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TWISTED LORENTZIAN MANIFOLDS

A CHARACTERIZATION WITH TORSE-FORMING

TIME-LIKE UNIT VECTORS

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI

Abstract. Robertson-Walker and Generalized Robertson-Walker spacetimes
may be characterized by the existence of a time-like unit torse-forming vector
field, with other constrains. We show that Twisted manifolds may still be
characterized by the existence of such (unique) vector field, with no other con-
strain. Twisted manifolds generalize RW and GRW spacetimes by admitting
a scale function that depends both on time and space. We obtain the Ricci
tensor, corresponding to the stress-energy tensor of an imperfect fluid.

1. Introduction

There is a hierarchy of Lorentzian manifolds Ln that, in privileged coordinates,
gain the metric structure

ds2 = −dt2 + f2g∗µν(~x)dx
µdxν(1)

where f > 0 is the scale factor and g∗µν is the metric tensor of a Riemannian sub-
manifold M∗ of dimension n − 1. The scale factor depends on time, for otherwise
the manifold is a product of disjoint manifolds.

1) The first in the hierarchy are the Robertson-Walker (RW) spacetimes, homo-
geneous and isotropic in space. They first appeared in the works by Friedmann
(1922) as solutions of Einstein’s field equations, and were later derived on the basis
of symmetries by Robertson (1935) and Walker (1936). They model the standard
large-scale cosmology [13]. The scale function depends only on time and M∗ is a
constant curvature Riemannian manifold, i.e. its Riemann tensor is:

R∗

µνρσ =
R∗

(n− 1)(n− 2)
(g∗µρg

∗

νσ − g∗µσg
∗

νρ).

A covariant expression of the Riemann tensor Rjklm of Ln is given in [9]; the Weyl
tensor Cjklm is zero. The Ricci tensor Rik = Rijk

j has the “perfect fluid” form
Auiuj +Bgij , with scalar fields A, B and a unit time-like vector field, ukuk = −1,
which is torse-forming:

∇iuj = ϕ(uiuj + gij)(2)

and is an eigenvector of the Ricci tensor.
2) Next come the Generalized RW (GRW) spacetimes, where space homogeneity is

relaxed by allowing M∗ to be any Riemannian manifold, with the scale factor still
being a function of time only (so Ln is a warped manifold). They were introduced
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in 1995 by Al̀ıas, Romero and Sánchez [1] and their geometric properties have been
intensely studied [11]. RW spacetimes are the subclass with zero Weyl tensor [2].
The slices {t} ×M∗ are totally umbilical, with the average of the n − 1 principal

curvatures being constant on the hypersurface,H = ḟ /f (this is Hubble’s parameter
in standard cosmology).
B-Y Chen gave in 2014 a very simple characterization [4]: a Lorentzian manifold
is a GRW if and only if there exists a time-like concircular vector field: XkXk < 0
and ∇iXj = ρgij . The time-like unit vector field uk = Xk/

√
−X2 is torse-forming,

eq.(2), and is an eigenvector of the Ricci tensor. If ξ is the eigenvalue and R is the
scalar curvature, the general form of the Ricci tensor in GRW spacetimes is [9]:

Rij = −(n− 2)urusCrijs −
nξ −R

n− 1
uiuj +

R− ξ

n− 1
gij(3)

In the same paper the following equivalence was proven: ∇mCjklm = 0 if and only
if umCjklm = 0, which is the condition for the Ricci tensor to simplify into the
perfect fluid form.

3) A further generalization are the Twisted spacetimes, where the scale factor
f depends on both time and position and M∗ is a Riemannian manifold. They
were introduced by B-Y Chen in 1979 ([3], definition 8.1) as the natural general-
ization of warped manifolds that avoids the constancy of mean curvature of slices.
Very recently Chen gave a simple characterization ([5], theorem 3.2): A Lorentzian
manifold Ln admits a time-like torqued vector field τ , i.e.

τ iτi < 0, ∇iτj = ϕgij + αiτj , αiτ
i = 0

if and only if it is locally a twisted product I ×f M∗, where I is an open interval,
M∗ is a Riemannian (n–1)-manifold.

In this paper we characterize twisted spaces again through the existence of a
time-like unit and torse-forming vector field, eq.(2), which thus becomes a unifying
property for the metrics (1). For twisted spaces this suffices, for GRW it must be
an eigenvector of the Ricci tensor, for RW one must also require Cjklm = 0.

We show that the torse-forming time-like unit vector field is unique and Weyl
compatible. We give the general form of the Ricci tensor in Lorentzian twisted
spaces, and comment on its relation with the stress-energy tensor of imperfect
fluids.

2. A characterization by torse-forming vectors

The proof for characterizing twisted spaces by the existence of a time-like unit
torse-forming vector field relies on the following assertion, excerpted from a theorem
by Ponge and Reckziegel [10]: Let (M, g) be a pseudo-Riemannian space with M =
B×F and assume that the canonical foliations LB and LF intersect perpendicularly
everywhere. Then g is the metric tensor of a twisted product B ×b F if and only if
LB is a totally geodesic foliation and LF is a totally umbilic foliation.

Given the time-like unit vector ui, we denote hij = uiuj + gij the projection
matrix on the perpendicular direction. The torse-forming property is ∇iuj = ϕhij .

Theorem 2.1. A Lorentzian manifold Ln is twisted if and only if it admits a
torse-forming time-like unit vector field.

Proof. Let Ln be a Lorentzian twisted manifold, then there is a frame where the
metric has the form (1). The Christoffel symbols are listed in the Appendix. The



TWISTED MANIFOLDS 3

time-like unit vector field with components u0 = −1, uµ = 0 identically solves

the equation ∇iuj = ϕ(uiuj + gij) with ϕ = ḟ/f (the non-trivial equations are
0 = ϕ(u2

0 + g00) and −Γ0
µνu0 = ϕf2g∗µν , which yields ϕ).

The other way, suppose that a Lorentzian manifold is endowed with a vector
field ∇iuj = ϕhij , u

kuk = −1. It is uk∇kuj = 0 (u is geodesic) and ∇iuj = ∇jui

(u is closed). Being ui = ∇iϑ, it is the unit normal vector field for the surfaces
ϑ = const. Any vector V ∈ TP (Ln) is decomposable into a normal component and

a component tangent to the hypersurface: V i = (ukVk)u
i + Ṽ i, Ṽ i = hi

jV
j . The

induced metric is g̃(Ṽ , Ṽ ′) = g(hV, hV ′) = hkmṼ kṼ ′m.
The second form of the hypersurface is defined by the relation (hV )k∇kuj =
Ωij(hV )i. Since the normal vector is torse-forming, then ϕ(hV )khkj = Ωij(hV )i

i.e. Ωij = ϕhij . The hypersurface is totally umbilical.
Since the manifold decomposes into a totally geodesic foliation orthogonal to a to-
tally umbilical foliation, according to the assertion by Ponge and Reckziegel, the
metric has the twisted form. �

Remark 2.2. The mean curvature of a slice {t}×M∗ is not uniform on the slice:
H(t, ~x) = ϕ(t, ~x). The covariant expression is ϕ = uk∇k log f .

Proposition 2.3. In a twisted manifold with ḟ 6= 0, the torse-forming time-like
unit vector field is unique (up to a sign).

Proof. Suppose that, besides the vector in the theorem, there is another time-like
unit torse-forming vector field, ∇ivj = λ(vivj + gij). In the frame (1) the condition
vkvk = −1 is (v0)

2 − 1
f2 g

∗µνvµvν = 1. Put v0 = cosha and vµ = Vµ sinh a, with

a(t, ~x) 6= 0 and g∗µνVµVν = f2. The equation ∇0v0 = λ(v20 − 1) gives ȧ sinh a =

λ sinh2 a. Then: ȧ = λ sinha. The equation ∇0vµ = λ(v0vµ) i.e.

ȧ cosha Vµ + sinh a V̇µ +
ḟ

f
sinha Vµ = λ cosha sinh aVµ

simplifies to: sinh a(fV̇µ + Vµḟ) = 0. If a 6= 0 it is fVµ independent of t. This

result is compatible with g∗µνVµVν = f2 only in the trivial case ḟ = 0. �

3. The Ricci tensor

Let us introduce the orthogonal decomposition ∇iϕ = vi − uiu
k∇kϕ, where

vi = hi
k∇kϕ. In the frame (1) it is v0 = 0, vµ = ∂µϕ.

Proposition 3.1. The Ricci tensor on a twisted Lorentzian space has the form

Rkl = −(nukul + gkl)(u
r∇rϕ+ ϕ2) + R

n−1 hkl(4)

+(n− 2)(ukvl + ulvk − urusCrkls)

where R is the curvature scalar, Cjklm is the Weyl tensor, vk = hk
m∇mϕ.

Proof. Let us evaluate ∇j(∇kul) = ∇j(ϕhkl) and subtract the expression with j, k
exchanged. We obtain:

Rjkl
mum = hkl∇jϕ− hjl∇kϕ+ ϕ2(ukgjl − ujgkl)(5)

The contraction with gkl gives:

Rj
mum = −(n− 2)vj + (n− 1)(uk∇kϕ+ ϕ2)uj(6)
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The Weyl tensor, contracted with u is:

Cjkl
mum = Rjkl

mum + 1
n−2 [ujRkl − ukRjl + gklRjmum − gjlRkmum](7)

− 1
(n−1)(n−2)R(ujgkl − ukgjl).

Another contraction singles out Rkl, and the result is obtained. �

In the twisted frame (1) the components R00 and Rµ0 listed in the Appendix are
recovered. The comparison for the components Rµν yields the identification:

−(n− 2)C0µν0 = R∗

µν −R∗
g∗µν
n− 1

+ 2(n− 3)

[

fµfν
f2

−
g∗µν
n− 1

fσf
σ

f2

]

(8)

−(n− 3)

[∇∗

µfν

f
−

g∗µν
n− 1

∇∗

σf
σ

f

]

Multiplication of (7) and (5) by ui and summation on cyclic permutation of
indices ijk, after some computation and cancellations, shows that the tensor uium

is Weyl compatible (see [8]):

uiu
mCjklm + uju

mCkilm + uku
mCijlm = 0(9)

It follows that:
1) umCjklm = uk(u

iumCijlm)−uj(u
iumCiklm). Therefore umCjklm = 0 if and only

if uiumCiklm = 0.
2) According to the Bel-Debever criterion, a twisted space-time is purely electric
(see [7] proposition 3.17).

Proposition 3.2. A twisted manifold is a GRW if and only if: hi
k∇kϕ = 0

Proof. In Proposition 3.7 of [11] we proved that a Lorentzian manifold is a GRW
spacetime if and only if it admits a torse-forming time-like unit vector that is also
eigenvector of the Ricci tensor. By eq. (6) this is true if and only if vi = 0. �

We end with some remarks on imperfect fluids. The form (4) of the Ricci tensor
makes twisted spaces solutions of the Einstein’s field equations for imperfect fluids.
The Einstein’s equations, Rij − 1

2Rgij = 8πTij , give the energy-stress tensor

Tij = (p+ µ)uiuj + pgij + (qiuj + uiqj) + Pij(10)

µ = −n− 1

8π
(ur∇rϕ+ ϕ2) +

R

16π
,(11)

p = − 1

8π
(ur∇rϕ+ ϕ2)− R

8π

n− 3

2(n− 1)
,(12)

qj =
n− 2

8π
vj , Pij = −n− 2

8π
urusCrijs.(13)

Eq.(10) is the form that describes an imperfect fluid with velocity field ui, anisotropic

stress tensor Pij (with the properties Piju
j = 0, P j

j = 0), energy flux qj (with

qju
j = 0), effective pressure p and energy density µ [12].

Since ui is torse-forming, the acceleration, the shear and the vorticity tensors are
zero. Such spacetimes have been investigated in detail by Coley and McManus [6].

Besides ui, there is another relevant time-like unit velocity field, which is an
eigenvector of Tij and then of Rij : Rijw

j = Wwi, w
iwi = −1.

The simplest situation for evaluating it in a twisted space, is to require urusCrklsv
k =
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Cvl for some scalar field C. Then wj can be obtained as a linear combination of
uj and qj .

Appendix

( i, j, k, ... = 0, 1, ..., n− 1 ; µ, ν, ρ, ... = 1, 2, ..., n− 1)

Christoffel symbols: Γk
ij = Γk

ji =
1
2g

km(∂igjm + ∂jgim − ∂mgij).

Γ0
i,0 = 0, Γk

0,0 = 0, Γρ
µ,0 = (ḟ /f)δρµ, Γ0

µ,ν = f ḟg∗µν ,(14)

Γρ
µ,ν = Γ∗ρ

µ,ν + (fν/f)δ
ρ
µ + (fµ/f)δ

ρ
ν − (fρ/f)g∗µν(15)

where ḟ = ∂tf , fµ = ∂µf and fµ = g∗µνfν .

Riemann tensor: Rjkl
m = −∂jΓ

m
k,l + ∂kΓ

m
j,l + Γp

j,lΓ
m
kp − Γp

k,lΓ
m
jp

Rµ0ρ
0 = (f f̈)g∗µρ(16)

Rµνρ
0 = g∗µρ(f∂ν ḟ − ḟ fν)− g∗νρ(f∂µḟ − ḟfµ)(17)

Rµνρ
σ =R∗

µνρ
σ + (ḟ2 − fλfλ

f2
)(g∗µρδ

σ
ν − g∗νρδ

σ
µ)(18)

+
2

f2
(fσfνg

∗

µρ − fσfµg
∗

νρ + fµfρδ
σ
ν − fνfρδ

σ
µ)

+
1

f

[

∇∗

µ(f
σg∗νρ − fρδ

σ
ν )−∇∗

ν(f
σg∗µρ − fρδ

σ
µ)
]

Ricci tensor: Rjl = Rjkl
k

R00 =− (n− 1)(f̈ /f)(19)

Rµ0 =− (n− 2)∂µ(ḟ /f)(20)

Rµν =R∗

µν + g∗µν [(n− 2)ḟ2 + f f̈ ] + 2(n− 3)
fµfν
f2

− (n− 4)
fσfσ
f2

g∗µν(21)

− (n− 3)
1

f
∇∗

µfν − 1

f
g∗µν∇∗

σf
σ

Curvature scalar: R = Rk
k

R =
R∗

f2
+ (n− 1)

[

(n− 2)
ḟ2

f2
+ 2

f̈

f

]

− (n− 2)(n− 5)
fσfσ
f4

− 2(n− 2)
∇∗

σf
σ

f3

(22)
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