxopropyl)phosphonate, GDP sodium 

salt, guanosine 5'‐diphospho‐β‐L‐fucose sodium salt (GDP‐Fuc), fluorescein cadaverine are commercially 

available. Alkaline phosphatase from bovine intestinal mucosa was purchased from Sigma-Aldrich, α-1,3/4 

Fucosyltransferase from Helicobacter pylori was purchased from Chemily Glycoscience (Atlanta, USA) and 

α-1,3 fucosyltransferase from C. elegans (CeFUT6) was prepared as previously described.78 

3.6.2 Array fabrication and characterization  

3.6.2.1 Synthesis of self-assembled hydrophobic monolayer on ITO slides  

Indium tin oxide (ITO) slides were washed with a 6:1:1 H2O/NH3 (25% aqueous solution)/H2O2 (30% w/w 

aqueous solution) basic piranha solution at 80 °C for 1 h. The slides were washed with nanopure H2O and 

dried under argon flow. Then slides were incubated with 1 mM octadecylphosphonic acid (ODPA) solution 

in THF at room temperature for 3 h, dried under argon flow and annealed at 140 ºC for 20 h. Finally, slides 

were sonicated in MeOH for 5 min and kept in MeOH for additional 30 min to remove any non covalently 

bound ODPA. Slides were dried under stream of argon and kept under high vacuum until use. 

3.6.2.2 Reactive double lipidic layer formation 

Hydrophobic ITO slides were incubated in Petri dishes with a 1 mM linker 116 solution in CHCl3 at room 

temperature overnight. Slides were dried under stream of argon. 

3.6.2.3 General procedure for glycan printing and detection 

Glycan solutions (50 µM in phosphate buffer 300 mM, pH 8.7) were prepared and stored in a 384 multi-well 

plate. Glycan solutions were robotically printed (≈ 15 nL, ≈ 0.7 pmol) onto hydrophobic ITO slides bearing 

adsorbed linkers 116. Immobilization reaction was performed overnight at 17 °C and controlled humidity 

~50%. The unreacted NHS groups were quenched by incubation with a 50 mM ethanolamine solution in 50 

mM borate buffer pH 9.3 for 40 min. Slides were washed with nanopure H2O and finally dried under argon 

flow. For glycan detection, a DHB solution (10 mg/mL in H2O + 0.1 % TFA + 5% CH3CN) was robotically 

printed over spotted glycans and the slides were analysed by MALDI-TOF MS. 
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3.6.2.4 GalT-1 and GalT-1-DM expression and purification 

Glycerol stocks of either E. coli GalT-1 or GalT-1-C342T&Y289L mutants were plated on Luria Bertani (LB) 

medium (1% NaCl, 1% peptone, 0.5% yeast extract) supplemented with agar (15-20 g/L) and kanamycin (50 

µg/mL). Plates were incubated at 37 ºC overnight to allow formation of E. coli colonies. 

A single colony was inoculated in 4 mL of LB medium containing kanamycin (50 µg/mL) and incubated at 37 

ºC shaking at 250 rpm overnight. This culture was used to inoculate 250 mL of LB medium containing 

kanamycin (50 µg/mL). Cells were grown at 37 ºC, 250 rpm until the culture reached an OD600nm value of 0.6. 

Then, protein expression was induced by the addition of IPTG (1 mM final concentration) for 4 h at 37 ºC, 250 

rpm. The culture was harvested by centrifugation (4500 rpm, 4 ºC, 10 min), washed with Tris 50 mM, NaCl 

150 mM, pH=8.5 aqueous solution and the pellet was stored overnight in the freezer. The pellet was then 

resuspended in 10 mL of lysis buffer (Tris 50 mM, NaCl 150 mM, 1% Triton X-100, EDTA 10 mM, PMSF, 

pH=8.5) and lysis was performed by sonication followed by centrifugation. Resuspension of the pellet, 

sonication and centrifugation were repeated a second time. The inclusion bodies were washed with water (1x) 

and stored at -20 ºC until use.  

Inclusion bodies were solubilized with a guanidine·HCl 5 M aqueous solution until OD280nm value of 1.9 to 

2.0. Then the protein solution was filtered through a 0.22 µm filter and diluted ten times in folding buffer 

containing Tris·HCl 50 mM, pH=8.5, NaCl 10.56 mM, KCl 0.44 mM, MgCl2 2.2 mM, CaCl2 2.2 mM, 

guanidine·HCl 0.5 M, cysteamine 8 mM, cystamine 4 mM, L-arginine 0.55 M.85 The protein was allowed to 

renature for 48 h at 4 ºC and then dialyzed against Tris 25 mM, 150 mM NaCl, pH 8.5 H2O solution. 

Precipitated proteins were removed by centrifugation (4500 rpm, 4 °C, 15 min). Imidazole 10 mM was added 

to the supernatant which was purified by HisTrapTM HP 5 mL column controlled by an ÄKTATM protein 

purifier and equilibrated with binding buffer (Tris 25 mM, NaCl 300 mM, 10 mM imidazole pH =8.5). The 

column was washed with 5 CV of binding buffer and the protein is eluted with Tris 25 mM, NaCl 300 mM, 

imidazole 500 mM, pH =8.5. Eluted fractions were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide 

gel electrophoresis (PAGE), 12% (vol/vol) acrylamide gels in a Bio-Rad Mini Protean system. Gels were 

stained with Coomassie Blue G-250 (Fig. 3.18). Protein containing fractions were pooled and dialyzed against 

Tris 25 mM, NaCl 150 mM, pH 7.5. Precipitated proteins were eliminated by centrifugation (4500 rpm, 4 °C, 

15 min) and the protein solution was concentrated in Vivaspin 20 devices (10000 MWCO) reaching proper 

OD280nm values: GalT-1-C342T obtained as 5.75 mL solution with a 0.50 mg/mL concentration and GalT-1-

C342T&Y289L mutant as 4.75 mL solution with a 0.62 mg/mL concentration. Finally the proteins were freeze 

dried and stored at -20 °C until use.  
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Figure 3.18 – GalT-1 and GalT-1-DM purification by HisTrapTM HP column. The chromatograms of purification for 

both GalT-1 (a.) and GalT-1-DM (b.) enzymes are reported. Fractions were analyzed by SDS-PAGE and stained by 

Coomassie blue G-250. The corresponding acrylamide gels are shown. Samples of enzymes prior purification were also 

run as a reference (second well from the left). 

3.6.2.5 General procedure for GalT-1 and GalT-1-DM enzyme activity assay 

 

Reactions were generally performed mixing a PNP-GlcNAc 117 20 mM solution (5 µL, 100 nmol), a UDP-

glycoside donor 112-115 20 mM solution (5 µL, 100 nmol) and 10 µL of enzyme solution in 30 µL of Hepes 

buffer (50 mM) pH=7.4 containing MnCl2 10 mM. Reactions were incubated at 37 ºC for 30 min. The reactions 

were quenched adding 1 mL of CH3CN and analyzed by UPLC-MS. The gradient elution buffers were A 

(water + 100 mM of ammonium formate) and B (acetonitrile). The gradient method was as follows: 0-0.5 min 

at 5% A, 0.5-2 min to 60% A, 2-2.5 min at 60% A, 2.5-3 min to 5% A, 3-5 min at 5% A. Total run time was 

5 min and the flow rate was set at 500 µL/min. Chromatograms were analysed for UV absorbance at 298 nm 

measuring the peak areas of both starting material 117 and the products 118-121. 
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3.6.2.6 Spectroscopic data of 6-azido-UDP-D-galactose 114 

 

The integrity of 114 was assessed by NMR and MS spectra, which were in agreement with data from the 

literature.52 1H NMR (500 MHz, D2O) δ (ppm): 7.9 (d, 1 H, J = 8 Hz, Ha), 5.92-5.88 (m, 2 H, Hb, 1rib-H), 

5.55 (dd, 1 H, J = 7.2, 3.6 Hz, 1-H), 4.31-4.22 (m, 2 H, 2rib-H, 3rib-H), 4.21-4.14 (m, 4 H, 4rib-H, 5-H, 5rib-

H, 5’rib-H), 3.91 (d, 1 H, J = 2.8 Hz, 4-H), 3.83 (dd, 1 H, J = 10.4, 3.2 Hz, 3-H), 3.72 (dt, 1 H, 2-H), 3.49 (dd, 

1 H, J = 12.8, 7.2 Hz, 6-H), 3.38 (dd, 1 H, J = 12.8, 6.0 Hz, 6’-H). 31P NMR (202.4 MHz, D2O) δ (ppm): -

11.16 (d, J = 20.2 Hz), 12.90 (d, J =20.2 Hz). MS (ESI negative mode) m/z: calcd for C15H23N5O16P2 591.1; 

found 590.7 [M-H]-. 

3.6.2.7 Enzymatic glycosylation with UDP-GalNAz. Synthesis of azido tagged 123 

 

A solution (1 mL) containing 105 (400 nmol), UDP-GalNAz H2O solution (400 nmol) and GalT-1-DM enzyme 

(250 µL of a 0.62 mg/mL solution) in 500 mM Hepes solution pH 7.4 with 10 mM MnCl2 was incubated at 

37º C overnight. Reaction progress was monitored by MALDI-TOF MS. The disaccharide 123 was purified 

by a SampliQ high performance graphitized carbon cartridge (1 mL) from Agilent Technologies eluting with 

H2O (2x 1 mL) followed by a 6:4 H2O/CH3CN mixture (1 mL). The fractions were analysed by MALDI-TOF 

MS (m/z: calcd for C21H38N6O11 550.26; found 550.68 [M+H]+, 572.62 [M+Na]+) and collected obtaining pure 

123 (176.0 µg, 80%). 

3.6.2.8 General procedure for on-chip glycosylation 

Using incubation chambers, slides with arrayed glycans were compartimentalized and incubated with reaction 

solution (100 µL per well) of UDP-glycoside donor 1 mM in Hepes buffer 50 mM (pH 7.4) containing MnCl2 

5 mM and 50 µL of enzyme solution. 2 µL of a BSA IgG-free H2O saturated solution were added. Reactions 

were performed overnight at 37 °C. Slides were washed with H2O sonicating for 30 sec and dried under a 

stream of argon. The reactions were monitored by printing on top of immobilized glycans with DHB solution 

(10 mg/mL in H2O + 0.1 % TFA + 5% CH3CN) and analysed. 

3.6.2.9 General procedure for on-chip CuAAC 

Slides containing azido tagged glycans were incubated (140 µL per well of incubation chambers) with reaction 

solutions prepared by adding CuSO4·5 H2O, THPTA, a terminal alkyne and Na ascorbate in the order to a 99:1 

H2O/DMSO mixture. Reactions were performed for 2 h at room temperature, shielding from light. Slides were 

washed twice with a 99:1 H2O/DMSO mixture and finally with H2O. The reactions were monitored printing 

the slides with a DHB solution (10 mg/mL in H2O + 0.1 % TFA + 5% CH3CN) and analysing by MALDI-

TOF MS. 
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3.6.2.10 Synthesis of methyl hexynoate 104c58 

To a solution of 5-hexynoic acid (200 mg, 1.78 mmol) in dry DCM (1.8 mL) under argon atmosphere 

camphorsulfonic acid (4 mg, 0.014 mmol) and dry methanol (600 µL, 14.8 mmol) were added. The reaction 

was stirred at 50 °C for 17 h monitoring by TLC (Rf = 0.35; n-hexane - EtOAc, 4:1). The mixture was diluted 

in DCM (5 mL) and the organic phase washed with a NaHCO3 saturated aqueous solution (2x20 mL). The 

aqueous phases were extracted with DCM (2x5 mL). Reunited organic phases were dried over MgSO4 and, 

after filtration and evaporation of the solvent, a white precipitate was removed by centrifugation (2x5 min at 

10 000 rpm) giving pure 104c as a yellow liquid (128.4 mg, 64%). 1H NMR (500 MHz, CDCl3) δ (ppm): 3.70 

(s, 3 H, OCH3), 2.48 (t, J = 7.4 Hz, 2 H, 2-H), 2.29 (td, J = 6.9, 2.6 Hz, 2 H, 4-H), 1.99 (t, J = 2.6 Hz, 1 H, 6-

H), 1.87 (quint, J = 7.2 Hz, 2 H, 3-H). 

1H NMR spectrum of 104c in CDCl3 (500 MHz)  

 

3.6.2.11 Fluorescein printing and fluorescence detection 

5-((5-aminopentyl)thioureidyl)fluorescein TFA salt solutions at different concentrations (5 mM, 1 mM, 500 

µM, 100 µM, 50 µM, 10 µM, 5 µM, 1 µM, 500 nM, 100 nM, 50 nM, 10 nM, 5 nM, 1 nM, 500 pM, 100 pM, 

50 pM, 10 pM, 5 pM, 1 pM, 500 fM, 100 fM, 50 fM, 10 fM, 5 fM, 1 fM) in phosphate buffer 300 mM, pH 

8.7 were prepared and robotically printed (35 droplets, ≈ 12 nL) onto hydrophobic ITO slides bearing 

adsorbed linkers 116. After printing, slides were allowed to react overnight at 17 °C and controlled humidity 

~50%. The slides were quenched by incubation with a 50 mM ethanolamine solution in 50 mM borate buffer 

pH 9.3 for 40 min. Slides were washed with nanopure H2O and finally dried under argon flow. Slides were 

analysed by microarray scanner system (λex = 532 nm, λem = 550-610 nm). 

3.6.2.12 General procedure for enzymatic fucosylation of biantennary 152  

Solutions (15 µL) containing biantennary 152 (1 nmol), either GDP-L-fucose or 6-azido-GDP-L-fucose 127 

(20 nmol), in 80 mM Mes buffer pH 6.5 containing 20 mM MnCl2 for CeFUT6 (6.5 µL of 0.2 mg/mL) or in 

50 mM Tris buffer pH 7.5 containing 10 mM MnCl2 for α-1,3-fucosyltransferase from H. pylori solution 

(6.5 µL of 0.2 mg/mL) were incubated overnight at room temperature and conversions were monitored by 

MALDI-TOF MS. 

3.6.3 Synthesis of tagged GDP-L-fucose glycoside donors 

Synthesis of 1,2:3,4-di-O-isopropylidene-α-L-galactopyranose 136 

To a suspension of polymer-bound triphenylphosphine ~3 mmol/g (1.39 g, 4.16 mmol) in dry acetone (60 mL, 

dried with 3 Å molecular sieves) a solution of iodine (1.05 g, 4.16 mmol) in dry acetone (60 mL dried with 3 
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Å molecular sieves) was added. The mixture was stirred under nitrogen atmosphere for 15 min at room 

temperature. Then, L-galactose (750 mg, 2.08 mmol) was added as a solid and the reaction was stirred under 

nitrogen atmosphere at room temperature for 30 min. Complete conversion was assessed by TLC (eluent: n-

hexane - EtOAc, 2:1) and the reaction was quenched adding Na2CO3 (440 mg, 4.2 mmol) to the mixture, which 

was stirred at room temperature for 15 min. The reaction mixture was filtered by a fritted funnel, concentrated 

by evaporation of the solvent and purified by flash chromatography (eluent: n-hexane - EtOAc, 2:1; Rf = 0.21) 

affording pure 136 as a colourless syrup (820 mg, 75%). 1H NMR spectroscopic data were in agreement with 

those previously reported in the literature.70 1H NMR (400 MHz, CDCl3) δ (ppm): 5.57 (d, J = 5.0 Hz, 1 H, 1-

H), 4.62 (dd, J = 8.0, 2.3 Hz, 1 H, 3-H), 4.34 (dd, J = 5.0, 2.4 Hz, 1 H, 2-H), 4.23 (dd, J = 8.2, 1.0 Hz, 1 H, 4-

H), 3.91-3.83 (m, 2 H, 5-H, 6-H), 3.78-3.711 (m, 1 H, 6-H’), 1.54 (s, 3 H, OCCH3), 1.46 (s, 3 H, OCCH3), 

1.34 (s, 6 H, OC(CH3)2). 

1H NMR spectrum of 136 in CDCl3 (400 MHz) Minor impurities ascribed to EtOAc are visible in the reported 

spectrum. 

 

Titration of GDP sodium salt 

GDP sodium salt (150 mg, ~ 0.322 mmol) was dissolved in the minimum amount of water and loaded onto a 

column packed with 35 mL of activated ion exchange acidic resin (Amberlite IR 120 H, 1.8 meq/mL). The 

compound was eluted with H2O and the eluted fractions were analysed by deposition on TLC monitoring with 

UV at 254 nm. Fractions containing GDP as free acid were reunited and titrated to pH 6 with a Bu4NOH 

aqueous solution monitoring with a pH-meter. First 100 mL of a 40% w/v Bu4NOH solution were added, 

followed by few drops of a 100 fold more concentrated Bu4NOH solution. The resulting solution was finally 

freeze dried affording GDP·2.4 mol. eq. Bu4N+ as a white solid. 1H NMR (400 MHz, D2O) δ (ppm): 8.13 (s, 1 

H, Ha), 5.92 (d, J = 6.1 Hz, 1 H, 1-H), 4.76 (m, 1 H, 2-H), 4.55 (t, J = 4.1 Hz, 1 H, 3-H), 4.34 (bs, 1 H, 4-H), 

4.22 (bs, 2 H, 5-H, 5-H’), 3.22-3.14 (m, Bu4N+), 1.69-1.58 (m, Bu4N+), 1.36 (sextet, J = 7.2 Hz, Bu4N+), 0.94 

(t, J = 7.2 Hz, Bu4N+). 
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1H NMR spectrum of GDP·2.4 mol. eq. Bu4N+ in D2O (400 MHz)  

 

 

3.6.3.1 Preparation of 6-azido-GDP-β-L-fucose 127 

Synthesis of 1,2:3,4-di-O-isopropylidene-6-O-(p-toluensulfonyl)-α-L-galactopyranose 137 

Bis-acetonide 136 (300 mg, 1.16 mmol) was dissolved in dry pyridine (2.3 mL) under argon atmosphere and 

cooled to 0 °C. Then, tosyl chloride (550 mg, 2.9 mmol) was added and the reaction stirred at room temperature 

for 4 h monitoring by TLC (eluent: n-hexane - EtOAc, 3:1). The reaction was diluted with EtOAc (20 mL) and 

the organic phase washed with a saturated solution of CuSO4 (2x20 mL), H2O (2x10 mL) and brine (2x10 mL). 

The organic phase was dried on anhydrous MgSO4 and, after filtration and evaporation of the solvent, purified 

by flash chromatography (eluent: n-hexane - EtOAc, 8:2; Rf = 0.44) affording 137 as a colourless syrup (370 

mg, 78%). 1H NMR spectroscopic data were in agreement with those previously reported in the literature. 1H 

NMR (500 MHz, CDCl3) δ (ppm): 7.81 (d, J = 7.9 Hz, 2 H, Ar), 7.33 (d, J = 7.9 Hz, 2 H, Ar), 5.45 (d, J = 5.0 

Hz, 1 H, 1-H), 4.59 (dd, J = 7.9, 2.6 Hz, 1 H, 3-H), 4.30 (dd, J = 4.9, 2.5 Hz, 1 H, 2-H), 4.22-4.18 (m, 2 H, 4-

H, 6-H), 4.11-4.03 (m, 2 H, 5-H, 6-H’), 1.50 (s, 3 H, OCCH3), 1.34 (s, 3 H, OCCH3), 1.31 (s, 3 H, OCCH3), 

1.28 (s, 3 H, OCCH3). 

1H NMR spectrum of 137 in CDCl3 (400 MHz). Minor impurities ascribed to TsCl are visible in the reported 

spectrum. 
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Synthesis of 1,2:3,4-di-O-isopropylidene-6-O-(trifluoromethanesulfonyl)-α-L-galactopyranose 14086 

To a stirred solution of bis-acetonide 136 (360 mg, 1.38 mmol) in dry DCM (6.6 mL) under nitrogen 

atmosphere distilled DIPEA (1.3 mL) was added. The reaction was cooled to 0 °C and Tf2O (470 µL, 2.77 

mmol) was slowly added. The reaction was stirred at 0 °C for 15 min monitoring by TLC (eluent: n-hexane - 

EtOAc, 7:3, Rf = 0.63), which showed partial conversion. Complete conversion was achieved by a second 

addition of Tf2O (235 µL, 1.38 mmol) stirring the reaction at 0 °C for 15 min. The reaction was quenched with 

cold H2O (25 mL, 0 °C) and the product was extracted with cold DCM (2x40 mL, 0 °C). Reunited organic 

phases were dried over anhydrous Na2SO4. Filtration and evaporation of the solvent afforded crude 140, which 

was pure enough to be employed in the next synthetic step without further purification. 1H NMR (400 MHz, 

CDCl3) δ (ppm): 5.54 (d, J = 5.2 Hz, 1 H, 1-H), 4.65 (dd, J = 8.1, 2.9 Hz, 1 H), 4.67-4.58 (m, 3 H), 4.36 (dd, 

J = 4.8, 2.6 Hz, 1 H), 4.25 (dd, J = 7.6, 1.8 Hz, 1 H), 4.14-4.09 (m, 1 H), 1.48 (s, 3 H, OCCH3), 1.46 (s, 3 H, 

OCCH3), 1.43 (s, 3 H, OCCH3), 1.41 (s, 3 H, OCCH3). 

1H NMR spectrum of crude 140 in CDCl3 (400 MHz)  

 

Synthesis of 1,2:3,4-di-O-isopropylidene-6-azido-α-L-fucopyranose 138 

Crude 140 (42 mg, 0.11 mmol) was dissolved in dry DMF (400 µL) under nitrogen atmosphere, NaN3 (34.5 

mg, 0.53 mmol) was added and the reaction stirred for 4 h at room temperature. Complete conversion was 

assessed by TLC (eluent: n-hexane - EtOAc, 10:1). H2O (6 mL) was added and the product extracted with 

EtOAc (3x4 mL). The organic phase was dried over Na2SO4. After filtration and evaporation of the solvent the 

crude was purified by flash chromatography (eluent: n-hexane - EtOAc, 15:1, Rf = 0.16) affording pure 138 as 

a colourless syrup (18.5 mg, 61% over two steps starting from 136). 1H NMR spectroscopic data were in 

agreement with those previously reported in the literature.70 1H NMR (400 MHz, CDCl3) δ (ppm): 5.54 (d, J = 

5.0 Hz, 1 H, 1-H), 4.63 (dd, J = 8.0, 2.4 Hz, 1 H, 3-H), 4.33 (dd, J = 5.0, 2.4 Hz, 1 H, 2-H), 4.19 (dd, J = 8.0, 

2.0 Hz, 1 H, 4-H), 3.91 (ddd, J = 8.0, 5.5, 1.9 Hz, 1 H, 5-H), 3.51 (dd, J = 12.8, 8.0 Hz, 1 H, 6-H), 3.36 (dd, J 

= 12.5, 5.3 Hz, 1 H, 6-H’), 1.54 (s, 3 H, OCCH3), 1.45 (s, 3 H, OCCH3), 1.34 (s, 3 H, OCCH3), 1.33 (s, 3 H, 

OCCH3). 
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1H NMR spectrum of 138 in CDCl3 (400 MHz)  

 

Synthesis of 6-azido-L-fucose 139 

Compound 138 (64.2 mg, 0.219 mmol) was dissolved at 0 °C in a 9:1 TFA:H2O solution (2.2 mL), which was 

stirred at 0 °C for 2 h monitoring by TLC (eluent: DCM - MeOH, 8:2, Rf = 0.48). The reaction mixture was 

diluted and co-evaporated with toluene (3x3 mL) and finally co-evaporated with Et2O (3x3 mL) affording 

crude 139, which was used in the following step without further purification. 1H NMR spectroscopic data were 

in agreement with those previously reported in the literature.70 1H NMR (400 MHz, D2O) δ (ppm): 5.20 (d, J 

= 3.9 Hz, 1α-H), 4.54 (d, J = 7.9 Hz, 1β-H), 4.13 (dd, J = 8.7, 4.7 Hz), 3.89 (dd, J = 3.2, 0.7 Hz), 3.83 (dd, J = 

3.3, 0.7 Hz), 3.81 (d, J = 3.3 Hz), 3.78 (d, J = 3.3 Hz), 3.76 (dd, J = 3.8, 0.9 Hz), 3.74 (d, J = 3.6 Hz), 3.71 (d, 

J = 4.0 Hz), 3.60-3.37 (m). 

1H NMR spectrum of 139 in D2O (400 MHz)  

 

Synthesis of 1,2,3,4-tetra-O-acetyl-6-azido-L-fucopyranose 146  

6-Azido-L-fucose 139 (41 mg, 0.20 mmol) was dissolved in dry pyridine (370 µL) followed by addition of 

Ac2O (370 µL). A catalytic amount of DMAP was added (0.8 mg, 3 mol%) and the reaction was stirred under 
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nitrogen atmosphere at room temperature for 18 h monitoring by TLC (eluent: n-hexane - EtOAc, 6:4). The 

mixture was diluted with EtOAc (10 mL) and washed with 1 M HCl aqueous solution (2x20 mL), saturated 

NaHCO3 solution (2x20 mL), brine (10 mL). Aqueous phases were extracted with EtOAc (2x10 mL each) and 

reunited organic phases dried over anhydrous Na2SO4. Purification by flash chromatography (eluent: n-hexane 

- EtOAc, 7:3, Rf = 0.33) afforded pure 146 (52.8 mg, 71% over two steps from 138) as a α/β anomeric mixture 

of pyranosydic forms (89%, 1.6:1 β/α ratio) along with the corresponding α,β mixture of furanose isomers 

(11%, 1:1 β/α ratio). 1H NMR spectroscopic data were in agreement with those previously reported in the 

literature.70 1H NMR (400 MHz, CDCl3) δ (ppm): 6.40 (s, 1α-HPyr), 6.33 (d, J = 4.6 Hz, 1β-HFur), 6.19 (s, 

1α-HFur), 5.71 (d, J = 8.0 Hz, 1β-HPyr), 5.48 (s), 5.40 (d, J = 3.5 Hz), 5.38-5.30 (m), 5.08 (dd, J = 10.4, 3.4 

Hz), 4.23 (t, J = 6.7 Hz), 3.94 (t, J = 6.7 Hz), 3.57-3.41 (m), 3.22 (dd, J = 12.8, 5.3 Hz), 2.18, 2.17, 2.12, 2.05, 

2.04, 2.02, 2.00, 1.99 (s, CH3CO). 

1H NMR spectrum of 146 in CDCl3 (400 MHz) Minor impurities ascribed to EtOAc are visible in the reported 

spectrum. 

 

Synthesis of 2,3,4-tri-O-acetyl-6-azido-α-L-fucopyranosyl bromide 148  

Compound 146 (19.7 mg, 0.054 mmol) was dissolved in a 9:1 DCM/EtOAc mixture (600 µL). DCM was 

previously distilled from CaH2 and EtOAc was dried with 3 Å molecular sieves. The solution was cooled to 0 

°C under nitrogen atmosphere and TiBr4 was added (63 mg, 0.171 mmol). The reaction was stirred at 40 °C 

with microwave irradiation for 1.5 h. Almost complete conversion was assessed by TLC (eluent: n-hexane - 

EtOAc, 8:2, Rf = 0.26) and the reaction was quenched adding AcONa (61.9 mg, 0.755 mmol) and stirring for 

15 min at room temperature. Cold H2O (15 mL, 0 °C) was added and the product extracted with cold DCM 

(2x10 mL, 0 °C). Organic phases were then extensively washed with cold H2O (5x10 mL, 0 °C) and dried over 

anhydrous Na2SO4. Filtration and evaporation of the solvent afforded crude 148 that was employed in the 

following synthetic step without further purification. 1H NMR spectroscopic data were in agreement with those 

previously reported in the literature.77 1H NMR (400 MHz, CDCl3) δ (ppm): 6.71 (d, J = 3.7 Hz, 1 H, 1-H), 

5.49 (s, 1 H, 4-H), 5.39 (dd, J = 10.5, 2.6 Hz, 1 H, 3-H), 5.05 (dd, J = 10.5, 3.7 Hz, 1 H, 2-H), 4.39 (t, J = 6.3 

Hz, 1 H, 5-H), 3.49 (dd, J = 12.9, 7.5 Hz, 1 H, 6-H), 3.28 (dd, J = 12.7, 5.1 Hz, 1 H, 6-H’), 2.17 (s, 3 H, 

CH3CO), 2.11 (s, 3 H, CH3CO), 2.01 (s, 6 H, CH3CO). 
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1H NMR spectrum of 148 in CDCl3 (400 MHz)  

 

Synthesis of 2,3,4-tri-O-acetyl-6-azido-GDP-β-L-fucose 150 

 

Titrated GDP·2.4 mol. eq. Bu4N+ (46 mg, 0.045 mmol) was dissolved in distilled CH3CN (1.0 mL) in a Schlenk 

tube under nitrogen atmosphere. Distilled Et3N (7 µL, 0.05 mmol) and powdered 3 Å molecular sieves were 

added and the mixture was stirred at room temperature for 15 min. A solution of fucosyl bromide 148 (19.7 

mg, 0.05 mmol) in dry CH3CN (1.5 mL) was then cannulated into the Schlenk tube and the reaction stirred at 

80 °C for 30 min. Complete conversion of fucosyl bromide 148 was assessed by TLC (eluent: n-hexane – 

EtOAc, 7:3, Rf = 0.36). Molecular sieves were removed by filtration over a celite pad and evaporation of the 

solvent afforded crude 150 that was analysed by HPLC (Waters Atlantis T3 5 µm 4.6x100 mm column; eluents 

A = aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% CH3CN, adjusted to pH 4 with H3PO4 solution), B 

= CH3CN; gradient 0-8 min from 90% A to 40% A, 8-10 min at 40% A, 10-12 min to 0% A, eluting at 1 

mL/min, monitoring at 254 nm; tR = 8.3 min). The corresponding HPLC trace is reported in the discussion of 

Chapter 3 at page 159. MS (ESI) m/z: calcd for C22H30N8O18P2 756.47; found 754.97 [M-H]-.  

Synthesis of 6-azido-GDP-β-L-fucose 127 

Crude 150 (0.045 mmol, assuming a 100% yield for the step above) was dissolved in H2O (1.5 mL). Distilled 

Et3N (16 µL) was added reaching pH 9.6 followed by addition of alkaline phosphatase (50 µL of 1 U/µL 

solution). The reaction was performed at 28 °C for 20 h and enzymatic hydrolysis of GDP to guanosine was 

monitored by HPLC (Waters Atlantis T3 5 µm 4.6x100 mm column; eluents A = aqueous buffer (12 mM 

Bu4NBr, 10 mM KH2PO4, 5% CH3CN, adjusted to pH 4 with H3PO4 solution), B = CH3CN; gradient 0-8 min 

from 90% A to 40% A, 8-10 min at 40% A, 10-12 min to 0% A, eluting at 1 mL/min, monitoring at 254 nm; 

tR (GDP) = 6.5 min, tR (guanosine) = 1.4 min). The solvent was evaporated and the crude dissolved in a 2:2:1 

H2O/MeOH/Et3N (distilled) mixture (1.5 mL) and stirred at room temperature for 16 h monitoring by HPLC 

(Waters Atlantis T3 5 µm 4.6x100 mm column; eluents A = aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 

5% CH3CN, adjusted to pH 4 with H3PO4 solution), B = CH3CN; gradient 0-8 min from 90% A to 40% A, 8-
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10 min at 40% A, 10-12 min to 0% A, eluting at 1 mL/min, monitoring at 254 nm; tR = 6.9 min). The solvent 

was evaporated and the crude purified by automated reverse phase chromatography (Biotage SNAP C18 12g 

cartridge, gradient elution: from 100% H2O + 10 mM (Bu3NH)HCO3 to 40% H2O + 10 mM (Bu3NH)HCO3 - 

60% CH3CN). The 10 mM (Bu3NH)HCO3 aqueous buffer was prepared adding Bu3N (2.38 mL, 10 mmol) to 

H2O (1 L), stirring at 0 °C and bubbling CO2 for 5 h until pH ~ 5 was reached. Eluted fractions were analysed 

by HPLC with the conditions reported above. The fractions containing the peak at tR = 6.9 min were collected 

and the desired product was obtained as a tributylammonium salt, 6-azido-GDP-L-fucose · 1.63 eq. Bu3NH+ 

127 (5.62 mg, 11% from 146). The purity of the compound was assessed by HPLC analysis. HPLC traces are 

reported in the discussion of Chapter 3 at page 159. Spectroscopic data were in agreement with those 

previously reported in the literature.77 1H NMR (400 MHz, D2O) δ (ppm): 8.13 (s, 1 H, Ha), 5.93 (d, J = 6.4 

Hz, 1 H, 1-HR), 4.97 (t, J = 7.7 Hz, 1 H, 1-HF), 4.82 (1 H, 2-HR), 4.55-4.53 (m, 1 H, 3-HR), 4.35 (bs, 1 H, 4-

HR), 4.23-4.21 (m, 2 H, 5-HR, 5-H’R), 3.89 (d, J = 3.1 Hz, 1 H, 4-HF), 3.78 (t, J = 6.9 Hz, 1 H, 5-HF), 3.68 (dd, 

J = 10.1, 3.3 Hz, 1 H, 3-HF), 3.65-3.57 (m, 2 H, 2-HF, 6-HF), 3.47 (dd, J = 12.8, 5.8 Hz, 1 H, 6-H’F), 3.18-3.11 

(m, Bu3NH+), 1.73-1.63 (m, Bu3NH+), 1.33 (sextet, J = 7.4 Hz, Bu3NH+), 0.94 (t, J = 7.4 Hz, Bu3NH+). 31P 

NMR (162 MHz, D2O) δ (ppm): -10.16, -12.09. MS (ESI) m/z: calcd for C16H24N8O15P2 630.08; found 628.86 

[M-H]-, 650.83 [M-2H+Na]-. 

1H NMR spectrum of 6-azido-GDP-β-L-fucose 127 in D2O (400 MHz) 
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31P NMR spectrum of 6-azido-GDP-β-L-fucose 127 in D2O (162 MHz) 

 

3.6.3.2 Preparation of 5-ethynyl-GDP-L-fucose 128 

Synthesis of 1,2:3,4-di-O-isopropylidene-α-L-galacto-hexadialdo-1,5-pyranose 141 

Bis-acetonide 136 (24.7 mg, 0.095 mmol) was dissolved under nitrogen atmosphere in EtOAc (1 mL) dried 

with 4 Å molecular sieves. Then, freshly prepared IBX (79.7 mg, 0.285 mmol) was added and the mixture 

stirred at refluxing temperature for 5 h. Partial conversion was observed by TLC (eluent: n-hexane - EtOAc, 

3:1), thus IBX was further added (39.8 mg, 0.142 mmol) and the mixture stirred for 2 h reaching complete 

conversion. A saturated NaHCO3 solution (4 mL) was added and the product extracted with EtOAc (3x6 mL). 

Organic phases were dried over Na2SO4. Filtration and evaporation of the solvent afforded a crude that was 

purified by flash chromatography (eluent: n-hexane - EtOAc, 3:1, Rf = 0.25) to obtain pure 141 (14.8 mg, 60 

%) as a colourless oil. Spectroscopic data were in agreement with those previously reported in the literature.71 

1H NMR (400 MHz, CDCl3) δ (ppm): 9.62 (s, 1 H, CHO), 5.67 (d, J = 5.0 Hz, 1 H, 1-H), 4.64 (dd, J = 7.9, 2.5 

Hz, 1 H, 3-H), 4.59 (dd, J = 7.8, 2.2 Hz, 1 H, 4-H), 4.38 (dd, J = 5.0, 2.5 Hz, 1 H, 2-H), 4.19 (d, J = 2.1 Hz, 1 

H, 5-H), 1.51 (s, 3 H, OCCH3), 1.44 (s, 3 H, OCCH3), 1.35 (s, 3 H, OCCH3), 1.32 (s, 3 H, OCCH3). 

1H NMR spectrum of 141 in CDCl3 (400 MHz) Minor impurities abscribed to EtOAc are visible in the reported 

spectrum. 
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Synthesis of 1,2:3,4-di-O-isopropylidene-5-ethynyl-α-L-fucopyranose 142 

To a solution of aldehyde 141 (183 mg, 0.708 mmol) under nitrogen atmosphere in dry MeOH (4.7 mL) K2CO3 

(196 mg, 1.415 mmol) was added. The mixture was cooled to 0 °C and dimethyl(1-diazo-2-

oxopropyl)phosphonate (127 µL, 0.849 mmol) was added. The reaction was stirred at room temperature for 

4.5 h monitoring by TLC (eluent: n-hexane - EtOAc, 4:1). H2O (40 mL) was added, the product was extracted 

with EtOAc (3x60 mL) and organic phases were dried over Na2SO4. After filtration and evaporation of the 

solvent, the crude was purified by flash chromatography (eluent: n-hexane - EtOAc, 4:1, Rf = 0.50) affording 

pure 142 (143.5 mg, 80%) as a colourless oil. 1H NMR spectroscopic data were in agreement with those 

previously reported in the literature.71 1H NMR (400 MHz, CDCl3) δ (ppm): 5.55 (d, J = 4.9 Hz, 1 H, 1-H), 

4.63 (dd, J = 7.8, 2.6 Hz, 1 H, 3-H), 4.61 (t, J = 2.2 Hz, 1 H, 5-H), 4.32 (dd, J = 5.1, 2.5 Hz, 1 H, 2-H), 4.29 

(dd, J = 7.8, 2.0 Hz, 1 H, 4-H), 2.54 (d, J = 2.4 Hz, 1 H, H-C≡C), 1.54 (s, 3 H, OCCH3), 1.53 (s, 3 H, OCCH3), 

1.39 (s, 3 H, OCCH3), 1.33 (s, 3 H, OCCH3). 

1H NMR spectrum of 142 in CDCl3 (400 MHz) Minor impurities abscribed to EtOAc are visible in the reported 

spectrum. 

 

Synthesis of 5-ethynyl-L-fucose 143 

Compound 142 (142.7 mg, 0.56 mmol) was dissolved at 0 °C in a 9:1 TFA:H2O solution (6.2 mL), which was 

stirred at 0 °C for 1.5 h monitoring by TLC (eluent: DCM - MeOH, 8:2, Rf = 0.60). The reaction mixture was 

diluted and co-evaporated with toluene (3x4 mL) and finally co-evaporated with Et2O (3x4 mL) affording 

crude 143, which was used in following step without further purification. Spectroscopic data were in agreement 

with those previously reported in the literature.71 1H NMR (400 MHz, D2O) δ (ppm): 5.28 (d, J = 5.1 Hz, 1β-

HFur), 5.25 (d, J = 2.9 Hz, 1α-HFur), 5.22 (d, J = 3.8 Hz, 1α-HPyr), 4.85 (dd, J = 2.2, 1.4 Hz, 5α-HPyr), 4.55 

(d, J = 7.9 Hz, 1β-HPyr), 4.49 (dd, J = 2.2, 1.4 Hz, 5β-HPyr), 4.01 (dd, J = 3.4, 1.4 Hz, 4α-HPyr), 3.95 (dd, J 

= 3.5, 1.3 Hz, 4β-HPyr), 3.84 (dd, J = 10.3, 3.4 Hz, 3α-HPyr), 3.76 (dd, J = 10.3, 3.8 Hz, 2α-HPyr), 3.63 (dd, 

J = 10.0, 3.5 Hz, 3β-HPyr), 3.45 (dd, J = 10.0, 8.0 Hz, 2β-HPyr), 2.90 (d, J = 2.3 Hz, H-C≡C), 2.86 (d, J = 2.3 

Hz, H-C≡C). 
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1H NMR spectrum of 143 in D2O (400 MHz)  

 

Synthesis of 1,2,3,4-tetra-O-acetyl-5-ethynyl-L-fucopyranose 147  

5-ethynyl-L-fucose 143 (97.5 mg, 0.56 mmol, assuming 100% yield in the previous step) was dissolved in dry 

pyridine (950 µL) followed by addition of Ac2O (950 µL). A catalytic amount of DMAP was added (4.9 mg, 

7 mol%) and the reaction was stirred under nitrogen atmosphere at room temperature for 18 h monitoring by 

TLC (eluent: n-hexane - EtOAc, 7:3). The mixture was diluted with EtOAc (25 mL) and washed with 1 M HCl 

aqueous solution (2x20 mL), saturated NaHCO3 solution (2x20 mL), brine (20 mL). Aqueous phases were 

extracted with EtOAc (2x15 mL each) and reunited organic phases dried over anhydrous Na2SO4. Purification 

by flash chromatography (eluent: n-hexane - EtOAc, 7:3, Rf = 0.28) afforded pure 147 (153.8 mg, 80% over 2 

steps from 142) as a α,β anomeric mixture of pyranosydic forms (56%, 1.2:1 β/α ratio) along with the 

corresponding α,β mixture of furanose isomers (44%, 1:1.3 β/α ratio). 1H NMR spectroscopic data were in 

agreement with those previously reported in the literature.87 1H NMR (400 MHz, CDCl3) δ (ppm): 6.41 (d, J = 

3.2 Hz, 1α-HPyr), 6.35 (d, J = 4.7 Hz, 1β-HFur), 6.21 (s, 1α-HFur), 5.70-5.69 (m, 3β-HFur), 5.69 (d, J = 8.3 

Hz, 1β-HPyr), 5.64 (dd, J = 8.6, 2.4 Hz, 5β-HFur), 5.61-5.57 (m, 5α-HFur, 4α-HPyr), 5.51 (dd, J = 3.4, 1.2 

Hz, 4β-HPyr), 5.40-5.33 (2β-HPyr, 2α-HPyr, 2β-HFur, 3α-HPyr), 5.27 (dd, J = 4.4, 1.2 Hz, 3α-HFur), 5.17 (d, 

J = 1.2 Hz, 2α-HFur), 5.08 (dd, J = 10.2, 3.5 Hz, 3β-HPyr), 4.90 (t, J = 1.5 Hz, 5α-HPyr), 4.59 (t, J = 1.8 Hz, 

5β-HPyr), 4.42 (dd, J = 6.3, 4.7 Hz, 4α-HFur), 4.23 (dd, J = 8.4, 5.6 Hz, 4β-HFur), 2.51 (d, J = 2.5 Hz, Hα-

C≡C-HFur), 2.50 (d, J = 2.5 Hz, Hβ-C≡C-HPyr), 2.48 (d, J = 2.3 Hz, Hβ-C≡C-HFur, Hα-C≡C-HPyr), 2.22, 

2.21, 2.14-2.12, 2.10, 2.09, 2.04, 2.02, 2.01, 2.01 (CH3CO). 
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1H NMR spectrum of 147 in CDCl3 (400 MHz) Minor impurities abscribed to EtOAc are visible in the reported 

spectrum. 

 

Synthesis of 2,3,4-tetra-O-acetyl-5-ethynyl-α-L-fucopyranosyl bromide 149 

Compound 147 (30.2 mg, 0.081 mmol) was dissolved at 0 °C under nitrogen atmosphere in a 33% HBr solution 

in AcOH (140 µL, 0.81 mmol). The mixture was stirred for 15 min at room temperature, then dry DCM (80 

µL) was added and the reaction stirred for additional 20 min. The reaction was monitored by TLC (eluent: n-

hexane – EtOAc, 7:3, Rf = 0.53) and quenched by addition of cold H2O (12 mL, 0 °C). The product was 

extracted with cold DCM (2x8 mL, 0 °C) and reunited organic phases were washed with cold H2O (2x12 mL, 

0 °C) and with cold saturated NaHCO3 solution (3x12 mL, 0 °C). The organic phase was dried over anhydrous 

Na2SO4 and filtration and evaporation of the solvent afforded crude 149 which was directly use without further 

purification in the next synthetic step. 1H NMR (400 MHz, CDCl3) δ (ppm): 6.68 (d, J = 3.8 Hz, 1 H, 1-H), 

5.59 (d, J = 3.7 Hz, 1 H, 4-H or 5-H), 5.39 (dd, J = 10.7, 3.4 Hz, 1 H, 3-H), 5.06 (dd, J = 8.2, 1.0 Hz, 1 H, 2-

H), 5.05-5.03 (m, 1 H, 4-H or 5-H), 2.51 (d, J = 2.0 Hz, 1 H, 7-H), 2.20 (s, 3 H, CH3CO), 2.10 (s, 3 H, CH3CO), 

2.02 (s, 3 H, CH3CO).  

 

 

 

 

 

 

 

 



Chapter 3 

179 
 

1H NMR spectrum of 149 in CDCl3 (400 MHz)  

 

Synthesis of 2,3,4-tri-O-acetyl-5-ethynyl-GDP-β-L-fucose 151 

 

Titrated GDP·2.4 mol. eq. Bu4N+ (65.5 mg, 0.064 mmol) was dissolved in distilled CH3CN (1.2 mL) in a 

Schlenk tube under nitrogen atmosphere. Distilled Et3N (9 µL, 0.064 mmol) and powdered 3 Å molecular 

sieves were added and the mixture was stirred at room temperature for 15 min. A solution of fucosyl bromide 

149 (23.4 mg, 0.064 mmol) in distilled CH3CN (2.0 mL) was then cannulated into the Schlenk tube and the 

reaction stirred at 80 °C for 30 min. Complete conversion of fucosyl bromide 148 was assessed by TLC (eluent: 

n-hexane - EtOAc, 7:3). Molecular sieves were removed by filtration over a celite pad and evaporation of the 

solvent afforded crude 151 that was analysed by HPLC (Waters Atlantis T3 5 µm 4.6x100 mm column; eluents 

A = aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% CH3CN, adjusted to pH 4 with H3PO4 solution), B 

= CH3CN; gradient 0-8 min from 90% A to 40% A, 8-10 min at 40% A, 10-12 min to 0% A, eluting at 1 

mL/min, monitoring at 254 nm; tR = 8.1 min). The corresponding HPLC trace is reported in the discussion of 

Chapter 3 at page 160. MS (ESI negative mode) m/z: calcd for C15H23N5O16P2 599.07; found 598.53 [M-H]-. 

Synthesis of 5-ethynyl-GDP-L-fucose 128 

 

Crude 151 (theoretically 0.064 mmol) was dissolved in H2O (1.8 mL). Distilled Et3N (10 µL) was added 

reaching pH 8.9 followed by addition of alkaline phosphatase (59 µL of 1 U/µL solution). The reaction was 
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performed at 30 °C for 20 h and enzymatic hydrolysis of GDP to guanosine was monitored by HPLC (Waters 

Atlantis T3 5 µm 4.6x100 mm column; eluents A = aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% 

CH3CN, adjusted to pH 4 with H3PO4 solution), B = CH3CN; gradient 0-8 min from 90% A to 40% A, 8-10 

min at 40% A, 10-12 min to 0% A, eluting at 1 mL/min, monitoring at 254 nm; tR (GDP) = 6.5 min, tR 

(guanosine) = 1.4 min). The solvent was evaporated and the crude dissolved at 0 °C in a 2:2:1 H2O/MeOH/ 

Et3N (distilled) mixture (2.0 mL) and stirred at room temperature for 16 h monitoring by HPLC (Waters 

Atlantis T3 5 µm 4.6x100 mm column; eluents A = aqueous buffer (12 mM Bu4NBr, 10 mM KH2PO4, 5% 

CH3CN, adjusted to pH 4 with H3PO4 solution), B = CH3CN; gradient 0-8 min from 90% A to 40% A, 8-10 

min at 40% A, 10-12 min to 0% A, eluting at 1 mL/min, monitoring at 254 nm; tR = 6.5 min). The solvent was 

evaporated and the crude purified by HPLC (Waters Atlantis Prep T3 OBDTM 5 µm 19 x 100 mm column; 

eluents A = H2O + 10 mM (Bu3NH)HCO3, B = CH3CN; gradient 0-8 min from 90% A to 40% A, 8-10 min at 

40% A, 10-12 min to 0% A, eluting at 15 mL/min, monitoring at 254 nm; tR = 5.7. The 10 mM (Bu3NH)HCO3 

aqueous buffer was prepared adding Bu3N (2.38 mL, 10 mmol) to H2O (1 L), stirring at 0 °C and bubbling 

CO2 for 5 h until pH ~ 5 was reached. Eluted fractions were analysed by HPLC which revealed complete 

decomposition of the product. HPLC traces are reported in the discussion of Chapter 3 at page 160. 
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