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Abstract

In this work we theoretically derive the experimental uncertainties concerning electron spin polarization

(SP) in various realistic measurement conditions. The accuracy on the evaluation of SP of the photoelectron

current is analysed as a function of the detector parameters and specifications, as well as of the characteristics

of the photoexcitation sources. In particular we have addressed the different behaviour of single counter or

twin counter detectors when the intensity fluctuations of the source are considered, leading to a new definition

of the SP detector performance. The widely used parameter called figure-of-merit (FOM) is shown to be

inadequate to describe the efficiency of SP polarimeters, especially when they are operated with time-

structured excitation sources such as Free Electron Lasers. Numerical simulations have been performed and

yield strong implications in the choice of the detecting instruments in spin-polarization experiments, that

are constrained in a limited measurement time. We therefore apply our results to the characteristics of a

wide set of state-of-the-art spectroscopy facilities all over the world, and derive an efficiency diagram for SP

experiments. Our results also define new mathematical instruments for handling the correct statistics of SP

measurements in presence of the source intensity fluctuations.
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1. Introduction

The measurement of spin polarization of electron beams is a long standing research programme that has

led to the development of advanced instrumentation applied to diverse physical measurements, from nuclear

decays to surface spectroscopy and magnetometry. As it is not possible to separate electrons on account

of their spin state with the use of a Stern-Gerlach apparatus (Kessler, 1985), little efficient spin-dependent

scattering effects, have to be exploited.

The scattering spin asymmetry can be produced by either exchange interaction between the electrons of

the primary beam and the electronic cloud surrounding the target atoms, or by spin-orbit (LS) effects in the

deflection electron beam by nuclei of a target. After a long history of developments (Getzlaff et al., 1998; Gay

et al., 1992) of spin polarimetry based on LS asymmetry, the present state-of-the-art instruments exploit

both kinds of interaction and can be divided in three classes:

1. High energy (0.05-0.5 MeV) LS scattering (Mott scattering) polarimeters, of which the Compact

Classical Mott detector (Petrov et al., 2003), and the Rice-type Mott detector (Burnett et al., 1994)

are the most popular designs. These detectors have low values of figure of merit (FOM), due to the

small elastic back-scattering cross section of high energy electrons. However, target performance does

not degrade on the scale of years, very long integration times are possible, and, if the target is a

thin, highly transparent film, the single scattering approximation allows the polarimeter to be self-

calibrating. The asymmetry is measured as an imbalance in the count rate of two electron counters

defining specular geometries and operated simultaneously.

2. Low energy LS scattering (Spin Polarized Low Energy Electron Diffraction - SPLEED), of which

the Iridium Spin Filter (Kutnyakhov et al., 2013a) is the most recent application. Exploiting the

Bragg beam formation in the LEED process, these instruments have higher FOM. They are especially

suited for imaging systems, as they allow massive multichannel acquisition. The absence of applied

magnetic fields enables to achieve spin-filtering without perturbing the electron spatial distribution.

Target surface can be made stable (Kirschner et al., 2013). The asymmetry signal can be retrieved by

combining the images observed at two different scattering electron energies.

3. Low energy exchange scattering (Very Low Energy Electron Diffraction - VLEED) of which the

Fe(001)-p(1×1)O (Bertacco et al., 1998) is now facing a widespread success. These targets have almost

two orders of magnitude larger FOM with respect to high energy LS polarimeters. Thanks to the use

of the diffracted (00) beam and the high spin filtering efficiency of exchange scattering, they possess a
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large statistical advantage over instruments based on different scattering mechanisms. The passivated

target has a reasonable stability in ultra-high vacuum (few weeks). The asymmetry is measured by

combining subsequent signals recorded with opposite target magnetizations (Okuda et al., 2011).

As SP evaluation is the result of an asymmetry between two values of electron counts (or electron fluxes),

a second distinction allows to categorize further these apparata, based on the measurement routine:

• Twin electron counters detectors (2CD), in which the asymmetry is obtained from the difference be-

tween two simultaneously measured signals from the electron counters (in the two specular geometries

of the scattering events);

• One electron counter detectors (1CD), in which case asymmetry is evaluated by measuring the signal

from a single detector, sequentially changing one of the scattering geometry parameters and measuring

again.

Most of the instruments belonging to the low energy scattering classes (2. and 3.) are 1CDs, while the ones

in the high energy scattering class (1.) are mostly 2CDs.

One further dimension to be considered is that each scattering geometry allows for the determination

of the spin asymmetry along one of the vector components. If the full SP vector is to be measured then

the three components must be obtained. Here it must be noted that two orthogonal components can be

simultaneously measured with the high energy LS Mott polarimeters, using two couples of twin detectors

at right angles that are independently but simultaneously sensitive to the two transverse spin polarization

components of the incoming electron beam. The same result for a 1CD polarimeter requires four subsequent

measures each with a geometry determined by the scattering sample magnetization that must be set in the

four directions along the two perpendicular quantization axes.

As the new generation of extremely brilliant coherent and ultra-shortly pulsed sources is coming on-line

(Free Electron Lasers -or FELs- (Galayda et al., 2010; Toru Hara, 2012; AmannJ. et al., 2012; Allaria

et al., 2012; Allaria et al., 2013; Ayvazyan, V. et al., 2006), Ultraviolet solid state lasers, gas Generation

of High Harmonics -or HHG- (Lorek et al., 2014; Leitner et al., 2011)), new photoemission techniques can

be developed with access to different regimes of excitation and pump-probe protocols. Applications to high

resolution measurements allowing for the simultaneous measure of energy, momentum and spin polarization

as in ARPES experiments (Dil, 2009; Hoesch et al., 2002) has developed recently enhancing substantially

the efficiency of Spin-ARPES (Das et al., 2016; Suzuki et al., 2014; Okuda et al., 2011; Bigi, 2016) and, in

fact, making high resolution “complete photoemission experiments” possible (Schönhense et al., 2015).
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Understanding the optimal experimental approach to the SP measures in these novel experiments is of

primary importance, both for the best exploitation of the scarce beam-time at FELs/X-FELs and for the

best statistical value of the data.

The performance of a spin detector is classically evaluated by trying to achieve the highest Shermann

function (for formal definition see Sect. 2 eq. 1) and the highest Figure of Merit (FOM)(for formal definition

see Sect. 2 eq. 4). Aim of this work is to show that, in the present complex panorama of different applications,

these two parameters might be misleading, and a full statistical analysis, accounting for the whole process

behind the electron spin polarization measurement, is necessary to identify the most performing instrument

for a certain application. We carried out such evaluation with particular attention to the statistics of electron

spin polarization measurements accounting for the intensity fluctuations of the sources. This enables us to

identify the various regimes in which each kind of instrument is best performing, and to lay down a map of

the ranges of applicability.

2. Spin-orbit based detectors

Spin-orbit based apparata retrieve asymmetry from the process known as Mott scattering (Mott, 1929;

Mott, 1932), studied by Sir N. Mott in 1929. When an incoherent beam of high energy electrons (0.05-0.5

MeV) impinges on an heavy atom target, it is diffused incoherently in every direction of space, mostly due

to the charge (Coulomb) scattering. A spin-orbit (LS) component of the scattering potential is nevertheless

present as, in the frame of the electron, the target nuclei are seen as rotating charges during the scattering

deflection, and the sense of rotation depends on the approaching trajectory of the electron with respect to

the fixed nuclei in the crystal (and laboratory) frame. The relative amplitude of the LS scattering potential

(anisotropic) with respect to the Coulomb potential (isotropic) depends strongly on the final deflection

angle for the elastically scattered electrons. At small deflection angles the LS effect is negligible and non

measurable, but at some large angles it becomes relevant. It has been demonstrated that for deflection angles

of 120◦ the LS effect on the total scattering cross section is relatively large and measurable: it is then possible

to determine a geometry dependent asymmetry that corresponds to a SP asymmetry of the primary beam

in the direction perpendicular to the scattering plane, defined by the beam itself and the detector position

in the laboratory frame. If the primary beam has a polarization vector P1, the differential cross section at
1The polarization vector P of an ensemble of electrons is defined as

P =

∑
n

〈ϕ(n)|σ|ϕ(n)〉∑
n

〈ϕ(n)|ϕ(n)〉
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angle ϑ is given by: (
dσ

dΩ

)
SL

= I(ϑ) [1 + S(ϑ)P · n̂] (1)

where:

• I(ϑ) is the spin-averaged cross-section, cancelling out the effects of spin;

• S(ϑ) is a function, called Sherman function (Sherman, 1956), dependent on the angle of deflection,

that expresses the efficiency with which the scattering process selects the spin;

• n̂ is the quantization axis unit vector.

If a partially polarized beam (with non-vanishing components of P in the direction of n̂) impinges with an

energy in the proper range on a heavy atom target, then, the number of electrons scattered on the right

(N(ϑ) = Nr) and on the left (N(−ϑ) = Nl) will be different, and the asymmetry function can be defined:

A(ϑ) = Nr −Nl

Nl +Nr
(2)

Therefore, by measuring A(ϑ), it is possible to evaluate the component normal to the scattering plane of

the spin-polarization vector of the primary beam:

P = 1
S(ϑ)A(ϑ) (3)

This is the basic operational principle of Mott polarimeter (Kessler, 1985), that withstood a long process of

evolution and refinement from the first prototypes (Shull et al., 1943) to the present advanced instruments

(Petrov et al., 2007; Pincelli et al., 2016; Strocov et al., 2015). It is crucial to note, in the light of the

following discussion, that these polarimeters intrinsically allow for the use of two electron counters operated

simultaneously at opposing angles. In fact the geometry asymmetry (left-right) corresponding to the LS extra

deflection can be exploited directly. A 1D Mott scattering experiment can certainly be done, by measuring

subsequent intensities for electron beams of reversed SP, but is certainly not the efficient way to go!

In fact even four detectors can be operated in a Mott polarimeter as both the transversal components of

the SP of the electron beam can be simultaneously determined along two mutually perpendicular scattering

planes both containing the electron beam.

It must be appreciated that a scattering angle of 120◦ is quite unfavourable at these energies (single

scattering regime, thin target film to avoid multiple scattering) and that consequently the overall counting

statistics is low.
where |ϕ(n)〉 are the pure spin states and σ is the Pauli operator, i.e. a three component vector of Pauli matrices. It is therefore,
along any spatial direction, the ensemble-averaged expectation value of the spin operator. Its modulus is therefore always
between 0 (completely unpolarized beam) and 1 (beam completely polarized along one direction).
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When comparing different kinds of polarimeters, it is customary to use a quantity called figure of merit

(FOM). It roughly quantifies the performance of a spin detector, and is defined as:

ε =
(
Nr +Nl

N0

)
S2

eff (4)

where N0 is the beam intensity entering the polarimeter, Nl +Nr is the total scattered intensity measured by

the detectors and Seff is the effective Sherman function2 of the detector. As it will be discussed below, state

of the art Mott polarimeters based on high-energy spin orbit scattering can achieve ε = 6 × 10−4, mainly

due to the low value of the ratio (Nr +Nl)/N0: the cross section of such large angle deflections required to

efficiently select spin is rather low.

Lower energy apparata based on spin-orbit effects have also been built, both as 2CD (Yu et al., 2007) and

as 1CD (Tusche et al., 2013; Kutnyakhov et al., 2013b; Kirschner et al., 2013). From the purely theoretical

point of view, low-energy 2CD systems can be described with the same Eq. 1, Eq. 2 and Eq. 3, obviously with

a different effective S(ϑ) as the multiple scattering dominates at low electron energies and the S(ϑ) cannot

be calculated simply as in the case of single scattering. The low-energy 1CD systems, recently developed,

require that the energy of the primary beam is modified to evaluate the asymmetry: the discussion of the

performance of these systems can be developed along the same lines of the one for exchange based detectors,

described below.

3. Exchange based detectors

As the energy of the primary is lowered enough the electrons interact in the full multiple scattering regime

with the detailed electronic structure of the solid. Exchange effects take the dominant role determining the

SP dependent amplitudes. These experiments require the use of thin films of 3d ferromagnets as a target,

possessing a reduced spin-orbit scattering contribution but a large exchange splitting of the electronic states.

The quantization axis is now given by the magnetization direction of the target, which defines the component

of the polarization vector that is probed. In particular, Bertacco & Ciccacci (1999) demonstrated that the

exchange-split band-gap in the empty states (6 eV above Ef ) of the Fe-O(1x1)p passivated surface gives a

very strong asymmetry both in reflection and adsorption when a polarized beam impinges on it. Building
2While the Sherman function is calculated for an ideal, single atom scattering experiment, in a real detector other factors can

arise that further reduce the efficiency of spin selection: contamination of the target, multiple elastic scattering, finite angular
acceptance of the detectors. Furthermore, the scattering angle and energy are fixed to the values that maximize the asymmetry.
The effective Sherman function will therefore be a number obtained by a calibration measurement, accounting for all such
different effects.
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the formalism in analogy with Eq. 1:

(
dσ

dΩ

)
ex

= I(ϑ)
[
1 + S(ex)(ϑ)P · m̂

]
(5)

where m̂ is a unit vector representing the direction of the target’s magnetization. When building the nor-

malized asymmetry (as in Eq. 2), however, the radical difference between the two approaches sets in. Having

lost the LS dominant effect, the geometrical asymmetry is lost and with it the possibility of measuring

simultaneously the right-left asymmetry, i.e. to perform two specular experiments with two detectors per

each scattering plane. Exchange based detectors require that an intensity measurement is performed with

magnetization in the “up” direction (N↑), then magnetization is reversed in the “down” direction, and a

second acquisition (N↓) is made. These two can be combined to give a single evaluation of asymmetry:

Aex = N↑ −N↓
N↑ +N↓

(6)

Through the cross section in Eq. 5 it is then possible to find:

Pm = 1
S

(ex)
eff

Aex (7)

where Pm is the component of polarization in the magnetization direction and S(ex)
eff represents the effective

Shermann function of the system.

It is now clear that, requiring two separated measurements and an energy so low (6 eV) that only the (00)

beam of LEED pattern appears, exchange interaction based apparata are intrinsically 1CD. These systems

where developed in the quest for higher efficiencies with continuous and stable sources, and they actually

represent an extraordinary advancement (ε ≈ 10−2 have been reached (Graf et al., 2005)).

4. Error in polarization measurement

In order to discuss the topic more clearly, it is better to introduce the basic formulas by deriving them under

the assumption of a non-fluctuating stationary electron current. This will also enable to show the conceptual

pattern that is repeated in the following steps, when coping with the more complicated temporal fluctuation

regime.

The uncertainty on polarization defined in Eq. 3 can be evaluated, using the propagation for independent

errors, as:

∆P = P

√(∆A
A

)2
+
(∆Seff
Seff

)2
(8)
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∆P has two sources: a statistical one (related to ∆A), and a systematic one (caused by ∆Seff). The system-

atic error is reduced during the calibration of the detector, when Seff is measured as accurately as possible.

However, it is very difficult to realize accurate measurements because of the intrinsic low statistics of both

methods of calibration3. Once ∆Seff is determined, anyway, it cannot be changed and does not affect sig-

nificantly the measurement routine, as substitution of typical values show that even a 10% uncertainty on

Seff does not contribute significantly to ∆P . As it is irrelevant to our discussion, in the following it will be

neglected. The only uncertainty on P is therefore assumed to be due only to statistical counting error in ∆A.

3The first method is double scattering (Kessler, 1985). The second method is called energy acceptance reduction (Gay &
Dunning, 1992).
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Fig. 1. a. Simplified scheme of the operation and of the accounted probability distributions in a 2CD detector.
b. Simplified scheme of the operation and of the accounted probability distributions in a 1CD detector. It
is divided in two subfigures in which the two successive steps needed for a single polarization measurement
are shown.

The relative error δA = ∆A/A can be calculated as (see Eq. 2):

δA =

√( ∆Diff
Nr −Nl

)2
+
( ∆Sum
Nr +Nl

)2
(9)

where ∆Diff (∆Sum) is the absolute error on Nr−Nl (Nr +Nl). It follows that ∆Diff = ∆Sum. The second

summand can be neglected, as it is much smaller than the first:

δA ≈

√( ∆Diff
Nr −Nl

)2
≡

√
(∆Nl)2 + (∆Nr)2

(Nr −Nl)2 (10)
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Assuming that the variances for Nr and Nl are determined by two independent Poissonians4, and:

∆A = δA ·A = 1√
Nl +Nr

(11)

and, dividing by Seff to obtain polarization uncertainty:

∆P =
√

1
(Nr +Nl)S2

eff
(12)

now, introducing N0 as defined in Eq. (4), it is possible to write:

ε =
(
I

I0

)
S2

eff =
(
Nr +Nl

N0

)
S2

eff (13)

Finally, one has:

∆P = 1√
N0ε

(14)

For this reason the FOM has been regarded as a fundamental parameter of SP experimental apparata

until now. However, as it will be shown in the following, the advent of pulsed sources with strong intensity

fluctuations is dramatically changing the experimental conditions, reducing the importance of such parameter

and shifting the focus towards set-ups able to reject the source intensity noise.

5. Absolute error in presence of intensity fluctuations

As discussed above, a measurement of electron beam SP by necessity consists in a difference between

two measured intensities. The electrons are always counted in a finite, discrete time, that we will call a

"measurement step": either the integration time window (with a continuous or quasi continuous source),

or the duration of the bunch generated by a single excitation pulse as it is the case with the novel short

pulsed sources. In both cases, the intensity fluctuations of the source, although on very different time-scales,

must be thoroughly accounted to understand their role in the statistics of polarization measurement. In the

following, the intensity fluctuations will be discussed in general. At the end of each chapter, the discussion

will be exemplified for the case of measurement of the spin polarization of the secondary electrons, in an

experiment in which separate, high intensity shots from a FEL are measured. This case represents the limit

case, in which fluctuations are extremely large, while the intensity is extremely high. This is the region in the

parameter space that yields the most counterintuitive results. At the end of the section, the whole parameter
4This is true since the signals are retrieved from two independent detectors.
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space will be addessed. The discussion (bearing no constraints on the actual timescale of measurement step)

can therefore be adapted to all kind of sources.

In the following discussion we will assume that the electron detectors and counters of the polarimeter are

able to handle the electron bunches scattered off the target surface without saturating. As the number of

electrons reaching the detector can have very high peak currents (up to 1012 e/s, corresponding to a bunch

of 105 electrons spread over about 100 ns), this is not an obvious task. Very recently, however, it has been

demonstrated in a state of the art Mott polarimeter set-up (Pincelli et al., 2016), so we considered it a

solvable experimental problem and we neglected it.

5.1. Fluctuations for 2CD

The number of primary electrons is now defined by measurement step:

N0 = N0(i) (15)

where N0(i) is the number of electrons entering the detector during the i-th measurement step. It is possible5

to assume that this is proportional to the intensity of the light during the during the i-th measurement step.

The intensity distribution is generally described by a Gaussian with finite variance.

If a 2CD is considered, it is possible to treat the single measurement step in the same way as was done

for a continuous flux of electrons. By simple substitution of N0 in Eq. (14), we obtain:

∆P (i) = 1√
N0(i)ε

(16)

Performing a weighted average over np measurement steps, the uncertainty reads:

∆P (np) = 1√
np∑
i=1

1
∆P (i)2

= 1√
np∑
i=1

N0(i)ε
(17)

This procedure is thus very efficient in handling the instabilities of the source, because the weighted average

enables to take little account of polarization measurements coming from very low intensity measurements

that carry a very high uncertainty.

If one assumes to know the average number of electrons per measurement step, Nepp, it is possible to consider

np so big that:
np∑
i=1

N0(i) = npN̄epp (18)

5The effects of space charge, that distort the proportionality between light intensity and electron yield (Fognini et al., 2014),
are neglected here.
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and to consider the asymptotic behaviour:

∆P (np) ≈
√

1
npN̄eppε

(19)

The uncertainty thus scales as the square root of np.

If we include the typical values of measurement of the spin polarization of the secondary electrons, e.g.

(Petrov & Kamochkin, 2004; Fognini et al., 2014) ε ≈ 6× 10−4 and N̄epp ≈ 105 , we obtain:

∆P (np) ≈ 0.129
√
np

(20)

5.2. Fluctuations for 1CD

The asymmetry for a 1CD polarimeter was given in Eq. (6) but a subtle point must be considered when

passing to the fluctuation regime. If the intensity counted in each measurement step was constant and equal

to N0, the asymmetry that one would expect to measure is:

Ath = N0σ↑ −N0σ↓
N0σ↑ +N0σ↓

(21)

where σ↑ and σ↓ are the cross sections for electrons with opposite spin state. In the real measurement,

however, the electrons for σ↑ and σ↓ are subject to changes due to source fluctuations, and their number is

different. It is then necessary to write:

Areal(i, i+ 1) = N↑(i)−N↓(i+ 1)
N↑(i) +N↓(i+ 1) (22)

Each of the measurements of N↑(↓) will be affected by the usual counting statistics of the electron counters

so that:

N↑(i) = (N0(i)σ↑)±∆N↑stat(i) (23)

and

N↓(i+ 1) = (N0(i+ 1)σ↓)±∆N↓stat(i+ 1) (24)

If one wants to refer to the expected asymmetry, however, one must introduce a third error "pairwise" ∆Npp

when computing the numerator and denominator, due to the fact that intensity fluctuations exist from one

measurement step to the next6. It is then possible to calculate the relative uncertainty:

δA(i, i+ 1) =

√√√√∆N2
↑stat(i) + ∆N2

↓stat(i+ 1)
[N↑(i)−N↓(i+ 1)]2

+
∆N2

pp(i, i+ 1)
[N↑(i)−N↓(i+ 1)]2

6It must be noted that the errors are of a statistical nature. Despite the fact that now ∆Npp is introduced as a difference
between two precise measurement steps, if one wants to deal with it as an error on the intensity measurement, one must consider
∆Npp as the variance of the distribution of the differences, just as one uses the variance of the Poissonian distribution centred
at N↑(i) for ∆N↑stat(i) or at N↓(i+ 1) for ∆N↓stat(i+ 1).
IUCr macros version 2.1.10: 2016/01/28
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where [∆N2
↑stat(i) + ∆N2

↓stat(i + 1)] is the absolute error on the numerator of A and the relative errors

concerning the denominator have been neglected. Considering Poisson statistics for the counting errors, it

is now possible to obtain the absolute error on asymmetry and, dividing by the effective Shermann function

Seff , the absolute error on polarization:

∆P (i, i+ 1) = 1
Seff

√
N↑(i) +N↓(i+ 1)

√√√√1 +
∆N2

pp
N↑(i) +N↓(i+ 1) (25)

it is then evident that an object very close to the uncertainty observed in 2CDs is obtained by multiplication

of the pre-factor with the first summand under the square root.A second term, arising from the instability

of the source, is now present and increases the error as there are only non-negative numbers.

If several measurements are performed, a weighted average can be used again, yielding:

∆P (np) = 1√
np∑
i=1

S2
eff [N↑(i) +N↓(i+ 1)]2

N↑(i) +N↓(i+ 1) + ∆N2
pp
δ(i mod 2,1)

(26)

where δ(i mod 2,1) is the Kronecker Delta and mod is the modulo function, allowing to keep only the odd

values of i. This is because each asymmetry value is now obtained only after two measurement steps. Stepping

again to the limit of large np it is possible to consider:

S2
eff [N↑(i) +N↓(i+ 1)] ≈ S2

eff (N̄↑ + N̄↓) = 2N̄0 ε (27)

the sum results in a simple multiplication by the number of observed asymmetry values i.e. np/2, giving:

∆P (np) =

√√√√ 1
npN̄0ε

(
1 +

∆N2
pp

N̄↑ + N̄↓

)
(28)

Where N̄↑ and N̄↓ are the average intensities measured in the two magnetization configurations, N̄0 is the

average number of electrons per measurement step before the polarimeter, and ε is the FOM of the detector

given in Eq. (4), substituting Nr(l) with N̄↑(↓).

To evaluate ∆Npp the discussion needs to be deepened slightly further. This uncertainty is generated by

the fact that N0(i) and N0(i+ 1) are two successively and independently extracted variables from the same

normal distribution:

P(N0(i)) = 1√
2πσ2

0

e
−

(N0(i)− N̄0)2

2σ2
0 (29)

Where σ0 is the variance in the distribution of number of primary electrons. This quantity can be traced back

to the relative variance γ ≡ σph/Īph = σ0/N̄0 in the photon beam intensity on the appropriate time-scale,

i.e. the same of the measurement step. The latter equality comes from the relationship between intensity
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and number of photoemitted electrons that is supposed to be linear in this range. ∆Npp can therefore be

calculated by Gaussian integration (see Supplementary materials, Sect. I), giving:

∆Npp ≈
1√
2

(N̄↑ + N̄↓)γ ≈
√

2 N̄0 ε

S2
eff

γ (30)

Where the last approximation comes from Eq. 27. Substituting in Eq. 28 we obtain:

∆P (np) ≈

√√√√ 1
np
·
[

1
N̄0 ε

+ γ2

S2
eff

]
(31)

in the regime of large N̄0, the first summand of the factor in square parenthesis is much smaller than the

other. It is then possible to write:

∆P (np) ≈
√

1
np
· γ

Seff
(32)

Applying again to the case of the spin-polarization of the secondary electrons with FEL source, we can

substitute7: Seff ≈ 0.35(Okudaet al., 2011) N̄0 ≈ 105 γ ≈ 0.1 then one obtains:

∆P (np) ≈ 0.286
√
np

(33)

i.e. despite the lower FOM, the 2CDs have a coefficient a factor of 3 smaller. This means that a repetition

rate 9 times smaller is required to perform experiments with the same precision and the same duration, or

that 9 times shorter experiments are required to 2CDs at the same repetition rate. It is interesting to observe

that, in the parameter configuration used in this example, the coefficient of the 1CD is strongly dependent

on γ, and only weakly on N̄0 (Eq. 31), while for 2CD the situation is exactly opposite: the coefficient is

determined mainly by N̄0 and has no dependence on γ.

Our derivation therefore allows to individuate some regimes in which the advantage of monitoring the

intensity given by 2CDs results in shorter measurements despite the higher efficiency attainable with 1CDs. In

Fig. 2, a density plot of the difference between the absolute error values of 1CDs and 2CDs (∆P1CD−∆P2CD),

for a 100 measurement steps average, is plotted versus the number of electrons entering the detector per

measurement step and of the intensity fluctuations of the source.

As our paper aims at mapping out the regimes (and consequently the cathegory of lightsources) with

which the measurement mechanism of every spin detector is most efficiently used, we overlaid to the density

plot a scheme depicting the regime of operation of state-of-the-art lightsources.

As explained in Sect. 5, it is also possible to account for intensity fluctuations also for continuous sources.

If the R.M.S. fluctuations are evaluated on the same time window as the integration time of the electron
7It should be noted that γ ≈ 0.1 is a rather generous estimate, based on the reported (Toru Hara, 2012) performance of

SACLA FEL in Japan. Most FELS operate with higher shot-to-shot fluctuations.
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counters, the statistical treatment of both 1CD and 2CD errors is identical to the one followed above. For

this reason, continuous and quasi-continuous sources have been added to Fig. 2. For continuous sources,

the time duration of a measurement step was arbitrarily set at one second, and correspondingly the r.m.s

intensity fluctuations on one second gating time were used.

Estimate of photoemission experiment intensities have been obtained:

• by using measured data when available

• by multiplying the photon flux and its R.M.S. fluctuations, assuming

– Quantum Efficiency (Q.E.) of a Gold Surface, 10−1 @ 30 eV, 10−3 @ 6-7eV,

– 10−3 in case of direct trasport to spin detector, 10−5 for detection after energy analyzer.

Considering the following issues as solvable by adapting the individual apparatus to the effective mode of

operation, we have ignored the following:

• space charge effects,

• fine details of electrostatic lenses transmittance,

• the possibility of saturation of electron counters,

• sample degradation effects or disruption by coulomb explosion.

Care must be taken in reading this diagram, as the effective time required for an experiment is also defined

by the repetition rate of the source, which is somehow hindered by the normalization to the number of

measurement step used here: J operates at 20 kHz for example, while G at 10 Hz. The detailed source

parameters are listed in Supplementary Materials, Sect. II.
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Fig. 2. Expected range of application with different sources. The dotted mesh (A,A’,C,E,E’,E”) defines
quasi-continuous sources, the continuous line mesh defines continuous sources (B,D), light gray mesh
defines pulsed solid state lasers (F,J,J’,K,K’,L,L’), the rombohedral mesh “hot” FELs (G,G’,G”,H,H’)
and the white fill indicates superconducting FELs (I). A,A’ - Synchrotron Beamline. B - Helium Lamp .
C - quasi-CW VUV Laser. D - Electron gun. E’,E” - Femtoslicing synchrotron beamline. F - Table-top
laser 4HG. G - LCLS Hard-X FEL. G’ - Sacla Hard-X FEL. G” - LCLS Self-seeding. H - Fermi FEL-1
(Seeded). H’ - Fermi FEL-2 (Seeded,cascaded). I - FLASH FEL (SASE). J,K,J’,K’ - High power HHG
Laser (Fluct. inferred from L). L,L’ - Mid-power HHG Laser (for which shot-to-shot fluctuations were
accurately measured).

Symbol Reference Symbol Reference

A,A’ A† G’ (Toru Hara, 2012)

B (Okuda et al., 2011) G” (AmannJ. et al., 2012)

C (Shimojima et al., 2015) H (Allaria et al., 2012)

D D‡ H’ (Allaria et al., 2013)

E (Bergeard et al., 2011) I (Ayvazyan, V. et al., 2006)

E’,E” (Holldack et al., 2014) J,K,J’,K’ (Lorek et al., 2014)

F F§ 6L,L’ (Leitner et al., 2011)

G (Galayda et al., 2010)

Table 1. References of the symbols shown in Fig. 2.
†Obtained from a survey on the declared photon flux values of a large number of Phtoemission beamlines as made possi-

ble by websites of coordinated access projects such as http://wayforlight.eu/eng/search-beamlines.aspx. Measurements
performed by the authors on APE-LE beamline (A’) confirm part of this range.
‡As obtained with a commercial e-gun on measurements performed by the authors.
§From typical performance of a high intensity femtosecond Ti:Sa laser combined with a 10% efficiency 4HG stage.
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In Fig. 2 it is also shown (as a dashed black line) the threshold below which the intensity fluctuations are

not measurable, as they are smaller than the counting statistics for each pulse (or second):

γ = 1√
N

(34)

for values of γ smaller than 1/
√
N , the amount of electron in each pulse is large enough to make the Poisson

uncertainty on counting statistics dominating over the intensity fluctuation noise.

The most relevant is the space charge effect. For most of the photoelectron spectroscopies (especially

ARPES), the present limit for spin-integrated measurements is of one electron per pulse per reasonable

energy and angle interval. Above this, the spectra suffer reduced resolution and deformations. In this config-

uration, the statistics for single-shot spin polarization measurements is insufficient for both machines, and

several shots have to be counted, making the experiment barely feasible at the typical repetition rates of an

FEL.

However, very recent experiments of measurement of the spin polarization of the secondary electrons

(Fognini et al., 2014) have demonstrated feasibility of experiments with more than 106 electrons per pulse,

although with reduced polarization signal. The compromise between reduction of the signal and reduction

of the uncertainty will probably have to be addressed practically, depending on the aim of the experiment.

On the other hand, the 1CDs higher FOM allows themto outperform significantly the 2CDs when lower

intensity, but higher stability sources are considered. ARPES is therefore more immediately applied to this

configuration, and it has already been done (Okuda et al., 2011; Bigi, 2016). Yet, also these configurations

are extremely photon-hungry, and the ARPES community would surely benefit if the full potential of FEL

brilliance was to be unlocked. There is therefore an on-going effort in trying to overcome this issue that has

been addressed in (Hellmann et al., 2009; Schönhense et al., 2015; Verna et al., 2016).

Nonetheless, our statistical framework will have to be addressed every time one uses a source of intensity

sufficient to achieve γ >
1√
N

, independently on how the issue of space charge is addressed, may it be

with strong accelerating fields close to the sample(Schönhense et al., 2015), a posteriori data treatment

(Schönhense et al., 2015; DellAngela et al., 2015), or exploiting complex time-structures of the pulsed

beam (Hellmann et al., 2012). The method is also applicable to any kind of spin-resolved photoelectron

spectroscopy from energy integrated measurement of the polarization of the secondary electron yield, to the

single channel spin-ARPES, and even to the parallel acquisition spin-ARPES that is now being addressed

in different ways (Schönhense et al., 2015; Strocov et al., 2015), as only the number of electron entering the
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polarimeter is relevant for the discussion.

When the vectorial determination of SP is sought the above analysis has to be applied to the three

components of SP. Here the 2CDs are “upgraded” easily to 4CDs allowing the same measurement time to

provide both the transversal components of SP of the analysed electron beam. Only the third component

requires a subsequent measurement act. In the case of Mott polarimeters this can be performed either by

alternatively addressing two identical but orthogonal polarimeters by deviating electrostatically the electron

beam every other pulse to one or the other of the polarimeters, or by “rotating” the SP of the incoming

beam by a magnetic rotator and observe scattering in the same polarimeter. Also when using 1CD exchange

polarimeters two orthogonal apparata are needed and a sequence of eight measurements steps are needed

(four magnetization orientations of each of two targets with their normal direction at right angles with each

other). In this case an internal calibration can be exploited as one SP component is measured twice (once

in each polarimeter).Therefore, when the measurement of the spin polarization vector will require at least

two separate measurement steps to a 4CD, while at least 6 measurement steps to a 1CD. Besides the factor

of three in the number of measurement steps, γ will appear once for each component in the 1CD, as the

measurement steps are all temporally interdependent in pairs. In the 4CD, instead, γ will never appear, as

the measurement steps are all temporally independent from each other.

6. Numerical experiments

Numerical Experiments have been performed in order to simulate the two considered experimental setups

of the measurements, i.e. the 2CD and the 1CD apparata, and to perform a statistically reliable set of

simulations to validate the theoretical results discussed above. The numerical code has been written in

Mathematica programming language. We sketch, for clarity, a list of the main sets of operations adopted in

the numerical simulation plan, in which we tried to follow the true experimental procedure.

The simulation of experiments with 2CD detectors was developed in the following steps:

1. We imagined the true polarization of the electron beam, photoemitted from the sample, P true, to be

fixed, since it is an intrinsic property of the physical system.

2. We fixed the known physical parameters of the apparatus, i.e. N̄0, Seff , σ0, ε2CD(1CD).

3. We started a loop over the number of measurement steps, i, from 1 to a certain maximum value nmax
p ,

in which, for each iteration:
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(a) We randomly extracted with Gaussian probability, representing the distribution of the number

of photoemitted electrons (centred in N̄0, and with a std. dev. of σ0), the specific number of PE

electrons of the i-th iteration, N0(i).

(b) From N0(i) we calculated the two quantities

N0
l(r)(i) = Round

[(
1± P trueSeff

2

)
N0(i)ε2CD

S2
eff

]
(35)

where with “Round” we indicate the approximation to the nearest integer value.

(c) We then used N0
l (i) and N0

r (i) as the two mean values of two Poissonians, and then randomly

extracted two values, Nl(i) and Nr(i). This is done to resemble the Poissonian behaviour of the

detectors.

(d) The polarization actually detected is thus calculated as

P det(i) = Nl(i)−Nr(i)
Nl(i) +Nr(i)

1
Seff

(36)

4. With the array P det(i = 1 : nmax
p ) of the detected polarization, we calculated the ‘experimental’

polarization P (np) as a function of the number of measurement steps as the average of the P det(i =

1 : nmax
p )s up to np:

P (np) = 1
np

np∑
i=1

P det(i), np = 1, . . . , nmax
p (37)

5. Finally, we defined a variance ∆P (np) from the true value P true as

∆P (np) =
√

(P (np)− P true)2, np = 1, . . . , nmax
p (38)

Each of these simulations, however, is not sufficient to give a significant comparison to Eq. 20 and Eq. 33,

because the former are expressed in the statistical limit, i.e. for an infinite number of experiments at each

value of np. Therefore, a loop repeating each simulation nsim times was devised, and the resulting values for

each np were averaged. If nsim is large enough to be treatable in the statistical limit, the results can then

be compared to Eq. 20 and Eq. 33.

For 1CD detectors the procedure was slightly different. We list below the main differences:

1. Each iteration represents a single measurement of electron SP and thus requires two independent

measurement steps. Thus the iteration index j does not coincide any more with the number of mea-

surement steps, i. The j-th measurement is then simulated with two independent extractions (labelled
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as N0
A(j) and N0

B(j)) over the PE electron Gaussian probability distribution. The first extraction is

used to calculate N0
↑ (j) as:

N0
↑↓(j) = Round

[(
1 + P trueSeff

2

)
N0

A,(B)(j)
ε1CD

S2
eff

]
(39)

Analogously to 2CD system, N0
↑ (j) and N0

↓ (j) are then used as centres of Poissonian distributions

from which the measured values N↑(j) and N↓(j) are extracted. The polarization is then evaluated as:

P det(j) = N↑(j)−N↓(j)
N↑(j) +N↓(j)

1
Seff

(40)

and the variance is determined accordingly.

2. It must be stressed that for 1CD the use of the same number of measurement steps leads to half the

number of measurements with respect to the 2CD. Therefore when average values, as in Eq. (37) and

Eq. (38), have to be computed, the summation boundaries must be modified, so P (nm) and ∆P (nm)

after nm measurements now read as:

P (nm) = 1
nm

nm∑
j=1

P det(j), (41)

∆P (nm) =
√

(P (nm)− P true)2, (42)

with nm = 1, . . . , nmax
p /2.

In order to check the validity of the statistical analysis discussed in Sect. 5 and the necessary approxima-

tions, the values of the variance were also calculated by direct substitution of the parameters in Eq. 19 and

31. The results are plotted in Fig. 3 and Fig. 4. The difference between the curves obtained from Eq. 19, 31

and Eq. 20 and 33 in Fig. 4 shows the effects of the approximations of large np. The simulated data show a

variance that is always smaller than the statistical estimate, in agreement with the fact that error analysis

should give a safe (i.e. as tight as possible, but by excess) evaluation of the experimental uncertainty.
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Fig. 3. The result of measurement of a 50% polarization (P true = 0.5) with a 1CD (red) and 2CD (blue) as
a function of the number of averaged pulses.
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Fig. 4. The results of a simulated run on 1CD and 2CD detector. In this case, we used np = 36000,
corresponding to 1h acquisition at 10Hz, N̄0 = 100000, σ0 = 0.1, Seff = 0.36 for 1CD, εM = 6 × 10−4,
εV = 1 × 10−2, Nsim = 100. The solid red and dark blue line show the direct calculation form Eq. 19,
31, the light blue and orange the results of our approximation for large np, and the dots the simulated
measurements.
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7. Conclusions

We can therefore conclude that, relying on a solid statistical analysis, we demonstrated that in the pulsed

source regime the FOM and effective Sherman function parameters are not comprehensive in describing the

detector performance. Instead, the effect of the measurement routine and its interplay with the source time

structure must be carefully accounted for.

Despite the lower FOM, indeed, parallel acquisition of asymmetry from two channels (or more) at once

decouples the detector from the intensity variations of the source, allowing it to significantly outdo in terms

of reduction of statistical error in SP measurement as a function of the averaged number of measurement

steps. To prove this, we developed a rigorous description of statistical error for both kinds of detectors,

obtaining simple and effective formulas that will be fundamental in the data analysis of this new technique.

Finally, we verified such analysis with computational simulations that demonstrated the reliability of our

conclusions.

We then mapped out the ranges (and consequently the state of the art sources) in which each detector

geometry performs best, individuating three regimes. In the medium-low intensity, small fluctuation regime

typical of Synchrotron and continuous sources, the high-FOM 1CDs are superior. In the high brilliance,

large shot-to-shot fluctuation pulsed regime characteristic of FEL or high power solid state laser sources,

the 2CDs give the best statistics. Finally, in the regime of operation of HHG sources, with low photon flux,

high shot-to-shot fluctuations, the performance of 1CDs and 2CDs is very close.

As time-resolved SP measurements are becoming ubiquitous in advanced spectroscopy of magnetic as

well as non-magnetic strongly correlated systems, including spin-textured topological surfaces, and their

dynamics needs to be studied, our analysis will be useful to guide the design and the data analysis of such

experiments.

Appendix A
Calculation details

In this Section, we expose the details of the calculation concerning the absolute error ∆Npp on the

difference N0(i)σ↑ − N0(i + 1)σ↓. Since N0(i) and N0(i + 1) are two successive extractions of a normally

distributed variable, it is possible to calculate ∆Npp as (for convenience of notation we set N0(i) = x and
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N0(i+ 1) = y and simplify the normalization factors):

∆N2
pp = =

∞∫
0

∞∫
0

(xσ↑ − yσ↓)2 e
− (x−N̄0)2

2σ2
0 e

− (y−N̄0)2

2σ2
0 dx dy

∞∫
0

∞∫
0

e
− (x−N̄0)2

2σ2
0 e

− (y−N̄0)2

2σ2
0 dx dy

(43)

The lower integration limit can be extended to −∞ because the central value N̄0 is positive and large. In

this way we can use the known Gaussian integrals (Gradshteyn & Ryzhik, 2014) that give:

∆N2
pp = N̄2

0 (σ↑ − σ↓)2 + σ2
0(σ2
↑ + σ2

↓) (44)

hence:

∆N2
pp = N̄2

0 (σ2
↑ + σ2

↓)
(

(σ↑ − σ↓)2

σ2
↑ + σ2

↓
+ γ2

)
(45)

where the aforementioned γ has been inserted. The first summand in the last term is small, and can be

neglected, giving:

∆N2
pp = N̄2

0 (σ2
↑ + σ2

↓)γ2 =

= (N̄2
↑ + N̄2

↓ )γ2 ≈ 1
2(N̄↑ + N̄↓)2γ2

(46)

As N̄↑ ≈ N̄↓. The result in Eq. (30) of main text is thus justified.

Appendix B
Lightsources parameters

In this section we list the detailed characteristics of the various sources considered in Fig. 2 of main text.

Lett flux [ph/s] R.M.S. fluct. [%] En. [eV] durat. [ps] rep. rate [Hz] lens fact. el flux [e/s]
A 109-1013 0.1-0.5 any8 (20) 50 500 × 106 10−5 103-107

B 2 · 1012 0.15 21 (21) – – 10−5 106

C 2 · 1015 1 7 (7) 20 80 × 106 10−5 107

D – 0.25-5 500-4000 (1300) – – 10−3 105-109

E – 1 any (20) 40 1 × 106 10−5 2.5× 103

E’ 106 1 any (20) 0.1 6 × 106 10−3 102

E” 106 1 any (20) 0.1 6 × 106 10−5 100
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Lett flux [ph/pul] R.M.S. fluct. [%] En. [eV] durat. [ps] rep. rate [Hz] lens fact. e. flux [e/pul]
F 8 · 1014 5 6 0.1 1000 10−3 108

G 1014 25 10-60 (30) 0.1 10 10−3 104-1010

H 1013 50 50-300 (100) 0.04-0.1 10 10−3 104-109

I 1013 60 30-300 (30) 0.05-0.2 109 10−3 104-109

J 108 25 10-90 (30) 0.3 20 × 103 10−3 104

J’ 108 25 10-90 (30) 0.3 20 × 103 10−5 102

K 107 25 10-90 (30) 0.3 100 × 103 10−3 103

K’ 107 25 10-90 (30) 0.3 100 × 103 10−5 101

L 106 26.6 10-90 (30) 0.3 3 × 103 10−3 102

L’ 106 26.6 10-90 (30) 0.3 3 × 103 10−5 100
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Synopsis

In this work we theoretically derive the experimental uncertainties concerning electron spin polarization (SP) in
various realistic measurement conditions. Supported by numerical simulations, our results define new mathematical
instruments for handling the correct statistics of SP measurements in presence of the source intensity fluctuations and
are applied to the characteristics of a wide set of state-state-of-the-art facilities.
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