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ABSTRACT
Angioimmunoblastic T cell lymphoma (AITL) originates from follicular helper 

T-cells and is characterised by a polymorphic infiltrate with the neoplastic T-cells 
forming small clusters around the follicle and high endothelial venules. Despite 
the recent advances in its phenotypic characterisation, the genetics and molecular 
mechanisms underlying AITL are not fully understood. In the present study, we 
performed whole exome sequencing in 9 cases of AITL from Taiwan (n = 6) and U.K. 
(n = 3). We confirmed frequent mutations in TET2 (9/9), DNMT3A (3/9), IDH2 (3/9), 
RHOA (3/9) and PLCG1 (2/9) as recently reported by others. More importantly, we 
identified mutations in TNFRSF21 (1/9), CCND3 (1/9) and SAMSN1 (1/9), which 
are not yet seen or strongly implicated in the pathogenesis of AITL. Among the 
pathogenic mutations identified in AITL, mutations in DNA methylation regulators 
TET2 and DNMT3A occur early in hematopoietic stem cells as shown by previous 
studies, and these genetic events enhance the self-renewal of hematopoietic stem 
cells, but are unlikely to have any major impact on T-cell differentiation. Mutations in 
RHOA, PLCG1 and TNFRSF21 (DR6), which encode proteins critical for T-cell biology, 
most likely promote T-cell differentiation and malignant transformation, consequently 
generating the malignant phenotype. Our findings extend the molecular insights into 
the multistage development of AITL. 

INTRODUCTION

Angioimmunoblastic T-cell lymphoma (AITL) 
is a common subtype of peripheral T-cell lymphoma 
(PTCL). The vast majority of AITL are associated with 
EBV infection, however, the neoplastic T-cells are EBV 
negative. Histologically, AITL is characterized by a 
polymorphic infiltrate with the neoplastic T-cells typically 
expanding within a background of prominent arborizing 

high endothelial venules and perivascular proliferation 
of follicular dendritic cells. The polymorphic infiltrate 
comprises small reactive lymphocytes, B-immunoblasts 
(often positive for EBV), plasma cells, eosinophils and 
macrophages. 

AITL originates from follicular helper T-cells and 
the neoplastic T-cells express all the cardinal features 
of follicular helper T-cells, including CXCR5,CXCL13, 
ICOS, PD-1, BCL6, SAP and c-MAF, and preserve at 
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least the major function of follicular helper T-cells, for 
example, help for antibody production by B-cells [1, 2]. 
A high-affinity TCR is a characteristic feature of follicular 
helper T-cells, and is essential for the commitment of 
CD4+ T cells to differentiate into follicular helper T-cells 
and also critical for their maintenance and survival. In 
view of these, TCR signaling may play a critical role in 
the pathogenesis of AITL. 

The genetics of AITL is beginning to unfold. t(5;9)
(q33;q22)/ITK-SYK, originally identified in the follicular 
variant of PTCL, has been also found in AITL albeit rather 
infrequent [3–5]. The ITK-SYK fusion product associates 
constitutively with lipid rafts in T-cells and triggers 
antigen-independent phosphorylation of TCR-proximal 
proteins and activation of their downstream pathways 
[6, 7]. More recent studies by whole exome sequencing 
(WES) and targeted sequencing have identified a wide 
spectrum of somatic mutations in AITL and among those, 
mutations in TET2, DNMT3A, IDH2, RHOA and CD28 
are the most frequent [8–15]. Nonetheless, the number 
of AITL cases investigated by whole exome sequencing 
in each of the above studies is small (≤ 5) and the full 
spectrum of the mutation profile of AITL most likely 
remains incompletely characterized. In this study, we 
report the exome mutation profile of 9 well-characterized 
AITL with emphasis on the novel mutations identified. 

RESULTS AND DISCUSSION

Overview of discoveries by WES

WES generated an average of 25.7 million reads per 
sample, with an average of 89% of the target sequences 

being covered by > 10 reads (Supplementary Table 1). As a 
sufficient amount of matched germline DNA for WES was 
available only in one case, we performed extensive data 
filtering to remove the known SNPs reported in databases 
including the 1000 genome project that contains variants 
from various ethnic populations including Han Chinese. 
We also removed the variants that were predicted to 
lack functional impact by 3 of the 7 mutation functional 
prediction programs. Consequently, a total of 603 variants 
in 527 genes were detected in 9 AITL (average 67/case; 
range 10–90/case) (Supplementary Figure 1). Nonetheless, 
the number of variants in cases 2–9 was most likely 
overestimated due to a lack of corresponding germline 
DNA for WES.  

To examine whether this study identified any novel 
mutations, we compared our data with those of the recent 
studies by WES and targeted sequencing [8–11]. To our 
surprise, there was little overlap in the mutation landscape 
among these different studies despite finding of mutations 
in a small common set of genes (Figure 1), suggesting 
genetic heterogeneity in AITL and incomplete mutation 
discoveries in each of these studies. In addition, the small 
number of cases investigated, variability in tumor cell 
content, sequence coverage and efficacy of variant calling 
most likely contributed to the discrepancy among these 
different studies. Among a total of 527 mutated genes 
identified in this study, only 11 were found to be mutated 
in AITL by previous WES studies. 

Pathogenic mutations identified by WES

We confirmed frequent mutations of TET2 
(9/9 cases), DNMT3A (3/9), IDH2 (3/9 cases) and RHOA 

Figure 1: Number of common and unique genes that are found to harbour mutations by different whole exome 
sequencing studies [8–10]. In general, there is little overlap among the mutated genes identified by the 4 different studies. The 11 overlap 
genes with other studies are listed and those known pathogenic are highlighted in red.
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(3/9 cases) in AITL (Figures 2 and 3, Supplementary 
Table 2), which were identified by previous WES and 
targeted sequencing [8–11]. In line with previous studies, 
TET2 mutations were frequently multiple, with 2 mutations 
seen in 6 cases. The vast majority (14/15 = 93%) of TET2 
mutations were frameshift or nonsense changes, and 
rather widely distributed without any clusters, suggesting 
that these mutations were inactivating events. DNMT3A 
mutation was found in three cases, with 2 of the 3 

mutations being frameshift or nonsense changes. DNMT3A 
mutation was found exclusively in cases with double 
TET2 mutations. IDH2 mutation affected the same codon 
although resulting in different substitutions in each of the 
3 cases involved, while RHOA mutation was exclusively 
G17V change in all 3 cases involved. 

In addition to the above well-established mutations 
in AITL, we also identified mutations in several genes 
not yet seen or strongly implicated in the pathogenesis 

Figure 2: Nature and distribution of mutations in TET2, DNMT3A, IDH2, RHOA, PLCG1, TNFRSF21, CCND3 and 
SAMSN1. The vast majority (14/15 = 93%) of TET2 mutations were frameshift or nonsense changes without any clusters. DNMT3A 
mutation was found in three cases, with 2 of the 3 mutations being frameshift or nonsense changes. Mutation in IDH2, RHOA and PLCG1 
are exclusively missense changes, while those in TNFRSF21, CCND3 and SAMSN1 are deleterious alterations.
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of AITL and they included PLCG1, TNFRSF21, CCND3 
and SAMSN1 (Figures 2 and 3, Supplementary Table 2). 
All the variants identified by WES and included in 
the Supplementary Table 2 were confirmed by Sanger 
sequencing. 

PLCG1 was mutated in 2 of the 9 cases of AITL 
investigated by WES, and both mutations were missense 
changes, with PLCG1 S345F reported previously in 
cutaneous T-cell lymphoma and nodal peripheral T-cell 
lymphoma [16, 17], and PLCG1 G869E as a novel change. 
PLCG1 S345F, localized in the N-terminal part of the 
“split” PH domain, was an activating change, enhancing 
the ability of PLCγ1 to activate NFAT, a transcriptional 
factor critical for T-cell activation and function [16]. 
PLCG1 G869E is in the SH3 domain of the regulatory 
region, which along with the CSH2 domain, forms an 
interface with the CSH2-SH3 linker, serving as an auto-
inhibitory interaction [18, 19]. PLCG1 G869E, like R707Q 
in the CSH2 domain, may cause conformational changes, 
abolish such auto-inhibitory interaction, and thus activate 
PLCγ1 [20]. While revision of our manuscript, recurrent 
PLCG1 mutations including S345F and G869E have also 
been reported in AITL by Vallois and colleagues, and most 
PLCG1 mutations including S345F and G869E are gain 
of functional changes as shown by their ability to activate 
MALT1 and NFAT in vitro [21]. PLCγ1 plays an essential 
role downstream of TCR signaling by hydrolyzing 
phosphatidylinositol 4,5-bisphosphate to form inositol 
1,4,5-triphosphate and diacylglycerol. PLCG1 mutation 
may cause its constitutive activation and augment TCR 
signalling, thereby contributing AITL development. 

TNFRSF21, encoding the death receptor-6 (DR6), 
was mutated in 1 of the 9 AITLs investigated by WES. 
The mutation is a frameshift deletion in the death domain, 
and most likely leads to inactivation of its encoded protein 

product. DR6 appears to act as a negative regulator to 
dampen immunoreceptor-coupled signaling pathways 
[22, 23], although its molecular function is still elusive. 
In absence of DR6, CD4+ T cells are hyper-proliferative 
and show a profound polarization toward a Th2 phenotype 
in response to TCR stimulation [22, 24, 25]. In light of 
these findings, TNFRSF21 inactivation is an attractive 
pathogenic mechanism in AITL development. In addition 
to genetic changes, it is pertinent to investigate other 
potential mechanisms such as epigenetic changes that may 
inactivate TNFRSF21 in AITL in future studies. 

CCND3 was mutated in 1 of the 9 AITLs investigated 
by WES, and the mutation generated a premature stop 
codon, predicting a truncated protein product. Similar 
nonsense or frameshift mutations have been recently 
reported in Burkitt lymphoma [26, 27]. These mutations 
eliminate the cyclin D3 carboxyl terminus that contains 
a phosphorylation motif, highly conserved among cyclin 
D3 homologs. This phosphorylation motif is critical for 
phosphorylation and polyubiquitination of D-type cyclin 
and thus their proteosome degradation [28]. As expected, 
these mutations markedly increase cyclin D3 stability and 
enhance its ability in driving cell proliferation [27]. 

SAMSN1 was mutated in 1 of the 9 AITLs 
investigated by WES, and the mutation generated a stop 
codon upstream of the SH3 domain, thus most likely being 
a loss of function change. SAMSN1 is a tumour suppressor 
gene in multiple myeloma. Germline deletion of Samsn1 
in mice predisposes to monoclonal gammopathy of 
undetermined significance and multiple myeloma, while 
in human SAMSN1 expression is inactivated by promoter 
methylation [29]. In addition, SAMSN1 is a negative 
regulator of cell proliferation as shown by in vitro studies 
[30]. Thus, SAMSN1 mutation seen in AITL is highly 
likely pathogenic.

Figure 3: Distribution of the shortlisted pathogenic mutations in 9 cases of AITL investigated by WES. There is no 
apparent association among the mutations identified. 
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Evidence for stepwise acquisition of genetic 
abnormalities with distinct oncogenic properties

Despite the diverse spectrum of somatic mutations 
identified in AITL by whole exome and targeted 
sequencing, there is a small set of genes including TET2, 
DNMT3A, IDH2 and RHOA, which are commonly found 
to be mutated by different studies including the present 
study [8–11]. Among these, TET2, DNMT3A and IDH2 
mutations are also found in a range of hematological 
malignancies with IDH2 mutation additionally seen 
in several types of solid tumor, particularly low grade 
gliomas [31, 32]. Interestingly, IDH2 mutation in 
AITL, like glioma, exclusively affects the R172 residue 
[8, 11, 12, 15, 32], but involves both R140 and R172 
residues in acute myeloid leukemia and myelodysplastic 
syndromes with R140 mutation being more frequent  
[33, 34]. TET2 and DNMT3A mutation appear to occur at 
an early stage of hematopoietic cell differentiation as these 
mutations are also found in non-malignant hematopoietic 
cells of patients with PTCL as well as normal elderly 
individuals [9, 35–37]. Their involvement in various 
malignancies and occurrence in hematopoietic progenitor 
cells are in keeping with their general role in regulation 
of DNA methylation, and the observation of an expanded 
hematopoietic stem cell pool in mice when Tet2 or 
Dnmt3a is deleted or Idh2 mutant is expressed in mouse 
bone marrow cells [38, 39]. Taken together, these findings 
suggest that TET2, DNMT3A and IDH2 mutations are 
unlikely to have a major role in driving cell differentiation 
towards to the T-cell lineage, thus require cooperating 
events, which are crucial for the development and biology 
of T-cells, in the genesis of AITL (Figure 4). 

The other frequently mutated gene found by 
different studies is RHOA, which is a small GTPase and 

alternates between an active GTP-bound configuration 
and an inactive GDP-bound state. The RHOA Gly17Val 
mutant does not bind GTP and inhibits the wild-type 
RHOA function by sequestering the RHOA guanine 
nucleotide exchange factors [8, 9]. RhoA has been 
shown to play important roles in the development and 
differentiation of thymocytes as well as in the biology of 
mature T-cells including TH2 cell differentiation [40, 41]. 
Although the precise molecular mechanisms of RHOA in 
T-cell biology remain to be investigated, it is pertinent to 
speculate that RHOA mutation may occur later than those 
in the aforementioned DNA methylation regulators, and its 
functional deregulation by mutation may promote T-cell 
differentiation and malignant transformation (Figure 4). 
In line with this notion, a recent study by RNA sequencing 
has identified a novel CTLA4-CD28 fusion in AITL 
and other T-cell lymphoma subtypes [42]. The fusion 
combines the extracellular domain of CTLA4 with the 
cytoplasmic region of CD28, thus converting inhibitory 
signals into stimulatory signals for T-cell activation [42]. 
Interestingly, there is a considerable overlap between 
CTLA4-CD28 fusion and RHOA mutation in AITL [42], 
suggesting possible oncogenic cooperation between the 
two events. In addition, CD28 is frequently activated 
by mutation in AITL with the D124 mutant showing 
increased affinity for ligand CD86 and the T195 mutant 
displaying increased affinity for intracellular adaptor 
proteins GRB2 and GADS/GRAP2 [14]. In view the 
established role of RHOA and CD28 in T-cell biology, 
RHOA mutation and CTLA4-CD28 fusion/CD28 mutation 
could be regarded as T-cell lineage impact events, i.e. 
determining the phenotype of transformed cells. In 
this context, the present study identifies further genetic 
changes, namely PLCG1 and TNFRSF21 mutation, of this 
category in AITL (Figure 4). 

Figure 4: The proposed model of multistage development in AITL. Mutations in DNA methylation regulators namely TET2, 
DNMT3A and IDH2 are early events, with TET2 and DNMT3A mutation occurring in hematopoietic stem cells. These genetic events 
enhance the self-renewal of hematopoietic stem cells, and do not have any major impact on cell lineage specific differentiation, thus are 
found in a variety of haematological malignancies. Mutation in RHOA, PLCG1, TNFRSF21, CD28 and the CTLA4-CD28 and ITK-SYK 
fusion occurs late, and these genetic events affect proteins critical to T-cell biology, thus most likely promote T-cell differentiation as well 
as malignant transformation, consequently generating the malignant phenotype. 
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MATERIALS AND METHODS

Patients samples

High molecular weight (HMW) DNA samples 
were extracted from fresh frozen specimens of 9 AITL 
from Department of Pathology, Chi-Mei Foundation 
Hospital, Taiwan (n = 6), and Department of Cellular 
Pathology, Southampton University Hospitals National 
Health Service Trust, Southampton, U.K. (n = 3) 
(Supplementary Table 3). The lymphoma diagnosis was 
established according to the 2008 WHO classification 
of tumours of haematopoietic and lymphoid tissues. In 
6 cases where indicated, germline DNA were extracted 
from non-neoplastic formalin-fixed paraffin-embedded 
(FFPE) tissues or peripheral blood samples not involved 
by lymphoma, but sufficient amount of DNA was only 
available in 1 case for WES (Supplementary Table 3). 
Local ethical guidelines were followed for the use of 
archival tissues for research with the approval of the ethics 
committees of the involved institutions.

Whole exome sequencing and somatic variant 
calling

These were carried out by the Wellcome Trust 
Sanger Institute. WES was successfully performed on 9 
AITL DNA samples and 1 matched germline DNA sample 
as described previously [43]. Genomic libraries were 
prepared using the Illumina Paired End Sample Prep Kit, 
and target enrichment was performed using the Agilent 
SureSelect Human All Exon 50Mb kit. Each exome 
was sequenced using a 75bp paired-end protocol on an 
Illumina HiSeq platform. Sequencing reads were aligned 
to the hg19 reference genome using the BWA algorithm 
on default settings. 

Variants were called using the Caveman and Pindel 
algorithms and subjected to a series of post processing 
filters to remove SNPs presented in germline DNA from 
this study, known SNPs ( ≥ 1%) in databases and in both 
east Asian and European populations of the 1000 genomes 
project. In addition, the variants discovered were checked 
against the COSMIC database to identify potential somatic 
and pathogenic changes. Finally, the variants discovered 
were further analyzed with 7 mutation functional prediction 
programs including SIFT, Polyphen-2 HDIV, Polyphen-2 
DVAR, Mutation Assessor, FATHMM, GERP++ and 
SiPhy-29, and those predicted to be damaging by 5 or more 
programs were included in the final variant list. 

Somatic variant validation by PCR and sanger 
sequencing

Where indicated, novel variants identified by WES 
were confirmed by PCR and Sanger sequencing using the 
BigDye Terminator 3.1 System (Applied Biosystems, UK) 

on an ABI 3730 instrument (Applied Biosystems, UK), 
and their somatic nature was ascertained by analysis of 
germline DNA. 
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