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1. Introduction and main result

It is well known that the Toda lattice, namely the system with Hamiltonian

N—1 N
P+

i—=0 =0

[a—y
[y

H1oda(p, q) = et h (1.1)

2

<

and periodic boundary conditions gy = qo, PN = po, is integrable [36,21]. Thus, by
standard Arnold—Liouville theory the system admits action angle coordinates. However
the actual introduction of such coordinates is quite complicated (see [18,15]) and the
corresponding transformation has only recently been studied analytically in a series of
papers by Henrici and Kappeler [23,24]. In particular these authors have proved the
existence of global Birkhoff coordinates, namely canonical coordinates (z, yr) analytic
on the whole R?N, with the property that the kth action is given by (2% + y7)/2. The
construction of Henrici and Kappeler, however is not uniform in the size of the chain, in
the sense that the map ® 5 introducing Birkhoff coordinates is globally analytic for any
fixed N, but it could (and actually does) develop singularities as N — 4o00. Here we prove
some analyticity properties fulfilled by @y uniformly in the limit N — +o0o. Precisely
we consider complex balls centered at the origin and prove that ® maps analytically
a ball of radius R/N® in discrete Sobolev-analytic norms into a ball of radius R'/N¢,
with R, R’ > 0 independent of N if and only if o > 2. Furthermore we prove that the
supremum of ® 5 over a complex ball of radius R/N¢ diverges as N — 400 when o < 1.

In order to prove upper estimates on @ we apply to the Toda lattice a Vey type the-
orem [39] for infinite dimensional systems recently proved by Kuksin and Perelman [30].
Actually, we need to prove a new quantitative version of Kuksin—Perelman’s theorem.
We think that such a result could be interesting in itself.

The lower estimates on the size of & are proved by constructing explicitly the first
term of the Taylor expansion of @ through Birkhoff normal form techniques; in partic-
ular we prove that the second differential d2® y(0) at the origin diverges like N2.

We finally apply the result to the problem of equipartition of energy in the spirit
of Fermi—Pasta—Ulam. We prove that in the Toda lattice, corresponding to initial data
with energy F/N?3 (0 < E < 1) and with only the first Fourier mode excited, the energy
remains forever in a packet of Fourier modes exponentially decreasing with the wave
number. Then we consider the original FPU model and prove that, corresponding to the
same initial data, energy remains in an exponentially localized packet of Fourier modes
for times of order N* (see Theorem 1.16 below), namely for times one order of magnitude
longer than those covered by previous results (see [2], see also [35,20]). This is relevant
in view of the fact that the time scale of formation of the packet is N3 (see [2]), so the
result of the present paper allows to conclude that the packet persists over a time much
longer than the one needed for its formation.
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1.1. Birkhoff coordinates for the Toda lattice

We come to a precise statement of the main results of the present paper. Consider
the Toda lattice in the subspace characterized by

qu' :OZZPJ‘ (1.2)

which is invariant under the dynamics. Introduce the discrete Fourier transform F(q) = §
defined by

N

[y

- 1 2imjk/N

gy = — q;e='™ keZ 1.3
\/N = J ) ’ ( )

and consider py defined analogously. Due to (1.2) one has py = §o = 0 and furthermore

Pk = Dk+N, @k = Gr+nN, Yk € Z, so we restrict to {ﬁk,qk}sz_ll. Corresponding to real

sequences (p;,q;) one has §i = dn—r and P = Py —k-

Introduce the linear Birkhoff variables

P+ PN—k — iwr(de — qn—k)

X = )
F V2w
y, = Dby bion@ bana) oy y (1.4)
iv2wg
where w, = w (%) := 2sin(kw/N); using such coordinates, which are symplectic, the

quadratic part

N-1 9 2
Hy:= S 5 (%2 4i+1) (1.5)
§=0
of the Hamiltonian takes the form
N-1
XZ2+Y?
Ho= Y w (k) T (1.6)
k=1

With an abuse of notations, we re-denote by H 7,4, the Hamiltonian (1.1) written in the
coordinates (X,Y"). The following theorem is due to Henrici and Kappeler:

Theorem 1.1. (See [24].) For any integer N > 2 there exists a global real analytic sym-
plectic diffeomorphism ®x : RVN=1 x RN=1 5 RN-1 x RN-1 (X Y) = ®n(z,y) with
the following properties:

(i) The Hamiltonian Hreqe © PN s a function of the actions I := % only, i.e.
(xk,yx) are Birkhoff variables for the Toda Lattice.
(ii) The differential of ®n at the origin is the identity: dPn(0,0) = 1.
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Our main results concern the analyticity properties of the map & as N — oco. To
come to a precise statement we have to introduce a suitable topology in CN =1 x CN-1,
For any s > 0, o0 > 0 introduce in C¥~1 x CN¥~! the discrete Sobolev-analytic norm

N-1 2 2
1 k)25 201kl w(L) [ X5+ [Yi” (1.7)

(APl ;

k:l

where

(k] := min(|&|, [N — k|) .

The space CNV =1 x CVN~1 endowed by such a norm will be denoted by P*?. We denote by
B*7(R) the ball of radius R and center 0 in the topology defined by the norm |.||p....
We will also denote by By? := B*?(R) N (RV~1 x RN~1) the real ball of radius R.

Remark 1.2. When 0 = s = 0 the norm (1.7) coincides with the energy norm rescaled
by a factor 1/N (the rescaling factor will be discussed in Remark 1.11). We are partic-
ularly interested in the case o > 0 since, in such a case, states belonging to P*®“ are
exponentially decreasing in Fourier space. The consideration of positive values of s will
be needed in the proof of the main theorem.

Our main result is the following theorem.

Theorem 1.3. For any s > 0, 0 > 0 there exist strictly positive constants R, o, Cs o, such
that for any N > 2, the map ®y is analytic as a map from B*? (R ,/N?) to P*° and
fulfills

2

R
sup H(I)N(xv y) - (l'7y)|‘73s+1,a S Cs,a_

y VR< R, (1.8)
(@9l ps,c <R/N? N2 s

The same estimate is fulfilled by the inverse map <I>§1 possibly with o different Rs ..

Remark 1.4. The estimate (1.8) controls the size of the nonlinear corrections in a norm
which is stronger than the norm of (z,y), showing that ® —1 is 1-smoothing. The proof
of this kind of smoothing effect was actually the main aim of the work by Kuksin and
Perelman [30], which proved it for KdV. Subsequently Kappeler, Schaad and Topalov
[28] proved that such a smoothing property holds also globally for the KAV Birkhoff
map.
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Remark 1.5. As a consequence of (1.8) one has

s,0 R s,0 R
@N (B ’ (m)) C B” (m (1 +CS,O-R)> s VR < RS7U,VN > 2 (19)

and the same estimate is fulfilled by the inverse map @El, possibly with a different R, ..

Corollary 1.6. For any s > 0, 0 > 0 there exist strictly positive constants Rs ,, Cs o,
with the following property. Consider the solution v(t) = (X (¢),Y (t)) of the Toda Lattice

corresponding to initial data vy € B%7 (%) with R < R »; then one has

v(t) € B>7 (%(1 + CS,UR)> , VteR. (1.10)

In order to state a converse of Theorem 1.3 consider the second differential Q®~ :=
d*® 5 (0,0) of @y at the origin; QTN : P57 — P is a quadratic polynomial in the
phase space variables.

Theorem 1.7. For any s > 0, 0 > 0 there exist strictly positive R, C, Ny, € N, such
that, for any N > N, ,, o € R, the quadratic form QN fulfills

sup HQ‘i’N (v, v)| > CR2N? 2> (1.11)

veBy” (§)

Ps.o

Remark 1.8. Roughly speaking, one can say that, as N — oo, the real diffeomorphism
® develops a singularity at zero in the second derivative.

Using Cauchy estimate (see Subsection 3.2) one immediately gets the following corol-
lary.

Corollary 1.9. Assume that for some s > 0, o > 0 there exist strictly positive R, R’ and
a>0,d €R, Ny, €N, s.t., forany N > N, -, the map ®n is analytic in the complex
ball B5°(R/N%) and fulfills

o (5 (2)) e e (2, 02

then one has o' < 2(a—1).

Remark 1.10. A particular case of Corollary 1.9 is @ < 1, in which one has that the
image of a ball of radius RN ~% under ® is unbounded as N — oc.

A further interesting case is that of a = o/, which implies a > 2, thus showing that
the scaling R/N? is the best possible one in which a property of the kind of (1.9) holds.

1 Actually according to the estimate (1.8) it is smooth as a map P> — Ps+h7,
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Remark 1.11. A state (X,Y) is in the ball B*°(R/N?) if and only if there exist inter-
polating periodic functions (3, o), namely functions s.t.

pj =0 <%> s Qg = (%) , (1.13)

which are analytic in a strip of width o and have a Sobolev-analytic norm of size R/N?2.
More precisely, given a state (p,q) one considers its Fourier coefficients (p,§) and the
corresponding X, Y variables; define

N—

>_\

, PN e—27'rirk

k( _ —27r1k/N) e—Qﬂlxk

%M
ilygh
i)

k=0

which fulfill (1.13). Then the Sobolev-analytic norms of o and ( are controlled by
(X, Y)][ps.o- For example one has

(e, Oz = llallzz + 18172 + 5a ( 105072 + g5 1058172 = (X, V) |Beo s

1
2m)?s (2 )
where |||, := fol |a(z)|? dz. In particular we consider here states with Sobolev-analytic
norm of order R/N? with R < 1. The factor 1/N in the definition of the norm was
introduced to get correspondence between the norm of a state and the norm of the

interpolating functions.

Remark 1.12. As a consequence of Remark 1.11, the order in N of the solutions we are
describing with Theorem 1.3 is the same of the solutions studied in the papers [2] and
[3,5,4].

Remark 1.13. The results of Theorem 1.3 and Theorem 1.7 extend to states with discrete
Sobolev—Gevrey norm defined by

=2

-1 2 2

2 1 s 20k ‘Xk| +|Yk‘

IX Y pee = K% e MN w (&) =
1

- (1.14)

=
Il

where 0 < v < 1. As a consequence of Remark 1.11, these states are interpolated by
periodic functions with regularity Gevrey v.

This paper is part of a project aiming at studying the dynamics of periodic Toda
lattices with a large number of particles, in particular its asymptotics. First results
in this project were obtained in the papers [3,5,4]. They are based on the Lax pair
representation of the Toda lattice in terms of periodic Jacobi matrices. The spectrum of
these matrices leads to a complete set of conserved quantities and hence determines the
Toda Hamiltonian and the dynamics of Toda lattices, such as their frequencies. In order
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to study the asymptotics of Toda lattices for a large number N of particles one therefore
needs to work in two directions: on the one hand one has to study the asymptotics of
the spectrum of Jacobi matrices as N — oo and on the other hand, one needs to use
tools of the theory of integrable systems in order to effectively extract information on
the dynamics of Toda lattices from the periodic spectrum of periodic Jacobi matrices.

The limit of a class of sequences of N x N Jacobi matrices as N — oo has been
formally studied already at the beginning of the theory of the Toda lattices (see e.g.
[36]). However, as pointed out in [5], these studies only allowed to (formally) compute
the asymptotics of the spectrum in special cases. In particular, Toda lattices, which
incorporated right and left moving waves could not be analyzed at all in this way. In [5],
based on an approach pioneered in [11], the asymptotics of the spectra of sequences of
Jacobi matrices corresponding to states of the form (1.13) were rigorously derived by the
means of semiclassical analysis. It turns out that in such a limit the spectrum splits into
three parts: one group of eigenvalues at each of the two edges of the spectrum within an
interval of size O(N~2), whose asymptotics are described by certain Hill operators, and
a third group of eigenvalues, consisting of the bulk of the spectrum, whose asymptotics
coincides with the one of Toda lattices at the equilibrium — see [5] for details.

In [4] the asymptotics of the eigenvalues obtained in [5] were used in order to compute
the one of the actions and of the frequencies of Toda lattices. In particular it was shown
that the asymptotics of the frequencies at the two edges involve the frequencies of two
KdV solutions. The tools used in [4] are those of the theory of infinite dimensional
integrable systems as developed in [27] and adapted to the Toda lattice in [23].

The present paper takes up another important topic in the large number of particle
limit of periodic Toda lattices: we study the Birkhoff coordinates near the equilibrium in
the limit of large IV to provide precise estimates on the size of complex balls around the
equilibrium in Fourier coordinates and the corresponding size in Birkhoff coordinates.
Our analysis allows to describe the evolution of Toda lattices with large number of
particles in the original coordinates and to obtain an application to the study of FPU
lattices (on which we will comment in the next section).

We remark that the obtained estimates on the size of the complex balls are optimal.
In our view this is a strong indication that beyond such a regime the standard tools
of integrable systems become inadequate for studying the asymptotic features of the
dynamics of the periodic Toda lattices as N — oo.

The proofs of our results are based on a novel technique developed in [30] to show
a Vey type theorem for the KdV equation on the circle which we adapt here to the
study of Toda lattices, developing in this way another tool for the study of periodic
Toda lattices with a large number of particles. We remark that for our arguments to
go through, we need to assume an additional smallness condition on the set of states
admitted as initial data: the states are required to be interpolated by functions a and
with Sobolev-analytic norm of size R/N?, with R < 1 sufficiently small. (In the papers
[3,5,4], the size R can be arbitrarily large.)
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1.2. On the FPU metastable packet

In this subsection we recall the phenomenon of the formation of a packet of modes
in the FPU chain and state our related results. First of all we recall that the FPU
(v, B)-model is the Hamiltonian lattice with Hamiltonian function which, in suitable
rescaled variables, takes the form

N—-1 2
D;
Hppu(p,q) = EJJFU(%*%H) ) (1.15)
7=0
1'2 .’E3 SC4
_z e e 1.1
)= Tyt (1.16)

We will consider the case of periodic boundary conditions: ¢y = qn, po = pn-
Remark 1.14. One has

Hrpu(p,q) = Hroda(p,q) + (8 — 1) Ha(q) + H®(q),

where

N— 1 P —q 1l+2
Hl(q)::z LR W2,

i=0 (t+2)
H®) = — Z
>3

<.

Introduce the energies of the normal modes by

Dr|? + w (%)2 |G|

Ek = B

1<k<N-1, (1.17)

correspondingly denote by

ELi= —

~ (1.18)

the specific energy in the kth mode. Note that since p, g are real variables, one has
Er = EN—k.

In their celebrated numerical experiment Fermi, Pasta and Ulam [16], being interested
in the problem of foundation of statistical mechanics, studied both the behavior of &(t)

/gk(s)dé’ :

0

and of its time average

() (1) =

&~ | =
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They observed that, corresponding to initial data with £(0) # 0 and &(0) = 0
Vk # 1, N — 1, the quantities &(t) present a recurrent behavior, while their averages
(&,)(t) quickly relax to a sequence &, exponentially decreasing with k. This is what is
known under the name of FPU packet of modes.

Subsequent numerical observations have investigated the persistence of the phe-
nomenon for large N and have also shown that after some quite long time scale (whose
precise length is not yet understood) the averages (Ex)(t) relax to equipartition (see e.g.
[9,10,7,8]). This is the phenomenon known as metastability of the FPU packet.

The idea of exploiting the vicinity of FPU with Toda in order to study the dynamics
of FPU goes back to [15], in which the authors performed some numerical investigations
studying the evolution of the Toda invariants in the dynamics of FPU. A systematic
numerical study of the evolution of the Toda invariants in FPU, paying particular atten-
tion to the dependence on N of the phenomena, was performed by Benettin and Ponno
[7] (see also [8]). In particular such authors put into evidence the fact that the FPU
packet seems to have an infinite lifespan in the Toda lattice. Furthermore they showed
that the relevant parameter controlling the lifespan of the packet in the FPU model is
the distance of FPU from the corresponding Toda lattice.

Our Theorem 1.3 yields as a corollary the effective existence and infinite persistence
of the packet in the Toda lattice and also an estimate of its lifespan in the FPU system,
estimate in which the effective parameter is the distance between Toda and FPU.

It is convenient to state the results for Toda and FPU using the small parameter

1

M::N

as in [2].
The following corollary is an immediate consequence of Corollary 1.6.

Corollary 1.15. Consider the Toda lattice (1.1). Fiz o > 0, then there exist constants Ry,
C1, such that the following holds true. Consider an initial datum with

£1(0) = En-1(0) = R?e™7pt | &(0) =& (t)],_, =0, VE#1,N—-1 (119)
with R < Ry. Then, along the corresponding solution, one has
EL(t) < R*(1+CiR)u*e™% | V1I<k<|N/2], VtcR. (1.20)
For the FPU model we have the following corollary
Theorem 1.16. Consider the FPU system (1.15). Fiz s > 1 and o > 0; then there exist

constants Ry, Ca, T, such that the following holds true. Consider a real initial datum
fulfilling (1.19) with R < Ry, then, along the corresponding solution, one has
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16R?pute—20k T 1
—_— V1<k<|N/2 t| < . .
k25 ) — — L / J ? ‘ |— R2M4 |5_1|+02RM2

(1.21)

Er(t) <

Furthermore, for 1 <k < N —1, consider the action I} := M of the Toda lattice and
let Ii.(t) be its evolution according to the FPU flow. Then one has

=

—1
[k]%s_l)e%[k]”w (%) I (t) — I1.(0)] < C3R*i® for t fulfilling (1.21)
1

1
N

=~
Il

(1.22)

Remark 1.17. The estimates (1.21) are stronger than the corresponding estimates given
in [2], which are

T
E(t) < Ciple ™+ Cop® , VI<E<|N/2], |t|< .

=

First, the time scale of validity of (1.21) is one order longer than that of [2]. Second we
show that as /3 approaches the value corresponding to the Toda lattice (1 in our units)
the time of stability improves. Third the exponential estimate of & as a function of k
is shown to hold also for large values of k (the u® correction is missing). Finally in [2] it
was shown that T'/p? is the time of formation of the metastable packet. So we can now
conclude that the time of persistence of the packet is at least one order of magnitude
larger (namely p~%) with respect to the time needed for its formation.

Remark 1.18. We recall also the result of [20] in which the authors obtained a control of
the dynamics for longer time scales, but for initial data with much smaller energies.

Remark 1.19. Recently some results on energy sharing in FPU in the thermodynamic
limit [31] (see also [12,13,19]) have also been obtained, however such results are not able
to explain the formation and the stability of the FPU packet of modes.

Remark 1.20. In this paper we did not address the observation of near-quasiperiodicity
of solutions in the numerical experiments on FPU. One can think to use KAM theory in
order to prove existence of quasiperiodic motions in FPU. This is possible in view of the
fact that Toda lattice has good action angle coordinates and that the action to frequency
map in the Toda lattice is nondegenerate. Results more or less in this line have been
proved in [34,25], however the results of these papers do not persist in the limit N — oo,
and it is very hard to identify the dependence on N of the threshold for the applicability
of KAM theory to FPU.
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2. A quantitative Kuksin—Perelman Theorem
2.1. Statement of the theorem

In this section we state and prove a quantitative version of Kuksin—Perelman Theorem
which will be used to prove Theorem 1.3. It is convenient to formulate it in the framework
of weighted ¢2 spaces, that we are going now to recall.

For any N < oo, given a sequence w = {wk}gzl, wy > 0 Vk > 1, consider the space
2 of complex sequences & = {&;}Y_| with norm

N
€13, = wilénl* < 0. (2.1)
k=1

Denote by P% the complex Banach space P := (2 & /(2 > (£,1) endowed with the norm
||(§,77)Hfu = Hf”i, + ||77||i) We denote by Py the real subspace of P* defined by

Py ={(EneP: ;=& V1I<Ek<N}. (2.2)

We will denote by B™(p) (respectively By (p)) the ball in the topology of P™ (respectively
P with center 0 and radius p > 0.

Remark 2.1. In the case of the Toda lattice the variables (£,7) are defined by

€ = P+ iw (£) dr Pn—k —iw (£) dv—rk
L= R TN Gk

k
y Mk = )
Vo ()

and their connection with the real Birkhoff variables is given by

= [|=]=

1<k<N-1, (23)

)
=z

W

_ Skt v, §k — Mk

k= — =

X , )

1<k<N-1. (2.4)

We denote by P! the Banach space of sequences in which all the weights wy, are equal
to 1. For X, Y Banach spaces, we shall write £(X,)) to denote the set of linear and
bounded operators from X to V. For X = Y we will write just £(X).

Remark 2.2. In the application to the Toda lattice with N particles we will use a finite,
but not fixed N and weights of the form w? = w% _, = N3k 27k 1 <k < |N/2|.

Given two weights w! and w?, we will say that w! < w? iff wi < w?, Vk. Sometimes,
when there is no risk of confusion, we will omit the index w from the different quantities.
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In P! we will use the scalar product

N
("), (7)), =D && + iy - (2.5)
k=1

Correspondingly, the scalar product and symplectic form on the real subspace Py are
given for &' = (¢1,€") and &% = (€2,€%) by

N
(6,€%) :=2Re> & &, wo(d, &) =(E&, &), (2.6)

k=1

where E := —i.

Given a smooth F' : Py — C, we denote by X the Hamiltonian vector field of F,
given by Xp = JVF, where J = E~!. For F,G : P¥ — C we denote by {F, G} the
Poisson bracket (with respect to wp): {F, G} := (VF, JVG) (provided it exists). We say
that the functions F', G commute if {F, G} = 0.

In order to state the main abstract theorem we start by recalling the notion of normally
analytic map, exploited also in [33] and [1].

First we recall that a map P" : (P*)" — B, with B a Banach space, is said to be
r-multilinear if P"(v™, ... v(") is linear in each variable vU) = (¢0) 1)), a r-multi-
linear map is said to be bounded if there exists a constant C' > 0 such that

HPT(M,...,U(T))H chUu)H ,,,va v, o) e po.
B w

w

Correspondingly its norm is defined by

| Pr|| = ‘ sup HPT(U(1)7~-~7U(T))H .

o0 o], <1 5

A map P" : P¥ — B is a homogeneous polynomial of order r if there exists a r-multilinear
map P” : (P¥)" — B such that

P'(v) =P (v,...,v) YvePvV. (2.7)
A r-homogeneous polynomial is bounded if it has finite norm

1P|l = sup [[P"(v)]p -
loll,, <1

Remark 2.3. Clearly ||P"|| < HI:”"H Furthermore one has ||I:”"H <e"||P"|| - cf. [32].

It is easy to see that a multilinear map and the corresponding polynomial are contin-
uous (and analytic) if and only if they are bounded.
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Let P" : P¥ — B be a homogeneous polynomial of order r; assume B separable and
let {b,},~, C B be a basis for the space B. Expand P" as follows

Prv)=P'(&n) = >, Piéfn'b,, (2.8)
|K|+|L|=r
n>1

where K, L € N}/, Ng = NU{0}, |K| := K+ -+ Ky, £ = {}j>1 and €5 = &% - €1,
77L EnlLl n]l\/fN

Definition 2.4. The modulus of a polynomial P" is the polynomial P” defined by

Premi= > [P b (2.9)

|K|+|L|=r
n>1

A polynomial P is said to have bounded modulus if P" is a bounded polynomial.

A map F : PY — B is said to be an analytic germ if there exists p > 0 such
that F' : BY(p) — B is analytic. Then F' can be written as a power series absolutely
and uniformly convergent in B*(p): F(v) = > o, F"(v). Here F"(v) is a homogeneous
polynomial of degree r in the variables v = (£,7). We will write F = O(v") if in the
previous expansion F"(v) = 0 for every r < n.

Definition 2.5. An analytic germ F' : P* — B is said to be normally analytic if there
exists p > 0 such that

E(v) = Y F'(0) (2.10)

r>0

is absolutely and uniformly convergent in B“(p). In such a case we will write F' €
N, (P¥,B). N,(P*,B) is a Banach space when endowed by the norm

|El, == sup [E()]s. (2.11)
vEBY(p)

Let U C P§ be open. A map F : U — B is said to be a real analytic germ (respectively
real normally analytic) on U if for each point u € U there exist a neighborhood V of u

in P and an analytic germ (respectively normally analytic germ) which coincides with
FonUNV.

Remark 2.6. It follows from Cauchy inequality that the Taylor polynomials F" of F
satisty

s ,U .
1 @)l < 1L e vy e o) (2.12)

T
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Remark 2.7. Since Vr > 1 one has ||[F"|| < [|E7||, if F € N,,(P*, B) then the Taylor series
of F' is uniformly convergent in BY(p).

The case B = P™ will be of particular importance; in this case the basis {b,};>1
will coincide with the natural basis {e;};>1 of such a space (namely the vectors with all
components equal to zero except the jth one which is equal to 1). We will consider also
the case B = E(’P“’l,sz) (bounded linear operators from P to 73“’2)7 where w! and

w? are weights. Here the chosen basis is bj;, = e; ® e, (labeled by 2 indexes).

Remark 2.8. For v = (£,1) € P!, we denote by |v] the vector of the modulus of the
components of v: |[v| = (Jv1],...,|vn]), Jvj] == (&1, |n;])- If F € ./\/'p(’P“’l,PWQ) then
dF(|v])|u] < dE(|v|)|u| (see [30]) and therefore, for any 0 < d < 1, Cauchy estimates
imply that dF € Af(l,d)p(Pwl,E(Pwl,PwQ)) with

(2.13)

14 3

1
|d_F|p(1_d) < d_p |E|
where dF is computed with respect to the basis e; ® ey.

Following Kuksin and Perelman [30] we will need also a further property.

Definition 2.9. A normally analytic germ F € Np(P’Ulwaz) will be said to be of class
A%f,p if F = O(v?) and the map v — dF(v)* € Np(Pwl,E(Pwl,PwQ)). Here dF(v)*
is the adjoint operator of dF'(v) with respect to the standard scalar product (2.5). On

2 .
Ay , We will use the norm
,

|Fllgws = 1El, + pIdE], + p|dE"] . (2.14)

Remark 2.10. Assume that for some p > 0 the map F' € Av)

wt,p?

one has |F|,, < 2d? |F|, and HF”Awf ) < 6d? ||FHAU;;> .
wt,dp wt,p

then for every 0 < d <

A real normally analytic germ F' : Bﬁl(p) — P]%RPQ will be said to be of class
/\/p(PH’{1 ) PI{{Q) (respectively ﬁ,p) if there exists a map of class Np(Pwl,P“’z) (respec-
tively Aﬁf,p), which coincides with F' on B]}{l (p)- In this case we will also denote by [F]
(respectively ||FHA,U;;‘ ) the norm defined by (2.11) (respectively (2.14)) of the complex
extension of F.

Let now F : U C P¥ — P be an analytic map. We will say that F' is real
for real sequences if F(U N Pﬁ{l) C Pﬁ{Z, namely F(&,n) = (F1(§,n), F2(§,n)) satisfies
Fi(€,€) = Fy(&,€). Clearly, the restriction F|Um79u§“1 is a real analytic map.

We come now to the statement of the Vey Theorem.
Fix p > 0 and let ¥ : Bﬁ’l(p) — 731}51, U = 1+ ¥° with 1 the identity map and
vo ¢ .A:ﬁi o Write ¥ component-wise, ¥ = {(\Ijj’@j)}j>1’ and consider the foliation
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defined by the functions {|\Ilj(v)|2 /2} o Given v € P¥ we define the leaf through v
J>
by
W) [%5(0)

Let F = Uvepﬁ Fo be the collection of all the leaves of the foliation. We will denote by
T,F the tangent space to F, at the point v € Pg. A relevant role will also be played by
the function I = {I;};>1 whose components are defined by

_ &2 ,
L) =58 =50 vz, (2.16)
The foliation they define will be denoted by F(©).

Remark 2.11. ¥ maps the foliation F into the foliation F(©), namely F(©) = ¥(F).

The main theorem of this section is the following

Theorem 2.12 (Quantitative version of Kuksin—Perelman Theorem). Let w' and w? be
weights with w' < w?. Consider the space 73]1'{1 endowed with the symplectic form wg
defined in (2.6). Let p > 0 and assume W : B}lgl(p) — Pﬁé’l, U =140 gnd U0 ¢ .A;ﬁip-
Define

€ = H\IlOHAﬁjip ) (2.17)

Assume that the functionals {5 |¥; (U)|2}j21 pairwise commute with respect to the sym-
plectic form wq, and that p is so small that

€ <273, (2.18)

Then there exists a real normally analytic map U Bﬁ{l(ap) — 'Pﬂ'{l, a =278, with the
following properties:

i) W*wo = wy, so that the coordinates z := U(v) are canonical;
~ 2
i) the functionals {% ‘\Ilj (11)‘ } pairwise commute with respect to the symplectic
i>1

form wy;
iii) FO = W(F), namely the foliation defined by W coincides with the foliation defined
by U;
w) U =1+ V" with V¥ € A

2
wl,ap

and || WO < 217¢,.
2
Ail,ap

The following corollary holds:
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Corollary 2.13. Let H : 73]11{1 — R be a real analytic Hamiltonian function. Let U be as in
Theorem 2.12 and assume that for every j > 1, |¥; (v)|2 is an integral of motion for H,
i.e.

{H,]9;’} =0 Vj=1. (2.19)

Then the coordinates (x;,y;) defined by x; + iy; = \le (v) are real Birkhoff coordinates
for H, namely canonical conjugated coordinates in which the Hamiltonian depends only
on (23 +y7)/2.

Proof. Since ¥ = 1 + U0, the functions ¥;(v) can be used as coordinates in a suitable
neighborhood of 0 in Pg’. Let ¥ be the map in the statement of Theorem 2.12. Denote

~ 2
F(v):=3 “Ill(v)‘ . Since the foliation defined by the functions {F}};>1 and the foliation

defined by {|¥,]*};51 coincide (Theorem 2.12iii)), each Fj is constant on the level sets
of {|\I/j|2}j21. It follows that each Fj is a function of {|\Ifj|2}j21 only. Since Vj > 1,
|\I/j\2 is an integral of motion for H, the same is true for Fj, VI > 1. Define now, in
a suitable neighborhood of the origin, the coordinates (z,z) by z; = \le, zZ; = \TTJ Of
course F; = @ By (2.19) it follows then that

o _of ) . (2.20)

- 1 -
0= {H, ZlZl} = T <8—ZZZ[ - a—ZlZl

Since d¥(0) = 1 (Theorem 2.12i)), ¥ is invertible and its inverse ® satisfies ® =
1+ ®° with ®° ¢ .Awf and H&)O‘ <2 ‘\TJOHA’ , < 28¢; (Lemma A.34) in
P wl,ap

wl,app Aw?
wl ap

Appendix A).
Expand now H o ® in Taylor series in the variables (z, 2):

Ho®(z,z) = Z H;ﬁzaiﬂ.
r>2,
le|+18]=r
Then equation (2.20) implies that in each term of the summation o = 3, therefore H o ®

is a function of |z1|%,...,|zx|?. Define now the real variables (x,y) as in the statement,
then the claim follows immediately. O

2.2. Proof of the quantitative Kuksin—Perelman Theorem

In this section we recall and adapt Eliasson’s proof [14] of the Vey Theorem following
[30]. As we anticipated in the introduction, the novelty of our approach is to add quan-
titative estimates on the Birkhoff map U of Theorem 2.12. In Appendix A we show that
the class of normally analytic maps is closed under several operations like composition,
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inversion and flow-generation, and provide new quantitative estimates which will be used
during the proof below.

The idea of the proof of Theorem 2.12 is to consider the functions {¥;(v)};>1 as non-
canonical coordinates, and to look for a coordinate transformation introducing canonical
variables and preserving the foliation F(©) (which is the image of F in the noncanonical
variables).

This will be done in two steps both based on the standard procedure of Darboux
Theorem that we now recall. In order to construct a coordinate transformation ¢ trans-
forming the closed nondegenerate form €2y into a closed nondegenerate form €y, then it
is convenient to look for ¢ as the time 1 flow ¢! of a time-dependent vector field Y. To
construct Y one defines €; := Qg + t(2; — Qo) and imposes that

0= %‘t:o O = " (Ly Q4+ — Qo) = ¢ (d(Y' 1) + d(a1 — ap))

where a, g are potential forms for Q; and Qg (namely do; = Q;, @ =0,1) and Ly+ is
the Lie derivative of Y'*. Then one gets

Yt_IQt + a1 —ag =df (221)

for each f smooth; then, if ; is nondegenerate, this defines Y*. If Y* generates a flow
¢! defined up to time 1, the map ¢ := ¢'|,_, satisfies ¢*Qy = Q. Thus, given Q
and Q;, the whole game reduces to study the analytic properties of Y* and to prove that
it generates a flow.

A non-constant symplectic form Q will always be represented through a linear skew-
symmetric invertible operator E as follows:

QW) uV;u?) = (BE@)uV;u®) | v u® e TPy ~ PY. (2.22)

We denote by {F,G}q the Poisson bracket with respect to Q: {F, G}q := (VF, JVG),
J:=E"1
Similarly we will represent 1-forms through the vector field A such that

a(v)(u) = (A(v),u), YueT,Pg. (2.23)

Define wy := (¥ ~1)*wp, and let E,,, be the operator representing the symplectic form wy .
The first step consists in transforming w; to a symplectic form whose “average over F(©)”
coincides with wyg.
So we start by defining precisely what “average of k—formsl” I|121eans. To this end consider
_ |u

the Hamiltonian vector fields X(I)L of the functions I; = - through the symplectic
form wy; they are given by

X7 (v) =iVL(v) = ive, VI>1. (2.24)
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For every | > 1 the corresponding flow ¢} = ¢%, is given by
I

¢;(U) = (Ulv"'7Ul—1aeitvlavl+17"') .

foR—

Remark that the map ¢} is linear in v, 27 periodic in ¢ and its adjoint satisfies (¢})* =
&

Given a k-form o on P¥ (k > 0), we define its average by

27

Mia@) = 5= [(@yaed, j=1.  ad  Ma() = [[(¢)alds
0 T

(2.25)

where 7T is the (possibly infinite dimensional) torus, the map ¢ = (¢§1 o gbg? -+-) and df
is the Haar measure on 7.

Remark 2.14. In the particular cases of 1 and 2-forms it is useful to compute the average
in terms of the representations (2.22) and (2.23). Thus, for v, uM,u(® € Py, if

aput = (A@w);u®) , w@) @D, u®) = (@) u;u®)
one has

(Ma)(v)uV = (MA)(v); V), with MA(v) = / ¢ 9A(¢%(v)) do  (2.26)
T

and
(Mw)(v)(uM, u®) = (ME)(v)uM; u®) | with ME(v) = / ¢~ E(¢° (v)¢? db.
T

(2.27)

Remark 2.15. The operator M commutes with the differential operator d and the rota-
tions ¢?. In particular M A(v) and M E(v) as in (2.26), (2.27) satisfy

" MAW) = MA(¢%v), ¢*ME@w)u=ME(¢"v)¢?u, VOET.

We study now the analytic properties of w; and of its potential form a,,. In the rest
of the section denote by S :=>">°  1/n? and by

= 1/e(328)? ~ 0.0507 . (2.28)
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Lemma 2.16. Let @ := U~ and w; be as above. Assume that e; < p/e. Then the following
holds:

(i) By, = —i+To,, with Yo, € Nup(PL', L(PL", PL%)) and

8¢
Yooy lup < e (2.29)
(i) Define
1
/Twl (tv)tv dt (2.30)
0
then W, € Awl isp and [[We, | a < 8e1. Moreover the 1-form aw,, = (Wy,;.)

satisfies donwl =W — wp-

1 4 @0 with ®° € AY7  and

Proof. By Lemma A.3 one has that & = (]1 + \IIO) w0l pip

H(I)OHAZ?,W <2 H‘I/OHA:i < 2¢;. To prove (i), just remark that

E,, (v) = d®* (v)(—1)d®(v) = —i + d®° (v)* (—1)d®(v) — id®°(v) =: —i + Y, (v)

and use the results of Lemma A.3. To prove (i), use Poincaré construction of the po-
tential of wy which gives

1

Qy (V) 1= (/ E,, (tv)tv,u)dt = ag(v)u + (W, (v), u), /Twl (tv)tv dt ,

where «q is the potential for wp. In order to prove the analytic properties of W,

note that W, (v fo (Hi(tv) + Ha(tv))dt where Hy(v) := —id®°(v)v and Ha(v) :=

d®° (v)*(—i)d®(v )v = d®°(v)*(—iv + Hi(v)). Thus, by Lemma A.3, one gets that

1 oz < 2|9 4oz < der and [|Ho < 2|®°)| 4uz | < 4e1. Thus the
P ne w,pep

estimate on W, follows. 01

2
[l gw
wl,udp

Remark 2.17. One has Ma,, — ag = Maw,, = (MW,,,-) and HMWWIHAﬁM% <
||Ww1 HAZ?,H%'

We are ready now for the first step.
Lemma 2.18. There exists a map ¢ : Bﬁ“{l(;ﬁp) — Pﬂ% such that (1 — @) € Aw1 sp and

11— ¢l gz | <2% . (2.31)
wt,up
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Moreover ¢ satisfies the following properties:

(i) ¢ commutes with the rotations ¢°, namely ¢°p(v) = $(¢%v) for every 0 € T.
(i) Denote &1 := @*wy, then M1 = wy.

Proof. We apply the Darboux procedure described at the beginning of this section
with Qp = wo and Q7 = Mw;. Then ; is represented by the operator E]ﬁ,l =
(—i+t(ME,, +1)). Write equation (2.21), with f = 0, in terms of the operators defining
the symplectic forms, getting the equation Ele?t = —MW,, (see also Remark 2.17).
This equation can be solved by inverting the operator Ele by Neumann series:

V= —(—i4tMY,,) 'MW, . (2.32)

By the results of Lemma 2.16 and Remark 2.17, Y1 is of class A;ﬁ? udp and fulfills

sup H?t <2 MW, < 2% . (2.33)

te[0,1]

2
2 Ml g
wl,udp

w
Awl udp

By Lemma A4 the vector field Y generates a flow ¢! : BY' (4p) — P¥" such that
@t — 1 is of class Agi 45p and satisfies

At Ot 5
%) _]lHszf ; <2 sup HY H 2 < 2%;.
wh,udp t€0,1] Awlyu%

Therefore the map ¢ = ¢*|;—; exists, satisfies the claimed estimate (2.31) and further-
more ¢*Mw; = wy.

We prove now item (7). The claim follows if we show that the vector field ¥* commutes
with rotations. To this aim consider equation (2.32), and define jf,l (v) = (EA’]:1 (v))~L
By construction the operator EALI commutes with rotations (cf. Remark 2.15), namely
Vo € T one has ¢ EL (v)u = EL, (6% (v))¢%u. Then it follows that

"Y' (v) = =™ JL (0) MW, (v) = —JE (6% (v)¢% MW, (v)
= —JL (8" (v)) MW, (¢ (v)) = Y (6% (v)).

This proves item (). Item (4¢) then follows from item (i) since, defining &1 = ¢*w1, one
has the chain of identities M&; = Mp*w; = ¢*Mw; = wg. O

The analytic properties of the symplectic form @; can be studied in the same way as
in Lemma 2.16; we get therefore the following corollary:
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Corollary 2.19. Denote by E;, the symplectic operator describing w1 = ¢*wy. Then

(i) By = —i+ Tal, with Yg, € Ny, (P, L(PE", PE™)) and |T,, S 27eL,
(i) Define W (v fo o, (tv)tv dt, then W € Awl 7, and ”W”Awf . < 27¢;.

Furthermore the 1-form aw = (W,.) satisfies daw = &1 — wp.
Finally we will need also some analytic and geometric properties of the map
U:=¢ptoW. (2.34)

The functions {¥(v)};>1 forms a new set of coordinates in a suitable neighborhood of
the origin whose properties are given by the following corollary:

Corollary 2.20. The map ¥ : Bﬂ%l(/ﬁp) — 7?]}{1, defined in (2.34), satisfies the following
properties:

(i) d¥(0) =1 and ¥° := & —1 € A"} . with H\i’OHsz <%
wl,u8p
(ii) FO) = U(F), namely the foliation defined by W coincides with the foliation defined
by W.

.2
(iii) The functionals {3 ‘\I/j‘ }i>1 pairwise commute with respect to the symplectic
form wy.

Proof. By Lemma A.3 the map ¢ is invertible in Bﬁ“{f’l(,uﬁp) and =1 = 1 + g, with
g€ Aw o, and [[g]] 4.2 , < 26¢;. Then ¥ = 1 + U0 where W0 = U0 + go (1 + 0O).
wl, ubp

By Remark 2.10,

\IIOHAwf o < 6utter, thus Lemma A.37) implies that ¥ e A%f -

and moreover ‘\IJOH < 6utte; +27¢; < 28¢. Items (4) and (7i) follow from

Az} 8o

the fact that, by Lemma 2.18(¢), ¢ commutes with the rotations (see also the proof of
Corollary 2.13). O

The second step consists in transforming @&; into the symplectic form wy while pre-
serving the functions I;. In order to perform this transformation, we apply once more
the Darboux procedure with €, = &, and Q¢ = wy. However, we require each leaf of the
foliation to be invariant under the transformation. In practice, we look for a change of
coordinates ¢ satisfying

e = , (2.35)
Li(p(v)) = Li(v), VIi=1. (2.36)
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In order to fulfill the second equation, we take advantage of the arbitrariness of f in
equation (2.21). It turns out that if f satisfies the set of differential equations given by

df (X7) — (a1 — ao)(X}) =0, VI>1 (2.37)

then equation (2.36) is satisfied (as it will be proved below). Here oy is the potential
form of &; and is given by a1 := ag + ayw, where ay is defined in Corollary 2.19.
However, (2.37) is essentially a system of equations for the potential of a 1-form on a
torus, so there is a solvability condition. In Lemma 2.23 below we will prove that the
system (2.37) has a solution if the following conditions are satisfied:

d(ar — ao)lrFo =0, (2.38)
M(o1 — ao)lpro =0 . (2.39)

In order to show that these two conditions are fulfilled, we need a preliminary result.
First, for v € Py’ fixed, define the symplectic orthogonal of T, F () with respect to the

form w! := wg + (&1 — wp) by

(T, F@)4t .= {h € P wh(v)(u,h) = 0Vu € va@)} . (2.40)
Lemma 2.21. For v € BY (1p), one has T,F©) = (T,F©)<:,

Proof. First of all we have that, since for any couple of functions F', G and any change
of coordinates ®, one has

{Fo <I>,GO(I>],~<I>*W0 ={F, G}WO od
it follows that

{Ilvfm}w1:{|\111|2,|‘lfm\2} =0, Vim>1

0

and

{I, I}y, 0@ = {Liop " Ino @*1}w1

but, by the property of invariance with respect to rotations of ¢ (and therefore of p—1),

I; 0@~ 1 is a function of {I;} ;> only, and therefore the above quantity vanishes and one

has Vi, m

0= {0i(v),In(v)},, = (VI(v), Jo, (v)VIn(v)) = (vier, Jo, (V)Vmen) YI,m > 1.
(2.41)
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Define ¥, := span {v;e;, [ > 1}. The identities (2.41) imply that J;, (v)(X,) C B+ = i%,.
By Corollary 2.19(%), Eg, (v) is an isomorphism for v € Bﬁ{l(;ﬁp), so the same is true
for its inverse Jg, (v). Hence Jy, (v)(3,) = i¥, and ¥, = Ey, (v)(iX,) and

1 (X7, X7 ) = (Ea, (v)(ivier),ivmen) =0, Vim>1. (2.42)

Since w! is a linear combination of wy and @&;, the previous formula implies that

wh(v)(XP, X} ) =0 for every t € [0,1] and v € Bﬁ"{l(usp), hence T,F() C (T, F©)4:,
Now assume by contradiction that the inclusion is strict: then there exists u €
(T, FO)4t |ju|| = 1, such that u ¢ T, 7). Decompose u = ut 4 uy with ut € T, F©)
and u; € (T, F©)L. Due to the bilinearity of w(v)f, we can always assume that u = u .
Then for every [ > 1

dI, (v)(—iu) = (VI(v), —iu) = (=iX7] (v), —iu) = (X7 (v),u) =0  VI>1

since X9 (v) € T,F©). Hence iu € T, 7 and therefore w'(v)(—iu,u) = 0. Furthermore
it holds that

w'(0)(iu, u) = wo(—iu,u) = (I*u,u) = —1.

1
It follows that for v € BY (up) one has [[tMTg, (v)||£(73]]%1’p§11)
wt()(iu, u) = =1+ (EM Yy, (v)iu,u) < 0, leading to a contradiction. O

< 1/2, thus

We can now prove the following lemma:
Lemma 2.22. The solvability conditions (2.38), (2.39) are fulfilled.
Proof. Condition (2.38) follows by equation (2.42), since
d(ar — ) (X9, X7 ) =@ (XD, X)) —wo(XP, X )=0, Vim>1

We analyze now (2.39). We claim that in order to fulfill this condition, one must have
that @ satisfies M@; = wp, which holds by Lemma 2.18(4¢). Indeed, since

0= M(:Jl —Wwo = M(@l —wo) = Md(a1 - Oéo) = dM(Oél — Olo),
there exists a function g such that M(ay — ap) = dg. But Mdg = M(M(a; — ap)) =
M(ay — ag) = dg, therefore ¢ = Mg, so g is invariant by rotations. Hence 0 =

0 9(8)) = dg(XD) = M(oq — ag)(X}), VI > 1, thus also (2.39) is satisfied. O

We show now that the system (2.37) can be solved and its solution has good analytic
properties:
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Lemma 2.23 (Moser). If conditions (2.38) and (2.39) are fulfilled, then equation (2.37)
has a solution f. Moreover, denoting h; = (a1 — ao)(X?j), the solution f is given by
the explicit formula

F)=>Y"fi),  fi(v) =M M; 1 Ljhy (2.43)
j=1

where

2m

1

Lijg= %/tg(aﬁﬁ»)dt :
0

Finally f € N7 ,(PY",C), Vf € Nyrp(PY, PY*) and

£, <2%anTp |V, <2 (2.44)

uip
Proof. Denote by 0, the time along the flow generated by X?j, then one has dg(X?j) =
%, so that the equations to be solved take the form

J

— —h;, Vji>1 :
56; h;, j>1 (2.45)

Clearly %J_Mjhj =0, and by (2.38) it follows that

) Oh; oh, 9
S Mhy = M;S0 = M S = Ny = Lj>1
g6, Mihi = Migp = Migs = gg; Mihe =0, Vi.j =1,

which shows that Mjh; is independent of all the ¢’s, thus M;h; = Mh;. Furthermore,
by (2.39) one has Mh; = 0, Vj > 1. Now, using that %ng = g — Mg, one verifies
that f; defined in (2.43) satisfies

if 1< j
of; - e
8797 Ml"'MJ_th lfl—j
Yol My M h = My My D>
where, for j =1, we defined M --- M;_1h; = hy. Thus the series f(v) := 3,5, f;(v), if

convergent, satisfies (2.45).
We prove now the convergence of the series for f and V f. First we define, for 8 € T,

0 =o' 0l Vji>1,

then by (2.43) one has
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/ 0,h;(0%) do’ | (2.46)
Vv / ©;°0;Vh;(©%v) do7 | (2.47)
where 77 is the j-dimensional torus and d¢? = 24 ... %. Now, using that

hy(v) = (W(0), X0 (v) = Re(iW;(v)e;) V> 1

one gets that f;([v]) < 2mh;(Jv]) < 27 W(Jv])|v;], therefore f(|v|) < Ej L fi]) <
21 W (|])|| 1 |v]l 1 and it follows that |f| < 2m |W| 7pu p. This proves the con-
vergence of the series defining f.

Consider now the gradient of h;, whose kth component is given by

Vs o), = e (125800, )+ 630 Re G 0)

Inserting the formula displayed above in (2.47) we get that V f; is the sum of two terms.
We begin by estimating the second one, which we denote by (V f;)(?). The kth component

of (V)@ .= Zj(ij)(z) is given by

(V)] = | S TH®| = [ er0Re@Wiefe) as*,  (245)

thus, for any v € Bﬁgl(;ﬂp) one has [(V_f(|v|))(2)]k < 27 Wi(|v|), and therefore

(vn®

<27 |m|u7p < 728¢.

up

We come to the other term, which we denote by (ij)(l). Its kth component is given by

[( (1) /@ %9, Re ( (G) )¢?juj) dg . (2.49)

Then V£ (o) < 27225 (Jof) | = 2n[di¥ (Jol)} o .
It follows that the kth component of the function (V) := Zj(ij)(l) satisfies

(@2DP] < [STLAD®D | < 2m S ldW (o)

J k



D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818-1887 1843

Therefore ’ Vi) 1)‘ <2r ||W||Aw . < 728¢;. This is the step at which the control
up

of the norm of the modulus dW* of dW* is needed. Thus the claimed estimate for V f
follows. O

We can finally apply the Darboux procedure in order to construct an analytic change
of coordinates ¢ which satisfies (2.35) and (2.36).

Lemma 2.24. There exists a map o : Bﬁé’l(,ugp) — Pﬂ’{f’l which satisfies (2.35). Moreover
p—1¢€ ./\/Hep(PfRfl, Pf{), ©—1=0(?) and

< 2M¢ . (2.50)

|L_ﬂ up

Proof. As anticipated just after Corollary 2.20, we apply the Darboux procedure with
Qo = wo, 1 = @1 and f solution of (2.37). Then equation (2.21) takes the form

Yi=(—i+tYs) YV -W), (2.51)

where T, and W are defined in CorollaI} 2.19. By Lemma 2.23 and Corollary 2.19, the
vector field Y is of class Ns (PR ,PY%) and

sup |Yt| 5, < 2(2Me; +27¢)) < 213¢;.
t€[0,1]

Thus Y generates a flow ¢! : BY (1%p) — P¥', defined for every t € [0,1], which
satisfies (cf. Lemma A.4)

i < 9l4 )
| mugp <2%¢, Vtel0,1]
Thus the map ¢ := ¢*|,_; exists and satisfies the claimed properties. O
We prove now that the map ¢ of Lemma 2.24 satisfies also equation (2.36).

Lemma 2.25. Let f be as in (2.43) and ' be the flow map of the vector field Y defined
n (2.51). Then V1> 1 one has I;(¢'(v)) = I;(v), for each t € [0, 1].

Proof. The following chain of equivalences follows from Lemma 2.21 and the Darboux
equation (2.21):

Li(¢'(v)) = Li(v) <= 0= %Iz( tw)) = d(Yi(v) < Y(v) e T,FO©

— Y') e (I[,LF9)% — (Wi (Y (v), X7 (v)) =0, VI >1)
= a1(X]) —ao(XP)=df (X)) VI>1.

In turn the last property follows since f is a solution of (2.37). O
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We can finally prove the quantitative version of the Kuksin—Perelman Theorem.
Proof of Theorem 2.12. Consider the map ¢ of Lemma 2.24. Since dp(0) = 1, ¢ is

invertible in Bﬁ{l(ulop) and ¢! = 1 + g1 with g1 € /\/'Mlop(Pﬂg’l,Pﬁ’Q) and ‘9_1’
2 ’gp - 1’;49/3 < 2% (cf. Lemma A.2). Define now

uiop

It’s easy to check that Urwy = wp, thus proving that U s symplectic. By equation
(2.36) one has Il(\fl(v)) = I,(¥(v)) for every [ > 1, therefore ¥ and ¥ define the same
foliation, which coincides also with the foliation defined by W, cf. Corollary 2.20. Similarly
one proves that the functionals {% ‘{If\;(v)‘} - pairwise commute with respect to the
symplectic form wy. We have thus proved itejrﬁs i)—iit) of Theorem 2.12.

We prove now item ). Clearly d¥(0) = 1, and U0 := U — 1 = ¥° 4 ¢y o (1 + ¥°)
is of class ./\/'uup(Pﬂ%l,Pﬁ’Q). Moreover, by Remark 2.10 and Corollary 2.20(%), one has
’@ i < 2ub ‘E < u%2%; < u*'p by condition (2.18). Thus |1 + \i,o‘# < ut%

usp 11,
and by Lemma A.1

‘% < 98¢, + 219, < 216¢,.

. +’910(1+\i’0)
T

< |90
utip

pllp M11P+ ‘g—1|u1°p
We are left to prove that U0 € Aﬁjf,#mp. Since U*wy = wy, one has d\i(v)*(—i) \I/(v) = —i,

from which it follows that W satisfies

dT°(v)* =1 dP°(v) (1 + d\iO(v)) i
and therefore U0 ¢ A“’T 12 with H\TIOH <27, O
wepee Azium

3. Toda lattice
3.1. Proof of Theorem 1.3 and Corollary 1.6

We consider the Toda lattice with IV particles and periodic boundary conditions on
the positions ¢ and momenta p: ¢j+n = ¢;, Pj+N = pj, Vj € Z. As anticipated in
Section 1, we restrict to the invariant subspace characterized by (1.2). The phase space
of the system is P, where s > 0, ¢ > 0 and it is defined in terms of the linear, complex,
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Birkhoff variables (£,7) (defined in (2.3)). We endow the phase space with the symplectic
form? Qg = —i o0, déx, A diy..

We will denote by Pﬂz’g the real subspace of P*7 in which n; = ék Vi<k<N-1,
endowed with the norm (1.7), and by Bp?(p) the ball in Py with center 0 and radius
p > 0. The main step of the proof of Theorem 1.3 is the construction of the functions
{U,}1<j<n—1. This is based on a detailed analysis of the spectrum of the Jacobi matrix
appearing in the Lax pair representation of the Toda lattice. So we start by recalling the
elements of the theory needed for our development. Introduce the translated Flaschka
coordinates [17] by

(b.a) =Op,q), by, a;) = (=p;, 2 9=1) — 1), (3-2)

The translation of the a variables by 1 is useful in order to keep the equilibrium point
at (b,a) = (0,0). Recall that the variables b, a are constrained by the conditions

2

-1

N—
bj = H 1+aj) =

I\
=)

J

Introduce Fourier variables (5, a) for the Flaschka coordinates by (1.3). In these variables

|8k|2 +4|dk|2

B, = 5

+0(a%), 1<k<N-1. (3.3)

The Jacobi matrix whose spectrum forms a complete set of integrals of motions for the
Toda lattice is given by [38§]

bo 1+ ag 0 1+an_1
1+ap b1 1+a; :
L(b,a) := 0 14ay by 0 . (3.4)
: - - ) 1+an_o
14+an—_1 0 14+an—_2 bn_1

It is useful to double the size of L(b,a), redefining

2 So that the Hamilton equations become

OH . .OH
i = 128 (3.1)

o
&= ok
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bo 1+ ag 0 0 0 l+an_1
1+as b : 0 0
: l+an_2
Lb,a — 3 1+(;1N—2 1j'J_N—l 1+:N—1 - 0 0 ) (35)
aN_—1 0 + ao 0
0 0 1+ ao b1
: l+an—2
l+an_1 ... 0 0 0 Y. l4an_z byoa

Consider the eigenvalues of L , and order them in the non-decreasing sequence
)\o(b, a) < )\1(b, a) < )\Q(b, a) <... < )\2N73(b, (l) < )\2]\],2([), a) < )\2]\771([)7 a)

where one has that where the sign < appears equality is possible, while it is impossible
in the correspondence of a sign <. Define the quantities

7j (b, a) == Aa;(b,a) — Agj—1(b, a), I1<j<N-1; (3.6)

v;(b,a) is called jth spectral gap. The quantities {’yjz-}lngN_l form a complete set of
commuting integrals of motions, which are regular also at (b,a) = (0,0). Furthermore
one has H(b,a) = H(vi(b,a),...,7ya_1(b,a)) [6]. A spectral gap is said to be closed if
Vi (b’ a) =0.

The following Theorem 3.1 ensures that the assumptions of Theorem 2.12 are fulfilled
by the Toda lattice.

Theorem 3.1. There exists €, > 0, independent of N, and an analytic map

U (B () Q) 2 PV (6m) o (6(6m). b(Em) (3.7)

such that:
(U1) W is real for real sequences, namely ¢y (& Yr(€,€) Vk.

6) =
(¥2) For every 1 < j < N —1, and for (¢,v) € B>? (xz) NPy, one has

7= Fw (&) 10l” = Fw (%) lesl

(¥3) ¥(0,0) = (0,0) and d¥(0,0) = 1.

(U4) There exist constants C1,Cy > 0, independent of N, such that for every 0 <
€ < €, the map V0 := W — 1 € N nz2 (P57, P*+19) and [dV°]* € N n2(P*7,
L(Pse, Ps+L9)). Purthermore one has

62 %
|\II—O|G/N2 =< Clm? ‘[d‘I’O} < Cze . (3.8)

e€/N?
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The main point is (¥4), in which the estimates of the domain of definition of the map
¥ hold uniformly in the limit N — oco.
We show now how Theorem 1.3 follows from Kuksin—Perelman Theorem 2.12.

Proof of Theorem 1.3. Introduce the weights w' := {N3/2[k]% e Flv (%)1/2 N and

w? = {(N3/2[K]53 e W (£) Yz N} and consider the map ¥ of Theorem 3.1 as a map

from P¥" in itself. Since for any &n) e P*" one has that

1€ Mllpur = N [1(E0)llpes (3.9)

it follows by scaling that there exists a constant C3 > 0, independent of IV, such that
0 2
[0 4z < Car?.

Thus, for any p < p. = min (%, e*>, VU satisfies condition (2.18). Thus we can apply

Theorem 2.12 to the map V¥, getting the existence of a symplectic real analytic map v
defined on B®’ (ap,) which satisfies i)—i) of Theorem 2.12.

By Lemma A.3 the map U is invertible in Bwl(,uap*) and its inverse ® satisfies
® =1+ ®° with 0 € Agi»uap*' To get the statement of the theorem simply reexpress

the map @ in terms of real variables (z,y), (X,Y) and denote such a map by ®n. O

Remark 3.2. By the proof of Theorem 1.3 above one deduces the estimate

sup d®° (¢, )" co pottoy < CsoRs o s (3.10)
|‘(¢7¢)”77.9)0§R51G/N2H H[:(P [ Pstlo)

for some Cs , > 0, independent of N.

The rest of this subsection is devoted to the proof of Theorem 3.1.

In the following it will be convenient to consider the variables (b,a) defined in (3.2)
dropping the conditions Z;y:_ol b; = 0 and H;\:Ol(l + a;) = 1. Equation (3.3) suggests
to introduce on the variables b, a the norm

2

1 ” . .
10, 0)ges = 53 > max(1, [k]22)e2e Kl (|b,€|2 +4|ak|2> (3.11)
and to define the space
Cy7 = {(b,a) e RN xRN : ||(b,a)]ce.s <00} . (3.12)

We will write C* for the complexification of Cz”.
In the following we will consider normally analytic map between the spaces P*“ and
C*“. We need to specify the basis of C**? that we will use to verify the property of being
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normally analytic. While it is quite hard to verify this property when the basis is general,
it turns out that it is quite easy to verify it using the basis of complex exponentials defined
in (1.3). Indeed the norm (3.11) is given in terms of the Fourier variables. For the same
reason, it will be convenient to express a map from C%? to P*%? as a function of the
Fourier variables l;, a.

We prove now some analytic properties of the map © defined in (3.2). In the following
we will denote by ©= the map O expressed in the (£,7) variables.

Proposition 3.3. The map Oz satisfies the following properties:

(©1) ©=(0,0) = (0,0). Furthermore let dO=(0,0) be the linearization of Oz at (§,n) =

By =0, Ek:—(%w (%))1/2(51@4—771\771@), 1<k<N-1,

Ao=0,  Ay=—im (0 (L) (G —mvr), 1<E<N-1, (3.13)

where wy, == (1 — e 2™/N) /2 Y1 <k < N-—1.
Moreover for any s > 0, o > 0 there exist constants Co,,Co, > 0, independent
of N, such that

40=0.0) s ¢y < Cor.
. Ce
|d©=(0,0) |{£(CS+2,G7P5H,G) < N2 . (3.14)
(©2) Let ©Y := Oz — dO=(0,0). For any s > 0, o > 0, there exist constants

Co,,Co,,€x > 0, independent of N, such that the map ©% € Ne, /N2 (Pso,CotLo)
and the map [dOZ]* € N jn2(P*7, L(C*T27, PSTL9)), and

‘@Q — sup 0L (¢ 77)‘ < Cos€®
—le/N2 H(f,n)llps,aS/N? =17 Cst+l,0 N2 ’
C@ €
01 — 0 * 4
‘[d@E] — sup AOLEN |, s sy S r (319)

/N? (€0 | ps.o <e/N2

The proof of the proposition is postponed in Appendix C. Note that the estimates
(3.14) and (3.15) imply that there exists a constant Cg, > 0, independent of N, such
that for any p < £ one has O= € N,(P*7,C>7) and

|%‘p§0@5p. (3.16)

We start now the perturbative construction of the Birkhoff coordinates for the Toda
lattice, which is based on the construction of the spectrum and of the eigenfunctions
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of Ly, (defined in (3.5)) as a perturbation of the free operator Lo := Lb al(,a)=(0,0)-
More precisely we decompose Ly, = Lo + L, where

0 1 0 o1 bo aon 0 anN-—1
1 0 1 agp b1 al . .
LO = 0 1 0 ... 0 5 Lp = 0 a1 bg e 0 (317)
. 1 . . . N
1 ... ... 1 0 aN—-1 -.- ... AN-2 bN—l

and following the approach in [30,6,26] we apply Kato perturbation theory [29]. The next
lemma characterizes completely the spectrum of Ly as an operator on C?V:

Lemma 3.4. Consider Lo as an operator on C*N, then its eigenvalues and normalized
eigenvectors are:

etgenvalues etgenvectors

A0 = -2, foo(k) = A= (=1)*

Mjo1 =35 = —2cos (), faj—r0(k) = gze " fajo(k) = et 1<j<N-1
An-1=2, fan-10(k) = 5%

where 0 <k < 2N —1 and p; := (1 + %) . In particular the gaps of Ly are all closed.

The proof is an easy computation and can be found in [23].

; )0 4)5° —kz\
Remark 3.5. For 0 < j,k < [N/2] one has ’)\ Al

In particular if j # k then ‘)\gj — )‘gk| > 1/N2.

/\gN k‘ 2

We use now Kato perturbation theory of operators in order to introduce the main
objects needed in the following and to give some preliminary estimates.

For 1 < j < N —1 let Ej(b,a) be the two-dimensional subspace spanned by the
eigenvectors corresponding to the eigenvalues )\2]»,1(117 a) and Az2; (b, a) of Ly ,. Analo-
gously, let Fy(b,a) (respectively En(b,a)) be the one-dimensional subspace spanned by
the eigenvector of \g(b, a) (respectively Aan_1(b, a)). Introduce the spectral projector on
E;(b,a) defined by

P;(b,a) = (Lya —N)""d\,  0<j<N (3.18)

2w
r;

where, for 1 < j < N —1, T is a closed path counter-clockwise oriented in C which en-
closes the eigenvalues Ag;_1(b, a) and Ag;(b, a) and does not contain any other eigenvalue
of Ly . Analogously, I'y (respectively I'n) encloses the eigenvalue Ag(b,a) (respectively
Aan—1(b,a)) and no other eigenvalue of Ly .. P;(b, a) maps C2V onto E;(b,a) and, as we
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will prove, is well defined for (b, a) small enough. P;(0,0) will be denoted by Pjo and its
range £;(0,0), which will be denoted by Ejo, is given by

Im Pjo = Ejo, Ejo = span(f2j0, f2j-1,0)-
Define also the transformation operators

—1/2
U;(b,a) = (1 — (Pi(b,a) — Pjo)z) Pi(b,a), 1<j<N-1. (3.19)

U, has the property of mapping isometrically Ejo into the subspace E;(b,a) spanned
by the perturbed eigenvectors [29]. Remark, however, that in general the image of an
unperturbed eigenvector is mot an eigenvector itself. We prove now some properties of
the just defined objects.

Lemma 3.6. There exists a constant Cs , > 0, independent of N, such that the map
(b,a) — Ly(b,a) is analytic as a map from C*° to L (C*N). Moreover

”Lp(ba a)”g(cw) <Cspo H(b, a)|

Cs,cr . (320)
Then by Kato theory one has the corollary

Corollary 3.7. There exist constants Cs o, €. > 0, independent of N, such that the
following holds true:

(i) The spectrum of Ly q is close to the spectrum of Lo; in particular for any (b,a) €
BE" (%)

’)\2j (b, (l) — )\g]

Aaj-1(b,a) = A3 | < Cao ll(ba)

o - (3.21)

)

(ii) One has that (b,a) — P;(b,a) is analytic as a map from B¢ (&) to L(C?N).
Moreover for (b,a) € B¢’ (%=) one has

Hpj(bv a) — PjOHg(czN) <Cs,o (b, a)

o - (3.22)

(tit) For each 1 < j < N — 1, the maps Uj, defined in (3.19), are well defined from
BC’ (%) to L(C?N) and satisfy the following algebraic properties:
(U1) Im U;(b,a) = Ej(b,a);
(U2) for (b,a) real, one has Uj(b,a)f = Uj(b,a)f;
(U3) for (b,a) real and f € Ejo, one has [|U;(b,a) f|lcon = || fllcon -
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Finally the following analytic property holds:
(U4) One has that (b,a) — Uj(b,a) is analytic as a map from BC™” ( 6*) to

N2
L(C?N). Moreover for (b,a) € BC’ (;/2) one has

105 (b, @) = By(b,0)l| oy < Cono 15, )22 - (3.23)

The proofs of Lemma 3.6 and Corollary 3.7 can be found in Appendix D.
For 1 <j <N —1and (ba) € B’ (£

) define now the vectors

fgjfl(b, a) = Uj(b, a)fgjfl’o, and fzj(b, a) = Uj(b, a)fgj’o (324)

which by property (U1) belong to E;(b,a). Define also the maps

2.

2i0,0) = (30 () (Lo = 28) fos(b.0), Fos (b))
wj(b,a) = (30 (£)) " ((Loa = N,00) foia(ba), oy 1 b)) (3.25)

where (u,v) = > u;v; is the Hermitian product in C?V. Finally denote z(b,a) =
(z1(b,a),...,zn-1(b,a)) and w(b,a) = (w1(b,a),...,wy-1(b,a)), and let Z be the map

(b,a) = Z(b,a) := (z(b,a),w(b,a)). (3.26)

The map ¥ of Theorem 3.1 will be constructed by expressing Z as a function of the
linear Birkhoff coordinates &, n

The properties of the map Z are collected in the next lemma which constitutes the
main technical step for the application of Kuksin—Perelman Theorem to the Toda lattice.

Lemma 3.8. The map Z, defined by (‘3 26'), is well defined for (b,a) € B¢’ ( 6*
are real valued and fulfill ||(b, a)
properties are also fulfilled:

)Ifba

coo < Nus then, for every 1 < j < N —1, the following

);

[2i(b,a)|* = Fw (%) lw; (b, a) *;

;(0,0) = 0; moreover the linearizations of z; and w; at (b,a) = (0,0)
are given by

dz;(0,0)[(B, 4)] = (2 (§)) " (B — 2™/ 4;)
dw; (0,0)[(B, A)] = (2w (£)) (BN = 2e79m/N Ay J) (3.27)

The map dZ(0,0) = (dz(0,0),dw(0,0)) is in the class L(C>°,P7). Its adjoint
dZ(0,0)* is in the class L(P*,C5T19). Finally there exist constants Cz,,Cz, > 0,
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independent of N, such that for any s >0 and 0 >0
14Z(0,0)[l oo, peay < Czis 1dZ(0,0)" || pipese covzioy < Oz N? . (3.28)

(Z4) For any s > 0, 0 > 0, there exist constants Cz,,Cz,, €. > 0, independent of N,
such that for every 0 < e < e, the map Z° := Z — dZ(0,0) € Ne/n2 (CS’U,PSH’”)
and the map [dZ°]* € N /N2 (C*7, L(P*°,C5T27)). Moreover

sup 1Z2°(b, a)|
||(b7a)‘|cs,a <e/N?2

swp |2 (b,a
I(6,a)llcs.0 <e/N2

€
7)5+1,a S CZS N27

)*Hﬁ(PS,”’CSMU) < Og,Ne. (3.29)

The proof of the lemma is very technical, and is postponed in Appendix E.

Remark 3.9. In the limit of infinitely many particles, the linearization dz;(0,0)(b,a) at
the different edges of the spectrum are given by

B —2A;
dz;(0,0)(B,A) ~ —L———2L ifj/N«1
(0,08, 4) = T it
B +2A;
dz;(0,0)(B, Ay~ 2% 441N <1, (3.30)

2w(j/N)

The existence of two different sequences is in agreement with the works [5,4], in which
the spectrum of the Lax operator associated to the Toda lattice is approximated, up to
a small error, by the spectrum of two Sturm—Liouville operators associated to two KdV
equations. More explicitly, in [5] the following result is proved: take a, 8 € C*°(T) such
that [a = [8=0,a; =1+ 3za(j/N) and b; = 3zB(j/N). Then the spectrum of
the Lax matrix (3.5) with a;, b; as elements can be approximated at the two edges by
the spectrum of the two Sturm-Liouville operators L = —jl—l + (B8 £ 2a) on C°(T).

We are ready to define the map ¥ of Theorem 3.1: let
VP> =P, (§m) = (0(&m), (€ ) (3.31)
defined by
U=—-Z00g; ie ¢=—z00g, 1 = —wo Oz. (3.32)
We show now that ¥ satisfies the properties (¥1)—(¥4) claimed in Theorem 3.1.

Proof of Theorem 3.1. Properties (V1) and (¥2) follow by (Z1) and (Z2) respectively.
We prove now (¥3). By (1) and (Z3) one has ¥(0,0) = (0,0). In order to compute
d¥(0,0) = (d¢(0,0),d(0,0)) note that
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d(0,0) = —dz(0,0) dO=(0,0) = —(dz(0,0)F 1) o (FdO=(0,0)) .

Let (B, A) = FdO=(0,0)(£,7). Then (3.27) and (3.13) imply that, for 1 < j < N — 1,

de;(0,0)(&,n) = M (B’j — 2€i7fj/NAj>
_ 1 w(i/N) . Vg i N
- QUJ(j/N) ( ) (gj + nN—j) \/W(gj 77N—])> = 5] ;

where we used that 2ei”j/ij = iw (%) One verifies analogously that dv;(0,0)(&,n) =
j-

We prove now property (¥4), which is a consequence of the fact that the space of
normally analytic maps is closed by composition (see Lemma A.1). Fix s > 0 and ¢ > 0.
Let 0 < e < CE(_%, where Cg, is the constant in (3.16). Since Z = dZ(0,0) + Z° and
Oz = dO=(0,0) + ©%, one gets that

00 = -—7%00z —dZ(0,0) 0 02 . (3.33)

Thus properties (Z3), (©2) and estimate (3.16) imply that there exists a constant C' > 0,
independent of N, such that

C 2
’\I]_OIS/NQ = sup H\I’_O(£777)| Pstl,o < N—€2 5

(€Ml ps,0 <e/N?

which proves the first estimate of (¥4). We study now the adjoint map d¥°(¢&,n)*.
Writing dOz = dO=(0,0) + dOY one gets that
d\IIO(f’ 77>* = _dG)E(Oa 0)* dZO(@E(ga 77))* - d@%(&, 77)* dZO(G)E(g? 77))*
— dO%(&,1)" dZ(0,0)"
=1+ I+ III.

We estimate each term in the expression displayed above. In the following, if A €
N, (P9, L(P*7, Pst1:7)), we denote by

|A|p = sup ||A(§777)“[)(7)s,a’fps+1,a) .
1€l ps,o <e/N?

We begin by estimating I:

C.
v osw[ldZ0©=(Em)”
(€M lps.c <e/N?

Co,
N Cz,Co,N e < Ce,

|I|E/N2 S L(Pso,C512.7)

<
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where in the first inequality we used the second estimate of (3.14) and in the second
inequality we used the second estimate in (3.29). Now we study II:

sup dz°(©=(&,m))* s Cot2,0
I, n)HP”<e/N2H (&m) ||5(7>, ,Cst2.0)

o ce

where we used the second estimate in (3.15) and again (Z4). Finally, using again (©2)
and the second estimate of (3.28), one has

C
I, e < 4Z(0,0)" | c(pee, crrney < oy~ CzaN* < Ce.
Collecting the estimates above one gets
Hd_\IIO]*|€/N2 = sup HM(&77)*||5(7;s,a,7>s+1,a) S 306,

1Emps,o <e/N?

and (¥4) follows. O

Proof of Corollary 1.6. Provided 0 < R < R!
oy (vp) fulfills

s.0 18 small enough, one has that wg :=

R
[woll ps.o < m(l +CR),

and, denoting by w(t) the solution in Birkhoff coordinates, one has |jwp]

[[w(?)]

Pps.o =

ps,o- Thus, provided 0 < R < R’Syg is small enough one has

R

lo@®llpee = 8x(wE)llpec < 371 +C'R)

which implies the thesis. O
3.2. Proof of Theorem 1.7

The proof is based on the construction of the first terms of the Taylor expansion of
®  through Birkhoff normal form (following [22]). To this end we work with the complex

variables (§,7) (defined in (2.3)) and will eventually restrict to the real subspace Pg°

Remark 3.10. Consider the Taylor expansion of ® at the origin, one has

On =1+ Q%™ +O(|(&,n)5er)
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then Q®~ is a bounded quadratic polynomial. Furthermore, since ® y is canonical, Q®~
is a Hamiltonian vector field, i.e. there exists a cubic complex valued polynomial s,
s.t. Q% is the Hamiltonian vector field of g, -

We need a preliminary result about a uniqueness property of the transformation in-
troducing Birkhoff coordinates (called below Birkhoff map).

Lemma 3.11. Let 5 and ¥y be Birkhoff maps for Hroqa, analytic in some neighborhood

of the origin; assume that d®x(0,0) = d¥x(0,0) = 1 and denote by xa, and xw, the
Hamiltonian functions corresponding to Q®N and QYN respectively, then one has

{Ho;Xoy —Xuy} =0, (3.34)
where Hy is defined in (1.6).
Proof. By a standard computation of the Taylor expansion one has
Hoqq 0 ®n = Ho + {Ho, Xay } + H1 + heo.t.

where H; is the function

N—

,_.

QJJrl
7=0
Since ®p is a Birkhoff map, namely a map introducing Birkhoff coordinates, it follows
that Hpoge © Py is a function of the actions (fjnj)j alone, so in particular its Taylor
expansion contains only terms of even degree. Thus the cubic terms in the expansion

above must vanish: {Hy, x¢, } + H1 = 0. The same argument holds also for the map ¥,
thus the thesis follows. O

Remark 3.12. Writing as usual

Xon(&m) = > xxun"

|K|+|L|=3
one gets that, since
{Ho,xen}=— > iw-(K-L)xx&n",
|K|+|L|=3

eq. (3.34) implies that, if for some K, L one has w - (K — L) # 0, then x, 1 is unique

and coincides with MI{;E%L) with an obvious definition of Hg r..
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Lemma 3.13. In terms of the variables (£,m) one has

Hl (57 77)

1 k1+k2+k3

12 2N k1+ko+k3=0 mod N
1<k1,k2,k3<N—-1

Dhoy v/ Dhoy /g (Ehy EaEks + Mher Mhea i)

+3 Z (_ )kl+k2 R VW \/W_kzszkg (fkl&wnk% +77k177k2sz)

ki1+ko—k3=0 mod N
1<k1,k2,k3<N-1

Proof. First remark that

N—1 N—
1 N _ 2wk _ 2mijk i _ 2mijk
Qj_qurl:—N g |1—e N)e o= E iwge™ ¥ N,
k=0 —
so that
1 N-1 i3 N-1 i
A ~ N [ L.y P PR 3 278 (f 4 o4k
6 ~¢j41)° = 6N3/2 E Why Gy Whs Gy Wiy Gy €~ N F1 T2 ES) E e~ (kithaths)
]:0 k1,k2,k3 =0
i3 mgrs
= 6N1/2 (_1) N wquklwkquzwk}3qk3 .
k1+ko+ks=0 mod N
Substituting

Wl = \/—Sk —}v k

and reorganizing the terms one gets the thesis. 0O

Lemma 3.14. For any s > 0, 0 > 0, there exists C > 0 s.t. one has

10 (@)l ... = CN? 0] (3.35)
where v = ((£1,0,0,...,0),(£,0,0,...,0)) € Py°
Proof. In this proof, for clarity we denote n; := &, and similarly for the other vari-

ables. We are going to compute the & component [Q®¥ (9)]¢, of Q®¥ (v) and exploit the
inequality

> 1 2%¢ 20 1/2

oz Lvann L

Q™ (v))] [Q*~ (¥

23 20, ,1/2 9
_ 2 Y ’X‘I’N(U) . (3.36)

V2N o2
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the only monomials in x¢, contributing to such a quantity are quadratic in (£1,71) and
linear in 72, but due to the selection rule k; + ko 4+ ks = [N with a plus for the £’s and
a minus for the 7’s the only monomial contributing to the r.h.s. of (3.36) is x5 fK
with K := (2,0,...,0), and L = (0,1,0,0,...,0).

Since

2 273 1
w- (K — L)—le—w2—4smﬁ—2s1 ]z; ]\7;3 +O(F>#O’ (3.37)
such a coefficient is uniquely defined and, for the xs, corresponding to any Birkhoff
map, one has
1 wlw;/z
XKL 4v/2N i(2w1 —wa)

(3.38)

Inserting in (3.36) one has that its r.h.s. is equal to

25620(#;/2 WiWs 2 w2
_ 20/7 030 > CN? 0|00

where C, C' and C” are numerical constants independent of N and we used the expan-
sions of wy, wy in 1/N as well as equation (3.37). O

Proof of Theorem 1.7. The thesis immediately follows taking ||v[p., = R/N® and

imposing the inequality (1.11). O
Proof of Corollary 1.9. By Cauchy inequality and assumption (1.12) Q®~ fulfills

R’ NZ2@

peo < w190 - (3.39)

lo™ (@)

Comparing this inequality with (3.35), one gets

/
%NQ(lfa' 2 OIINQ ,

which in particular implies the thesis. O
4. FPU packet of modes: proofs

In this section we prove the results stated in Subsection 1.2 about the persistence of
the metastable packet in the FPU system.

To clarify the procedure, we distinguish here between the (£,7) variables and the
variables (p, q). Thus, we denote by T : (§,7) — (p,q) the change of coordinates of the
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phase space introducing the linear Birkhoff variables (£, 7n) defined in (2.3). Furthermore
it is useful to use for the (p, q) variables the following norms

N—
1
lalls = 5 D_ max(L, [K]R) 2 |y , (4.1)
k:O

,_.

and

1@, Dllpee = [T (0 0)|| pes - (4.2)

Lemma 4.1. Fiz s > 1, 0 > 0, then there exist constants C1,Cy > 0, independent of N,
such that for all (§,m) € P57 and VI > 2 one has

X0 oo A 4.3
Xinor (€Ml < s NEMIL (13)
Xt (€n)lp v € -2 (€ ) (14)
HlOT 777 ’psfl,o iy (l + 1) 77 Psio - .
Proof. Define the difference operators by
St {gto<jen—1 = {q; — gj+1}o<j<n-1 , where gy = qo , (4.5)

and the operator [S, (¢)]' by

{I8+@I'} = a0

so that

Xor(€m) = 77T ( S-[S+(T €)', 0) - (4.6)

1
(+1)!
By Lemma B.3 and Remark B.5 in Appendix B, there exists a constant Cs, > 0,
independent of N, such that for every integer n > 1

[1S<(@) ], , < CEH IS« (@I, < il e mIiz (4.7)

$,0 —

where for the last inequality we have identified the couple (0, ¢) with the corresponding

(&,m) vector.
Then the thesis follows just remarking that HT )|

bounded as an operator from P*#? to itself, while one has

peo = lldlls 5 and that S_ is

1(5-(q),0)]

C
Pps—1,0 S N HqHs,o N
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Introducing the Birkhoff coordinates and using the standard formulae for the pull
back of vector fields® one has the following

Corollary 4.2. Fiz s > 1 and 0 > 0, then there exist constants R, ,,C1,Ca > 0, indepen-
dent of N, such that for all w = (¢,v) € B*°(Rs,,/N?) one has

Ci I+1
1 XH0T00y (W)]lpes < 0 +11)! [ s (4.8)
ch 141
[XH,0r00 y (W)l pa-ie < N |wl|peo - (4.9)
Remark 4.3. Write
Hppy = HppyoT o @y = Hrppao + Hp | (4.10)

where
Hpoda = HppgaoTo®y , Hp:=(—1)HyoT o®y +H® oTo®y , (4.11)

then, provided R is small enough the vector field of Hp fulfills the following estimates

X2, @)l < €18 =10l + C0lns] (4.12)

C
X1, ()| s < 5 [18 = 11 I3

Ps.o +C |wll;

boa] (4.13)
for all w € B*?(R/N?).

In the following we denote by v(t) = (&(t), £(t)) the solution of the FPU model in the
original Cartesian coordinates (we restrict to the real subspace). We denote by w(t) :=
@' (v(t)) the same solution in Birkhoff coordinates.

Lemma 4.4. Fiz s > 2 and 0 > 0. Then there exist R’
By? (#%) with R < R, , implies v(t) € By (3%) for

T, Cs > 0 such that vy €

5,0

T
RA|5 — 1] + CoRp?] -

It < (4.14)

3 Namely

[PxX](z) = dOy' (B (2)) X (@ (z))

which gives the vector field of the transformed Hamiltonian due to the fact that &y is canonical.
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Proof. First consider wy := ®'(vo) and remark that (provided R
one has wy € By? (2£). Denote by M (w) := | wl|?

%o is small enough)
psio . Since {M, HToda} =0, one has
R

t

M(w(t) = Mwo) + [ {M: Hr} (wls))ds (415)

Denoting M (t) := sup|sj<¢ M (w(s)), one has

M(w(t)) < M(wp) +

o _

HM'ﬁp} w(s))‘ds (4.16)

+/ C w(s)lIper 18— 1+ Cllw(s)[

)ds

+O/c 2 (18 =11+ C(t)?) ds

< M(wo) + |t|CI(t)? (|5 — 1+ CM(t)l/Q) , (4.17)

where, in order to prove the second inequality we used {M ‘H p} =dMXg, and

||dM(w)||L('ps,a7(c) S C ||’LU‘ Ps.o s

which follows from an explicit computation. Taking ¢ as in the statement of the lemma
we have that (4.16)(4.17) ensures M (t) < 9M (w(0))/4, which implies w(t) € By (3£)

from which the thesis immediately follows. O

Proof of Theorem 1.16. Inequality (1.21) is a direct consequence of Lemma 4.4. To prove
inequality (1.22) remark that Iy = {Ik, f[p} =1y %ZIP Yk aHP . Thus

N—

,_.

25 2 20[k:]Nw(

2=
=
=
=
b
=

1
N
k:l
N-1

:12 23220[k W(%)

IN
/—\
—
2
,_.
[\.‘J
l\?
l\')
q
?
—~
Z|=
SN—
—~
N
ESI®)
+
=
ESI®)
S~—
~
-
~
(V]
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4 5
por T Clwlpes]|

C
<2 lwllpyre | X g, ()| pe-ro < 57 |18 = 1 f1w]

where in the last inequality we used (4.13). Using that |Ix(w(t)) — Ix(w(0))| <
Iy [{Ik, Hp}(w(s))| ds, one gets

N-1

1 Z k)26 262N G (L) |1 (w(t)) — T (w(0))]

k=1

t|C 4 5
< 7 51 [18 = 1lws) s + C o) |

which, using w(t) € By (3£) immediately implies the thesis. O
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Appendix A. Properties of normally analytic maps

In this section we study the properties of the space N,;(P“’l, 73“’2) and Agf , defined
in Section 2, with weights w! < w?. In particular, we consider the operations on germs
defined in [30] and perform quantitative estimates.

Lemma A.1. Let w! < w? < w? be weights. Let G € Np(Pwl,sz) with |G|, < o and
F € N,(P¥",P*"). Then F o G € N,(P*",P*") and |Fo G|, < |F|,.

Proof. Exploiting the obvious inequality F o G(|v]) < F o G(Jv|) (cf. [30]), one has

[EoGl, = sup [[EoG(v])ll,s < sup  [E(G(0])],s

veBw! (p) veBw (p)
< sup [|E(lulls = 1E,. O
ueB®? (5)
Lemma A.2. Let F € N,(P Pw' P, F = O(v?) and ||, < p/e. Then the map 1+ F
is invertible in B“’l(up) woas in (2.28). Moreover there exists G € NW(’P“’l, P,

G = O(v?), such that (1 + F)"'=1—G, and

(A1)
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Proof. We look for G in the form G =3 ., G", with the homogeneous polynomial G"
to be determined at every order n. Note that the equation defining G can be given in the
form F(v — G(v)) = G(v), which can be recasted in a recursive way giving the formula

v):Z Z FT(G’“(U),"UG]CT‘(U)), Vn>2. (A.2)

r=2ki+-+kp=n

In the formula above kq,...,k. € N, and we write F' = Zr22 F", where F" is a ho-
mogeneous polynomial of degree r and F” is its associated multilinear map (see (2.7)).
Moreover we write G'(v) := v. We show now that the formal series G = " ., G™ with

G" defined by (A.2) is normally analytic in Bv' (up). Note that

() <> S E(GR(el), ., G (o). (A.3)

=2 ky+4-+kp=n

In order to prove that the series > ., G™ is convergent in Bv' (1p), we prove that there
exists a constant A > 0 such that

jresteh] ”A vl

, > 9. A4
w? = 3G n 2 (A-4)

wl

The proof is by induction on n. We will use in the following the chain of inequalities
|| <e el <e B, /i Wz,
see [32]. For n = 2, by (A.2) it follows that G?(v) = F2(v,v). Since

G2 (1Dl < IE2] 0l < e ,, o]l

wl

it follows that (A.4) holds for n = 2 with A = %)1/2 We prove now the inductive
step n — 1 ~ n. Assume therefore that (A.4) holds up to order n — 1. Then one has

G (oDl <> > NEHIEoD]],. - G

r=2ki+---+kr=n

n - E |FJ,
< A H’U”Zl Z Z € prp 8r5rk% p k2

r=2ki+--+k.=n

5, clFL,\"_ IE),
n < n
< ot olln > (C0) < Bl e ol

r=2 2’0
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where in the first inequality we used the fact that w' < w?, in the second the inductive
assumption and in the last we used the hypothesis |F'|, < p/e. Finally to pass from the
second to the third line we used the following inequality, proved in Lemma A.5 below:

1
2 r—1
n E ER < (48), n>1. (A.5)
kit+-+kr=n

Hence, choosing up = 1/A = p/e(325)/? one proves (A.1). O

Now it is easy to prove the following lemma, giving closedness of the class A%f o under
different operations.

Lemma A.3. Let w < w? be weights and let i be as in (2.28). Then the following holds
true:

i) LetFE.A“’2 and G € A”,
of class AY and

with |G

< B2 Then H(v) := F(v+G(v)) is

1 w?2
whHP Ao p
wl P

|Hl| gz < 2]1F]| o
wl,pp wl,p

ii) Let F € A%, and ||F)|

Moreover one has

< p/e. Then (1 + F)~! = 1+ G, with G € A",

2
w
wl
Au; 1, Bp

Gl gwz < 2IFlL s - (A.0)
wELHp we,p

iii) Let F € then the function H(v) := dF(v)v is in the class AY and

w1 P’ w1 P

1Hl gz < 20F|| e
w,pp wh,p

iv) Let F°,G° € AY  with ||F°|
dGO(v)*(F(v)) is in the class AY

sz < 2. Denote F = 1 + F°. Then H(v) :=

w1 p and

||H||Awf <2|c° AT
wEL,pp we,p

Proof.

i) Since H(|v|) < E(Jv] + G(|v])) it follows that [H],, < |F|,,, < [F]|,. Furthermore,
since dH (v) = dF(v+ G(v))(1 + dG(v)) one gets that dH (Jv]) < dF(Jv] + G(|v|)) +
dE(Ju] + G(o]))dG(fu]), which implies that up|dH],, < |dE|, (o + o dCl,,) <
|dF'|, up(1 + 1/e). The adjoint dH (v)* is estimated analogously, thus the claimed
estimate follows.
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i7) It follows from the formula dG(v) = [1 — dF (v — G(v))]"'dF (v — G(v)), arguing as
in item 7).

iii) Tt follows from dH (v)u = dF (v)u + d*F(v)(u,v), arguing as in item 7).

i) To estimate H(|v|) and dH(|v|]) one proceeds as in item ¢). In order to es-
timate dH (|v])* remark that (see [30]) dH(v)*u = (dF°(v)* + 1)dG°(v)u +
d,(dGO(v)*u)(F(v)), thus

dH (v])*[u| < (dE2(|v])*" + 1)dG°(|v])|ul + djuy (dG(|0])*|ul)(£(|v])) -
The claimed estimate follows easily. O

Now we analyze the flow generated by a vector field of class Agf o Given a time
dependent vector field V;(v), consider the differential equation

(A7)

We will denote by ¢!(v) the corresponding flow map whose existence and properties are
given in the next lemma.

Lemma A.4. Assume that the map [0,1] 5t +— V; € AYY s continuous and furthermore

wl p
fulfills supyeo 1) IVill qwz < p/e; then for each t € [0,1], ¢* —1 € AZ? up With p as in
wl,p )
(2.28). Furthermore one has
A =1 yr <2 sup Vil yuz - (A.8)
16 s <2 s Wil

Proof. We look for a solution u(t,v) =3, u? (t,v) in power series of v, with u/(¢,v) a
homogeneous polynomial of degree j in v. Expanding the vector field V;(v) = > -, V[ (v)
in Taylor series, one obtains the recursive formula for the solution

ut(t,v) = v,

u™(t,v) = Z /ﬁr(ukl(s,v), ufr(s,0)) ds Y > 2, (A.9)
: 0

where V/ is the multilinear map associated to VI (see (2.7)). Arguing as in the proof of
(A.2) one gets the bounds

SUPteo,1] |E|

I ()l o € — <= A ol V22, (A.10)

with A = %(328)1/2, from which it follows that |¢' — ]l’#p < SUPyeqo 1] ‘E‘p /8.
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We come to the estimate of the differential of u(t, v) and of its adjoint. We differentiate
equation (A.9) getting the recursive formula

t

()= /[Zr(dukl(s,v)&.-.,uk"(s,v))+~~

r=2ki+---+k.-=n 0

+ V(W (s,0), ..., dut (s,0)€)] ds . (A.11)

To estimate such an expression remark that, defining E;(v) := dV;(v) (where the differ-
ential is with respect to the v variable only), one has

d" LB (uh2(s,0), ..., ub (s,0)€ = V(€ uk2(s,0),. .., ub (s,0))

which allows to write formula (A.11) as

t

du™(t,v)§ = Z Z / (A" By (uf2(s,0), ..., uFr (s, 0))dub (s, 0)€ + ...

r=2 ky+-+ky=n )

o dTTYE (UM (s,0), . ub e (s, 0))dut (s, v)¢] ds . (A.12)

This formula allows to proceed exactly as in the estimate of w", namely making the
inductive assumption that

SUP¢e[0,1) @|

I (t, )l ot o2y < ——ggz—A" [Vl

and proceeding as above one gets the thesis. Finally one has to estimate [du"]*, but
again equation (A.12) allows to obtain a formula whose estimate is obtained exactly as
the estimate of du. O

We prove now a useful inequality.

Lemma A.5. (See [37].) Let v € N be fized and S =3+, 2. Then for every n € N it
holds that

2 ;2

2 1 n J TL2 r—2
Y mEs X mE 2 e s X pa®

kitoothkp=n "1 T kitg=n Y kotethe=j 2 T kgek
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by the induction assumption. Now it is enough to note that

> owEs 2 k2n—k1 <QZ(—2 nikl )<4Zk2_ 5

ki+j=n ki ki+j=n k=1 k=1

Appendix B. Discrete Fourier transform

In this section we collect some well-known properties of the discrete Fourier transform
(DFT). For u € CN, N € N, the DFT of u is the vector & € C whose kth component
is defined by

N—
iy = Z 2TIRIN <k < N —1. (B.1)
7=0

When the DFT is considered as a map, it will be denoted by F, i.e. F : u > 4.
For any s > 0 and o > 0 we endow C" with the norm [[l5,, defined in (4.1). Such a
space will be denoted by C*7.

Remark B.1. Let j be an integer such that 0 < 7 < N — 1. Then

2

_1 e .
2™ Ik/N = {0 ifj#0 and
N ifj=0

i

2

=

—1 L .
m 6i'n'kj/N — {2\/Nul, Jeven, j = 21 (BQ)

0 j odd

~
Il

0

Remark B.2. Fix s > % and o > 0. Then there exists a constant Cs , > 0, independent
of N, such that for every u € CV the following estimate holds:

sup  |uy| < Cso lully, -
0<j<N-1

For u,v € CV, we denote by u - v the component-wise product of u and v, namely the
vector whose jth component is given by the product of the jth components of v and v:

U V)i = UV, 0<j<N-1. B.3
J G Uj

We denote by u * v the convolution product of v and v, a vector whose jth component
is defined by

UKV); = URVi—k, 0<j<N-1, B4
J j
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where in the summation above u and v are extended periodically defining vgn = vg

for [ € Z. The DFT maps the component-wise product in convolution:

Lemma B.3. For s > % and o > 0 there exists a constant Cs , > 0, independent of N,

such that the following holds:

(i) ﬁ:LNa*ﬁ;

(#0) flu-vll, o < Csollully o IVl o5

(iii) the map X : u s u?, has bounded modulus w.r.t. the exponentials, and || X (u)]|

2
Cso lulll o

Proof. Item (i) is standard and the details of the proof are omitted.
We prove now item (#). To begin, note that, by periodicity, one has

1
2 o ~ 12
lel, =5 3 (e

kEKYS,

where the set

Ky :={keZ:—(N-1)/2<k<(N-1)/2yU{|N/2]},

while [k] := max(1, |k mod N|). By item (i), one has that

N-1

— 1
”u . vHi,a _ Z 23 20’“()“ k|2 _ ﬁ Z [k]25620|k|

keKO kEKY,

1=0
Introduce now the quantities

- [k‘}s ecr|k\
Vel -= [l]s [k _ ”s eolllgalk—1] ~

([k*l]QS+[l]25) e20 (Ik—=1+[1)

E Uk —y

<

s,0

(B.5)

(B.6)

For s > § and ¢ > 0, it holds that 77, < 4° 17 e e e < 4° (ﬁ + ﬁ),
from which it follows that there exists a constant Cs , > 0, independent of N, such that

N-1
sup Z ,YI%,I < Cs o

0<k<N-1 775

By Cauchy—Schwartz one has

N-1 N-1
B1%eTF 0N ™ i [or—t] = > yea [11° €7 au] [k — 1)° e F ! [y
=0 =0

(B.7)
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N-1 /2 /N 1/2
< ( > %3,1) (Z (12 €1 Jay|* [k — 1)* >+ |@k—z|2> :
1=0

=0

Inserting the inequality above in (B.6), one has

c N-1 2 /N 1/2
”u UHSU < ;}a (Zm% €2a\l| |al|2> (Z 23 20|k ] |Uk l|2>

1=0 k=0
S 0870' H/U/Hs’o' ||UHS,O' :

We prove now item (4i¢). Consider X = FXF~'. By item (1) one has X: {U;}jez —
{\/Lﬁ > tj—1}jez. Thus X = X and the claim follows. O

Remark B.4. Let Sy be the difference operators defined in (4.5). Let &+ be the vectors
whose kth components are given by @4, :==1— eF2mk/N Then the following holds:

(i) the map §i = FS+F~!is a multiplication by the vector @4 : §i IS ATIRE R

ii) ‘gj(ﬁ ‘ < w - |G|, where w = {w ( ) év ! is the vector of the linear frequencies.

Remark B.5. Consider ¢ = ¢(&,7n) as a function of the linear Birkhoff variables defined
1 (2.3). Then one has H (g ‘ <1166, n)]

7)? o
Appendix C. Proof of Proposition 3.3

We prove now property (©1). Let T : (£,17) — (p,q) be the map introducing linear
Birkhoff coordinates. Explicitly (p,q) = T(&,n) iff (po, §o) = (0,0) and

(P> Gr) = %w (£) (& +nv-), ;k(&c —nN-k) |, 1<kE<SN-1.
/2w ()

Then ©z = © o T and in particular dO=(0,0) = d©(0,0)T. Using the formula above
and the fact that dO(0,0)(P,Q) = (—P,$54(Q)), where S, is defined in (4.5), one
obtains easily formula (3.13). The estimate of ||d9 0,0) ||£ peo, o) is trivial, and is
omitted.

We prove now the estimate for Hd@_E(O, 0)* Cotlio, o)’ Using the explicit formula

(3.13), one computes that (£,n) = d©=(0,0)*(B, A) iff

(€ ) = | /2w () By + — e Ay, —/hw (£)Byoy — — Ay
i/ 2w i/ 2w (%)

for 1 < k < N — 1. Thus there exist constants C, Ce, > 0, independent of N, such that
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1d©=(0,0)" (B, A)|

N—1 1/2
S o 2 D n
pos < ( Y KR NG () <Bk|2+|Ak2>>

k=1

Co
< —(B,A
< =22 (B, 4)

Cst+lo

where we used that |w (£) |2 < WQJ@?V. Thus the second of (3.14) is proved.

We prove now property (02). Denote by O, the map p — —p and by O, the map
q — exp (%S+(q)) —1. Then (b,a) = O(p, q) = (04(p), Ou(q))- Introduce on CV the norm
|l » defined in (4.1). Then [|©(p, = ||@b(p)||io + ||@a(q)||§’g. The analyticity of
p — O(p) is obvious. Consider now the map ¢ — 0,(q). Expand ©, in Taylor series
with center at the origin to get

D= 0ia),  Oi) = e (S @), Vr>1 (eRY

r>1

Consider ¢ as a function of the linear Birkhoff variables £, n. Then Lemma B.3 and
Remark B.5 imply that for any s >0, 0 >0

T < r
S+(q) it = Cy 1€, I

<IN (€ V> 2, (C2)

[CA®

<C1

s+1,0

s+1,0

where C1, C5, C3 > 0 are positive constants independent of N. Therefore for e < CLS one
has

Oz(&:n

sup
(€Ml ps,0 <e/N?

Cs+1l,0 < Z

r>2 1Em Hpb a<6/N2

0L (&)

Cs+1,a

€’ 202¢2
< CIN™ < =3

This proves the first estimate in (©2). We show now that for any s > 0, o > 0 one has
[dOL]* € N N2 (P57, L(C*F27, P5t1)). Note that dO=(&,n)* = T*dO(T(€,1))*. Using
the explicit expression of T', one verifies that (§,n) = T*(P, Q) iff

(&ks 1) = 1o (£)P +

for 1 <k < N — 1. Thus one has that for any s >0, 0 >0

1770, @llps.e < 1R, - (C.4)
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Using (C.1) one verifies that dO"(p, q)(P, Q) = m (0, S+(g)" - S4(Q)), Vr > 2,
from which it follows that

1

40" (p,a)" (B, 4) = Ty

(o, m’“*l-s_(A)) . Wr>2.

Thus, using estimate (C.4), there exists a constant Cy > 0, independent of N, such that

r—1

|20z e m)* (B, 4))

< G ||Setatem)

< CINT2 (&)

5_(4)

Ps+l,o s+1,0

e (B, A)

s+1,0

Cs+2,0 -

Then there exist Cs, g > 0, independent of N, such that V0 < e < ¢

dOz(&,n)*

sup
1E€mps,o <e/N?

L(Cs+2:0 Pstl,o)

dOz(§,n)"

< Z sup

r>2 €M ps,c <e/N?

r—1
R Cse
<D COIN" ey <

r>2

L(Cs+2.0 Pstlo)

Appendix D. Proof of Lemma 3.6 and Corollary 3.7

Proof of Lemma 3.6. Since the map (b,a) — L,(b,a) is linear, it is enough to prove that
it is continuous from C*? to L£(C*V). In particular we will prove that

ey < s (Il + 2suplas]). (D.1)
0<j<N-1 j

This estimate, together with Lemma B.2, proves (3.20). In order to prove (D.1), write
L, =D+ AT + A=, where D is the diagonal part of L, and A* are defined by

0 ap 0 anN-—1

aN—1 0 aN—2 0

To estimate the norms of D, AT and A~ is enough to observe that for every x € C2N
one has

2N-1

2
2 2 2
1Dy = 3 [y <( sup |bj|) e .
= 0<j<N-1
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2
2 2
S T ) I T
0<j<N-1
where ||| cen is the standard Euclidean norm on C?V. Thus (D.1) follows. O

Proof of Corollary 3.7. Ttem (i) follows by standard perturbation theory, and the de-
tails are omitted. We prove now item (i¢). Let I'; be the circle defined by T

{AeC: XY, - Al = 3%z }, counter-clockwise oriented. By item (i), for any [|(b, a)||¢..o
S, Aoj(b,a) and Agj_1(b,a) are inside the ball enclosed by T';. Write Ly, — A
Lo—A+L,=(Lo—\) (1 +(Lo—N"" Lp); its inverse

oA i

(Loa =N = (fj (—(LO—AVLP)") (Lo =N (D-2)

n=0

is well defined as a Neumann operator when H(LO Nt Lp‘

< 1. Since Ly — A is
£(C2N)

diagonalizable with {(A) —\)}o<j<2n 1 as eigenvalues, the norm of its inverse is bounded
by the inverse of the smallest eigenvalue:

-1 1 2
s 20 =07 < e[| <2 (D3)
’ 0<k<2N—1

where the last estimate is due to the form of I';. Therefore for 0 < € < €, and

16, @)

cso < Jz one gets, using (3.20),

|zo-n""1,

1
c(c2my < Eplleico) H<L0 — Hc(cw)

< Cso [|(bya)| oo 2N? < 2C5 yé,

which proves the convergence of the Neumann series (D.2) for €, <
Substituting (D.2) in (3.18) we get, for 1 < j < N —1,

1
2Cs,0 "

Py(bya) = P — —— (Z (- (Lo-n7" L,,)”) (Lo—N)""d\. (D)
r

2mi
J

Since the series inside the integral is absolutely and uniformly convergent for (b,a) €
B¢ (%2), (b,a) — Pj(b,a) is analytic as a map from B¢ (5=) to L(C*Y). Estimate
(3.22) follows easily from (D.4).

We prove now item (i). Properties (U1)-(U3) are standard [29]. The analyticity
of the map (b,a) — U,(b,a) follows from item (7). Indeed, in order for U,;(b,a) to be
defined as a Neumann series one needs |[P;(b,a) — Pjol| ;cany < 1, which follows from

(3.22). Estimate (3.23) follows by expanding (3.19) in power series of P;(b,a) — Pjo. O
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Appendix E. Proof of Proposition 3.8

Denote by D : CN=1 — CN~1! the diagonal operator

S —1/2

D:{&h<jenv—1 = {Di&cicn—1, where Dj:= (%w (%)) (E.1)

Proof of properties (Z1)~(Z3). Property (Z1) follows from formula (3.25), since®:

2j(b,a) = Di((Lb,a = AY;) Uj faj,0, Uj faj0) = Dj (U f25.0, (Lba — A9;) Uj fj0)
= D; (Uj faj—1,0, (Lba — A3;) Uj faj—1.0) = Dj {(Lba — X3;) faj—1, faj—1)

= w,(b,a).

We prove now (Z2). Using Lemma 3.7(v) and the fact that fo;0 = foj—1,0, decompose
f25,0 and fa; in real and imaginary parts:

fajo=ejo+ihjo,  faj =ej +ih;
f2j—10 = €j0 —ihjo,  faj-1 =€; —ihy,
where

€j,0 == Re faj0,  hjo:=1Im faj0, and

ej = Re fo; = Ujejo, hy:=1Im fo; =Ujhjg.

The vectors {e;, h; } form a real orthogonal basis for E;(b, a). Let M;(b,a) be the matrix

of the selfadjoint operator Ly , — )\gj| with respect to this basis:

Ej (b,a)

o= (2 %)

The eigenvalues of M; are obviously Aaj — Agj and Agj_q — )\gj, hence

Tr My = a; + B = (Agj — A9;) + (Agjm1 — Ay;)
Det Mj = Otjﬁj — O'j2~ = ()\2]‘ — /\gj) ()\2]‘_1 — )\(2)]) .

Now observe that

zj(b,a) = Dj ((Lua — X3;) (€ +ihy), (ej — ihy))
= D; (Lo — 29;) €j,¢5) — Dj ((Lba — A9;) by hy)

4 To simplify the notation, we write fi = fj(b,a) and U; = U, (b, a).
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+2iD; ((Ly,a — AY;) €5, hj)

= (2w ($) (0 - B +i20)).

Finally one computes
()\2]‘ — )\2j71)2 = (TI' Mj)2 — 4Det, Mj = (ij + 5]')2 - 40éj5j +40'J2
= (a; — B;)° +40% = (Re ;)" + (Im 2;)* = (Zw (£)) |2 (b, a)|*.
We prove now (Z3). The first order terms of z; and w; in (b, a) are given by

dz;(0,0)(b,a) = D; (Ly faj0, f2j0), dw;(0,0)(b,a) = D; (Lyfaj—1,0, foj—1,0)
1<j<N-1.
Using the explicit formula for fs; in Lemma 3.4, one computes

2N -1
1

(Lpf25.05 F25.0) = N Y bt a1 €200 g epit el
=0
1 2N—-1
- — Z bie2 N L g 27 (=1/N gip; | g o271 /N gip;
=0
1 1

- Z) +2eipj&.) - -
(b )= TN
The formula for dz;(0,0)(b, a) immediately follows. The one for dw;(0,0)(b, a) is proved
in the same way and the details are omitted.

The estimate (3.28) for dZ(0,0) follows immediately. We estimate now the norm of
dZ(0,0)*. One checks that (B, A) = dZ(0,0)*(¢,n) iff Bo = Ap =0andfor1 <k < N-1

(b — 2¢7/Nay ). (E.2)

~ 1
(Bi, k) = | ————=

2
&k +nv—k), ——(
2w () V2w (%)

Thus there exist constants C,C’,Cz > 0, independent of N, such that

ei”k/ka + eiTr(N—k)/NnN_k)

2 ¢’ py 2s 20[k] k [k]éll\f 2 2
Cot2io S N (K] e MNw (£) 2 (1k 1> + Inx]?)
k=1 w (%)

< CZN*||(&m)]

1dZ(0,0)* (&, n)]

2
Pps,o

where in the last inequality we used that [k]3/w (%)2 < C"N* for some constant C" > 0
independent of N. Thus the second of (3.28) is proved.
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Proof of property (Z4). We will prove that Z is normally analytic. Recall that, as men-
tioned in the discussion before Proposition 3.3, the map Z is said to be normally analytic
if Z := ZF is normally analytic. With an abuse of notations, we omit the “check” from Z.

We begin by expanding the components of Z, denoted by Z;(b,a) := (z;(b,a),
w;(b,a)), in Taylor series with center at (b, a) = (0,0). The first two terms of the expan-
sions are given by

2j(b,a) = Dj(Ly faj 0, f2j,0) + Dj{Ly (Lo — /\(2)3‘)_1 (1 = Pjo) Lp f25.0, f25.0) + O((b,a)*),
w;(b,a) = Dj(Lyf2j-1,0, f2j—1,0) + Dj(Lp (Lo — /\(Q)j)_l (L = Pjo) Ly f25-1,05 f2j—1,0)
+O((b,a)?). (E.3)

To perform the Taylor expansion at every order it is convenient to proceed in the following
way. Write z;(b,a) = z;j,1(b, a) + zj,2(b, a) and w;(b, a) = w;1(b,a) + w; 2(b,a) where

2ia(b,0) = Dy ( (Lo = A3;) a3 (b, ), Fo; (b, a) )

Zj,g(b, CL) = Dj <Lpf2j (b, CL), fgj (b, a)> 5 (E4)
while w; 1(b,a) and w;2(b,a) are defined as in (E.4), but with fo;_1(b,a) replacing
fQj (b, CL).

Expand zj<(b,a), s = 1,2, in Taylor series with center at (b,a) = (0,0): z;(b,a) =

b,a), with z?_ a homogeneous polynomial of degree n in b, a. We write an
n>1 % s g Y g
analogous expansion for w; (b, a). Therefore one has

Z7(bya) = (27 (b, a), w}(b,a)) = (z}fl(b, a) + 25(b,a), wiy(b,a) + wjy(b, a)) .

In order to write explicitly 27 (b,a) as a function of b and a, one needs to expand the
vectors fa;(b,a) and fo;_1(b, a) in Taylor series of b, a. Rewrite (3.19), (3.24) as

f2(b,a) = Uj(b,a) f2j0 = (]1 — (Pj(b,a) — 10)2)_1/2 (11 + (Pj(b,a) — PJO))J%,O

and expand the r.h.s. above in power series of P;(b,a) — Pjo, getting:

f2] b a Z Cm PjO)m f2j,03
m=0
f2j—1(b,a) Z em ( = Pjo)" faj-1,0 (E.5)

where the ¢,,’s are the coefficients of the Taylor series of the function ¢(z) = ﬂlda%

Note that copt1 = cop = (—1)’“(7}9/2), where (72/2) = —%(—% -1 (—5 —k+1)is
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the product of k negative terms, thus (—1)]“(_2/2) > 0, Vk > 0, and therefore ¢, > 0,
vm.
By Corollary 3.7 (see also formula (D.4)) one has, in the ball B¢’ (e, /N?),
Py(ba) = P = 5o S (-1 $ T, ) (Lo = 27" dn (E6)
n=1 r;

where the T';’s are defined as in equation (3.18), and

T(b,a,\) := (Lo —A\) "L, .

Substituting (E.6) in (E.5) we get that

f2j(b’a):f2j,O+Z Z Cm Z f2aj,m(b’a)a

n>11<m<n a=(aq,...,ap, ) EN™, |a|=n

f55.m (b, a)
= (1) (—1)‘“'%...%Tﬂl(b,a,)\1) (Lo — M)~ ",
21w
r; r;
X T (b, @y Am) (Lo = Am) ™" fajodAs ... dA,. (E.7)

An analogous expansion holds for fa;_1(b,a), with fo;_1 ¢ substituting fs; o in the in-
tegral formula above. In order to write explicitly the expression inside the integral, one
needs to compute the iterated terms 7™ (b, a, A) f25,0 and T (b, a, A) fa;—1,0. The compu-
tation turns out to be simpler if we express L, f2;,0 in the basis of the eigenvectors of Lg.
To simplify the notations we relabel the eigenvectors of Lg in the following way:

90 == foo, 9gn = fan-1,0, 95 = f20. 9-j = faj—10, for1<j<N-—-1

and the eigenvalues of Ly as

o =2, An = Ay Aj = )\gj, A= )\gj_l, for1<j<N-1
For every 1 < j < N — 1 one has that g; = g_;, formally, one can also write g;1on = gj,
Aj = A_j and \jion = \j, as one verifies using the explicit expressions of the g;’s and
5\j’s. In this notation, for A # j\ij, one has (Lo — \)"lgy; = gij/(j\ij — ). With a
computation analogous to the one in (E.2) (using also the second formula in (B.2)), one
verifies that the projection of L,g; on the vector g is given by
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1 )
<LP gjvgk> = \/—N (b% — 2cos (kﬁﬂ') a%) §(j—k;even)7 (ES)

where d(j_gieveny = 1 if j — & is an even integer, and equals 0 otherwise. Formula (I.8)
implies that L,g; is supported only on the vectors g, whose index k satisfies k = j — 21
for some integer . Therefore we can write

xt

T(ba a, A)g] = =~ _9j-21,
leKY, Aj—21 — A
]. ~ y— T N
xé = <Lpgj,gj_21> = ﬁ (bl — 2cos (%) al) , (E.9)

where K¢ is the set of indexes defined in (B.5). Note that |x§| < \/LN (|l31| + |&l|>
I+N _

uniformly in j, and 27" = zf. Tterating (E.9) one gets

L1 0 Lin
- X524y iy — 24,
T"(b,a,)) (Lo =N " gj= e T 2y — 2
e A= NI (A . =
i1, in €KY ( J =1 \Yj—2%t _im
More generally, for a vector o = (a1, ..., y,) € N with |a| = n and Ay, -+, Ay, € Ty,

one has

T (b, ay Am) (Lo — Am) ™" - T (b a, A1) (Lo — A1)~ gj

zh'?

_ Z J j—2 "

N n N m—1
ieinekd (N = A T2y ()‘j—22£n=1 im Ml) =1 ()\j,zzaﬁ-»-wz —— )\l+1)

h=1 *h

in,
Lj—2iy == 2in s

X Gj—2i1——2ip (E.10)
where
k—1 k
w=M for 1 <l <o, and p;= M\ for Zah+1§l§2ah, 2<k<m.
h=1 h=1
(E.11)

To obtain the explicit expression of 27’ and w7, ¢ = 1,2, in terms of the Fourier variables

b, &, we substitute (E.10) in (E.7) and the obtained result in (E.4). By (E.7), z7y is a
sum of terms of the form <(L0 — )\gj) I35 o1 f;ép2> over (p,a, ) € N2 x NPt x NP2 with
Ip| = p1 +p2 < nand |a| +|5| = n. For |a| =r, || = n — r one gets
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0 J ) 25,010 J24,p2
\p\
— p C'é 5 21 22 ir
= Loy X j24y— 24y

X TP -wéﬁﬁin,...,gw (Gj—2ir—=2i,, Gj=2i, 1120, ) dA1 .. dApp),

(E.12)
where, writing i = (i1, -, in),
p,0,f3
wia (1)
(Mespin — )
(S‘J' — A1) H?:1 ( =23 im ﬂl> le ! (S\J gyertter, )\l+1>
1
X — - 1
(A = A1) I ()\J 25 im ) Lz, ( —2 g, T /\l+1)

(E.13)

and the fi;’s are defined as in (E.11), but with the multi-index £ replacing «. Similarly, the

term 27, is a sum of terms of the form <Lp I35 o1 fzﬂjp2> over (p,a, 8) € N2 x NP1 x NP2

=n — 1. The term <Lp IS5 o1 fzﬂj,m> has an expression similar

o (E.12), and for |a| = r and |8] = n — 1 — r the kernel Iig”g’ﬁ(i) is given by

w7 ()

)

1
(5\j - )\I)H;:l ( j— 2Zm Lim ) le_l (A] 22&1+ tag T )\l—i-l)
1
X — ~ - - .
(A = A1) [T ()‘j—Q Y yim T ) = ( 2 P, T /\l“)

(E.14)

Using the explicit form of the eigenvectors {gr}_y_1)<p<n (see Lemma 3.4), one verifies
that

n
(G20 200, T2t g1 —2in) =0 (j, > im> ;
m=1
<gN7j72i17---72i,,79N7j72i,,,+17---72zn =0 ( Js Z @m> .
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This is used to simplify the last term in (E.12). Moreover, using j = > _, 4, and the
identity A; = A_;, one gets that
/\j—Zin = )\]-72 Z::l—:ll i PN )\j_Qin_Qin_l_..._QiT+l = )‘j—2 ST L ime (E15)

Recalling the definition of the coefficients x (formula (E.9)), we can write, for ¢ = 1,2,

n (3 A 1 j _1/2 .
2o (ba) = s (Fw (%)) > Kp G0 iy i, (E.16)
(i,e) €A™

where the set
A" :={(i,t) €Z" xN": i, € K}, y€{1,2}, V1<I<n},

the variables uw = (u;, 4, , -, Ui, ., ) are defined by

~

Ui, 1= by, Us, 2 1= ;.

the kernels K7 (i, ¢) are defined for (i,¢) € A" by

Ky ) =Ko @) [ (~2eos (U2ip=zion) )" (B.17)

{1<i<n}
L= 2 wme > SO (E18)
r+s=n—(s—1) (e, ) ENP1 xNP2
p=(p1.p2)€N?, |p|<n la=r, |Bl=s

and finally

SheP (i) —(5(],sz>( >|pl f 74? Py drg ... A (E.19)

An analogous expansion holds also for w}; and w7 ,.

We need now to get estimates of the kernels K, which will follow from estimates on

B
the denominators of /<;p b,

Lemma E.1. Let p € I'; = {)\E(C ’)\ A9 ‘_m1n<2<]<,>27<12v]\72>)}; where (j) =

(1 + |j|2)1/2. Then there exists a constant R > 0, independent of N, such that for every
—(N —=1) <k <N one has

(E.20)

u‘>{R<j—k><j+k>/N2» if 0 < |j] < [N/2)
R(j = k){((N —j)+ (N —k))/N?, if IN/2] +1<|j|<N
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Proof. Consider first the situation in which both the eigenvalues j\j and \; are in the
low half of the spectrum, namely 0 < |j],|k| < [IN/2]. In this case one has

|5‘k - 5‘J| = |)‘g|k| - )\g|j‘| =2 ‘COS (“g%) — cos (%)’
= 2]cos (5) — cos (47)] >

Therefore, for k # j, there exists a positive constant R; such that for Vu € I';

G) L HP=RG) | =Rk

5\—’> - ,
"“ H = 9NZ = N? N2 = N2

A — Xj’ (E.21)
where we used the inequality (j) < 2(j — k) (j + k), which holds since j, k are integers.
If k = j, then the claimed estimate follows trivially since |\s — | = (j)/2N2.

Consider now the case when j\j is in the low half of the spectrum, while M\ is in the
high half, i.e. 0 < |j] < | N/2|, while |[N/2] < |k| < N. In this case the distance of the
eigenvalues 5\j and Ay, is of order %, therefore the estimate (E.20) holds as well. More
precisely, using cosx > 1 — %x for 0 <z < /2, one has

N N N—|k|)mw j v
A — Aj|l = |/\3|k| — )‘gljl| =2 ‘cos (%) + cos (]W)

JAQK =) S =R G+
= N ~ N2

where the last inequality holds since (I) /N < 4, V|| < 2N. The inequality above implies
that

Smp] = Ay - L UER R )
=R (G +B)

2 R2 N2 Y

(E.22)

for some Ry > 0. Thus the first of (E.20) is proved.
The proof of the second inequality of (E.20) follows by symmetry and is omitted. O

We can now estimate the kernels K7 defined in (E.17).

Lemma E.2. There exists a constant R > 0, independent of N, such that ’ng(i,b),
¢ = 1,2, satisfy, for everyn > 2 and 1 < j < |N/2|, the estimates

” 1
[ e)] < RN 15 (j, i ) :
2 2 W ) ()

1
22:1 Z'k> <Z§c:1 ik — j> .

=1 =1
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Proof. We start by estimating x'" (1), defined in (E.13) and (E.14). For every —(N —
1) <k < N and p € T'; one has )\k — ,u‘ > ‘/\j — ,u‘ > min (2%)2, <]2V]\72j>), therefore

p1—1 p2—1

(A = A1) H ()\] R —/\z+1) Ky = M) [T (XHE%.,M . —Am)
1=1 - '

o (52

Let now 1 < j < |[N/2|]. By Lemma E.I, formula (E.15) and the inequality

Xjayr
M < 2 (which is used to estimate just £7}" A(i)), it follows that, for ¢ = 1,2,
j—2 an 1 'm -

a,B e 2
K ’ﬂ(l)‘ < ) NS
: () (N—j) n—115 _
min \ sz, 3Nz 1=1 =23 L im i
2a,;(i1, ,in—1)
- . . [p|
e (50
where
Rn—lNZ(n—l)

aj(i, -, ip_1) =

;11 <Z§e=1 Zk> <Z§c=1 ik _j> .

To estimate Sﬁ;a’ﬁ consider (E.19). The Sﬁ;a’ﬁ’s are defined by integrating the kernels

?f"ﬁ over I'; |p|-times. Since |T'j| = 27 min (2<j2, <12VNJ>) one gets

< {min (%,“\jw )}‘p‘ <3,2n>
<26 (gzn:zl> aj(in, -y in_1)-

=1

K

Hﬂ

NN
S;i:“ (i)

Finally consider K7 . From (E.17) one has |IC i) <2n |IC (i)|, and from (E.18)

{IC i) < 0 (j,Zu) a;(i1, - n—1) Z Cp1 Cpy Z 1

r+s=n—(s—1) (o, 8) ENPL X NP2
p=(p1,p2)EN?, p|<n lal=r, |B|=s

n
SC’IL(S (]7 Zl) 117"'7in—1) )
=1
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thus the first estimate of (E.23) follows. The proof of the second one is similar, and is
omitted. O

Define now K7 := K%' + K7,. Then

n(y A D; n(s
Zj (b,a) = NnJ/Q Z ’Cj (i¢) Wigyen + s Wi

(i,e) €A™
I Nn/2 7 \h i1,01 0 Wiy iy .
(i,)eAm™
where Hj(i,¢) = K}

(—i,¢). The second formula holds since for b, a real one has
w"(b,a) = z™(b,a)

Corollary E.3. Let A} := {(i,0) € A" : Y /L iy = j}. Then for 1 < j < [N/2] one has
supp K € A7 and supp Ky, _; € A” ;. Moreover

RnNQ(n—l)

HK?HA?’ KR T (E.25)

n —_
AL

where ||/C;‘||2A?

. 2
= SUD, L e(1.2) 2oy oein =) }’C?(l’ L)|

2
Proof. Just remark that W;gﬁ <4 (<k1>2 + (k_1j>2). O

We prove now bounds on the map Z"(b,a) := (2"(b, a), w™(b, a)).

Lemma E.4. There exists a constant C > 0, independent of N, such that for any s > 0
and o >0

|z ol a|

< "N (b, )

n
Pst+l,oc Cs:0 vn Z 2 (E26)
Proof. By formula (E.16) one has that for 1 < j < |N/2]
n 5 A < Dj Kni
gj (| |7|a‘) = Nn/ Z ’ j<17l’)||ui1,01|"‘|’u’in,Ln|7
(i,L)eAT}
(bl )| < <22 Kr (i , , £.97
zn—; (ol ]al)| < N/ Z | N,j(l,L)| Wiy iy | iy ] (E.27)
(i,L)eAr;

Introduce A(i)

[i1] - - - [¢n], where [i,] = max(1,|iy]|) V1 <7 < n, and remark that for
some constant R > 0 one has
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R
sup  A()7P < —, Vj € Z.
i1t Fin=j ()

Therefore, by Corollary E.3,

o 2
25 (ol al)|

1
<N—D2HIC"HN( sup A(i)QS) ST i L) i 2,

i1+"'+in:j (i L)GA—(L
’ J

R 2
&4WM

2 o\ — . .
< _N” D2 HIC jHAn ‘ ( sup A(i) 28) E [ll]2s|uiw1 |2 cee [Zn]2s|uin,bn|2~
SNt in=g (i, )eAr .

’ —J

Use now inequalities (E.25), the definition of D;, the fact that

620’|j\ < e20’|i1| . 620“"’1|€2U|j7i17"'7i"*1‘7

and the bounds |u;,,| < |b| 4 |é], to deduce that, for any n > 2,

o A 2
27 (Bl lal)|

1 [N/2] _ . . 9
¥ 2 Pt () ( e
j=1

on W72 4
R D Rt N SO (1Yl (2P e 4l (P
j=1 (e)ean,

< NUDE (b, a) 2
Since w™ (b, &) satisfies the same inequality, estimate (E.26) holds. O
Consider now the map (b,a) — dZ"(b,a)*, where dZ™(b,a)* is the adjoint of the

differential of Z". Explicitly, if £, n are vectors in CV~1 and h, ¢ are vectors in C" such
that (h,g) = dZ”(lA), a)*(&,n), then the jth components of h and g are given by

Pl D ow?
h i» 95) — Ak 67 a + Ak 85 a )
(hjs 9;) (}; <3bj( a)ék b, ( a)%)

N—1 T o
3 (gz (b, a)&y, + %f(b a)n )) (E.28)

k=1

Denote by h, g the vectors of CY whose components are given by
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N-1 Oz
(hy> 95) = <Z (8{(“} k] + —5 WE (1o, al)lml)

N-1
(az’“ (Bl el + G (5, a|>|nk|>> (E:29)

k=1 j

We begin to study the case n = 2.

Lemma E.5. There exists a constant R > 0, independent of N, such that Vs >0, 0 >0
one has

< RN®||(b,a)]|¢e.0 ||, m)]

|z oLty (e, 1 | e (E30)

Cs+2.0

Proof. By (E.3), one computes that the second order terms Z2 = (22, w?) are given by

A(b,a) =By (z;l -2 cos(““—;””)al) (BH - 2cos(%ﬂ)ak,l) /(A (k—ar) — A0k
1#0

wi(b,a) = i Z (IAJN,l - QCOS(W)(QN,Z) (Bl,k — 2cos(En)a, k) /()‘g(kle) —A9,).
1#0

Let h, g be as in (E.29) with n = 2. Using the explicit expressions for zz and w,%, one
computes that for 0 < j < |N/2|

b + 2lan—31) Dillgel + ni)

N¥< %

20 (Jo |+ 2lan—s1) De(lgel + i)

In
Z\H

A3y
2(h—2j) ~ M2k

M

P k= 7))
Nt (el + 2lans1) Dedlél + o)
+N -
,C_L%;JH (N =k +5){5)
2] (] + 2lan—31) Dllgel + nn)
N2 k=)0
(|bN gl 2Aan-r—31) Dullen—xl + Inx—i])
-+ 7))
s NZ (10l + 21s1) 19726 + el
0 = k= ) (k)

(|8N_k_j| 2Nl ) B)Y2(En—r] + i -])

- i
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where in the last inequality we used that Dy < N/ (k)l/ 2, With analogous computations,
one verifies that

N2 2 (1B + 2lanrsl) (090Y2(18] + el

sl = Ty 2 T+ )
(18541 + 21a;-]) BYY2(n—r] + Inn—])
i (k=3 (F) |

Proceeding as in the proof of Lemma B.3, one obtains that there exist constants
C,C’ > 0, independent of N, such that

L] .
5 O PPl (P + fhy )
j=0
N—-1 N-1
30N3(Z[k]?fe%[k]fv<bk|2+|ak| )(Z D% e [y (&l + Il >)
k=0 =1
< C'N® (b, @) [[geve 1106 m)e.e (E.31)

where in the last inequality we used that [l]y < Nw ( ) for [ integer. One verifies that
g satisfies the same inequality as (E.31). Thus estimate (1£.30) follows from the following
inequality:

|z b, taly* el 1o

N—
1 s olj
= Sl (Jhy +1g?) . © (E:32)

j=0

Cst2,0

—

<

We study now dz"(b,a)* for n > 3.

Lemma E.6. There exists a constant R > 0, independent of N, such that for every s > 0,
c>0andn>3

< R"N?"7L|(b,a)|>

Cs+2,o

|z o1, a1y el )|

teo 1€ s - (E.33)

Proof. Let h, g be as in (E.29). We concentrate on h only, the estimates for g being

analogous. Write h; = Eg:_ll Z%fk + Ziv 11 O ke = s hj1 + hj2. By (E.24) one gets
J

that

1 - n,l 1 - n,l
h]q:iNn/QZAJ (D§7U7-..,u)7 hJ’ZZWZBJ (D’T],U,...,U)
=1 =1
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where D is defined in (E.1), the multilinear map A?’l is defined by

A;-L’l(h, Uy ... ,U) = Z A?’l@, L)uihbl . hil R

(i,L)eAn

B?’l is defined analogously but with kernel B;-L’l(i7 ¢), and finally A;L’l and B;-l’l are defined
for 1 < j < |N/2] by

A‘;‘hl(i?l‘) = ’CZ ((ila- --7il717j7il+1a' .. 7in)7 (Lla-~-a[’l71ala[’l+1>"'7[’n>)7

A’X]’lf‘](i; L) = ICZ ((ih .. 'ail—la _j7 il+17 e 77;71); (L17 ey li—1, 17Ll+17 .. 'al’n)>7

while B?’l(i, L) = A;-L’l(—i,l,) and BK;lﬂ- (i,0) = Ay ( ,t), see (E.24). By Corollary E.3
it follows that

supp .A?’l = supp B;(,’l_j
={e) it tir— Gty iy =g, u =1 AT
supp .AX,Z_ = supp B@’l
={(i,¢): ctdy —d g e i =g, 0 =13 C AT

Proceeding as in the proof of Corollary E.3, one proves that there exists a constant
R > 0, independent of N, such that (see [30])

ol

n,l n,l
max (HAj ij‘

RnN2(n—1)
1<i<n An >

W

: (A?v’

n,l
Bj

)
n n
A —J Aj

Thus h, defined in (E.29), satisfies

|hy] <

. DD (A3 (Del ful, - ul) + B} (1D, ful, . ul) )

n,l n,l /s n,l .
where A7 (h,u, ... u) = 30 ean A7 (1 L)‘ Wiy y - Py W, and B s defined

in analogous way. Then, using (E.34) and arguing as in the proof of Lemma E.4, one

proves the estimate

N-1

1 Z 2(9+2) QU[J]N‘h ‘2
j:O
1 V=l
< RPN*™3|(b, a) || 2057V (N N3 e N D& + i ))
=1
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n n— 1
< RPN 2|(b,a) |20V € m) |2

where in the last inequality we used that D? <X [1]2 w (%) One verifies that g satisfies
Z g
the same inequality, thus estimate (E.33) follows. O

We can finally prove property (Z4). Let s > 0, o > 0 be fixed. By Lemmas E.4, E.5
and E.6, there exist C1,Cy, e, > 0, independent of IV, such that for every 0 < € < ¢, it
holds that

Il (b, a)llitlg <e/N? ”ZO (b,a ”PS+1 o S T; o, a)\lc?€<e/N2 1Z"(b,a)|lpat1.o
lI(b,a) Hilsla<e/N2 426, ) )= ; Il a)\lc?f«/m 14275, 0)" [ £ peve covanr)
< ;R”N%l]\,;i:n < CyNe .
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