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1. Introduction and main result

It is well known that the Toda lattice, namely the system with Hamiltonian

HToda(p, q) = 1
2

N−1∑
j=0

p2
j +

N−1∑
j=0

eqj−qj+1 , (1.1)

and periodic boundary conditions qN = q0, pN = p0, is integrable [36,21]. Thus, by 
standard Arnold–Liouville theory the system admits action angle coordinates. However 
the actual introduction of such coordinates is quite complicated (see [18,15]) and the 
corresponding transformation has only recently been studied analytically in a series of 
papers by Henrici and Kappeler [23,24]. In particular these authors have proved the 
existence of global Birkhoff coordinates, namely canonical coordinates (xk, yk) analytic 
on the whole R2N , with the property that the kth action is given by (x2

k + y2
k)/2. The 

construction of Henrici and Kappeler, however is not uniform in the size of the chain, in 
the sense that the map ΦN introducing Birkhoff coordinates is globally analytic for any 
fixed N , but it could (and actually does) develop singularities as N → +∞. Here we prove 
some analyticity properties fulfilled by ΦN uniformly in the limit N → +∞. Precisely 
we consider complex balls centered at the origin and prove that ΦN maps analytically 
a ball of radius R/Nα in discrete Sobolev-analytic norms into a ball of radius R′/Nα, 
with R, R′ > 0 independent of N if and only if α ≥ 2. Furthermore we prove that the 
supremum of ΦN over a complex ball of radius R/Nα diverges as N → +∞ when α < 1.

In order to prove upper estimates on ΦN we apply to the Toda lattice a Vey type the-
orem [39] for infinite dimensional systems recently proved by Kuksin and Perelman [30]. 
Actually, we need to prove a new quantitative version of Kuksin–Perelman’s theorem. 
We think that such a result could be interesting in itself.

The lower estimates on the size of ΦN are proved by constructing explicitly the first 
term of the Taylor expansion of ΦN through Birkhoff normal form techniques; in partic-
ular we prove that the second differential d2ΦN (0) at the origin diverges like N2.

We finally apply the result to the problem of equipartition of energy in the spirit 
of Fermi–Pasta–Ulam. We prove that in the Toda lattice, corresponding to initial data 
with energy E/N3 (0 < E � 1) and with only the first Fourier mode excited, the energy 
remains forever in a packet of Fourier modes exponentially decreasing with the wave 
number. Then we consider the original FPU model and prove that, corresponding to the 
same initial data, energy remains in an exponentially localized packet of Fourier modes 
for times of order N4 (see Theorem 1.16 below), namely for times one order of magnitude 
longer than those covered by previous results (see [2], see also [35,20]). This is relevant 
in view of the fact that the time scale of formation of the packet is N3 (see [2]), so the 
result of the present paper allows to conclude that the packet persists over a time much 
longer than the one needed for its formation.
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1.1. Birkhoff coordinates for the Toda lattice

We come to a precise statement of the main results of the present paper. Consider 
the Toda lattice in the subspace characterized by∑

j

qj = 0 =
∑
j

pj (1.2)

which is invariant under the dynamics. Introduce the discrete Fourier transform F(q) = q̂

defined by

q̂k = 1√
N

N−1∑
j=0

qje
2iπjk/N , k ∈ Z , (1.3)

and consider p̂k defined analogously. Due to (1.2) one has p̂0 = q̂0 = 0 and furthermore 
p̂k = p̂k+N , q̂k = q̂k+N , ∀k ∈ Z, so we restrict to {p̂k, q̂k}N−1

k=1 . Corresponding to real 
sequences (pj , qj) one has q̂k = q̂N−k and p̂k = p̂N−k.

Introduce the linear Birkhoff variables

Xk = p̂k + p̂N−k − iωk(q̂k − q̂N−k)√
2ωk

,

Yk = p̂k − p̂N−k + iωk(q̂k + q̂N−k)
i
√

2ωk
, k = 1, . . . , N − 1 , (1.4)

where ωk ≡ ω
(

k
N

)
:= 2 sin(kπ/N); using such coordinates, which are symplectic, the 

quadratic part

H0 :=
N−1∑
j=0

p2
j + (qj − qj+1)2

2 (1.5)

of the Hamiltonian takes the form

H0 =
N−1∑
k=1

ω
(

k
N

) X2
k + Y 2

k

2 . (1.6)

With an abuse of notations, we re-denote by HToda the Hamiltonian (1.1) written in the 
coordinates (X, Y ). The following theorem is due to Henrici and Kappeler:

Theorem 1.1. (See [24].) For any integer N ≥ 2 there exists a global real analytic sym-
plectic diffeomorphism ΦN : RN−1 × RN−1 → RN−1 × RN−1, (X, Y ) = ΦN (x, y) with 
the following properties:

(i) The Hamiltonian HToda ◦ ΦN is a function of the actions Ik := x2
k+y2

k

2 only, i.e. 
(xk, yk) are Birkhoff variables for the Toda Lattice.

(ii) The differential of ΦN at the origin is the identity: dΦN (0, 0) = 1.
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Our main results concern the analyticity properties of the map ΦN as N → ∞. To 
come to a precise statement we have to introduce a suitable topology in CN−1 ×CN−1.

For any s ≥ 0, σ ≥ 0 introduce in CN−1 × CN−1 the discrete Sobolev-analytic norm

‖(X,Y )‖2
Ps,σ := 1

N

N−1∑
k=1

[k]2sN e2σ[k]N ω
(

k
N

) |Xk|2 + |Yk|2

2 (1.7)

where

[k]N := min(|k|, |N − k|) .

The space CN−1×CN−1 endowed by such a norm will be denoted by Ps,σ. We denote by 
Bs,σ(R) the ball of radius R and center 0 in the topology defined by the norm ‖.‖Ps,σ . 
We will also denote by Bs,σ

R
:= Bs,σ(R) ∩ (RN−1 × RN−1) the real ball of radius R.

Remark 1.2. When σ = s = 0 the norm (1.7) coincides with the energy norm rescaled 
by a factor 1/N (the rescaling factor will be discussed in Remark 1.11). We are partic-
ularly interested in the case σ > 0 since, in such a case, states belonging to Ps,σ are 
exponentially decreasing in Fourier space. The consideration of positive values of s will 
be needed in the proof of the main theorem.

Our main result is the following theorem.

Theorem 1.3. For any s ≥ 0, σ ≥ 0 there exist strictly positive constants Rs,σ, Cs,σ, such 
that for any N ≥ 2, the map ΦN is analytic as a map from Bs,σ(Rs,σ/N

2) to Ps,σ and 
fulfills

sup
‖(x,y)‖Ps,σ≤R/N2

‖ΦN (x, y) − (x, y)‖Ps+1,σ ≤ Cs,σ
R2

N2 , ∀R < Rs,σ. (1.8)

The same estimate is fulfilled by the inverse map Φ−1
N possibly with a different Rs,σ.

Remark 1.4. The estimate (1.8) controls the size of the nonlinear corrections in a norm 
which is stronger than the norm of (x, y), showing that ΦN −1 is 1-smoothing. The proof 
of this kind of smoothing effect was actually the main aim of the work by Kuksin and 
Perelman [30], which proved it for KdV. Subsequently Kappeler, Schaad and Topalov 
[28] proved that such a smoothing property holds also globally for the KdV Birkhoff 
map.
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Remark 1.5. As a consequence of (1.8) one has

ΦN

(
Bs,σ

(
R

N2

))
⊂ Bs,σ

(
R

N2 (1 + Cs,σR)
)
, ∀R < Rs,σ, ∀N ≥ 2 (1.9)

and the same estimate is fulfilled by the inverse map Φ−1
N , possibly with a different Rs,σ.

Corollary 1.6. For any s ≥ 0, σ ≥ 0 there exist strictly positive constants Rs,σ, Cs,σ, 
with the following property. Consider the solution v(t) ≡ (X(t), Y (t)) of the Toda Lattice 
corresponding to initial data v0 ∈ Bs,σ

(
R
N2

)
with R ≤ Rs,σ; then one has

v(t) ∈ Bs,σ

(
R

N2 (1 + Cs,σR)
)

, ∀t ∈ R . (1.10)

In order to state a converse of Theorem 1.3 consider the second differential QΦN :=
d2ΦN (0, 0) of ΦN at the origin; QΦN : Ps,σ → Ps,σ is a quadratic polynomial in the 
phase space variables.1

Theorem 1.7. For any s ≥ 0, σ ≥ 0 there exist strictly positive R, C, Ns,σ ∈ N, such 
that, for any N ≥ Ns,σ, α ∈ R, the quadratic form QΦN fulfills

sup
v∈Bs,σ

R

(
R

Nα

) ∥∥QΦN (v, v)
∥∥
Ps,σ ≥ CR2N2−2α . (1.11)

Remark 1.8. Roughly speaking, one can say that, as N → ∞, the real diffeomorphism 
ΦN develops a singularity at zero in the second derivative.

Using Cauchy estimate (see Subsection 3.2) one immediately gets the following corol-
lary.

Corollary 1.9. Assume that for some s ≥ 0, σ ≥ 0 there exist strictly positive R, R′ and 
α ≥ 0, α′ ∈ R, Ns,σ ∈ N, s.t., for any N ≥ Ns,σ, the map ΦN is analytic in the complex 
ball Bs,σ(R/Nα) and fulfills

ΦN

(
Bs,σ

(
R

Nα

))
⊂ Bs,σ

(
R′

Nα′

)
, (1.12)

then one has α′ ≤ 2(α− 1).

Remark 1.10. A particular case of Corollary 1.9 is α < 1, in which one has that the 
image of a ball of radius RN−α under ΦN is unbounded as N → ∞.

A further interesting case is that of α = α′, which implies α ≥ 2, thus showing that 
the scaling R/N2 is the best possible one in which a property of the kind of (1.9) holds.

1 Actually according to the estimate (1.8) it is smooth as a map Ps,σ → Ps+1,σ.
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Remark 1.11. A state (X, Y ) is in the ball Bs,σ(R/N2) if and only if there exist inter-
polating periodic functions (β, α), namely functions s.t.

pj = β

(
j

N

)
, qj − qj+1 = α

(
j

N

)
, (1.13)

which are analytic in a strip of width σ and have a Sobolev-analytic norm of size R/N2. 
More precisely, given a state (p, q) one considers its Fourier coefficients (p̂, q̂) and the 
corresponding X, Y variables; define

α(x) = 1√
N

N−1∑
k=0

q̂k

(
1 − e−2πik/N

)
e−2πixk, β(x) = 1√

N

N−1∑
k=0

p̂ke
−2πixk

which fulfill (1.13). Then the Sobolev-analytic norms of α and β are controlled by 
‖(X,Y )‖Ps,σ . For example one has

‖(α, β)‖2
Hs := ‖α‖2

L2 + ‖β‖2
L2 + 1

(2π)2s ‖∂s
xα‖

2
L2 + 1

(2π)2s ‖∂s
xβ‖

2
L2 = ‖(X,Y )‖2

Ps,0 ,

where ‖α‖2
L2 :=

∫ 1
0 |α(x)|2 dx. In particular we consider here states with Sobolev-analytic 

norm of order R/N2 with R � 1. The factor 1/N in the definition of the norm was 
introduced to get correspondence between the norm of a state and the norm of the 
interpolating functions.

Remark 1.12. As a consequence of Remark 1.11, the order in N of the solutions we are 
describing with Theorem 1.3 is the same of the solutions studied in the papers [2] and 
[3,5,4].

Remark 1.13. The results of Theorem 1.3 and Theorem 1.7 extend to states with discrete 
Sobolev–Gevrey norm defined by

‖(X,Y )‖2
Ps,σ,ν := 1

N

N−1∑
k=1

[k]2sN e2σ[k]νN ω
(

k
N

) |Xk|2 + |Yk|2

2 (1.14)

where 0 ≤ ν ≤ 1. As a consequence of Remark 1.11, these states are interpolated by 
periodic functions with regularity Gevrey ν.

This paper is part of a project aiming at studying the dynamics of periodic Toda 
lattices with a large number of particles, in particular its asymptotics. First results 
in this project were obtained in the papers [3,5,4]. They are based on the Lax pair 
representation of the Toda lattice in terms of periodic Jacobi matrices. The spectrum of 
these matrices leads to a complete set of conserved quantities and hence determines the 
Toda Hamiltonian and the dynamics of Toda lattices, such as their frequencies. In order 
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to study the asymptotics of Toda lattices for a large number N of particles one therefore 
needs to work in two directions: on the one hand one has to study the asymptotics of 
the spectrum of Jacobi matrices as N → ∞ and on the other hand, one needs to use 
tools of the theory of integrable systems in order to effectively extract information on 
the dynamics of Toda lattices from the periodic spectrum of periodic Jacobi matrices.

The limit of a class of sequences of N × N Jacobi matrices as N → ∞ has been 
formally studied already at the beginning of the theory of the Toda lattices (see e.g. 
[36]). However, as pointed out in [5], these studies only allowed to (formally) compute 
the asymptotics of the spectrum in special cases. In particular, Toda lattices, which 
incorporated right and left moving waves could not be analyzed at all in this way. In [5], 
based on an approach pioneered in [11], the asymptotics of the spectra of sequences of 
Jacobi matrices corresponding to states of the form (1.13) were rigorously derived by the 
means of semiclassical analysis. It turns out that in such a limit the spectrum splits into 
three parts: one group of eigenvalues at each of the two edges of the spectrum within an 
interval of size O(N−2), whose asymptotics are described by certain Hill operators, and 
a third group of eigenvalues, consisting of the bulk of the spectrum, whose asymptotics 
coincides with the one of Toda lattices at the equilibrium – see [5] for details.

In [4] the asymptotics of the eigenvalues obtained in [5] were used in order to compute 
the one of the actions and of the frequencies of Toda lattices. In particular it was shown 
that the asymptotics of the frequencies at the two edges involve the frequencies of two 
KdV solutions. The tools used in [4] are those of the theory of infinite dimensional 
integrable systems as developed in [27] and adapted to the Toda lattice in [23].

The present paper takes up another important topic in the large number of particle 
limit of periodic Toda lattices: we study the Birkhoff coordinates near the equilibrium in 
the limit of large N to provide precise estimates on the size of complex balls around the 
equilibrium in Fourier coordinates and the corresponding size in Birkhoff coordinates. 
Our analysis allows to describe the evolution of Toda lattices with large number of 
particles in the original coordinates and to obtain an application to the study of FPU 
lattices (on which we will comment in the next section).

We remark that the obtained estimates on the size of the complex balls are optimal. 
In our view this is a strong indication that beyond such a regime the standard tools 
of integrable systems become inadequate for studying the asymptotic features of the 
dynamics of the periodic Toda lattices as N → ∞.

The proofs of our results are based on a novel technique developed in [30] to show 
a Vey type theorem for the KdV equation on the circle which we adapt here to the 
study of Toda lattices, developing in this way another tool for the study of periodic 
Toda lattices with a large number of particles. We remark that for our arguments to 
go through, we need to assume an additional smallness condition on the set of states 
admitted as initial data: the states are required to be interpolated by functions α and β
with Sobolev-analytic norm of size R/N2, with R � 1 sufficiently small. (In the papers 
[3,5,4], the size R can be arbitrarily large.)
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1.2. On the FPU metastable packet

In this subsection we recall the phenomenon of the formation of a packet of modes 
in the FPU chain and state our related results. First of all we recall that the FPU 
(α, β)-model is the Hamiltonian lattice with Hamiltonian function which, in suitable 
rescaled variables, takes the form

HFPU (p, q) =
N−1∑
j=0

p2
j

2 + U(qj − qj+1) , (1.15)

U(x) = x2

2 + x3

6 + β
x4

24 . (1.16)

We will consider the case of periodic boundary conditions: q0 = qN , p0 = pN .

Remark 1.14. One has

HFPU (p, q) = HToda(p, q) + (β − 1)H2(q) + H(3)(q),

where

Hl(q) :=
N−1∑
j=0

(qj − qj+1)l+2

(l + 2)! , ∀l ≥ 2 ,

H(3) := −
∑
l≥3

Hl .

Introduce the energies of the normal modes by

Ek :=
|p̂k|2 + ω

(
k
N

)2 |q̂k|2
2 , 1 ≤ k ≤ N − 1 , (1.17)

correspondingly denote by

Ek := Ek

N
(1.18)

the specific energy in the kth mode. Note that since p, q are real variables, one has 
Ek = EN−k.

In their celebrated numerical experiment Fermi, Pasta and Ulam [16], being interested 
in the problem of foundation of statistical mechanics, studied both the behavior of Ek(t)
and of its time average

〈Ek〉(t) := 1
t

t∫
Ek(s)ds .
0
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They observed that, corresponding to initial data with E1(0) �= 0 and Ek(0) = 0
∀k �= 1, N − 1, the quantities Ek(t) present a recurrent behavior, while their averages 
〈Ek〉(t) quickly relax to a sequence Ēk exponentially decreasing with k. This is what is 
known under the name of FPU packet of modes.

Subsequent numerical observations have investigated the persistence of the phe-
nomenon for large N and have also shown that after some quite long time scale (whose 
precise length is not yet understood) the averages 〈Ek〉(t) relax to equipartition (see e.g. 
[9,10,7,8]). This is the phenomenon known as metastability of the FPU packet.

The idea of exploiting the vicinity of FPU with Toda in order to study the dynamics 
of FPU goes back to [15], in which the authors performed some numerical investigations 
studying the evolution of the Toda invariants in the dynamics of FPU. A systematic 
numerical study of the evolution of the Toda invariants in FPU, paying particular atten-
tion to the dependence on N of the phenomena, was performed by Benettin and Ponno 
[7] (see also [8]). In particular such authors put into evidence the fact that the FPU 
packet seems to have an infinite lifespan in the Toda lattice. Furthermore they showed 
that the relevant parameter controlling the lifespan of the packet in the FPU model is 
the distance of FPU from the corresponding Toda lattice.

Our Theorem 1.3 yields as a corollary the effective existence and infinite persistence 
of the packet in the Toda lattice and also an estimate of its lifespan in the FPU system, 
estimate in which the effective parameter is the distance between Toda and FPU.

It is convenient to state the results for Toda and FPU using the small parameter

μ := 1
N

as in [2].
The following corollary is an immediate consequence of Corollary 1.6.

Corollary 1.15. Consider the Toda lattice (1.1). Fix σ > 0, then there exist constants R0, 
C1, such that the following holds true. Consider an initial datum with

E1(0) = EN−1(0) = R2e−2σμ4 , Ek(0) ≡ Ek(t)
∣∣
t=0 = 0 , ∀k �= 1, N − 1 (1.19)

with R < R0. Then, along the corresponding solution, one has

Ek(t) ≤ R2(1 + C1R)μ4e−2σk , ∀ 1 ≤ k ≤ �N/2� , ∀t ∈ R . (1.20)

For the FPU model we have the following corollary

Theorem 1.16. Consider the FPU system (1.15). Fix s ≥ 1 and σ ≥ 0; then there exist 
constants R′

0, C2, T , such that the following holds true. Consider a real initial datum 
fulfilling (1.19) with R < R′

0, then, along the corresponding solution, one has
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Ek(t) ≤
16R2μ4e−2σk

k2s , ∀ 1 ≤ k ≤ �N/2� , |t| ≤ T

R2μ4 · 1
|β − 1| + C2Rμ2 .

(1.21)

Furthermore, for 1 ≤ k ≤ N − 1, consider the action Ik := x2
k+y2

k

2 of the Toda lattice and 
let Ik(t) be its evolution according to the FPU flow. Then one has

1
N

N−1∑
k=1

[k]2(s−1)
N e2σ[k]Nω

(
k
N

)
|Ik(t) − Ik(0)| ≤ C3R

2μ5 for t fulfilling (1.21)

(1.22)

Remark 1.17. The estimates (1.21) are stronger than the corresponding estimates given 
in [2], which are

Ek(t) ≤ C1μ
4e−σk + C2μ

5 , ∀ 1 ≤ k ≤ �N/2� , |t| ≤ T

μ3 .

First, the time scale of validity of (1.21) is one order longer than that of [2]. Second we 
show that as β approaches the value corresponding to the Toda lattice (1 in our units) 
the time of stability improves. Third the exponential estimate of Ek as a function of k
is shown to hold also for large values of k (the μ5 correction is missing). Finally in [2] it 
was shown that T/μ3 is the time of formation of the metastable packet. So we can now 
conclude that the time of persistence of the packet is at least one order of magnitude 
larger (namely μ−4) with respect to the time needed for its formation.

Remark 1.18. We recall also the result of [20] in which the authors obtained a control of 
the dynamics for longer time scales, but for initial data with much smaller energies.

Remark 1.19. Recently some results on energy sharing in FPU in the thermodynamic 
limit [31] (see also [12,13,19]) have also been obtained, however such results are not able 
to explain the formation and the stability of the FPU packet of modes.

Remark 1.20. In this paper we did not address the observation of near-quasiperiodicity 
of solutions in the numerical experiments on FPU. One can think to use KAM theory in 
order to prove existence of quasiperiodic motions in FPU. This is possible in view of the 
fact that Toda lattice has good action angle coordinates and that the action to frequency 
map in the Toda lattice is nondegenerate. Results more or less in this line have been 
proved in [34,25], however the results of these papers do not persist in the limit N → ∞, 
and it is very hard to identify the dependence on N of the threshold for the applicability 
of KAM theory to FPU.
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2. A quantitative Kuksin–Perelman Theorem

2.1. Statement of the theorem

In this section we state and prove a quantitative version of Kuksin–Perelman Theorem 
which will be used to prove Theorem 1.3. It is convenient to formulate it in the framework 
of weighted 	2 spaces, that we are going now to recall.

For any N ≤ ∞, given a sequence w = {wk}Nk=1, wk > 0 ∀k ≥ 1, consider the space 
	2w of complex sequences ξ = {ξk}Nk=1 with norm

‖ξ‖2
w :=

N∑
k=1

w2
k|ξk|2 < ∞. (2.1)

Denote by Pw the complex Banach space Pw := 	2w⊕ 	2w � (ξ, η) endowed with the norm 
‖(ξ, η)‖2

w := ‖ξ‖2
w + ‖η‖2

w. We denote by Pw
R

the real subspace of Pw defined by

Pw
R :=

{
(ξ, η) ∈ Pw : ηk = ξk ∀ 1 ≤ k ≤ N

}
. (2.2)

We will denote by Bw(ρ) (respectively Bw
R

(ρ)) the ball in the topology of Pw (respectively 
Pw
R

) with center 0 and radius ρ > 0.

Remark 2.1. In the case of the Toda lattice the variables (ξ, η) are defined by

ξk =
p̂k + iω

(
k
N

)
q̂k√

2ω
(

k
N

) , ηk =
p̂N−k − iω

(
k
N

)
q̂N−k√

2ω
(

k
N

) , 1 ≤ k ≤ N − 1 , (2.3)

and their connection with the real Birkhoff variables is given by

Xk = ξk + ηk√
2

, Yk = ξk − ηk

i
√

2
, 1 ≤ k ≤ N − 1 . (2.4)

We denote by P1 the Banach space of sequences in which all the weights wk are equal 
to 1. For X , Y Banach spaces, we shall write L(X , Y) to denote the set of linear and 
bounded operators from X to Y. For X = Y we will write just L(X ).

Remark 2.2. In the application to the Toda lattice with N particles we will use a finite, 
but not fixed N and weights of the form w2

k = w2
N−k = N3 k2s e2σk, 1 ≤ k ≤ �N/2�.

Given two weights w1 and w2, we will say that w1 ≤ w2 iff w1
k ≤ w2

k, ∀k. Sometimes, 
when there is no risk of confusion, we will omit the index w from the different quantities.
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In P1 we will use the scalar product

〈
(ξ1, η1), (ξ2, η2)

〉
c

:=
N∑

k=1

ξ1
kξ

2
k + η1

kη
2
k . (2.5)

Correspondingly, the scalar product and symplectic form on the real subspace Pw
R

are 
given for ξ1 ≡ (ξ1, ξ̄1) and ξ2 ≡ (ξ2, ξ̄2) by

〈
ξ1, ξ2〉 := 2Re

N∑
k=1

ξ1
k ξ

2
k , ω0(ξ1, ξ2) :=

〈
E ξ1, ξ2〉 , (2.6)

where E := −i.
Given a smooth F : Pw

R
→ C, we denote by XF the Hamiltonian vector field of F , 

given by XF = J∇F , where J = E−1. For F, G : Pw
R

→ C we denote by {F , G} the 
Poisson bracket (with respect to ω0): {F, G} := 〈∇F, J∇G〉 (provided it exists). We say 
that the functions F , G commute if {F, G} = 0.

In order to state the main abstract theorem we start by recalling the notion of normally 
analytic map, exploited also in [33] and [1].

First we recall that a map P̃ r : (Pw)r → B, with B a Banach space, is said to be 
r-multilinear if P̃ r(v(1), . . . , v(r)) is linear in each variable v(j) ≡ (ξ(j), η(j)); a r-multi-
linear map is said to be bounded if there exists a constant C > 0 such that∥∥∥P̃ r(v(1), . . . , v(r))

∥∥∥
B
≤ C

∥∥∥v(1)
∥∥∥
w
. . .

∥∥∥v(r)
∥∥∥
w

∀v(1), . . . , v(r) ∈ Pw.

Correspondingly its norm is defined by

∥∥P̃ r
∥∥ := sup∥∥v(1)

∥∥
w
,···,

∥∥v(r)
∥∥
w
≤1

∥∥∥P̃ r(v(1), · · · , v(r))
∥∥∥
B
.

A map P r : Pw → B is a homogeneous polynomial of order r if there exists a r-multilinear 
map P̃ r : (Pw)r → B such that

P r(v) = P̃ r(v, . . . , v) ∀v ∈ Pw . (2.7)

A r-homogeneous polynomial is bounded if it has finite norm

‖P r‖ := sup
‖v‖w≤1

‖P r(v)‖B .

Remark 2.3. Clearly ‖P r‖ ≤
∥∥P̃ r

∥∥. Furthermore one has 
∥∥P̃ r

∥∥ ≤ er ‖P r‖ – cf. [32].

It is easy to see that a multilinear map and the corresponding polynomial are contin-
uous (and analytic) if and only if they are bounded.
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Let P r : Pw → B be a homogeneous polynomial of order r; assume B separable and 
let {bn}n≥1 ⊂ B be a basis for the space B. Expand P r as follows

P r(v) ≡ P r(ξ, η) =
∑

|K|+|L|=r
n≥1

P r,n
K,Lξ

KηLbn, (2.8)

where K, L ∈ NN
0 , N0 = N ∪{0}, |K| := K1+· · ·+KN , ξ ≡ {ξj}j≥1 and ξK ≡ ξK1

1 · · · ξKN

N , 
ηL ≡ ηL1

1 · · · ηLN

N .

Definition 2.4. The modulus of a polynomial P r is the polynomial P r defined by

P r(ξ, η) :=
∑

|K|+|L|=r
n≥1

∣∣∣P r,n
K,L

∣∣∣ ξKηLbn. (2.9)

A polynomial P r is said to have bounded modulus if P r is a bounded polynomial.

A map F : Pw → B is said to be an analytic germ if there exists ρ > 0 such 
that F : Bw(ρ) → B is analytic. Then F can be written as a power series absolutely 
and uniformly convergent in Bw(ρ): F (v) =

∑
r≥0 F

r(v). Here F r(v) is a homogeneous 
polynomial of degree r in the variables v = (ξ, η). We will write F = O(vn) if in the 
previous expansion F r(v) = 0 for every r < n.

Definition 2.5. An analytic germ F : Pw → B is said to be normally analytic if there 
exists ρ > 0 such that

F (v) :=
∑
r≥0

F r(v) (2.10)

is absolutely and uniformly convergent in Bw(ρ). In such a case we will write F ∈
Nρ(Pw, B). Nρ(Pw, B) is a Banach space when endowed by the norm

|F |ρ := sup
v∈Bw(ρ)

‖F (v)‖B. (2.11)

Let U ⊂ Pw
R

be open. A map F : U → B is said to be a real analytic germ (respectively 
real normally analytic) on U if for each point u ∈ U there exist a neighborhood V of u
in Pw and an analytic germ (respectively normally analytic germ) which coincides with 
F on U ∩ V .

Remark 2.6. It follows from Cauchy inequality that the Taylor polynomials F r of F
satisfy

‖F r(v)‖B ≤ |F |ρ
‖v‖rw
ρr

∀v ∈ Bw(ρ) . (2.12)



D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818–1887 1831
Remark 2.7. Since ∀r ≥ 1 one has ‖F r‖ ≤ ‖F r‖, if F ∈ Nρ(Pw, B) then the Taylor series 
of F is uniformly convergent in Bw(ρ).

The case B = Pw will be of particular importance; in this case the basis {bj}j≥1
will coincide with the natural basis {ej}j≥1 of such a space (namely the vectors with all 
components equal to zero except the jth one which is equal to 1). We will consider also 
the case B = L(Pw1

, Pw2) (bounded linear operators from Pw1 to Pw2), where w1 and 
w2 are weights. Here the chosen basis is bjk = ej ⊗ ek (labeled by 2 indexes).

Remark 2.8. For v ≡ (ξ, η) ∈ P1, we denote by |v| the vector of the modulus of the 
components of v: |v| = (|v1|, . . . , |vN |), |vj | := (|ξj |, |ηj |). If F ∈ Nρ(Pw1

, Pw2) then 
dF (|v|)|u| ≤ dF (|v|)|u| (see [30]) and therefore, for any 0 < d < 1, Cauchy estimates 
imply that dF ∈ N(1−d)ρ(Pw1

, L(Pw1
, Pw2)) with

|dF |ρ(1−d) ≤
1
dρ

|F |ρ , (2.13)

where dF is computed with respect to the basis ej ⊗ ek.

Following Kuksin and Perelman [30] we will need also a further property.

Definition 2.9. A normally analytic germ F ∈ Nρ(Pw1
, Pw2) will be said to be of class 

Aw2

w1,ρ if F = O(v2) and the map v �→ dF (v)∗ ∈ Nρ(Pw1
, L(Pw1

, Pw2)). Here dF (v)∗
is the adjoint operator of dF (v) with respect to the standard scalar product (2.5). On 
Aw2

w1,ρ we will use the norm

‖F‖Aw2
w1,ρ

:= |F |ρ + ρ |dF |ρ + ρ |dF ∗|ρ . (2.14)

Remark 2.10. Assume that for some ρ > 0 the map F ∈ Aw2

w1,ρ, then for every 0 < d ≤ 1
2

one has |F |dρ ≤ 2d2 |F |ρ and ‖F‖Aw2
w1,dρ

≤ 6d2 ‖F‖Aw2
w1,ρ

.

A real normally analytic germ F : Bw1

R
(ρ) → Pw2

R
will be said to be of class 

Nρ(Pw1

R
, Pw2

R
) (respectively Aw2

w1,ρ) if there exists a map of class Nρ(Pw1
, Pw2) (respec-

tively Aw2

w1,ρ), which coincides with F on Bw1

R
(ρ). In this case we will also denote by |F |ρ

(respectively ‖F‖Aw2
w1,ρ

) the norm defined by (2.11) (respectively (2.14)) of the complex 

extension of F .
Let now F : U ⊂ Pw1 → Pw2 be an analytic map. We will say that F is real 

for real sequences if F (U ∩ Pw1

R
) ⊆ Pw2

R
, namely F (ξ, η) = (F1(ξ, η), F2(ξ, η)) satisfies 

F1(ξ, ξ̄) = F2(ξ, ξ̄). Clearly, the restriction F |
U∩Pw1

R

is a real analytic map.
We come now to the statement of the Vey Theorem.
Fix ρ > 0 and let Ψ : Bw1

R
(ρ) → Pw1

R
, Ψ = 1 + Ψ0 with 1 the identity map and 

Ψ0 ∈ Aw2

w1,ρ. Write Ψ component-wise, Ψ =
{
(Ψj ,Ψj)

}
, and consider the foliation 
j≥1
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defined by the functions 
{
|Ψj(v)|2 /2

}
j≥1

. Given v ∈ Pw
R

we define the leaf through v

by

Fv :=
{
u ∈ Pw

R : |Ψj(u)|2
2 = |Ψj(v)|2

2 , ∀j ≥ 1
}

. (2.15)

Let F =
⋃

v∈Pw
R

Fv be the collection of all the leaves of the foliation. We will denote by 
TvF the tangent space to Fv at the point v ∈ Pw

R
. A relevant role will also be played by 

the function I = {Ij}j≥1 whose components are defined by

Ij(v) ≡ Ij(ξ, ξ̄) := |ξj |2
2 ∀j ≥ 1 . (2.16)

The foliation they define will be denoted by F (0).

Remark 2.11. Ψ maps the foliation F into the foliation F (0), namely F (0) = Ψ(F).

The main theorem of this section is the following

Theorem 2.12 (Quantitative version of Kuksin–Perelman Theorem). Let w1 and w2 be 
weights with w1 ≤ w2. Consider the space Pw1

R
endowed with the symplectic form ω0

defined in (2.6). Let ρ > 0 and assume Ψ : Bw1

R
(ρ) → Pw1

R
, Ψ = 1 +Ψ0 and Ψ0 ∈ Aw2

w1,ρ. 
Define

ε1 :=
∥∥Ψ0∥∥

Aw2
w1,ρ

. (2.17)

Assume that the functionals {1
2 |Ψj(v)|2}j≥1 pairwise commute with respect to the sym-

plectic form ω0, and that ρ is so small that

ε1 < 2−34ρ. (2.18)

Then there exists a real normally analytic map Ψ̃ : Bw1

R
(aρ) → Pw1

R
, a = 2−48, with the 

following properties:

i) Ψ̃∗ω0 = ω0, so that the coordinates z := Ψ̃(v) are canonical;

ii) the functionals 
{

1
2

∣∣∣Ψ̃j(v)
∣∣∣2}

j≥1
pairwise commute with respect to the symplectic 

form ω0;
iii) F (0) = Ψ̃(F), namely the foliation defined by Ψ coincides with the foliation defined 

by Ψ̃;
iv) Ψ̃ = 1 + Ψ̃0 with Ψ̃0 ∈ Aw2

w1,aρ and 
∥∥∥Ψ̃0

∥∥∥
Aw2

w1,aρ

≤ 217ε1.

The following corollary holds:
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Corollary 2.13. Let H : Pw1

R
→ R be a real analytic Hamiltonian function. Let Ψ be as in 

Theorem 2.12 and assume that for every j ≥ 1, |Ψj(v)|2 is an integral of motion for H, 
i.e.

{H, |Ψj |2} = 0 ∀ j ≥ 1. (2.19)

Then the coordinates (xj , yj) defined by xj + iyj = Ψ̃j(v) are real Birkhoff coordinates 
for H, namely canonical conjugated coordinates in which the Hamiltonian depends only 
on (x2

j + y2
j )/2.

Proof. Since Ψ = 1 + Ψ0, the functions Ψj(v) can be used as coordinates in a suitable 
neighborhood of 0 in Pw

R
. Let Ψ̃ be the map in the statement of Theorem 2.12. Denote 

Fl(v) := 1
2

∣∣∣Ψ̃l(v)
∣∣∣2. Since the foliation defined by the functions {Fl}l≥1 and the foliation 

defined by {|Ψj |2}j≥1 coincide (Theorem 2.12iii)), each Fl is constant on the level sets 
of {|Ψj |2}j≥1. It follows that each Fl is a function of {|Ψj |2}j≥1 only. Since ∀ j ≥ 1, 
|Ψj |2 is an integral of motion for H, the same is true for Fl, ∀l ≥ 1. Define now, in 

a suitable neighborhood of the origin, the coordinates (z, ̄z) by zj ≡ Ψ̃j , z̄j ≡ Ψ̃j . Of 
course Fl = |zl|2

2 . By (2.19) it follows then that

0 = {H, zlz̄l} = 1
i

(
∂H

∂zl
zl −

∂H

∂z̄l
z̄l

)
. (2.20)

Since dΨ̃(0) = 1 (Theorem 2.12iv)), Ψ̃ is invertible and its inverse Φ̃ satisfies Φ̃ =
1 + Φ̃0 with Φ̃0 ∈ Aw2

w1,aμρ and 
∥∥∥Φ̃0

∥∥∥
Aw2

w1,aμρ

≤ 2 
∥∥∥Ψ̃0

∥∥∥
Aw2

w1,aρ

≤ 218ε1 (Lemma A.3ii) in 

Appendix A).
Expand now H ◦ Φ̃ in Taylor series in the variables (z, ̄z):

H ◦ Φ̃(z, z̄) =
∑
r≥2,

|α|+|β|=r

Hr
α,βz

αz̄β .

Then equation (2.20) implies that in each term of the summation α = β, therefore H ◦ Φ̃
is a function of |z1|2, . . . , |zN |2. Define now the real variables (x, y) as in the statement, 
then the claim follows immediately. �
2.2. Proof of the quantitative Kuksin–Perelman Theorem

In this section we recall and adapt Eliasson’s proof [14] of the Vey Theorem following 
[30]. As we anticipated in the introduction, the novelty of our approach is to add quan-
titative estimates on the Birkhoff map Ψ̃ of Theorem 2.12. In Appendix A we show that 
the class of normally analytic maps is closed under several operations like composition, 
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inversion and flow-generation, and provide new quantitative estimates which will be used 
during the proof below.

The idea of the proof of Theorem 2.12 is to consider the functions {Ψj(v)}j≥1 as non-
canonical coordinates, and to look for a coordinate transformation introducing canonical 
variables and preserving the foliation F (0) (which is the image of F in the noncanonical 
variables).

This will be done in two steps both based on the standard procedure of Darboux 
Theorem that we now recall. In order to construct a coordinate transformation ϕ trans-
forming the closed nondegenerate form Ω1 into a closed nondegenerate form Ω0, then it 
is convenient to look for ϕ as the time 1 flow ϕt of a time-dependent vector field Y t. To 
construct Y t one defines Ωt := Ω0 + t(Ω1 − Ω0) and imposes that

0 = d
dt

∣∣
t=0 ϕ

t∗Ωt = ϕt∗ (LY tΩt + Ω1 − Ω0) = ϕt∗ (d(Y t�Ωt) + d(α1 − α0)
)

where α1, α0 are potential forms for Ω1 and Ω0 (namely dαi = Ωi, i = 0, 1) and LY t is 
the Lie derivative of Y t. Then one gets

Y t�Ωt + α1 − α0 = df (2.21)

for each f smooth; then, if Ωt is nondegenerate, this defines Y t. If Y t generates a flow 
ϕt defined up to time 1, the map ϕ := ϕt|t=1 satisfies ϕ∗Ω1 = Ω0. Thus, given Ω0
and Ω1, the whole game reduces to study the analytic properties of Y t and to prove that 
it generates a flow.

A non-constant symplectic form Ω will always be represented through a linear skew-
symmetric invertible operator E as follows:

Ω(v)(u(1);u(2)) = 〈E(v)u(1);u(2)〉 , ∀u(1), u(2) ∈ TvPw
R � Pw

R . (2.22)

We denote by {F, G}Ω the Poisson bracket with respect to Ω: {F, G}Ω := 〈∇F, J∇G〉, 
J := E−1.

Similarly we will represent 1-forms through the vector field A such that

α(v)(u) = 〈A(v), u〉, ∀u ∈ TvPw
R . (2.23)

Define ω1 := (Ψ−1)∗ω0, and let Eω1 be the operator representing the symplectic form ω1. 
The first step consists in transforming ω1 to a symplectic form whose “average over F (0)” 
coincides with ω0.

So we start by defining precisely what “average of k-forms” means. To this end consider 
the Hamiltonian vector fields X0

Il
of the functions Il ≡ |vl|2

2 through the symplectic 
form ω0; they are given by

X0
I (v) = i∇Il(v) = ivlel, ∀ l ≥ 1. (2.24)

l
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For every l ≥ 1 the corresponding flow φt
l ≡ φt

X0
Il

is given by

φt
l(v) =

(
v1, · · · , vl−1, e

itvl, vl+1, · · ·
)
.

Remark that the map φt
l is linear in v, 2π periodic in t and its adjoint satisfies (φt

l)∗ =
φ−t
l .
Given a k-form α on Pw

R
(k ≥ 0), we define its average by

Mjα(v) = 1
2π

2π∫
0

((φt
j)∗α)(v)dt, j ≥ 1 , and Mα(v) =

∫
T

[(φθ)∗α] dθ

(2.25)

where T is the (possibly infinite dimensional) torus, the map φθ = (φθ1
1 ◦φθ2

2 · · ·) and dθ
is the Haar measure on T .

Remark 2.14. In the particular cases of 1 and 2-forms it is useful to compute the average 
in terms of the representations (2.22) and (2.23). Thus, for v, u(1), u(2) ∈ Pw

R
, if

α(v)u(1) = 〈A(v);u(1)〉 , ω(v)(u(1), u(2)) = 〈E(v)u(1);u(2)〉 ,

one has

(Mα)(v)u(1) = 〈(MA)(v); u(1)〉 , with MA(v) =
∫
T

φ−θA(φθ(v)) dθ (2.26)

and

(Mω)(v)(u(1), u(2)) = 〈(ME)(v)u(1); u(2)〉 , with ME(v) =
∫
T

φ−θE(φθ(v))φθ dθ.

(2.27)

Remark 2.15. The operator M commutes with the differential operator d and the rota-
tions φθ. In particular MA(v) and ME(v) as in (2.26), (2.27) satisfy

φθMA(v) = MA(φθv), φθME(v)u = ME(φθv)φθu, ∀ θ ∈ T .

We study now the analytic properties of ω1 and of its potential form αω1 . In the rest 
of the section denote by S :=

∑∞
n=1 1/n2 and by

μ := 1/e(32S)1/2 ≈ 0.0507 . (2.28)
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Lemma 2.16. Let Φ := Ψ−1 and ω1 be as above. Assume that ε1 ≤ ρ/e. Then the following 
holds:

(i) Eω1 = −i + Υω1 , with Υω1 ∈ Nμρ(Pw1

R
, L(Pw1

R
, Pw2

R
)) and

|Υω1 |μρ ≤ 8ε1
μρ

. (2.29)

(ii) Define

Wω1(v) :=
1∫

0

Υω1(tv)tv dt , (2.30)

then Wω1 ∈ Aw2

w1,μ3ρ and ‖Wω1‖Aw2
w1,μ3ρ

≤ 8ε1. Moreover the 1-form αWω1
:= 〈Wω1 ; .〉

satisfies dαWω1
= ω1 − ω0.

Proof. By Lemma A.3 one has that Φ =
(
1 + Ψ0)−1 = 1 + Φ0 with Φ0 ∈ Aw2

w1,μρ and ∥∥Φ0
∥∥
Aw2

w1,μρ

≤ 2 
∥∥Ψ0

∥∥
Aw2

w1,ρ

≤ 2ε1. To prove (i), just remark that

Eω1(v) = dΦ∗(v)(−i)dΦ(v) = −i + dΦ0(v)∗(−i)dΦ(v) − idΦ0(v) =: −i + Υω1(v)

and use the results of Lemma A.3. To prove (ii), use Poincaré construction of the po-
tential of ω1 which gives

αω1(v)u := 〈
1∫

0

Eω1(tv)tv, u〉dt = α0(v)u + 〈Wω1(v), u〉, Wω1(v) =
1∫

0

Υω1(tv)tv dt ,

where α0 is the potential for ω0. In order to prove the analytic properties of Wω1 , 
note that Wω1(v) =

∫ 1
0 (H1(tv) + H2(tv))dt where H1(v) := −i dΦ0(v)v and H2(v) :=

dΦ0(v)∗(−i)dΦ(v)v ≡ dΦ0(v)∗(−iv + H1(v)). Thus, by Lemma A.3, one gets that 
‖H1‖Aw2

w1,μ2ρ

≤ 2 
∥∥Φ0

∥∥
Aw2

w1,μρ

≤ 4ε1 and ‖H2‖Aw2
w1,μ3ρ

≤ 2 
∥∥Φ0

∥∥
Aw2

w1,μ2ρ

≤ 4ε1. Thus the 

estimate on Wω1 follows. �
Remark 2.17. One has Mαω1 − α0 = MαWω1

= 〈MWω1 , ·〉 and ‖MWω1‖Aw2
w1,μ3ρ

≤
‖Wω1‖Aw2

w1,μ3ρ

.

We are ready now for the first step.

Lemma 2.18. There exists a map ϕ̂ : Bw1

R
(μ5ρ) → Pw1

R
such that (1 − ϕ̂) ∈ Aw2

w1,μ5ρ and

‖1 − ϕ̂‖Aw2 ≤ 25ε1 . (2.31)

w1,μ5ρ
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Moreover ϕ̂ satisfies the following properties:

(i) ϕ̂ commutes with the rotations φθ, namely φθϕ̂(v) = ϕ̂(φθv) for every θ ∈ T .
(ii) Denote ω̂1 := ϕ̂∗ω1, then Mω̂1 = ω0.

Proof. We apply the Darboux procedure described at the beginning of this section 
with Ω0 = ω0 and Ω1 = Mω1. Then Ωt is represented by the operator Êt

ω1
:=

(−i + t(MEω1 + i)). Write equation (2.21), with f ≡ 0, in terms of the operators defining 
the symplectic forms, getting the equation Êt

ω1
Ŷ t = −MWω1 (see also Remark 2.17). 

This equation can be solved by inverting the operator Êt
ω1

by Neumann series:

Ŷ t := −(−i + tMΥω1)−1MWω1 . (2.32)

By the results of Lemma 2.16 and Remark 2.17, Ŷ t is of class Aw2

w1,μ4ρ and fulfills

sup
t∈[0,1]

∥∥∥Ŷ t
∥∥∥
Aw2

w1,μ4ρ

≤ 2 ‖MWω1‖Aw2
w1,μ3ρ

≤ 24ε1 . (2.33)

By Lemma A.4 the vector field Ŷ t generates a flow ϕ̂t : Bw1

R
(μ5ρ) → Pw1 such that 

ϕ̂t − 1 is of class Aw2

w1,μ5ρ and satisfies

∥∥ϕ̂t − 1
∥∥
Aw2

w1,μ5ρ

≤ 2 sup
t∈[0,1]

∥∥∥Ŷ t
∥∥∥
Aw2

w1,μ4ρ

≤ 25ε1.

Therefore the map ϕ̂ ≡ ϕ̂t|t=1 exists, satisfies the claimed estimate (2.31) and further-
more ϕ̂∗Mω1 = ω0.

We prove now item (i). The claim follows if we show that the vector field Ŷ t commutes 
with rotations. To this aim consider equation (2.32), and define Ĵ t

ω1
(v) = (Êt

ω1
(v))−1. 

By construction the operator Êt
ω1

commutes with rotations (cf. Remark 2.15), namely 
∀ θ0 ∈ T one has φθ0Êt

ω1
(v)u = Êt

ω1
(φθ0(v))φθ0u. Then it follows that

φθ0 Ŷ t(v) = −φθ0 Ĵ t
ω1

(v)MWω1(v) = −Ĵ t
ω1

(φθ0(v))φθ0MWω1(v)

= −Ĵ t
ω1

(φθ0(v))MWω1(φθ0(v)) = Ŷ t(φθ0(v)).

This proves item (i). Item (ii) then follows from item (i) since, defining ω̂1 = ϕ̂∗ω1, one 
has the chain of identities Mω̂1 = Mϕ̂∗ω1 = ϕ̂∗Mω1 = ω0. �

The analytic properties of the symplectic form ω̂1 can be studied in the same way as 
in Lemma 2.16; we get therefore the following corollary:
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Corollary 2.19. Denote by Eω̂1 the symplectic operator describing ω̂1 = ϕ̂∗ω1. Then

(i) Eω̂1 = −i + Υω̂1 , with Υω̂1 ∈ Nμ5ρ(Pw1

R
, L(Pw1

R
, Pw2

R
)) and 

∣∣∣Υω̂1

∣∣∣
μ5ρ

≤ 27 ε1
μρ .

(ii) Define W (v) :=
∫ 1
0 Υω̂1(tv)tv dt, then W ∈ Aw2

w1,μ7ρ and ‖W‖Aw2
w1,μ7ρ

≤ 27ε1.

Furthermore the 1-form αW := 〈W, .〉 satisfies dαW = ω̂1 − ω0.

Finally we will need also some analytic and geometric properties of the map

Ψ̌ := ϕ̂−1 ◦ Ψ. (2.34)

The functions {Ψ̌(v)}j≥1 forms a new set of coordinates in a suitable neighborhood of 
the origin whose properties are given by the following corollary:

Corollary 2.20. The map Ψ̌ : Bw1

R
(μ8ρ) → Pw1

R
, defined in (2.34), satisfies the following 

properties:

(i) dΨ̌(0) = 1 and Ψ̌0 := Ψ̌ − 1 ∈ Aw2

w1,μ8ρ with 
∥∥∥Ψ̌0

∥∥∥
Aw2

w1,μ8ρ

≤ 28ε1.

(ii) F (0) = Ψ̌(F), namely the foliation defined by Ψ̌ coincides with the foliation defined 
by Ψ.

(iii) The functionals {1
2

∣∣∣Ψ̌j

∣∣∣2}j≥1 pairwise commute with respect to the symplectic 
form ω0.

Proof. By Lemma A.3 the map ϕ̂ is invertible in Bw1

R
(μ6ρ) and ϕ̂−1 = 1 + g, with 

g ∈ Aw2

w1,μ6ρ and ‖g‖Aw2
w1,μ6ρ

≤ 26ε1. Then Ψ̌ = 1 + Ψ̌0 where Ψ̌0 = Ψ0 + g ◦ (1 + Ψ0). 

By Remark 2.10, 
∥∥Ψ0

∥∥
Aw2

w1,μ7ρ

≤ 6μ14ε1, thus Lemma A.3i) implies that Ψ̌0 ∈ Aw2

w1,μ8ρ

and moreover 
∥∥∥Ψ̌0

∥∥∥
Aw2

w1,μ8ρ

≤ 6μ14ε1 + 27ε1 ≤ 28ε1. Items (ii) and (iii) follow from 

the fact that, by Lemma 2.18(i), ϕ̂ commutes with the rotations (see also the proof of 
Corollary 2.13). �

The second step consists in transforming ω̂1 into the symplectic form ω0 while pre-
serving the functions Il. In order to perform this transformation, we apply once more 
the Darboux procedure with Ω1 = ω̂1 and Ω0 = ω0. However, we require each leaf of the 
foliation to be invariant under the transformation. In practice, we look for a change of 
coordinates ϕ satisfying

ϕ∗Ω1 = Ω0 , (2.35)

Il(ϕ(v)) = Il(v), ∀ l ≥ 1 . (2.36)
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In order to fulfill the second equation, we take advantage of the arbitrariness of f in 
equation (2.21). It turns out that if f satisfies the set of differential equations given by

df(X0
Il

) − (α1 − α0)(X0
Il

) = 0, ∀ l ≥ 1 (2.37)

then equation (2.36) is satisfied (as it will be proved below). Here α1 is the potential 
form of ω̂1 and is given by α1 := α0 + αW , where αW is defined in Corollary 2.19. 
However, (2.37) is essentially a system of equations for the potential of a 1-form on a 
torus, so there is a solvability condition. In Lemma 2.23 below we will prove that the 
system (2.37) has a solution if the following conditions are satisfied:

d(α1 − α0)|TF(0) = 0 , (2.38)

M(α1 − α0)|TF(0) = 0 . (2.39)

In order to show that these two conditions are fulfilled, we need a preliminary result. 
First, for v ∈ Pw

R
fixed, define the symplectic orthogonal of TvF (0) with respect to the 

form ωt := ω0 + t(ω̂1 − ω0) by

(TvF (0))∠t :=
{
h ∈ Pw

R : ωt(v)(u, h) = 0 ∀u ∈ TvF (0)
}
. (2.40)

Lemma 2.21. For v ∈ Bw1

R
(μ5ρ), one has TvF (0) = (TvF (0))∠t .

Proof. First of all we have that, since for any couple of functions F , G and any change 
of coordinates Φ, one has

{F ◦ Φ, G ◦ Φ}Φ∗ω0
= {F,G}ω0

◦ Φ ,

it follows that

{Il, Im}ω1
=
{
|Ψl|2 , |Ψm|2

}
ω0

= 0 , ∀l,m ≥ 1

and

{Il, Im}ω̂1
◦ ϕ̂−1 =

{
Il ◦ ϕ̂−1, Im ◦ ϕ̂−1}

ω1

but, by the property of invariance with respect to rotations of ϕ̂ (and therefore of ϕ̂−1), 
Ij ◦ ϕ̂−1 is a function of {Il}l≥1 only, and therefore the above quantity vanishes and one 
has ∀l, m

0 = {Il(v), Im(v)}ω̂1
= 〈∇Il(v), Jω̂1(v)∇Im(v)〉 = 〈vlel, Jω̂1(v)vmem〉 ∀ l,m ≥ 1.

(2.41)
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Define Σv := span {vlel, l ≥ 1}. The identities (2.41) imply that Jω̂1(v)(Σv) ⊆ Σ⊥
v ≡ iΣv. 

By Corollary 2.19(i), Eω̂1(v) is an isomorphism for v ∈ Bw1

R
(μ5ρ), so the same is true 

for its inverse Jω̂1(v). Hence Jω̂1(v)(Σv) = iΣv and Σv = Eω̂1(v)(iΣv) and

ω̂1(X0
Il
, X0

Im) = 〈Eω̂1(v)(ivlel), ivmem〉 = 0, ∀ l,m ≥ 1. (2.42)

Since ωt is a linear combination of ω0 and ω̂1, the previous formula implies that 
ωt(v)(X0

Il
, X0

Im
) = 0 for every t ∈ [0, 1] and v ∈ Bw1

R
(μ5ρ), hence TvF (0) ⊆ (TvF (0))∠t . 

Now assume by contradiction that the inclusion is strict: then there exists u ∈
(TvF (0))∠t , ‖u‖ = 1, such that u /∈ TvF (0). Decompose u = u� + u⊥ with u� ∈ TvF (0)

and u⊥ ∈ (TvF (0))⊥. Due to the bilinearity of ω(v)t, we can always assume that u ≡ u⊥. 
Then for every l ≥ 1

dIl(v)(−iu) = 〈∇Il(v),−iu〉 =
〈
−iX0

Il
(v),−iu

〉
=
〈
X0

Il
(v), u

〉
= 0 ∀ l ≥ 1

since X0
Il

(v) ∈ TvF (0). Hence iu ∈ TvF (0) and therefore ωt(v)(−iu, u) = 0. Furthermore 
it holds that

ωt(0)(iu, u) = ω0(−iu, u) =
〈
i2u, u

〉
= −1.

It follows that for v ∈ Bw1

R
(μ5ρ) one has ‖tMΥω̂1(v)‖L(Pw1

R
,Pw1

R
) ≤ 1/2, thus 

ωt(v)(iu, u) = −1 + 〈tMΥω̂1(v)iu, u〉 < 0, leading to a contradiction. �
We can now prove the following lemma:

Lemma 2.22. The solvability conditions (2.38), (2.39) are fulfilled.

Proof. Condition (2.38) follows by equation (2.42), since

d(α1 − α0)(X0
Il
, X0

Im) = ω̂1(X0
Il
, X0

Im) − ω0(X0
Il
, X0

Im) = 0, ∀l,m ≥ 1.

We analyze now (2.39). We claim that in order to fulfill this condition, one must have 
that ω̂1 satisfies Mω̂1 = ω0, which holds by Lemma 2.18(ii). Indeed, since

0 = Mω̂1 − ω0 = M(ω̂1 − ω0) = Md(α1 − α0) = dM(α1 − α0),

there exists a function g such that M(α1 − α0) = dg. But Mdg = M(M(α1 − α0)) =
M(α1 − α0) = dg, therefore g = Mg, so g is invariant by rotations. Hence 0 =
d
dt

∣∣
t=0 g(φ

t
l) = dg(X0

Il
) = M(α1 − α0)(X0

Il
), ∀l ≥ 1, thus also (2.39) is satisfied. �

We show now that the system (2.37) can be solved and its solution has good analytic 
properties:



D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818–1887 1841
Lemma 2.23 (Moser). If conditions (2.38) and (2.39) are fulfilled, then equation (2.37)
has a solution f . Moreover, denoting hj := (α1 − α0)(X0

Ij
), the solution f is given by 

the explicit formula

f(v) =
∞∑
j=1

fj(v), fj(v) = M1 · · ·Mj−1Ljhj (2.43)

where

Ljg = 1
2π

2π∫
0

tg(φt
j)dt .

Finally f ∈ Nμ7ρ(Pw1

R
, C), ∇f ∈ Nμ7ρ(Pw1

R
, Pw2

R
) and∣∣f ∣∣

μ7ρ
≤ 210ε1μ

7ρ,
∣∣∇f

∣∣
μ7ρ

≤ 211ε1 . (2.44)

Proof. Denote by θj the time along the flow generated by X0
Ij

, then one has dg(X0
Ij

) =
∂g
∂θj

, so that the equations to be solved take the form

∂f

∂θj
= hj , ∀j ≥ 1. (2.45)

Clearly ∂
∂θj

Mjhj = 0, and by (2.38) it follows that

∂

∂θl
Mjhj = Mj

∂hj

∂θl
= Mj

∂hl

∂θj
= ∂

∂θj
Mjhl = 0, ∀l, j ≥ 1,

which shows that Mjhj is independent of all the θ’s, thus Mjhj = Mhj . Furthermore, 
by (2.39) one has Mhj = 0, ∀ j ≥ 1. Now, using that ∂

∂θj
Ljg = g − Mjg, one verifies 

that fj defined in (2.43) satisfies

∂fj
∂θl

=

⎧⎪⎨⎪⎩
0 if l < j

M1 · · ·Mj−1hj if l = j

M1 · · ·Mj−1hl −M1 · · ·Mjhl if l > j

where, for j = 1, we defined M1 · · ·Mj−1hl = hl. Thus the series f(v) :=
∑

j≥1 fj(v), if 
convergent, satisfies (2.45).

We prove now the convergence of the series for f and ∇f . First we define, for θ ∈ T ,

Θθ
j := φθ1

1 · · ·φθj
j ∀ j ≥ 1 ,

then by (2.43) one has
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fj(v) =
∫
T j

θjhj(Θθ
jv) dθj , (2.46)

∇fj(v) =
∫
T j

Θ−θ
j θj∇hj(Θθ

jv) dθj , (2.47)

where T j is the j-dimensional torus and dθj = dθ1
2π · · · dθj

2π . Now, using that

hj(v) = 〈W (v), X0
Ij (v)〉 = Re(iWj(v)v̄j) ∀ j ≥ 1

one gets that fj(|v|) ≤ 2π hj(|v|) ≤ 2πWj(|v|)|vj |, therefore f(|v|) ≤
∑∞

j=1 fj(|v|) ≤
2π ‖W (|v|)‖w1 ‖v‖w1 and it follows that 

∣∣f ∣∣
μ7ρ

≤ 2π |W |μ7ρ μ
7ρ. This proves the con-

vergence of the series defining f .
Consider now the gradient of hj, whose kth component is given by

[∇hj(v)]k = Re

(
i∂Wj(v)

∂vk
v̄j

)
+ δj,k Re (iWj(v)) .

Inserting the formula displayed above in (2.47) we get that ∇fj is the sum of two terms. 
We begin by estimating the second one, which we denote by (∇fj)(2). The kth component 
of (∇f)(2) :=

∑
j(∇fj)(2) is given by

[
(∇f(v))(2)

]
k

=

⎡⎣∑
j

(∇fj(v))(2)
⎤⎦
k

=
∫
T k

Θ−θ
k θk Re (iWk(Θθ

kv)) dθk , (2.48)

thus, for any v ∈ Bw1

R
(μ7ρ) one has 

[
(∇f(|v|))(2)

]
k
≤ 2πWk(|v|), and therefore

∣∣∣(∇f)(2)
∣∣∣
μ7ρ

≤ 2π |W |μ7ρ ≤ π28ε1.

We come to the other term, which we denote by (∇fj)(1). Its kth component is given by

[
(∇fj(v))(1)

]
k

=
∫
T j

Θ−θ
j θjRe

(
i∂Wj

∂vk
(Θθ

jv)φ
θj
j vj

)
dθ . (2.49)

Then ∇fj(|v|) ≤ 2π ∂Wj

∂vk
(|v|)|vj | = 2π[dW (|v|)]jk|vj |.

It follows that the kth component of the function (∇f)(1) :=
∑

j(∇fj)(1) satisfies

[
(∇f(|v|))(1)

]
k
≤

⎡⎣∑
j

(∇fj(|v|))(1)
⎤⎦ ≤ 2π

∑
j

[dW (|v|)]jk|vj | .

k
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Therefore 
∣∣∣(∇f)(1)

∣∣∣
μ7ρ

≤ 2π ‖W‖Aw2
w1,μ7ρ

≤ π28ε1. This is the step at which the control 
of the norm of the modulus dW ∗ of dW ∗ is needed. Thus the claimed estimate for ∇f

follows. �
We can finally apply the Darboux procedure in order to construct an analytic change 

of coordinates ϕ which satisfies (2.35) and (2.36).

Lemma 2.24. There exists a map ϕ : Bw1

R
(μ9ρ) → Pw1

R
which satisfies (2.35). Moreover 

ϕ − 1 ∈ Nμ9ρ(Pw1

R
, Pw2

R
), ϕ − 1 = O(v2) and∣∣ϕ− 1

∣∣
μ9ρ

≤ 214ε1 . (2.50)

Proof. As anticipated just after Corollary 2.20, we apply the Darboux procedure with 
Ω0 = ω0, Ω1 = ω̂1 and f solution of (2.37). Then equation (2.21) takes the form

Y t = (−i + tΥω̂1)−1(∇f −W ), (2.51)

where Υω̂1 and W are defined in Corollary 2.19. By Lemma 2.23 and Corollary 2.19, the 
vector field Y t is of class Nμ8ρ(Pw1

R
, Pw2

R
) and

sup
t∈[0,1]

∣∣Y t
∣∣
μ8ρ

< 2(211ε1 + 27ε1) < 213ε1.

Thus Y t generates a flow ϕt : Bw1

R
(μ9ρ) → Pw1

R
, defined for every t ∈ [0, 1], which 

satisfies (cf. Lemma A.4) ∣∣ϕt − 1
∣∣
μ9ρ

≤ 214ε1, ∀t ∈ [0, 1] .

Thus the map ϕ := ϕt|t=1 exists and satisfies the claimed properties. �
We prove now that the map ϕ of Lemma 2.24 satisfies also equation (2.36).

Lemma 2.25. Let f be as in (2.43) and ϕt be the flow map of the vector field Y t defined 
in (2.51). Then ∀ l ≥ 1 one has Il(ϕt(v)) = Il(v), for each t ∈ [0, 1].

Proof. The following chain of equivalences follows from Lemma 2.21 and the Darboux 
equation (2.21):

Il(ϕt(v)) = Il(v) ⇐⇒ 0 = d

dt
Il(ϕt(v)) = dIl(Y t(v)) ⇐⇒ Y t(v) ∈ TvF (0)

⇐⇒ Y t(v) ∈ (TvF (0))∠t ⇐⇒
(
ωt
v(Y t(v), X0

Il
(v)) = 0 , ∀l ≥ 1

)
⇐⇒ α1(X0

Il
) − α0(X0

Il
) = df(X0

Il
) ∀l ≥ 1 .

In turn the last property follows since f is a solution of (2.37). �
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We can finally prove the quantitative version of the Kuksin–Perelman Theorem.

Proof of Theorem 2.12. Consider the map ϕ of Lemma 2.24. Since dϕ(0) = 1, ϕ is 
invertible in Bw1

R
(μ10ρ) and ϕ−1 = 1 + g1 with g1 ∈ Nμ10ρ(Pw1

R
, Pw2

R
) and 

∣∣g1
∣∣
μ10ρ

≤
2 
∣∣ϕ− 1

∣∣
μ9ρ

≤ 215ε1 (cf. Lemma A.2). Define now

Ψ̃ := ϕ−1 ◦ Ψ̌.

It’s easy to check that Ψ̃∗ω0 = ω0, thus proving that Ψ̃ is symplectic. By equation 
(2.36) one has Il(Ψ̃(v)) = Il(Ψ̌(v)) for every l ≥ 1, therefore Ψ̃ and Ψ̌ define the same 
foliation, which coincides also with the foliation defined by Ψ, cf. Corollary 2.20. Similarly 
one proves that the functionals 

{
1
2

∣∣∣Ψ̃j(v)
∣∣∣}

j≥1
pairwise commute with respect to the 

symplectic form ω0. We have thus proved items i)–iii) of Theorem 2.12.
We prove now item iv). Clearly dΨ̃(0) = 1, and Ψ̃0 := Ψ̃ − 1 = Ψ̌0 + g1 ◦ (1 + Ψ̌0)

is of class Nμ11ρ(Pw1

R
, Pw2

R
). Moreover, by Remark 2.10 and Corollary 2.20(i), one has ∣∣∣Ψ̌0

∣∣∣
μ11ρ

≤ 2μ6
∣∣∣Ψ̌0

∣∣∣
μ8ρ

≤ μ629ε1 ≤ μ11ρ by condition (2.18). Thus 
∣∣∣1 + Ψ̌0

∣∣∣
μ11ρ

≤ μ10ρ

and by Lemma A.1

∣∣∣Ψ̃0

∣∣∣
μ11ρ

≤
∣∣∣Ψ̌0

∣∣∣
μ11ρ

+
∣∣∣g1 ◦ (1 + Ψ̌0)

∣∣∣
μ11ρ

≤
∣∣∣Ψ̌0

∣∣∣
μ11ρ

+
∣∣g1
∣∣
μ10ρ

≤ 28ε1 + 215ε1 ≤ 216ε1.

We are left to prove that Ψ̃0 ∈ Aw2

w1,μ12ρ. Since Ψ̃∗ω0 = ω0, one has dΨ̃(v)∗(−i) Ψ̃(v) = −i, 
from which it follows that Ψ̃0 satisfies

dΨ̃0(v)∗ = i dΨ̃0(v)
(
1 + dΨ̃0(v)

)−1
i

and therefore Ψ̃0 ∈ Aw2

w1,μ12ρ with 
∥∥∥Ψ̃0

∥∥∥
Aw2

w1,μ12ρ

< 217ε1. �

3. Toda lattice

3.1. Proof of Theorem 1.3 and Corollary 1.6

We consider the Toda lattice with N particles and periodic boundary conditions on 
the positions q and momenta p: qj+N = qj , pj+N = pj , ∀ j ∈ Z. As anticipated in 
Section 1, we restrict to the invariant subspace characterized by (1.2). The phase space 
of the system is Ps,σ, where s ≥ 0, σ ≥ 0 and it is defined in terms of the linear, complex,
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Birkhoff variables (ξ, η) (defined in (2.3)). We endow the phase space with the symplectic 
form2 Ω0 = −i 

∑N−1
k=1 dξk ∧ dηk.

We will denote by Ps,σ
R

the real subspace of Ps,σ in which ηk = ξ̄k ∀1 ≤ k ≤ N − 1, 
endowed with the norm (1.7), and by Bs,σ

R
(ρ) the ball in Ps,σ

R
with center 0 and radius 

ρ > 0. The main step of the proof of Theorem 1.3 is the construction of the functions 
{Ψj}1≤j≤N−1. This is based on a detailed analysis of the spectrum of the Jacobi matrix 
appearing in the Lax pair representation of the Toda lattice. So we start by recalling the 
elements of the theory needed for our development. Introduce the translated Flaschka 
coordinates [17] by

(b, a) = Θ(p, q), (bj , aj) := (−pj , e
1
2 (qj−qj+1) − 1). (3.2)

The translation of the a variables by 1 is useful in order to keep the equilibrium point 
at (b, a) = (0, 0). Recall that the variables b, a are constrained by the conditions

N−1∑
j=0

bj = 0,
N−1∏
j=0

(1 + aj) = 1 .

Introduce Fourier variables (b̂, ̂a) for the Flaschka coordinates by (1.3). In these variables

Ek = |b̂k|2 + 4|âk|2
2 + O(â3), 1 ≤ k ≤ N − 1 . (3.3)

The Jacobi matrix whose spectrum forms a complete set of integrals of motions for the 
Toda lattice is given by [38]

L(b, a) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 1 + a0 0 . . . 1 + aN−1

1 + a0 b1 1 + a1
. . .

...

0 1 + a1 b2
. . . 0

...
. . . . . . . . . 1 + aN−2

1 + aN−1 . . . 0 1 + aN−2 bN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.4)

It is useful to double the size of L(b, a), redefining

2 So that the Hamilton equations become

ξ̇k = i
∂H

∂ηk

, η̇k = −i
∂H

∂ξk
. (3.1)
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Lb,a :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 1 + a0 . . . 0 0 . . . 0 1 + aN−1

1 + a0 b1
. . .

... 0 . . . 0
...

. . .
. . . 1 + aN−2

...
...

0
. . . 1 + aN−2 bN−1 1 + aN−1 . . . 0 0

0 . . . 0 1 + aN−1 b0 1 + a0 . . . 0

0 . . . 0 1 + a0 b1
. . .

...
...

...
...

. . .
. . . 1 + aN−2

1 + aN−1 . . . 0 0 0
. . . 1 + aN−2 bN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.5)

Consider the eigenvalues of Lb,a and order them in the non-decreasing sequence

λ0(b, a) < λ1(b, a) ≤ λ2(b, a) < . . . < λ2N−3(b, a) ≤ λ2N−2(b, a) < λ2N−1(b, a)

where one has that where the sign ≤ appears equality is possible, while it is impossible 
in the correspondence of a sign <. Define the quantities

γj(b, a) := λ2j(b, a) − λ2j−1(b, a), 1 ≤ j ≤ N − 1; (3.6)

γj(b, a) is called jth spectral gap. The quantities {γ2
j }1≤j≤N−1 form a complete set of 

commuting integrals of motions, which are regular also at (b, a) = (0, 0). Furthermore 
one has H(b, a) = H(γ2

1(b, a), . . . , γ2
N−1(b, a)) [6]. A spectral gap is said to be closed if 

γj(b, a) = 0.
The following Theorem 3.1 ensures that the assumptions of Theorem 2.12 are fulfilled 

by the Toda lattice.

Theorem 3.1. There exists ε∗ > 0, independent of N , and an analytic map

Ψ :
(
Bs,σ

( ε∗
N2

)
,Ω0

)
→ Ps,σ, (ξ, η) �→ (φ(ξ, η), ψ(ξ, η)) (3.7)

such that:

(Ψ1) Ψ is real for real sequences, namely φk(ξ, ξ̄) = ψk(ξ, ξ̄) ∀k.
(Ψ2) For every 1 ≤ j ≤ N − 1, and for (φ, ψ) ∈ Bs,σ

(
ε∗
N2

)
∩ Ps,σ

R
, one has

γ2
j = 2

N ω
(

j
N

)
|ψj |2 = 2

N ω
(

k
N

)
|ϕj |2 .

(Ψ3) Ψ(0, 0) = (0, 0) and dΨ(0, 0) = 1.
(Ψ4) There exist constants C1, C2 > 0, independent of N , such that for every 0 <

ε ≤ ε∗, the map Ψ0 := Ψ − 1 ∈ Nε/N2
(
Ps,σ,Ps+1,σ) and [dΨ0]∗ ∈ Nε/N2(Ps,σ,

L(Ps,σ, Ps+1,σ)). Furthermore one has

∣∣Ψ0∣∣
ε/N2 ≤ C1

ε2

N2 ;
∣∣∣[dΨ0]∗

∣∣∣
ε/N2

≤ C2ε . (3.8)
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The main point is (Ψ4), in which the estimates of the domain of definition of the map 
Ψ hold uniformly in the limit N → ∞.

We show now how Theorem 1.3 follows from Kuksin–Perelman Theorem 2.12.

Proof of Theorem 1.3. Introduce the weights w1 := {N3/2[k]sNeσ[k]Nω
(

k
N

)1/2}N−1
k=1 and 

w2 := {N3/2[k]s+1
N eσ[k]Nω

(
k
N

)1/2}N−1
k=1 and consider the map Ψ of Theorem 3.1 as a map 

from Pw1 in itself. Since for any (ξ, η) ∈ Pw1 one has that

‖(ξ, η)‖Pw1 ≡ N2 ‖(ξ, η)‖Ps,σ , (3.9)

it follows by scaling that there exists a constant C3 > 0, independent of N , such that∥∥Ψ0∥∥
Aw2

w1,ρ

≤ C3ρ
2 .

Thus, for any ρ ≤ ρ∗ ≡ min
(

2−34

C3
, ε∗
)
, Ψ satisfies condition (2.18). Thus we can apply 

Theorem 2.12 to the map Ψ, getting the existence of a symplectic real analytic map Ψ̃
defined on Bw1(aρ∗) which satisfies i)–iv) of Theorem 2.12.

By Lemma A.3 the map Ψ̃ is invertible in Bw1(μaρ∗) and its inverse Φ satisfies 
Φ = 1 + Φ0 with Φ0 ∈ Aw2

w1,μaρ∗
. To get the statement of the theorem simply reexpress 

the map Φ in terms of real variables (x, y), (X, Y ) and denote such a map by ΦN . �
Remark 3.2. By the proof of Theorem 1.3 above one deduces the estimate

sup
‖(φ,ψ)‖Ps,σ≤Rs,σ/N2

∥∥dΦ0(φ, ψ)∗
∥∥
L(Ps,σ,Ps+1,σ) ≤ Cs,σRs,σ , (3.10)

for some Cs,σ > 0, independent of N .

The rest of this subsection is devoted to the proof of Theorem 3.1.
In the following it will be convenient to consider the variables (b, a) defined in (3.2)

dropping the conditions 
∑N−1

j=0 bj = 0 and 
∏N−1

j=0 (1 + aj) = 1. Equation (3.3) suggests 
to introduce on the variables b, a the norm

‖(b, a)‖2
Cs,σ := 1

2N

N−1∑
k=0

max(1, [k]2sN )e2σ[k]N
(
|b̂k|2 + 4|âk|2

)
(3.11)

and to define the space

Cs,σ
R

:=
{
(b, a) ∈ RN × RN : ‖(b, a)‖Cs,σ < ∞

}
. (3.12)

We will write Cs,σ for the complexification of Cs,σ
R

.
In the following we will consider normally analytic map between the spaces Ps,σ and 

Cs,σ. We need to specify the basis of Cs,σ that we will use to verify the property of being 
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normally analytic. While it is quite hard to verify this property when the basis is general, 
it turns out that it is quite easy to verify it using the basis of complex exponentials defined 
in (1.3). Indeed the norm (3.11) is given in terms of the Fourier variables. For the same 
reason, it will be convenient to express a map from Cs,σ to Ps,σ as a function of the 
Fourier variables b̂, â.

We prove now some analytic properties of the map Θ defined in (3.2). In the following 
we will denote by ΘΞ the map Θ expressed in the (ξ, η) variables.

Proposition 3.3. The map ΘΞ satisfies the following properties:

(Θ1) ΘΞ(0, 0) = (0, 0). Furthermore let dΘΞ(0, 0) be the linearization of ΘΞ at (ξ, η) =
(0, 0). Then (B, A) = dΘΞ(0, 0)[(ξ, η)] iff

B̂0 = 0, B̂k = −
(1

2ω
(

k
N

))1/2(ξk + ηN−k), 1 ≤ k ≤ N − 1 ,

Â0 = 0, Âk = −i�k

(
2ω
(

k
N

))−1/2 (ξk − ηN−k), 1 ≤ k ≤ N − 1, (3.13)

where �k := (1 − e−2iπk/N )/2, ∀ 1 ≤ k ≤ N − 1.
Moreover for any s ≥ 0, σ ≥ 0 there exist constants CΘ1 , CΘ2 > 0, independent 
of N , such that ∥∥dΘΞ(0, 0)

∥∥
L(Ps,σ, Cs,σ) ≤ CΘ1 ,∥∥dΘΞ(0, 0)∗
∥∥
L(Cs+2,σ,Ps+1,σ) ≤

CΘ2

N
. (3.14)

(Θ2) Let Θ0
Ξ := ΘΞ − dΘΞ(0, 0). For any s ≥ 0, σ ≥ 0, there exist constants 

CΘ3 , CΘ4 , ε∗ > 0, independent of N , such that the map Θ0
Ξ ∈ Nε∗/N2(Ps,σ, Cs+1,σ)

and the map [dΘ0
Ξ]∗ ∈ Nε∗/N2(Ps,σ, L(Cs+2,σ, Ps+1,σ)), and

∣∣∣Θ0
Ξ

∣∣∣
ε/N2

≡ sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥Θ0
Ξ(ξ, η)

∥∥∥
Cs+1,σ

≤ CΘ3ε
2

N2 ;

∣∣∣[dΘ0
Ξ]∗
∣∣∣
ε/N2

≡ sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥dΘ0
Ξ(ξ, η)∗

∥∥∥
L(Cs+2,σ,Ps+1,σ)

≤ CΘ4ε

N2 . (3.15)

The proof of the proposition is postponed in Appendix C. Note that the estimates 
(3.14) and (3.15) imply that there exists a constant CΘ5 > 0, independent of N , such 
that for any ρ ≤ ε∗

N2 one has ΘΞ ∈ Nρ(Ps,σ, Cs,σ) and∣∣ΘΞ
∣∣
ρ
≤ CΘ5 ρ . (3.16)

We start now the perturbative construction of the Birkhoff coordinates for the Toda 
lattice, which is based on the construction of the spectrum and of the eigenfunctions 
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of Lb,a (defined in (3.5)) as a perturbation of the free operator L0 := Lb,a|(b,a)=(0,0). 
More precisely we decompose Lb,a = L0 + Lp, where

L0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 1

1 0 1
. . .

...
0 1 0 . . . 0
...

. . . . . . . . . 1
1 . . . . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Lp =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b0 a0 0 . . . aN−1

a0 b1 a1
. . .

...
0 a1 b2 . . . 0
...

. . . . . . . . . aN−2
aN−1 . . . . . . aN−2 bN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.17)

and following the approach in [30,6,26] we apply Kato perturbation theory [29]. The next 
lemma characterizes completely the spectrum of L0 as an operator on C2N :

Lemma 3.4. Consider L0 as an operator on C2N , then its eigenvalues and normalized 
eigenvectors are:

eigenvalues eigenvectors
λ0

0 = −2, f00(k) = 1√
2N (−1)k

λ0
2j−1 = λ0

2j = −2 cos
(
jπ
N

)
, f2j−1,0(k) = 1√

2N e−iρjk, f2j,0(k) = 1√
2N eiρjk , 1 ≤ j ≤ N − 1

λ0
2N−1 = 2, f2N−1,0(k) = 1√

2N

where 0 ≤ k ≤ 2N − 1 and ρj :=
(
1 + j

N

)
π. In particular the gaps of L0 are all closed.

The proof is an easy computation and can be found in [23].

Remark 3.5. For 0 ≤ j, k ≤ �N/2� one has 
∣∣λ0

2j − λ0
2k
∣∣ , ∣∣λ0

2N−j − λ0
2N−k

∣∣ ≥ 4|j2−k2|
N2 .

In particular if j �= k then 
∣∣λ0

2j − λ0
2k
∣∣ ≥ 1/N2.

We use now Kato perturbation theory of operators in order to introduce the main 
objects needed in the following and to give some preliminary estimates.

For 1 ≤ j ≤ N − 1 let Ej(b, a) be the two-dimensional subspace spanned by the 
eigenvectors corresponding to the eigenvalues λ2j−1(b, a) and λ2j(b, a) of Lb,a. Analo-
gously, let E0(b, a) (respectively EN (b, a)) be the one-dimensional subspace spanned by 
the eigenvector of λ0(b, a) (respectively λ2N−1(b, a)). Introduce the spectral projector on 
Ej(b, a) defined by

Pj(b, a) = − 1
2πi

∮
Γj

(Lb,a − λ)−1 dλ, 0 ≤ j ≤ N (3.18)

where, for 1 ≤ j ≤ N − 1, Γj is a closed path counter-clockwise oriented in C which en-
closes the eigenvalues λ2j−1(b, a) and λ2j(b, a) and does not contain any other eigenvalue 
of Lb,a. Analogously, Γ0 (respectively ΓN ) encloses the eigenvalue λ0(b, a) (respectively 
λ2N−1(b, a)) and no other eigenvalue of Lb,a. Pj(b, a) maps C2N onto Ej(b, a) and, as we 
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will prove, is well defined for (b, a) small enough. Pj(0, 0) will be denoted by Pj0 and its 
range Ej(0, 0), which will be denoted by Ej0, is given by

Im Pj0 = Ej0, Ej0 = span 〈f2j,0, f2j−1,0〉 .

Define also the transformation operators

Uj(b, a) =
(
1 − (Pj(b, a) − Pj0)2

)−1/2
Pj(b, a), 1 ≤ j ≤ N − 1. (3.19)

Uj has the property of mapping isometrically Ej0 into the subspace Ej(b, a) spanned 
by the perturbed eigenvectors [29]. Remark, however, that in general the image of an 
unperturbed eigenvector is not an eigenvector itself. We prove now some properties of 
the just defined objects.

Lemma 3.6. There exists a constant Cs,σ > 0, independent of N , such that the map 
(b, a) �→ Lp(b, a) is analytic as a map from Cs,σ to L 

(
C2N). Moreover

‖Lp(b, a)‖L(C2N ) ≤ Cs,σ ‖(b, a)‖Cs,σ . (3.20)

Then by Kato theory one has the corollary

Corollary 3.7. There exist constants Cs,σ, ε∗ > 0, independent of N , such that the 
following holds true:

(i) The spectrum of Lb,a is close to the spectrum of L0; in particular for any (b, a) ∈
BCs,σ ( ε∗

N2

)
∣∣λ2j(b, a) − λ0

2j
∣∣ , ∣∣λ2j−1(b, a) − λ0

2j−1
∣∣ ≤ Cs,σ ‖(b, a)‖Cs,σ . (3.21)

(ii) One has that (b, a) �→ Pj(b, a) is analytic as a map from BCs,σ ( ε∗
N2

)
to L(C2N ). 

Moreover for (b, a) ∈ BCs,σ ( ε∗
N2

)
one has

‖Pj(b, a) − Pj0‖L(C2N ) ≤ Cs,σ ‖(b, a)‖Cs,σ . (3.22)

(iii) For each 1 ≤ j ≤ N − 1, the maps Uj, defined in (3.19), are well defined from 
BCs,σ ( ε∗

N2

)
to L(C2N ) and satisfy the following algebraic properties:

(U1) Im Uj(b, a) = Ej(b, a);
(U2) for (b, a) real, one has Uj(b, a)f = Uj(b, a)f̄ ;
(U3) for (b, a) real and f ∈ Ej0, one has ‖Uj(b, a)f‖ 2N = ‖f‖

C2N .

C



D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818–1887 1851
Finally the following analytic property holds:
(U4) One has that (b, a) �→ Uj(b, a) is analytic as a map from BCs,σ ( ε∗

N2

)
to 

L(C2N ). Moreover for (b, a) ∈ BCs,σ ( ε∗
N2

)
one has

‖Uj(b, a) − Pj(b, a)‖L(C2N ) ≤ Cs,σ ‖(b, a)‖2
Cs,σ . (3.23)

The proofs of Lemma 3.6 and Corollary 3.7 can be found in Appendix D.
For 1 ≤ j ≤ N − 1 and (b, a) ∈ BCs,σ ( ε∗

N2

)
define now the vectors

f2j−1(b, a) := Uj(b, a)f2j−1,0, and f2j(b, a) := Uj(b, a)f2j,0 (3.24)

which by property (U1) belong to Ej(b, a). Define also the maps

zj(b, a) :=
( 2
N ω

(
j
N

))−1/2 〈(
Lb,a − λ0

2j
)
f2j(b, a), f2j(b, a)

〉
,

wj(b, a) :=
( 2
N ω

(
j
N

))−1/2 〈(
Lb,a − λ0

2j−1
)
f2j−1(b, a), f2j−1(b, a)

〉
(3.25)

where 〈u, v〉 =
∑

ujvj is the Hermitian product in C2N . Finally denote z(b, a) =
(z1(b, a), . . . , zN−1(b, a)) and w(b, a) = (w1(b, a), . . . , wN−1(b, a)), and let Z be the map

(b, a) �→ Z(b, a) := (z(b, a), w(b, a)). (3.26)

The map Ψ of Theorem 3.1 will be constructed by expressing Z as a function of the 
linear Birkhoff coordinates ξ, η.

The properties of the map Z are collected in the next lemma which constitutes the 
main technical step for the application of Kuksin–Perelman Theorem to the Toda lattice.

Lemma 3.8. The map Z, defined by (3.26), is well defined for (b, a) ∈ BCs,σ ( ε∗
N2

)
. If b, a

are real valued and fulfill ‖(b, a)‖Cs,σ ≤ ε∗
N2 , then, for every 1 ≤ j ≤ N − 1, the following 

properties are also fulfilled:

(Z1) zj(b, a) = wj(b, a);
(Z2) γ2

j = 2
N ω

(
j
N

)
|zj(b, a)|2 = 2

N ω
(

j
N

)
|wj(b, a)|2;

(Z3) zj(0, 0) = wj(0, 0) = 0; moreover the linearizations of zj and wj at (b, a) = (0, 0)
are given by

dzj(0, 0)[(B,A)] =
(
2ω
(

j
N

))−1/2 (
B̂j − 2ejiπ/N Âj

)
,

dwj(0, 0)[(B,A)] =
(
2ω
(

j
N

))−1/2 (
B̂N−j − 2e−jiπ/N ÂN−j

)
. (3.27)

The map dZ(0, 0) = (dz(0, 0), dw(0, 0)) is in the class L(Cs,σ, Ps,σ). Its adjoint 
dZ(0, 0)∗ is in the class L(Ps,σ, Cs+1,σ). Finally there exist constants CZ1 , CZ2 > 0,
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independent of N , such that for any s ≥ 0 and σ ≥ 0

‖dZ(0, 0)‖L(Cs,σ,Ps,σ) ≤ CZ1 , ‖dZ(0, 0)∗‖L(Ps,σ, Cs+2,σ) ≤ CZ2N
2 . (3.28)

(Z4) For any s ≥ 0, σ ≥ 0, there exist constants CZ3 , CZ4 , ε∗ > 0, independent of N , 
such that for every 0 < ε ≤ ε∗ the map Z0 := Z − dZ(0, 0) ∈ Nε/N2

(
Cs,σ,Ps+1,σ)

and the map [dZ0]∗ ∈ Nε/N2
(
Cs,σ,L(Ps,σ, Cs+2,σ)

)
. Moreover

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥Z0(b, a)
∥∥
Ps+1,σ ≤ CZ3

ε2

N2 ,

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥dZ0(b, a)∗
∥∥
L(Ps,σ, Cs+2,σ) ≤ CZ4Nε. (3.29)

The proof of the lemma is very technical, and is postponed in Appendix E.

Remark 3.9. In the limit of infinitely many particles, the linearization dzj(0, 0)(b, a) at 
the different edges of the spectrum are given by

dzj(0, 0)(B,A) ≈ B̂j − 2Âj√
2ω(j/N)

if j/N � 1

dzj(0, 0)(B,A) ≈ B̂j + 2Âj√
2ω(j/N)

if 1 − j/N � 1 . (3.30)

The existence of two different sequences is in agreement with the works [5,4], in which 
the spectrum of the Lax operator associated to the Toda lattice is approximated, up to 
a small error, by the spectrum of two Sturm–Liouville operators associated to two KdV 
equations. More explicitly, in [5] the following result is proved: take α, β ∈ C∞(T) such 
that 

∫
T
α =

∫
T
β = 0, aj = 1 + 1

N2α(j/N) and bj = 1
N2β(j/N). Then the spectrum of 

the Lax matrix (3.5) with aj , bj as elements can be approximated at the two edges by 
the spectrum of the two Sturm–Liouville operators L = − d2

dx2 + (β ± 2α) on C∞(T).

We are ready to define the map Ψ of Theorem 3.1: let

Ψ : Ps,σ → Ps,σ, (ξ, η) �→ (φ(ξ, η), ψ(ξ, η)) (3.31)

defined by

Ψ = −Z ◦ ΘΞ; i.e. φ = −z ◦ ΘΞ, ψ = −w ◦ ΘΞ. (3.32)

We show now that Ψ satisfies the properties (Ψ1)–(Ψ4) claimed in Theorem 3.1.

Proof of Theorem 3.1. Properties (Ψ1) and (Ψ2) follow by (Z1) and (Z2) respectively. 
We prove now (Ψ3). By (Θ1) and (Z3) one has Ψ(0, 0) = (0, 0). In order to compute 
dΨ(0, 0) = (dφ(0, 0), dψ(0, 0)) note that
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dφ(0, 0) = −dz(0, 0) dΘΞ(0, 0) = −(dz(0, 0)F−1) ◦ (FdΘΞ(0, 0)) .

Let (B̂, Â) = FdΘΞ(0, 0)(ξ, η). Then (3.27) and (3.13) imply that, for 1 ≤ j ≤ N − 1,

dφj(0, 0)(ξ, η) = − 1√
2ω(j/N)

(
B̂j − 2eiπj/N Âj

)
= 1√

2ω(j/N)

(√
ω(j/N)

2 (ξj + ηN−j) − i 2eiπj/N�j√
2ω(j/N)

(ξj − ηN−j)
)

≡ ξj ,

where we used that 2eiπj/N�j = iω
(

j
N

)
. One verifies analogously that dψj(0, 0)(ξ, η) =

ηj .
We prove now property (Ψ4), which is a consequence of the fact that the space of 

normally analytic maps is closed by composition (see Lemma A.1). Fix s ≥ 0 and σ ≥ 0. 
Let 0 < ε ≤ ε∗

CΘ5
, where CΘ5 is the constant in (3.16). Since Z = dZ(0, 0) + Z0 and 

ΘΞ = dΘΞ(0, 0) + Θ0
Ξ, one gets that

Ψ0 = −Z0 ◦ ΘΞ − dZ(0, 0) ◦ Θ0
Ξ . (3.33)

Thus properties (Z3), (Θ2) and estimate (3.16) imply that there exists a constant C > 0, 
independent of N , such that

∣∣Ψ0∣∣
ε/N2 ≡ sup

‖(ξ,η)‖Ps,σ≤ε/N2

∥∥Ψ0(ξ, η)
∥∥
Ps+1,σ ≤ C ε2

N2 ,

which proves the first estimate of (Ψ4). We study now the adjoint map dΨ0(ξ, η)∗. 
Writing dΘΞ = dΘΞ(0, 0) + dΘ0

Ξ one gets that

dΨ0(ξ, η)∗ = −dΘΞ(0, 0)∗ dZ0(ΘΞ(ξ, η))∗ − dΘ0
Ξ(ξ, η)∗ dZ0(ΘΞ(ξ, η))∗

− dΘ0
Ξ(ξ, η)∗ dZ(0, 0)∗

= I + II + III .

We estimate each term in the expression displayed above. In the following, if A ∈
Nρ(Ps,σ, L(Ps,σ, Ps+1,σ)), we denote by

|A|ρ ≡ sup
‖(ξ,η)‖Ps,σ≤ε/N2

‖A(ξ, η)‖L(Ps,σ,Ps+1,σ) .

We begin by estimating I:

|I|ε/N2 ≤ CΘ2

N
sup

‖(ξ,η)‖Ps,σ≤ε/N2

∥∥dZ0(ΘΞ(ξ, η))∗
∥∥
L(Ps,σ, Cs+2,σ)

≤ CΘ2 CZ4CΘ5N ε ≤ Cε,

N
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where in the first inequality we used the second estimate of (3.14) and in the second 
inequality we used the second estimate in (3.29). Now we study II :

|II |ε/N2 ≤ CΘ4ε

N2 sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥dZ0(ΘΞ(ξ, η))∗
∥∥
L(Ps,σ, Cs+2,σ)

≤ CΘ4ε

N2 CZ4CΘ5Nε ≤ Cε2

N
,

where we used the second estimate in (3.15) and again (Z4). Finally, using again (Θ2)
and the second estimate of (3.28), one has

|III |ε/N2 ≤ CΘ4ε

N2 ‖dZ(0, 0)∗‖L(Ps,σ, Cs+2,σ) ≤
CΘ4ε

N2 CZ2N
2 ≤ Cε .

Collecting the estimates above one gets∣∣[dΨ0]∗
∣∣
ε/N2 ≡ sup

‖(ξ,η)‖Ps,σ≤ε/N2

∥∥dΨ0(ξ, η)∗
∥∥
L(Ps,σ,Ps+1,σ) ≤ 3Cε,

and (Ψ4) follows. �
Proof of Corollary 1.6. Provided 0 < R < R′

s,σ is small enough, one has that w0 :=
Φ−1

N (v0) fulfills

‖w0‖Ps,σ ≤ R

N2 (1 + CR) ,

and, denoting by w(t) the solution in Birkhoff coordinates, one has ‖w0‖Ps,σ =
‖w(t)‖Ps,σ . Thus, provided 0 < R < R′

s,σ is small enough one has

‖v(t)‖Ps,σ = ‖ΦN (w(t))‖Ps,σ ≤ R

N2 (1 + C ′R)

which implies the thesis. �
3.2. Proof of Theorem 1.7

The proof is based on the construction of the first terms of the Taylor expansion of 
ΦN through Birkhoff normal form (following [22]). To this end we work with the complex 
variables (ξ, η) (defined in (2.3)) and will eventually restrict to the real subspace Ps,σ

R
.

Remark 3.10. Consider the Taylor expansion of ΦN at the origin, one has

ΦN = 1 + QΦN + O(‖(ξ, η)‖3
Ps,σ ) ,
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then QΦN is a bounded quadratic polynomial. Furthermore, since ΦN is canonical, QΦN

is a Hamiltonian vector field, i.e. there exists a cubic complex valued polynomial χΦN

s.t. QΦn is the Hamiltonian vector field of χΦN
.

We need a preliminary result about a uniqueness property of the transformation in-
troducing Birkhoff coordinates (called below Birkhoff map).

Lemma 3.11. Let ΦN and ΨN be Birkhoff maps for HToda, analytic in some neighborhood 
of the origin; assume that dΦN (0, 0) ≡ dΨN (0, 0) = 1 and denote by χΦN

and χΨN
the 

Hamiltonian functions corresponding to QΦN and QΨN respectively, then one has

{H0;χΦN
− χΨN

} = 0 , (3.34)

where H0 is defined in (1.6).

Proof. By a standard computation of the Taylor expansion one has

HToda ◦ ΦN = H0 + {H0, χΦN
} + H1 + h.o.t.

where H1 is the function

H1(q) =
N−1∑
j=0

(qj − qj+1)3

6 .

Since ΦN is a Birkhoff map, namely a map introducing Birkhoff coordinates, it follows 
that HToda ◦ ΦN is a function of the actions (ξjηj)j alone, so in particular its Taylor 
expansion contains only terms of even degree. Thus the cubic terms in the expansion 
above must vanish: {H0, χΦN

}+H1 = 0. The same argument holds also for the map ΨN , 
thus the thesis follows. �
Remark 3.12. Writing as usual

χΦN
(ξ, η) =

∑
|K|+|L|=3

χK,Lξ
KηL ,

one gets that, since

{H0, χΦN
} = −

∑
|K|+|L|=3

iω · (K − L)χK,L ξKηL ,

eq. (3.34) implies that, if for some K, L one has ω · (K − L) �= 0, then χK,L is unique 
and coincides with HK,L

iω·(K−L) with an obvious definition of HK,L.
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Lemma 3.13. In terms of the variables (ξ, η) one has

H1(ξ, η)

= 1
12

√
2N

⎡⎢⎢⎣ ∑
k1+k2+k3=0 mod N

1≤k1,k2,k3≤N−1

(−1)
k1+k2+k3

N
√
ωk1

√
ωk2

√
ωk3 (ξk1ξk2ξk3 + ηk1ηk2ηk3)

+ 3
∑

k1+k2−k3=0 mod N
1≤k1,k2,k3≤N−1

(−1)
k1+k2−k3

N
√
ωk1

√
ωk2

√
ωk3 (ξk1ξk2ηk3 + ηk1ηk2ξk3)

⎤⎥⎥⎦
Proof. First remark that

qj − qj+1 = 1√
N

N−1∑
k=0

q̂k

(
1 − e−

2πik
N

)
e−

2πijk
N = 1√

N

N−1∑
k=0

iωke
− iπk

N q̂ke
− 2πijk

N ,

so that

1
6

N−1∑
j=0

(qj − qj+1)3 = i3

6N3/2

∑
k1,k2,k3

ωk1 q̂k1ωk2 q̂k2ωk3 q̂k3e
− iπ

N (k1+k2+k3)
N−1∑
j=0

e
2πij
N (k1+k2+k3)

= i3

6N1/2

∑
k1+k2+k3=0 mod N

(−1)
k1+k2+k3

N ωk1 q̂k1ωk2 q̂k2ωk3 q̂k3 .

Substituting

ωkq̂k =
√
ωk

ξk − ηN−k

i
√

2

and reorganizing the terms one gets the thesis. �
Lemma 3.14. For any s ≥ 0, σ ≥ 0, there exists C > 0 s.t. one has∥∥QφN (v̄)

∥∥
Ps,σ ≥ CN2 ‖v̄‖2

Ps,σ , (3.35)

where v̄ = ((ξ1, 0, 0, . . . , 0), (ξ̄1, 0, 0, . . . , 0)) ∈ Ps,σ
R

.

Proof. In this proof, for clarity we denote η1 := ξ̄1, and similarly for the other vari-
ables. We are going to compute the ξ2 component [QΦN (v̄)]ξ2 of QΦN (v̄) and exploit the 
inequality

∥∥QΦN (v̄)
∥∥
Ps,σ ≥ 1√ 2se2σω

1/2
2

1√
∣∣∣[QΦN (v̄)

]
ξ2

∣∣∣ = 2se2σω
1/2
2√

∣∣∣∣∂χΦN (v̄)
∣∣∣∣ ; (3.36)
N 2 2N ∂η2
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the only monomials in χΦN
contributing to such a quantity are quadratic in (ξ1, η1) and 

linear in η2, but due to the selection rule k1 ± k2 ± k3 = lN with a plus for the ξ’s and 
a minus for the η’s the only monomial contributing to the r.h.s. of (3.36) is χK̄,L̄ξ

K̄ηL̄

with K̄ := (2, 0, . . . , 0), and L̄ = (0, 1, 0, 0, . . . , 0).
Since

ω · (K − L) = 2ω1 − ω2 = 4 sin π

N
− 2 sin 2π

N
= 2π3

N3 + O

(
1
N5

)
�= 0 , (3.37)

such a coefficient is uniquely defined and, for the χΦN
corresponding to any Birkhoff 

map, one has

χK̄,L̄ = 1
4
√

2N
ω1ω

1/2
2

i(2ω1 − ω2)
. (3.38)

Inserting in (3.36) one has that its r.h.s. is equal to

2se2σω
1/2
2√

2N
∣∣χK̄,L̄

∣∣ |ξ1|2 = C ′′

N

ω1ω2

|2ω1 − ω2|
|ξ1|2 = C ′ ω2

|2ω1 − ω2|
‖v̄‖2

Ps,σ ≥ CN2 ‖v̄‖2
Ps,σ ,

where C, C ′ and C ′′ are numerical constants independent of N and we used the expan-
sions of ω1, ω2 in 1/N as well as equation (3.37). �
Proof of Theorem 1.7. The thesis immediately follows taking ‖v̄‖Ps,σ = R/Nα and 
imposing the inequality (1.11). �
Proof of Corollary 1.9. By Cauchy inequality and assumption (1.12) QΦN fulfills

∥∥QΦN (v̄)
∥∥
Ps,σ ≤ R′

Nα′
N2α

R2 ‖v̄‖2
Ps,σ . (3.39)

Comparing this inequality with (3.35), one gets

R′

R2N
2α−α′ ≥ C ′′N2 ,

which in particular implies the thesis. �
4. FPU packet of modes: proofs

In this section we prove the results stated in Subsection 1.2 about the persistence of 
the metastable packet in the FPU system.

To clarify the procedure, we distinguish here between the (ξ, η) variables and the 
variables (p, q). Thus, we denote by T : (ξ, η) → (p, q) the change of coordinates of the 
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phase space introducing the linear Birkhoff variables (ξ, η) defined in (2.3). Furthermore 
it is useful to use for the (p, q) variables the following norms

‖q‖2
s,σ := 1

N

N−1∑
k=0

max(1, [k]2sN ) e2σ[k]N |q̂k|2 , (4.1)

and

‖(p, q)‖Ps,σ :=
∥∥T−1(p, q)

∥∥
Ps,σ . (4.2)

Lemma 4.1. Fix s ≥ 1, σ ≥ 0, then there exist constants C1, C2 > 0, independent of N , 
such that for all (ξ, η) ∈ Ps,σ and ∀l ≥ 2 one has

‖XHl◦T (ξ, η)‖Ps,σ ≤ Cl
1

(l + 1)! ‖(ξ, η)‖
l+1
Ps,σ , (4.3)

‖XHl◦T (ξ, η)‖Ps−1,σ ≤ Cl
2

N(l + 1)! ‖(ξ, η)‖
l+1
Ps,σ . (4.4)

Proof. Define the difference operators by

S± : {qj}0≤j≤N−1 �→ {qj − qj±1}0≤j≤N−1 , where qN ≡ q0 , (4.5)

and the operator [S+(q)]l by{
[S+(q)]l

}
j

:= (qj − qj+1)l ,

so that

XHl◦T (ξ, η) = 1
(l + 1)!T

−1
(
S− [S+(T (ξ, η))]l , 0

)
. (4.6)

By Lemma B.3 and Remark B.5 in Appendix B, there exists a constant Cs,σ > 0, 
independent of N , such that for every integer n ≥ 1∥∥[S±(q)]l+1∥∥

s,σ
≤ Cl+1

s,σ ‖S±(q)‖l+1
s,σ ≤ Cl+1

s,σ ‖(ξ, η)‖l+1
Ps,σ , (4.7)

where for the last inequality we have identified the couple (0, q) with the corresponding 
(ξ, η) vector.

Then the thesis follows just remarking that 
∥∥T−1(q, 0)

∥∥
Ps,σ = ‖q‖s,σ, and that S− is 

bounded as an operator from Ps,σ to itself, while one has

‖(S−(q), 0)‖Ps−1,σ ≤ C ‖q‖s,σ . �

N
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Introducing the Birkhoff coordinates and using the standard formulae for the pull 
back of vector fields3 one has the following

Corollary 4.2. Fix s ≥ 1 and σ ≥ 0, then there exist constants Rs,σ, C1, C2 > 0, indepen-
dent of N , such that for all w ≡ (φ, ψ) ∈ Bs,σ(Rs,σ/N

2) one has

‖XHl◦T◦ΦN
(w)‖Ps,σ ≤ Cl

1
(l + 1)! ‖w‖

l+1
Ps,σ , (4.8)

‖XHl◦T◦ΦN
(w)‖Ps−1,σ ≤ Cl

2
N(l + 1)! ‖w‖

l+1
Ps,σ . (4.9)

Remark 4.3. Write

H̃FPU ≡ HFPU ◦ T ◦ ΦN = H̃Toda + H̃P , (4.10)

where

H̃Toda := HToda ◦ T ◦ ΦN , H̃P := (β − 1)H2 ◦ T ◦ ΦN + H(3) ◦ T ◦ ΦN , (4.11)

then, provided R is small enough the vector field of H̃P fulfills the following estimates

∥∥XH̃P
(w)

∥∥
Ps,σ ≤ C

[
|β − 1| ‖w‖3

Ps,σ + C ‖w‖4
Ps,σ

]
, (4.12)∥∥XH̃P

(w)
∥∥
Ps−1,σ ≤ C

N

[
|β − 1| ‖w‖3

Ps,σ + C ‖w‖4
Ps,σ

]
, (4.13)

for all w ∈ Bs,σ(R/N2).

In the following we denote by v(t) ≡ (ξ(t), ξ̄(t)) the solution of the FPU model in the 
original Cartesian coordinates (we restrict to the real subspace). We denote by w(t) :=
Φ−1

N (v(t)) the same solution in Birkhoff coordinates.

Lemma 4.4. Fix s ≥ 2 and σ ≥ 0. Then there exist R′
s,σ, T, C2 > 0 such that v0 ∈

Bs,σ
R

(
R
N2

)
with R ≤ R′

s,σ implies v(t) ∈ Bs,σ
R

( 4R
N2

)
for

|t| ≤ T

R2μ4[|β − 1| + C2Rμ2] . (4.14)

3 Namely

[Φ∗
NX](x) = dΦ−1

N (ΦN (x))X(ΦN (x))

which gives the vector field of the transformed Hamiltonian due to the fact that ΦN is canonical.
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Proof. First consider w0 := Φ−1
N (v0) and remark that (provided R′

s,σ is small enough) 
one has w0 ∈ Bs,σ

R

( 2R
N2

)
. Denote by M(w) := ‖w‖2

Ps,σ
R

. Since 
{
M, H̃Toda

}
≡ 0, one has

M(w(t)) = M(w0) +
t∫

0

{
M ; H̃P

}
(w(s))ds . (4.15)

Denoting M̄(t) := sup|s|≤t M(w(s)), one has

M̄(w(t)) ≤ M(w0) +
t∫

0

∣∣{M ; H̃P

}
(w(s))

∣∣ ds (4.16)

≤ M(w0) +
t∫

0

(
C ‖w(s)‖4

Ps,σ
R

|β − 1| + C ‖w(s)‖5
Ps,σ

R

)
ds

≤ M(w0) +
t∫

0

CM̄(t)2
(
|β − 1| + CM̄(t)1/2

)
ds

≤ M(w0) + |t|CM̄(t)2
(
|β − 1| + CM̄(t)1/2

)
, (4.17)

where, in order to prove the second inequality we used 
{
M ; H̃P

}
:= dMXH̃P

and

‖dM(w)‖L(Ps,σ,C) ≤ C ‖w‖Ps,σ ,

which follows from an explicit computation. Taking t as in the statement of the lemma
we have that (4.16)–(4.17) ensures M̄(t) ≤ 9M(w(0))/4, which implies w(t) ∈ Bs,σ

R

( 3R
N2

)
from which the thesis immediately follows. �
Proof of Theorem 1.16. Inequality (1.21) is a direct consequence of Lemma 4.4. To prove 
inequality (1.22) remark that İk = {Ik, H̃P } = xk

∂H̃P

∂yk
− yk

∂H̃P

∂xk
. Thus

1
N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

) ∣∣{Ik, H̃P }
∣∣

= 1
N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

) ∣∣∣∣yk ∂H̃P

∂yk
− xk

∂H̃P

∂xk

∣∣∣∣
≤
(

1
N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

)
(y2

k + x2
k)
)1/2

×
(

1
N

N−1∑
[k]2s−2

N e2σ[k]Nω
(

k
N

)(∣∣∣∣∂H̃P

∂yk

∣∣∣∣2 +
∣∣∣∣∂H̃P

∂xk

∣∣∣∣2
))1/2
k=1
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≤ 2 ‖w‖Ps−1,σ
R

∥∥XH̃P
(w)

∥∥
Ps−1,σ

R

≤ C

N

[
|β − 1| ‖w‖4

Ps,σ + C ‖w‖5
Ps,σ

]
,

where in the last inequality we used (4.13). Using that |Ik(w(t)) − Ik(w(0))| ≤∫ t

0

∣∣{Ik, H̃P }(w(s))
∣∣ ds, one gets

1
N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

)
|Ik(w(t)) − Ik(w(0))|

≤ |t|C
N

sup
|s|≤t

[
|β − 1| ‖w(s)‖4

Ps,σ + C ‖w(s)‖5
Ps,σ

]
,

which, using w(t) ∈ Bs,σ
R

( 3R
N2

)
immediately implies the thesis. �
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Appendix A. Properties of normally analytic maps

In this section we study the properties of the space Nρ(Pw1
, Pw2) and Aw2

w1,ρ defined 
in Section 2, with weights w1 ≤ w2. In particular, we consider the operations on germs 
defined in [30] and perform quantitative estimates.

Lemma A.1. Let w1 ≤ w2 ≤ w3 be weights. Let G ∈ Nρ(Pw1
, Pw2) with |G|ρ ≤ σ and 

F ∈ Nσ(Pw2
, Pw3). Then F ◦G ∈ Nρ(Pw1

, Pw3) and |F ◦G|ρ ≤ |F |σ.

Proof. Exploiting the obvious inequality F ◦G(|v|) ≤ F ◦G(|v|) (cf. [30]), one has

|F ◦G|ρ ≡ sup
v∈Bw1 (ρ)

‖F ◦G(|v|)‖w3 ≤ sup
v∈Bw1 (ρ)

‖F (G(|v|))‖w3

≤ sup
u∈Bw2 (σ)

‖F (|u|)‖w3 ≡ |F |σ . �

Lemma A.2. Let F ∈ Nρ(Pw1
, Pw2), F = O(v2) and |F |ρ ≤ ρ/e. Then the map 1 + F

is invertible in Bw1(μρ), μ as in (2.28). Moreover there exists G ∈ Nμρ(Pw1
, Pw2), 

G = O(v2), such that (1 + F )−1 = 1 −G, and

|G|μρ ≤
|F |ρ
8 . (A.1)



1862 D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818–1887
Proof. We look for G in the form G =
∑

n≥2 G
n, with the homogeneous polynomial Gn

to be determined at every order n. Note that the equation defining G can be given in the 
form F (v −G(v)) = G(v), which can be recasted in a recursive way giving the formula

Gn(v) =
n∑

r=2

∑
k1+···+kr=n

F̃ r
(
Gk1(v), · · · , Gkr (v)

)
, ∀n ≥ 2 . (A.2)

In the formula above k1, . . . , kr ∈ N, and we write F =
∑

r≥2 F
r, where F r is a ho-

mogeneous polynomial of degree r and F̃ r is its associated multilinear map (see (2.7)). 
Moreover we write G1(v) := v. We show now that the formal series G =

∑
n≥2 G

n with 

Gn defined by (A.2) is normally analytic in Bw1(μρ). Note that

Gn(|v|) ≤
n∑

r=2

∑
k1+···+kr=n

F̃ r
(
Gk1(|v|), . . . , Gkr(|v|)

)
. (A.3)

In order to prove that the series 
∑

n≥2 G
n is convergent in Bw1(μρ), we prove that there 

exists a constant A > 0 such that

‖Gn(|v|)‖w2 ≤
|F |ρ
8Sn2A

n ‖v‖nw1 , ∀n ≥ 2. (A.4)

The proof is by induction on n. We will use in the following the chain of inequalities

∥∥∥F̃ r
∥∥∥ ≤ er ‖F r‖ ≤ er |F |ρ /ρr ∀r ≥ 1 ,

see [32]. For n = 2, by (A.2) it follows that G2(v) = F̃ 2(v, v). Since

∥∥G2(|v|)
∥∥
w2 ≤

∥∥F̃ 2∥∥ ‖v‖2
w1 ≤ e2 |F |ρ

ρ2 ‖v‖2
w1 ,

it follows that (A.4) holds for n = 2 with A = e(32S)1/2

ρ . We prove now the inductive 
step n − 1 � n. Assume therefore that (A.4) holds up to order n − 1. Then one has

‖Gn(|v|)‖w2 ≤
n∑

r=2

∑
k1+···+kr=n

∥∥F̃ r
∥∥ ∥∥Gk1(|v|)

∥∥
w2 · · ·

∥∥Gkr(|v|)
∥∥
w2

≤ An ‖v‖nw1

n∑
r=2

∑
k1+···+kr=n

er
|F |ρ
ρr

|F |rρ
8rSrk2

1 · · · k2
r

≤
|F |ρ
4Sn2A

n ‖v‖nw1

∞∑(
e |F |ρ

2ρ

)r

≤
|F |ρ
8Sn2A

n ‖v‖nw1
r=2
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where in the first inequality we used the fact that w1 ≤ w2, in the second the inductive 
assumption and in the last we used the hypothesis |F |ρ ≤ ρ/e. Finally to pass from the 
second to the third line we used the following inequality, proved in Lemma A.5 below:

n2
∑

k1+···+kr=n

1
k2
1 · · · k2

r

≤ (4S)r−1, n ≥ 1 . (A.5)

Hence, choosing μρ = 1/A = ρ/e(32S)1/2 one proves (A.1). �
Now it is easy to prove the following lemma, giving closedness of the class Aw2

w1,ρ under 
different operations.

Lemma A.3. Let w1 ≤ w2 be weights and let μ be as in (2.28). Then the following holds 
true:

i) Let F ∈ Aw2

w1,ρ and G ∈ Aw2

w1,μρ with ‖G‖Aw2
w1,μρ

< μρ
e . Then H(v) := F (v +G(v)) is 

of class Aw2

w1,μρ and

‖H‖Aw2
w1,μρ

≤ 2 ‖F‖Aw2
w1,ρ

.

ii) Let F ∈ Aw2

w1,ρ and ‖F‖Aw2
w1,ρ

≤ ρ/e. Then (1 + F )−1 = 1 + G, with G ∈ Aw2

w1,μρ. 
Moreover one has

‖G‖Aw2
w1,μρ

≤ 2 ‖F‖Aw2
w1,ρ

. (A.6)

iii) Let F ∈ Aw2

w1,ρ, then the function H(v) := dF (v)v is in the class Aw2

w1,μρ and

‖H‖Aw2
w1,μρ

≤ 2 ‖F‖Aw2
w1,ρ

.

iv) Let F 0, G0 ∈ Aw2

w1,ρ with 
∥∥F 0

∥∥
Aw2

w1,ρ

≤ ρ
e . Denote F = 1 + F 0. Then H(v) :=

dG0(v)∗(F (v)) is in the class Aw2

w1,μρ and

‖H‖Aw2
w1,μρ

≤ 2
∥∥G0∥∥

Aw2
w1,ρ

.

Proof.

i) Since H(|v|) ≤ F (|v| + G(|v|)) it follows that |H|μρ ≤ |F |2μρ ≤ |F |ρ. Furthermore, 
since dH(v) = dF (v + G(v))(1 + dG(v)) one gets that dH(|v|) ≤ dF (|v| + G(|v|)) +
dF (|v| + G(|v|))dG(|v|), which implies that μρ |dH|μρ ≤ |dF |ρ (μρ + μρ |dG|μρ) ≤
|dF |ρ μρ(1 + 1/e). The adjoint dH(v)∗ is estimated analogously, thus the claimed 
estimate follows.
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ii) It follows from the formula dG(v) = [1 − dF (v −G(v))]−1dF (v −G(v)), arguing as 
in item i).

iii) It follows from dH(v)u = dF (v)u + d2F (v)(u, v), arguing as in item i).
iv) To estimate H(|v|) and dH(|v|) one proceeds as in item i). In order to es-

timate dH(|v|)∗ remark that (see [30]) dH(v)∗u = (dF 0(v)∗ + 1)dG0(v)u +
dv(dG0(v)∗u)(F (v)), thus

dH(|v|)∗|u| ≤ (dF 0(|v|)∗ + 1)dG0(|v|)|u| + d|v|(dG0(|v|)∗|u|)(F (|v|)) .

The claimed estimate follows easily. �
Now we analyze the flow generated by a vector field of class Aw2

w1,ρ. Given a time 
dependent vector field Vt(v), consider the differential equation{

u̇(t) = Vt(u(t))
u(0) = v .

(A.7)

We will denote by φt(v) the corresponding flow map whose existence and properties are 
given in the next lemma.

Lemma A.4. Assume that the map [0, 1] � t �→ Vt ∈ Aw2

w1,ρ is continuous and furthermore 

fulfills supt∈[0,1] ‖Vt‖Aw2
w1,ρ

≤ ρ/e; then for each t ∈ [0, 1], φt − 1 ∈ Aw2

w1,μρ with μ as in 

(2.28). Furthermore one has∥∥φt − 1
∥∥
Aw2

w1,μρ

≤ 2 sup
t∈[0,1]

‖Vt‖Aw2
w1,ρ

. (A.8)

Proof. We look for a solution u(t, v) =
∑

j≥1 u
j(t, v) in power series of v, with uj(t, v) a 

homogeneous polynomial of degree j in v. Expanding the vector field Vt(v) =
∑

r≥2 V
r
t (v)

in Taylor series, one obtains the recursive formula for the solution

u1(t, v) = v,

un(t, v) =
n∑

r=2

∑
k1+···+kr=n

t∫
0

Ṽ r
s (uk1(s, v), . . . , ukr (s, v)) ds ∀n ≥ 2, (A.9)

where Ṽ r
s is the multilinear map associated to V r

s (see (2.7)). Arguing as in the proof of 
(A.2) one gets the bounds

‖un(t, v)‖w2 ≤
supt∈[0,1]

∣∣Vt

∣∣
ρ

8Sn2 An ‖v‖nw1 ∀n ≥ 2, (A.10)

with A = e (32S)1/2, from which it follows that 
∣∣φt − 1

∣∣ ≤ supt∈[0,1]
∣∣Vt

∣∣ /8.
ρ μρ ρ
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We come to the estimate of the differential of u(t, v) and of its adjoint. We differentiate 
equation (A.9) getting the recursive formula

dun(t, v)ξ =
n∑

r=2

∑
k1+···+kr=n

t∫
0

[
Ṽ r
s (duk1(s, v)ξ, . . . , ukr (s, v)) + · · ·

+ Ṽ r
s (uk1(s, v), . . . , dukr(s, v)ξ)

]
ds . (A.11)

To estimate such an expression remark that, defining Et(v) := dVt(v) (where the differ-
ential is with respect to the v variable only), one has

dr−1Es(uk2(s, v), . . . , ukr(s, v))ξ = Ṽ r
s (ξ, uk2(s, v), . . . , ukr (s, v))

which allows to write formula (A.11) as

dun(t, v)ξ =
n∑

r=2

∑
k1+···+kr=n

t∫
0

[
dr−1Es(uk2(s, v), . . . , ukr(s, v))duk1(s, v)ξ + . . .

. . . + dr−1Es(uk1(s, v), . . . , ukr−1(s, v))dukr (s, v)ξ
]
ds . (A.12)

This formula allows to proceed exactly as in the estimate of un, namely making the 
inductive assumption that

‖dun(t, v)‖L(Pw1 ,Pw2 ) ≤
supt∈[0,1]

∣∣dVt

∣∣
ρ

8Sn2 An ‖v‖nw1

and proceeding as above one gets the thesis. Finally one has to estimate [dun]∗, but 
again equation (A.12) allows to obtain a formula whose estimate is obtained exactly as 
the estimate of du. �

We prove now a useful inequality.

Lemma A.5. (See [37].) Let r ∈ N be fixed and S =
∑

k≥1
1
k2 . Then for every n ∈ N it 

holds that

n2
∑

k1,...,kr∈N

k1+···+kr=n

1
k2
1 · · · k2

r

≤ (4S)r−1 .

Proof. The proof is by induction, the case n = 1 being trivial. For n > 1 one gets

n2
∑ 1

k2
1 · · · k2

r

=
∑ n2

k2
1j

2

∑ j2

k2
2 · · · k2

r

≤
∑ n2

k2
1j

2 (4S)r−2
k1+···+kr=n k1+j=n k2+···+kr=j k1+j=k



1866 D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818–1887
by the induction assumption. Now it is enough to note that

∑
k1+j=n

n2

k2
1j

2 =
∑

k1+j=n

n2

k2
1(n− k1)2

≤ 2
n−1∑
k1=1

( 1
k2
1

+ 1
(n− k1)2

)
≤ 4

n−1∑
k1=1

1
k2
1
≤ 4S. �

Appendix B. Discrete Fourier transform

In this section we collect some well-known properties of the discrete Fourier transform 
(DFT). For u ∈ CN , N ∈ N, the DFT of u is the vector û ∈ CN whose kth component 
is defined by

ûk = 1√
N

N−1∑
j=0

uje
2πijk/N , ∀ 0 ≤ k ≤ N − 1. (B.1)

When the DFT is considered as a map, it will be denoted by F , i.e. F : u �→ û.
For any s ≥ 0 and σ ≥ 0 we endow CN with the norm ‖·‖s,σ defined in (4.1). Such a 

space will be denoted by Cs,σ.

Remark B.1. Let j be an integer such that 0 ≤ j ≤ N − 1. Then

N−1∑
k=0

ei2πjk/N =
{ 0 if j �= 0
N if j = 0

and

2N−1∑
k=0

uk e
iπkj/N =

{
2
√
N ûl, j even, j = 2l

0 j odd
(B.2)

Remark B.2. Fix s > 1
2 and σ ≥ 0. Then there exists a constant Cs,σ > 0, independent 

of N , such that for every u ∈ CN the following estimate holds:

sup
0≤j≤N−1

|uj | ≤ Cs,σ ‖u‖s,σ .

For u, v ∈ CN , we denote by u · v the component-wise product of u and v, namely the 
vector whose jth component is given by the product of the jth components of u and v:

(u · v)j := ujvj , 0 ≤ j ≤ N − 1 . (B.3)

We denote by u ∗ v the convolution product of u and v, a vector whose jth component 
is defined by

(u ∗ v)j :=
N−1∑

ukvj−k, 0 ≤ j ≤ N − 1 , (B.4)

k=0
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where in the summation above u and v are extended periodically defining vk+lN ≡ vk
for l ∈ Z. The DFT maps the component-wise product in convolution:

Lemma B.3. For s > 1
2 and σ ≥ 0 there exists a constant Cs,σ > 0, independent of N , 

such that the following holds:

(i) û · v = 1√
N

û ∗ v̂;
(ii) ‖u · v‖s,σ ≤ Cs,σ ‖u‖s,σ ‖v‖s,σ;
(iii) the map X : u �→ u2, has bounded modulus w.r.t. the exponentials, and ‖X(u)‖s,σ ≤

Cs,σ ‖u‖2
s,σ.

Proof. Item (i) is standard and the details of the proof are omitted.
We prove now item (ii). To begin, note that, by periodicity, one has

‖u‖2
s,σ = 1

N

∑
k∈K0

N

[k]2se2σ|k| |ûk|2 ,

where the set

K0
N := {k ∈ Z : −(N − 1)/2 ≤ k ≤ (N − 1)/2} ∪ {�N/2�}, (B.5)

while [k] := max(1, |k mod N |). By item (i), one has that

‖u · v‖2
s,σ = 1

N

∑
k∈K0

N

[k]2se2σ|k||(̂u · v)k|2 = 1
N2

∑
k∈K0

N

[k]2se2σ|k|

∣∣∣∣∣
N−1∑
l=0

ûlv̂k−l

∣∣∣∣∣
2

. (B.6)

Introduce now the quantities

γk,l := [k]s

[l]s [k − l]s · eσ|k|

eσ|l|eσ|k−l| .

For s > 1
2 and σ ≥ 0, it holds that γ2

k,l ≤ 4s ([k−l]2s+[l]2s) e2σ(|k−l|+|l|)

[k−l]2s [l]2s e2σ|l| e2σ|k−l| ≤ 4s
(

1
[l]2s + 1

[k−l]2s

)
, 

from which it follows that there exists a constant Cs,σ > 0, independent of N , such that

sup
0≤k≤N−1

N−1∑
l=0

γ2
k,l ≤ C2

s,σ . (B.7)

By Cauchy–Schwartz one has

[k]seσ|k|
N−1∑

|ûl| |v̂k−l| =
N−1∑

γk,l [l]s eσ|l| |ûl| [k − l]s eσ|k−l| |v̂k−l|

l=0 l=0
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≤
(

N−1∑
l=0

γ2
k,l

)1/2(N−1∑
l=0

[l]2s e2σ|l| |ûl|2 [k − l]2s e2σ|k−l| |v̂k−l|2
)1/2

.

Inserting the inequality above in (B.6), one has

‖u · v‖s,σ ≤ Cs,σ

N

(
N−1∑
l=0

[l]2s e2σ|l| |ûl|2
)1/2 (N−1∑

k=0

[k − l]2s e2σ|k−l| |v̂k−l|2
)1/2

≤ Cs,σ ‖u‖s,σ ‖v‖s,σ .

We prove now item (iii). Consider X̂ := FXF−1. By item (i) one has X̂ : {ûj}j∈Z �→
{ 1√

N

∑
l ûlûj−l}j∈Z. Thus X̂ ≡ X̂ and the claim follows. �

Remark B.4. Let S± be the difference operators defined in (4.5). Let ω̂± be the vectors 
whose kth components are given by ω̂±,k := 1 − e∓2πik/N . Then the following holds:

(i) the map Ŝ± := FS±F−1 is a multiplication by the vector ω̂±: Ŝ± : û �→ ω̂± · û.
(ii)

∣∣∣Ŝ±(û)
∣∣∣ ≤ ω · |û|, where ω ≡ {ω

(
k
N

)
}N−1
k=1 is the vector of the linear frequencies.

Remark B.5. Consider q = q(ξ, η) as a function of the linear Birkhoff variables defined 

in (2.3). Then one has 
∥∥∥S±(q)

∥∥∥
s,σ

≤ ‖(ξ, η)‖Ps,σ .

Appendix C. Proof of Proposition 3.3

We prove now property (Θ1). Let T : (ξ, η) �→ (p, q) be the map introducing linear 
Birkhoff coordinates. Explicitly (p, q) = T (ξ, η) iff (p̂0, q̂0) = (0, 0) and

(p̂k, q̂k) =

⎛⎝√1
2ω

(
k
N

)
(ξk + ηN−k),

1

i
√

2ω
(

k
N

) (ξk − ηN−k)

⎞⎠ , 1 ≤ k ≤ N − 1 .

Then ΘΞ ≡ Θ ◦ T and in particular dΘΞ(0, 0) = dΘ(0, 0)T . Using the formula above 
and the fact that dΘ(0, 0)(P, Q) =

(
−P, 1

2S+(Q)
)
, where S+ is defined in (4.5), one 

obtains easily formula (3.13). The estimate of 
∥∥dΘΞ(0, 0)

∥∥
L(Ps,σ, Cs,σ) is trivial, and is 

omitted.
We prove now the estimate for 

∥∥dΘΞ(0, 0)∗
∥∥
L(Cs+1,σ,Ps,σ). Using the explicit formula 

(3.13), one computes that (ξ, η) = dΘΞ(0, 0)∗(B, A) iff

(ξk, ηk) =

⎛⎝−
√

1
2ω

(
k
N

)
B̂k + �k

i
√

2ω
(

k
N

) Âk, −
√

1
2ω

(
k
N

)
B̂N−k − �k

i
√

2ω
(

k
N

) ÂN−k

⎞⎠
for 1 ≤ k ≤ N − 1. Thus there exist constants C, CΘ2 > 0, independent of N , such that



D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818–1887 1869
∥∥dΘΞ(0, 0)∗(B,A)
∥∥
Ps,σ ≤ C

(
1
N

N−1∑
k=1

[k]2sN e2σ[k]Nω
(

k
N

)2 (|B̂k|2 + |Âk|2)
)1/2

≤ CΘ2

N
‖(B,A)‖Cs+1,σ ,

where we used that 
∣∣ω ( k

N

)∣∣2 ≤ π2[k]2N
N2 . Thus the second of (3.14) is proved.

We prove now property (Θ2). Denote by Θb the map p �→ −p and by Θa the map 
q �→ exp

(1
2S+(q)

)
−1. Then (b, a) = Θ(p, q) ≡ (Θb(p),Θa(q)). Introduce on CN the norm 

‖·‖s,σ defined in (4.1). Then ‖Θ(p, q)‖2
Cs,σ ≡ ‖Θb(p)‖2

s,σ + ‖Θa(q)‖2
s,σ. The analyticity of 

p �→ Θb(p) is obvious. Consider now the map q �→ Θa(q). Expand Θa in Taylor series 
with center at the origin to get

Θa(q) =
∑
r≥1

Θr
a(q), Θr

a(q) := 1
r! 2r (S+(q))r, ∀r ≥ 1. (C.1)

Consider q as a function of the linear Birkhoff variables ξ, η. Then Lemma B.3 and 
Remark B.5 imply that for any s ≥ 0, σ ≥ 0∥∥∥Θr

a(q)
∥∥∥
s+1,σ

≤ Cr
1

∥∥∥S+(q)
∥∥∥r
s+1,σ

≤ Cr
2 ‖(ξ, η)‖

r
Ps+1,σ

≤ Cr
3N

r ‖(ξ, η)‖rPs,σ , ∀r ≥ 2, (C.2)

where C1, C2, C3 > 0 are positive constants independent of N . Therefore for ε < 1
C3

one 
has

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥Θ0
Ξ(ξ, η)

∥∥∥
Cs+1,σ

≤
∑
r≥2

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥Θr
Ξ(ξ, η)

∥∥∥
Cs+1,σ

≤
∑
r≥2

Cr
3N

r εr

N2r ≤ 2C2
3 ε

2

N2 .

This proves the first estimate in (Θ2). We show now that for any s ≥ 0, σ ≥ 0 one has 
[dΘ0

Ξ]∗ ∈ Nε/N2(Ps,σ, L(Cs+2,σ, Ps+1,σ)). Note that dΘΞ(ξ, η)∗ = T ∗dΘ(T (ξ, η))∗. Using 
the explicit expression of T , one verifies that (ξ, η) = T ∗(P, Q) iff

(ξk, ηk) =

⎛⎝√1
2ω

(
k
N

)
P̂k + 1

i
√

2ω
(

k
N

) Q̂k,
√

1
2ω

(
k
N

)
P̂N−k − 1

i
√

2ω
(

k
N

) Q̂N−k

⎞⎠
(C.3)

for 1 ≤ k ≤ N − 1. Thus one has that for any s ≥ 0, σ ≥ 0

‖T ∗(0, Q)‖Ps,σ ≤ ‖Q‖s,σ . (C.4)



1870 D. Bambusi, A. Maspero / Journal of Functional Analysis 270 (2016) 1818–1887
Using (C.1) one verifies that dΘr(p, q)(P, Q) = 1
(r−1)! 2r

(
0, S+(q)r−1 · S+(Q)

)
, ∀r ≥ 2, 

from which it follows that

dΘr(p, q)∗(B,A) = 1
(r − 1)! 2r

(
0, S+(q)r−1 · S−(A)

)
, ∀r ≥ 2 .

Thus, using estimate (C.4), there exists a constant C4 > 0, independent of N , such that

∥∥∥dΘr
Ξ(ξ, η)∗(B,A)

∥∥∥
Ps+1,σ

≤ Cr
4

∥∥∥S+(q(ξ, η))
∥∥∥r−1

s+1,σ

∥∥∥S−(A)
∥∥∥
s+1,σ

≤ Cr
4N

r−2 ‖(ξ, η)‖r−1
Ps,σ ‖(B,A)‖Cs+2,σ .

Then there exist C5, ε0 > 0, independent of N , such that ∀ 0 < ε ≤ ε0

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥dΘ0
Ξ(ξ, η)∗

∥∥∥
L(Cs+2,σ,Ps+1,σ)

≤
∑
r≥2

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥dΘr
Ξ(ξ, η)∗

∥∥∥
L(Cs+2,σ,Ps+1,σ)

≤
∑
r≥2

Cr
4N

r−2 εr−1

N2(r−1) ≤ C5ε

N2 .

Appendix D. Proof of Lemma 3.6 and Corollary 3.7

Proof of Lemma 3.6. Since the map (b, a) �→ Lp(b, a) is linear, it is enough to prove that 
it is continuous from Cs,σ to L(C2N ). In particular we will prove that

‖Lp‖L(C2N ) ≤ sup
0≤j≤N−1

(
|bj | + 2 sup

j
|aj |

)
. (D.1)

This estimate, together with Lemma B.2, proves (3.20). In order to prove (D.1), write 
Lp = D + A+ + A−, where D is the diagonal part of Lp and A± are defined by

A+ =

⎛⎜⎜⎜⎝
0 a0

0
. . .
0 aN−1

aN−1 0

⎞⎟⎟⎟⎠ , A− =

⎛⎜⎜⎜⎝
0 aN−1
a0 0

. . . 0
aN−2 0

⎞⎟⎟⎟⎠ .

To estimate the norms of D, A+ and A− is enough to observe that for every x ∈ C2N

one has

‖Dx‖2
C2N :=

2N−1∑
j=0

|bjxj |2 ≤
(

sup
0≤j≤N−1

|bj |
)2

‖x‖2
C2N ,
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∥∥A±x
∥∥2
C2N ≤

(
sup

0≤j≤N−1
|aj |

)2

‖x‖2
C2N ,

where ‖·‖
C2N is the standard Euclidean norm on C2N . Thus (D.1) follows. �

Proof of Corollary 3.7. Item (i) follows by standard perturbation theory, and the de-
tails are omitted. We prove now item (ii). Let Γj be the circle defined by Γj :={
λ ∈ C :

∣∣λ0
2j − λ

∣∣ = 1
2N2

}
, counter-clockwise oriented. By item (i), for any ‖(b, a)‖Cs,σ ≤

ε∗
N , λ2j(b, a) and λ2j−1(b, a) are inside the ball enclosed by Γj . Write Lb,a − λ =
L0 − λ + Lp = (L0 − λ)

(
1 + (L0 − λ)−1

Lp

)
; its inverse

(Lb,a − λ)−1 =
( ∞∑

n=0

(
− (L0 − λ)−1

Lp

)n)
(L0 − λ)−1 (D.2)

is well defined as a Neumann operator when 
∥∥∥(L0 − λ)−1

Lp

∥∥∥
L(C2N )

< 1. Since L0 −λ is 

diagonalizable with {(λ0
j−λ)}0≤j≤2N−1 as eigenvalues, the norm of its inverse is bounded 

by the inverse of the smallest eigenvalue:

sup
λ∈Γj

∥∥∥(L0 − λ)−1
∥∥∥
L(C2N )

≤ sup
λ∈Γj

0≤k≤2N−1

∣∣∣∣ 1
λ0
k − λ

∣∣∣∣ < 2N2 (D.3)

where the last estimate is due to the form of Γj . Therefore for 0 < ε ≤ ε∗ and 
‖(b, a)‖Cs,σ < ε

N2 one gets, using (3.20),∥∥∥(L0 − λ)−1
Lp

∥∥∥
L(C2N )

≤ ‖Lp‖L(C2N )

∥∥∥(L0 − λ)−1
∥∥∥
L(C2N )

≤ Cs,σ ‖(b, a)‖Cs,σ 2N2 < 2Cs,σε∗,

which proves the convergence of the Neumann series (D.2) for ε∗ ≤ 1
2Cs,σ

.
Substituting (D.2) in (3.18) we get, for 1 ≤ j ≤ N − 1,

Pj(b, a) = Pj0 −
1

2πi

∮
Γj

( ∞∑
n=1

(
− (L0 − λ)−1

Lp

)n)
(L0 − λ)−1 dλ. (D.4)

Since the series inside the integral is absolutely and uniformly convergent for (b, a) ∈
BCs,σ ( ε

N2

)
, (b, a) �→ Pj(b, a) is analytic as a map from BCs,σ ( ε

N2

)
to L(C2N ). Estimate 

(3.22) follows easily from (D.4).
We prove now item (iii). Properties (U1)–(U3) are standard [29]. The analyticity 

of the map (b, a) �→ Uj(b, a) follows from item (ii). Indeed, in order for Uj(b, a) to be 
defined as a Neumann series one needs ‖Pj(b, a) − Pj0‖L(C2N ) < 1, which follows from 
(3.22). Estimate (3.23) follows by expanding (3.19) in power series of Pj(b, a) −Pj0. �
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Appendix E. Proof of Proposition 3.8

Denote by D : CN−1 → CN−1 the diagonal operator

D : {ξj}1≤j≤N−1 �→ {Djξj}1≤j≤N−1, where Dj :=
( 2
N ω

(
j
N

))−1/2
. (E.1)

Proof of properties (Z1)–(Z3). Property (Z1) follows from formula (3.25), since4:

zj(b, a) = Dj

〈(
Lb,a − λ0

2j
)
Ujf2j,0, Ujf2j,0

〉
= Dj

〈
Ujf2j,0,

(
Lb,a − λ0

2j
)
Ujf2j,0

〉
= Dj

〈
Ujf2j−1,0,

(
Lb,a − λ0

2j
)
Ujf2j−1,0

〉
= Dj

〈(
Lb,a − λ0

2j
)
f2j−1, f2j−1

〉
= wj(b, a).

We prove now (Z2). Using Lemma 3.7(iv) and the fact that f2j,0 = f2j−1,0, decompose 
f2j,0 and f2j in real and imaginary parts:

f2j,0 = ej,0 + ihj,0, f2j = ej + ihj

f2j−1,0 = ej,0 − ihj,0, f2j−1 = ej − ihj ,

where

ej,0 := Re f2j,0, hj,0 := Im f2j,0, and

ej := Re f2j = Ujej,0, hj := Im f2j = Ujhj,0.

The vectors {ej , hj} form a real orthogonal basis for Ej(b, a). Let Mj(b, a) be the matrix 
of the selfadjoint operator Lb,a − λ0

2j
∣∣
Ej(b,a) with respect to this basis:

Mj(b, a) =
(
αj σj

σj βj

)
.

The eigenvalues of Mj are obviously λ2j − λ0
2j and λ2j−1 − λ0

2j , hence

Tr Mj = αj + βj =
(
λ2j − λ0

2j
)

+
(
λ2j−1 − λ0

2j
)
,

Det Mj = αjβj − σ2
j =

(
λ2j − λ0

2j
) (

λ2j−1 − λ0
2j
)
.

Now observe that

zj(b, a) = Dj

〈(
Lb,a − λ0

2j
)
(ej + ihj), (ej − ihj)

〉
= Dj

〈(
Lb,a − λ0

2j
)
ej , ej

〉
−Dj

〈(
Lb,a − λ0

2j
)
hj , hj

〉
4 To simplify the notation, we write fj ≡ fj(b, a) and Uj ≡ Uj(b, a).
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+ 2iDj

〈(
Lb,a − λ0

2j
)
ej , hj

〉
=
( 2
N ω

(
j
N

))−1/2 (αj − βj + i2σj).

Finally one computes

(λ2j − λ2j−1)2 = (Tr Mj)2 − 4Det Mj = (αj + βj)2 − 4αjβj + 4σ2
j

= (αj − βj)2 + 4σ2
j = (Re zj)2 + (Im zj)2 =

( 2
N ω

(
j
N

))
|zj(b, a)|2.

We prove now (Z3). The first order terms of zj and wj in (b, a) are given by

dzj(0, 0)(b, a) = Dj

〈
Lpf2j,0, f2j,0

〉
, dwj(0, 0)(b, a) = Dj

〈
Lpf2j−1,0, f2j−1,0

〉
,

1 ≤ j ≤ N − 1 .

Using the explicit formula for f2j,0 in Lemma 3.4, one computes

〈
Lpf2j,0, f2j,0

〉
= 1

2N

2N−1∑
l=0

ble
i2ρj l + al−1e

i2ρj(l−1)eiρj + ale
i2ρj leiρj

= 1
2N

2N−1∑
l=0

ble
i2πjl/N + al−1e

i2π(l−1)j/Neiρj + ale
i2πlj/Neiρj

= 1√
N

(
b̂j + 2eiρj âj

)
= 1√

N

(
b̂j − 2eiπj/N âj

)
. (E.2)

The formula for dzj(0, 0)(b, a) immediately follows. The one for dwj(0, 0)(b, a) is proved 
in the same way and the details are omitted.

The estimate (3.28) for dZ(0, 0) follows immediately. We estimate now the norm of 
dZ(0, 0)∗. One checks that (B, A) = dZ(0, 0)∗(ξ, η) iff B̂0 = Â0 = 0 and for 1 ≤ k ≤ N−1

(B̂k, Âk) =

⎛⎝ 1√
2ω
(

k
N

) (ξk + ηN−k),
2√

2ω
(

k
N

) (eiπk/Nξk + eiπ(N−k)/NηN−k)

⎞⎠ .

Thus there exist constants C, C ′, CZ > 0, independent of N , such that

‖dZ(0, 0)∗(ξ, η)‖2
Cs+2,σ ≤ C ′

N

N−1∑
k=1

[k]2sN e2σ[k]Nω
(

k
N

) [k]4N
ω
(

k
N

)2 (|ξk|2 + |ηk|2
)

≤ C2
ZN

4 ‖(ξ, η)‖2
Ps,σ

where in the last inequality we used that [k]4N/ω
(

k
N

)2 ≤ C ′′N4 for some constant C ′′ > 0
independent of N . Thus the second of (3.28) is proved.
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Proof of property (Z4). We will prove that Z is normally analytic. Recall that, as men-
tioned in the discussion before Proposition 3.3, the map Z is said to be normally analytic 
if Ž := ZF is normally analytic. With an abuse of notations, we omit the “check” from Z.

We begin by expanding the components of Z, denoted by Zj(b, a) := (zj(b, a),
wj(b, a)), in Taylor series with center at (b, a) = (0, 0). The first two terms of the expan-
sions are given by

zj(b, a) = Dj〈Lpf2j,0, f2j,0〉 + Dj〈Lp

(
L0 − λ0

2j
)−1 (1 − Pj0)Lpf2j,0, f2j,0〉 + O((b, a)3),

wj(b, a) = Dj〈Lpf2j−1,0, f2j−1,0〉 + Dj〈Lp

(
L0 − λ0

2j
)−1 (1 − Pj0)Lpf2j−1,0, f2j−1,0〉

+ O((b, a)3). (E.3)

To perform the Taylor expansion at every order it is convenient to proceed in the following 
way. Write zj(b, a) = zj,1(b, a) + zj,2(b, a) and wj(b, a) = wj,1(b, a) + wj,2(b, a) where

zj,1(b, a) = Dj

〈(
L0 − λ0

2j
)
f2j(b, a), f2j(b, a)

〉
,

zj,2(b, a) = Dj

〈
Lpf2j(b, a), f2j(b, a)

〉
, (E.4)

while wj,1(b, a) and wj,2(b, a) are defined as in (E.4), but with f2j−1(b, a) replacing 
f2j(b, a).

Expand zj,ς(b, a), ς = 1, 2, in Taylor series with center at (b, a) = (0, 0): zj,ς(b, a) =∑
n≥1 z

n
j,ς(b, a), with znj,ς a homogeneous polynomial of degree n in b, a. We write an 

analogous expansion for wj,ς(b, a). Therefore one has

Zn
j (b, a) := (znj (b, a), wn

j (b, a)) ≡
(
znj,1(b, a) + znj,2(b, a), wn

j,1(b, a) + wn
j,2(b, a)

)
.

In order to write explicitly znj,ς(b, a) as a function of b and a, one needs to expand the 
vectors f2j(b, a) and f2j−1(b, a) in Taylor series of b, a. Rewrite (3.19), (3.24) as

f2j(b, a) = Uj(b, a)f2j,0 =
(
1 − (Pj(b, a) − Pj0)2

)−1/2(
1 + (Pj(b, a) − Pj0)

)
f2j,0

and expand the r.h.s. above in power series of Pj(b, a) − Pj0, getting:

f2j(b, a) =
∞∑

m=0
cm (Pj(b, a) − Pj0)m f2j,0,

f2j−1(b, a) =
∞∑

m=0
cm (Pj(b, a) − Pj0)m f2j−1,0 , (E.5)

where the cm’s are the coefficients of the Taylor series of the function φ(x) = 1+x
(1−x2)1/2 . 

Note that c2k+1 = c2k ≡ (−1)k
(−1/2), where 

(−1/2) := −1 (−1 − 1) · · · (−1 − k + 1) is 
k k 2 2 2
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the product of k negative terms, thus (−1)k
(−1/2

k

)
≥ 0, ∀k ≥ 0, and therefore cm ≥ 0, 

∀m.
By Corollary 3.7 (see also formula (D.4)) one has, in the ball BCs,σ (ε∗/N2),

Pj(b, a) − Pj0 = i
2π

∞∑
n=1

(−1)n
∮
Γj

Tn(b, a, λ) (L0 − λ)−1 dλ (E.6)

where the Γj ’s are defined as in equation (3.18), and

T (b, a, λ) := (L0 − λ)−1
Lp .

Substituting (E.6) in (E.5) we get that

f2j(b, a) = f2j,0 +
∑
n≥1

∑
1≤m≤n

cm
∑

α=(α1,...,αm)∈Nm, |α|=n

fα
2j,m(b, a),

fα
2j,m(b, a)

:=
(

i
2π

)m

(−1)|α|
∮
Γj

. . .

∮
Γj

Tα1(b, a, λ1) (L0 − λ1)−1
. . .

× Tαm(b, a, λm) (L0 − λm)−1
f2j,0dλ1 . . .dλm. (E.7)

An analogous expansion holds for f2j−1(b, a), with f2j−1,0 substituting f2j,0 in the in-
tegral formula above. In order to write explicitly the expression inside the integral, one 
needs to compute the iterated terms Tn(b, a, λ)f2j,0 and Tn(b, a, λ)f2j−1,0. The compu-
tation turns out to be simpler if we express Lpf2j,0 in the basis of the eigenvectors of L0. 
To simplify the notations we relabel the eigenvectors of L0 in the following way:

g0 := f00, gN := f2N−1,0, gj := f2j,0, g−j := f2j−1,0, for 1 ≤ j ≤ N − 1

and the eigenvalues of L0 as

λ̂0 := λ0
0, λ̂N := λ0

2N−1, λ̂j := λ0
2j , λ̂−j := λ0

2j−1, for 1 ≤ j ≤ N − 1.

For every 1 ≤ j ≤ N − 1 one has that gj = g−j , formally, one can also write gj+2N = gj , 
λ̂j = λ̂−j and λ̂j+2N = λ̂j , as one verifies using the explicit expressions of the gj’s and 
λ̂j ’s. In this notation, for λ �= λ̂±j , one has (L0 − λ)−1g±j = g±j/(λ̂±j − λ). With a 
computation analogous to the one in (E.2) (using also the second formula in (B.2)), one 
verifies that the projection of Lpgj on the vector gk is given by
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〈Lp gj , gk〉 = 1√
N

(
b̂ j−k

2
− 2 cos

(
kπ
N

)
â j−k

2

)
δ(j−k;even), (E.8)

where δ(j−k;even) = 1 if j − k is an even integer, and equals 0 otherwise. Formula (E.8)
implies that Lpgj is supported only on the vectors gk whose index k satisfies k = j − 2l
for some integer l. Therefore we can write

T (b, a, λ)gj =
∑
l∈K0

N

xl
j

λ̂j−2l − λ
gj−2l,

xl
j := 〈Lpgj , gj−2l〉 = 1√

N

(
b̂l − 2 cos

(
(j−2l)π

N

)
âl

)
, (E.9)

where K0
N is the set of indexes defined in (B.5). Note that 

∣∣xl
j

∣∣ ≤ 2√
N

(
|b̂l| + |âl|

)
uniformly in j, and xl+N

j = xl
j . Iterating (E.9) one gets

Tn(b, a, λ) (L0 − λ)−1
gj =

∑
i1,···,in∈K0

N

xi1
j xi2

j−2i1 . . . x
in
j−2i1−···−2in−1

(λ̂j − λ)
∏n

l=1

(
λ̂j−2

∑l
m=1 im

− λ
)gj−2i1−···−2in .

More generally, for a vector α = (α1, . . . , αm) ∈ Nm with |α| = n and λ1, · · · , λm ∈ Γj , 
one has

Tαm(b, a, λm) (L0 − λm)−1 · · ·Tα1(b, a, λ1) (L0 − λ1)−1
gj

=
∑

i1,...,in∈K0
N

xi1
j xi2

j−2i1 . . . x
in
j−2i1−···−2in−1

(λ̂j − λ1)
∏n

l=1

(
λ̂j−2

∑l
m=1 im

− μl

)∏m−1
l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)
× gj−2i1−···−2in (E.10)

where

μl = λ1 for 1 ≤ l ≤ α1, and μl = λk for
k−1∑
h=1

αh + 1 ≤ l ≤
k∑

h=1

αh, 2 ≤ k ≤ m .

(E.11)

To obtain the explicit expression of znj,ς and wn
j,ς , ς = 1, 2, in terms of the Fourier variables 

b̂, â, we substitute (E.10) in (E.7) and the obtained result in (E.4). By (E.7), znj,1 is a 

sum of terms of the form 
〈(

L0 − λ0
2j
)
fα
2j,p1

, fβ
2j,p2

〉
over (p, α, β) ∈ N2 ×Np1 ×Np2 with 

|p| = p1 + p2 ≤ n and |α| + |β| = n. For |α| = r, |β| = n − r one gets
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〈(
L0 − λ̂j

)
fα
2j,p1

, fβ
2j,p2

〉
=
(

i
2π

)|p|
(−1)n

∮
Γj

. . .

∮
Γj

κp,α,β
j,1 (i)xi1

j xi2
j−2i1 . . . x

ir
j−2i1−···−2ir−1

× xin
j x

in−1
j−2in . . . x

ir+1
j−2in−···−2ir+2

〈
gj−2i1−···−2ir , gj−2ir+1−···−2in

〉
dλ1 . . .dλ|p|,

(E.12)

where, writing i = (i1, · · · , in),

κp,α,β
j,1 (i)

:=

(
λ̂j−2

∑r
m=1 im − λ̂j

)
(λ̂j − λ1)

∏r
l=1

(
λ̂j−2

∑l
m=1 im

− μl

)∏p1−1
l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)
× 1

(λ̂j − λp1+1)
∏n

l=r+1

(
λ̂j−2

∑n
m=l im

− μ̃l

)∏p2−1
l=1

(
λ̂
j−2

∑β1+···+βl
h=1 ih

− λl+1

)
(E.13)

and the μ̃l’s are defined as in (E.11), but with the multi-index β replacing α. Similarly, the 

term znj,2 is a sum of terms of the form 
〈
Lp f

α
2j,p1

, fβ
2j,p2

〉
over (p, α, β) ∈ N2 ×Np1 ×Np2

with |p| ≤ n and |α| + |β| = n − 1. The term 
〈
Lp f

α
2j,p1

, fβ
2j,p2

〉
has an expression similar 

to (E.12), and for |α| = r and |β| = n − 1 − r the kernel κp,α,β
j,2 (i) is given by

κp,α,β
j,2 (i)

:= 1
(λ̂j − λ1)

∏r
l=1

(
λ̂j−2

∑l
m=1 im

− μl

)∏p1−1
l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)
× 1

(λ̂j − λp1+1)
∏n

l=r+2

(
λ̂j−2

∑n
m=l im

− μ̃l

)∏p2−1
l=1

(
λ̂
j−2

∑β1+···+βl
h=1 ih

− λl+1

) .
(E.14)

Using the explicit form of the eigenvectors {gk}−(N−1)≤k≤N (see Lemma 3.4), one verifies 
that

〈
gj−2i1−···−2ir , gj−2ir+1−···−2in

〉
= δ

(
j,

n∑
m=1

im

)
,

〈
gN−j−2i1−···−2ir , gN−j−2ir+1−···−2in

〉
= δ

(
−j,

n∑
im

)
.

m=1
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This is used to simplify the last term in (E.12). Moreover, using j =
∑n

m=1 im and the 
identity λ̂j = λ̂−j , one gets that

λ̂j−2in = λ̂j−2
∑n−1

m=1 im
, . . . , λ̂j−2in−2in−1−···−2ir+1 = λ̂j−2

∑r
m=1 im . (E.15)

Recalling the definition of the coefficients xl
j (formula (E.9)), we can write, for ς = 1, 2,

znj,ς(b̂, â) = 1
Nn/2

( 2
N ω

(
j
N

))−1/2 ∑
(i,ι)∈Δn

Kn
j,ς(i, ι)ui1,ι1 . . . uin,ιn (E.16)

where the set

Δn :=
{
(i, ι) ∈ Zn × Nn : il ∈ K0

N , ιl ∈ {1, 2}, ∀1 ≤ l ≤ n
}
,

the variables u = (ui1,ι1 , · · · , uin,ιn) are defined by

uir,1 := b̂ir , uir,2 := âir ,

the kernels Kn
j,ς(i, ι) are defined for (i, ι) ∈ Δn by

Kn
j,ς(i, ι) := K̃n

j,ς(i)
∏

{1≤l≤n}

(
−2 cos

(
(j−2ii−···−2il)π

N

))ιl−1
, (E.17)

K̃n
j,ς(i) =

∑
r+s=n−(ς−1)

p=(p1,p2)∈N
2, |p|≤n

cp1cp2

∑
(α,β)∈N

p1×N
p2

|α|=r, |β|=s

Sp,α,β
j,ς (i) (E.18)

and finally

Sp,α,β
j,ς (i) = δ

(
j,

n∑
m=1

im

)(
i

2π

)|p|
(−1)n

∮
Γj

. . .

∮
Γj

κp,α,β
j,ς (i) dλ1 . . . dλ|p|. (E.19)

An analogous expansion holds also for wn
j,1 and wn

j,2.
We need now to get estimates of the kernels Kn

j,ς , which will follow from estimates on 

the denominators of κp,α,β
j,ς .

Lemma E.1. Let μ ∈ Γj :=
{
λ ∈ C :

∣∣λ− λ0
2j
∣∣ = min

(
〈j〉
2N2 ,

〈N−j〉
2N2

)}
, where 〈j〉 =(

1 + |j|2
)1/2. Then there exists a constant R > 0, independent of N , such that for every 

−(N − 1) ≤ k ≤ N one has

∣∣∣λ̂k − μ
∣∣∣ ≥ {

R〈j − k〉〈j + k〉/N2, if 0 ≤ |j| ≤ �N/2�
R〈j − k〉〈(N − j) + (N − k)〉/N2, if �N/2� + 1 ≤ |j| ≤ N

(E.20)
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Proof. Consider first the situation in which both the eigenvalues λ̂j and λ̂k are in the 
low half of the spectrum, namely 0 ≤ |j|, |k| ≤ �N/2�. In this case one has

|λ̂k − λ̂j | ≡ |λ0
2|k| − λ0

2|j|| = 2
∣∣∣cos

(
|k|π
N

)
− cos

(
|j|π
N

)∣∣∣
= 2

∣∣cos
(
kπ
N

)
− cos

(
jπ
N

)∣∣ ≥ 4|j2 − k2|
N2 .

Therefore, for k �= j, there exists a positive constant R1 such that for ∀μ ∈ Γj∣∣∣λ̂k − μ
∣∣∣ ≥ ∣∣∣λ̂k − λ̂j

∣∣∣− 〈j〉
2N2 ≥ 4|j2 − k2|

N2 − 〈j〉
2N2 ≥ R1

〈j − k〉 〈j + k〉
N2 , (E.21)

where we used the inequality 〈j〉 ≤ 2 〈j − k〉 〈j + k〉, which holds since j, k are integers. 
If k = j, then the claimed estimate follows trivially since |λ̂k − μ| = 〈j〉/2N2.

Consider now the case when λ̂j is in the low half of the spectrum, while λ̂k is in the 
high half, i.e. 0 ≤ |j| ≤ �N/2�, while �N/2� < |k| ≤ N . In this case the distance of the 
eigenvalues λ̂j and λ̂k is of order 1

N , therefore the estimate (E.20) holds as well. More 
precisely, using cosx ≥ 1 − 2

πx for 0 ≤ x ≤ π/2, one has

|λ̂k − λ̂j | = |λ0
2|k| − λ0

2|j|| = 2
∣∣∣cos

(
(N−|k|)π

N

)
+ cos

(
jπ
N

)∣∣∣
≥ 4(|k| − |j|)

N
≥ 〈j − k〉 〈j + k〉

N2 ,

where the last inequality holds since 〈l〉 /N ≤ 4, ∀|l| ≤ 2N . The inequality above implies 
that ∣∣∣λ̂k − μ

∣∣∣ ≥ |λ̂k − λ̂j | −
〈j〉
2N2 ≥ 〈j − k〉 〈j + k〉

N2 − 〈j〉
2N2

≥ R2
〈j − k〉 〈j + k〉

N2 , (E.22)

for some R2 > 0. Thus the first of (E.20) is proved.
The proof of the second inequality of (E.20) follows by symmetry and is omitted. �
We can now estimate the kernels Kn

j,ς defined in (E.17).

Lemma E.2. There exists a constant R > 0, independent of N , such that Kn
j,ς(i, ι), 

ς = 1, 2, satisfy, for every n ≥ 2 and 1 ≤ j ≤ �N/2�, the estimates

∣∣Kn
j,ς(i, ι)

∣∣ ≤ RnN2(n−1)δ

(
j,

n∑
l=1

il

)
1∏n−1

l=1

〈∑l
k=1 ik

〉 〈∑l
k=1 ik − j

〉 ,
∣∣Kn

N−j,ς(i, ι)
∣∣ ≤ RnN2(n−1)δ

(
−j,

n∑
l=1

il

)
1∏n−1

l=1

〈∑l
k=1 ik

〉 〈∑l
k=1 ik − j

〉 . (E.23)
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Proof. We start by estimating κp,α,β
j,ς (i), defined in (E.13) and (E.14). For every −(N −

1) ≤ k ≤ N and μ ∈ Γj one has 
∣∣∣λ̂k − μ

∣∣∣ ≥ ∣∣∣λ̂j − μ
∣∣∣ ≥ min

(
〈j〉
2N2 ,

〈N−j〉
2N2

)
, therefore

∣∣∣∣∣(λ̂j − λ1)
p1−1∏
l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)
(λ̂j − λp1+1)

p2−1∏
l=1

(
λ̂
j−2

∑β1+···+βl
h=1 ih

− λl+1

)∣∣∣∣∣
≥
[
min

(
〈j〉
2N2 ,

〈N − j〉
2N2

)]|p|
.

Let now 1 ≤ j ≤ �N/2�. By Lemma E.1, formula (E.15) and the inequality 
|λ̂j−2

∑r
m=1 im−λ̂j |

|λ̂j−2
∑r

m=1 im−μ| ≤ 2 (which is used to estimate just κp,α,β
j,1 (i)), it follows that, for ς = 1, 2,

∣∣∣κp,α,β
j,ς (i)

∣∣∣ ≤ 2[
min

(
〈j〉
2N2 ,

〈N−j〉
2N2

)]|p|∏n−1
l=1

∣∣∣λ̂j−2
∑l

m=1 im
− μl

∣∣∣
≤ 2 aj(i1, · · · , in−1)[

min
(

〈j〉
2N2 ,

〈N−j〉
2N2

)]|p|
where

aj(i1, · · · , in−1) := Rn−1N2(n−1)∏n−1
l=1

〈∑l
k=1 ik

〉 〈∑l
k=1 ik − j

〉 .

To estimate Sp,α,β
j,ς consider (E.19). The Sp,α,β

j,ς ’s are defined by integrating the kernels 
κp,α,β
j,ς over Γj |p|-times. Since |Γj | = 2πmin

(
〈j〉
2N2 ,

〈N−j〉
2N2

)
, one gets

∣∣∣Sp,α,β
j,ς (i)

∣∣∣ ≤ [
min

(
〈j〉
N2 ,

〈N−j〉
N2

)]|p|
δ

(
j,

n∑
l=1

il

)∣∣∣κp,α,β
j,ς (i)

∣∣∣
≤ 2δ

(
j,

n∑
l=1

il

)
aj(i1, · · · , in−1).

Finally consider Kn
j,ς . From (E.17) one has 

∣∣Kn
j,ς(i, ι)

∣∣ ≤ 2n
∣∣K̃n

j,ς(i)
∣∣, and from (E.18)

∣∣K̃n
j,ς(i)

∣∣ ≤ δ

(
j,

n∑
l=1

il

)
aj(i1, · · · , in−1)

∑
r+s=n−(ς−1)

p=(p1,p2)∈N
2, |p|≤n

cp1cp2

∑
(α,β)∈N

p1×N
p2

|α|=r, |β|=s

1

≤ Cnδ

(
j,

n∑
il

)
aj(i1, · · · , in−1) ,
l=1
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thus the first estimate of (E.23) follows. The proof of the second one is similar, and is 
omitted. �

Define now Kn
j := Kn

j,1 + Kn
j,2. Then

znj (b̂, â) = Dj

Nn/2

∑
(i,ι)∈Δn

Kn
j (i, ι)ui1,ι1 . . . uin,ιn ,

wn
j (b̂, â) = Dj

Nn/2

∑
(i,ι)∈Δn

Hn
j (i, ι)ui1,ι1 . . . uin,ιn , (E.24)

where Hn
j (i, ι) = Kn

j (−i, ι). The second formula holds since for b, a real one has 
wn(b, a) = zn(b, a).

Corollary E.3. Let Δn
j := {(i, ι) ∈ Δn :

∑n
l=1 il = j}. Then for 1 ≤ j ≤ �N/2� one has 

supp Kn
j ⊆ Δn

j and supp Kn
N−j ⊆ Δn

−j. Moreover

∥∥Kn
j

∥∥
Δn

j

,
∥∥Kn

N−j

∥∥
Δn

−j

≤ RnN2(n−1)

〈j〉n−1 , (E.25)

where 
∥∥Kn

j

∥∥2
Δn

j

:= supι1,···,ιn∈{1,2}
∑

i1+···+in=j

∣∣Kn
j (i, ι)

∣∣2.
Proof. Just remark that 〈j〉2

〈k〉2〈k−j〉2 ≤ 4 
(

1
〈k〉2 + 1

〈k−j〉2
)
. �

We prove now bounds on the map Zn(b̂, ̂a) := (zn(b̂, ̂a), wn(b̂, ̂a)).

Lemma E.4. There exists a constant C > 0, independent of N , such that for any s ≥ 0
and σ ≥ 0 ∥∥∥Zn(|b̂|, |â|)

∥∥∥
Ps+1,σ

≤ CnN2(n−1) ‖(b, a)‖nCs,σ , ∀n ≥ 2. (E.26)

Proof. By formula (E.16) one has that for 1 ≤ j ≤ �N/2�

∣∣∣znj (|b̂|, |â|)
∣∣∣ ≤ Dj

Nn/2

∑
(i,ι)∈Δn

j

∣∣Kn
j (i, ι)

∣∣ |ui1,ι1 | . . . |uin,ιn |,

∣∣∣znN−j(|b̂|, |â|)
∣∣∣ ≤ Dj

Nn/2

∑
(i,ι)∈Δn

−j

∣∣Kn
N−j(i, ι)

∣∣ |ui1,ι1 | . . . |uin,ιn |. (E.27)

Introduce Λ(i) := [i1] · · · [in], where [ir] = max(1, |ir|) ∀1 ≤ r ≤ n, and remark that for 
some constant R > 0 one has
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sup
i1+···+in=j

Λ(i)−1 ≤ Rn

〈j〉 , ∀j ∈ Z.

Therefore, by Corollary E.3,

∣∣∣znj (|b̂|, |â|)
∣∣∣2

≤ 1
Nn

D2
j

∥∥Kn
j

∥∥2
Δn

j

(
sup

i1+···+in=j
Λ(i)−2s

) ∑
(i,ι)∈Δn

j

[i1]2s|ui1,ι1 |2 . . . [in]2s|uin,ιn |2,

∣∣∣znN−j(|b̂|, |â|)
∣∣∣2

≤ 1
Nn

D2
j

∥∥Kn
N−j

∥∥2
Δn

−j

(
sup

i1+···+in=−j
Λ(i)−2s

) ∑
(i,ι)∈Δn

−j

[i1]2s|ui1,ι1 |2 . . . [in]2s|uin,ιn |2.

Use now inequalities (E.25), the definition of Dj , the fact that

e2σ|j| ≤ e2σ|i1| · · · e2σ|in−1|e2σ|j−i1−···−in−1|,

and the bounds |ul,ιl | ≤ |b̂l| + |âl|, to deduce that, for any n ≥ 2,

1
N

�N/2�∑
j=1

[j]2(s+1)e2σ|j|ω
(

j
N

)(∣∣∣znj (|b̂|, |â|)
∣∣∣2 +

∣∣∣znN−j(|b̂|, |â|)
∣∣∣2)

≤ N4(n−1) C
n

Nn

�N/2�∑
j=1

[j]2(2−n)e2σ|j|
∑

(i,ι)∈Δn
±j

[i1]2s|ui1,ι1 |2 . . . [in]2s|uin,ιn |2

≤ N4(n−1)Cn ‖(b, a)‖2n
Cs,σ .

Since wn(b̂, ̂a) satisfies the same inequality, estimate (E.26) holds. �
Consider now the map (b̂, ̂a) �→ dZn(b̂, ̂a)∗, where dZn(b̂, ̂a)∗ is the adjoint of the 

differential of Zn. Explicitly, if ξ, η are vectors in CN−1 and h, g are vectors in CN such 
that (h, g) ≡ dZn(b̂, ̂a)∗(ξ, η), then the jth components of h and g are given by

(hj , gj) =
(

N−1∑
k=1

(
∂znk
∂b̂j

(b̂, â)ξk +
∂wn

k

∂b̂j
(b̂, â)ηk

)
,

N−1∑
k=1

(
∂znk
∂âj

(b̂, â)ξk +
∂wn

k

∂âj
(b̂, â)ηk

))
. (E.28)

Denote by h, g the vectors of CN whose components are given by
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(hj , gj) =
(

N−1∑
k=1

(
∂znk
∂b̂j

(|b̂|, |â|)|ξk| +
∂wn

k

∂b̂j
(|b̂|, |â|)|ηk|

)
,

N−1∑
k=1

(
∂znk
∂âj

(|b̂|, |â|)|ξk| +
∂wn

k

∂âj
(|b̂|, |â|)|ηk|

))
. (E.29)

We begin to study the case n = 2.

Lemma E.5. There exists a constant R > 0, independent of N , such that ∀s ≥ 0, σ ≥ 0
one has ∥∥∥dZ2(|b̂|, |â|)∗(|ξ|, |η|)

∥∥∥
Cs+2,σ

≤ RN3 ‖(b, a)‖Cs,σ ‖(ξ, η)‖Ps,σ . (E.30)

Proof. By (E.3), one computes that the second order terms Z2 = (z2, w2) are given by

z2
k(b̂, â) = Dk

N

∑
l �=0

(
b̂l − 2 cos( (k−2l)π

N )âl
)(

b̂k−l − 2 cos(kπN )âk−l

)
/(λ0

2(k−2l) − λ0
2k)

w2
k(b̂, â) = Dk

N

∑
l �=0

(
b̂N−l − 2 cos( (k−2l)π

N )âN−l

)(
b̂l−k − 2 cos(kπN )âl−k

)
/(λ0

2(k−2l) − λ0
2k).

Let h, g be as in (E.29) with n = 2. Using the explicit expressions for z2
k and w2

k, one 
computes that for 0 ≤ j ≤ �N/2�

|hj | ≤
1
N

N−1∑
k=1

(
|b̂k−j | + 2|âk−j |

)
Dk(|ξk| + |ηk|)

|λ0
2(k−2j) − λ0

2k|

≤ N

�N/2�∑
k=1

(
|b̂k−j | + 2|âk−j |

)
Dk(|ξk| + |ηk|)

〈k − j〉〈j〉

+ N

N−1∑
k=�N/2�+1

(
|b̂k−j | + 2|âk−j |

)
Dk(|ξk| + |ηk|)

〈N − k + j〉〈j〉

≤ N

�N/2�∑
k=1

(
|b̂k−j | + 2|âk−j |

)
Dk(|ξk| + |ηk|)

〈k − j〉〈j〉

+

(
|b̂N−k−j | + 2|âN−k−j |

)
Dk(|ξN−k| + |ηN−k|)

〈k + j〉〈j〉

≤ N2

〈j〉

�N/2�∑
k=1

(
|b̂k−j | + 2|âk−j |

)
〈k〉1/2(|ξk| + |ηk|)

〈k − j〉〈k〉

+

(
|b̂N−k−j | + 2|âN−k−j |

)
〈k〉1/2(|ξN−k| + |ηN−k|)
〈k + j〉〈k〉
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where in the last inequality we used that Dk ≤ N/〈k〉1/2. With analogous computations, 
one verifies that

|hN−j | ≤
N2

〈j〉

�N/2�∑
k=1

(
|b̂k+j | + 2|âk+j |

)
〈k〉1/2(|ξk| + |ηk|)

〈k + j〉〈k〉

+

(
|b̂j−k| + 2|âj−k|

)
〈k〉1/2(|ξN−k| + |ηN−k|)

〈k − j〉〈k〉 .

Proceeding as in the proof of Lemma B.3, one obtains that there exist constants 
C, C ′ > 0, independent of N , such that

1
N

�N/2�∑
j=0

[j]2(s+2)e2σ|j|(|hj |2 + |hN−j |2)

≤ CN3

(
N−1∑
k=0

[k]2sN e2σ[k]N (|b̂k|2 + |âk|2)
)(

N−1∑
l=1

[l]2sN e2σ[l]N [l]N (|ξl|2 + |ηl|2)
)

≤ C ′N6 ‖(b, a)‖2
Cs,σ ‖(ξ, η)‖2

Ps,σ (E.31)

where in the last inequality we used that [l]N ≤ Nω
(

l
N

)
for l integer. One verifies that 

g satisfies the same inequality as (E.31). Thus estimate (E.30) follows from the following 
inequality:

∥∥∥dZ2(|b̂|, |â|)∗(|ξ|, |η|)
∥∥∥2

Cs+2,σ

≤ 1
N

N−1∑
j=0

[j]2s+4
N e2σ[j]N

(
|hj |2 + |gj |2

)
. � (E.32)

We study now dZn(b̂, ̂a)∗ for n ≥ 3.

Lemma E.6. There exists a constant R > 0, independent of N , such that for every s ≥ 0, 
σ ≥ 0 and n ≥ 3∥∥∥dZn(|b̂|, |â|)∗(|ξ|, |η|)

∥∥∥
Cs+2,σ

≤ RnN2n−1 ‖(b, a)‖n−1
Cs,σ ‖(ξ, η)‖Ps,σ . (E.33)

Proof. Let h, g be as in (E.29). We concentrate on h only, the estimates for g being 
analogous. Write hj =

∑N−1
k=1

∂zn
k

∂b̂j
ξk +

∑N−1
k=1

∂wn
k

∂b̂j
ηk =: hj,1 + hj,2. By (E.24) one gets 

that

hj,1 = 1
Nn/2

n∑
An,l

j (Dξ, u, . . . , u), hj,2 = 1
Nn/2

n∑
Bn,l

j (Dη, u, . . . , u)

l=1 l=1
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where D is defined in (E.1), the multilinear map An,l
j is defined by

An,l
j (h, u, . . . , u) =

∑
(i,ι)∈Δn

An,l
j (i, ι)ui1,ι1 . . . hil . . . uin,ιn ,

Bn,l
j is defined analogously but with kernel Bn,l

j (i, ι), and finally An,l
j and Bn,l

j are defined 
for 1 ≤ j ≤ �N/2� by

An,l
j (i, ι) := Kn

il

(
(i1, . . . , il−1, j, il+1, . . . , in), (ι1, . . . , ιl−1, 1, ιl+1, . . . , ιn)

)
,

An,l
N−j(i, ι) := Kn

il

(
(i1, . . . , il−1,−j, il+1, . . . , in), (ι1, . . . , ιl−1, 1, ιl+1, . . . , ιn)

)
,

while Bn,l
j (i, ι) = An,l

j (−i, ι) and Bn,l
N−j(i, ι) = An,l

N−j(−i, ι), see (E.24). By Corollary E.3
it follows that

suppAn,l
j = supp Bn,l

N−j

≡ {(i, ι) : i1 + · · · + il−1 − il + il+1 + · · · + in = −j, ιl = 1} ⊆ Δn
−j ,

suppAn,l
N−j = supp Bn,l

j

≡ {(i, ι) : i1 + · · · + il−1 − il + il+1 + · · · + in = j, ιl = 1} ⊆ Δn
j .

Proceeding as in the proof of Corollary E.3, one proves that there exists a constant 
R > 0, independent of N , such that (see [30])

max
1≤l≤n

(∥∥∥An,l
j

∥∥∥
Δn

−j

,
∥∥∥An,l

N−j

∥∥∥
Δn

j

,
∥∥∥Bn,l

j

∥∥∥
Δn

j

,
∥∥∥Bn,l

N−j

∥∥∥
Δn

−j

)
≤ RnN2(n−1)

〈j〉2 , ∀n ≥ 3 .

(E.34)

Thus h, defined in (E.29), satisfies

|hj | ≤
1

Nn/2

n∑
l=1

(
An,l

j (|Dξ|, |u|, . . . , |u|) + Bn,l
j (|Dη|, |u|, . . . , |u|)

)
,

where An,l
j (h, u, . . . , u) =

∑
(i,ι)∈Δn

∣∣∣An,l
j (i, ι)

∣∣∣ui1,ι1 . . . hil . . . uin,ιn , and Bn,l
j is defined 

in analogous way. Then, using (E.34) and arguing as in the proof of Lemma E.4, one 
proves the estimate

1
N

N−1∑
j=0

[j]2(s+2)
N e2σ[j]N |hj |2

≤ RnN4n−5 ‖(b, a)‖2(n−1)
Cs,σ

(
1
N

N−1∑
[l]2sN e2σ[l]ND2

l (|ξl|2 + |ηl|2)
)

l=1
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≤ RnN4n−2 ‖(b, a)‖2(n−1)
Cs,σ ‖(ξ, η)‖2

Ps−1,σ ,

where in the last inequality we used that D2
l ≤ N3

[l]2N
ω
(

l
N

)
. One verifies that g satisfies 

the same inequality, thus estimate (E.33) follows. �
We can finally prove property (Z4). Let s ≥ 0, σ ≥ 0 be fixed. By Lemmas E.4, E.5

and E.6, there exist C1, C2, ε∗ > 0, independent of N , such that for every 0 < ε ≤ ε∗ it 
holds that

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥Z0(b, a)
∥∥
Ps+1,σ ≤

∑
n≥2

sup
‖(b,a)‖Cs,σ≤ε/N2

‖Zn(b, a)‖Ps+1,σ

≤
∑
n≥2

RnN2(n−1) εn

N2n ≤ C1ε
2

N2 ,

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥dZ0(b, a)∗
∥∥
L(Ps,σ, Cs+2,σ) ≤

∑
n≥2

sup
‖(b,a)‖Cs,σ≤ε/N2

‖dZn(b, a)∗‖L(Ps,σ, Cs+2,σ)

≤
∑
n≥2

RnN2n−1 εn−1

N2(n−1) ≤ C2Nε .
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